WO2019000993A1 - 一种机器人及其拼接方法、机器人拼接系统 - Google Patents

一种机器人及其拼接方法、机器人拼接系统 Download PDF

Info

Publication number
WO2019000993A1
WO2019000993A1 PCT/CN2018/077379 CN2018077379W WO2019000993A1 WO 2019000993 A1 WO2019000993 A1 WO 2019000993A1 CN 2018077379 W CN2018077379 W CN 2018077379W WO 2019000993 A1 WO2019000993 A1 WO 2019000993A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
robot
information
fastening
connection mechanism
Prior art date
Application number
PCT/CN2018/077379
Other languages
English (en)
French (fr)
Inventor
张莹
张忆非
赵凯
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP18759017.9A priority Critical patent/EP3646993A4/en
Priority to US16/081,822 priority patent/US10947095B2/en
Publication of WO2019000993A1 publication Critical patent/WO2019000993A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F3/00Devices, e.g. jacks, adapted for uninterrupted lifting of loads
    • B66F3/44Devices, e.g. jacks, adapted for uninterrupted lifting of loads with self-contained electric driving motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • B25J13/089Determining the position of the robot with reference to its environment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/027Electromagnetic sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0084Programme-controlled manipulators comprising a plurality of manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/08Programme-controlled manipulators characterised by modular constructions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0293Convoy travelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G37/00Combinations of mechanical conveyors of the same kind, or of different kinds, of interest apart from their application in particular machines or use in particular manufacturing processes
    • B65G37/02Flow-sheets for conveyor combinations in warehouses, magazines or workshops

