WO2019000384A1 - 具有垂直侧壁敏感层的红外探测器及其制备方法 - Google Patents

具有垂直侧壁敏感层的红外探测器及其制备方法 Download PDF

Info

Publication number
WO2019000384A1
WO2019000384A1 PCT/CN2017/091082 CN2017091082W WO2019000384A1 WO 2019000384 A1 WO2019000384 A1 WO 2019000384A1 CN 2017091082 W CN2017091082 W CN 2017091082W WO 2019000384 A1 WO2019000384 A1 WO 2019000384A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
fin structure
layer
infrared detector
sensitive layer
Prior art date
Application number
PCT/CN2017/091082
Other languages
English (en)
French (fr)
Inventor
康晓旭
Original Assignee
上海集成电路研发中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710516500.4A external-priority patent/CN107180888B/zh
Priority claimed from CN201710516399.2A external-priority patent/CN107393999B/zh
Application filed by 上海集成电路研发中心有限公司 filed Critical 上海集成电路研发中心有限公司
Priority to US16/624,907 priority Critical patent/US20220149106A1/en
Publication of WO2019000384A1 publication Critical patent/WO2019000384A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity
    • G01J5/024Special manufacturing steps or sacrificial layers or layer structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14689MOS based technologies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • G01J2005/202Arrays

Definitions

  • the present invention relates to the field of image sensor technologies, and in particular, to an infrared detector having a vertical sidewall sensitive layer and a method for fabricating the same.
  • the traditional uncooled infrared detector sensitive layer is a planar structure with a sensitive layer sandwiched between the upper and lower electrodes.
  • the resistance value is affected by many factors such as lithography and etching size, film thickness, etc., resulting in poor uniformity; after the uniformity of the pixel sensitive resistance in the array becomes worse, it needs to be increased by ASIC circuit design.
  • the compensation resistor is compensated, but the compensation capability of the technology is limited, and the complexity and cost of the circuit are increased, resulting in a decrease in overall product performance and an increase in cost.
  • the resistivity of some sensitive materials is high, the reduction of the bias voltage must lower the design value of the sensitive resistor. At this time, it is very difficult for the conventional planar structure.
  • the present invention is directed to an infrared detector and a method of fabricating the same, which reduces the influence of photolithography on a sensitive layer by providing a vertical sidewall sensitive layer.
  • the present invention provides an infrared detector comprising: at least one fin structure; and a sensitive layer on a sidewall of the fin structure.
  • the fin structure includes a plurality of parallel fins in a first direction and a fin in a second direction, and the fins in the second direction connect the ends of the two fins in the first direction;
  • the direction and the second direction are perpendicular to each other.
  • the fin structure is M-shaped or U-shaped.
  • the lower electrode layer at the bottom of the fin structure, the bottom electrode layer and the bottom layer of the sensitive layer Contact; and an upper electrode layer above the fin structure, the upper electrode layer being in contact with the top of the sensitive layer.
  • a portion of one sidewall of the fin structure in the second direction is not provided with a sensitive layer, and a leading end of the upper electrode layer is connected to an edge of the upper electrode layer, and the second portion is not provided with the sensitive layer
  • the sidewall of the fin structure of the direction extends to the surface of the semiconductor substrate; and, the bottom of the leading end of the upper electrode layer is not in contact with the lower electrode layer.
  • the sensitive layer is also located on top of the fin structure.
  • the sensitive layer is only located on the sidewall of the fin structure, and the sensitive layer surrounds the fin structure, and the sensitive layer has an opening to form an end of the sensitive layer on both sides of the opening.
  • the sensitive layer is attached to the inner side wall and the outer side wall of the fin structure, and is not disposed on the side wall of the fin in the second direction.
  • the detector further includes a first electrode layer and a second electrode layer, the first electrode layer and the second electrode layer are respectively connected to the two ends one by one, and between the first electrode layer and the second electrode layer Do not touch each other.
  • the first electrode layer is attached to an end surface of one side wall of the fin structure
  • the second electrode layer is attached to an end surface of the other side wall of the fin structure.
  • the width of the opening is less than or equal to the distance between the first electrode layer and the second electrode layer.
