WO2019000752A1 - 一种舱储系统基础梁安装方法 - Google Patents

一种舱储系统基础梁安装方法 Download PDF

Info

Publication number
WO2019000752A1
WO2019000752A1 PCT/CN2017/108828 CN2017108828W WO2019000752A1 WO 2019000752 A1 WO2019000752 A1 WO 2019000752A1 CN 2017108828 W CN2017108828 W CN 2017108828W WO 2019000752 A1 WO2019000752 A1 WO 2019000752A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
foundation beam
line
installation
storage system
Prior art date
Application number
PCT/CN2017/108828
Other languages
English (en)
French (fr)
Inventor
熊飞
谭继良
姚杰
胡少军
Original Assignee
广船国际有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广船国际有限公司 filed Critical 广船国际有限公司
Publication of WO2019000752A1 publication Critical patent/WO2019000752A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B71/00Designing vessels; Predicting their performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B17/00Vessels parts, details, or accessories, not otherwise provided for

Definitions

  • the invention relates to the field of a ship cabin storage system, in particular to a method for installing a foundation beam of a tank storage system.
  • the tank storage system on the ship belongs to the automatic warehouse storage system, which adopts the orbital operation mode, that is, the rail is installed on the foundation beam for use, and the operation mode requires high accuracy for the flatness and the pitch precision of the foundation beam. Due to the high installation accuracy requirements of the foundation beam, it is required that the flatness of the foundation beam inside the welded cabin is controlled within 2 mm.
  • the current technical difficulty is that the installation test of the foundation beam has been carried out only in a fixed laboratory. The corresponding situation on the ship is much more complicated than that of the laboratory. It involves the level of the hull structure platform, the flatness problem and the welding deformation problem.
  • the installation of the foundation beam on the ship has no relevant method and process support, and a new installation method is required for the installation of the foundation beam on the ship.
  • the object of the present invention is to provide a method for installing a foundation beam of a storage system, so that the installed base beam meets the requirements of the use accuracy of the automatic storage system of the storage system.
  • a method for installing a base beam of a storage system comprising the steps of:
  • the step S40 specifically includes the following steps:
  • the retaining channel and the shape-preserving tool are respectively disposed at two ends of the base along the longitudinal direction thereof.
  • the base beam mounting method of the storage system when the plurality of bases are welded, the base is simultaneously disposed on both sides of the center line in a direction away from a center line of the ship. Solder sequentially on the deck surface.
  • the step S30 specifically includes the following steps:
  • One of the benchmarks is disposed at each end of the base beam in each row along the longitudinal direction of the ship in the cabin, and the base beam is in the column along the width direction of the ship.
  • One of the benchmarks is disposed at both ends;
  • the base beam installation line is vertically led to the pole and intersects with the horizontal line on the pole to form a cross line, and a punch mark is punched around the cross line, and a gap is opened above the horizontal line.
  • the distance between the pole and the wall of the compartment is less than 300 mm.
  • the step S50 specifically includes the following steps:
  • the base beams are sequentially welded to the corresponding bases on both sides of the center line in a direction away from the center line of the ship.
  • the height of the limit tooling is smaller than a theoretical distance between a lower end surface of the foundation beam and the deck surface, and the limit is A raft mounting gap is provided on one side of the tooling and at the lower end of the limit tooling.
  • the step S52 specifically includes the following steps:
  • S521 Pull a steel wire at a notch of two of the benchmark poles corresponding to the base beam of each row, and pull a steel wire at a notch of two of the benchmark poles corresponding to each of the base beams;
  • the step S10 specifically includes the following steps:
  • the drawing line measures the flatness of the deck surface, and when the flatness exceeds the standard, the adjustment is performed by firework;
  • the step S20 specifically includes the following steps:
  • the base installation line is symmetrically drawn on both sides of the base beam installation line according to the width value of the base beam, and is marked.
  • the invention has the beneficial effects that the installation of the foundation beam meets the tank storage system by controlling the flatness of the deck surface, the foundation beam installation line and the base installation line, the setting of the benchmark pole and the limit welding of the foundation beam.
  • the accuracy requirements of the automated library avoiding a large number of rework problems caused by disordered, process-free construction, and saving costs.
  • the base beam installation method of the storage system of the present invention solves the first installation problem of the foundation beam on the ship, and fills in the technical blank for installing the foundation beam of the automatic storage system of the storage system on the ship.
  • FIG. 1 is a layout view of a foundation beam in a cabin of a storage system according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the position of a cross-shaped reference line according to an embodiment of the present invention.
  • FIG 3 is a schematic view showing the position of a foundation beam installation line according to an embodiment of the present invention.
  • FIG. 4 is a schematic view showing the mounting of a base according to an embodiment of the present invention.
  • FIG. 5 is a schematic view showing the position of a benchmark according to an embodiment of the present invention.
  • FIG. 6 is a schematic view showing a welding sequence of a base according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a horizontal line and a horizontal inspection line on a pole according to an embodiment of the present invention.
  • FIG. 8 is a schematic view showing the operation of the shape retaining channel and the shape retaining tool according to the embodiment of the present invention.
  • Figure 9 is a schematic view of a shape-retaining tooling according to an embodiment of the present invention.
  • FIG. 10 is a schematic view showing the operation of the shape retaining channel and the limit tool according to the embodiment of the present invention.
  • Figure 11 is a schematic view showing the positioning of a foundation beam according to an embodiment of the present invention.