Definitions

  • the present disclosure relates to the field of intelligent technologies, and in particular, to a robot and a splicing method thereof, and a robot splicing system.
  • Intelligent warehousing is a link of the logistics process.
  • the application of intelligent warehousing ensures the speed and accuracy of data input in all aspects of goods warehouse management, ensuring that enterprises can grasp the real data of inventory in a timely and accurate manner and reasonably maintain and control the enterprise inventory.
  • an embodiment of the present disclosure provides a robot including at least two sub-robots each including a main body and a moving member at a bottom of the main body, at least on different sides of the main body a first connecting mechanism and at least one second connecting mechanism, the first connecting mechanism of at least one of the sub-robots being configured to be coupled to the second connecting mechanism of the other at least one sub-robot, the second connecting mechanism The first connection mechanism configured to be coupled to the other at least one sub-robot.
  • the first connection mechanism includes a first connection component
  • the second connection mechanism includes a second connection component
  • the first connection component is configured to snap-fit the second connection component of the other at least one sub-robot
  • the second connecting member is configured to snap-fit the first connecting member of the other at least one sub-robot.
  • the first connecting component includes: a first rotating shaft, a first fastening through groove fixedly connected to the first rotating shaft;
  • the second connecting component includes: a second rotating shaft fixed to the second rotating shaft a second fastening slot that is connected; the second fastening slot and the second fastening slot of the other at least one sub-robot are rotatable to a connected state during connection with the other at least one sub-robot
  • the connecting state is that the front side wall of the first fastening through slot and the front side wall of the second fastening through slot of the other at least one sub-robot respectively protrude into the opposite slot, so that the first buckle The merging slot is pulled by the second fastening slot of the at least one sub-robot.
  • first fastening slot and the second fastening slot may be rotated to a stowed state, wherein the stowed state is an opening of the first fastening slot facing away from the body,
  • the opening of the second snap-fit groove faces the body.
  • the inner side of the front side wall of the first fastening groove is provided with a first elastic member; and/or the inner side of the front side wall of the second fastening groove is provided with a second elastic member.
  • the first connecting mechanism further includes a locking component; the locking component is configured to lock the first fastening slot of the at least one sub-robot in the connected state and the other at least one sub-robot The second fastening groove is described.
  • the locking member includes a first driving member having a third rotating shaft, a first gear, a fourth rotating shaft disposed along the central axis of the first gear and capable of rotating the first gear, and two ends respectively a timing belt sleeved on the third rotating shaft and the fourth rotating shaft, and a rack meshing with the first gear; the front end of the rack is configured to be engaged with the first buckle in a connected state
  • the front side wall of the second fastening groove is connected to the groove.
  • the front end of the rack is provided with a blocking member, and the front end of the blocking member is provided with a third elastic member.
  • the rack is a double-sided rack, and the opposite surfaces of the rack are provided with teeth; the locking structure further includes a second gear, and the second gear and the first gear are respectively Engaging with teeth on both surfaces of the rack.
  • the first connecting member further includes a second driving member configured to drive the rotation of the first rotating shaft
  • the second connecting member further includes a third driving member configured to drive the rotation of the second rotating shaft
  • the robot further includes a distance sensor; the distance sensor is located on a side where the first connection mechanism is located; and/or the side where the second connection mechanism is located.
  • the robot further includes a photoelectric sensor including a transmitter and a receiver; the transmitter and the receiving are respectively disposed at a side where the first connecting mechanism is located and a side where the second connecting mechanism is located In the process of connecting the at least one sub-robot and the other at least one sub-robot, the side of the first connection mechanism that is coupled to each other and the transmitter and receiver on the side where the second connection mechanism are located are aligned.
  • the side where the first connecting mechanism is located and the side where the second connecting mechanism are located are provided with the transmitter and the receiver, in the process of connecting the at least one sub-robot and the other at least one sub-robot
  • the transmitter on the side where the first connection mechanism and the second connection mechanism are coupled to each other and the receiver on the opposite side are aligned with the receiver and the opposite side
  • the transmitter is aligned.
  • the robot further includes an attitude information collector located at a bottom of the body, and a first processor coupled to the attitude information collector; the attitude information collector configured to collect information of the gesture label, The information of the gesture tag is configured to characterize the orientation of each side of the robot; the first processor is configured to control the sub-robot to adjust a posture, so that the attitude information collector collects information and the predetermined The information in the gesture tag matches.
  • the robot further includes a position information collector located at a bottom of the body, and a second processor coupled to the position information collector; the position information collector configured to collect position label information, The location tag information is configured to characterize a location of the sub-robot; the second processor is configured to control the sub-robot to adjust a location, the information collected by the location information collector and the predetermined The location tag information matches.
  • an embodiment of the present disclosure provides a robot splicing system
  • the location tag is configured to characterize a position of the sub-robot
  • the gesture tag configured to characterize an orientation of each side of the sub-robot.
  • an embodiment of the present disclosure provides a method of splicing the robot of the first aspect, the method comprising:
  • the first connection mechanism and the second connection mechanism connect the fixed robot and the moved robot.
  • the step of moving the at least two sub-robots to the selected positions of the corresponding adjacent sub-areas respectively comprises: moving the sub-robot to the corresponding sub-area; collecting the position label information in the sub-area; controlling the sub-robot to adjust the position
  • the information collected by the location information collector is matched with the information of the predetermined location label.
  • the step of adjusting each of the at least two sub-robots to the selected gesture comprises: collecting gesture label information in the sub-region; controlling the robot to adjust the posture, causing the attitude information collector to collect information of the information and the predetermined gesture label match.
  • the gesture tag is parallel to one side of the robot; and the step of adjusting each of the at least two sub-robots to the selected gesture further comprises: collecting location tag information in the sub-area; collecting the information and scheduling In a state where the information of the position tag does not match, the sub-robot is controlled to rotate by 180° in the sub-region.
  • the step of connecting the first connection mechanism and the second connection mechanism includes: fixing at least one of the at least two sub-robots, and placing at least one other one of the sub-areas adjacent to the sub-region where the sub-robot to be fixed is located Moving the sub-robot in a direction close to the fixed sub-robot, causing the fixed sub-robot to be separated from the moved sub-robot located in the adjacent sub-area by a first selected distance; adjusting the moved a sub-robot aligned with the first connecting member and the second connecting member; controlling the first fastening slot and the second fastening slot to rotate to a connected state; controlling the moved sub-robot to Moving a second selected distance away from the direction of the fixed sub-robot; moving the locking member to fix the connected first fastening slot and the second fastening slot.
  • FIG. 1 is a schematic structural diagram 1 of a robot according to some embodiments of the present disclosure
  • FIG. 2 is a schematic structural view 2 of a robot according to some embodiments of the present disclosure.
  • FIG. 3 is a schematic structural view 1 of a first connecting member and a second connecting member in a connected state according to some embodiments of the present disclosure
  • FIG. 4 is a schematic structural diagram 3 of a robot according to some embodiments of the present disclosure.
  • FIG. 5 is a schematic structural view 2 of a first connecting component and a second connecting component in a connected state according to some embodiments of the present disclosure
  • FIG. 6 is a schematic structural diagram of a first connecting mechanism according to some embodiments of the present disclosure.
  • Figure 7 is a schematic structural view 1 of a first connecting mechanism and a second connecting mechanism according to some embodiments of the present disclosure
  • FIG. 8 is a schematic structural diagram 2 of a first connecting mechanism and a second connecting mechanism according to some embodiments of the present disclosure
  • Figure 9 is a schematic structural view 3 of a first connecting mechanism and a second connecting mechanism according to some embodiments of the present disclosure.
  • FIG. 10 is a schematic structural diagram 4 of a robot according to some embodiments of the present disclosure.
  • FIG. 11 is a schematic structural diagram 1 of a photoelectric sensor according to some embodiments of the present disclosure.
  • FIG. 12 is a schematic structural diagram 2 of a photoelectric sensor according to some embodiments of the present disclosure.
  • FIG. 13 is a schematic structural diagram 5 of a robot according to some embodiments of the present disclosure.
  • FIG. 14 is a schematic structural diagram 1 of an integrated area according to some embodiments of the present disclosure.
  • FIG. 15 is a schematic diagram 1 of a corresponding situation of each side of a spliced robot according to some embodiments of the present disclosure
  • FIG. 16 is a second schematic diagram of the corresponding situation of each side of the spliced robot according to some embodiments of the present disclosure.
  • FIG. 17 is a schematic structural diagram 2 of an integrated area according to some embodiments of the present disclosure.
  • FIG. 18 is a flowchart 1 of a robot splicing method according to some embodiments of the present disclosure.
  • FIG. 19 is a second flowchart of a robot splicing method according to some embodiments of the present disclosure.
  • FIG. 20 is a flowchart 3 of a robot splicing method according to some embodiments of the present disclosure.
  • FIG. 21 is a schematic structural diagram of two spliced robots according to some embodiments of the present disclosure.
  • FIG. 22 is a schematic diagram of a trajectory of a robot when adjusting a robot to a preset posture according to some embodiments of the present disclosure.
  • robots such as those used in the field of smart storage are generally uniform in appearance, and the specifications of the shelves are basically uniform, and the robots and shelf specifications correspond.
  • the specification of the goods is significantly smaller than the specifications of the shelves for placing the goods, there will be a situation where a high-powered robot carries small objects, resulting in waste of resources; if the specifications of the goods are significantly larger than the shelves for placing the goods.
  • the robot cannot transport a large-sized product, and the scope of application of the robot is limited.
  • At least one embodiment of the present disclosure provides a sub-robot, as shown in FIG. 1, including a main body 10, and a moving member 20 at the bottom of the main body 10, further including at least one first connecting mechanism 31 and at least one on different sides of the main body 10.
  • the second connection mechanism 32 is provided.
  • the first connecting mechanism 31 is configured to cooperate with the second connecting mechanism 32 of the other at least one sub-robot
  • the second connecting mechanism 32 is configured to cooperate with the other at least The first connection mechanism 31 of a sub-robot.
  • the sub-robot includes a first attachment mechanism 31 and a second attachment mechanism 32.
  • the sub-robot includes a plurality of first connection mechanisms 31 and second connection mechanisms 32 on different sides of the body 10, which is not limited to each side of the body being provided with a first connection mechanism 31 or a second At least one of the connecting mechanisms 32 may be provided with at least one of the first connecting mechanism 31 or the second connecting mechanism 32, or may be provided with a first connecting mechanism 31 or a second connecting mechanism on each side. At least one of 32.
  • the sub-robot may include a first connecting mechanism 31 and a second connecting mechanism 32; or, including two first connecting mechanisms 31 and two second connections
  • the mechanism 32 includes a first connecting mechanism 31 and two second connecting mechanisms 32; or, includes two first connecting mechanisms 31 and one second connecting mechanism 32; or, includes a first connecting mechanism 31 and three Second connecting mechanisms 32; or, including a second connecting mechanism 32 and three first connecting mechanisms 31, and the like.