  • a barrier layer formed by ion implantation is further disposed on top of the fin structure between the sensitive layers.
  • the sensitive layer is in a continuous state around the sidewalls of the plurality of fins of the fin structure.
  • the present invention also provides a method for preparing an infrared detector, which comprises:
  • Step 01 providing a semiconductor substrate
  • Step 02 preparing a lower electrode layer on a surface of the semiconductor substrate
  • Step 03 preparing at least one fin structure on the lower electrode layer
  • Step 04 forming a sensitive layer on the sidewall of the fin structure
  • Step 05 forming an upper electrode layer above the fin structure, the upper electrode layer being in contact with the top of the sensitive layer.
  • a fin structure is prepared by an etching process, the fin structure includes a plurality of parallel fins along a first direction and a fin along a second direction, and the fins along the second direction will follow The ends of the two fins in one direction are connected; the first direction and the second direction are perpendicular to each other.
  • the step 04 includes: first, depositing a sensitive layer on the sidewall and the top of the fin; then, etching and removing a portion of the sensitive layer of the outer sidewall of the fin in the second direction, and the outer sidewall of the fin in the second direction Exposed.
  • the step 05 includes: first, depositing an upper electrode layer on the semiconductor substrate completing step 04; then, etching the upper electrode layer of the sidewall of the sensitive layer and the upper electrode layer of a portion of the surface of the semiconductor substrate And retaining the upper electrode layer at the top of the sensitive layer and the top of the fin structure, and the upper electrode layer of the outer sidewall exposed by the fin in the second direction, thereby forming an upper electrode layer pattern and a lead end pattern forming the upper electrode layer.
  • the sensitive layer located at the top of the fin structure is also removed.
  • the present invention also provides a method for preparing an infrared detector, which comprises:
  • Step 01 forming at least one fin structure
  • Step 02 forming a sensitive layer on all sidewalls of the fin structure
  • Step 03 etching the sensitive layer on a part of the sidewall of the fin structure, etching an opening in the sensitive layer, so that the sensitive layer has two ends, and the two ends are not in contact, and the opening will be part of the fin structure The side walls are exposed;
  • Step 04 forming a first electrode layer and a second electrode layer at the two ends, respectively, the first electrode layer and the second electrode layer are not in contact.
  • the method further comprises: performing ion implantation on the top of the fin structure to form a barrier layer.
  • the step 04 includes: first, forming an electrode material layer on the top of the fin structure and the sidewall of the exposed fin structure, the top layer of the sensitive layer and the sidewall; then, etching the electrode material layer to form the first electrode layer and the first The two electrode layers, the first electrode layer and the second electrode layer are not in contact.
  • the width of the formed opening is less than or equal to the distance between the first electrode layer and the second electrode layer.
  • W is the width
  • L is the length
  • t is the thickness.
  • the thickness of the doped film is ignored.
  • the thickness of the undoped film is L, and the length of the fin structure is taken as W, so that the error R obtained is small.
  • FIG. 1 is a top plan view of an infrared detector according to a preferred embodiment of the present invention.
  • Figure 2 is a cross-sectional view showing the structure of an infrared detector in the direction of AA' of Figure 1.
  • Figure 3 is a cross-sectional view showing the structure of an infrared detector in the direction of BB' of Figure 1.
  • Figure 4 is a cross-sectional view showing another infrared detector of Figure 1 along the AA' direction.
  • Figure 5 is a cross-sectional view showing another infrared detector of Figure 1 along the BB' direction.
  • FIG. 6 is a schematic flow chart of a method for preparing an infrared detector according to a preferred embodiment of the present invention.
  • FIG. 7 to 14 are schematic diagrams showing respective preparation steps of the method for preparing the infrared detector of FIG.
  • 15 is a top plan view of an infrared detector according to a preferred embodiment of the present invention.
  • FIG. 16 is a schematic structural view of the infrared detector of FIG. 15 along the A direction.
  • 17 is a top plan view of an infrared detector according to another preferred embodiment of the present invention.
  • FIG. 18 is a schematic structural view of the infrared detector of FIG. 17 along the B direction.
