WO2019000942A1 - 用于玻璃强化的盐浴及其制备方法、强化玻璃和原料玻璃 - Google Patents

用于玻璃强化的盐浴及其制备方法、强化玻璃和原料玻璃 Download PDF

Info

Publication number
WO2019000942A1
WO2019000942A1 PCT/CN2018/074633 CN2018074633W WO2019000942A1 WO 2019000942 A1 WO2019000942 A1 WO 2019000942A1 CN 2018074633 W CN2018074633 W CN 2018074633W WO 2019000942 A1 WO2019000942 A1 WO 2019000942A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
metal
salt bath
nitrate
glass
Prior art date
Application number
PCT/CN2018/074633
Other languages
English (en)
French (fr)
Inventor
胡伟
谈宝权
刘旭明
Original Assignee
深圳市东丽华科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市东丽华科技有限公司 filed Critical 深圳市东丽华科技有限公司
Priority to US16/968,871 priority Critical patent/US11866364B2/en
Publication of WO2019000942A1 publication Critical patent/WO2019000942A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/02Tempering or quenching glass products using liquid
    • C03B27/03Tempering or quenching glass products using liquid the liquid being a molten metal or a molten salt
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/18Compositions for glass with special properties for ion-sensitive glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties

Definitions

  • the invention relates to the field of glass chemical strengthening, in particular to a salt bath for chemical strengthening of glass, a preparation method thereof, a tempered glass and a raw material glass.
  • ultra-thin glass with a thickness of less than 2mm and glass with extremely high strength are required to be strengthened by ion exchange chemical strengthening.
  • the glass is placed in an ion exchange salt bath, and the larger ions in the salt bath are used.
  • the smaller ions in the replacement glass, the ions that are generally involved in the exchange are alkali metal ions.
  • the salt bath required for ion exchange is required to be limited by the temperature of the glass ion exchange. Generally, the temperature is 380-450 degrees Celsius. Therefore, the salt of the compound which can be used in the salt bath is more limited, and the alkali metal nitrate having a lower melting point is usually used. When a certain nitrate is determined, the amount of effective metal ions that can participate in ion exchange at the same mass is also determined. In other words, the amount of effective metal ions in the salt bath is determined by using a certain salt.
  • the compressive stress that can be generated by chemically strengthened glass during ion exchange is determined by the absolute amount of effective metal ions in the salt bath. Generally, the more effective metal ions, the higher the compressive stress that can be produced on the glass surface, and the higher the glass strength. .
  • all salt baths can only use nitrates, and the ability of nitrates to provide effective metal ions becomes the ceiling for strengthening the strength of the glass.
  • Some existing literatures also mention the addition of "additives” in the salt bath, but most of the "additives” are insoluble or fused to the nitrate salt bath. In other words, these "additives” cannot be used in the nitrate salt bath.
  • the effective ionization and participation in the ion exchange of the glass can only play a role in physically or chemically adsorbing certain components in the salt bath, destroying or protecting the glass structure; therefore, it is necessary to study and optimize the salt bath to further improve
  • the salt bath provides the ability to effectively metal ions, thereby increasing the strength of the glass after strengthening. At the same time, an increase in the amount of effective metal ions is equivalent to an increase in the life of the salt bath, thereby reducing waste and pollution.
  • the technical problem to be solved by the present invention is that the problem that the effective metal ion capacity which can be provided by the existing ion exchange salt bath for tempered glass is limited by the type of nitrate is difficult to be improved, and a new method for glass strengthening is provided.
  • a salt bath which further enhances the ability of the salt bath to provide effective metal ions, thereby increasing the strength of the glass after strengthening.
  • a salt bath for glass strengthening comprising a nitrate and a metal compound; the nitrate having a mass fraction of not less than 50% and in a molten state; the metal compound being fused to the nitrate
  • the metal compound contains the same metal element as the nitrate; the mass fraction of the metal element in the molecular formula corresponding to the metal compound is greater than the mass fraction in the molecular formula corresponding to the nitrate.
  • the salt bath for glass strengthening provided by the present invention comprises a plurality of nitrates and a plurality of metal compounds, and the plurality of nitrates comprise the same metal species as the metal elements of the plurality of metal compounds.
  • the same metal element has a mass fraction in a molecular formula corresponding to the metal compound greater than a mass fraction in a molecular formula corresponding to the nitrate.
  • the metal compound is selected from the group consisting of metal chlorides, metal peroxides, metal oxides, metal phosphates, metal carbonates, metal hydrogencarbonates, metal silicates. At least one of metal hydroxides.
  • the mass fraction of the metal chloride, metal peroxide, metal oxide, metal phosphate, metal carbonate, metal hydrogencarbonate or metal silicate is greater than 0.1% and less than 30%.
  • the metal hydroxide has a mass fraction of more than 0.1% and less than 10%.
  • the metal element is selected from the first main group element and the second main group element in the periodic table.
  • the salt bath for glass strengthening provided by the present invention is characterized in that it further comprises an additive which does not melt the nitrate.
  • Adding a metal compound to the nitrate wherein the added metal compound contains the same metal element as the nitrate, and the metal element has a mass fraction in the molecular formula corresponding to the metal compound greater than a mass fraction in a molecular formula corresponding to the nitrate, and the mass of the metal compound added is less than or equal to the mass of the nitrate;
  • the vessel is heated and the nitrate is stirred until the metal compound is completely melted in the nitrate to give the desired salt bath.
  • the vessel is heated until the mixed salt is completely melted to obtain the desired salt bath.
  • a tempered glass which is obtained by subjecting the glass to be strengthened to one or more ion exchanges in the above salt bath.
  • the surface compressive stress CS of the tempered glass is greater than 750 MPa.
  • the tempered glass is obtained by performing multiple ion exchanges of the glass to be strengthened in the above salt bath, and the compressive stress CS_TP at the inflection point of the stress fitting curve of the tempered glass is greater than 90 MPa.
  • the surface compressive stress CS_TP at the inflection point of the stress fitting curve of the tempered glass is greater than 100 MPa.
  • a raw material glass which can be converted into a tempered glass as described above after one or more ion exchanges in a salt bath as described above.
  • the raw material glass provided by the present invention comprises an alkali metal oxide, an oxide of a third main group element, and an oxide of a fourth main group element, and further includes at least at least an oxide of an alkaline earth metal oxide and a fifth main group element.
  • the alkali metal oxide has a mole percentage of 10 to 25%, and the alkali metal oxide includes at least one of lithium oxide, sodium oxide, potassium oxide, and cerium oxide.
  • the raw material glass provided by the present invention includes the alkaline earth metal oxide, and the molar percentage of the alkaline earth metal oxide is less than 10%.
  • the alkali metal oxide includes one of sodium oxide or lithium oxide, wherein the molar percentage of sodium oxide or lithium oxide is less than 22%.
  • the alkali metal oxide includes sodium oxide and lithium oxide, wherein the sum of the molar percentages of sodium oxide and lithium oxide is less than 22%.
  • the alkali metal oxide comprises potassium oxide, wherein a ratio of a mole percentage of potassium oxide to a mole percentage of the alkali metal oxide is less than 0.25.
  • the alkaline earth metal oxide includes magnesium oxide, and the ratio of the mole percentage of magnesium oxide to the mole percentage of the alkaline earth metal oxide is 0.3 to 1.
  • the raw material glass provided by the present invention includes an oxide of the fifth main group element, an oxide of the third main group element includes aluminum oxide and boron oxide, and an oxide of the fourth main group element includes silicon oxide.
  • the oxide of the fifth main group element includes phosphorus oxide and cerium oxide, wherein a sum of a molar percentage of silicon oxide, aluminum oxide, boron oxide, magnesium oxide, phosphorus oxide and cerium oxide is related to the alkali metal oxide The ratio of mole percent is from 3 to 7.
  • the oxide of the third main group element includes aluminum oxide
  • the oxide of the fourth main group element includes silicon oxide
  • the sum of the mole percentages of the silicon oxide and the aluminum oxide The ratio of the mole percent of alkali metal oxide is from 3 to 6.5.
  • the raw material glass includes an oxide of the fifth main group element, an oxide of the third main group element, an oxide of the fourth main group element, and the fifth
  • the ratio of the sum of the mole percent of the oxide of the main group element to the mole percent of the alkali metal oxide is greater than 3.1 and less than 6.8.
  • the raw material glass does not contain an oxide of the fifth main group element, and the mole percentage of the oxide of the third main group element and the oxide of the fourth main group element
  • the ratio of the mole percent to the alkali metal oxide is greater than 3.1 and less than 6.8.
  • the raw material glass further contains an oxide of the alkali metal oxide, the alkaline earth metal oxide, the third main group element, or the like, in a molar percentage of 3% or less An oxide other than the oxide of the fourth main group element and the oxide of the fifth main group element.
  • the raw material glass contains, in mole percent,:
  • the salt bath for glass strengthening provided by the present invention has the following beneficial effects: the salt bath for glass strengthening includes a nitrate and a metal compound; the mass fraction of the nitrate is not less than 50%, and a molten state; the metal compound is fused to the nitrate, the metal compound and the nitrate comprise the same metal element; a mass fraction of the metal element in a molecular formula corresponding to the metal compound is greater than The mass fraction in the molecular formula corresponding to nitrate.
  • the salt bath provided by the present invention can provide more effective metal ions under the same quality conditions than the existing salt bath, thereby increasing the strength of the glass after strengthening, and also improving the salt. The life of the bath reduces waste of resources and environmental pollution.