  • the first connection mechanism 31 and the second connection mechanism 32 disposed on the sub-robot are structurally corresponding.
  • a single first connection mechanism 31 and a single second connection mechanism 32 are connected together; in the state of being mounted on the robot, the first connection mechanism 31 and the The two connecting mechanisms 32 are located on different sides of the main body 10, and the connecting mechanisms on the same sub-robot cannot be directly connected, but can be used to connect with corresponding connecting mechanisms on other robots, respectively. That is, the first connection mechanism 31 is configured to cooperate with the second connection mechanism 32 of the other at least one sub-robot, and the second connection mechanism 32 is configured to connect the first connection mechanism 31 of the other at least one sub-robot.
  • connection between the first connecting mechanism 31 and the second connecting mechanism 32 on different sub-robots may be a mechanical connection, a magnetic connection, and of course, any other connection.
  • Embodiments of the present disclosure do not define the specific structure of the first connection mechanism 31 and the second connection mechanism 32.
  • the structure and arrangement of the connecting mechanism in Fig. 1 are for illustrative purposes only and are not intended to be limiting.
  • the moving member 20 at the bottom of the main body 10 is used to drive the robot to move, such as, but not limited to, a universal wheel.
  • the moving member 20 is a Mecanum wheel.
  • the top of the body 10 is used to place items to be handled, the top may be placed as a flat surface as desired, or a corresponding blocking structure may be provided at the top to prevent the item from moving or slipping.
  • the sub-robot provided by the embodiment of the present disclosure can provide a plurality of sub-robots when the items to be transported are larger than a range that can be tolerated by one sub-robot by providing the first connecting mechanism 31 and/or the second connecting mechanism 32 on the side.
  • the first connection mechanism 31 and the second connection mechanism 32 are coupled to each other to complete the carrying operation.
  • each sub-robot can be set relatively small to reduce or avoid the situation where large robots carry small objects and waste resources.
  • the first connection mechanism 31 includes a first connection member
  • the second connection mechanism 32 includes a second connection member
  • the first connection member is configured to snap-fit a second connection member that connects the other at least one sub-robot, the second connection member configuration
  • the first connecting member of the other at least one sub-robot is connected in a snap fit.
  • the two sub-robots are connected together by the first connection member of the first connection mechanism 31 and the second connection member of the second connection mechanism 32.
  • the embodiment of the present disclosure is simple in structure, easy to implement, and securely connected by mechanically connecting the first connecting member and the second connecting member in a snap-fit manner.
  • the first connecting member 311 includes: a first rotating shaft 3111 capable of rotating in a plane of paper, and a first fastening through groove 3112 fixedly coupled to the first rotating shaft 3111, having a front side wall
  • the second connecting member 321 includes: a second rotating shaft 3211 that is rotatable in a plane of the paper, and a second fastening through groove 3212 fixedly coupled to the second rotating shaft 3211, which also has a front side wall; as shown in FIG.
  • the first fastening groove 3211 and the second fastening groove 3212 of the other at least one sub-robot are rotatable to a connected state, in which the front side wall of the first fastening groove 3112 and the other at least one sub-robot
  • the front side wall of the second fastening groove 3212 extends into the corresponding groove, so that the first fastening groove 3112 and the second fastening groove 3212 of the other at least one sub-robot are inserted.
  • the first rotating shaft 3111 is configured to drive the first fastening slot 3112 to rotate
  • the second rotating shaft 3211 is configured to drive the second fastening slot 3212 to rotate, so as to be configured to connect the two sub-robots.
  • the first fastening groove 3112 and the second fastening groove 3212 are pulled.
  • the front side wall of the first fastening groove 3112 means that the first fastening groove 3112 is adjacent to the side wall of the second fastening groove 3212 during the connection of the two sub-robots; similarly, the second fastening The front side wall of the through groove 3212 means that the second fastening groove 3212 is adjacent to the side wall of the first fastening groove 3112 during the connection of the two sub-robots.
  • the front side walls of the two do not protrude into the bottom of the groove of the other side. It can also be in contact with the bottom of the groove.
  • the first connecting member 311 includes a first rotating shaft 3111 and a first fastening through groove 3112 fixedly coupled to the first rotating shaft 3111.
  • the second connecting member 321 includes a second rotating shaft 3211 and a second rotating shaft 3211.
  • the second fastening groove 3212 is fixedly connected, so that the first fastening groove 3112 and the second fastening groove 3212 can be rotated to the connected state and the stowed state respectively through the first rotating shaft 3111 and the second rotating shaft 3211, in two
  • the sub robots need to be connected, they are connected through the first fastening through groove 3112 and the second fastening through groove 3212.
  • the connection is unnecessary, the first fastening through groove 3112 and the second fastening through groove 3212 are closed. Damage can be avoided.
  • the first fastening through groove 3112 and the second fastening through groove 3212 are rotatable to a stowed state, in which the opening of the first fastening through groove 3112 faces away from the main body. 10.
  • the opening of the second fastening groove 3212 faces the body 10.
  • the opening of the first fastening channel 3112 faces away from the body 10
  • the opening of the second fastening channel 3212 faces the body 10, respectively, during the connection process, respectively
  • the fastening groove 3112 and the second fastening groove 3212 are rotated by a certain angle, for example, 90°, so that the two are connected, and the structure is simple.
  • the inner side of the front side wall of the first fastening groove 3112 is provided with a first elastic member 3113, and the inner side of the front side wall of the second fastening groove 3212 is provided with a first side.
  • Two elastic members 3213 are provided.
  • the first elastic member 3113 and the second elastic member 3213 may be, for example, a structure having an elastic contraction function such as a silicone rubber, a spring, or the like.
  • the inner side of the front side wall of the first fastening groove 3112 refers to the side of the front side wall of the first fastening groove 3112 facing the inner space surrounded by the groove
  • the front side wall of the second fastening channel 3212 The inner side refers to the side of the front side wall of the second fastening groove 3212 facing the inner space surrounded by the groove.
  • the inner side of the front side wall of the first fastening groove 3112 is provided with a first elastic member 3113.
  • the inner side of the front side wall of the second fastening groove 3212 is provided with a second elastic member 3213.
  • first elastic member 3113 and the second elastic member 3213 may be the same or different.
  • the first elastic member 3113 is disposed on the inner side of the front side wall of the first fastening through groove 3112, and/or the inner side of the front side wall of the second fastening through groove 3212 is provided with the second elastic member 3213.
  • the first fastening channel 3112 and the second fastening channel 3212 can be connected more closely.
  • the first connecting mechanism 31 further includes a locking member 312;
  • the tight member 312 is configured to lock the first fastening slot 3112 in the connected state and the second fastening slot 3212 of the other at least one sub-robot. That is, after the first fastening groove 3112 and the second fastening groove 3212 are connected, the locking member 312 locks the two in the connected state to prevent the two from loosening.
  • the second attachment mechanism 32 can also include a locking component.
  • the locking member 312 includes a first driving member 3122 having a third rotating shaft 3121, the first gear 3123 is disposed along the central axis of the first gear 3123, and a fourth rotating shaft 3124 that can drive the first gear 3123 to rotate, a timing belt 3125 that is sleeved on the third rotating shaft 3121 and the fourth rotating shaft 3124 at both ends, and a rack 3126 that meshes with the first gear 3123; the front end of the rack 3126
  • the front side wall of the first fastening groove 3112 that is connected to the second fastening groove 3212 in the connected state is disposed.
  • an elastic member may also be disposed at the front end of the rack 3126.
  • the front end of the rack 3126 refers to one end of the rack 3126 and the front side wall of the first fastening slot 3112.
  • the principle of the movement of the rack 3126 is that the first driving member 3122 drives the third rotating shaft 3121 to rotate to drive the timing belt 3125 to rotate, and the timing belt 3125 drives the fourth rotating shaft 3124 to rotate, so as to drive the first gear 3123 to rotate, thereby The first gear 3123 drives the rack 3126 engaged therewith to rotate.
  • the embodiment of the present disclosure drives the first gear 3123 to rotate by providing the first driving member 3122 and the timing belt 3125 to drive the rack 3126 to move, so that the components on the robot can be more rationally laid out.
  • the front end of the rack 3126 is provided with a blocking.
  • the third end of the blocking member 3127 is provided with a third elastic member 3128, and the front end refers to one end of the blocking member 3127 contacting the first fastening through groove 3112.
  • the rack 3126 is a double-sided rack, and the opposite surfaces of the rack 3126 are provided with teeth; the locking structure 312 further includes a second gear 3129, a second gear 3129, The first gears 3123 mesh with the teeth on both surfaces of the rack 3126, respectively.
  • FIG. 6 illustrates the locking member 312 including two sets of racks 3126 and associated transmission components, and the rack 3126 and associated transmission components may be a single set or a plurality of sets.
  • Embodiments of the present disclosure ensure that the rack 3126 moves horizontally by having the locking structure 312 include the first gear 3123 and the second gear 3129.
  • the first connecting member 311 further includes a second driving member configured to drive the rotation of the first rotating shaft 3111, and the second connecting member 321
  • a third drive member configured to drive the rotation of the second shaft 3211 is also included.
  • the first drive member 3122, the second drive member, and the third drive member can be, for example but not limited to, a drive motor.
  • the first connecting mechanism 31 and the second connecting mechanism 32 are both disposed in the recesses on the side of the body 10.
  • the sub-robot further includes a distance sensor 40; the distance sensor 40 is located on the side where the first connection mechanism 31 is located and the side where the second connection mechanism 32 is located; alternatively, the distance sensor 40 is located on the side of the first connection mechanism 31; alternatively, the distance sensor 40 is located on the side of the second connection mechanism 32.
  • Embodiments of the present disclosure enable the robot to intelligently move a predetermined distance by providing the distance sensor 40 on the sub-robot, further intelligentizing the robot.
  • the sub-robot further includes a photosensor 50 including a transmitter 51 and a receiver 52; as shown in FIG. 11, the first connection mechanism 31
  • the side of the side and the second connecting mechanism 32 are respectively provided with a transmitter 51 and a receiver 52.
  • the side of the first connecting mechanism 31 and the second connection are mutually coupled
  • the transmitter 51 and the receiver 52 on the side where the mechanism 32 is located are aligned. That is, the transmitter 51 provided on the side where the first connection mechanism 31 is located and the receiver 52 provided on the side where the second connection mechanism 32 is located are aligned.
  • the transmitter 51 provided on the side where the second connection mechanism 32 is located is aligned with the receiver 52 provided on the side where the first connection mechanism 31 is located.
  • the transmitter 51 and the receiver 52 are respectively provided with a large circle and a small circle, the large circle emits a large spot for coarse adjustment, and the small circle emits a small spot for fine adjustment.
  • the robot is first adjusted so that the large circle on the receiver 52 can completely receive the spot emitted by the large circle on the transmitter 51, and the robot can be further adjusted so that the small circle on the receiver 52 can completely receive the transmitter.
  • the spot emitted by the small circle on 51 is not limited to a circle, and any other shape of the closed figure can be used.
  • Embodiments of the present disclosure can cause two sub-robots connected to each other to adjust the two sub-robots to an aligned state by providing photosensors 50 on the sub-robot.
  • the side where the first connection mechanism 31 is located and the side where the second connection mechanism 32 are located are each provided with a transmitter 51 and a receiver 52, in one sub-robot and at least one other During the connection of the robot, the transmitters 51 on the side where the first connection mechanism 31 and the second connection mechanism 32 are coupled to each other are respectively aligned with the receivers 52 on the opposite side, and the receivers 52 on the sides of the two are respectively The opposite side transmitter 51 is aligned. That is, the side where the first connection mechanism 31 is located and the side where the second connection mechanism 32 are located are both provided with the transmitter 51 and the receiver 52.