  • FIG. 19 is a schematic flow chart of a method for preparing an infrared detector according to a preferred embodiment of the present invention.
  • 20 to 29 are schematic diagrams showing respective preparation steps of the method for preparing the infrared detector of FIG.
  • the infrared detector of the present invention includes: at least one fin structure; and a sensitive layer on a sidewall of the fin structure.
  • the fin structure of one embodiment of the present invention may include a plurality of parallel fins in a first direction and a fin in a second direction, and the fins in the second direction connect the ends of the two fins in the first direction
  • the first direction and the second direction are perpendicular to each other.
  • it may be in the shape of a comb.
  • the fin structure of one embodiment of the present invention may be M-shaped or U-shaped.
  • FIGS. 1 to 14 Specific embodiments. It should be noted that the drawings are in a very simplified form, using a non-precise ratio, and are only used to facilitate the purpose of the present embodiment.
  • an infrared detector of the present embodiment includes a semiconductor substrate 00, a fin structure 02, a sensitive layer 03, an upper electrode layer 04, and a lower electrode layer 01.
  • the fin structure 02 on the semiconductor substrate 00 has a total of four fins; the sensitive layer 03 is located on the sidewall of the fin structure 02.
  • the side wall of the fin structure 02 formed by the sensitive layer 03 around the four fins is in a continuous state.
  • the three fins 02 are arranged in parallel, wherein the remaining one fin 02 is vertically intersected with each end of the three fins 02, as shown in FIG.
  • the fin structure is M-shaped.
  • the lower electrode layer 01 is located at the bottom of the fin structure 02, and the lower electrode layer 01 is in contact with the bottom of the sensitive layer 03.
  • the upper electrode layer 04 is located above the fin structure 02, and the upper electrode layer 04 is in contact with the top of the sensitive layer 03.
  • the lower electrode layer 01 is embedded in the surface layer of the semiconductor substrate 00; alternatively, the lower electrode layer 01 may be located on the surface of the semiconductor substrate 00, and a dielectric layer is deposited on the surface of the semiconductor substrate 00 exposed outside the lower electrode layer 01.
  • the bottom of the leading end 041 of the upper electrode layer 04 is not in contact with the lower electrode layer 01, as shown in FIG. 3, in this embodiment, The terminal end 041 of the electrode layer 04 is not disposed at the bottom of the fin structure 02. Electrode layer 01.
  • the sensitive layer 03 can also function as a signal transmission body, in order to better avoid a short circuit between the upper electrode layer 04 and the lower electrode layer 01, a portion of the outer sidewall of the remaining fin is not provided with the sensitive layer 03, Here, a portion of the outer sidewall of the horizontal fin is not provided with the sensitive layer 03; the leading end 041 of the upper electrode layer 04 is connected to an edge of the upper electrode layer 04, and is attached to the remaining fin of the sensitive layer 03 (horizontal fin)
  • the sidewall extends to the surface of the semiconductor substrate 00. Further, in the present embodiment, the leading end 04 of the upper electrode layer 04 also extends to the surface of the semiconductor substrate 00, and continues to extend along the surface of the semiconductor substrate 00 to be a horizontal portion.
  • the doped film is the sensitive layer 03, ignoring the sensitive layer.
  • the thickness of 03, the thickness of the undoped film, that is, the height of the fin structure 02 is L, and the circumference of one fin structure composed of a plurality of fins is approximately W, so that the error R obtained is small.
  • the infrared detector of other embodiments of the present invention is different from the infrared detector of the above embodiment in that the sensitive layer 03 is also located at the top of the fin structure 02, so that the fin can be reduced.
  • the line width of the upper electrode layer 04 at the top of the structure 02 further reduces the resistivity ⁇ .
  • FIG. 6 which is described by taking the preparation method of the above-mentioned infrared detector as an example, and specifically includes:
  • Step 01 Please refer to Figure 7, providing a semiconductor substrate 00;
  • the semiconductor substrate 00 can be, but not limited to, a silicon substrate.
