WO2019000425A1 - 卫星信号处理设备和无人机 - Google Patents

卫星信号处理设备和无人机 Download PDF

Info

Publication number
WO2019000425A1
WO2019000425A1 PCT/CN2017/091243 CN2017091243W WO2019000425A1 WO 2019000425 A1 WO2019000425 A1 WO 2019000425A1 CN 2017091243 W CN2017091243 W CN 2017091243W WO 2019000425 A1 WO2019000425 A1 WO 2019000425A1
Authority
WO
WIPO (PCT)
Prior art keywords
baseband signal
signal processing
work
pseudo code
processing channel
Prior art date
Application number
PCT/CN2017/091243
Other languages
English (en)
French (fr)
Inventor
张健华
韩彬
仇晓颖
董悦
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/091243 priority Critical patent/WO2019000425A1/zh
Priority to CN201780012871.7A priority patent/CN108885271A/zh
Publication of WO2019000425A1 publication Critical patent/WO2019000425A1/zh
Priority to US16/713,572 priority patent/US20200116868A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/30Acquisition or tracking or demodulation of signals transmitted by the system code related
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/37Hardware or software details of the signal processing chain

Definitions

  • Embodiments of the present invention relate to the field of signal processing, and in particular, to a satellite signal processing device and a drone.
  • satellite positioning navigation systems include: the US Global Positioning System (GPS), Russia's GLONASS, the EU's GALILEO and China's Beidou navigation system.
  • GPS Global Positioning System
  • GLONASS Global Navigation Satellite System
  • GNSS Global Navigation Satellite System
  • GNSS receivers require a large number of operations in the baseband signal processing part ( For example, correlation operations, etc.), so the acquisition or tracking of satellite signals takes a long time.
  • the GPS signal as an example, it is necessary to perform three-dimensional search of frequency, time and pseudo-code to determine the signal parameter value of the visible satellite.
  • the GNSS receiver has a large system storage resource consumption, a long positioning time, and a signal. Handling low efficiency defects.
  • Embodiments of the present invention provide a satellite signal processing device and a drone to reduce the consumption of system storage resources and improve the processing efficiency of satellite signals.
  • an embodiment of the present invention provides a satellite signal processing device, including: a digital front end circuit, a buffer, a pseudo code broadcast circuit, and a baseband signal processing channel, where the baseband signal processing channel is multiple.
  • the digital front end circuit is configured to process the radio frequency signal received by the antenna to obtain a baseband signal
  • the buffer is configured to buffer a baseband signal acquired by the digital front end circuit
  • the pseudo code broadcast circuit is respectively connected to each of the plurality of baseband signal processing channels for storing a pseudo code of a plurality of satellites, and transmitting a pseudo code of the satellite to the baseband signal processing channel;
  • the baseband signal processing channel is configured to perform a work task according to a pseudo code sent by the pseudo code broadcast circuit and a baseband signal acquired from the buffer.
  • an embodiment of the present invention provides a satellite signal processing device, including: a digital front end circuit, a buffer, and a baseband signal processing channel.
  • the digital front end circuit is configured to process the radio frequency signal received by the antenna to obtain a baseband signal
  • the buffer is configured to buffer a baseband signal acquired by the digital front end circuit
  • the baseband signal processing channel is configured to perform a plurality of work tasks allocated by an external device according to a baseband signal acquired from the buffer in a first working period.
  • an embodiment of the present invention provides a satellite signal processing device, including:
  • a digital front end circuit for processing a radio frequency signal received by the antenna to obtain a baseband signal
  • Baseband signal processing channel for:
  • the work task is performed based on the baseband signal acquired from the second baseband signal storage space in the buffer.
  • an embodiment of the present invention provides a drone, including the satellite signal processing device according to the first aspect.
  • an embodiment of the present invention provides a drone, including the satellite signal processing device according to the second aspect.
  • an embodiment of the present invention provides a drone, including the satellite signal processing device according to the third aspect.
  • the satellite signal processing device and the drone provided by the embodiment of the invention provide a digital front end circuit, a buffer, a pseudo code broadcast circuit and a baseband signal processing channel through a satellite signal processing device, wherein the pseudo code broadcast circuit and the plurality of baseband signals respectively
  • the pseudo-code broadcast circuit stores a plurality of satellite pseudo-codes, so that each baseband signal processing channel does not need to store pseudo-codes of multiple satellites, thereby reducing system storage resource consumption.
  • the baseband signal processing channel can perform multiple work tasks in a time-sharing manner in a duty cycle, improving the processing efficiency of satellite signals and maximizing the utilization of hardware resources.
  • FIG. 1 is a schematic structural diagram of a satellite signal processing device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of another satellite signal processing device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of still another satellite signal processing device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of still another satellite signal processing device according to an embodiment of the present invention.
  • FIG. 5A is a schematic diagram of processing a time-sharing task according to an embodiment of the present invention.
  • FIG. 5B is a schematic diagram of another time-sharing task processing according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of still another satellite signal processing device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of still another satellite signal processing device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of still another satellite signal processing device according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a software and hardware interaction manner according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of still another satellite signal processing device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of still another satellite signal processing device according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of another software and hardware interaction manner according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of still another satellite signal processing device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of still another software and hardware interaction manner according to an embodiment of the present invention.
  • FIG. 15 is a schematic diagram of another software and hardware interaction manner according to an embodiment of the present invention.
  • FIG. 16 is a schematic diagram of another software and hardware interaction manner according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of still another satellite signal processing device according to an embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of still another satellite signal processing device according to an embodiment of the present invention.
  • Figure 19 is a schematic view showing the structure of an embodiment of the drone of the present invention.
  • Embodiments provided by the present invention include, but are not limited to, the following inventive points:
  • the embodiment of the invention stores the pseudo code of the plurality of satellites by setting the pseudo code broadcast circuit, so that each baseband signal processing channel does not need to store the pseudo code of all the satellites in the navigation system, thereby reducing the consumption of the system storage resources.
  • the embodiment of the present invention processes a plurality of work tasks in a work cycle by using a baseband signal processing channel, thereby improving utilization of hardware resources and task processing efficiency.
  • two baseband signal storage spaces are set in the buffer, and the baseband signal is alternately obtained from the two baseband signal storage spaces by using the ping-pong address strategy, thereby improving the efficiency of the baseband signal processing channel to obtain the baseband signal, and improving the baseband signal processing channel.
  • Processing efficiency and hardware resource utilization setting two configuration information storage spaces through external devices, and using the ping-pong address policy to alternately obtain configuration information of work tasks from two configuration information storage spaces, thereby improving the efficiency of obtaining configuration information of work tasks;
  • the two task result storage spaces are set by the external device, and the processing result is alternately written into the two task result storage spaces by using the ping-pong address policy, thereby improving the efficiency of writing the task results.
  • the satellite signal processing apparatus of this embodiment includes: a Digital Front End (DFE) 101, a buffer 102, and a pseudo code.
  • the pseudo code broadcast circuit 103 is connected to each of a plurality of baseband signal processing channels, respectively.
  • the pseudo code broadcast circuit 103 stores pseudo codes of a plurality of satellites.
  • the plurality of satellites may refer to all satellites of the preset navigation system, and the preset navigation system may be one or more of Beidou, GPS, Galileo, and GLONASS systems.
  • the digital front end circuit processes the radio frequency signal received by the antenna to obtain a baseband signal; the buffer buffers the baseband signal acquired by the digital front end circuit; and the pseudo code broadcast circuit sends the baseband signal processing channel to the baseband signal processing channel a pseudo code of a satellite, the pseudo code of the satellite being a pseudo code of a satellite required to perform a work task on one or more channels in the baseband signal processing channel; a baseband signal
  • the number processing channel performs a work task according to a pseudo code transmitted by the pseudo code broadcast circuit and a baseband signal acquired from the buffer.
  • the above work tasks include capturing a task or tracking a task.
  • a digital front end circuit, a buffer, a pseudo code broadcast circuit, and a baseband signal processing channel are provided by the satellite signal processing device, wherein the pseudo code broadcast circuit is respectively connected to each of the plurality of baseband signal processing channels.
  • the pseudo code broadcast circuit stores pseudo-codes of all satellites of the preset navigation system.
  • the pseudo code broadcast circuit can transmit the pseudo code of the satellite required for the channel to the baseband signal processing channel, so that each baseband signal processing channel does not need to store the pseudo code of all the satellites of the preset navigation system, thereby reducing the consumption of system storage resources.
  • a first baseband signal processing channel in a baseband signal processing channel specifically used for a pseudocode request sent to a pseudocode broadcast circuit; and a pseudocode broadcast circuit, specifically used And a pseudo code for broadcasting the pseudo code request indication to the plurality of baseband signal processing channels; the first baseband signal processing channel, configured to execute according to the pseudo code of the pseudo code request indication and the digital intermediate frequency signal output from the buffer Capture or track tasks.
  • the first baseband signal processing channel may be any one of the plurality of baseband signal processing channels, when the first baseband signal processing channel needs a pseudo code of a certain satellite when performing a work task.
  • the first baseband signal processing channel may transmit a pseudocode request to the pseudocode broadcast circuit to request the pseudocode broadcast circuit to transmit the pseudocode of the pseudocode request indication to the first baseband signal processing channel.
  • the pseudo code request may include a satellite number or other identifier capable of uniquely identifying the satellite.
  • the pseudo code broadcast circuit determines a pseudo code of the corresponding satellite according to the pseudo code request, and the pseudo code broadcast circuit.
  • the plurality of baseband signal processing channels broadcast a pseudo code of the satellite, and the first baseband signal processing channel receives a pseudo code of a satellite broadcast by the pseudo code broadcast circuit, and performs according to the pseudo code of the satellite and the baseband signal acquired from the buffer. work tasks.