  • the transmitter 51 disposed on the side of the first connecting mechanism 31 and the receiver 52 disposed on the side of the second connecting mechanism 32 are aligned, and the receiver 52 disposed on the side of the first connecting mechanism 31 and the side of the second connecting mechanism 32 are disposed.
  • the transmitter 51 is aligned.
  • the sub-robot further includes an attitude information collector 1301 located at the bottom of the main body 10 and a first processor 1302 coupled to the posture information collector.
  • the posture information collector 1301 is configured to collect information of the posture label
  • the information of the posture label is configured to represent the orientation of each side of the sub-robot
  • the first processor 1302 is configured to control the sub-robot to adjust the posture predetermined, so that the posture information is collected.
  • the information collected by the device matches the information of the predetermined gesture tag.
  • the first connecting mechanism 31 and the second connecting mechanism 32 are disposed on opposite sides of the sub-robot as an example.
  • the information reflected by the posture tag 103 is It is configured to represent the orientation of each side of the sub-robot.
  • the side where the posture tag 103 is located indicates the side of the first connection mechanism 31 of the sub-robot
  • the opposite side of the side where the posture tag 103 is located indicates the side of the second connection mechanism 32, and only the bottom of the sub-robot
  • the information of the collected gesture tag matches the information of the predetermined gesture tag, that is, the attitude information collector collects the complete gesture tag.
  • the attitude information collector may be, for example, a camera, a receiver of a photoelectric sensor, and the gesture label may correspond to a transmitter of a pattern, a photoelectric sensor.
  • the sub-robot further includes a position information collector 1303 located at the bottom of the body 10 and a second processor 1304 coupled to the position information collector.
  • the location information collector 1303 is configured to collect location tag information
  • the location tag information is configured to represent the location of the robot
  • the second processor 1304 is configured to control the sub-robot to adjust the location, so that the information collected by the location information collector is The information of the predetermined location tag matches. That is, the second processor determines whether the sub-robot moves to the preset area by determining whether the position information collector has acquired the information of the predetermined position tag.
  • the information collector can be, for example, a radio frequency receiver and the location tag can be a radio frequency electronic tag.
  • the first processor and the second processor can be integrated in one processor.
  • the processor may be a central processing unit (CPU) or a field programmable logic array (FPGA) or a microcontroller (MCU) or a digital signal processor (DSP) or an application specific integrated circuit (ASIC), etc.
  • CPU central processing unit
  • FPGA field programmable logic array
  • MCU microcontroller
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • the connection may be through a wireless network, a wired network, and/or any combination of a wireless network and a wired network.
  • the network may include a local area network, the Internet, a telecommunications network, an internet of things based on the Internet and/or telecommunications network, and/or any combination of the above networks, and the like.
  • the wired network can communicate by, for example, twisted pair, coaxial cable, or optical fiber transmission.
  • the wireless network can use a 3G/4G/5G mobile communication network, Bluetooth, Zigbee, or Wi-Fi.
  • the disclosure does not limit the type and function of the network.
  • the processor is also coupled to a memory, such as a volatile memory and/or a non-volatile memory.
  • Volatile memory can include, for example, random access memory (RAM) and/or caches and the like.
  • the non-volatile memory may include, for example, a read only memory (ROM), a hard disk, an erasable programmable read only memory (EPROM), a portable compact disk read only memory (CD-ROM), a USB memory, a flash memory, and the like.
  • ROM read only memory
  • EPROM erasable programmable read only memory
  • CD-ROM portable compact disk read only memory
  • USB memory a flash memory
  • Embodiments of the present disclosure can enable a plurality of sub-robots to achieve full intelligent splicing by providing a position information collector and a posture information collector at the bottom of the sub-robot, and a corresponding processor.
  • the main body 10 is a square body including two first connection mechanisms 31 and two second connections respectively located on four sides of the main body 10. Agency 32.
  • the body of the sub-robot may also be a rectangular parallelepiped.
  • the two first connecting mechanisms 31 may be located on opposite sides of the main body 10, as shown in FIG. 14, or may be located on opposite sides of the main body 10, as shown in FIG.
  • Embodiments of the present disclosure can splicing a plurality of sub-robots to a desired scale by arranging two first link mechanisms 31 and two second link mechanisms 32 on four sides of the cube body.
  • At least one embodiment of the present disclosure also provides a robot splicing system including the above-described sub-robot as shown in FIGS. 15 and 16, further including a position tag 102 and a posture tag 103, at least one of the position tag 102 and the posture tag 103 Corresponding to one sub-robot, sub-regions 101 corresponding to one sub-robot are formed, which together form an integrated region 100, as shown in FIG.
  • the area 100 can be placed on the ground.
  • 1, 2, 3, and 4 in FIG. 15 represent four sides of the main body 10 of the sub-robot, and each of the robots in FIG. 15 includes two adjacent sides (1).
  • the first connecting mechanism 31 of 2) and the two second connecting mechanisms 32 located on the adjacent sides (3, 4) can be spliced into various shapes when the plurality of sub-robots are spliced, but the direction of each sub-robot is the same. That is, the 1 side and the 3 side are connected, and the 2 side and the 4 side are connected.
  • the splicing of any two sub-robots is the first connection mechanism 31 of one sub-robot and the second connection mechanism 32 of the sub-robot adjacent thereto.
  • 1, 2, 3, and 4 in FIG. 16 represent four sides of the robot main body 10, and each sub-robot in FIG. 16 includes two on the opposite side (1, 3).
  • the first connecting mechanism 31 and the two second connecting mechanisms 32 on the opposite sides (2, 4) can adjust each sub-robot to a preset posture according to the position of the posture label to connect the 1 side and the 4 side. 2 sides and 3 sides are connected.
  • the splicing of any two sub-robots is the first connection mechanism 31 of one sub-robot and the second connection mechanism 32 of the sub-robot adjacent thereto.
  • FIG. 15 and FIG. 16 are only a specific schematic, and are not limited thereto.
  • Other structures in which a plurality of sub-robots can be spliced by the first connecting mechanism 31 and the second connecting mechanism 32 are all within the scope of the present disclosure.
  • the sub-robot locates the gesture tag 103 in the sub-region 101 through the attitude information collector and the first processor, and locates the location tag 102 in the sub-region 101 through the location information collector and the second processor.
  • the first connecting mechanism 31 of one of the sub-robots is connected to the second connecting mechanism 32 of the sub-robot adjacent thereto.
  • the area of each sub-area 101 is larger than the floor area occupied by the sub-robot.
  • At least one embodiment of the present disclosure also provides a method of splicing the above-described robot, the method comprising the following steps:
  • S20 Fix at least one of the at least two sub-robots to move at least one other sub-robot located in a sub-region adjacent to the sub-region where the sub-robot is fixed to move toward the fixed sub-robot
  • the fixed robot and the moved robot are connected by the first connection mechanism 31 and the second connection mechanism 32.
  • a method of splicing the above-described robot is provided, as shown in FIG. 18, the method comprising:
  • the first sub-robot and the second sub-robot to be spliced are determined.
  • the robot to be spliced is used to go to the target integration area 100 by using navigation or path planning.
  • a laser radar may be provided in the sub-robot, or the program command may be edited in advance to cause the sub-robot to go to the integration area 100 in accordance with a predetermined path.
  • Each sub-robot reaches the preset position by recognizing the position tag 102.
  • Each sub-robot is adjusted to a preset posture by recognizing the posture tag 103.
  • a method for splicing the above-described robot is provided.
  • the splicing is performed by two sub-robots. As shown in FIG. 19, the method includes:
  • the step of detecting the entire gesture tag 103 can be divided into two steps.
  • the first step first detects whether the gesture tag 103 is detected, and if so, rotates the sub-robot to determine whether the entire gesture tag 103 is detected.
  • the method further includes:
  • control sub-robot is rotated by 180 in the sub-area 101.
  • S250 Fix the first sub-robot, and control the second sub-robot to move to the first sub-robot to be separated by a first preset distance. It is assumed here that the second sub-robot has been adjusted to a suitable position in accordance with the above embodiment.
  • the second fastening through groove 3212 can be lifted up until the opening of the second fastening through groove 3212. Keep away from the main body 10.
  • the second robot may be controlled to move to the first robot to be separated by a third preset distance, and then step S270 is performed.
  • first fastening channel 3112 and the second fastening channel 3212 can be rotated to a horizontal position, respectively, and the notches are opposed.
  • the second preset distance is subject to the objective limitation of the fastening portion of the first fastening slot 3112 and the second fastening slot 3212, and can be determined according to engineering tests.
  • first fastening groove 3112 and the second fastening groove 3212 are tightened.
  • the moving locking member 312 fastens the connected first fastening through groove 3112 and the second fastening through groove 3212.
  • the step of adjusting the sub-robot to detect the attitude tag 103 includes:
  • control sub-robot is moved by a fifth preset distance in the first direction.
  • the collected information of the gesture tag is matched with the information of the predetermined gesture tag, and if there is no match, the robot is controlled to move the sixth preset distance in the second direction.
  • the collected information of the posture tag is matched with the information of the predetermined posture tag, and if the matching is not performed, the above steps are repeated M times.
  • the collected information of the gesture tag is matched with the information of the predetermined gesture tag, and if there is no match, the control sub-robot is moved to the ninth preset distance in the fourth direction.
  • control sub-robot moves the tenth preset distance in the first direction.
  • the collected information of the gesture tag is matched with the information of the predetermined gesture tag, and if there is no match, the control sub-robot moves the eleventh preset distance in the fourth direction.
  • the collected information of the posture tag is matched with the information of the predetermined posture tag, and if the matching is not performed, the above steps are repeated N times.
  • first direction and the third direction are perpendicular to the second direction and the fourth direction, respectively, the first direction and the third direction are opposite, the second direction and the first The four directions are opposite, and the first direction is parallel to one side of the sub-robot.
  • the fifth preset distance is up to the twelfth preset distance, and even the preset distances in the subsequent repeated N steps may be selected to be set to be the same, for example, the distance P, which is generally smaller than the side length of the sub-area 101.
  • the distance is much smaller than the side length of the sub-area 101, since the position has been adjusted at this time, the above steps are for finding the label in the sub-area, and in an extreme case, the label edge
  • the side length of one side of the sub-area is set, and the posture of the sub-robot is 180 degrees different from the expected posture.
  • the attitude information collector corresponds to the opposite side of the sub-area. At this time, the sub-robot needs to move about one side length to the label direction.
  • the adjacent sub-area when the adjacent sub-area is not occupied, the number of repetitions of the above steps can be limited based on the distance P and the side length.
  • the adjacent sub-area if the adjacent sub-area is occupied, the translation is over. It will deviate from the original sub-area so that most of them are in adjacent sub-areas. To avoid this situation, when performing posture adjustment, the position is detected at the same time. If the position is deviated, for example, the method shown in FIG. Robot sub rotated by 180 degrees. Restricting the operation in the sub-region facilitates the problem of avoiding the operation of other sub-robots in adjacent sub-regions.
  • the second wheel can be in a similar manner, ie, a right angle S shape, with a reduced distance.
  • P' moves in the opposite direction as shown by the dashed line in FIG. It can also be moved in the above manner in other directions until the gesture label is detected. The principle is the same and will not be described here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Structural Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)