  • the glass reinforced salt baths provided by the present invention include nitrates and metal compounds. Wherein the nitrate is in a molten state, and the metal compound is fused to the nitrate. Further, the metal compound contains the same metal element as the nitrate, and the mass fraction of the metal element in the molecular formula corresponding to the metal compound is greater than the mass fraction in the molecular formula corresponding to the nitrate. Thus, a certain quality of the salt bath provided by the present invention contains a greater amount of effective metal element than a pure nitrate salt bath of equivalent quality.
  • the metal compound containing the Na element must be selected from the metal compound, and the mass fraction of the Na element in the NaNO 3 is Therefore, the mass fraction of the Na element in the molecular formula corresponding to the selected metal compound must be greater than
  • the metal compound may be one or more of NaOH, NaCl, Na 3 PO 4 , Na 2 CO 3 , NaHCO 3 , Na 2 SiO 3 , Na 2 O or Na 2 O 2 .
  • the metal compound containing the K element must be selected from the metal compound, and the mass fraction of the K element in KNO 3 is Therefore, the mass fraction of the K element in the formula corresponding to the selected metal compound must be greater than
  • the metal compound may be one or more of KOH, KCl, K 3 PO 4 , K 2 CO 3 , KHCO 3 , K 2 SiO 3 , K 2 O or K 2 O 2 .
  • the glass-reinforced salt bath provided by the present invention may include a plurality of nitrates.
  • the metal compound may be NaOH, NaCl, Na 3 PO 4 , Na 2 CO 3 , NaHCO 3 , Na 2 SiO. 3 , a plurality of Na 2 O, Na 2 O 2 , KOH, KCl, K 3 PO 4 , K 2 CO 3 , KHCO 3 , K 2 SiO 3 , K 2 O or K 2 O 2 .
  • the metal compound is at least one selected from the group consisting of metal chlorides, metal peroxides, metal oxides, metal phosphates, metal carbonates, metal hydrogencarbonates, metal silicates, and metal hydroxides.
  • the metal compound is selected from the group consisting of metal chlorides, metal peroxides, metal oxides, metal phosphates, metal carbonates, metal hydrogencarbonates or metal silicates
  • the mass fraction thereof is preferably greater than 0.1%. And less than 30%, thereby ensuring that the metal chloride, metal peroxide, metal oxide, metal phosphate, metal carbonate, metal hydrogencarbonate or metal silicate can be completely melted in the corresponding nitrate, To provide more effective metal ions.
  • the mass fraction thereof is preferably greater than 0.1% and less than 10%, thereby ensuring that the metal hydroxide can be completely melted in the corresponding nitrate to provide more Effective metal ion.
  • the metal element is selected from the first main group metal element in the periodic table, for example, Li, Na, K, Rb, Cs, etc.
  • the metal element may also be selected from the second main group element, for example, Be, Mg, Ca, Sr, Ba, etc.
  • the salt bath further comprises not melt in the nitrate additive, e.g., Feng Shenzhen City of Industry Co-K TM ionic sieve ceramics, diatomaceous earth, alumina, coke, etc. antimonate, Additives that do not melt in the salt bath absorb the small ions released by ion exchange in the salt bath in a physical and chemical reaction manner, reducing the interference of these small ions on the normal ion exchange reaction, so as to increase the large ions in the salt bath.
  • the nitrate additive e.g., Feng Shenzhen City of Industry Co-K TM ionic sieve ceramics, diatomaceous earth, alumina, coke, etc. antimonate
  • the present invention provides a method for preparing the above salt bath, comprising the steps of: adding a solid nitrate to a vessel; heating the vessel until the nitrate is completely melted; adding a metal compound to the nitrate, wherein The metal compound contains the same metal element as the nitrate, and the mass fraction of the metal element in the molecular formula corresponding to the metal compound is greater than the mass fraction in the molecular formula corresponding to the nitrate, and is added The mass of the metal compound is less than or equal to the mass of the nitrate; the vessel is heated and the nitrate is agitated until the metal compound is completely melted in the nitrate to obtain the desired salt bath.
  • the present invention provides another method for preparing the above salt bath, comprising the steps of: weighing a solid nitrate and a solid metal compound and uniformly mixing the two to obtain a mixed salt, wherein the metal compound and the nitric acid
  • the salt contains the same metal element, and the mass fraction of the metal element in the corresponding formula of the metal compound is greater than the mass fraction in the molecular formula corresponding to the nitrate, and the mass of the metal compound is less than or equal to The mass of the nitrate; the mixed salt is added to the vessel; the vessel is heated until the mixed salt is completely melted to obtain the desired salt bath.
  • the present invention provides a tempered glass which is obtained by one or more ion exchanges of a glass to be strengthened in the above salt bath.
  • the surface compressive stress CS of the tempered glass is greater than 750 MPa, and preferably, the surface compressive stress CS of the tempered glass is greater than 800 MPa.
  • the tempered glass is obtained by performing multiple ion exchanges of the glass to be strengthened in the salt bath, and the compressive stress CS_TP at the inflection point of the stress fitting curve of the tempered glass is greater than 90 MPa, preferably, the strengthening The compressive stress CS_TP at the inflection point of the stress fitting curve of the glass is greater than 100 MPa.
  • the raw material glass of the present invention is particularly suitable for the above salt bath, that is, under the same conditions, the raw material glass is subjected to one or more ion exchanges in the above salt bath compared with other glass.
  • the resulting glass has superior properties, and the raw material glass can be converted into the tempered glass just after one or more ion exchanges in the above salt bath.
  • the raw material glass includes an alkali metal oxide, an oxide of a third main group element, and an oxide of a fourth main group element, and further includes at least one of an alkaline earth metal oxide and an oxide of a fifth main group element And wherein the alkali metal oxide has a molar percentage of 10 to 25%, and the alkali metal oxide comprises at least one of lithium oxide, sodium oxide, potassium oxide and cerium oxide. And when the raw material glass includes the alkaline earth metal oxide, the alkaline earth metal oxide has a mole percentage of less than 10%.
  • the alkali metal oxide when the alkali metal oxide includes sodium oxide and does not include lithium oxide, the molar percentage of sodium oxide is less than 22%. When the alkali metal oxide comprises lithium oxide and does not include sodium oxide, the mole percentage of lithium oxide is less than 22%. When the alkali metal oxide includes both sodium oxide and lithium oxide, the sum of the mole percentages of sodium oxide and lithium oxide is less than 22%.
  • the mole percent of potassium oxide is configured to have a ratio of mole percent to the alkali metal oxide of less than 0.25.
  • the molar percentage of magnesium oxide is set to a ratio of the molar percentage of the alkaline earth metal oxide to 0.3 to 1. .
  • the oxide of the fourth main group element includes a silicon oxide, the oxide of the fifth main group element comprising phosphorus oxide and cerium oxide, a sum of mole percentages of silicon oxide, aluminum oxide, boron oxide, magnesium oxide, phosphorus oxide and cerium oxide and the alkali metal oxide
  • the molar ratio of the ratio is 3-7.
  • the oxide of the third main group element comprises aluminum oxide
  • the oxide of the fourth main group element comprises silicon oxide
  • the sum of the mole percentage of silicon oxide and aluminum oxide and the alkali metal oxide The ratio of mole percent is from 3 to 6.5.
  • the raw material glass contains an oxide of the fifth main group element, an oxide of the third main group element, an oxide of the fourth main group element, and the fifth main group element
  • the ratio of the sum of the mole percent of the oxide to the mole percent of the alkali metal oxide is greater than 3.1 and less than 6.8.
  • the raw material glass does not contain the oxide of the fifth main group element
  • the sum of the mole percentages of the oxide of the third main group element and the oxide of the fourth main group element is greater than 3.1 and less than 6.8.
  • the raw material glass further comprises, in addition to the alkali metal oxide, the alkaline earth metal oxide, the oxide of the third main group element, and the fourth main group element, having a molar percentage of 3% or less An oxide and a component other than the oxide of the fifth main group element.
  • the raw glass contains:
  • the inventors have found that the glass obtained by the above-mentioned seven kinds of the raw material glasses subjected to one or more ion exchanges in the salt bath provided by the present invention has superior characteristics as compared with other glasses.
  • the raw material glass provided by the present invention is not limited to the seven types listed above.
  • This embodiment provides a salt bath A, a salt bath B and a salt bath C for glass strengthening, wherein the components of the salt bath A, the salt bath B and the salt bath C and the contents of the components are as shown in Table 1-1.
  • Table 1 also shows the components of the salt bath D and the contents of the components which are commonly used in the prior art.
  • Table 1-1 Components of the salt bath A, the salt bath B, the salt bath C and the salt bath D in this example, and the mass fraction (%) of each component
  • the salt bath A is prepared by first weighing 89 parts of KNO 3 solids and 11 parts of KCl solids by mass fraction, transferring the weighed KNO 3 solids into a container having good thermal conductivity and high temperature resistance, and heating the chamber. The container is completely converted into a molten state until the KNO 3 solid in the container is completely transferred, the weighed KCl solid is transferred to the container, the heating of the container is continued, and the molten KNO 3 in the container is stirred. Until the added KCl solid was completely melted in the molten state of KNO 3 , thus the salt bath A was obtained.
  • the salt bath A can also be obtained by first weighing 89 parts of KNO 3 solids and 11 parts of KCl solids by mass fraction, and weighing the good KNO 3 solids and The KCl solids were uniformly mixed and transferred to a container having good thermal conductivity and high temperature resistance, and the vessel was heated until the KNO 3 solid and the KCl solid in the vessel were completely converted into a molten state, thereby obtaining the salt bath A.
  • the salt bath B is prepared by first weighing 86.7 parts of KNO 3 solids, 9.1 parts of KCl solids, 1.9 parts of K 2 O solids and 2.3 parts of K 2 O 2 solids by mass fraction, and weigh the good KNO 3
  • the solid is transferred to a container having good thermal conductivity and high temperature resistance, and the container is heated until the KNO 3 solid in the container is completely converted into a molten state, and the KCl solid, K 2 O solid and K 2 O 2 which are weighed are further weighed.
  • the salt bath B can also be obtained by first weighing 86.7 parts of KNO 3 solids, 9.1 parts of KCl solids, 1.9 parts of K 2 O solids, and 2.3 parts by mass.