  • the pseudo code broadcast circuit broadcasts the pseudo code of the satellite to the plurality of baseband signal processing channels, and does not need to send the pseudo code of the satellite to the baseband signal processing channel one by one, which can effectively reduce the power consumption of the system.
  • the baseband signal processing channel may send a pseudocode request to the pseudocode broadcast circuit each time a work task is performed.
  • the pseudo code request sent to the pseudo code broadcast circuit when executing the previous work task is different from the pseudo code required to execute the current work task, when executing the previous work task and the pseudo code required to execute the current work task.
  • there is no need for a pseudo code request sent to the pseudo code broadcast circuit thereby improving the processing efficiency of the baseband signal processing channel and reducing the system power consumption.
  • the baseband signal processing channel may include a local pseudocode storage circuit 1041; as shown in FIG. 2, the local pseudocode storage circuit 1041 is configured to receive and save the location.
  • the pseudo code of the pseudo code broadcast circuit broadcast; the baseband signal processing channel is specifically configured to perform a work task according to the pseudo code stored by the local pseudo code storage circuit 1041 and the baseband signal output from the buffer.
  • the pseudo code broadcast circuit broadcasts the pseudo code of the satellite to the plurality of baseband signal processing channels.
  • the local pseudo code storage circuit 1041 of the baseband signal processing channel is saved.
  • the baseband signal processing channel performs a work task according to a pseudo code stored by the local pseudo code storage circuit and a baseband signal acquired from the buffer, and when the baseband signal processing channel does not require the pseudo code of the satellite, the local The pseudo code storage circuit 1041 does not save the pseudo code of the satellite.
  • the local pseudo code storage circuit only saves the pseudo code required to perform the current work task, saves the storage space of the baseband signal processing channel, and reduces the system power consumption.
  • the satellite signal processing device further includes: an input and output circuit 105, as shown in FIG. 3, and FIG. 3 is based on the embodiment shown in FIG.
  • the input/output circuit 105 serves as a communication connection device between the external device and the baseband signal processing channel for data interaction with the external device.
  • the input/output circuit 105 acquires the baseband signal processing channel from the external device.
  • the work task configuration information, and the work task configuration information is sent to the baseband signal processing channel; the baseband signal processing channel, specifically according to the work task configuration information, the pseudo code and the pseudo code sent by the pseudo code broadcast circuit
  • the baseband signal obtained by the buffer performs a work task
  • the work task configuration information can be referred to the relevant part later in this document, which will not be described here.
  • the baseband signal processing channel outputs the work task result corresponding to the work task
  • the input/output circuit 105 is further configured to obtain the work task result output by the baseband signal processing channel, and send the work task result.
  • the external device can be a dedicated or general-purpose processor, or a double-rate synchronous dynamic random access memory (DDR), and the external device can also be other types of memory, and the input and output circuits can pass through the AXI4.
  • the protocol is connected to an external device.
  • the first duty cycle described in the following embodiments may be any one of the duty cycles, the second duty cycle being a duty cycle different from the first duty cycle, and in some embodiments, the first The duty cycle and the second duty cycle refer to two adjacent work cycles.
  • FIG. 4 is a schematic structural diagram of still another satellite signal processing device according to an embodiment of the present invention, such as As shown in FIG. 2, the embodiment includes: a digital front end circuit 401, a buffer 402, and a baseband signal processing channel 403.
  • the baseband signal processing channel is one or more, and the working principle of each baseband signal processing channel is The technical effects achieved are the same, and one of the baseband signal processing channels is described as an example, and other details are not described one by one.
  • the digital front end circuit processes the radio frequency signal received by the antenna to obtain a baseband signal; the buffer buffers the baseband signal obtained by the digital front end circuit; and the baseband signal processing channel is obtained according to the slave buffer in the first working cycle.
  • the baseband signal time-division performs a plurality of work tasks assigned by an external device.
  • the work tasks include capturing tasks or tracking tasks.
  • the external device may allocate multiple work tasks for the baseband signal processing channel, assuming that each work cycle is Nms, and if the multiple work tasks allocated for the first work cycle are task 0, task 1, and task 2, the baseband signal
  • the processing channel time-division executes a plurality of work tasks allocated by the external device, that is, the baseband signal processing channel executes the task 0 first, then the task 1 and finally the task 2, and the second work cycle is allocated in the first work cycle.
  • the plurality of work tasks are task 3, task 4, and task 5.
  • the baseband signal processing channel performs a plurality of work tasks allocated by the external device in a time-sharing manner, that is, the baseband signal processing channel executes the task 3 first in the second work cycle, and then Task 4 is executed, and task 5 is finally executed, as shown in FIG. 5A.
  • the length of time for performing each task is determined according to the amount of data of the baseband signal required to obtain the task. Therefore, the length of time may be the same or different, and the present invention is not limited thereto.
  • the satellite signal processing apparatus in this embodiment may include a pseudo code circuit broadcast circuit as described above, and may have all the technical features in the foregoing embodiments.
  • the external device can allocate a plurality of work tasks to the baseband signal processing channel at one time, and the baseband signal processing channel processes the plurality of work tasks in a time-sharing manner in a working cycle, thereby improving utilization of hardware resources and task processing efficiency.
  • the amount of baseband signal data required for performing one of the plurality of work tasks is greater than that obtained by the baseband signal processing channel from the buffer during the first work cycle.
  • the baseband signal data amount is processed, after the baseband signal acquired from the buffer is processed, the work task is suspended, as shown in FIG. 5B, assuming that each work cycle is Nms, the baseband signal data required for task 0 is The amount needs to be acquired within 3 working cycles. The amount of baseband signal data required for task 1 needs to be acquired within 2 working cycles. Therefore, in the first working cycle, the processing is obtained from the buffer.
  • the baseband signal processing channel continues to perform the suspended work task according to the baseband signal acquired from the buffer during the second duty cycle. Specifically, as shown in FIG. 5B, after entering the second duty cycle, the baseband signal processing channel continues to execute the suspended task 0 according to the baseband signal acquired from the buffer in the second duty cycle, and the slave buffer is processed. Get the baseband data, suspend task 0, and continue to execute task 1 that is suspended. After processing the baseband signal of task 1, task 3 is performed; after entering the next working cycle, the baseband signal processing channel continues to execute the suspended task 0 according to the baseband signal acquired from the buffer during the duty cycle, after processing the task 0 After the baseband signal, task 4 is executed, and after the baseband signal of task 4 is processed, task 5 is performed.
  • the baseband signal processing channel may preferentially execute the suspended work task (as shown in FIG. 5B) in the second work cycle, or may perform the suspended work task last. .
  • the device further includes: an input/output circuit 404, wherein the input/output circuit 404 serves as a communication connection between the external device and the baseband signal processing channel.
  • the device acquires configuration information of the multiple work tasks from an external device in a first work cycle, and sends configuration information of the work task to the baseband signal processing channel; the baseband signal processing channel 403 is at first During the work cycle, according to the configuration information of the work task, a plurality of work tasks allocated by the external device are time-divisionally performed on the baseband signal acquired from the buffer.
  • the configuration information of the work task includes: pseudo code stepping, carrier stepping, initial pseudo code phase, initial carrier phase, number of searched code phases, number of non-coherent integrations, incoherent time, satellite number, GNSS system number, work One or more of the type of task, the sampling frequency of the digital front-end circuit, and the antenna number. As shown in Table 1:
  • the input/output circuit further writes the work task result output by the baseband signal processing channel to the external device.
  • the specific explanation is as described above.
  • the baseband signal processing channel further includes: a work task management circuit 4031, and the input/output circuit 404 acquires the plurality of jobs from an external device during the first work cycle.
  • the configuration information of the task, and the configuration information of the work task is sent to the work task management circuit;
  • the baseband signal processing channel 403 is specifically configured according to the work task in the work task management circuit in the first work cycle.
  • the information, the baseband signal acquired from the buffer is time-divisionally executed by a plurality of work tasks allocated by the external device. Specifically, the external device allocates the plurality of work tasks to the baseband signal processing channel.
  • the satellite signal processing device may include a control register, and the control register may be connected to an external device through an APB4 protocol, and the external device may control
  • the register performs a write operation to specify the number of work tasks for the satellite signal processing device
  • the input/output circuit 404 acquires configuration information of the plurality of work tasks from the external device in the first work cycle, and the work task is The configuration information is sent to the work task management circuit, and the baseband signal processing channel performs the plurality of work tasks in a time-sharing manner according to the configuration information of the work tasks in the work task management circuit.
  • the work task management circuit of the baseband signal processing channel may include a T group task management register, and the baseband signal processing channel may perform at most T work tasks, and the external device may allocate T work tasks to the baseband signal processing channel at most.
  • Each task corresponds to a task management register, and each task management register can be saved. Configuration information for a work task.
  • the external device can know whether the work task has been executed by querying the task management circuit. In addition, by querying the work task management circuit, it is also known which of the plurality of work tasks are suspended.
  • the digital front end circuit includes a timer 4011, and the duration of the working period is configured by the timer 4011.
  • the digital front end circuit may include a timer.
  • the timer starts counting.
  • the timer counter reaches the preset maximum value, a timer interrupt is generated, and the counter is reset to zero.
  • restart counting that is, a timed interrupt indicates the beginning or end of a duty cycle.
  • the duration of the duty cycle can be configured by setting the timer.
  • the satellite signal processing device may include a control register, and the external device may set the timer by writing data to the control register to achieve the purpose of configuring the duty cycle.
  • FIG. 8 is a schematic structural diagram of still another satellite signal processing device according to an embodiment of the present invention.
  • the device in this embodiment includes a digital front end circuit 801, a buffer 802, and a baseband signal processing channel 803.
  • the first baseband signal storage space 8021 and the second baseband signal storage space 8022 are included in the device.