Abstract

一种机器人及其拼接方法、机器人拼接系统,所述机器人包括至少两个子机器人,每个所述子机器人包括主体(10)、以及位于所述主体(10)底部的移动件(20),位于所述主体(10)不同侧的至少一个第一连接机构(31)和至少一个第二连接机构(32);至少一个所述子机器人的所述第一连接机构(31)配置成可配合连接其它至少一个子机器人的所述第二连接机构(32),所述第二连接机构(32)配置成可配合连接其它至少一个子机器人的所述第一连接机构(31)。

Description

一种机器人及其拼接方法、机器人拼接系统
相关申请的交叉引用
本申请主张在2017年6月27日在中国提交的中国专利申请No.201710502502.8的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及智能技术领域,尤其涉及一种机器人及其拼接方法、机器人拼接系统。
背景技术
智能仓储是物流过程的一个环节,智能仓储的应用,保证了货品仓库管理各个环节数据输入的速度和准确性,确保企业及时准确地掌握库存的真实数据,合理保持和控制企业库存。通过科学的编码,还可方便地对库存货品的批次、保质期等进行管理。
发明内容
根据本公开的一个方面,本公开的实施例提供一种机器人,包括至少两个子机器人,每个所述子机器人包括主体、以及位于所述主体底部的移动件,位于所述主体不同侧的至少一个第一连接机构和至少一个第二连接机构,至少一个所述子机器人的所述第一连接机构配置成可配合连接其它至少一个子机器人的所述第二连接机构,所述第二连接机构配置成可配合连接其它至少一个子机器人的所述第一连接机构。
示例地,所述第一连接机构包括第一连接部件,所述第二连接机构包括第二连接部件;所述第一连接部件配置成扣合连接其它至少一个子机器人的所述第二连接部件,所述第二连接部件配置成扣合连接其它至少一个子机器人的所述第一连接部件。
示例地,所述第一连接部件包括:第一转轴、与所述第一转轴固定连接的第一扣合通槽;所述第二连接部件包括:第二转轴、与所述第二转轴固定连接的第二扣合通槽;在与其它至少一个子机器人连接的过程中,所述第一扣合通槽和其它至少一个子机器人的所述第二扣 合通槽可旋转至连接状态,所述连接状态为所述第一扣合通槽的前侧壁和其它至少一个子机器人的所述第二扣合通槽的前侧壁分别伸入对方槽内,以使所述第一扣合通槽和其它至少一个子机器人的所述第二扣合通槽拉接。
示例地,所述第一扣合通槽和所述第二扣合通槽可旋转至收起状态,所述收起状态为所述第一扣合通槽的开口背离所述主体,所述第二扣合通槽的开口朝向所述主体。
示例地,所述第一扣合通槽前侧壁的内侧设置有第一弹性件;和/或,所述第二扣合通槽前侧壁的内侧设置有第二弹性件。
示例地,所述第一连接机构还包括锁紧部件;所述锁紧部件配置成可锁紧连接状态下的至少一个子机器人的所述第一扣合通槽和其它至少一个子机器人的所述第二扣合通槽。
示例地,所述锁紧部件包括具有第三转轴的第一驱动件,第一齿轮,沿所述第一齿轮中轴线设置、且可带动所述第一齿轮转动的第四转轴,两端分别套在所述第三转轴和所述第四转轴上的同步带,以及与所述第一齿轮啮合的齿条;所述齿条的前端配置成抵住连接状态下与所述第一扣合通槽连接的所述第二扣合通槽的前侧壁。
示例地,所述齿条的前端设置有阻挡件,所述阻挡件的前端设置有第三弹性件。
示例地,所述齿条为双面齿条,所述齿条相对的两个表面均设置有齿;所述锁紧结构还包括第二齿轮,所述第二齿轮、所述第一齿轮分别与所述齿条两个表面上的齿啮合。
示例地,所述第一连接部件还包括配置成带动所述第一转轴转动的第二驱动件,所述第二连接部件还包括配置成带动所述第二转轴转动的第三驱动件。
示例地,所述机器人还包括距离传感器;所述距离传感器位于所述第一连接机构所在侧;和/或,所述第二连接机构所在侧。
示例地,所述机器人还包括光电传感器,所述光电传感器包括发送器和接收器;所述第一连接机构所在侧和所述第二连接机构所在侧分别设置有所述发送器和所述接收器,在所述至少一个子机器人和其它至少一个子机器人连接的过程中,相互配合连接的所述第一连接机构所在侧和所述第二连接机构所在侧的发送器和接收器对准。
示例地,所述第一连接机构所在侧和所述第二连接机构所在侧均设置有所述发送器和所述接收器,在所述至少一个子机器人和其它至少一个子机器人连接的过程中,相互配合连接的所述第一连接机构和所述第二连接机构二者所在侧的所述发送器与对侧的所述接收器对准,二者所在侧的所述接收器与对侧的所述发送器对准。
示例地,所述机器人还包括位于所述主体底部的姿态信息采集器、以及与所述姿态信息采集器连接的第一处理器;所述姿态信息采集器被配置成采集姿态标签的信息,所述姿态标签的信息被配置成表征所述机器人各侧的朝向;所述第一处理器,被配置为控制所述子机器人调整姿态,使所述姿态信息采集器采集到信息与预定的所述姿态标签中的信息匹配。
示例地,所述机器人还包括位于所述主体底部的位置信息采集器、以及与所述位置信息采集器连接的第二处理器;所述位置信息采集器,被配置成采集位置标签信息,所述位置标签信息被配置为表征所述子机器人所处位置;第二处理器,被配置为控制所述子机器人调整位置,使所述位置信息采集器采集到的所述信息与预定的所述位置标签的信息匹配。
根据本公开的另一方面,本公开的实施例提供一种机器人拼接系统,
位置标签和姿态标签;
至少一个所述位置标签和姿态标签对应上述的子机器人,形成对应所述一个所述子机器人的子区;
在每一个子区中,所述位置标签配置成表征所述子机器人的位置,所述姿态标签配置成表征所述子机器人各侧的朝向。。
根据本公开的还一方面,本公开的实施例提供一种拼接第一方面所述的机器人的方法,所述方法包括:
将至少两个子机器人分别移动到对应的相邻子区的所选位置、调整至少两个子机器人中的每一个至所选姿态;
固定所述至少两个子机器人中的至少一个,将位于与被固定的子机器人所在子区相邻的子区中的至少一个其它的子机器人向靠近所述被固定的子机器人的方向移动,通过第一连接机构和第二连接机构连接被固定的机器人和被移动的机器人。
示例地,将至少两个子机器人分别移动到对应的相邻子区的所选位置的步骤包括:将子机器人移动至对应的子区;采集子区中位置标签信息;控制所述子机器人调整位置,使位置信息采集器采集到的信息与预定的位置标签的信息匹配。
示例地,调整至少两个子机器人中的每一个至所选姿态的步骤包括:采集子区中姿态标签信息;控制所述机器人调整姿态,使姿态信息采集器采集到信息和预定的姿态标签的信息匹配。
示例地,所述姿态标签与所述机器人的一条边平行;调整至少两个子机器人中的每一个至所选姿态的步骤还包括:采集子区中的位置标签信息;在采集到的信息与预定的所述位置标签的信息不匹配的状态下,控制所述子机器人在所述子区内旋转180°。
示例地,连接第一连接机构和第二连接机构的步骤包括:固定所述至少两个子机器人中的至少一个,将位于与被固定的子机器人所在子区相邻的子区中的至少一个其它的子机器人向靠近所述被固定的子机器人的方向移动,使所述被固定的子机器人与位于相邻子区的所述被移动的子机器人相距第一所选距离;调整所述被移动的子机器人,对准所述第一连接部件和第二连接部件;控制所述第一扣合通槽与所述第二扣合通槽旋转至连接状态;控制所述被移动的子机器人向远离所述被固定的子机器人的方向移动第二所选距离;移动锁紧部件,固定连接后的所述第一扣合通槽和所述第二扣合通槽。
附图说明
为了更清楚地说明本公开的实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开的一些实施例提供的一种机器人的结构示意图一;
图2为本公开的一些实施例提供的一种机器人的结构示意图二;
图3为本公开的一些实施例提供的一种第一连接部件和第二连接部件连接状态下的结构示意图一;
图4为本公开的一些实施例提供的一种机器人的结构示意图三;
图5为本公开的一些实施例提供的一种第一连接部件和第二连接部件连接状态下的结构示意图二;
图6为本公开的一些实施例提供的一种第一连接机构的结构示意图;
图7为本公开的一些实施例提供的一种第一连接机构和第二连接机构的结构示意图一;
图8为本公开的一些实施例提供的一种第一连接机构和第二连接机构的结构示意图二;
图9为本公开的一些实施例提供的一种第一连接机构和第二连接机构的结构示意图三;
图10为本公开的一些实施例提供的一种机器人的结构示意图四;
图11为本公开的一些实施例提供的一种光电传感器的结构示意图一;
图12为本公开的一些实施例提供的一种光电传感器的结构示意图二;
图13为本公开的一些实施例提供的一种机器人的结构示意图五;
图14为本公开的一些实施例提供的一种整合区域的结构示意图一;
图15为本公开的一些实施例提供的一种拼接后机器人各侧对应情况示意图一;
图16为本公开的一些实施例提供的一种拼接后机器人各侧对应情况示意图二;
图17为本公开的一些实施例提供的一种整合区域的结构示意图二;
图18为本公开的一些实施例提供的一种机器人拼接方法的流程图一;
图19为本公开的一些实施例提供的一种机器人拼接方法的流程图二;
图20为本公开的一些实施例提供的一种机器人拼接方法的流程图三;
图21为本公开的一些实施例提供的一种两个拼接完成的机器人的结构示意图;
图22为本公开的一些实施例提供的一种调整机器人至预设姿态时机器人的轨迹示意图。
具体实施方式
下面将结合本公开的实施例中的附图,对本公开的实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在下述描述中,除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变;“所选”等涉及的相关信息可以预先设置或者存储,也可以在面临的需求等发生变化时,通过更新、刷新等方式改变相应的参数设置。
在发明人所知的技术中,诸如在智能仓储领域应用的机器人通常外形统一,货架的规格也基本统一,机器人和货架规格相对应。在使用过程中,若货物的规格明显小于用于放置货物的货架的规格,会出现大功率的机器人搬运小物体的情况,造成资源的浪费;若货物的规格明显大于用于放置货物的货架的规格,会出现机器人无法搬运较大规格的货物的问题,导致机器人的适用范围受到限制。
本公开的至少一个实施例提供一种子机器人,如图1所示,包括主体10、以及位于主体10底部的移动件20,还包括位于主体10不同侧的至少一个第一连接机构31和至少一个第二连接机构32。
在将至少两个子机器人连接构成一个机器人时,所述第一连接机构31配置成配合连接其它至少一个子机器人的所述第二连接机构32,所述第二连接机构32配置成配合连接其它至少一个子机器人的所述第一连接机构31。
在一些实施例中,所述子机器人包括一个第一连接机构31和一个 第二连接机构32。
在一些实施例中,所述子机器人包括多个位于主体10不同侧的第一连接机构31和第二连接机构32,这并不限于主体的每侧都设置有第一连接机构31或第二连接机构32的至少之一,可以是多侧中的部分设置有第一连接机构31或第二连接机构32的至少之一,也可以是每侧都设置第一连接机构31或第二连接机构32的至少之一。
例如,以所述主体10有四侧为例,所述子机器人可以是包括一个第一连接机构31和一个第二连接机构32;或者,包括两个第一连接机构31和两个第二连接机构32;或者,包括一个第一连接机构31和两个第二连接机构32;或者,包括两个第一连接机构31和一个第二连接机构32;或者,包括一个第一连接机构31和三个第二连接机构32;或者,包括一个第二连接机构32和三个第一连接机构31等等。
在一些实施例中,所述子机器人上设置的第一连接机构31和第二连接机构32在结构上相对应。在未安装在机器人的状态下,单独的一个第一连接机构31和单独的一个第二连接机构32放在一起是可以连接上的;在安装在机器人的状态下,第一连接机构31和第二连接机构32位于主体10的不同侧,同一个子机器人上的连接机构无法直接连接,但可以分别用来和其他机器人上对应的连接机构连接。即,第一连接机构31配置成配合连接其它至少一个子机器人的第二连接机构32,第二连接机构32配置成连接其它至少一个子机器人的第一连接机构31。
在一些实施例中,不同所述子机器人上的第一连接机构31和第二连接机构32之间的连接可以是机械连接,也可以是磁性连接,当然,还可以是其他任何方式的连接,本公开的实施例不对第一连接机构31和第二连接机构32的具体结构进行限定。图1中连接机构的结构和设置位置的仅为示意,并不用于任何限定。
在一些实施例中,主体10底部的移动件20,用来带动机器人移动,例如可以但不限于是万向轮。
在一些实施例中,所述移动件20为麦克纳姆轮。
在一些实施例中,主体10顶部用来放置待搬运的物品,可以根据需要将顶部设置为平面,也可以在顶部设置相应的阻挡结构,用来防止物品移动或滑落。
本公开的实施例提供的子机器人,通过在侧面设置第一连接机构 31和/或第二连接机构32,使得当需要搬运的物品大于一个子机器人所能承受的范围时,可将多个子机器人通过第一连接机构31和第二连接机构32互相配合而连接,来完成搬运工作。这样一来,每个子机器人可以设置的相对较小,以减少或避免出现大型机器人搬运小型物体、造成资源的浪费的情况。而当需要搬运较大规格的物品时,可以通过多个子机器人之间的拼接来胜任搬运工作,扩大机器人的适用范围。
示例地,第一连接机构31包括第一连接部件,第二连接机构32包括第二连接部件;第一连接部件配置成扣合连接其它至少一个子机器人的第二连接部件,第二连接部件配置成扣合连接其它至少一个子机器人的第一连接部件。
即,两个子机器人通过第一连接机构31中的第一连接部件和第二连接机构32中的第二连接部件连接在一起。
本公开的实施例通过将第一连接部件和第二连接部件以扣合的方式机械连接,结构简单,便于实现,且连接牢靠。
示例地,如图2所示,第一连接部件311包括:第一转轴3111,其能够在纸平面内旋转,与第一转轴3111固定连接的第一扣合通槽3112,其具有前侧壁;第二连接部件321包括:第二转轴3211,其能够在纸平面内旋转,与第二转轴3211固定连接的第二扣合通槽3212,其也具有前侧壁;如图3所示,第一扣合通槽3211和其它至少一个子机器人的第二扣合通槽3212可旋转至连接状态,在该连接状态下,第一扣合通槽3112的前侧壁和其它至少一个子机器人的第二扣合通槽3212的前侧壁分别伸入对方槽内,以使该第一扣合通槽3112和其它至少一个子机器人的第二扣合通槽3212插接。