  • the term "fixed” is to be understood broadly, and may be, for example, a fixed connection, a detachable connection, or an integral body; it may be a mechanical connection or a mechanical connection, unless otherwise explicitly defined and defined. It is an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, which can be the internal connection of two components or the interaction of two components.
  • an intermediate medium which can be the internal connection of two components or the interaction of two components.
  • the first feature "on” or “under” the second feature may include direct contact of the first and second features, and may also include first and second features, unless otherwise specifically defined and defined. It is not in direct contact but through additional features between them.
  • the first feature "on” the second feature includes the first feature directly above and above the second feature, or merely indicating that the first feature is at a higher level than the second feature.
  • the first feature "under” the second feature includes the first feature directly below and below the second feature, or merely indicating that the first feature level is less than the second feature.
  • the basic beam installation line 1 and the base installation line 2 are determined to determine the base beam installation position and the base installation position;
  • a limit tool 400 is placed between the two angles of the base 200, and the foundation beam 100 is placed on the limit fixture 400 and welded to the base 200.
  • the base beam mounting method of the storage system of the present embodiment is flattened by the deck surface.
  • the degree of control, the foundation beam installation line 1 and the base installation line 2, the setting of the benchmark 300 and the limit welding of the foundation beam 100, the installed foundation beam 100 meets the use accuracy requirements of the automatic storage system of the storage system, avoiding no A large number of rework problems caused by the construction of the sequence and no process support saves costs.
  • the foundation beam 100 shown in Fig. 1 can be installed.
  • the base beam installation method of the storage system of the present embodiment solves the first installation problem of the foundation beam 100 on the ship, and fills in the technical blank of the foundation beam 100 installed on the ship in the automatic storage system of the storage system.
  • step S40 specifically includes the following steps:
  • the base 200 is placed at the base mounting position, and a retaining channel 500 is disposed between the two adjacent bases 200, so that both ends of the retaining channel 500 are in surface contact with the two bases 200;
  • the base 200 for mounting the foundation beam 100 includes two spaced angles, two angles are disposed opposite each other, and the retaining channel 500 is located between the adjacent two bases 200, and They are respectively in contact with the two side faces of the angle steel.
  • the offset during the welding of the angle steel can be avoided; on the other hand, when the foundation beam 100 is installed later, the profiled steel 500 has a support and protection effect on the diagonal steel;
  • the base 200 is welded to the deck surface.
  • the base 200 is welded in accordance with this step to provide a basis for the installation of the foundation beam 100.
  • a shape retaining channel 500 and a shape-fixing tool 600 that are equal in length to the foundation beam 100, and only the retaining channel 500 and the shape-fixing tool 600 are respectively disposed at both ends of the base 200 along the longitudinal direction thereof.
  • the base 200 can be accurately positioned. If the foundation beam 100 is too long, it also needs to be in two angles.
  • the retaining channel 500 and the conformal tooling 600 are added to the middle section.
  • the bases 200 are sequentially welded to the deck surface in the direction away from the center line 5 of the ship toward the center line 5, and the specific welding sequence can be referred to FIG.
  • the welding is performed in the order of the arrow in Fig. 6 and in the order of 1 ⁇ 2 ⁇ 3 ⁇ 4 ⁇ 5 ⁇ 6 ⁇ 7 ⁇ 8.
  • step S30 specifically includes the following steps:
  • a pole 300 is disposed at each end of each row of the foundation beam 100 along the longitudinal direction of the ship in the cabin, and a pole 300 is disposed at each end of each column of the foundation beam 100 along the width direction of the vessel;
  • each row of foundation beams 100 can share two benchmarks 300 at both ends thereof, and each column of foundation beams 100 can share two benchmarks 300 at both ends;
  • the distance is greater than 10m, and a transfer pole can be set up in the middle between the two benchmarks 300. The transfer pole needs to avoid the installation position of the foundation beam 100;
  • the foundation beam installation line 1 is vertically led to the benchmark 300 and intersects with the horizontal line 3 on the benchmark 300 to form a cross line, the punch mark is printed around the cross line, and the gap 310 is opened above the horizontal line 3; the gap 310 can be used for pulling
  • the wire 320 is used to facilitate precise positioning of the subsequent foundation beam 100. Since the horizontal line 3 is covered after the wire 310 is pulled at the notch 310, the horizontal inspection line 4 can be used to check whether the installation position of the wire 320 is horizontal.
  • the distance between the benchmark 300 and the wall panel of the cabin is less than 300 mm, which can increase the strength of the wall panel If the actual foundation beam 100 is installed too close to the wall panel, the distance between the pole 300 and the wall panel can be adjusted according to the site conditions.
  • step S50 specifically includes the following steps:
  • the shape-retaining tool 600 is removed, as shown in FIG. 10, a limit tool 400 is installed between the two angles of the base 200, and the foundation beam 100 is placed on the limit tool 400 for initial positioning; after the base 200 is welded
  • the shape fixing tool 600 needs to be removed, and the limit tooling 400 is set at the position to support the foundation beam 100 and initially position the foundation beam 100;
  • the base beam 100 is finely positioned by pulling the wire 320 on the pole 300; by pulling the wire 320, it can be measured whether the distance between the wire 320 and the upper surface of the foundation beam 100 is equal to h, and if it is not equal to h, the limit is required.
  • the tooling 400 fine-tunes the level and height values of the foundation beam 100, and then performs the measurement, and so on, to ensure that the installation accuracy of the foundation beam 100 meets the operational requirements of the automated storage system of the storage system;