  • a digital front end circuit for processing a radio frequency signal received by the antenna to obtain a baseband signal; a buffer for buffering a baseband signal obtained by the digital front end circuit; and a baseband signal processing channel for a first duty cycle according to the buffer
  • the baseband signal acquired in the first baseband signal storage space performs a work task; in the second duty cycle, the work task is performed according to the baseband signal acquired from the second baseband signal storage space in the buffer.
  • the digital front end circuit alternately writes the baseband signal to the two baseband signal storage spaces by using the ping-pong address strategy, and the baseband signal processing channel alternately processes the baseband signals of the two baseband signal storage spaces by using the ping-pong address strategy, as shown in FIG.
  • the baseband signal processing channel may acquire the baseband signal from the first baseband signal storage space of the buffer during the second working period Nms (first duty cycle), And performing a work task according to the baseband signal, and the digital front end circuit writes the baseband signal into the second baseband signal storage space of the buffer; in the third working cycle Nms (second duty cycle), the baseband signal processing channel can be cached
  • the baseband signal is acquired in the second baseband signal storage space, and the work task is performed according to the baseband signal, and the digital front end circuit writes the baseband signal into the first baseband signal storage space of the buffer.
  • the satellite signal processing apparatus of this embodiment may include a pseudo code broadcast circuit as described above, and may adopt all relevant technical features of the pseudo code broadcast circuit.
  • the baseband signal processing device of the satellite signal processing device in the present embodiment can also perform the plurality of work tasks assigned by the external device in a time-sharing manner, and refer to all the technical features of the foregoing sections.
  • the baseband signal is alternately obtained from the two baseband signal storage spaces by using the ping-pong address strategy, the baseband signal processing channel is improved to obtain the baseband signal efficiency, and the baseband signal processing channel is improved. Processing efficiency and hardware resource utilization.
  • an input/output circuit 804 may be further included. As shown in FIG. 10, the input/output circuit 804 is external from the external device during the first working cycle and the second working cycle. Obtaining configuration information of the work task, and sending configuration information of the work task to the baseband signal processing channel;
  • the baseband signal processing channel in the first working period, according to a baseband signal obtained from a first baseband signal storage space in the buffer and a work task acquired by the input/output circuit in a first work cycle Configuring information to perform a work task; during the second duty cycle, configuring a baseband signal acquired from a second baseband signal storage space in the buffer and a work task acquired by the input/output circuit in a second duty cycle Information performs work tasks.
  • the external device may set two configuration information storage spaces, which are respectively a first configuration information storage space and a second configuration information storage space, as shown in FIG.
  • An output circuit configured to acquire configuration information of the work task from a first configuration information storage space of an external device during the first work cycle; and set externally during the second work cycle Acquiring configuration information of the work task in the second configuration information storage space; and transmitting configuration information of the work task to the baseband signal processing channel.
  • the baseband signal processing channel uses the ping-pong address policy to alternately obtain the configuration information of the work task from the two configuration information storage spaces. As shown in Figure 12.
  • the input/output circuit acquires configuration information of the work task from the first configuration information storage space of the external device, and performs work according to the baseband signal acquired from the first baseband signal storage space in the buffer. task.
  • the input/output circuit acquires configuration information of the work task from the second configuration information storage space of the external device, and performs a work task according to the baseband signal acquired from the second baseband signal storage space in the buffer.
  • the two configuration information storage spaces are set by the external device, and the configuration information of the work tasks is obtained by alternately using the ping-pong address policy from the two configuration information storage spaces, thereby improving the efficiency of obtaining the configuration information of the work tasks.
  • the external device can set two task result storage spaces, which are respectively the first task result storage space and the second task result storage space, as shown in FIG.
  • the input/output circuit writes a processing result of the baseband signal processing channel output to a first task result storage space of the external device.
  • the input/output circuit writes the processing result output by the baseband signal processing channel to the second task result storage space of the external device.
  • the input/output circuit alternately writes the processing result to the two task result storage spaces using the ping-pong address policy, as shown in FIG.
  • the DEF writes a baseband signal to the first baseband signal storage space; during the second duty cycle (first duty cycle), the baseband signal processing channel processes the baseband signal of the first baseband signal storage space, And writing the processing result to the first task result storage space, obtaining configuration information of the work task from the first configuration information storage space, and writing the baseband signal to the second baseband signal storage space by the DEF; in the third work cycle (second work a period), the baseband signal processing channel processes the baseband signal of the second baseband signal storage space, and writes the processing result to the second task result storage space, and acquires the configuration information of the work task from the second configuration information storage space, and the DEF to the first baseband signal
  • the storage space is written into the baseband signal; in the fourth working cycle, the baseband signal processing channel processes the baseband signal of the first baseband signal storage space, and writes the processing result to the first task result storage space, and obtains from the first configuration information storage space.
  • the configuration information of the work task, the DEF writes the baseband signal to the first base
  • two task result storage spaces are set by the external device, and the processing result is alternately written into the two task result storage spaces by using the ping-pong address policy, thereby improving the efficiency of writing the task result.
  • the input/output circuit writes the processing result of the output of the baseband signal processing channel to the first working cycle.
  • the task result storage space of the external device In the second duty cycle, the input/output circuit also writes the processing result of the baseband signal processing channel output to the task result storage space of the external device.
  • the DEF writes the baseband signal to the first baseband signal storage space; during the second duty cycle (the first duty cycle), the baseband signal processing channel processes the first baseband signal.
  • the baseband signal of the storage space is written, and the processing result is written to the task result storage space, the configuration information of the work task is obtained from the first configuration information storage space, and the DEF writes the baseband signal to the second baseband signal storage space; in the third work cycle (second working cycle), the baseband signal processing channel processes the baseband signal of the second baseband signal storage space, and writes the processing result to the task result storage space, and obtains the configuration information of the work task from the second configuration information storage space, and the DEF is first The baseband signal storage space is written into the baseband signal; in the fourth working cycle, the baseband signal processing channel processes the baseband signal of the first baseband signal storage space, and writes the processing result to the task result storage space, and obtains from the first configuration information storage space The configuration information of the work task, the DEF writes the baseband signal to the second baseband signal storage space.
  • the baseband is When the signal processing channel does not receive the configuration information of the work task sent by the input/output circuit, that is, when the configuration information of the work task sent by the input/output circuit is not received within a preset time, the baseband signal processing circuit according to the The work task configuration information acquired by the baseband signal processing channel in a work cycle to perform a work task.
  • the first duty cycle and the second work week The duration of the period is configurable.
  • One possible implementation manner is as shown in FIG. 17, by setting the timer 8011 in the digital front end circuit, configuring the duration of the first working period and the second working period through the timer 8011, and also by using the software to work cycle. For details on how to configure the configuration, refer to the previous section, and details are not mentioned here.
  • FIG. 18 is a schematic structural diagram of still another satellite signal processing apparatus according to an embodiment of the present invention.
  • FIG. 18 is a schematic diagram of the embodiment shown in FIG. 17, further including a pseudo code broadcast circuit 805, and a pseudo code broadcast circuit 805 and Each of the plurality of baseband signal processing channels is connected.
  • a pseudo code of a plurality of satellites is stored in the pseudo code broadcast circuit 805.
  • the baseband signal processing channel 803 is specifically configured to perform a work task according to a pseudo code sent by the pseudo code broadcast circuit and a baseband signal acquired from a first baseband signal storage space in the buffer in a first working period; During the two duty cycles, the work task is performed according to the pseudo code transmitted by the pseudo code broadcast circuit and the baseband signal acquired from the second baseband signal storage space in the buffer. Specifically, performing a work task can perform multiple work tasks in a time-sharing manner within one work cycle.
  • FIG. 19 is a structural diagram of a drone according to an embodiment of the present invention. As shown in FIG. 19, the drone in this embodiment may include:
  • a power system 1920 mounted on the fuselage for providing flight power
  • Satellite signal processing device 1930 as previously described.
  • the drone may further include a processor 1940 for controlling the data output by the satellite signal processing device to control the drone.
  • the power system 1920 includes one or more of a propeller, a motor, and an ESC, wherein the installation error detecting device of the speedometer is configured to detect an installation error angle of the accelerometer, further to the acceleration as described above.
  • the actual output data is corrected.
  • the unmanned aerial vehicle may further include a pan/tilt 1950 and an imaging device 1960, and the imaging device 1960 is mounted on the main body of the unmanned aerial vehicle through the pan/tilt 1950.
  • the imaging device 1960 is used for image or video shooting during the flight of the UAV, including but not limited to multi-spectral imager, hyperspectral imager, visible light camera and infrared camera, etc.
  • PTZ 1950 is multi-axis transmission and stabilization
  • the pan/tilt motor compensates the photographing angle of the image forming apparatus 1960 by adjusting the rotation angle of the rotating shaft, and prevents or reduces the shake of the image forming apparatus 1960 by setting an appropriate buffer mechanism.
  • drones Receiving control commands of the control terminal 2000, such as flight control commands, pan/tilt control commands, or control commands of the imaging device 1960 on the drone, and controlling the drone to perform corresponding actions according to the instructions.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing storage medium includes: read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk, and the like, which can store program codes. Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明实施例提供一种卫星信号处理设备和无人机,通过卫星信号处理设备设置数字前端电路、缓存器、伪码广播电路和基带信号处理通道,其中,伪码广播电路分别与多个基带信号处理通道中的每一个连接。伪码广播电路中存储有多个卫星的伪码。使得每个基带信号处理通道无需存储多个卫星的伪码,减少了系统存储资源的消耗。