例如,当两个子机器人需要拼接时,第一转轴3111配置成带动第一扣合通槽3112转动,第二转轴3211配置成带动第二扣合通槽3212转动,以使配置成连接两个子机器人的第一扣合通槽3112和第二扣合通槽3212拉接。
例如,第一扣合通槽3112的前侧壁是指,两个子机器人连接的过程中,第一扣合通槽3112靠近第二扣合通槽3212的侧壁;同理,第二扣合通槽3212的前侧壁是指,两个子机器人连接的过程中,第二扣合通槽3212靠近第一扣合通槽3112的侧壁。
例如,第一扣合通槽3112和其它至少一个子机器人的第二扣合通 槽3212拉接后,可以如图5所示,两者的前侧壁均未伸入对方的槽底,当然也可以与槽底接触。
本公开的实施例通过使第一连接部件311包括第一转轴3111、与第一转轴3111固定连接的第一扣合通槽3112,第二连接部件321包括第二转轴3211、与第二转轴3211固定连接的第二扣合通槽3212,使得第一扣合通槽3112和第二扣合通槽3212可分别通过第一转轴3111和第二转轴3211旋转至连接状态和收起状态,在两个子机器人需要连接时通过第一扣合通槽3112和第二扣合通槽3212两者连接,在无需连接时,第一扣合通槽3112和第二扣合通槽3212两者收起,可以避免损坏。
示例地,如图4所示,第一扣合通槽3112和第二扣合通槽3212可旋转至收起状态,在所述收起状态下,第一扣合通槽3112的开口背离主体10,第二扣合通槽3212的开口朝向主体10。
在本公开的一些实施例中,收起状态下,第一扣合通槽3112的开口背离主体10,第二扣合通槽3212的开口朝向主体10,在连接的过程中,分别将第一扣合通槽3112和第二扣合通槽3212旋转一定角度,例如90°即可使二者连接,结构简单。
在本公开的一些实施例中,如图5所示,第一扣合通槽3112前侧壁的内侧设置有第一弹性件3113,第二扣合通槽3212前侧壁的内侧设置有第二弹性件3213。
在一些实施例中,第一弹性件3113和第二弹性件3213例如可以是硅胶、弹簧等类似具有弹性收缩功能的结构。
此外,第一扣合通槽3112前侧壁的内侧,是指第一扣合通槽3112前侧壁朝向凹槽所包围的内部空间的一侧,第二扣合通槽3212前侧壁的内侧,是指第二扣合通槽3212前侧壁朝向凹槽所包围的内部空间的一侧。
在本公开的一些实施例中,第一扣合通槽3112前侧壁的内侧设置有第一弹性件3113。
在本公开的一些实施例中,第二扣合通槽3212前侧壁的内侧设置有第二弹性件3213。
在一些实施例中,第一弹性件3113和第二弹性件3213可以一样,也可以不一样。
本公开的实施例通过在第一扣合通槽3112前侧壁的内侧设置第一弹性件3113,和/或,第二扣合通槽3212前侧壁的内侧设置有第二弹性件3213,可使第一扣合通槽3112和第二扣合通槽3212连接更为紧密。
为了进一步提高第一扣合通槽3112和第二扣合通槽3212的连接效果,在本公开的一些实施例中,如图4所示,第一连接机构31还包括锁紧部件312;锁紧部件312配置成可锁紧连接状态下的第一扣合通槽3112和其它至少一个子机器人的第二扣合通槽3212。即,第一扣合通槽3112和第二扣合通槽3212连接后,锁紧部件312对处于连接状态下的上述两者进行锁紧,避免两个发生松动。
在一些实施例中,第二连接机构32也可以包括锁紧部件。
在本公开的一些实施例中,如图6和图7所示,锁紧部件312包括具有第三转轴3121的第一驱动件3122,第一齿轮3123,沿第一齿轮3123中轴线设置、且可带动第一齿轮3123转动的第四转轴3124,两端分别套在第三转轴3121和第四转轴3124上的同步带3125,以及与第一齿轮3123啮合的齿条3126;齿条3126的前端配置成抵住连接状态下与第二扣合通槽3212连接的第一扣合通槽3112的前侧壁。
在一些实施例中,也可以在齿条3126的前端设置有弹性件。此处,齿条3126的前端是指齿条3126与第一扣合通槽3112的前侧壁相互受力的一端。
此处,齿条3126移动的原理为:第一驱动件3122带动第三转轴3121转动,以带动同步带3125转动,同步带3125带动第四转轴3124转动,以带动第一齿轮3123转动,从而使得第一齿轮3123带动与其啮合的齿条3126转动。
本公开的实施例通过设置第一驱动件3122和同步带3125来带动第一齿轮3123转动,以带动齿条3126移动,可以便于机器人上的零部件更合理地布局。
为了进一步提高齿条3126对第一扣合通槽3112和第二扣合通槽3212的锁紧效果,在本公开的一些实施例中,如图8所示,齿条3126的前端设置有阻挡件3127,阻挡件3127的前端设置有第三弹性件3128,所述前端是指阻挡件3127与第一扣合通槽3112接触的一端。
示例地,如图6和图9所示,齿条3126为双面齿条,齿条3126 相对的两个表面均设置有齿;锁紧结构312还包括第二齿轮3129,第二齿轮3129、第一齿轮3123分别与齿条3126两个表面上的齿啮合。
在一些实施例中,图6以锁紧部件312包括两组齿条3126以及相关传动部件进行示意,齿条3126及相关传动部件可以仅有一组,也可以是多组。
本公开的实施例通过使锁紧结构312包括第一齿轮3123和第二齿轮3129,可确保齿条3126水平移动。
为了实现第一转轴3111和第二转轴3211的智能转动,在本公开的一些实施例中,第一连接部件311还包括配置成带动第一转轴3111转动的第二驱动件,第二连接部件321还包括配置成带动第二转轴3211转动的第三驱动件。
在一些实施例中,第一驱动件3122、第二驱动件、以及第三驱动件,例如可以但不限于是驱动电机。
为了避免连接机构因碰撞而损坏,在本公开的一些实施例中,如图4所示,第一连接机构31和第二连接机构32均设置于主体10侧面的凹陷部中。
在本公开的一些实施例中,如图10所示,所述子机器人还包括距离传感器40;距离传感器40位于第一连接机构31所在侧和第二连接机构32所在侧;替代地,距离传感器40位于第一连接机构31所在侧;替代地,距离传感器40位于第二连接机构32所在侧。
本公开的实施例通过在子机器人上设置距离传感器40,可使机器人实现智能移动预定距离,进一步使机器人智能化。
在本公开的一些实施例中,如图4所示,所述子机器人还包括光电传感器50,所述光电传感器50包括发送器51和接收器52;如图11所示,第一连接机构31所在侧和第二连接机构32所在侧分别设置有发送器51和接收器52,在子机器人和其它至少一个子机器人连接的过程中,相互配合连接的第一连接机构31所在侧和第二连接机构32所在侧的发送器51和接收器52对准。即,第一连接机构31所在侧设置的发送器51和第二连接机构32所在侧设置的接收器52对准。或者,第二连接机构32所在侧设置的发送器51和第一连接机构31所在侧设置的接收器52对准。
在本公开的一些实施例中,发送器51和接收器52上分别设置有 大圆和小圆,大圆发射的光斑大,用于粗调,小圆发射的光斑小,用于细调。具体如下:在调整过程中,先调整机器人使接收器52上的大圆能够完全接收到发送器51上的大圆发射的光斑,在进一步调整机器人使接收器52上的小圆能够完全接收到发送器51上的小圆发射的光斑。当然,并不限定为圆形,其他任何形状的封闭图形均可。
本公开的实施例通过在子机器人上设置光电传感器50,可以使相互连接的两个子机器人通过光电传感器50来使两个子机器人调整至对准状态。
在本公开的一些实施例中,如图12所示,第一连接机构31所在侧和第二连接机构32所在侧均设置有发送器51和接收器52,在一个子机器人和其它至少一个子机器人连接的过程中,相互配合连接的第一连接机构31和第二连接机构32二者所在侧的发送器51分别与对侧的接收器52对准,二者所在侧的接收器52分别与对侧的发送器51对准。即,第一连接机构31所在侧和第二连接机构32所在侧均即设置有发送器51又设置有接收器52。第一连接机构31所在侧设置的发送器51和第二连接机构32所在侧设置的接收器52对准,第一连接机构31所在侧设置的接收器52和第二连接机构32所在侧设置的发送器51对准。
在本公开的一些实施例中,如图13所示,所述子机器人还包括位于主体10底部的姿态信息采集器1301、以及与姿态信息采集器连接的第一处理器1302。姿态信息采集器1301配置成采集姿态标签的信息,姿态标签的信息被配置为表征子机器人各侧的朝向,第一处理器1302被配置为控制所述子机器人调整姿态预定的,使姿态信息采集器采集到的信息与预定的姿态标签的信息匹配。
例如,以子机器人相对的两侧设置有第一连接机构31和第二连接机构32为例进行说明,两个所述子机器人拼接时,如图14所示,姿态标签103所反映的信息被配置为表征子机器人各侧的朝向,如果姿态标签103所在侧表示子机器人的第一连接机构31所在侧,则姿态标签103所在侧的对侧表示第二连接机构32所在侧,只有子机器人底部的姿态信息采集器采集到的信息与预定的姿态标签103的信息完全对应时,两个子机器人才能调整至预设姿态(即,一个子机器人的第一连接机构31所在侧与另一个子机器人的第二连接机构32所在侧相邻), 从而准确无误的通过第一连接机构31和第二连接机构32拼接。
采集到的姿态标签的信息与预定的姿态标签的信息匹配,即姿态信息采集器采集到了完整的姿态标签。
在一些实施例中,姿态信息采集器例如可以是摄像头、光电传感器的接收器,姿态标签对应的可以是图案、光电传感器的发送器。
示例地,所述子机器人还包括位于主体10底部的位置信息采集器1303以及与位置信息采集器连接的第二处理器1304。位置信息采集器1303配置成采集位置标签信息,位置标签信息被配置为表征机器人所处位置,第二处理器1304被配置为控制所述子机器人调整位置,使位置信息采集器采集到的信息与预定的位置标签的信息匹配。即,第二处理器通过判断位置信息采集器是否采集到预定的位置标签的信息来判断子机器人是否移动到预设区域。
在一些实施例中,信息采集器例如可以是射频接收器,位置标签可以是射频电子标签。
在一些实施例中,第一处理器和第二处理器可以集成在一个处理器中。
在一些实施例中,处理器可以是中央处理单元(CPU)或者现场可编程逻辑阵列(FPGA)或者单片机(MCU)或者数字信号处理器(DSP)或者专用集成电路(ASIC)等具有逻辑运算指令执行能力的器件。
在一些实施例中,连接可以是通过无线网络、有线网络、和/或无线网络和有线网络的任意组合。网络可以包括局域网、互联网、电信网、基于互联网和/或电信网的物联网、和/或以上网络的任意组合等。有线网络例如可以采用双绞线、同轴电缆或光纤传输等方式进行通信,无线网络例如可以采用3G/4G/5G移动通信网络、蓝牙、Zigbee或者Wi-Fi等通信方式。本公开对网络的类型和功能在此不作限制。
在一些实施例中,处理器还连接有存储器,例如易失性存储器和/或非易失性存储器。易失性存储器例如可以包括随机存取存储器(RAM)和/或高速缓冲存储器(cache)等。非易失性存储器例如可以包括只读存储器(ROM)、硬盘、可擦除可编程只读存储器(EPROM)、便携式紧致盘只读存储器(CD-ROM)、USB存储器、闪存等。存储器中可以存储一个或多个指令。
本公开的实施例通过在子机器人底部设置位置信息采集器和姿态 信息采集器,以及相应的处理器,可以使多个子机器人实现全智能拼接。
在本公开的一些实施例中,如图15和图16所示,所述主体10为正方体,所述子机器人包括分别位于主体10四侧的两个第一连接机构31和两个第二连接机构32。
在一些实施例中,所述子机器人的主体还可以是长方体。
在一些实施例中,两个第一连接机构31可以位于主体10相对的两侧,如图14所示,也可以位于主体10相邻的两侧,如图15所示。
本公开的实施例通过在正方体主体的四侧设置两个第一连接机构31和两个第二连接机构32,可使多个子机器人拼接至所需的规模。
本公开的至少一个实施例还提供一种机器人拼接系统,包括如图15和图16所示的上述子机器人,还包括位置标签102和姿态标签103,至少一个所述位置标签102和姿态标签103对应一个子机器人,形成对应一个子机器人的子区101,这些子区共同形成了整合区域100,如图17所示。
例如,区域100可设置于地面。
例如,以图15所示的子机器人为例,图15中的1、2、3、4表示子机器人的主体10的四侧,图15中的每个机器人包括两个位于相邻侧(1、2)的第一连接机构31和两个位于相邻侧(3、4)的第二连接机构32,当多个子机器人拼接时,可以拼接成各种形状,但每个子机器人的方向相同,即,1侧和3侧相连,2侧和4侧相连。这样一来,在拼接过程中,任意两个子机器人的拼接都是一个子机器人的第一连接机构31和与其相邻的子机器人的第二连接机构32相连接。
例如,以图16所示的子机器人为例,图16中的1、2、3、4表示机器人主体10的四侧,图16中的每个子机器人包括两个位于相对侧(1、3)的第一连接机构31和两个位于相对侧(2、4)的第二连接机构32,根据姿态标签设置的位置,可使每个子机器人调整至预设姿态,以使1侧和4侧相连,2侧和3侧相连。这样一来,在拼接过程中,任意两个子机器人的拼接都是一个子机器人的第一连接机构31和与其相邻的子机器人的第二连接机构32相连接。
当然,图15和图16只是一种具体的示意,并不做任何限定,其他可以通过第一连接机构31和第二连接机构32使多个子机器人拼接 的结构,都属于本公开保护的范围。
其中,所述子机器人通过姿态信息采集器和第一处理器找准子区101中的姿态标签103,通过位置信息采集器和第二处理器找准子区101中的位置标签102,当所述子机器人在所述机器人拼接系统内完成拼接后,一个所述子机器人的第一连接机构31和与其相邻的所述子机器人的第二连接机构32连接。
在本公开的一些实施例中,为了便于子机器人在子区101内调整至预设姿态和预设位置,每个子区101的面积大于子机器人所占地面面积。
本公开的至少一个实施例还提供一种拼接上述机器人的方法,所述方法包括如下步骤:
S10、将至少两个子机器人分别移动到对应的相邻子区的所选位置、调整至少两个子机器人中的每一个至所选姿态。
S20、固定所述至少两个子机器人中的至少一个,将位于与被固定的子机器人所在子区相邻的子区中的至少一个其它的子机器人向靠近所述被固定的子机器人的方向移动,通过第一连接机构31和第二连接机构32连接被固定的机器人和被移动的机器人。
下面通过具体的实施例对本公开提供的机器人拼接方法进行说明。