  • K 2 O 2 solid, the weighed KNO 3 solid, KCl solid, K 2 O solid and K 2 O 2 solid are uniformly mixed and transferred to a container with good thermal conductivity and high temperature resistance, and the container is heated until The KNO 3 solid, KCl solid, K 2 O solid and K 2 O 2 solid in the vessel were completely converted to a molten state, to which the salt bath B was obtained.
  • the salt bath C is prepared by first weighing 87.5 parts of KNO 3 solids, 3.8 parts of KCl solids, 3.8 parts of K 2 O solids, 4.4 parts of K 2 O 2 solids and 0.6 parts of KOH solids by mass fraction.
  • the taken KNO 3 solid is transferred to a container with good thermal conductivity and high temperature resistance, and the container is heated until the KNO 3 solid in the container is completely converted into a molten state, and the KCl solid and K 2 O solid which are weighed are further
  • the K 2 O 2 solids are transferred together with the KOH solids into the vessel, the vessel is continuously heated, and the molten KNO 3 in the vessel is stirred until the KCl solids, K 2 O solids, K 2 O are added. 2
  • the solid and KOH solids were completely melted in the molten state of KNO 3 , thus obtaining the salt bath A.
  • the salt bath C can also be obtained by first weighing 87.5 parts of KNO 3 solids, 3.8 parts of KCl solids, 3.8 parts of K 2 O solids, and 4.4 parts by mass. K 2 O 2 solids and 0.6 parts of KOH solids, the weighed KNO 3 solids, KCl solids, K 2 O solids, K 2 O 2 solids and KOH solids are uniformly mixed and transferred to a container with good thermal conductivity and high temperature resistance. The vessel was heated until the KNO 3 solids, KCl solids, K 2 O solids, K 2 O 2 solids and KOH solids in the vessel were completely converted to a molten state, to which the salt bath C was obtained.
  • the salt bath D is prepared by first weighing 100 parts of KNO 3 solids in mass parts, transferring the weighed KNO 3 solids into a container having good thermal conductivity and high temperature resistance, and heating the container until the The KNO 3 solid in the vessel was completely converted to a molten state, to which the salt bath D was obtained.
  • the present embodiment also provides a raw material glass A having a thickness of 0.65 mm, and the components and the content of each component are as shown in Table 1-2.
  • Table 1-2 Ingredients Table of Raw Material Glass A
  • the raw material glass A is also subjected to a single ion exchange treatment in the salt bath A of the same quality, the salt bath B, the salt bath C, and the salt bath D, respectively. And measuring different temperatures and times of the raw material glass A in the salt bath A, the salt bath B, the salt bath C and the salt bath D, respectively, using a FEM6000 surface stress meter manufactured by Japan Fukuhara Co., Ltd.
  • the surface compressive stress CS and the ion exchange depth DOL of the tempered glass obtained after a single ion exchange treatment under the conditions are shown in Table 1-3.
  • Table 1-3 Surface compressive stress CS and ion exchange depth DOL of tempered glass obtained by single ion exchange treatment of raw material glass A under different temperature and time conditions in different salt baths
  • the surface compressive stress CS value of the tempered glass obtained by the single-time ion exchange treatment of the raw material glass A in the salt bath D is the same as the salt bath temperature and the ion exchange time.
  • the ion exchange depth DOL value is much smaller than the surface compressive stress CS value and the ion exchange depth DOL of the tempered glass obtained after a single ion exchange treatment in the salt bath A, the salt bath B and the salt bath C, respectively. value.
  • the mixed type nitrate salt bath of the potassium compound can provide a better strengthening effect on the raw material glass A.
  • the measurement data in Tables 1-3 shows that in the case where the salt bath temperature and the ion exchange time are the same, the raw material glass A is in the salt bath A, the salt bath B, and the salt bath C, respectively.
  • the surface compressive stress CS value and the ion exchange depth DOL value of the tempered glass obtained after a single ion exchange treatment tend to increase, that is, the same quality of the salt bath A, the salt bath B and the salt
  • the strengthening ability of the bath C to the raw material glass A is arranged from strong to weak: salt bath C > salt bath B > salt bath A.
  • the mass fraction of such potassium elements in the mixed nitrate salt bath is greater than The greater the mass ratio of the potassium compound, the stronger the strengthening ability of the mixed nitrate salt bath to the raw material glass A.
  • the ion exchange depth DOL of the tempered glass is greater than 30 ⁇ m.
  • the corresponding surface compressive stress CS value can exceed 800Mpa. Therefore, it is further explained that the mass fraction of potassium elements added with KCl, K 2 O, K 2 O 2 or KOH is greater than The superiority of the mixed nitrate salt bath of the potassium compound relative to the bath of an equal mass of pure potassium nitrate salt.
  • This embodiment provides a salt bath E1 for salt-strengthening, a salt bath E2, a salt bath E3, a salt bath E4, a salt bath E5, a salt bath E6, a salt bath F1, a salt bath F2, a salt bath F3, a salt bath F4, The salt bath F5 and the salt bath F6, wherein the components of the various salt baths and the contents of the components are as shown in Table 2-1 below.
  • Table 1 also shows the salt bath G1 commonly used in the prior art.
  • Table 2-1 Salt bath E1, salt bath E2, salt bath E3, salt bath E4, salt bath E5, salt bath E6, salt bath F1, salt bath F2, salt bath F3, salt bath F4, salt in this example
  • This embodiment also provides a raw material glass B having a thickness of 0.65 mm, and the components and the content of each component are as shown in Table 2-2.
  • This embodiment also conducted the test 1 using the raw material glass B.
  • the raw material glass B was subjected to the first ion exchange and ion in the same quality salt bath G1, salt bath G2, salt bath G3, salt bath G4, salt bath G5 and salt bath G6. After the migration, it was placed in a pure potassium nitrate bath for a second ion exchange. among them,
  • the first ion exchange conditions 420 ° C, 60 min;
  • CS_TP compressive stress at the inflection point of the stress fitting curve
  • DOL_TP ion exchange depth at the inflection point of the stress fitting curve
  • DOL_0 The ion exchange depth at which the compressive stress is zero.
  • This embodiment also conducted the test 2 using the raw material glass B.
  • the second test process is as follows: the raw material glass B is subjected to the first ion exchange and ion successively in the same quality salt bath E1, salt bath E2, salt bath E3, salt bath E4, salt bath E5 and salt bath E6. After the migration, it was placed in a pure potassium nitrate bath for a second ion exchange. among them,
  • the first ion exchange conditions 420 ° C, 60 min;
  • the first ion exchange data was measured using the SLP system of Japan Fukuhara Plant, and the second ion exchange data was measured using the FSM6000 surface stress meter, and the final measurement data were synthesized as shown in Table 2-4.
  • the salt bath G1 is a pure nitrate (sodium nitrate + potassium nitrate) salt bath, and the sum of the mass fractions of the compound containing potassium element in the salt bath E1 is 55.56%, and the salt bath G1
  • the mass fraction of potassium nitrate is approximately the same, and the sum of the mass fractions of the compound containing sodium element in the salt bath E1 is 45.45%, and correspondingly, the mass fraction of sodium nitrate in the salt bath G1 is substantially the same, and the difference is that the salt bath
  • the potassium-containing compound in E1 includes not only potassium nitrate but also potassium chloride, wherein the mass fraction of potassium in the molecular formula of potassium chloride is much larger than the mass fraction of potassium in the molecular formula of potassium nitrate.
  • the sodium element-containing compound in the salt bath E1 includes not only sodium nitrate but also sodium chloride, wherein the mass fraction of the sodium element in the molecular formula of sodium chloride is much larger than the mass of the sodium element in the molecular formula of sodium nitrate. fraction.
  • the mass fraction of potassium element added with KCl is greater than that of the equal-quality pure nitrate (sodium nitrate + potassium nitrate) salt bath.
  • the mass fraction of sodium compounds such as potassium compounds and NaCl is greater than
  • the mixed nitrate salt bath can provide a better strengthening effect on the raw material glass B.
  • This embodiment also conducted the test three using the raw material glass B.
  • the third process is as follows: the raw material glass B is subjected to the first ion exchange and ion successively in the same quality salt bath F1, salt bath F2, salt bath F3, salt bath F4, salt bath F5 and salt bath F6. After the migration, it was placed in a pure potassium nitrate bath for a second ion exchange. among them,
  • the first ion exchange conditions 420 ° C, 60 min;
  • the content of potassium nitrate in the salt bath F1 and the salt bath E1 is the same as the content of sodium nitrate, and also contains sodium chloride and potassium chloride, except that the potassium salt in the salt bath F1 is contained.
  • the elemental compound includes not only potassium nitrate and potassium chloride, but also potassium oxide and potassium peroxide. The mass fraction of potassium in the formula of potassium oxide and potassium peroxide is much larger than that in the molecular formula of potassium chloride. Quality score.
  • the sodium element-containing compound in the salt bath F1 includes not only sodium nitrate and sodium chloride, but also sodium oxide and sodium peroxide, wherein the mass fraction of sodium in the molecular formula of sodium oxide and sodium peroxide is much larger than The mass fraction of sodium in the molecular formula of sodium chloride.
  • This example also conducted the test four using the raw material glass B.
  • the raw material glass B is subjected to the first ion exchange and ion successively in the same quality salt bath F1, salt bath F2, salt bath F3, salt bath F4, salt bath F5 and salt bath F6. After the migration, it was placed in a salt bath H for a second ion exchange. among them,
  • the first ion exchange conditions 420 ° C, 60 min;
  • composition of the salt bath H and the mass percentage of each component KNO 3 : 90%; KCl: 8%; K 2 O: 2%;
  • Test 4 differs from Test 3 in that the second ion exchange is not a pure potassium nitrate bath, but a mixed salt containing 90% KNO 3 , 8% KCl and 2% K 2 O. Bath H.
  • the type of salt bath used for the first ion exchange was the same, the CS and CT_TP of the tempered glass obtained in Test 4 were greatly increased with respect to the tempered glass obtained in Test 4.
  • the mass fraction of the potassium element added with KCl is greater than that in the first ion exchange or the second ion exchange.
  • the mass fraction of sodium compounds such as potassium compounds or NaCl is greater than
  • the mixed nitrate salt bath can better strengthen the raw material glass B with respect to an equal mass of pure nitrate (sodium nitrate or potassium nitrate) salt bath.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Compositions (AREA)