Description

卫星信号处理设备和无人机 技术领域
本发明实施例涉及信号处理领域,尤其涉及一种卫星信号处理设备和无人机。
背景技术
目前,基于卫星的导航系统已成为主流的定位和导航系统。目前卫星定位导航系统有:美国的全球定位系统(Global Positioning System,GPS),俄罗斯的GLONASS,欧盟的GALILEO和中国的北斗导航系统。全球导航卫星系统(Global Navigation Satellite System,GNSS)接收机能够提高用户设备(例如智能终端、汽车、无人机等)的定位精度,然而,GNSS接收机在基带信号处理部分需要进行大量的运算(例如相关运算等),因此卫星信号的捕获或者跟踪所需时间长。以GPS信号为例,需要进行频率、时间和伪码三个维度的搜索,才能确定可见卫星的信号参数值,现有技术中的GNSS接收机存在系统存储资源消耗较大、定位时间长、信号处理效率低的缺陷。
发明内容
本发明实施例提供一种卫星信号处理设备和无人机,以减少了系统存储资源的消耗、提高卫星信号的处理效率。
第一方面,本发明实施例提供一种卫星信号处理设备,包括:数字前端电路、缓存器、伪码广播电路和基带信号处理通道,所述基带信号处理通道为多个,
所述数字前端电路,用于将天线接收到的射频信号进行处理以获取基带信号;
所述缓存器,用于对所述数字前端电路获取的基带信号进行缓存;
所述伪码广播电路,分别与所述多个基带信号处理通道中的每一个连接,用于保存多个卫星的伪码,并向所述基带信号处理通道发送卫星的伪码;
所述基带信号处理通道,用于根据所述伪码广播电路发送的伪码和从所述缓存器获取的基带信号执行工作任务。
第二方面,本发明实施例提供一种卫星信号处理设备,包括:数字前端电路、缓存器和基带信号处理通道,
所述数字前端电路,用于将天线接收到的射频信号进行处理以获取基带信号;
所述缓存器,用于对所述数字前端电路获取的基带信号进行缓存;
所述基带信号处理通道,用于在第一工作周期内根据从所述缓存器获取的基带信号分时执行由外部设备分配的多个工作任务。
第三方面,本发明实施例提供一种卫星信号处理设备,包括:
数字前端电路,用于将天线接收到的射频信号进行处理以获取基带信号;
缓存器,用于缓存所述数字前端电路获取的基带信号;
基带信号处理通道,用于:
在第一工作周期内,根据从所述缓存器中的第一基带信号存储空间中获取的基带信号执行工作任务;
在第二工作周期内,根据从所述缓存器中的第二基带信号存储空间中获取的基带信号执行工作任务。
第四方面,本发明实施例提供一种无人机,包括如第一方面所述卫星信号处理设备。
第五方面,本发明实施例提供一种无人机,包括如第二方面所述卫星信号处理设备。
第六方面,本发明实施例提供一种无人机,包括如第三方面所述卫星信号处理设备。
本发明实施例提供的卫星信号处理设备和无人机,通过卫星信号处理设备设置数字前端电路、缓存器、伪码广播电路和基带信号处理通道,其中,伪码广播电路分别与多个基带信号处理通道中的每一个连接,伪码广播电路中存储有多个卫星的伪码,使得每个基带信号处理通道无需存储多个卫星的伪码,减少了系统存储资源的消耗。另外,基带信号处理通道在一个工作周期可以分时地执行多个工作任务,提高了卫星信号的处理效率,最大化地利用了硬件资源。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种卫星信号处理设备的结构示意图;
图2为本发明实施例提供的另一种卫星信号处理设备的结构示意图;
图3为本发明实施例提供的再一种卫星信号处理设备的结构示意图;
图4为本发明实施例提供的又一种卫星信号处理设备的结构示意图;
图5A为本发明实施例提供的一种分时任务处理示意图;
图5B为本发明实施例提供的另一种分时任务处理示意图;
图6为本发明实施例提供的又一种卫星信号处理设备的结构示意图;
图7为本发明实施例提供的又一种卫星信号处理设备的结构示意图;
图8为本发明实施例提供的又一种卫星信号处理设备的结构示意图;
图9为本发明实施例提供的一软硬件交互方式示意图;
图10为本发明实施例提供的又一种卫星信号处理设备的结构示意图;
图11为本发明实施例提供的又一种卫星信号处理设备的结构示意图;
图12为本发明实施例提供的另一软硬件交互方式示意图;
图13为本发明实施例提供的又一种卫星信号处理设备的结构示意图;
图14为本发明实施例提供的再一软硬件交互方式示意图;
图15为本发明实施例提供的又一软硬件交互方式示意图;
图16为本发明实施例提供的又一软硬件交互方式示意图;
图17为本发明实施例提供的又一种卫星信号处理设备的结构示意图;
图18为本发明实施例提供的又一种卫星信号处理设备的结构示意图;
图19为本发明无人机实施例的结构示意。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述, 显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供的实施例包括但不限于以下发明点:
本发明实施例通过设置伪码广播电路存储多个卫星的伪码,从而,使得每个基带信号处理通道无需存储导航系统中所有卫星的伪码,减少了系统存储资源的消耗。
本发明实施例通过基带信号处理通道在一个工作周期内分时处理多个工作任务,提高了硬件资源的利用率以及任务处理效率。
本发明实施例通过在缓存器中设置两个基带信号存储空间,利用乒乓地址策略交替从两个基带信号存储空间获取基带信号,提高基带信号处理通道获取基带信号的效率,以及提高基带信号处理通道的处理效率和硬件资源利用率;通过外部设备设置两个配置信息存储空间,利用乒乓地址策略交替从两个配置信息存储空间获取工作任务的配置信息,提高了获取工作任务的配置信息的效率;通过外部设备设置两个任务结果存储空间,利用乒乓地址策略交替向两个任务结果存储空间写入处理结果,提高了写任务结果的效率。
下面以几个具体地实施例对本发明的技术方面进行说明,需要注意的是,在不冲突的前提下,本文中提供的这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图1为本发明卫星信号处理设备实施例一的结构示意图,如图1所示,本实施例的卫星信号处理设备包括:数字前端电路(Digital Front End,DFE)101、缓存器102、伪码广播电路103和基带信号处理通道104,其中,所述基带信号处理通道104为多个。伪码广播电路103分别与多个基带信号处理通道中的每一个连接。伪码广播电路103中存储多个卫星的伪码。其中多个卫星可以是指预设的导航系统的所有卫星,所述预设的导航系统可以为北斗、GPS、伽利略、格洛纳斯系统中的一种或多种。
其中,所述数字前端电路将天线接收到的射频信号进行处理以获取基带信号;所述缓存器对所述数字前端电路获取的基带信号进行缓存;伪码广播电路向所述基带信号处理通道发送卫星的伪码,所述卫星的伪码为所述基带信号处理通道中的一个或多个信道执行工作任务所需的卫星的伪码;基带信 号处理通道根据所述伪码广播电路发送的伪码和从所述缓存器获取的基带信号执行工作任务。
可选地,上述工作任务包括捕获任务或跟踪任务。
本实施例通过卫星信号处理设备设置数字前端电路、缓存器、伪码广播电路和基带信号处理通道,其中,伪码广播电路分别与多个基带信号处理通道中的每一个连接。伪码广播电路中存储有预设的导航系统的所有卫星的伪码。伪码广播电路可以向基带信号处理通道发送通道所需的卫星的伪码使得每个基带信号处理通道无需存储预设的导航系统的所有卫星的伪码,减少了系统存储资源的消耗。
在图1所示实施例中,一种可能的实现方式,基带信号处理通道中的第一基带信号处理通道,具体用于向伪码广播电路发送的伪码请求;伪码广播电路,具体用于向所述多个基带信号处理通道广播伪码请求指示的伪码;所述第一基带信号处理通道,用于根据所述伪码请求指示的伪码和从缓存器输出的数字中频信号执行捕获或跟踪任务。具体地,所述第一基带信号处理通道可以是所述多个基带信号处理通道中的任意一个基带信号处理通道,当第一基带信号处理通道在执行工作任务时需要某个卫星的伪码时,第一基带信号处理通道可以向伪码广播电路发送伪码请求,以请求伪码广播电路向第一基带信号处理通道发送伪码请求指示的伪码。其中,伪码请求中可以包含卫星的编号或者其他能够唯一识别卫星的标识,伪码广播电路接收到所述伪码请求后,根据伪码请求确定对应的卫星的伪码,伪码广播电路向所述多个基带信号处理通道广播该卫星的伪码,第一基带信号处理通道接收伪码广播电路广播的卫星的伪码,并根据该卫星的伪码和从缓存器获取的基带信号来执行工作任务。伪码广播电路对所述多个基带信号处理通道广播卫星的伪码,无需对基带信号处理通道一一发送卫星的伪码,这样可以有效地降低系统的功耗。
可选地,基带信号处理通道可以在每次执行工作任务时向伪码广播电路发送伪码请求。也可以当执行前一个工作任务与执行当前工作任务所需的伪码不同时,向所述伪码广播电路发送的伪码请求,当执行前一个工作任务与执行当前工作任务所需的伪码相同时,则无需向所述伪码广播电路发送的伪码请求,从而,提高基带信号处理通道的处理效率,降低系统功耗。