  • the base beam 100 and the two angles of the base 200 are simultaneously symmetrically welded in the same direction, that is, the welding direction must be uniform, and the distance between the monitoring wire 320 and the upper surface of the foundation beam 100 should be paid attention to during the welding process.
  • the foundation beams 100 are sequentially welded to the respective bases 200 in the direction away from the center line 5 of the ship toward both sides of the center line 5.
  • the height of the limit fixture 400 is smaller than the theoretical distance between the lower end surface of the foundation beam 100 and the deck surface, and one side of the limit fixture 400 is located at the lower end of the limit fixture 400 and is provided with a raft mounting gap. Therefore, it is convenient to finely adjust the level and height of the foundation beam 100 by installing the notch raft in the raft.
  • step S52 specifically includes the following steps:
  • the distance h between the horizontal line 3 on the pole 300 and the upper surface of the base beam 100 is 100 mm to facilitate measurement.
  • step S10 specifically includes the following steps:
  • Pulling wire measures the flatness of the deck surface. When the flatness exceeds the standard, it is adjusted by firework. In the measurement, in principle, all the basic beam installation positions are required to measure the wire to detect the flatness. If there is a barrier in the cabin that is difficult to shift, it is allowed to use the sampling method to measure the flatness. Then, before the installation of the base 200 angle steel, the wire is measured. When the standard exceeds the standard, the firework adjustment is adopted in time to allow the angle steel to be installed.
  • the level of the four corners of the cabin is measured by a laser machine, and the measuring points are selected at a strong structure at the four corners of the cabin.
  • the foundation beam 100 can be installed within the allowable limits of the four corners of the cabin.
  • Step S20 specifically includes the following steps:
  • a cross-shaped reference line 6 is drawn on the deck surface and marked; the cross-shaped reference line 6 can be selected in an unblocked position according to the actual situation on the site;
  • the cross-shaped reference line 6 includes a longitudinal reference line 61 and a lateral reference line 62.
  • the foundation beam inspection line 7 can Used to verify the accuracy of the installation position of the angle steel and the foundation beam;
  • the base installation line 2 shown in FIG. 4 is symmetrically drawn on both sides of the foundation beam installation line 1, and is marked to ensure the angle steel installation. Straightness.
  • a plurality of foundation beams 100 are installed in all cabins of the ship cabin storage system.
  • the method of installing the foundation beam of the storage system of the present invention will be further described below by taking one of the compartments as an example.
  • the storage system foundation beam installation method comprises the following steps:
  • the laser machine is used to measure the four-angle level, and the measurement points are selected at the strong structure at the four corners of the cabin.
  • Baseline scribing method Select a unified reference datum in the same compartment, and make a horizontal crosshair (cross-shaped reference line 6) with the hull centerline 5 as the reference opening angle.
  • the horizontal crosshair can be based on the scene. In reality, choose to be in an unblocked position.
  • the basic beam installation line 1 can be drawn and the starting end mark is made.
  • the angle steel installation line of the base 200 is symmetrically drawn on both sides thereof to ensure the straightness of the angle steel installation.
  • Benchmark 300 position requirements After the deck surface is lined, the standard bar 300 is set, and the channel steel bar 300 is set at the corresponding position along the base beam installation position.
  • the benchmark 300 is required to be set within 300mm from the wall. If the actual foundation beam installation position is too close to the wall, the distance between the benchmark 300 and the wall can be adjusted according to the site conditions.
  • the benchmark 300 must be rigidly fixed on the deck surface, and the base beam 100 should be avoided during the installation process.
  • the level is matched with the scribing, and the average horizontal height is used as the reference.
  • the horizontal level 3 and the horizontal inspection line 4 are drawn on the benchmark 300.
  • the horizontal line 3 position is set at a theoretical height of 100 mm on the foundation beam 100.
  • the installation line is led to the benchmark 300, intersects with the horizontal line 3 to form a cross line, the cross line is marked with a sample punch, and the line 310 is opened above the horizontal line 3.
  • the shape retaining tool 600 is removed and the shape retaining channel 500 is retained.
  • a limit tool 400 is installed in advance between the two angles of each base 200 to perform initial positioning of the foundation beam 100, and the rear cable and the suspension hammer perform fine positioning of the foundation beam 100.
  • the control points for the installation of the foundation beam 100 are overall straightness control, overall flatness control, and plane height value control.
  • the overall installation sequence of the foundation beam 100 is simultaneously performed from the middle portion of the cabin to both sides in the ship width direction.
  • a limit tool 400 is placed at the front and rear ends of the base 200 angle steel.
  • the limit tool 400 can be a wooden wedge or a top wire, and the foundation beam 100 is positioned for initial positioning, as shown in FIG.
  • the base beam 100 and the base 200 angle steel are welded, which mainly prevents the distortion of the angle steel which may exist during the welding process and affects the flatness of the foundation beam 100. It is necessary to check whether the retaining channel 500 is installed in place before welding.
  • the welding sequence of the single foundation beam 100 It is required that the base beam 100 and the fillet welds on both sides of the angle steel are simultaneously symmetrically welded, and the welding direction is required to be uniform, and the welding process pays attention to the distance between the monitoring wire 320 and the upper surface of the foundation beam 100.
  • the welding sequence of the integral foundation beam 100 is the same as the welding sequence of the base, and is welded in order from the middle to the both sides.
  • the description of the term "preferred embodiment” or the like means that a specific feature, structure, material or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the invention.
  • the schematic representation of the above terms does not necessarily mean the same embodiment or example.
  • the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)