Abstract

一种用于玻璃强化的盐浴,包括硝酸盐和金属化合物;硝酸盐的质量分数不低于50%,且呈熔融态;金属化合物熔于硝酸盐,金属化合物与硝酸盐包含有相同的金属元素;金属元素在金属化合物对应的分子式中的质量分数大于在硝酸盐对应的分子式中的质量分数。由此,与现有的盐浴相比,在同等质量的条件下,该盐浴可提供的有效金属离子数量更多,从而提高玻璃强化后的强度,同时也提高了盐浴的寿命,减少了资源浪费和环境污染。

Description

用于玻璃强化的盐浴及其制备方法、强化玻璃和原料玻璃 技术领域
本发明涉及玻璃化学强化领域,具体涉及用于玻璃化学强化的盐浴及其制备方法、强化玻璃和原料玻璃。
背景技术
目前厚度小于2mm的超薄玻璃以及对强度要求超高的玻璃,在强化时均需要采用离子交换法化学强化来实现,将玻璃置于离子交换盐浴中,使用盐浴中较大的离子来置换玻璃中较小的离子,一般参与交换的离子是碱金属离子。
离子交换所需的盐浴受到玻璃离子交换温度限制的要求,一般温度为380-450摄氏度,因此盐浴中可以采用的化合物盐的限制较多,通常采用熔点较低的碱金属硝酸盐。当确定某种硝酸盐之后,在同质量下,其可以参与离子交换的有效金属离子数量也确定了,换句话说,盐浴中有效金属离子数量被采用某种盐所确定。
化学强化玻璃在离子交换时能够产生的压应力由盐浴中有效的金属离子绝对数量所决定,一般来说有效金属离子数量越多玻璃表面可以被制造的压应力越高,玻璃强度也越高。但是,所有的盐浴都无一例外的只能采用硝酸盐,硝酸盐能够提供的有效金属离子能力成为了强化玻璃强度的天花板。现有的一些文献中也提到了在盐浴中添加“添加剂”,但大部分“添加剂”是不能溶于或熔于硝酸盐盐浴的,换句话说这些“添加剂”不能在硝酸盐盐浴中有效的离子化并参与玻璃的离子交换,充其量只能起到物理或化学吸附盐浴中的某些成 份,破坏或保护玻璃结构的作用;因此有必要对盐浴进行研究和优化,进一步提高盐浴提供有效金属离子的能力,从而提高玻璃强化后的强度。同时,有效金属离子数量的提高,也相当于提高了盐浴的寿命,从而减少了浪费和污染。
为此,有必要设计一种新的用于玻璃强化的盐浴,以克服上述问题。
发明内容
本发明要解决的技术问题在于,针对现有的用于强化玻璃的离子交换盐浴可提供的有效金属离子能力受硝酸盐种类限制而难以提高的问题,提供一种新的用于玻璃强化的盐浴,其可进一步提高盐浴提供有效金属离子的能力,从而提高玻璃强化后的强度。
本发明解决其问题所采用的技术方案是:
一方面,提供一种用于玻璃强化的盐浴,包括硝酸盐和金属化合物;所述硝酸盐的质量分数不低于50%,且呈熔融态;所述金属化合物熔于所述硝酸盐,所述金属化合物与所述硝酸盐包含有相同的金属元素;所述金属元素在所述金属化合物对应的分子式中的质量分数大于在所述硝酸盐对应的分子式中的质量分数。
本发明提供的用于玻璃强化的盐浴中,包括多种硝酸盐和多种金属化合物,多种所述硝酸盐包含的金属元素的种类与多种所述金属化合物金属元素的种类相同,对于同一种金属元素,其在所述金属化合物对应的分子式中的质量分数大于在所述硝酸盐对应的分子式中的质量分数。
本发明提供的用于玻璃强化的盐浴中,所述金属化合物选自金属氯化物、金属过氧化物、金属氧化物、金属磷酸盐、金属碳酸盐、金属碳酸氢盐、金属硅酸盐、金属氢氧化物中的至少一种。
本发明提供的用于玻璃强化的盐浴中,所述金属氯化物、金属过氧化物、金属氧化物、金属磷酸盐、金属碳酸盐、金属碳酸氢盐或金属硅酸盐的质量分数大于0.1%且小于30%。
本发明提供的用于玻璃强化的盐浴中,所述金属氢氧化物的质量分数大于0.1%且小于10%。
本发明提供的用于玻璃强化的盐浴中,所述金属元素选自元素周期表中的第一主族元素和第二主族元素。
本发明提供的用于玻璃强化的盐浴中,其特征在于,还包括不熔于所述硝酸盐的添加剂。
相应的,还提供了一种制备如上所述的盐浴的方法,包括如下步骤:
添加固态的硝酸盐至容器中;
加热所述容器至所述硝酸盐完全熔融;
加入金属化合物至所述硝酸盐中,其中,添加的所述金属化合物与所述硝酸盐包含有相同的金属元素,且所述金属元素在所述金属化合物对应的分子式中的质量分数大于在所述硝酸盐对应的分子式中的质量分数,而且添加的所述金属化合物的质量小于或等于所述硝酸盐的质量;
加热所述容器并搅拌所述硝酸盐至所述金属化合物完全熔于所述硝酸盐以得到所需的盐浴。
相应的,还提供了另外一种制备如上所述的盐浴的方法,包括如下步骤:
称取固态的硝酸盐和固态的金属化合物并将二者均匀混合以得到混合盐,其中,所述金属化合物与所述硝酸盐包含有相同的金属元素,且所述金属元素在所述金属化合物对应的分子式中的质量分数大于在所述硝酸盐对应的分子式中的质量分数,而且所述金属化合物的质量小于或等于所述硝酸盐的质量;
将所述混合盐加入容器中;
加热所述容器至所述混盐完全熔融以得到所需的盐浴。
另一方面,还提供了一种强化玻璃,所述强化玻璃由待强化玻璃在上述盐浴中进行一次或多次离子交换后制得。
本发明提供的强化玻璃中,当所述强化玻璃总的离子交换深度DOL大于30μm时,所述强化玻璃的表面压应力CS大于750Mpa。
本发明提供的强化玻璃中,所述强化玻璃由待强化玻璃在上述盐浴中进行多次离子交换后制得,且所述强化玻璃的应力拟合曲线拐点处的压应力CS_TP大于90Mpa。
本发明提供的强化玻璃中,所述强化玻璃的应力拟合曲线拐点处的表面压应力CS_TP大于100Mpa。
相应的,还提供了一种原料玻璃,所述原料玻璃在如上所述的盐浴中进行一次或多次离子交换后可转变成如上所述的强化玻璃。
本发明提供的原料玻璃中,包含碱金属氧化物、第三主族元素的氧化物和第四主族元素的氧化物,还包括碱土金属氧化物和第五主族元素的氧化物中的至少一种,其中,
所述碱金属氧化物的摩尔百分数为10~25%,所述碱金属氧化物包括氧化锂、氧化钠、氧化钾和氧化铷中的至少一种。
本发明提供的原料玻璃中,包括所述碱土金属氧化物,且所述碱土金属氧化物的摩尔百分数小于10%。
本发明提供的原料玻璃中,所述碱金属氧化物包括氧化钠或氧化锂中的一种,其中,氧化钠或氧化锂的摩尔百分数小于22%。
本发明提供的原料玻璃中,所述碱金属氧化物包括氧化钠和氧化锂,其中, 氧化钠与氧化锂的摩尔百分数之和小于22%。
本发明提供的原料玻璃中,所述碱金属氧化物包括氧化钾,其中,氧化钾的摩尔百分数与所述碱金属氧化物的摩尔百分数的比值小于0.25。
本发明提供的原料玻璃中,所述碱土金属氧化物包括氧化镁,且氧化镁的摩尔百分数与所述碱土金属氧化物的摩尔百分数的比值为0.3~1。
本发明提供的原料玻璃中,包括所述第五主族元素的氧化物,所述第三主族元素的氧化物包括氧化铝和氧化硼,所述第四主族元素的氧化物包括氧化硅,所述第五主族元素的氧化物包括氧化磷和氧化铋,其中,氧化硅、氧化铝、氧化硼、氧化镁、氧化磷和氧化铋的摩尔百分数之和与所述碱金属氧化物的摩尔百分数的比值为3~7。
本发明提供的原料玻璃中,所述第三主族元素的氧化物包括氧化铝,所述第四主族元素的氧化物包括氧化硅,且氧化硅和氧化铝的摩尔百分数之和与所述碱金属氧化物的摩尔百分数的比值为3~6.5。
本发明提供的原料玻璃中,所述原料玻璃包含所述第五主族元素的氧化物,所述第三主族元素的氧化物、所述第四主族元素的氧化物和所述第五主族元素的氧化物的摩尔百分数之和与所述碱金属氧化物的摩尔百分数的比值大于3.1且小于6.8。
本发明提供的原料玻璃中,所述原料玻璃不包含所述第五主族元素的氧化物,所述第三主族元素的氧化物和所述第四主族元素的氧化物的摩尔百分数之和与所述碱金属氧化物的摩尔百分数的比值大于3.1且小于6.8。
本发明提供的原料玻璃中,所述原料玻璃还包含摩尔百分数小于等于3%的除所述碱金属氧化物、所述碱土金属氧化物、所述第三主族元素的氧化物、所述第四主族元素的氧化物以及所述第五主族元素的氧化物以外的组份。
本发明提供的原料玻璃中,以摩尔百分比计,所述原料玻璃含有:
Na 2O:4~22%;
MgO:0~9.5%;
Al 2O 3:5.5~18.5%;
SiO 2:52~75%;
K 2O:0~7%;
CaO:0~1.5%;
SnO 2:0~1.5%;
Sb 2O 3:0~0.5%;
B 2O 3:0~7%;
P 2O 5:0~8.5%;
ZnO:0~2%;
Li 2O:0~22%;
ZrO 2:0~3%;
Fe 2O 3:0~0.5%;
SrO:0~0.5%;
BaO:0~0.5%;
Bi 2O 3:0~1.5%;
TiO 2:0~3%。
实施本发明提供的用于玻璃强化的盐浴,具有如下有益效果:所述用于玻璃强化的盐浴,包括硝酸盐和金属化合物;所述硝酸盐的质量分数不低于50%,且呈熔融态;所述金属化合物熔于所述硝酸盐,所述金属化合物与所述硝酸盐包含有相同的金属元素;所述金属元素在所述金属化合物对应的分子式中的质 量分数大于在所述硝酸盐对应的分子式中的质量分数。由此,与现有的盐浴相比,在同等质量的条件下,本发明提供的所述盐浴可提供的有效金属离子数量更多,从而提高玻璃强化后的强度,同时也提高了盐浴的寿命,减少了资源浪费和环境污染。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。
本发明提供的玻璃强化的盐浴包括硝酸盐和金属化合物。其中,所述硝酸盐呈熔融态,所述金属化合物熔于所述硝酸盐。另外,所述金属化合物与所述硝酸盐包含有相同的金属元素,且所述金属元素在所述金属化合物对应的分子式中的质量分数大于在所述硝酸盐对应的分子式中的质量分数。如此,一定质量的本发明提供的所述盐浴与同等质量的纯硝酸盐盐浴相比,其所包含的有效金属元素的含量更大。
例如,若所述硝酸盐选用NaNO 3,所述金属化合物中则必须选用包含有Na元素的金属化合物,另外,由于在NaNO 3中Na元素的质量分数为
Figure PCTCN2018074633-appb-000001
因此,所选用的所述金属化合物对应的分子式中的Na元素的质量分数必须大于
Figure PCTCN2018074633-appb-000002
按照以上描述,所述金属化合物可以是NaOH、NaCl、Na 3PO 4、Na 2CO 3、NaHCO 3、Na 2SiO 3、Na 2O或Na 2O 2中的一种或多种。
例如,若所述硝酸盐选用KNO 3,所述金属化合物中则必须选用包含有K 元素的金属化合物,另外,由于在KNO 3中K元素的质量分数为
Figure PCTCN2018074633-appb-000003
因此,所选用的所述金属化合物对应的分子式中的K元素的质量分数必须大于
Figure PCTCN2018074633-appb-000004
按照以上描述,所述金属化合物可以是KOH、KCl、K 3PO 4、K 2CO 3、KHCO 3、K 2SiO 3、K 2O或K 2O 2中的一种或多种。
进一步的,本发明提供的玻璃强化的盐浴可以包括多种硝酸盐。例如,所述盐浴的多种所述硝酸盐为KNO 3和NaNO 3时,相应的,所述金属化合物可以是NaOH、NaCl、Na 3PO 4、Na 2CO 3、NaHCO 3、Na 2SiO 3、Na 2O、Na 2O 2、KOH、KCl、K 3PO 4、K 2CO 3、KHCO 3、K 2SiO 3、K 2O或K 2O 2中的多种。