可选地,在图1所示实施例的基础上,所述基带信号处理通道可以包括本地伪码存储电路1041;如图2所示,所述本地伪码存储电路1041用于接收并保存所述伪码广播电路广播的伪码;基带信号处理通道,具体用于根据本地伪码存储电路1041保存的伪码和从缓存器输出的基带信号执行工作任务。具体地,伪码广播电路向所述多个基带信号处理通道广播卫星的伪码,当基带信号处理通道需要所述卫星的伪码时,基带信号处理通道的本地伪码存储电路1041就会保存所述卫星的伪码,基带信号处理通道根据本地伪码存储电路保存的伪码和从所述缓存器获取的基带信号执行工作任务,当基带信号处理通道不需要该卫星的伪码时,本地伪码存储电路1041则不会保存该卫星的伪码。本地伪码存储电路只保存执行当前工作任务所需的伪码,节省基带信号处理通道的存储空间,降低系统功耗。
可选地,在图1或图2所示实施例的基础上,所述卫星信号处理设备还包括:输入输出电路105,如图3所示,图3以在图2所示实施例的基础上为例示出,输入输出电路105作为外部设备与基带信号处理通道之间的通信连接设备,用于与外部设备进行数据交互,具体地,输入输出电路105从外部设备获取所述基带信号处理通道的工作任务配置信息,并将所述工作任务配置信息发送给所述基带信号处理通道;基带信号处理通道,具体根据所述工作任务配置信息、所述伪码广播电路发送的伪码和从所述缓存器获取的基带信号执行工作任务,所述工作任务配置信息可以参见本文后面的相关部分,此处先不赘述。在执行完所述工作任务后,基带信号处理通道将与工作任务对应的工作任务结果输出,输入输出电路105还用于获取基带信号处理通道输出的工作任务结果,并将所述工作任务结果发送到外部设备,其中,外部设备可以为专用或者通用的处理器,或者为双倍速率同步动态随机存储器(Dual Data Rate,DDR),外部设备也可以为其他类型的存储器,输入输出电路可以通过AXI4协议与外部设备连接。
下述各实施例所描述的第一工作周期可以是工作周期中的任一个工作周期,第二工作周期是不同于第一工作周期的一个工作周期,在某些实施例中,所述第一工作周期和第二工作周期是指任意相邻的两个工作周期。
图4为本发明实施例提供的又一种卫星信号处理设备的结构示意图,如 图2所示,本实施例,包括:数字前端电路401、缓存器402和基带信号处理通道403,可选地,基带信号处理通道为一个或者多个,每个基带信号处理通道的工作原理和实现的技术效果相同,以其中一个基带信号处理通道为例进行描述,其他的不一一赘述。
数字前端电路将天线接收到的射频信号进行处理以获取基带信号;缓存器,对所述数字前端电路获取的基带信号进行缓存;基带信号处理通道,在第一工作周期内根据从缓存器获取的基带信号分时执行由外部设备分配的多个工作任务。可选地,工作任务包括捕获任务或跟踪任务。
具体地,外部设备可以为基带信号处理通道分配多个工作任务,假设每个工作周期为Nms,若为第一工作周期分配的多个工作任务分别为任务0、任务1和任务2,基带信号处理通道分时执行由外部设备分配的多个工作任务,即基带信号处理通道在第一工作周期内,首先执行任务0、然后执行任务1,最后执行任务2,若为第二工作周期分配的多个工作任务分别为任务3、任务4和任务5,基带信号处理通道分时执行由外部设备分配的多个工作任务,即基带信号处理通道在第二工作周期内,首先执行任务3、然后执行任务4,最后执行任务5,如图5A所示。其中,执行各任务的时间长度根据获取到该任务所需的基带信号的数据量确定,因此,时间长度可能相同也可能不同,对此,本发明不做限制。
需要说明的是,本实施例中的卫星信号处理设备可以包括如前所述的伪码电路广播电路,可以具备前述实施例中的所有技术特征。
本实施例,外部设备可以一次性向基带信号处理通道分配多个工作任务,基带信号处理通道在一个工作周期内分时处理多个工作任务,提高了硬件资源的利用率以及任务处理效率。
在图4所示实施例中,可选地,基带信号处理通道当执行所述多个工作任务中的一个工作任务所需的基带信号数据量大于第一工作周期内从所述缓存器获取的基带信号数据量时,在处理完从所述缓存器获取的基带信号后,将所述工作任务挂起,如图5B所示,假设每个工作周期为Nms,任务0所需的基带信号数据量需要3个工作周期内获取,任务1所需的基带信号数据量需要2个工作周期内获取,因此,在第一个工作周期内,处理完从缓存器获 取的任务0的基带信号后,将任务0挂起,执行任务1,处理完任务1的基带信号后,将任务1挂起,执行任务2。这样,可以有效地避免因某个任务所需的基带信号需等待获取而占用基带信号处理通道的硬件资源,从而,提高硬件资源的利用率以及任务处理效率。
可选地,基带信号处理通道在第二工作周期内根据从所述缓存器获取的基带信号继续执行被挂起的工作任务。具体地,如图5B所示,在进入第二工作周期后,基带信号处理通道根据在第二工作周期内从缓存器获取的基带信号继续执行被挂起的任务0,在处理完从缓存器获取的基带数据,将任务0挂起,继续执行被挂起的任务1。处理完任务1的基带信号后,执行任务3;在进入下一工作周期后,基带信号处理通道根据该工作周期从缓存器获取的基带信号继续执行被挂起的任务0,在处理完任务0的基带信号后,执行任务4,在处理完任务4的基带信号后,执行任务5。可选地,基带信号处理通道在第二工作周期内可以优先执行被挂起的工作任务(如图5B所示),也可以最后执行被挂起的工作任务,对此,本发明不做限制。
在图4所示实施例的基础上,如图6所示,进一步地,所述设备还包括:输入输出电路404,其中,输入输出电路404作为外部设备与基带信号处理通道之间的通信连接设备,在第一工作周期内从外部设备获取所述多个工作任务的配置信息,并将所述工作任务的配置信息发送给所述基带信号处理通道;所述基带信号处理通道403在第一工作周期内根据所述工作任务的配置信息、对从所述缓存器获取的基带信号分时执行由外部设备分配的多个工作任务。其中,工作任务的配置信息包括:伪码步进、载波步进、初始伪码相位、初始载波相位、搜索的码相位数目、非相干积分次数、非相干时间、卫星号、GNSS系统编号、工作任务的类型、数字前端电路的采样频率和天线号中的一种或多种。如表1所示:
表1
Figure PCTCN2017091243-appb-000001
Figure PCTCN2017091243-appb-000002
可选地,在第一工作周期内,所述输入输出电路还将所述基带信号处理通道输出的工作任务结果写入到所述外部设备。具体解释如前所述。
在图6所示实施例的基础上,进一步地,基带信号处理通道还包括:工作任务管理电路4031,所述输入输出电路404在所述第一工作周期内从外部设备获取所述多个工作任务的配置信息,并将所述工作任务的配置信息发送给所述工作任务管理电路;基带信号处理通道403具体在所述第一工作周期内根据工作任务管理电路中的所述工作任务的配置信息、对从缓存器获取的基带信号分时执行由外部设备分配的多个工作任务。具体地,外部设备为基带信号处理通道分配所述多个工作任务,在某些实施例中,卫星信号处理设备可以包括控制寄存器,控制寄存器可以通过APB4协议与外部设备连接,外部设备可以对控制寄存器进行写操作,为卫星信号处理设备指定工作任务的个数,输入输出电路404在所述第一工作周期内从外部设备获取所述多个工作任务的配置信息,并将所述工作任务的配置信息发送给工作任务管理电路,基带信号处理通道会根据工作任务管理电路中的工作任务的配置信息按顺序分时执行所述多个工作任务。其中,基带信号处理通道的工作任务管理电路可以包括T组任务管理寄存器,则该基带信号处理通道可以最多执行T个工作任务,外部设备最多可以给基带信号处理通道分配T个工作任务。每一个工作任务都对应一个任务管理寄存器,每一个任务管理寄存器都可以保存一 个工作任务的配置信息。
可选地,在第一周期内,基带信号处理通道如果已经执行工作任务,可以将与工作任务相对应的工作任务结果输出,然后将对所述工作任务对应的任务管理寄存器进行标记,在第一工作周期结束后,外部设备可以通过查询所述任务管理电路就可以知道工作任务是否已经被执行完。另外,通过查询工作任务管理电路,还可以知道所述多个工作任务中有哪些工作任务被挂起的。
在图4-图6所示实施例中,可选地,工作周期的时长是可配置的。其中,一种可能实现方式,如图7所示,数字前端电路中包括定时器4011,通过定时器4011对工作周期的时长进行配置。具体地,数字前端电路中可以包括定时器,当卫星信号处理设备开始启动工作时,定时器开始计数,当定时器的计数器到达预先设置的最大值时,就会产生定时中断,并且计数器归零并重新开始计数,即一个定时中断表示一个工作周期的开始或结束。通过对定时器进行设置即可以配置工作周期的时长。进一步地,如前所述,所述卫星信号处理设备可以包括控制寄存器,外部设备可以通过对控制寄存器写入数据的方式对定时器进行设置以实现对工作周期进行配置的目的。
图8为本发明实施例提供的又一种卫星信号处理设备的结构示意图,如图8所示,本实施例的设备包括数字前端电路801、缓存器802和基带信号处理通道803,其中,缓存器中包含第一基带信号存储空间8021和第二基带信号存储空间8022。