  • Step 02 Please refer to FIG. 8, preparing a lower electrode layer 01 on the surface of the semiconductor substrate 00;
  • the preparation of the lower electrode layer 01 may include: first depositing the lower electrode layer 01 on the surface of the semiconductor substrate 00, and then etching the lower electrode layer 01 by using a photolithography and etching process to form a desired lower layer.
  • the pattern of the electrode layer 01 is deposited on the surface of the exposed semiconductor substrate 00.
  • the preparation of the lower electrode layer 01 may include: etching a trench for filling the lower electrode layer 01 on the surface of the semiconductor substrate 00, then depositing the lower electrode layer 01 in the trench, and planarizing it by a chemical mechanical polishing process The surface of the electrode layer 01 is flush with the surface of the semiconductor substrate 00.
  • Step 03 Please refer to Figures 9 and 10, at least one fin structure 02 is prepared on the lower electrode layer 01;
  • FIG. 10 is a schematic structural view of FIG. 9; here, the fin structure 02 may be prepared by using a photolithography and etching process, and the fin structure 02 formed by the four fins of the above embodiment may adopt a dual pattern process.
  • the image of the above fin structure can be split into a vertical fin pattern and a horizontal fin pattern, and then each sub-pattern is respectively used for photolithography and etching processes to obtain a final fin structure pattern.
  • the lower electrode layer 01 is not flush with the edge of the horizontal fin, in order to avoid short circuit between the upper electrode layer and the lower electrode layer.
  • Step 04 Referring to Figures 11 and 12, a sensitive layer 03 is formed on the sidewall of the fin structure 02;
  • FIG. 12 is a schematic top view of FIG. 11; first, a sensitive layer 03 is deposited on the sidewalls and top of the fin structure 02 and the surface of the semiconductor substrate 00, and the sensitive layer 03 is formed into a P-type by ion implantation; The portion of the sensitive layer 03 located on the outer sidewall of the remaining fin is removed to expose the outer sidewall of the remaining fin.
  • the sensitive layer 03 on the top of the fin structure 02 is removed.
  • Step 05 Referring to Figures 13 and 14, an upper electrode layer 04 is formed over the fin structure 02, and the upper electrode layer 04 is in contact with the top of the sensitive layer 03.
  • FIG. 14 is a schematic plan view of FIG. 13 .
  • an upper electrode layer 04 is deposited on the semiconductor substrate 00 where the step 04 is completed; then, the upper electrode layer 04 of the sidewall of the sensitive layer 03 and the upper electrode layer 04 of the surface of the portion of the semiconductor substrate 00 are etched away and retained.
  • An infrared detector of this embodiment includes a fin structure 201, a sensitive layer 203, a first electrode and a second electrode 204.
  • the fin structure 201 of the present embodiment may have a U-shaped fin structure including two fins in a first direction and fins in a second direction, and the fins along the second direction will be along The ends of the two fins in the first direction are connected.
  • the first direction and the second direction are perpendicular
  • the first direction is a vertical direction
  • the second direction is a horizontal direction.
  • the sensitive layer 203 is disposed on the side wall of the fin structure 201, and has an opening such that the sensitive layer 203 forms the ends of the two attached side walls, and the two ends are not in contact.
  • the sensitive layer 203 is attached to the inner sidewall and the outer sidewall of the U-shaped fin structure, and is not disposed on the sidewall of the fin in the second direction (horizontal direction) of the U-shaped fin structure.
  • the width of the opening may be less than or equal to the distance between the first electrode layer and the second electrode layer 204.
  • the width of the opening is greater than the distance between the first electrode layer and the second electrode layer 204.
  • the opening is not disposed on the sidewall of the fin in the horizontal direction of the U-shaped fin structure, and is disposed. The sidewalls of the two fins in the vertical direction of the U-shaped fin structure.
  • the barrier layer 202 formed by ion implantation may be disposed on the top of the fin structure 201 between the sensitive layers 203 to avoid short circuit by avoiding electrical connection between the sensitive layers 203 of the sidewalls of the fin structure 201.
  • the first electrode layer and the second electrode layer 204 are connected to the two ends of the sensitive layer 203, respectively, and the first electrode layer and the second electrode layer 204 are not in contact with each other.