Abstract

一种舱储系统基础梁安装方法,包括以下步骤:S10、测量舱室内的甲板面的平整度及水平度,若所述平整度不符合要求,则进行调整;S20、堪划基础梁安装线(1)及底座安装线(2),以确定基础梁安装位置和底座安装位置;S30、在所述基础梁安装位置附近树立标杆(300),并在所述标杆(300)上堪划水平线(3);S40、将所述底座(200)焊接在所述底座安装位置;S50、在所述底座(200)的两个角钢之间放置限位工装(400),将所述基础梁(100)放在所述限位工装(400)上并与所述底座(200)焊接。按照本安装方法安装的基础梁满足舱储系统自动化库的使用精度要求,避免无序、无工艺支持的施工所造成的大量返修问题,节约了成本。

Description

一种舱储系统基础梁安装方法 技术领域
本发明涉及船舶舱储系统领域,具体涉及一种舱储系统基础梁安装方法。
背景技术
目前,船舶上的舱储系统属于自动化库舱储系统,其采用轨道式运转模式,即在基础梁上安装轨道进行使用,该运转模式对于基础梁的平面度、间距精度要求较高。由于基础梁的安装精度要求较高,要求焊后舱室内基础梁平面度控制在2mm以内。目前的技术难点是,仅在固定的实验室做过基础梁的安装试验,船舶上相应的情况较实验室要复杂的多,涉及船体结构平台本身的水平、平面度问题以及焊接变形问题,需要多方面综合考虑,即在船舶上安装基础梁无相关方法工艺支持,对于船舶上安装基础梁需制订新的安装方法。
发明内容
本发明的目的在于提供一种舱储系统基础梁安装方法,使安装后的基础梁满足舱储系统自动化库的使用精度要求。
为达此目的,本发明采用以下技术方案:
提供一种舱储系统基础梁安装方法,包括以下步骤:
S10、测量舱室内的甲板面的平整度及水平度,若所述平整度不符合要求,则进行调整;
S20、堪划基础梁安装线及底座安装线,以确定所述基础梁安装位置和所述底座安装位置;
S30、在所述基础梁安装位置附近树立标杆,并在所述标杆上堪划水平线;
S40、将所述底座焊接在所述底座安装位置;
S50、在所述底座的两个角钢之间放置限位工装,将所述基础梁放在所述限位工装上并与所述底座焊接。
作为所述的舱储系统基础梁安装方法的一种优选的技术方案,所述步骤S40具体包括以下步骤:
S41、将所述底座放置在所述底座安装位置处,并在相邻两个所述底座之间设置保型槽钢,以使所述保型槽钢的两端分别与两个所述底座面接触;
S42、在所述底座的两个所述角钢之间安装T型的保型工装;
S43、将所述底座焊接在所述甲板面上。
作为所述的舱储系统基础梁安装方法的一种优选的技术方案,所述底座沿其长度方向的两端分别设置有所述保型槽钢和所述保型工装。
作为所述的舱储系统基础梁安装方法的一种优选的技术方案,若干个所述底座焊接时,沿远离所述船舶的中心线的方向往所述中心线的两侧同时将所述底座顺序焊接在所述甲板面上。
作为所述的舱储系统基础梁安装方法的一种优选的技术方案,所述步骤S30具体包括以下步骤:
S31、所述舱室内沿所述船舶的长度方向的每一行所述基础梁的两端均设置有一个所述标杆,所述舱室内沿所述船舶的宽度方向的每一列所述基础梁的两端均设置有一个所述标杆;
S32、以所述甲板面为基准,采用水平仪在所述标杆上划制高度统一的水平线及水平检验线4,其中,所述水平线的位置高于所述基础梁的上表面,所述水平线与所述基础梁的上表面之间的距离为h;
S33、将所述基础梁安装线垂直引至所述标杆上并与所述标杆上的所述水平线相交形成十字线,在所述十字线四周打样冲标记,并在所述水平线上方开缺口。
所述标杆与所述舱室的壁板之间的距离小于300mm。
作为所述的舱储系统基础梁安装方法的一种优选的技术方案,所述步骤S50具体包括以下步骤:
S51、拆除所述保型工装,在所述底座的两个所述角钢之间安装限位工装,将所述基础梁放在所述限位工装上进行初定位;
S52、通过在所述标杆上拉钢丝对所述基础梁进行精定位;
S53、将所述基础梁与所述底座的两个所述角钢沿同一方向同时进行对称施焊。
若干个所述基础梁焊接时,沿远离所述船舶的中心线的方向往所述中心线的两侧同时将所述基础梁顺序焊接在相应的所述底座上。
作为所述的舱储系统基础梁安装方法的一种优选的技术方案,所述限位工装的高度小于所述基础梁的下端面与所述甲板面之间的理论距离值,且所述限位工装的一侧并位于所述限位工装的下端设置有木锲安装缺口。
作为所述的舱储系统基础梁安装方法的一种优选的技术方案,所述步骤S52具体包括以下步骤:
S521、在每一行所述基础梁对应的两个所述标杆的缺口处拉钢丝,在每一列所述基础梁对应的两个所述标杆的缺口处拉钢丝;
S522、采用直角尺测量所述钢丝与所述基础梁的上表面之间的距离,并通过所述限位工装微调所述基础梁的水平度及高度值,控制所述水平线与所述基础梁的上表面之间的距离为h。
优选地,所述标杆上的所述水平线与所述基础梁的上表面之间的距离h=100mm。
作为所述的舱储系统基础梁安装方法的一种优选的技术方案,所述步骤S10具体包括以下步骤:
S11、拉线测量所述甲板面的平整度,所述平整度超过标准时,通过火工进行调整;
S12、采用激光机测量所述舱室的四角的水平度。
作为所述的舱储系统基础梁安装方法的一种优选的技术方案,所述步骤S20具体包括以下步骤:
S21、以船舶的船体中心线为基准,在所述甲板面上堪划十字形基准线,并做好标记;
S22、以所述十字形基准线为起点,根据所述基础梁安装的理论坐标位置,计算出所述基础梁与所述十字形基准线之间的距离,在所述甲板面上堪划出若干个所述基础梁安装线及基础梁检验线,并做好标记;
S23、以所述基础梁安装线为基准,根据所述基础梁的宽度值在所述基础梁安装线的两侧对称堪划出所述底座安装线,并做好标记。
本发明的有益效果:本发明通过对甲板面的平整度控制、基础梁安装线及底座安装线的堪划、标杆的树立及基础梁的限位焊接,使安装后的基础梁满足舱储系统自动化库的使用精度要求,避免无序、无工艺支持的施工所造成的大量返修问题,节约了成本。而且,本发明的舱储系统基础梁安装方法解决了基础梁在船舶上的首次安装问题,填补了舱储系统自动化库的基础梁在船舶上安装的技术空白。
附图说明
图1为本发明实施例的舱储系统舱室中基础梁的安装布局图。
图2为本发明实施例的十字形基准线的位置示意图。
图3为本发明实施例的基础梁安装线的位置示意图。
图4为本发明实施例的底座安装示意图。
图5为本发明实施例的标杆位置示意图。
图6为本发明实施例的底座焊接顺序示意图。
图7为本发明实施例的标杆上的水平线及水平检验线堪划示意图。
图8为本发明实施例的保型槽钢及保型工装的运用示意图。
图9为本发明实施例的保型工装的示意图。
图10为本发明实施例的保型槽钢及限位工装的运用示意图。
图11为本发明实施例的基础梁定位示意图。
图中:
1、基础梁安装线;2、底座安装线;3、水平线;4、水平检验线;5、中心线;6、十字形基准线;61、纵向基准线;62、横向基准线;7、基础梁检验线;