进一步的,所述金属化合物选自金属氯化物、金属过氧化物、金属氧化物、金属磷酸盐、金属碳酸盐、金属碳酸氢盐、金属硅酸盐、金属氢氧化物中的至少一种。当所述金属化合物选用金属氯化物、金属过氧化物、金属氧化物、金属磷酸盐、金属碳酸盐、金属碳酸氢盐或金属硅酸盐时,其所占的质量分数优选为大于0.1%且小于30%,以此保证金属氯化物、金属过氧化物、金属氧化物、金属磷酸盐、金属碳酸盐、金属碳酸氢盐或金属硅酸盐能够完全的熔于对应的硝酸盐中,以提供更多的有效金属离子。当所述金属化合物选用金属氢氧化物时,其所占的质量分数优选为大于0.1%且小于10%,以此保证金属氢氧化物能够完全的熔于对应的硝酸盐中,以提供更多的有效金属离子。
进一步的,所述金属元素选自元素周期表中的第一主族金属元素,例如,Li、Na、K、Rb、Cs等,所述金属元素还可以选自第二主族元素,例如,Be、Mg、Ca、Sr、Ba等。
进一步的,所述盐浴还包括不熔于所述硝酸盐的添加剂,例如,深圳市力沣实业有限公司生产的钾宝 TM离子筛陶瓷、硅藻土、氧化铝、焦锑酸盐等,不熔于盐浴的添加剂以物理和化学反应的方式,吸附玻璃在盐浴中离子交换释 放出的小离子,减少这些小离子对正常的离子交换反应的干扰,以加大盐浴中大离子交换小离子单方向离子交换的反应速率,在盐浴中固有的有效离子范围内延长所述盐浴的使用寿命或提高所述盐浴的强化能力,但并不能提高盐浴中有效离子的绝对数量,也不能对盐浴和离子交换产生本质的变化。
本发明提供一种制备上述盐浴的方法,包括如下步骤:添加固态的硝酸盐至容器中;加热所述容器至所述硝酸盐完全熔融;加入金属化合物至所述硝酸盐中,其中,添加的所述金属化合物与所述硝酸盐包含有相同的金属元素,且所述金属元素在所述金属化合物对应的分子式中的质量分数大于在所述硝酸盐对应的分子式中的质量分数,而且添加的所述金属化合物的质量小于或等于所述硝酸盐的质量;加热所述容器并搅拌所述硝酸盐至所述金属化合物完全熔于所述硝酸盐以得到所需的盐浴。
本发明提供了另外一种制备上述盐浴的方法,包括如下步骤:称取固态的硝酸盐和固态的金属化合物并将二者均匀混合以得到混合盐,其中,所述金属化合物与所述硝酸盐包含有相同的金属元素,且所述金属元素在所述金属化合物对应的分子式中的质量分数大于在所述硝酸盐对应的分子式中的质量分数,而且所述金属化合物的质量小于或等于所述硝酸盐的质量;将所述混合盐加入容器中;加热所述容器至所述混盐完全熔融以得到所需的盐浴。
本发明提供一种强化玻璃,所述强化玻璃由待强化玻璃在上述的盐浴中进行一次或多次离子交换后制得。
进一步的,当所述强化玻璃总的离子交换深度DOL大于30μm时,所述强化玻璃的表面压应力CS大于750Mpa,优选的,所述强化玻璃的表面压应力CS大于800Mpa。
进一步的,所述强化玻璃是待强化玻璃在上述盐浴中进行多次离子交换后 制得,且所述强化玻璃的应力拟合曲线拐点处的压应力CS_TP大于90Mpa,优选的,所述强化玻璃的应力拟合曲线拐点处的压应力CS_TP大于100Mpa。
本发明一种原料玻璃,所述原料玻璃特别适用于上述盐浴,即在相同的条件下,所述原料玻璃与其他玻璃相比,其在上述盐浴中进行一次或多次离子交换后所的到的玻璃具有更优越的特性,而且所述原料玻璃在上述盐浴中进行一次或多次离子交换后恰好可转变成上述强化玻璃。
进一步的,所述原料玻璃包含碱金属氧化物、第三主族元素的氧化物和第四主族元素的氧化物,还包括碱土金属氧化物和第五主族元素的氧化物中的至少一种,其中,所述碱金属氧化物的摩尔百分数为10~25%,所述碱金属氧化物包括氧化锂、氧化钠、氧化钾和氧化铷中的至少一种。且当所述原料玻璃包括所述碱土金属氧化物时,所述碱土金属氧化物的摩尔百分数小于10%。
进一步的,当所述碱金属氧化物包括氧化钠而不包括氧化锂时,氧化钠的摩尔百分数小于22%。当所述碱金属氧化物包括氧化锂而不包括氧化钠时,氧化锂的摩尔百分数小于22%。当所述碱金属氧化物同时包括氧化钠和氧化锂时,氧化钠与氧化锂的摩尔百分数之和小于22%。
进一步的,当所述碱金属氧化物包括氧化钾时,氧化钾的摩尔百分数配置为与所述碱金属氧化物的摩尔百分数的比值小于0.25。
进一步的,当所述原料玻璃包含碱土金属氧化物,且当所述碱土金属氧化物包括氧化镁时,氧化镁的摩尔百分数配置为与所述碱土金属氧化物的摩尔百分数的比值为0.3~1。
进一步的,当所述原料玻璃包含所述第五主族元素的氧化物,且当所述第三主族元素的氧化物包括氧化铝和氧化硼,所述第四主族元素的氧化物包括氧化硅,所述第五主族元素的氧化物包括氧化磷和氧化铋时,氧化硅、氧化铝、 氧化硼、氧化镁、氧化磷和氧化铋的摩尔百分数之和与所述碱金属氧化物的摩尔百分数的比值为3~7。
进一步的,当所述第三主族元素的氧化物包括氧化铝,所述第四主族元素的氧化物包括氧化硅时,氧化硅和氧化铝的摩尔百分数之和与所述碱金属氧化物的摩尔百分数的比值为3~6.5。
进一步的,当所述原料玻璃包含所述第五主族元素的氧化物时,所述第三主族元素的氧化物、所述第四主族元素的氧化物和所述第五主族元素的氧化物的摩尔百分数之和与所述碱金属氧化物的摩尔百分数的比值大于3.1且小于6.8。
进一步的,当所述原料玻璃不包含所述第五主族元素的氧化物时,所述第三主族元素的氧化物和所述第四主族元素的氧化物的摩尔百分数之和与所述碱金属氧化物的摩尔百分数的比值大于3.1且小于6.8。
进一步的,所述原料玻璃还包含摩尔百分数小于等于3%的除所述碱金属氧化物、所述碱土金属氧化物、所述第三主族元素的氧化物、所述第四主族元素的氧化物以及所述第五主族元素的氧化物以外的组份。
进一步的,以摩尔百分比计,所述原料玻璃含有:
Na 2O:4~22%;
MgO:0~9.5%;
Al 2O 3:5.5~18.5%;
SiO 2:52~75%;
K 2O:0~7%;
CaO:0~1.5%;
SnO 2:0~1.5%;
Sb 2O 3:0~0.5%;
B 2O 3:0~7%;
P 2O 5:0~8.5%;
ZnO:0~2%;
Li 2O:0~22%;
ZrO 2:0~3%;
Fe 2O 3:0~0.5%;
SrO:0~0.5%;
BaO:0~0.5%;
Bi 2O 3:0~1.5%;
TiO2:0~3%。
以下举例列出几种所述原料玻璃的组分及各组分的含量:
Figure PCTCN2018074633-appb-000005
Figure PCTCN2018074633-appb-000006
发明人发现,与其他玻璃相比,以上列出的7种所述原料玻璃在本发明提供的盐浴中进行一次或多次离子交换后所得到的玻璃具有更优越的特性。当然,本发明提供的所述原料玻璃不限于以上列出的7种。
下面的实施例将对本发明做进一步说明。
实施例一
本实施例提供了用于玻璃强化的盐浴A、盐浴B和盐浴C,其中,盐浴A、盐浴B和盐浴C的组份及各组份含量如下表1-1所示,为了进行比较,表1还给出了现有技术中常用的盐浴D的组份及各组份含量。
表1-1:本实施例中盐浴A、盐浴B、盐浴C和盐浴D的组份及各组份的质量分数(%)
Figure PCTCN2018074633-appb-000007
盐浴A的制备方法为:首先按质量份数计,称取89份KNO 3固体和11份KCl固体,将称取好的KNO 3固体转移至导热性好且耐高温的容器中,加热所述容器直到所述容器中的KNO 3固体完全转变为熔融态,再将称取好的KCl固体转移至所述容器中,继续加热所述容器,并搅拌所述容器中的熔融态的KNO 3,直到加入的KCl固体完全熔于熔融态的KNO 3,至此得到所述盐浴A。
当然,在其他实施例中,还可以通过如下方法制得所述盐浴A:首先按质量份数计,称取89份KNO 3固体和11份KCl固体,将称取好的KNO 3固体和KCl固体混合均匀后同时转移至导热性好且耐高温的容器中,加热所述容器直到所述容器中的KNO 3固体和KCl固体完全转变为熔融态,至此得到所述盐浴A。
盐浴B的制备方法为:首先按质量份数计,称取86.7份KNO 3固体、9.1份KCl固体、1.9份K 2O固体和2.3份K 2O 2固体,将称取好的KNO 3固体转移至导热性好且耐高温的容器中,加热所述容器直到所述容器中的KNO 3固体完全转变为熔融态,再将称取好的KCl固体、K 2O固体和K 2O 2固体一同转移至所述容器中,继续加热所述容器,并搅拌所述容器中的熔融态的KNO 3,直到加入的KCl固体、K 2O固体和K 2O 2固体完全熔于熔融态的KNO 3,至此得到所述盐浴A。
当然,在其他实施例中,还可以通过如下方法制得所述盐浴B:首先按质量份数计,称取86.7份KNO 3固体、9.1份KCl固体、1.9份K 2O固体和2.3 份K 2O 2固体,将称取好的KNO 3固体、KCl固体、K 2O固体和K 2O 2固体混合均匀后同时转移至导热性好且耐高温的容器中,加热所述容器直到所述容器中的KNO 3固体、KCl固体、K 2O固体和K 2O 2固体完全转变为熔融态,至此得到所述盐浴B。
盐浴C的制备方法为:首先按质量份数计,称取87.5份KNO 3固体、3.8份KCl固体、3.8份K 2O固体、4.4份K 2O 2固体和0.6份KOH固体,将称取好的KNO 3固体转移至导热性好且耐高温的容器中,加热所述容器直到所述容器中的KNO 3固体完全转变为熔融态,再将称取好的KCl固体、K 2O固体、K 2O 2固体和KOH固体一同转移至所述容器中,继续加热所述容器,并搅拌所述容器中的熔融态的KNO 3,直到加入的KCl固体、K 2O固体、K 2O 2固体和KOH固体完全熔于熔融态的KNO 3,至此得到所述盐浴A。
当然,在其他实施例中,还可以通过如下方法制得所述盐浴C:首先按质量份数计,称取87.5份KNO 3固体、3.8份KCl固体、3.8份K 2O固体、4.4份K 2O 2固体和0.6份KOH固体,将称取好的KNO 3固体、KCl固体、K 2O固体、K 2O 2固体和KOH固体混合均匀后同时转移至导热性好且耐高温的容器中,加热所述容器直到所述容器中的KNO 3固体、KCl固体、K 2O固体、K 2O 2固体和KOH固体完全转变为熔融态,至此得到所述盐浴C。
盐浴D的制备方法为:首先按质量份数计,称取100份KNO 3固体,将称取好的KNO 3固体转移至导热性好且耐高温的容器中,加热所述容器直到所述容器中的KNO 3固体完全转变为熔融态,至此得到所述盐浴D。
本实施例还提供了一种原料玻璃A,所述原料玻璃A的厚度为0.65mm,其包含的组分及各组分的含量如表1-2所示。
表1-2:原料玻璃A的成份表
成分 质量分数 分子量 摩尔数 摩尔分数
SiO 2 62.00% 60.08 103.19 67.19%
Al 2O 3 17.00% 101.96 16.67 10.86%
B 2O 3 4.20% 69.62 6.03 3.93%
MgO 3.00% 40.30 7.44 4.85%
Na 2O 10.50% 61.98 16.94 11.03%
K 2O 2.00% 94.20 2.12 1.38%
TiO 2 0.40% 79.87 0.50 0.33%
ZrO 2 0.60% 123.22 0.49 0.32%
SnO 2 0.30% 150.60 0.20 0.13%
总计 100.00% 781.82 153.59 100.00%