数字前端电路,将天线接收到的射频信号进行处理以获取基带信号;缓存器,缓存所述数字前端电路获取的基带信号;基带信号处理通道,在第一工作周期内,根据从所述缓存器中的第一基带信号存储空间中获取的基带信号执行工作任务;在第二工作周期内,根据从所述缓存器中的第二基带信号存储空间中获取的基带信号执行工作任务。
其中,数字前端电路利用乒乓地址策略交替向两个基带信号存储空间写入基带信号,基带信号处理通道利用乒乓地址策略交替处理两个基带信号存储空间的基带信号,如图9所示。在第一个工作周期Nms内,数字前端电路 向缓存器的第一基带信号存储空间中写入数据,在第二个工作周期Nms(第一工作周期)内,基带信号处理通道可以从缓存器的第一基带信号存储空间中获取基带信号,并根据所述基带信号执行工作任务,同时数字前端电路向缓存器的第二基带信号存储空间中写入基带信号;在第三个工作周期Nms(第二工作周期)基带信号处理通道可以从缓存器的第二基带信号存储空间中获取基带信号,并根据所述基带信号执行工作任务,同时数字前端电路向缓存器的第一基带信号存储空间中写入基带信号。
需要说明的是,本实施例的卫星信号处理设备可以包括如前所述的伪码广播电路,并可以采用伪码广播电路所有的相关技术特征。另外,本实施例中的卫星信号处理设备的基带信号处理设备也可以分时地执行外部设备分配的所述多个工作任务,并引用前述部分的所有技术特征。
本实施例,通过在缓存器中设置两个基带信号存储空间,利用乒乓地址策略交替从两个基带信号存储空间获取基带信号,提高基带信号处理通道获取基带信号的效率,以及提高基带信号处理通道的处理效率和硬件资源利用率。
在图8所示实施例的基础上,进一步地,还可以包括输入输出电路804,如图10所示,所述输入输出电路804分别在第一工作周期和所述第二工作周期从外部设备获取所述工作任务的配置信息,并将所述工作任务的配置信息发送给所述基带信号处理通道;
所述基带信号处理通道,在所述第一工作周期内,根据从缓存器中的第一基带信号存储空间中获取的基带信号和所述输入输出电路在第一工作周期内获取的工作任务的配置信息执行工作任务;在所述第二工作周期内,根据从缓存器中的第二基带信号存储空间中获取的基带信号和所述输入输出电路在第二工作周期内获取的工作任务的配置信息执行工作任务。
在图8或图10所示实施例的基础上,外部设备可以设置两个配置信息存储空间,分别为第一配置信息存储空间和第二配置信息存储空间,如图11所示,所述输入输出电路,在所述第一工作周期内从外部设备的第一配置信息存储空间中获取所述工作任务的配置信息;在所述第二工作周期内从外部设 备的第二配置信息存储空间中获取所述工作任务的配置信息;并将所述工作任务的配置信息发送给所述基带信号处理通道。基带信号处理通道,利用乒乓地址策略交替从两个配置信息存储空间获取工作任务的配置信息。如图12所示。具体地,在第一工作周期内,输入输出电路从外部设备的第一配置信息存储空间中获取工作任务的配置信息,并根据从缓存器中第一基带信号存储空间中获取的基带信号执行工作任务。在第二工作周期内,输入输出电路从外部设备的第二配置信息存储空间中获取工作任务的配置信息,并根据从缓存器中第二基带信号存储空间中获取的基带信号执行工作任务。
本实施例,通过外部设备设置两个配置信息存储空间,利用乒乓地址策略交替从两个配置信息存储空间获取工作任务的配置信息,提高了获取工作任务的配置信息的效率。
在图8、图10或图11所示实施例的基础上,外部设备可以设置两个任务结果存储空间,分别为第一任务结果存储空间和第二任务结果存储空间,如图13所示,在所述第一工作周期内,所述输入输出电路将所述基带信号处理通道输出的处理结果写入到所述外部设备的第一任务结果存储空间。在所述第二工作周期内,输入输出电路将所述基带信号处理通道输出的处理结果写入到所述外部设备的第二任务结果存储空间。输入输出电路利用乒乓地址策略交替向两个任务结果存储空间写入处理结果,如图14所示。在第一个工作周期内,DEF向第一基带信号存储空间写入基带信号;在第二个工作周期内(第一工作周期),基带信号处理通道处理第一基带信号存储空间的基带信号,并写处理结果到第一任务结果存储空间,从第一配置信息存储空间获取工作任务的配置信息,DEF向第二基带信号存储空间写入基带信号;在第三个工作周期内(第二工作周期),基带信号处理通道处理第二基带信号存储空间的基带信号,并写处理结果到第二任务结果存储空间,从第二配置信息存储空间获取工作任务的配置信息,DEF向第一基带信号存储空间写入基带信号;在第四个工作周期内,基带信号处理通道处理第一基带信号存储空间的基带信号,并写处理结果到第一任务结果存储空间,从第一配置信息存储空间获取工作任务的配置信息,DEF向第二基带信号存储空间写入基带信号。
本实施例,通过外部设备设置两个任务结果存储空间,利用乒乓地址策略交替向两个任务结果存储空间写入处理结果,提高了写任务结果的效率。
在图8、图10或图11所示实施例的基础上,一种可能的实现方式,在第一工作周期内,输入输出电路还将所述基带信号处理通道输出的处理结果写入到所述外部设备的任务结果存储空间。在第二工作周期内,输入输出电路还将所述基带信号处理通道输出的处理结果写入到所述外部设备的所述任务结果存储空间。如图15所示:在第一个工作周期内,DEF向第一基带信号存储空间写入基带信号;在第二个工作周期内(第一工作周期),基带信号处理通道处理第一基带信号存储空间的基带信号,并写处理结果到任务结果存储空间,从第一配置信息存储空间获取工作任务的配置信息,DEF向第二基带信号存储空间写入基带信号;在第三个工作周期内(第二工作周期),基带信号处理通道处理第二基带信号存储空间的基带信号,并写处理结果到任务结果存储空间,从第二配置信息存储空间获取工作任务的配置信息,DEF向第一基带信号存储空间写入基带信号;在第四个工作周期内,基带信号处理通道处理第一基带信号存储空间的基带信号,并写处理结果到任务结果存储空间,从第一配置信息存储空间获取工作任务的配置信息,DEF向第二基带信号存储空间写入基带信号。
在图8-图14任一所示实施例的基础上,在第二工作周期内,当在预设时间内没有接收到所述输入输出电路发送的工作任务的配置信息时,根据从所述缓存器中的第二存储空间中获取的基带信号和所述输入输出电路在所述第一工作周期内获取的工作任务的配置信息执行工作任务。具体地,如图16所示,在定时器的定时中断到来是,即进入第二工作周期内,定时器的计数器归零重新开始计数,若计数到外部设备设定的预设时间时,基带信号处理通道没有接收到所述输入输出电路发送的工作任务的配置信息时,即在预设时间内没有接收到所述输入输出电路发送的工作任务的配置信息时,基带信号处理电路会根据第一工作周期中基带信号处理通道获取的工作任务配置信息来执行工作任务。
在图8-图16任一所示实施例中,可选地,第一工作周期和第二工作周 期的时长是可配置的。其中,一种可能实现方式,如图17所示,通过在数字前端电路设置定时器8011,通过定时器8011对第一工作周期和第二工作周期的时长进行配置,也可以通过软件对工作周期的时长进行配置具体的配置过程请参见前述部分,此处不再赘述。
图18为本发明实施例提供的又一种卫星信号处理设备的结构示意图,图18是在图17所示实施例的基础上,进一步还包括伪码广播电路805,伪码广播电路805分别与多个基带信号处理通道中的每一个连接。伪码广播电路805中存储有多个卫星的伪码。基带信号处理通道803具体用于在第一工作周期内根据所述伪码广播电路发送的伪码和从所述缓存器中的第一基带信号存储空间中获取的基带信号执行工作任务;在第二工作周期内,根据所述伪码广播电路发送的伪码和从所述缓存器中的第二基带信号存储空间中获取的基带信号执行工作任务。具体地,执行工作任务可以在一个工作周期内分时执行多个工作任务。
本发明实施例提供一种无人机,图19为本发明实施例提供的一种无人机的结构图。如图19所示,本实施例中的无人机,可以包括:
机身1910;
安装在机身上的动力系统1920,用于提供飞行动力;
如前所述的卫星信号处理设备1930。
具体地,无人机还可以包括处理器1940,用于对卫星信号处理设备输出的数据来对无人机进行控制。其中,动力系统1920包括螺旋桨、电机、电调中的一种或多种,其中所述的速度计的安装误差检测设备用于检测加速度计的安装误差角度,进一步地如前所述的对加速度的实际输出数据进行修正。其中,无人飞行器还可以包括云台1950以及成像设备1960,成像设备1960通过云台1950搭载于无人飞行器的主体上。成像设备1960用于在无人飞行器的飞行过程中进行图像或视频拍摄,包括但不限于多光谱成像仪、高光谱成像仪、可见光相机及红外相机等,云台1950为多轴传动及增稳系统,云台电机通过调整转动轴的转动角度来对成像设备1960的拍摄角度进行补偿,并通过设置适当的缓冲机构来防止或减小成像设备1960的抖动。其中,无人机 接收控制终端2000的控制指令,例如飞行控制指令、云台控制指令或无人机上的成像设备1960的控制指令,并根据所述指令控制无人机执行相应的动作。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:只读内存(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (33)