100、基础梁;200、底座;300、标杆;310、缺口;320、钢丝;400、限位工装;500、保型槽钢;600、保型工装;610、观察缺口;700、直角尺。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
在本发明的描述中,需要理解的是,术语“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位 构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,除非另有明确的规定和限定,术语“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个部件内部的连通或两个部件的相互作用关系。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征之“上”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征之“下”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
本发明的实施例提供的舱储系统基础梁安装方法,包括以下步骤:
S10、测量舱室内的甲板面的平整度及水平度,若平整度不符合要求,则进行调整;从而为基础梁100的水平安装打好基础;
S20、堪划基础梁安装线1及底座安装线2,以确定基础梁安装位置和底座安装位置;
S30、在基础梁安装位置附近树立标杆300,并在标杆300上堪划水平线3;通过水平线3控制基础梁100的安装水平度;
S40、将底座200焊接在底座安装位置;
S50、在底座200的两个角钢之间放置限位工装400,将基础梁100放在限位工装400上并与底座200焊接。
如图1至11所示,本实施例的舱储系统基础梁安装方法通过对甲板面的平 整度控制、基础梁安装线1及底座安装线2的堪划、标杆300的树立及基础梁100的限位焊接,安装后的基础梁100满足舱储系统自动化库的使用精度要求,避免无序、无工艺支持的施工所造成的大量返修问题,节约了成本。按照本实施例的舱储系统基础梁安装方法可安装如图1所示的基础梁100。本实施例的舱储系统基础梁安装方法解决了基础梁100在船舶上的首次安装问题,填补了舱储系统自动化库的基础梁100在船舶上安装的技术空白。
作为本发明的一种优选的实施方式,步骤S40具体包括以下步骤:
S41、将底座200放置在底座安装位置处,并在相邻两个底座200之间设置保型槽钢500,以使保型槽钢500的两端分别与两个底座200面接触;本实施例中,如图8所示,用于安装基础梁100的底座200包括两个间隔设置的角钢,两个角钢正对设置,保型槽钢500位于相邻的两个底座200之间,且分别与角钢的两个侧面面接触,一方面,可以避免角钢焊接过程中发生偏移;另一方面,在后期安装基础梁100时,保型槽钢500对角钢具有支撑保护作用;
S42、在底座200的两个角钢之间安装如图8和9所示的T型的保型工装600;保型工装600的宽度与基础梁100的宽度相匹配,将保型工装600放置在两个角钢之间,保型工装600与保型槽钢500组合使用,可以方便角钢的定位;如图9所示,保型工装600的下端且邻近底座200的两个角钢开设有观察缺口610,方便观察底座200的两个角钢的边缘线是否与底座安装线2吻合;
S43、将底座200焊接在甲板面上。
按照该步骤对底座200进行施焊,以对基础梁100的安装提供基础。
在具体的实施方式中,无需设置与基础梁100等长的保型槽钢500和保型工装600,仅在底座200沿其长度方向的两端分别设置保型槽钢500和保型工装600,即可对底座200进行精确定位。若基础梁100超长,还需要在两个角钢的 中间段再增加保型槽钢500和保型工装600。
为遵循船体结构焊接原则,若干个底座200焊接时,沿远离船舶的中心线5的方向往中心线5的两侧同时将底座200顺序焊接在甲板面上,具体的施焊顺序可参考图6,按照图6中的箭头方向及①→②→③→④→⑤→⑥→⑦→⑧的顺序进行施焊。
在本发明进一步优选的实施方式中,步骤S30具体包括以下步骤:
S31、舱室内沿船舶的长度方向的每一行基础梁100的两端均设置有一个标杆300,舱室内沿船舶的宽度方向的每一列基础梁100的两端均设置有一个标杆300;本实施方式中,如图5和图6所示,每一行基础梁100可以共用其两端的两个标杆300,每一列基础梁100可以共用其两端的两个标杆300;若两个标杆300之间的距离大于10m,还可以在两个标杆300之间的中间位置再树立一个转接标杆,转接标杆需要避开基础梁100的安装位置;
S32、以甲板面为基准,采用水平仪在标杆300上划制水平检验线4及高度统一的水平线3(参见图7),其中,水平线3的位置高于基础梁100的上表面,水平线3与基础梁100的上表面之间的距离为h;通常情况下,h=100mm,即水平线3高于基础梁100的理论上表面100mm;在其他的实施方式中,h也可以设置为其他值如120mm、150mm等;
S33、将基础梁安装线1垂直引至标杆300上并与标杆300上的水平线3相交形成十字线,在十字线四周打样冲标记,并在水平线3上方开缺口310;该缺口310可用于拉钢丝320,以方便后续的基础梁100的精准定位。由于缺口310处拉钢丝320后会覆盖水平线3,设置水平检验线4可用于检验钢丝320的安装位置是否水平。
其中,标杆300与舱室的壁板之间的距离小于300mm,可以增加壁板的强 度,若实际的基础梁100安装位置与壁板过近,可根据现场情况调整标杆300与壁板之间的距离。
在本发明的优选的实施方式中,步骤S50具体包括以下步骤:
S51、拆除保型工装600,如图10所示,在底座200的两个角钢之间安装限位工装400,将基础梁100放在限位工装400上进行初定位;在底座200焊接完成后,需要拆除保型工装600,并在该位置设置限位工装400,以支撑基础梁100并对基础梁100进行初定位;
S52、通过在标杆300上拉钢丝320对基础梁100进行精定位;通过拉钢丝320,可以测量钢丝320与基础梁100的上表面之间的距离是否等于h,不等于h时需要采用限位工装400对基础梁100的水平度及高度值进行微调,然后再进行测量,如此反复,以确保基础梁100的安装精度符合舱储系统自动化库的运行要求;
S53、将基础梁100与底座200的两个角钢沿同一方向同时进行对称施焊,即施焊方向必须统一,且焊接过程中要注意监控钢丝320与基础梁100上表面之间的距离。
若干个基础梁100焊接时,沿远离船舶的中心线5的方向往中心线5的两侧同时将基础梁100顺序焊接在相应的底座200上。
本实施例中,限位工装400的高度小于基础梁100的下端面与甲板面之间的理论距离值,且限位工装400的一侧并位于限位工装400的下端设置有木锲安装缺口,从而方便通过在木锲安装缺口打木锲对基础梁100的水平度及高度进行微调。