本实施例还将所述原料玻璃A分别在同等质量的所述盐浴A、所述盐浴B、所述盐浴C和所述盐浴D中进行了单次离子交换处理。并且均采用日本折原制作所FSM6000表面应力仪测量了所述原料玻璃A分别在所述盐浴A、所述盐浴B、所述盐浴C和所述盐浴D中的不同的温度和时间条件下进行单次离子交换处理后得到的强化玻璃的表面压应力CS和离子交换深度DOL,检测结果如表1-3所示。
表1-3:原料玻璃A在不同盐浴中不同温度和时间条件下经单次离子交换处理后得到的强化玻璃的表面压应力CS和离子交换深度DOL
Figure PCTCN2018074633-appb-000008
由表1-3可知,在盐浴温度和离子交换时间相同的情况下,所述原料玻璃 A在所述盐浴D中经单次离子交换处理后得到的强化玻璃的表面压应力CS值和离子交换深度DOL值远小于其分别在所述盐浴A、所述盐浴B和所述盐浴C中经单次离子交换处理后得到的强化玻璃的表面压应力CS值和离子交换深度DOL值。由此证明,相对于等质量的纯硝酸钾盐浴,添加有KCl、K 2O、K 2O 2或KOH这类钾元素的质量分数大于
Figure PCTCN2018074633-appb-000009
的钾化合物的混合型硝酸盐盐浴对所述原料玻璃A能起到更好的强化作用。
另外,表1-3中的测量数据显示,在盐浴温度和离子交换时间相同的情况下,所述原料玻璃A分别在所述盐浴A、所述盐浴B和所述盐浴C中经单次离子交换处理后得到的强化玻璃的表面压应力CS值和离子交换深度DOL值均呈递增的趋势,也就是说,同等质量所述盐浴A、所述盐浴B和所述盐浴C对所述原料玻璃A的强化能力由强到弱排列为:盐浴C>盐浴B>盐浴A。由此证明,对于同等质量的混合型硝酸盐盐浴,所述混合型硝酸盐盐浴中的这类钾元素的质量分数大于
Figure PCTCN2018074633-appb-000010
的钾化合物所占的质量比越大,所述混合型硝酸盐盐浴对所述原料玻璃A的强化能力则越强。
值得一提的是,所述原料玻璃A分别在所述盐浴A、所述盐浴B和所述盐浴C中经单次离子交换处理后得到的强化玻璃的离子交换深度DOL大于30μm时,对应的表面压应力CS值均可超过800Mpa。由此,进一步说明了添加有KCl、K 2O、K 2O 2或KOH这类钾元素的质量分数大于
Figure PCTCN2018074633-appb-000011
的钾化合物的混合型硝酸盐盐浴相对于等质量的纯硝酸钾盐浴的优越性。
实施例二
本实施例提供了用于玻璃强化的盐浴E1、盐浴E2、盐浴E3、盐浴E4、盐浴E5、盐浴E6、盐浴F1、盐浴F2、盐浴F3、盐浴F4、盐浴F5和盐浴F6, 其中,各类盐浴的组份及各组份含量如下表2-1所示,为了进行比较,表1还给出了现有技术中常用的盐浴G1、盐浴G2、盐浴G3、盐浴G4、盐浴G5和盐浴G6的组份及各组份含量。
表2-1:本实施例中盐浴E1、盐浴E2、盐浴E3、盐浴E4、盐浴E5、盐浴E6、盐浴F1、盐浴F2、盐浴F3、盐浴F4、盐浴F5、盐浴F6、盐浴G1、盐浴G2、盐浴G3、盐浴G4、盐浴G5和盐浴G6的组份及各组份的质量分数(%)
Figure PCTCN2018074633-appb-000012
本实施例中盐浴E1、盐浴E2、盐浴E3、盐浴E4、盐浴E5、盐浴E6、盐浴F1、盐浴F2、盐浴F3、盐浴F4、盐浴F5、盐浴F6、盐浴G1、盐浴G2、盐浴G3、盐浴G4、盐浴G5和盐浴G6的制备方法可参照实施例一种的相关内容,在此不再赘述。
本实施例还提供了一种原料玻璃B,所述原料玻璃B的厚度为0.65mm,其包含的组分及各组分的含量如表2-2所示。
表2-2:原料玻璃B的成份表
Figure PCTCN2018074633-appb-000013
Figure PCTCN2018074633-appb-000014
本实施例还利用所述原料玻璃B进行了试验一。
试验一的过程为:将所述原料玻璃B分别在同等质量的盐浴G1、盐浴G2、盐浴G3、盐浴G4、盐浴G5和盐浴G6中先后进行第一次离子交换和离子迁移后,再置于纯硝酸钾盐浴中进行第二次离子交换。其中,
第一次离子交换的条件:420℃,60min;
离子迁移的条件:380℃,空气中加热15min;
第二次离子交换的条件:370℃,25min。
最后,采用日本折原制作所SLP(Scattered light photoelasticity,散射光弹性法)系统测量第一次离子交换数据,采用FSM6000表面应力仪测量第二次离子交换数据,并合成最终所有测量数据如表2-3所示。
表2-3:试验一的测量数据
Figure PCTCN2018074633-appb-000015
指标解释:
CS:表面压应力;
CS_TP:应力拟合曲线拐点处压应力;
DOL_TP:应力拟合曲线拐点处离子交换深度;
DOL_0:压应力为0处的离子交换深度。
本实施例还利用所述原料玻璃B进行了试验二。
试验二的过程为:将所述原料玻璃B分别在同等质量的盐浴E1、盐浴E2、盐浴E3、盐浴E4、盐浴E5和盐浴E6中先后进行第一次离子交换和离子迁移后,再置于纯硝酸钾盐浴中进行第二次离子交换。其中,
第一次离子交换的条件:420℃,60min;
离子迁移的条件:380℃,空气中加热15min;
第二次离子交换的条件:370℃,25min。
最后,采用日本折原制作所SLP系统测量第一次离子交换数据,采用FSM6000表面应力仪测量第二次离子交换数据,并合成最终所有测量数据如表2-4所示。
表2-4:试验二的测量数据
Figure PCTCN2018074633-appb-000016
对比试验二与试验一:
首先,由表2-1可知,盐浴G1为纯硝酸盐(硝酸钠+硝酸钾)盐浴,盐浴E1中含有钾元素的化合物的质量分数的和为55.56%,与盐浴G1中的硝酸钾的质量分数大致相同,盐浴E1中含有钠元素的化合物的质量分数的和为45.45%,相应的,也与盐浴G1中的硝酸钠的质量分数大致相同,不同的是,盐浴E1中的含有钾元素的化合物不仅仅包括硝酸钾,还包括氯化钾,其中, 氯化钾的分子式中的钾元素的质量分数远大于硝酸钾的分子式中的钾元素的质量分数。另外,盐浴E1中的含有钠元素的化合物不仅仅包括硝酸钠,还包括氯化钠,其中,氯化钠的分子式中的钠元素的质量分数远大于硝酸钠的分子式中的钠元素的质量分数。
其次,对比表2-4和表2-3中的测量数据可以发现,所述原料玻璃B第一离子交换使用的盐浴由G1跟换为E1后,最终所得到的强化玻璃的CS_TP有明显增长,从110.47增长至117.4。
由此证明,相对于等质量的纯硝酸盐(硝酸钠+硝酸钾)盐浴,添加有KCl这类钾元素的质量分数大于
Figure PCTCN2018074633-appb-000017
的钾化合物和NaCl这类钠元素的质量分数大于
Figure PCTCN2018074633-appb-000018
的混合型硝酸盐盐浴对所述原料玻璃B能起到更好的强化作用。
同样的,对比表2-4和表2-3中的测量数据可以发现,所述原料玻璃B第一离子交换使用的盐浴分别由G2跟换为E2、G3跟换为E3、G4跟换为E4、G5跟换为E5、G6跟换为E6后最终所得到的强化玻璃的CS_TP都有明显增长,分别从115.74增长至123、从120.16增长至127.7、从131.17增长至139.4、从133.99增长至142.4、从141.43增长至166.5。同样也可以佐证上述结论。
本实施例还利用所述原料玻璃B进行了试验三。
试验三的过程为:将所述原料玻璃B分别在同等质量的盐浴F1、盐浴F2、盐浴F3、盐浴F4、盐浴F5和盐浴F6中先后进行第一次离子交换和离子迁移后,再置于纯硝酸钾盐浴中进行第二次离子交换。其中,
第一次离子交换的条件:420℃,60min;
离子迁移的条件:380℃,空气中加热15min;
第二次离子交换的条件:370℃,25min。
最后,采用日本折原制作所SLP系统测量第一次离子交换数据,采用 FSM6000表面应力仪测量第二次离子交换数据,并合成最终所有测量数据如表2-5所示。
表2-5:试验三的测量数据
Figure PCTCN2018074633-appb-000019
对比试验三与试验二:
首先,由表2-1可知,盐浴F1与盐浴E1中硝酸钾的含量和硝酸钠的含量相同,且同样包含氯化钠和氯化钾,不同的是,盐浴F1中的含有钾元素的化合物不仅仅包括硝酸钾和氯化钾,还包括氧化钾和过氧化钾,其中,氧化钾和过氧化钾的分子式中的钾元素的质量分数远大于氯化钾的分子式中的钾元素的质量分数。另外,盐浴F1中的含有钠元素的化合物不仅仅包括硝酸钠和氯化钠,还包括氧化钠和过氧化钠,其中,氧化钠和过氧化钠的分子式中的钠元素的质量分数远大于氯化钠的分子式中的钠元素的质量分数。
其次,对比表2-5和表2-4中的测量数据可以发现,所述原料玻璃B第一离子交换使用的盐浴由E1跟换为F1后,最终所得到的强化玻璃的CS_TP有明显增长,从117.4增长至130.43。
由此证明,在的纯硝酸盐(硝酸钠+硝酸钾)盐浴中添加等量的钾化合物和氯化合物的情况下,所添加的钾化合物对应的分子式中的钾元素的质量分数越大对盐浴的强化能力的提升更大,同样,所添加的氯化合物对应的分子式中的氯元素的质量分数越大对盐浴的强化能力的提升也更大。
同样的,对比表2-5和表2-4中的测量数据可以发现,所述原料玻璃B第 一离子交换使用的盐浴分别由E2跟换为F2、E3跟换为F3、E4跟换为F4、E5跟换为F6、E6跟换为F6后最终所得到的强化玻璃的CS_TP都有明显增长,分别从136.80增长至123、从127.7增长至141.73、从139.4增长至154.71、从142.4增长至157.43、从166.5增长至184.05。同样也可以佐证上述结论。
本实施例还利用所述原料玻璃B进行了试验四。
试验四的过程为:将所述原料玻璃B分别在同等质量的盐浴F1、盐浴F2、盐浴F3、盐浴F4、盐浴F5和盐浴F6中先后进行第一次离子交换和离子迁移后,再置于盐浴H中进行第二次离子交换。其中,
第一次离子交换的条件:420℃,60min;
离子迁移的条件:380℃,空气中加热15min;
盐浴H的组份及各组分的质量百分数:KNO 3:90%;KCl:8%;K 2O:2%;
第二次离子交换的条件:370℃,25min。
最后,采用日本折原制作所SLP系统测量第一次离子交换数据,采用FSM6000表面应力仪测量第二次离子交换数据,并合成最终所有测量数据如表2-6所示。
表2-6:试验四的测量数据
Figure PCTCN2018074633-appb-000020
对比试验四与试验三:
试验四与试验三的不同之处在于,第二次离子交换时采用的不是纯硝酸钾盐浴,而是含有90%的KNO 3、8%的KCl和2%的K 2O的混合型盐浴H。当第一离子交换采用的盐浴种类相同的情况下时,试验四所得到的强化玻璃的CS和CT_TP相对于试验四所得到的强化玻璃都得到了较大的增长。
由此证明,在对所述原料玻璃B进行多次离子交换处理时,不论是在第一次离子交换中还是在第二次离子交换中采用添加有KCl这类钾元素的质量分数大于
Figure PCTCN2018074633-appb-000021
的钾化合物或NaCl这类钠元素的质量分数大于
Figure PCTCN2018074633-appb-000022
的混合型硝酸盐盐浴,相对于等质量的纯硝酸盐(硝酸钠或硝酸钾)盐浴,都能对所述原料玻璃B能起到更好的强化作用。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (26)