在本公开的一些实施例中,提供一种拼接上述机器人的方法,如图18所示,所述方法包括:
S100、调度命令发出。
S110、确定距离整合区域100最近的子机器人作为待拼接子机器人。
例如,确定待拼接的第一子机器人和第二子机器人。
S120、利用导航或者路径规划使待拼接机器人前往目标整合区域100。
例如,可以在子机器人内设置激光雷达,或者提前编辑好程序命令,使子机器人按照预定的路径前往整合区域100。
S130、每个子机器人通过识别位置标签102到达预设位置。
S140、每个子机器人通过识别姿态标签103调整至预设姿态。
S150、确定基准机器人作为第一子机器人,移动其他待拼接子机器人,使相邻的两个子机器人开始对接。
S160、拼接完成。
在本公开的一些实施例中,提供一种拼接上述机器人的方法,以两个子机器人进行拼接为例,如图19所示,所述方法包括:
S200、将子机器人移动至整合区域100的子区101。
S210、采集子区中位置标签102信息。
S220、控制所述子机器人调整位置,使位置信息采集器采集到的信息与预定的位置标签的信息匹配。
S230、采集子区中姿态标签103信息。
S240、控制所述子机器人调整姿态,使姿态信息采集器采集到信息和预定的姿态标签的信息匹配。
此处,检测到整个姿态标签103的步骤可以分为两步,第一步先初步检测是否检测到姿态标签103,若是,再转动子机器人,判断是否检测到整个姿态标签103。
其中,当整合区域100包括位置标签102和姿态标签103,姿态标签103与子机器人的一条边平行时,如图20所示,在步骤S240和S250之间还包括:
S241、采集子区101中位置标签102信息。
S242、采集到的信息与预定的位置标签102信息不匹配时,控制子机器人在子区101内旋转180°。
这样可以避免子机器人在调整姿态时,偏离原来的位置。
S250、固定第一子机器人,控制第二子机器人向第一子机器人移动至两者相距第一预设距离。这里假设第二子机器人已根据上述实施例调整至合适的位置。
其中,为了便于第一扣合通槽3112与第二扣合通槽3212连接,在执行步骤S250之前,可先将第二扣合通槽3212抬起,直至第二扣合通槽3212的开口远离主体10。
S260、调整第二子机器人,直至第一子机器人和第二子机器人对应的第一连接部件311所在侧和第二连接部件321所在侧的发送器51和接收器52对准。
此时,若第一子机器人和第二子机器人相距较远时,可以控制第二机器人向第一机器人移动至两者相距第三预设距离,再执行步骤S270。
S270、控制第一扣合通槽3112与第二扣合通槽3212旋转至连接状态。
例如,可以分别使第一扣合通槽3112与第二扣合通槽3212旋转至水平,并且槽口相对。
S280、控制第二子机器人向远离第一子机器人的方向移动第二预设距离。
其中,第二预设距离受第一扣合通槽3112与第二扣合通槽3212的扣合部分的客观限制,可以根据工程测试相应地确定。
即,使第一扣合通槽3112与第二扣合通槽3212拉紧。
S290、移动锁紧部件312,对连接后的第一扣合通槽3112和第二扣合通槽3212进行紧固。
S2100、如图21所示,第一子机器人与第二子机器人拼接完成。
其中,调整子机器人至能检测到姿态标签103的步骤包括:
如图22所示,控制子机器人朝第一方向移动第五预设距离。
将采集到的所述姿态标签的信息和预定的所述姿态标签的信息匹配,在不匹配的情况下,控制机器人朝第二方向移动第六预设距离。
将采集到的所述姿态标签的信息和预定的所述姿态标签的信息匹配,在不匹配的情况下,控制子机器人朝第三方向移动第七预设距离。
将采集到的所述姿态标签的信息和预定的所述姿态标签的信息匹配,在不匹配的情况下,控制子机器人朝所述第二方向移动第八预设距离。
将采集到的所述姿态标签的信息和预定的所述姿态标签的信息匹配,在不匹配的情况下,重复上述步骤M次。
将采集到的所述姿态标签的信息和预定的所述姿态标签的信息匹配,在不匹配的情况下,控制子机器人朝第四方向移动第九预设距离。
将采集到的所述姿态标签的信息和预定的所述姿态标签的信息匹配,在不匹配的情况下,控制子机器人朝所述第一方向移动第十预设距离。
将采集到的所述姿态标签的信息和预定的所述姿态标签的信息匹配,在不匹配的情况下,控制子机器人朝所述第四方向移动第十一预设距离。
将采集到的所述姿态标签的信息和预定的所述姿态标签的信息匹 配,在不匹配的情况下,控制子机器人朝所述第三方向移动第十二预设距离。
将采集到的所述姿态标签的信息和预定的所述姿态标签的信息匹配,在不匹配的情况下,重复上述步骤N次。
其中,所述第一方向和所述第三方向分别与所述第二方向和所述第四方向垂直,所述第一方向和所述第三方向相反,所述第二方向和所述第四方向相反,所述第一方向与所述子机器人的一条边平行。
上述第五预设距离直至第十二预设距离,甚至后面的重复的N次步骤中的各预设距离可以选择设置为一样的,例如距离P,该距离一般是小于子区101的边长的,示例地,该距离是远远小于子区101的边长的,因为此时已经经过了位置的调整,上述步骤是为了寻找该子区中的标签,一种极端的情况是,标签沿着子区一侧的边长设置,而子机器人的姿态与预期姿态相差180度,姿态信息采集器对应于该子区的对侧,此时子机器人需要向标签方向移动约一个边长的距离才有可能找到标签,一方面,相邻子区没有被占用时,可以基于距离P和边长对上述步骤的重复次数进行限定,另一方面,如果相邻子区被占用了,平移过去就会偏离原来的子区使得大部分处于相邻的子区中,为避免这种情况,在进行姿态调整时,同时检测位置,如果位置偏离,例如图20所示的方法,将子机器人旋转180度。限制在子区内操作有利于避免相邻子区存在其他子机器人而导致无法操作的问题。
如果平移了一个边长之后仍未检测到姿态标签,一种可能是距离P设置得较大而错过了姿态标签,则第二轮可以以类似的方式,即直角S形,以减小的距离P′反方向移动,如图22中的虚线所示。还可以在其他方向,以上述方式移动,直至检测到姿态标签,原理相同,在此不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种机器人,包括至少两个子机器人,每个所述子机器人包括主体、以及位于所述主体底部的移动件,位于所述主体不同侧的至少一个第一连接机构和至少一个第二连接机构;至少一个所述子机器人的所述第一连接机构配置成可配合连接其它至少一个子机器人的所述第二连接机构,所述第二连接机构配置成可配合连接其它至少一个子机器人的所述第一连接机构。
  2. 根据权利要求1所述的机器人,其中,所述第一连接机构包括第一连接部件,所述第二连接机构包括第二连接部件;
    所述第一连接部件配置成扣合连接其它至少一个子机器人的所述第二连接部件,所述第二连接部件配置成扣合连接其它至少一个子机器人的所述第一连接部件。
  3. 根据权利要求2所述的机器人,其中,所述第一连接部件包括:第一转轴、与所述第一转轴固定连接的第一扣合通槽;所述第二连接部件包括:第二转轴、与所述第二转轴固定连接的第二扣合通槽;
    在与其它至少一个子机器人连接的过程中,所述第一扣合通槽和其它至少一个子机器人的所述第二扣合通槽可旋转至连接状态,所述连接状态为所述第一扣合通槽的前侧壁和其它至少一个子机器人的所述第二扣合通槽的前侧壁分别伸入对方槽内,以使所述第一扣合通槽和其它至少一个子机器人的所述第二扣合通槽拉接。
  4. 根据权利要求3所述的机器人,其中,所述第一扣合通槽和所述第二扣合通槽可旋转至收起状态,所述收起状态为所述第一扣合通槽的开口背离所述主体,所述第二扣合通槽的开口朝向所述主体。
  5. 根据权利要求3所述的机器人,其中,所述第一扣合通槽前侧壁的内侧设置有第一弹性件;和/或,所述第二扣合通槽前侧壁的内侧设置有第二弹性件。
  6. 根据权利要求3所述的机器人,其中,所述第一连接机构还包括锁紧部件;
    所述锁紧部件配置成可锁紧连接状态下的至少一个子机器人的所述第一扣合通槽和其它至少一个子机器人的所述第二扣合通槽。
  7. 根据权利要求6所述的机器人,其中,所述锁紧部件包括具有 第三转轴的第一驱动件,第一齿轮,沿所述第一齿轮中轴线设置、且可带动所述第一齿轮转动的第四转轴,两端分别套在所述第三转轴和所述第四转轴上的同步带,以及与所述第一齿轮啮合的齿条;
    所述齿条的前端配置成可抵住连接状态下与所述第一扣合通槽连接的所述第二扣合通槽的前侧壁。
  8. 根据权利要求7所述的机器人,其中,所述齿条的前端设置有阻挡件,所述阻挡件的前端设置有第三弹性件。
  9. 根据权利要求7所述的机器人,其中,所述齿条为双面齿条,所述齿条相背的两个表面均设置有齿;
    所述锁紧结构还包括第二齿轮,所述第二齿轮、所述第一齿轮分别与所述齿条两个表面上的齿啮合。
  10. 根据权利要求3所述的机器人,其中,所述第一连接部件还包括配置成带动所述第一转轴转动的第二驱动件,所述第二连接部件还包括配置成带动所述第二转轴转动的第三驱动件。
  11. 根据权利要求1所述的机器人,其中,还包括距离传感器;
    所述距离传感器位于所述第一连接机构所在侧;和/或,所述距离传感器位于所述第二连接机构所在侧。
  12. 根据权利要求1所述的机器人,其中,还包括光电传感器,所述光电传感器包括发送器和接收器;
    所述第一连接机构所在侧和所述第二连接机构所在侧分别设置有所述发送器和所述接收器;在所述至少一个子机器人和其它至少一个子机器人连接的过程中,相互配合连接的所述第一连接机构所在侧和所述第二连接机构所在侧的发送器和接收器对准;或者,
    所述第一连接机构所在侧和所述第二连接机构所在侧均设置有所述发送器和所述接收器;在所述至少一个子机器人和其它至少一个子机器人连接的过程中,相互配合连接的所述第一连接机构和所述第二连接机构二者所在侧的所述发送器均与对侧的所述接收器对准,二者所在侧的所述接收器均与对侧的所述发送器对准。
  13. 根据权利要求12所述的机器人,其中,还包括位于所述主体底部的姿态信息采集器以及与所述姿态信息采集器连接的第一处理器;
    所述姿态信息采集器被配置为采集姿态标签的信息,所述姿态标签的信息被配置为表征所述机器人各侧的朝向;
    所述第一处理器,被配置为控制所述子机器人调整姿态,使所述姿态信息采集器采集到的信息和预定的所述姿态标签的信息匹配。
  14. 根据权利要求13所述的机器人,其中,还包括位于所述主体底部的位置信息采集器以及与所述位置信息采集器连接的第二处理器;
    所述位置信息采集器,被配置为采集位置标签的信息,所述位置标签的信息被配置为表征所述子机器人所处位置;
    第二处理器,被配置为控制所述子机器人调整位置,使所述位置信息采集器采集到的信息与预定的所述位置标签的信息匹配。
  15. 一种机器人拼接系统,包括
    位置标签和姿态标签;
    至少一个所述位置标签和姿态标签对应一个权利要求1-14任一所述子机器人,形成对应所述一个所述子机器人的子区;
    在每一个子区中,所述位置标签配置成表征所述子机器人的位置,所述姿态标签配置成表征所述子机器人各侧的朝向。
  16. 一种用于如权利要求15所述的机器人拼接系统的机器人拼接方法,其中,所述方法包括:
    将至少两个子机器人分别移动到对应的相邻子区的所选位置、调整至少两个子机器人中的每一个至所选姿态;
    固定所述至少两个子机器人中的至少一个,将位于与被固定的子机器人所在子区相邻的子区中的至少一个其它的子机器人向靠近所述被固定的子机器人的方向移动,通过第一连接机构和第二连接机构连接被固定的机器人和被移动的机器人。
  17. 根据权利要求16所述的方法,其中,将至少两个子机器人分别移动到对应的相邻子区的所选位置的步骤包括:
    将子机器人移动至对应的子区;
    采集子区中位置标签信息;
    控制所述子机器人调整位置,使位置信息采集器采集到的信息与预定的位置标签的信息匹配。
  18. 根据权利要求16-17任一项所述的方法,其中,调整至少两个子机器人中的每一个至所选姿态的步骤包括:
    采集子区中姿态标签信息;
    控制所述机器人调整姿态,使姿态信息采集器采集到信息和预定 的姿态标签的信息匹配。
  19. 根据权利要求18所述的方法,其中,所述姿态标签与所述机器人的一条边平行;调整至少两个子机器人中的每一个至所选姿态的步骤还包括:
    采集子区中的位置标签信息;
    在采集到的信息与预定的所述位置标签的信息不匹配的状态下,控制所述子机器人在所述子区内旋转180°。
  20. 根据权利要求16所述的方法,其中,连接第一连接机构和第二连接机构的步骤包括:
    固定所述至少两个子机器人中的至少一个,将位于与被固定的子机器人所在子区相邻的子区中的至少一个其它的子机器人向靠近所述被固定的子机器人的方向移动,使所述被固定的子机器人与位于相邻子区的所述被移动的子机器人相距第一所选距离;
    调整所述被移动的子机器人,对准所述第一连接部件和第二连接部件;
    控制所述第一扣合通槽与所述第二扣合通槽旋转至连接状态;
    控制所述被移动的子机器人向远离所述被固定的子机器人的方向移动第二所选距离;
    移动锁紧部件,固定连接后的所述第一扣合通槽和所述第二扣合通槽。
PCT/CN2018/077379 2017-06-27 2018-02-27 一种机器人及其拼接方法、机器人拼接系统 WO2019000993A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18759017.9A EP3646993A4 (en) 2017-06-27 2018-02-27 ROBOTS, COMBINATION PROCEDURE THEREOF AND ROBOT COMBINATION SYSTEM
US16/081,822 US10947095B2 (en) 2017-06-27 2018-02-27 Robot and splicing method thereof, and robot splicing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710502502.8A CN109129389A (zh) 2017-06-27 2017-06-27 一种机器人及其拼接方法、机器人拼接系统
CN201710502502.8 2017-06-27