如图11所示,作为本发明进一步优选的实施方式,步骤S52具体包括以下步骤:
S521、在每一行基础梁100对应的两个标杆300的缺口310处拉钢丝320,在每一列基础梁100对应的两个标杆300的缺口310处拉钢丝320;从而实现从基础梁100的长度方向和宽度方向精确定位基础梁100;
S522、采用直角尺700测量钢丝320与基础梁100的上表面之间的距离,并通过限位工装400微调基础梁100的水平度及高度值,控制水平线3与基础梁100的上表面之间的距离为h。
优选地,标杆300上的水平线3与基础梁100的上表面之间的距离h=100mm,以方便测量。
本实施例中,步骤S10具体包括以下步骤:
S11、拉线测量甲板面的平整度,平整度超过标准时,通过火工进行调整;测量时,原则上要求基础梁安装位置全部需要拉线测量,以检测平整度。若舱室内存在阻挡物难以移位的,允许采用抽检的方式进行平整度测量,后续在安装底座200角钢之前再拉线测量,超过标准时及时采用火工调整方可允许安装角钢;
S12、采用激光机测量舱室的四角的水平度,测量点选取在舱室四角位置的强结构处。舱室的四角的水平度在允许极限范围内方可安装基础梁100。
步骤S20具体包括以下步骤:
S21、以船舶的船体中心线5为基准,在甲板面上堪划十字形基准线6,并做好标记;十字形基准线6可根据现场的实际情况选择在无阻挡位置;如图2所示,十字形基准线6包括纵向基准线61和横向基准线62。
S22、以十字形基准线6为起点,根据基础梁100安装的理论坐标位置,计算出基础梁100与十字形基准线6之间的距离,在甲板面上堪划出若干个基础梁安装线1及基础梁检验线7(图4),并做好标记;其中,基础梁检验线7可 以用来检验角钢及基础梁的安装位置是否准确;
S23、以基础梁安装线1为基准,根据基础梁100的宽度值在基础梁安装线1的两侧对称堪划出如图4所示的底座安装线2,并做好标记,保证角钢安装的直线度。
本实施例中,船舶舱储系统的所有舱室内均安装有若干基础梁100。下面以其中一个舱室为例,对本发明的舱储系统基础梁安装方法进一步说明。
在本发明的具体实施方式中,舱储系统基础梁安装方法包括以下步骤:
1、舱室内平台面整体平整度测量:
1.1测量方法:拉线测量。
1.2精度要求:参照《中国造船质量标准》执行。最小检测距离为L3=3m,精度要求平面度控制在±3L3/1000(单位为mm)以内,允许极限为±4L3/1000(单位为mm)。超过标准时,需火工配合进行调整。
1.3检测要求:原则上要求安装位置需全部拉线测量,检测平整度。若因舱室内存在阻挡物难以移位的,允许采用抽检的方式进行平整度测量;后续在安装底座200的角钢前再拉线测量,超过标准及时火工调整后方可允许安装角钢。
2、舱室内平台面水平度测量:
2.1测量方法:激光机配合测量四角水平,测量点选择在舱室四角位置的强结构处。
2.2精度要求:参照《中国造船质量标准》执行。四角水平在8mm以内,允许极限为12mm。
3、划线:
3.1基准线划线方法:同一舱室内划线时选择统一的参考基准,以船体中心线5为基准开角尺做出横向十字线(十字形基准线6),横线十字线可根据现场 实际情况,选择在无阻挡位置。
3.2安装线划线方法:根据基准线偏移来堪划基础梁安装线1,并做好起始端标记。在平台上划出基础梁安装位置及基础梁检验线1。根据基础梁安装位置在其两侧对称划出底座200的角钢安装线,保证角钢安装的直线度。
3.3精度要求:划线偏差控制在1mm以内。
4、标杆300树立:
4.1标杆300位置要求:甲板面划线后树立标杆300,沿基础梁安装位置在相应位置树立槽钢标杆300。
(1)原则上要求每行(沿船宽方向)基础梁100的左右端口位置处必须设计标杆300,每列(沿船长方向)基础梁100的前后位置处必须设立标杆300,若两条标杆300之间的间距大于10m,可以在中间位置转接一根标杆300,转接标杆300避开基础梁100位置。
(2)标杆300要求树立在离壁板300mm范围内,若实际基础梁安装位置离壁板过近,可根据现场情况调整标杆300与壁板之间的距离。
(3)标杆300必须钢性固定在甲板面上,基础梁100安装过程中注意避开标杆300。
4.2标杆300划线要求:
水平仪配合划线,以甲板平均水平为基准,选取统一水平高度值在标杆300上划水平线3及水平检验线4,水平线3位置设定在基础梁100理论上表面高100mm位置。将安装线引至标杆300上,与水平线3相交成十字线,十字线四周打上样冲做好标记,在水平线3上方留线开缺口310。
5、底座200角钢安装:
5.1装配:控制角钢安装的直线度及垂直度,焊接前安装保型槽钢500及保 型工装600,均与结构之间不进行焊接,要求在每根基础梁100的首、尾端口必须安装,若基础梁100超长,要求在中间增加保型槽钢500和保型工装600。
5.2焊接:
(1)焊接形式:采用CO2半自动焊。注意控制焊角大小、焊接参数。
(2)焊接顺序:底座200的角钢因与船体甲板面焊接,遵循船体结构焊接原则,按照图6所示的顺序从中间往两边对称焊接。
6、基础梁100安装:
拆除保型工装600,保留保型槽钢500。在每个底座200的两个角钢之间提前安装限位工装400,对基础梁100进行初定位,后拉线以及吊线锤对基础梁100进行精定位。基础梁100安装的控制要点是,整体直线度控制,整体平面度控制,以及平面的高度值控制。基础梁100整体安装顺序从舱室中间区域往沿船宽方向的两边同时进行。
6.1基础梁100定位:
(1)在底座200角钢之间的前后端放置限位工装400,限位工装400可为木楔或顶丝,基础梁100落位,进行初定位,见图8。
(2)在每一行基础梁100、每一列基础梁100的左右端、前后端标杆300的缺口310处拉钢丝320,用直角尺700量取钢丝320与基础梁100之间的距离值h,理论值为100mm,通过限位工装400微调基础梁100的平面度以及理论高度值,见图11。
6.2基础梁100焊接:
基础梁100与底座200角钢存在焊接,主要防止焊接过程中可能存在的角钢扭曲变形而影响基础梁100平面度,焊接前需检查保型槽钢500是否安装到位。
单根基础梁100的焊接顺序:要求基础梁100与角钢两边的角焊缝同时对称施焊,要求施焊方向必须统一,且焊接过程注意监控钢丝320与基础梁100上表面之间的距离。
整体基础梁100的焊接顺序:与底座的焊接顺序相同,从中间往两边依次焊接。
在本说明书的描述中,参考术语“优选的实施方式”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上实施例仅用来说明本发明的详细方法,本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