  1. 一种用于玻璃强化的盐浴,其特征在于,包括硝酸盐和金属化合物;所述硝酸盐的质量分数不低于50%,且呈熔融态;所述金属化合物熔于所述硝酸盐,所述金属化合物与所述硝酸盐包含有相同的金属元素;所述金属元素在所述金属化合物对应的分子式中的质量分数大于在所述硝酸盐对应的分子式中的质量分数。
  2. 根据权利要求1所述的用于玻璃强化的盐浴,其特征在于,包括多种硝酸盐和多种金属化合物,多种所述硝酸盐包含的金属元素的种类与多种所述金属化合物金属元素的种类相同,对于同一种金属元素,其在所述金属化合物对应的分子式中的质量分数大于在所述硝酸盐对应的分子式中的质量分数。
  3. 根据权利要求1所述的用于玻璃强化的盐浴,其特征在于,所述金属化合物选自金属氯化物、金属过氧化物、金属氧化物、金属磷酸盐、金属碳酸盐、金属硅酸盐、金属氢氧化物中的至少一种。
  4. 根据权利要求3所述的用于玻璃强化的盐浴,其特征在于,所述金属氯化物、金属过氧化物、金属氧化物、金属磷酸盐、金属碳酸盐、金属碳酸氢盐或金属硅酸盐的质量分数大于0.1%且小于30%。
  5. 根据权利要求3所述的用于玻璃强化的盐浴,其特征在于,所述金属氢氧化物的质量分数大于0.1%且小于10%。
  6. 根据权利要求1所述的用于玻璃强化的盐浴,其特征在于,所述金属元素选自元素周期表中的第一主族元素和第二主族元素。
  7. 根据权利要求1-6中任意一项所述的用于玻璃强化的盐浴,其特征在于,还包括不熔于所述硝酸盐的添加剂。
  8. 一种制备如权利要求1-7中任意一项所述的盐浴的方法,其特征在于, 包括如下步骤:
    添加固态的硝酸盐至容器中;
    加热所述容器至所述硝酸盐完全熔融;
    加入金属化合物至所述硝酸盐中,其中,添加的所述金属化合物与所述硝酸盐包含有相同的金属元素,且所述金属元素在所述金属化合物对应的分子式中的质量分数大于在所述硝酸盐对应的分子式中的质量分数,而且添加的所述金属化合物的质量小于或等于所述硝酸盐的质量;
    加热所述容器并搅拌所述硝酸盐至所述金属化合物完全熔于所述硝酸盐以得到所需的盐浴。
  9. 一种制备如权利要求1-7中任意一项所述的盐浴的方法,其特征在于,包括如下步骤:
    称取固态的硝酸盐和固态的金属化合物并将二者均匀混合以得到混合盐,其中,所述金属化合物与所述硝酸盐包含有相同的金属元素,且所述金属元素在所述金属化合物对应的分子式中的质量分数大于在所述硝酸盐对应的分子式中的质量分数,而且所述金属化合物的质量小于或等于所述硝酸盐的质量;
    将所述混合盐加入容器中;
    加热所述容器至所述混盐完全熔融以得到所需的盐浴。
  10. 一种强化玻璃,其特征在于,所述强化玻璃由待强化玻璃在如权利要求1-7中任意一项所述的盐浴中进行单次或多次离子交换后制得。
  11. 根据权利要求10所述的强化玻璃,其特征在于,当所述强化玻璃总的离子交换深度DOL大于30μm时,所述强化玻璃的表面压应力CS大于750Mpa。
  12. 根据权利要求10所述的强化玻璃,其特征在于,所述强化玻璃由待 强化玻璃在如权利要求1-7中任意一项所述的盐浴中进行多次离子交换后制得,且所述强化玻璃的应力拟合曲线拐点处的压应力CS_TP大于90Mpa。
  13. 根据权利要求12所述的强化玻璃,其特征在于,所述强化玻璃的应力拟合曲线拐点处的表面压应力CS_TP大于100Mpa。
  14. 一种原料玻璃,其特征在于,所述原料玻璃在如权利要求1-7中任意一项所述的盐浴中进行一次或多次离子交换后可转变成如权利要求10-15中任意一项所述的强化玻璃。
  15. 根据权利要求14所述的原料玻璃,其特征在于,包含碱金属氧化物、第三主族元素的氧化物和第四主族元素的氧化物,还包括碱土金属氧化物和第五主族元素的氧化物中的至少一种,其中,
    所述碱金属氧化物的摩尔百分数为10~25%,所述碱金属氧化物包括氧化锂、氧化钠、氧化钾和氧化铷中的至少一种。
  16. 根据权利要求15所述的原料玻璃,其特征在于,包括所述碱土金属氧化物,且所述碱土金属氧化物的摩尔百分数小于10%。
  17. 根据权利要求15所述的原料玻璃,其特征在于,所述碱金属氧化物包括氧化钠或氧化锂中的一种,其中,氧化钠或氧化锂的摩尔百分数小于22%。
  18. 根据权利要求15所述的原料玻璃,其特征在于,所述碱金属氧化物包括氧化钠和氧化锂,其中,氧化钠与氧化锂的摩尔百分数之和小于22%。
  19. 根据权利要求15所述的原料玻璃,其特征在于,所述碱金属氧化物包括氧化钾,其中,氧化钾的摩尔百分数与所述碱金属氧化物的摩尔百分数的比值小于0.25。
  20. 根据权利要求15所述的原料玻璃,其特征在于,包括所述碱土金属氧化物,所述碱土金属氧化物包括氧化镁,且氧化镁的摩尔百分数与所述碱土 金属氧化物的摩尔百分数的比值为0.3~1。
  21. 根据权利要求15所述的原料玻璃,其特征在于,包括所述第五主族元素的氧化物,所述第三主族元素的氧化物包括氧化铝和氧化硼,所述第四主族元素的氧化物包括氧化硅,所述第五主族元素的氧化物包括氧化磷和氧化铋,其中,氧化硅、氧化铝、氧化硼、氧化镁、氧化磷和氧化铋的摩尔百分数之和与所述碱金属氧化物的摩尔百分数的比值为3~7。
  22. 根据权利要求15所述的原料玻璃,其特征在于,所述第三主族元素的氧化物包括氧化铝,所述第四主族元素的氧化物包括氧化硅,且氧化硅和氧化铝的摩尔百分数之和与所述碱金属氧化物的摩尔百分数的比值为3~6.5。
  23. 根据权利要求15所述的原料玻璃,其特征在于,所述原料玻璃包含所述第五主族元素的氧化物,所述第三主族元素的氧化物、所述第四主族元素的氧化物和所述第五主族元素的氧化物的摩尔百分数之和与所述碱金属氧化物的摩尔百分数的比值大于3.1且小于6.8。
  24. 根据权利要求15所述的原料玻璃,其特征在于,所述原料玻璃不包含所述第五主族元素的氧化物,所述第三主族元素的氧化物和所述第四主族元素的氧化物的摩尔百分数之和与所述碱金属氧化物的摩尔百分数的比值大于3.1且小于6.8。
  25. 根据权利要求15所述的原料玻璃,其特征在于,所述原料玻璃还包含摩尔百分数小于等于3%的除所述碱金属氧化物、所述碱土金属氧化物、所述第三主族元素的氧化物、所述第四主族元素的氧化物以及所述第五主族元素的氧化物以外的组份。
  26. 根据权利要求15所述的原料玻璃,其特征在于,以摩尔百分比计,所述原料玻璃含有:
    Na 2O:4~22%;
    MgO:0~9.5%;
    Al 2O 3:5.5~18.5%;
    SiO 2:52~75%;
    K 2O:0~7%;
    CaO:0~1.5%;
    SnO 2:0~1.5%;
    Sb 2O 3:0~0.5%;
    B 2O 3:0~7%;
    P 2O 5:0~8.5%;
    ZnO:0~2%;
    Li 2O:0~22%;
    ZrO 2:0~3%;
    Fe 2O 3:0~0.5%;
    SrO:0~0.5%;
    BaO:0~0.5%;
    Bi 2O 3:0~1.5%;
    TiO 2:0~3%。
PCT/CN2018/074633 2017-06-29 2018-01-31 用于玻璃强化的盐浴及其制备方法、强化玻璃和原料玻璃 WO2019000942A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/968,871 US11866364B2 (en) 2017-06-29 2018-01-31 Salt bath for glass reinforcement, preparation method therefor, reinforced glass and glass raw material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710515278.6 2017-06-29
CN201710515278.6A CN109206021B (zh) 2017-06-29 2017-06-29 用于玻璃强化的盐浴及其制备方法、强化玻璃和原料玻璃