  1. 一种卫星信号处理设备,包括:数字前端电路、缓存器、伪码广播电路和基带信号处理通道,所述基带信号处理通道为多个,其特征在于:
    所述数字前端电路,用于将天线接收到的射频信号进行处理以获取基带信号;
    所述缓存器,用于对所述数字前端电路获取的基带信号进行缓存;
    所述伪码广播电路,分别与所述多个基带信号处理通道中的每一个连接,用于保存多个卫星的伪码,并向所述基带信号处理通道发送卫星的伪码;
    所述基带信号处理通道,用于根据所述伪码广播电路发送的伪码和从所述缓存器获取的基带信号执行工作任务。
  2. 根据权利要求1所述的设备,其特征在于,
    所述基带信号处理通道中的第一基带信号处理通道,具体用于向所述伪码广播电路发送伪码请求;
    所述伪码广播电路,具体用于向所述多个基带信号处理通道广播所述伪码请求指示的伪码;
    所述第一基带信号处理通道,具体用于根据所述伪码请求指示的伪码和从所述缓存器获取的基带信号执行工作任务。
  3. 根据权利要求2所述的设备,其特征在于,
    所述基带信号处理通道中的第一基带信号处理通道,具体用于当执行前一个工作任务与执行当前工作任务所需的伪码不同时,向所述伪码广播电路发送的伪码请求。
  4. 根据权利要求2或3所述的设备,其特征在于,
    所述伪码请求中至少包括卫星的编号。
  5. 根据权利要求1-4任一项所述的设备,其特征在于,所述基带信号处理通道包括本地伪码存储电路;
    所述本地伪码存储电路,用于接收并保存所述伪码广播电路广播的伪码;
    所述基带信号处理通道,具体用于根据所述本地伪码存储电路保存的伪码和从所述缓存器获取的基带信号执行工作任务。
  6. 根据权利要求1-5任一项所述的设备,其特征在于,所述设备还包括:输入输出电路;
    所述输入输出电路,用于从外部设备获取所述基带信号处理通道的工作任务配置信息,并将所述工作任务配置信息发送给所述基带信号处理通道;
    所述基带信号处理通道,具体用于根据所述工作任务配置信息、所述伪码广播电路发送的伪码和从所述缓存器获取的基带信号执行工作任务。
  7. 根据权利要求1-6任一项所述的设备,其特征在于,
    所述工作任务包括捕获任务或跟踪任务。
  8. 一种卫星信号处理设备,包括:数字前端电路、缓存器和基带信号处理通道,其特征在于:
    所述数字前端电路,用于将天线接收到的射频信号进行处理以获取基带信号;
    所述缓存器,用于对所述数字前端电路获取的基带信号进行缓存;
    所述基带信号处理通道,用于在第一工作周期内根据从所述缓存器获取的基带信号分时执行由外部设备分配的多个工作任务。
  9. 根据权利要求8所述的设备,其特征在于,
    所述基带信号处理通道,还用于:
    当执行所述多个工作任务中的一个工作任务所需的基带信号数据量大于第一工作周期内从所述缓存器获取的基带信号数据量时,在处理完从所述缓存器获取的基带信号,将所述工作任务挂起。
  10. 根据权利要求9所述的设备,其特征在于,
    所述基带信号处理通道,还用于:
    所述基带信号处理通道,用于在第二工作周期内根据从所述缓存器获取的 基带信号继续执行被挂起的工作任务,其中,所述第一工作周期和所述第二工作周期为相邻的工作周期。
  11. 根据权利要求8-10任一项所述的设备,其特征在于,所述设备还包括:
    输入输出电路,用于在第一工作周期内从外部设备获取所述多个工作任务的配置信息,并将所述工作任务的配置信息发送给所述基带信号处理通道;
    所述基带信号处理通道,具体用于在第一工作周期内根据所述工作任务的配置信息、对从所述缓存器获取的基带信号分时执行由外部设备分配的多个工作任务。
  12. 根据权利要求11所述的设备,其特征在于,所述基带信号处理通道包括工作任务管理电路;
    所述输入输出电路,用于在所述第一工作周期内从外部设备获取所述多个工作任务的配置信息,并将所述工作任务的配置信息发送给所述工作任务管理电路;
    所述基带信号处理通道,具体用于在所述第一工作周期内根据工作任务管理电路中的所述工作任务的配置信息、对从缓存器获取的基带信号分时执行由外部设备分配的多个工作任务。
  13. 根据权利要求11或12所述的设备,其特征在于,
    所述基带信号处理通道,还用于:
    在第一周期内,当所述多个工作任务中的一个工作任务被执行完时,将所述一个工作任务对应的工作任务结果输出;
    所述输入输出电路,还用于在第一工作周期内,将所述基带信号处理通道输出的工作任务结果发送到所述外部设备。
  14. 根据权利要求8-13任一项所述的设备,其特征在于,
    所述第一工作周期的时长是可配置的。
  15. 根据权利要求14所述的设备,其特征在于,
    所述数字前端电路包括定时器;
    所述定时器,用于对所述第一工作周期的时长进行配置。
  16. 根据权利要求8-15任一项所述的设备,其特征在于,
    所述工作任务包括捕获任务或跟踪任务。
  17. 根据权利要求8-16任一项所述的设备,其特征在于,
    所述基带信号处理通道为多个。
  18. 根据权利要求11或12所述的设备,其特征在于,
    所述工作任务的配置信息包括:伪码步进、载波步进、初始伪码相位、初始载波相位、搜索的码相位数目、非相干积分次数、非相干时间、卫星号、全球导航卫星系统GNSS系统编号、工作任务的类型、数字前端电路的采样频率和天线号中的一种或多种。
  19. 根据权利要求8-18任一项所述的设备,其特征在于,还包括:伪码广播电路;
    所述伪码广播电路,与所述基带信号处理通道连接,用于保存多个卫星的伪码,并向所述基带信号处理通道发送卫星的伪码;
    所述基带信号处理通道,具体用于在第一工作周期内根据所述伪码广播电路发送的伪码和从所述缓存器获取的基带信号分时执行由外部设备分配的多个工作任务。
  20. 一种卫星信号处理设备,其特征在于,包括:
    数字前端电路,用于将天线接收到的射频信号进行处理以获取基带信号;
    缓存器,用于缓存所述数字前端电路获取的基带信号;
    基带信号处理通道,用于:
    在第一工作周期内,根据从所述缓存器中的第一基带信号存储空间中获取的基带信号执行工作任务;
    在第二工作周期内,根据从所述缓存器中的第二基带信号存储空间中获取的基带信号执行工作任务。
  21. 根据权利要求20所述的设备,其特征在于,还包括:输入输出电路;
    所述输入输出电路,用于分别在第一工作周期和所述第二工作周期从外部设备获取所述工作任务的配置信息,并将所述工作任务的配置信息发送给所述基带信号处理通道;
    所述基带信号处理通道,用于:
    在所述第一工作周期内,根据从缓存器中的第一基带信号存储空间中获取的基带信号和所述输入输出电路在第一工作周期内获取的工作任务的配置信息执行工作任务;
    在所述第二工作周期内,根据从缓存器中的第二基带信号存储空间中获取的基带信号和所述输入输出电路在第二工作周期内获取的工作任务的配置信息执行工作任务。
  22. 根据权利要求21所述的设备,其特征在于,
    所述输入输出电路,具体用于:
    在所述第一工作周期内从外部设备的第一配置信息存储空间中获取所述工作任务的配置信息;
    在所述第二工作周期内从外部设备的第二配置信息存储空间中获取所述工作任务的配置信息;
    并将所述工作任务的配置信息发送给所述基带信号处理通道;
  23. 根据权利要求21或22所述的设备,其特征在于,
    基带信号处理通道,用于:
    在第一工作周期内,当工作被执行完时,将所述一个工作任务对应的工作任务结果输出;
    在第一工作周期内,当工作被执行完时,将所述一个工作任务对应的工作任务结果输出;所述输入输出电路,还用于
    在所述第一工作周期内,将所述基带信号处理通道输出的工作任务结果发 送到所述外部设备的第一任务结果存储空间。
    在所述第二工作周期内,将所述基带信号处理通道输出的工作任务结果发送到所述外部设备的第二任务结果存储空间。
  24. 根据权利要求21所述的设备,其特征在于,
    基带信号处理通道,用于:
    在第一工作周期内,当工作被执行完时,将所述一个工作任务对应的工作任务结果输出;
    在第一工作周期内,当工作被执行完时,将所述一个工作任务对应的工作任务结果输出;
    所述输入输出电路,还用于
    在所述第一工作周期内,将所述基带信号处理通道输出的处理结果写入到所述外部设备的任务结果存储空间。
    在所述第二工作周期内,将所述基带信号处理通道输出的处理结果写入到所述外部设备的所述任务结果存储空间。
  25. 根据权利要求22所述的设备,其特征在于,
    所述基带信号处理通道,具体用于:
    在第二工作周期内,当在预设时间内没有接收到所述输入输出电路发送的工作任务的配置信息时,根据从所述缓存器中的第二存储空间中获取的基带信号和所述输入输出电路在所述第一工作周期内获取的工作任务的配置信息执行工作任务。
  26. 根据权利要求20-25任一项所述的设备,其特征在于,
    所述第一工作周期和第二工作周期为相邻的两个工作周期。
  27. 根据权利要求20-26任一项所述的设备,其特征在于,
    所述第一工作周期和所述第二工作周期的时长均可配置。
  28. 根据权利要求27所述的设备,其特征在于,
    所述数字前端电路包括定时器;
    所述定时器,用于对所述第一工作周期和所述第二工作周期的时长进行配置。
  29. 根据权利要求20-28任一项所述的设备,其特征在于,还包括:伪码广播电路;
    所述伪码广播电路,与所述基带信号处理通道连接,用于保存多个卫星的伪码,并向所述基带信号处理通道发送卫星的伪码;
    所述基带信号处理通道,具体用于:
    在第一工作周期内根据所述伪码广播电路发送的伪码和从所述缓存器中的第一基带信号存储空间中获取的基带信号执行工作任务;
    在第二工作周期内,根据所述伪码广播电路发送的伪码和从所述缓存器中的第二基带信号存储空间中获取的基带信号执行工作任务。
  30. 根据权利要求29所述的设备,其特征在于,所述基带信号处理通道,具体用于:
    在第一工作周期内,根据所述伪码广播电路发送的伪码和从所述缓存器中的第一基带信号存储空间中获取的基带信号分时执行由外部设备分配的多个工作任务;
    在第二工作周期内,根据所述伪码广播电路发送的伪码和从所述缓存器中的第二基带信号存储空间中获取的基带信号分时执行由外部设备分配的多个工作任务。
  31. 一种无人机,其特征在于,包括如权利要求1-7任一项所述卫星信号处理设备。
  32. 一种无人机,其特征在于,包括如权利要求8-19任一项所述卫星信号处理设备。
  33. 一种无人机,其特征在于,包括如权利要求20-30任一项所述卫星信 号处理设备。
PCT/CN2017/091243 2017-06-30 2017-06-30 卫星信号处理设备和无人机 WO2019000425A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2017/091243 WO2019000425A1 (zh) 2017-06-30 2017-06-30 卫星信号处理设备和无人机
CN201780012871.7A CN108885271A (zh) 2017-06-30 2017-06-30 卫星信号处理设备和无人机
US16/713,572 US20200116868A1 (en) 2017-06-30 2019-12-13 Satellite signal processing apparatus and unmanned aerial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/091243 WO2019000425A1 (zh) 2017-06-30 2017-06-30 卫星信号处理设备和无人机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/713,572 Continuation US20200116868A1 (en) 2017-06-30 2019-12-13 Satellite signal processing apparatus and unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2019000425A1 true WO2019000425A1 (zh) 2019-01-03