  1. 一种舱储系统基础梁安装方法,其特征在于,包括以下步骤:
    S10、测量舱室内的甲板面的平整度及水平度,若所述平整度不符合要求,则进行调整;
    S20、堪划基础梁安装线及底座安装线,以确定所述基础梁安装位置和所述底座安装位置;
    S30、在所述基础梁安装位置附近树立标杆,并在所述标杆上堪划水平线;
    S40、将所述底座焊接在所述底座安装位置;
    S50、在所述底座的两个角钢之间放置限位工装,将所述基础梁放在所述限位工装上并与所述底座焊接。
  2. 根据权利要求1所述的舱储系统基础梁安装方法,其特征在于,所述步骤S40具体包括以下步骤:
    S41、将所述底座放置在所述底座安装位置处,并在相邻两个所述底座之间设置保型槽钢,以使所述保型槽钢的两端分别与两个所述底座面接触;
    S42、在所述底座的两个所述角钢之间安装T型的保型工装;
    S43、将所述底座焊接在所述甲板面上。
  3. 根据权利要求2所述的舱储系统基础梁安装方法,其特征在于,所述底座沿其长度方向的两端分别设置有所述保型槽钢和所述保型工装。
  4. 根据权利要求2所述的舱储系统基础梁安装方法,其特征在于,若干个所述底座焊接时,沿远离船舶的中心线的方向往所述中心线的两侧同时将所述底座顺序焊接在所述甲板面上。
  5. 根据权利要求2所述的舱储系统基础梁安装方法,其特征在于,所述步骤S30具体包括以下步骤:
    S31、所述舱室内沿船舶的长度方向的每一行所述基础梁的两端均设置有一 个所述标杆,所述舱室内沿所述船舶的宽度方向的每一列所述基础梁的两端均设置有一个所述标杆;
    S32、以所述甲板面为基准,采用水平仪在所述标杆上划制高度统一的水平线及水平检验线,其中,所述水平线的位置高于所述基础梁的上表面,所述水平线与所述基础梁的上表面之间的距离为h;
    S33、将所述基础梁安装线垂直引至所述标杆上并与所述标杆上的所述水平线相交形成十字线,在所述十字线四周打样冲标记,并在所述水平线上方开缺口。
  6. 根据权利要求5所述的舱储系统基础梁安装方法,其特征在于,所述步骤S50具体包括以下步骤:
    S51、拆除所述保型工装,在所述底座的两个所述角钢之间安装限位工装,将所述基础梁放在所述限位工装上进行初定位;
    S52、通过在所述标杆上拉钢丝对所述基础梁进行精定位;
    S53、将所述基础梁与所述底座的两个所述角钢沿同一方向同时进行对称施焊。
  7. 根据权利要求6所述的舱储系统基础梁安装方法,其特征在于,所述限位工装的高度小于所述基础梁的下端面与所述甲板面之间的理论距离值,且所述限位工装的一侧并位于所述限位工装的下端设置有木锲安装缺口。
  8. 根据权利要求6所述的舱储系统基础梁安装方法,其特征在于,所述步骤S52具体包括以下步骤:
    S521、在每一行所述基础梁对应的两个所述标杆的缺口处拉钢丝,在每一列所述基础梁对应的两个所述标杆的缺口处拉钢丝;
    S522、采用直角尺测量所述钢丝与所述基础梁的上表面之间的距离,并通 过所述限位工装微调所述基础梁的水平度及高度值,控制所述水平线与所述基础梁的上表面之间的距离为h。
  9. 根据权利要求1至8任一项所述的舱储系统基础梁安装方法,其特征在于,所述步骤S10具体包括以下步骤:
    S11、拉线测量所述甲板面的平整度,所述平整度超过标准时,通过火工进行调整;
    S12、采用激光机测量所述舱室的四角的水平度。
  10. 根据权利要求1至8任一项所述的舱储系统基础梁安装方法,其特征在于,所述步骤S20具体包括以下步骤:
    S21、以船舶的船体中心线为基准,在所述甲板面上堪划十字形基准线,并做好标记;
    S22、以所述十字形基准线为起点,根据所述基础梁安装的理论坐标位置,计算出所述基础梁与所述十字形基准线之间的距离,在所述甲板面上堪划出若干个所述基础梁安装线及基础梁检验线,并做好标记;
    S23、以所述基础梁安装线为基准,根据所述基础梁的宽度值在所述基础梁安装线的两侧对称堪划出所述底座安装线,并做好标记。
PCT/CN2017/108828 2017-06-30 2017-10-31 一种舱储系统基础梁安装方法 WO2019000752A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710521256.0A CN107336799B (zh) 2017-06-30 2017-06-30 一种舱储系统基础梁安装方法
CN201710521256.0 2017-06-30