Publications (1)

Publication Number Publication Date
WO2019000993A1 true WO2019000993A1 (zh) 2019-01-03

Family

ID=64740354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077379 WO2019000993A1 (zh) 2017-06-27 2018-02-27 一种机器人及其拼接方法、机器人拼接系统

Country Status (4)

Country Link
US (1) US10947095B2 (zh)
EP (1) EP3646993A4 (zh)
CN (1) CN109129389A (zh)
WO (1) WO2019000993A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111805555A (zh) * 2020-07-16 2020-10-23 临沂矿业集团菏泽煤电有限公司 比赛用巡检机器人
CN112428249B (zh) * 2020-11-13 2022-11-29 安徽信息工程学院 一种战场全方位救援机器人
CN115072626B (zh) * 2021-03-12 2023-07-18 灵动科技(北京)有限公司 搬运机器人、搬运系统及提示信息生成方法
CN115229777A (zh) * 2021-04-22 2022-10-25 灵动科技(北京)有限公司 自主移动机器人、物流对接系统及对接方法
US20230182329A1 (en) * 2021-12-10 2023-06-15 Boston Dynamics, Inc. Accessory interfaces for a mobile manipulator robot
CN115718489B (zh) * 2022-11-10 2023-08-15 中元宇(北京)物联网科技有限公司 一种防疫智能机器人的路径规划方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7850413B2 (en) * 2007-01-05 2010-12-14 Kiva Systems, Inc. System and method for transporting inventory items
CN203542594U (zh) * 2013-11-05 2014-04-16 无锡普智联科高新技术有限公司 基于多机器人组合的全自动搬运车
CN205905017U (zh) * 2016-06-23 2017-01-25 深圳市欧铠机器人有限公司 一种全向重式搬运机器人
CN107039846A (zh) * 2017-05-26 2017-08-11 山东非凡智能科技有限公司 一种组合式智能移动设备及其对接模块
CN107181118A (zh) * 2017-05-26 2017-09-19 山东非凡智能科技有限公司 基于动态的组合式智能移动agv及其对接方法
CN206840061U (zh) * 2017-06-27 2018-01-05 京东方科技集团股份有限公司 一种机器人、及机器人拼接系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10335570A1 (de) * 2003-07-31 2005-02-24 Daimlerchrysler Ag Robotergestütztes Fertigungsverfahren und Transportroboter dafür
AT507947B1 (de) * 2009-02-20 2011-06-15 Univ Graz Tech Modulares roboterfahrwerk
US8165718B2 (en) * 2010-07-30 2012-04-24 Toyota Motor Engineering & Manufacturing North America, Inc. Robotic transportation devices and systems
CN103264389B (zh) * 2013-05-14 2015-09-16 东南大学 一种可全向运动的模块化自重构机器人的单元模块结构
JP6151159B2 (ja) * 2013-11-20 2017-06-21 株式会社東芝 協調搬送ロボットシステム
DE102013019869B4 (de) * 2013-11-28 2022-01-13 Abb Schweiz Ag Roboterarm mit Eingabemodul
JP6220406B2 (ja) * 2013-12-24 2017-10-25 株式会社日立製作所 ピッキングシステム
CN104003089B (zh) * 2014-04-21 2016-03-16 无锡普智联科高新技术有限公司 一种基于多机器人组合的仓储拣货车
US9272417B2 (en) * 2014-07-16 2016-03-01 Google Inc. Real-time determination of object metrics for trajectory planning
US9878448B2 (en) * 2015-11-02 2018-01-30 Daegu Gyeongbuk Institute Of Science And Technology Omnidirectional moving robot device, and system and method for object conveyance using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7850413B2 (en) * 2007-01-05 2010-12-14 Kiva Systems, Inc. System and method for transporting inventory items
CN203542594U (zh) * 2013-11-05 2014-04-16 无锡普智联科高新技术有限公司 基于多机器人组合的全自动搬运车
CN205905017U (zh) * 2016-06-23 2017-01-25 深圳市欧铠机器人有限公司 一种全向重式搬运机器人
CN107039846A (zh) * 2017-05-26 2017-08-11 山东非凡智能科技有限公司 一种组合式智能移动设备及其对接模块
CN107181118A (zh) * 2017-05-26 2017-09-19 山东非凡智能科技有限公司 基于动态的组合式智能移动agv及其对接方法
CN206840061U (zh) * 2017-06-27 2018-01-05 京东方科技集团股份有限公司 一种机器人、及机器人拼接系统

Also Published As

Publication number Publication date
EP3646993A4 (en) 2021-03-31
EP3646993A1 (en) 2020-05-06
CN109129389A (zh) 2019-01-04
US10947095B2 (en) 2021-03-16
US20190382250A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
WO2019000993A1 (zh) 一种机器人及其拼接方法、机器人拼接系统
Wang et al. RF-compass: Robot object manipulation using RFIDs
US10539650B2 (en) Antenna control method, apparatus and computer storage medium
US20150263565A1 (en) Wireless charging system with auto-positioning
KR20170035338A (ko) 무선 충전 전송 필드에 있어서 센시티브 객체를 식별하는 시스템 및 방법
KR20170035339A (ko) 무선 전력 전송파에 대한 에너지 레벨을 무효화시키는 시스템 및 방법
KR20170033796A (ko) 무선 충전 전송 필드에 있어서의 수신기의 식별
KR20170036628A (ko) 무선 전력 전송파를 생성하고 전송하는 시스템 및 방법
KR20170036627A (ko) 전송 필드내의 위치를 결정하도록 구성된 수신기 디바이스
TW201728050A (zh) 用以傳送電力至接收器的系統和方法
US10040194B1 (en) Order picking method and mechanism
CN105806337A (zh) 一种应用于室内机器人的定位方法和室内机器人
JP7444014B2 (ja) 運搬システム、及び運搬方法
US20220305680A1 (en) Perception module for a mobile manipulator robot
JP6735446B2 (ja) カメラシステムとその制御方法、及び電子機器とその制御プログラム
CN111095518B (zh) 基板搬运装置以及求出机器人与载置部的位置关系的方法
CN110956327A (zh) 一种多机器人自动停靠方法、介质、终端和装置
US20230071953A1 (en) Systems, and methods for real time calibration of multiple range sensors on a robot
US10671080B2 (en) Data processing method for robot and robot with the same
CN106950789B (zh) 投影设备
Nguyen et al. Design and simulation of a novel indoor mobile robot localization method using a light-emitting diode positioning system
US10705538B2 (en) Auto guided vehicle system and operating method thereof
EP3903949A1 (en) Configuration of a sorter system based on clock cycles
EP3844581B1 (en) A method for achieving traceability of a tool operation
CN114104145A (zh) 搬运系统、搬运方法及程序

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18759017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018759017

Country of ref document: EP

Effective date: 20200127