Family

ID=64325902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091243 WO2019000425A1 (zh) 2017-06-30 2017-06-30 卫星信号处理设备和无人机

Country Status (3)

Country Link
US (1) US20200116868A1 (zh)
CN (1) CN108885271A (zh)
WO (1) WO2019000425A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113015105B (zh) * 2021-03-08 2022-06-03 哈尔滨工业大学(深圳) 空天地一体化网络的编码缓存内容放置与资源联合优化方法
CN114609654A (zh) * 2022-05-07 2022-06-10 北京国卫星通科技有限公司 北斗国产化中低功耗分时信号采集方法、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010117016A1 (ja) * 2009-04-09 2010-10-14 古野電気株式会社 基準信号発生システム、タイミング信号供給装置及び基準信号発生装置
CN203535229U (zh) * 2013-09-18 2014-04-09 中国科学院嘉兴微电子与系统工程中心 多模多频gnss伪码生成装置
CN105137460A (zh) * 2015-08-27 2015-12-09 武汉梦芯科技有限公司 一种卫星导航系统基带信号处理系统和方法
CN105988126A (zh) * 2015-02-15 2016-10-05 潍坊果壳视界信息科技有限公司 应用于农业物联网领域的多模卫星导航模块
CN106291619A (zh) * 2016-07-29 2017-01-04 中国人民解放军国防科学技术大学 一种导航卫星星间链路无线长周期扩频码信号高性能捕获方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3240720B2 (ja) * 1992-12-14 2001-12-25 株式会社デンソー 多チャンネルgps受信機
US7994976B2 (en) * 2006-04-19 2011-08-09 Mediatek Inc. Satellite signal adaptive time-division multiplexing receiver and method
CN105572702A (zh) * 2015-12-23 2016-05-11 航天恒星科技有限公司 一种滑动窗口环路跟踪方法及装置
CN106842248A (zh) * 2016-11-23 2017-06-13 西安电子科技大学昆山创新研究院 一种提高北斗接收机定时定位速度的新方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010117016A1 (ja) * 2009-04-09 2010-10-14 古野電気株式会社 基準信号発生システム、タイミング信号供給装置及び基準信号発生装置
CN203535229U (zh) * 2013-09-18 2014-04-09 中国科学院嘉兴微电子与系统工程中心 多模多频gnss伪码生成装置
CN105988126A (zh) * 2015-02-15 2016-10-05 潍坊果壳视界信息科技有限公司 应用于农业物联网领域的多模卫星导航模块
CN105137460A (zh) * 2015-08-27 2015-12-09 武汉梦芯科技有限公司 一种卫星导航系统基带信号处理系统和方法
CN106291619A (zh) * 2016-07-29 2017-01-04 中国人民解放军国防科学技术大学 一种导航卫星星间链路无线长周期扩频码信号高性能捕获方法

Also Published As

Publication number Publication date
US20200116868A1 (en) 2020-04-16
CN108885271A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
US9813783B2 (en) Multi-camera dataset assembly and management with high precision timestamp requirements
US11070732B2 (en) Method for image processing, device, unmanned aerial vehicle, and receiver
WO2019119282A1 (zh) 图像和位置信息的关联方法、装置及可移动平台
US20170269601A1 (en) System and method of sensor triggering for synchronized operation
US9277118B2 (en) Image pickup apparatus, method for controlling the same, and program for obtaining position information and direction information
WO2021037285A1 (zh) 一种测光调整方法、装置、设备和存储介质
US9983558B2 (en) Control systems state vector management using co-processing and multiport ram
EP4040783A1 (en) Imaging device, camera-equipped drone, and mode control method, and program
WO2019000425A1 (zh) 卫星信号处理设备和无人机
US9742976B2 (en) Peer to peer camera communication
CN110383810A (zh) 信息处理设备、信息处理方法和信息处理程序
JP7273975B2 (ja) データ処理の方法、装置、機器及び記憶媒体
US11018982B2 (en) Data flow scheduling between processors
JP2014052370A (ja) 衛星信号受信機を発見するためのシステムおよび方法
JP2011522223A (ja) トリガー動作衛星測位
WO2020107195A1 (zh) 一种信息同步方法、无人机、负载设备、系统及存储介质
CN114500768B (zh) 相机同步拍摄方法、装置、无人设备及存储介质
US11796685B2 (en) Positioning control device
JP6641829B2 (ja) 測位装置、測位方法及びプログラム
CN108206940B (zh) 视频串流的接合与传输方法、网关装置及观看装置
CN113765611B (zh) 时间戳确定方法及相关设备
CN110771183B (zh) 一种信息处理方法、飞行器、系统及存储介质
JP2019215638A (ja) 表示制御装置及びプログラム
JP6815439B2 (ja) 仮想物体を表示する端末装置とサーバ装置とを含むシステム及び該サーバ装置
JP2020517146A (ja) 監視情報放送方法及び監視情報放送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916285

Country of ref document: EP

Kind code of ref document: A1