Publications (1)

Publication Number Publication Date
WO2019000752A1 true WO2019000752A1 (zh) 2019-01-03

Family

ID=60218158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108828 WO2019000752A1 (zh) 2017-06-30 2017-10-31 一种舱储系统基础梁安装方法

Country Status (2)

Country Link
CN (1) CN107336799B (zh)
WO (1) WO2019000752A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115367073A (zh) * 2022-09-15 2022-11-22 中船广西船舶及海洋工程有限公司 一种船舶压载水系统机舱设备进舱方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108189960B (zh) * 2017-12-20 2019-10-11 沪东中华造船(集团)有限公司 一种舵机基座安装方法
CN109436199A (zh) * 2018-10-31 2019-03-08 广船国际有限公司 一种冷库货架基础及冷库货架基础安装方法
CN111889956B (zh) * 2020-06-23 2021-12-28 广州文冲船舶修造有限公司 一种舱盖顶板大面积换新修复工艺
CN114179999B (zh) * 2021-11-08 2023-11-17 上海江南长兴造船有限责任公司 一种集装箱船的机舱分段上双工字梁的快速定位安装方法
CN114013597A (zh) * 2021-11-12 2022-02-08 沪东中华造船(集团)有限公司 一种用于提高船舶配电板安装平整度的方法
CN115892380B (zh) * 2022-11-23 2024-06-18 中国船舶集团青岛北海造船有限公司 一种吊机系统底座的制作和安装方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101417695A (zh) * 2008-11-14 2009-04-29 大连船舶重工集团有限公司 一种集装箱船用导轨及其架设方法
CN101423105A (zh) * 2008-11-28 2009-05-06 大连船舶重工集团有限公司 一种集装箱船用导轨的安装方法
CN101666639A (zh) * 2008-09-03 2010-03-10 江南造船(集团)有限责任公司 一种变形测量钢管支撑座及其安装方法
CN104494784A (zh) * 2014-12-29 2015-04-08 广州文冲船厂有限责任公司 一种集装箱船导架的制作安装方法
KR101698728B1 (ko) * 2016-08-31 2017-01-20 한국가스공사 컨테이너 운송선박

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103482042B (zh) * 2013-09-22 2015-09-02 中交第二航务工程局有限公司 一种深水梳形滑道井字梁安装施工方法
CN204210910U (zh) * 2014-10-16 2015-03-18 广州广船国际股份有限公司 船舶舭部分段堆放用支撑装置
CN105479412B (zh) * 2015-12-24 2017-04-05 广船国际有限公司 一种舵叶安装工装
CN106114752A (zh) * 2016-06-27 2016-11-16 广州文冲船厂有限责任公司 一种集装箱船甲板支柱安装方法
CN106184606B (zh) * 2016-08-24 2018-08-24 广船国际有限公司 一种船舶龙骨结构及龙骨制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101666639A (zh) * 2008-09-03 2010-03-10 江南造船(集团)有限责任公司 一种变形测量钢管支撑座及其安装方法
CN101417695A (zh) * 2008-11-14 2009-04-29 大连船舶重工集团有限公司 一种集装箱船用导轨及其架设方法
CN101423105A (zh) * 2008-11-28 2009-05-06 大连船舶重工集团有限公司 一种集装箱船用导轨的安装方法
CN104494784A (zh) * 2014-12-29 2015-04-08 广州文冲船厂有限责任公司 一种集装箱船导架的制作安装方法
KR101698728B1 (ko) * 2016-08-31 2017-01-20 한국가스공사 컨테이너 운송선박

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115367073A (zh) * 2022-09-15 2022-11-22 中船广西船舶及海洋工程有限公司 一种船舶压载水系统机舱设备进舱方法

Also Published As

Publication number Publication date
CN107336799B (zh) 2019-03-22
CN107336799A (zh) 2017-11-10

Similar Documents

Publication Publication Date Title
WO2019000752A1 (zh) 一种舱储系统基础梁安装方法
CN109606542B (zh) 一种控制特种设备基座在总段上的定位安装精度的方法
CN105383642A (zh) 一种垂直导轨安装焊接方法
CN110877685A (zh) 一种集装箱船角隅导轨架预装的精度控制方法
CN110696993B (zh) 一种船舶分段外板及骨材定位方法
CN106627990A (zh) 货舱分段槽型壁与加强对中安装及精度控制方法
CN110481701B (zh) 一种舱盖支承部件的安装及调试方法
CN110789684A (zh) 一种大型甲板机械本体基座的装配方法
CN109823469B (zh) 一种船舶主机定位方法
CN110849298A (zh) 一种导轨的安装检测与误差分析方法
CN106181027A (zh) 激光焊接头垂直度调整方法及激光焊接头装置
CN214005426U (zh) 一种钢箱梁锚拉板安装定位装置
KR100587478B1 (ko) 컨테이너선 셀 가이드의 취부기준선 설정장치
CN114735155B (zh) 一种集装箱船角隅导轨的安装方法
CN107585258B (zh) 箱船角隅导轨总段安装方法
CN113548592B (zh) 一种起重机吊臂托架的建造方法
CN113184132B (zh) 一种多用途船加装集装箱导轨的方法
CN216086112U (zh) 一种电缆槽盖板定位装置
CN116621032B (zh) 适用于集装箱吊具精准定位特性且提高调整效率的方法
CN214995943U (zh) 一种墙柱模板定位装置
CN208471302U (zh) 电梯安装阶段导轨轨距确定装置
CN217949497U (zh) 装配式双拼槽道
CN115076574B (zh) 起升基准点测量装置
CN216194782U (zh) 一种钢管柱定位系统
CN214134615U (zh) 焊缝跟踪精度检测装置及检测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916216

Country of ref document: EP

Kind code of ref document: A1