Publications (1)

Publication Number Publication Date
WO2019000942A1 true WO2019000942A1 (zh) 2019-01-03

Family

ID=64742710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074633 WO2019000942A1 (zh) 2017-06-29 2018-01-31 用于玻璃强化的盐浴及其制备方法、强化玻璃和原料玻璃

Country Status (3)

Country Link
US (1) US11866364B2 (zh)
CN (1) CN109206021B (zh)
WO (1) WO2019000942A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4043413A4 (en) * 2019-10-10 2023-11-29 Qingyuan CSG New Energy-Saving Materials Co., Ltd LITHIUM ZIRCONIUM BASED ALUMINOSILICATE GLASS, REINFORCED GLASS, PRODUCTION METHOD THEREFOR AND DISPLAY DEVICE

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110156319A (zh) * 2019-04-26 2019-08-23 重庆鑫景特种玻璃有限公司 航空玻璃配方及制备方法
CN110590140A (zh) * 2019-09-11 2019-12-20 宿州市天艺钢化玻璃有限公司 一种钢化玻璃板的加工方法
CN112645608B (zh) * 2019-10-16 2023-05-30 重庆鑫景特种玻璃有限公司 无硅盐浴提纯添加剂材料及其使用方法
CN113716880A (zh) * 2020-05-25 2021-11-30 日本电气硝子株式会社 离子交换玻璃的制造方法、离子交换用混合物及离子交换玻璃制造装置
CN113200686A (zh) * 2021-05-10 2021-08-03 南通瑞景光电科技有限公司 光学元件的高温热处理方法
CN113480196A (zh) * 2021-07-30 2021-10-08 Oppo广东移动通信有限公司 用于玻璃强化的组合物及其制备方法和玻璃强化方法
CN115304289B (zh) * 2022-08-26 2023-07-04 成都光明光电股份有限公司 适用于含银盐浴的盐浴添加剂
CN116177902B (zh) * 2023-04-26 2023-08-01 秦皇岛星箭特种玻璃有限公司 一种柔性玻璃的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102092940A (zh) * 2009-12-11 2011-06-15 肖特公开股份有限公司 用于触摸屏的铝硅酸盐玻璃
CN103819079A (zh) * 2014-01-03 2014-05-28 河北省沙河玻璃技术研究院 一种低成本铝硅酸盐玻璃在线增强方法
CN105829257A (zh) * 2013-12-17 2016-08-03 肖特股份有限公司 可化学预应力的玻璃以及由其制造的玻璃件
CN105837036A (zh) * 2016-04-21 2016-08-10 东莞市银泰玻璃有限公司 一种超薄钢化玻璃及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3844754A (en) * 1966-02-23 1974-10-29 Owens Illinois Inc Process of ion exchange of glass
JPS51114414A (en) * 1975-04-02 1976-10-08 Yamamura Glass Co Ltd Method of chemically strengthening glass articles which have been treated to have hardwearing properties
CN101648776A (zh) * 2008-08-14 2010-02-17 比亚迪股份有限公司 一种提高玻璃强度的方法
CN102951850B (zh) * 2012-11-23 2015-04-29 浙江大学 一种具有耐磨薄膜的化学钢化玻璃制品的制备方法
CN104743866B (zh) * 2013-12-30 2018-06-26 深圳市力沣实业有限公司 一种化学强化盐浴添加剂及其制备方法
US10457586B2 (en) * 2017-10-17 2019-10-29 PGBC Intellectual Holdings, LLC Chemically-strengthened thin glass substrates with modified curvature and methods of manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102092940A (zh) * 2009-12-11 2011-06-15 肖特公开股份有限公司 用于触摸屏的铝硅酸盐玻璃
CN105829257A (zh) * 2013-12-17 2016-08-03 肖特股份有限公司 可化学预应力的玻璃以及由其制造的玻璃件
CN103819079A (zh) * 2014-01-03 2014-05-28 河北省沙河玻璃技术研究院 一种低成本铝硅酸盐玻璃在线增强方法
CN105837036A (zh) * 2016-04-21 2016-08-10 东莞市银泰玻璃有限公司 一种超薄钢化玻璃及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4043413A4 (en) * 2019-10-10 2023-11-29 Qingyuan CSG New Energy-Saving Materials Co., Ltd LITHIUM ZIRCONIUM BASED ALUMINOSILICATE GLASS, REINFORCED GLASS, PRODUCTION METHOD THEREFOR AND DISPLAY DEVICE

Also Published As

Publication number Publication date
US11866364B2 (en) 2024-01-09
US20210094871A1 (en) 2021-04-01
CN109206021B (zh) 2020-11-03
CN109206021A (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
WO2019000942A1 (zh) 用于玻璃强化的盐浴及其制备方法、强化玻璃和原料玻璃
TWI789464B (zh) 黑色矽酸鋰玻璃陶瓷
WO2018199046A1 (ja) 化学強化ガラスおよび化学強化用ガラス
JP6421950B2 (ja) 亀裂発生閾値が高いイオン交換可能なガラス
CA2745050C (en) Glass fiber composition
JP5764084B2 (ja) ガラス組成物、化学強化用ガラス組成物、強化ガラス物品、ディスプレイ用のカバーガラスおよび強化ガラス物品の製造方法
JP2015527970A (ja) 3D成形のためのイオン交換可能なLi含有ガラス組成物
TW201542488A (zh) 可化學性回火的玻璃片
JPWO2014122935A1 (ja) ガラス組成物、化学強化用ガラス組成物、強化ガラス物品、およびディスプレイ用カバーガラス
JPWO2019009069A1 (ja) ガラスボール
JP7514832B2 (ja) 黒色のベータ-スポジュメンケイ酸リチウムガラスセラミック
CN111747661B (zh) 化学强化玻璃的制造方法、熔融盐组合物以及熔融盐组合物的寿命延长方法
TW201604164A (zh) 玻璃及使用其之化學強化玻璃
JPS60180936A (ja) 高強度耐熱ガラス製品の製造方法
WO2020246274A1 (ja) ガラス、化学強化ガラスおよびその製造方法
WO2020218253A1 (ja) 溶融塩組成物の寿命延長方法、化学強化ガラスの製造方法、ガラス助剤、及びガラスの原材料
JP2005029465A (ja) 低ホウ素e−ガラス組成物
CN109320072B (zh) 一种高铝低钙可化学强化处理的玻璃
KR20200005493A (ko) 높은 내화학성 및 내균열성을 갖는 화학 강화 유리
JP2020007222A (ja) 化学強化ガラスの製造方法
TW202204278A (zh) 玻璃及化學強化玻璃
CN103833223A (zh) 航天用柔性基础玻璃组分
CN106517770B (zh) 一种玻璃组合物、玻璃基板及其化学强化方法
JP2001130923A (ja) 化学強化用Li吸収ガラス、及び該化学強化用Li吸収ガラスを用いた化学強化ガラスの製造方法
JP2012106897A (ja) 化学強化用ガラス組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18823640

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.08.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18823640

Country of ref document: EP

Kind code of ref document: A1