  • the first electrode layer is attached to the end surface of one side wall of the opening of the fin structure 201, and the second electrode layer is attached to the fin structure 201. The end surface of the other side wall of the opening.
  • R ⁇ *L/(W*t)
  • W is the width
  • L is the length
  • t is the thickness.
  • the doped film is a sensitive layer
  • the undoped film is a fin
  • the thickness of the sensitive layer is ignored.
  • the height is W
  • the perimeter of the fin structure is L, so that a higher resistivity R is obtained. Therefore, under the premise of ensuring uniformity of resistance and reducing the influence of photolithography and film thickness on the sensitive layer, vertical use is utilized.
  • the sidewalls enable flexible adjustment of the magnitude of the resistance of the sensitive layer 203.
  • the fin structure 201 herein is a rectangular fin structure
  • the sensitive layer 203 is disposed on the sidewall of the fin structure 201, and has an opening to make the sensitive
  • the layer 203 forms two end portions of the attached side wall, and the two end portions are not in contact; the first electrode layer and the second electrode layer 204 are respectively connected to the two end portions one by one, and the first electrode layer and the second electrode are respectively connected Layers 204 are not in contact with each other.
  • the structure of the detector is identical to the other structures of the detector formed by the U-shaped fin structure described above, and will not be described herein.
  • the method for preparing the infrared detector for the U-shaped fin structure in the embodiment may include the following steps:
  • Step 01 Referring to Figures 20-22, at least one fin structure 201 is formed;
  • a substrate 00 is provided.
  • the substrate 200 is further included: Depositing a material layer of the fin structure, then ion implantation forms a barrier layer 202 on the surface of the material layer of the fin structure, and finally, patterning the barrier layer 202 and the material layer of the fin structure to form a structure as shown in FIGS. 21 and 22 22 is a schematic plan view of FIG. 21.
  • Step 02 Please refer to FIGS. 23-25, forming a sensitive layer 203 on all sidewalls of the fin structure 201;
  • the sensitive layer 203 may be first deposited on the substrate 00 completing the step 01, as shown in FIG. 23; then the sensitive layer 203 of the fin structure 201 is removed by a plasma anisotropic etching process, and the sidewall of the fin structure 201 is retained.
  • the sensitive layer 203 is as shown in FIG. 24 and FIG. 25.
  • FIG. 25 is a schematic plan view of FIG.
  • Step 03 Referring to FIG. 26, the sensitive layer 203 on a part of the sidewall of the fin structure 201 is etched, and an opening is etched in the sensitive layer 203, so that the sensitive layer 203 has two ends and two ends Not contacting, and the opening exposes the sidewall of the partial fin structure 201;
  • the sensitive layer 203 of the outer sidewall of the fin of the fin structure 201 may be removed by a photolithography and etching process, and the width of the opening formed is less than or equal to between the first electrode layer and the second electrode layer. The distance exposes the outer sidewall of the horizontal fin.
  • Step 04 Referring to FIGS. 27-29, a first electrode layer and a second electrode layer 204 are formed at both ends, and the first electrode layer and the second electrode layer 204 are not in contact.
  • the tops of the two ends of the sensitive layer 203 may be slightly etched to a certain thickness, thereby ensuring the top and the fins of the first electrode layer and the second electrode layer 204.
  • the top of the structure 201 is flush, as shown in Figure 27, and Figure 27 is FIG. 26 is a schematic cross-sectional view of the second electrode layer and the second electrode layer 04.
  • the first electrode layer and the second electrode layer 04 are further formed by first forming a sidewall on the top of the fin structure 201 and the exposed fin structure 201, a top layer and a sidewall of the sensitive layer 203.
  • Electrode material layer then, etching the electrode material layer to form a first electrode layer and a second electrode layer 204, the first electrode layer and the second electrode layer 204 are not in contact, as shown in FIG. 28 and FIG. 29, FIG. 28 is a schematic view of the structure.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

一种具有垂直侧壁敏感层(03)的红外探测器及其制备方法,通过在半导体衬底(00)上形成至少一条鳍结构(02);在鳍结构(02)侧壁可以采用离子注入形成敏感层(03)。通过设置垂直侧壁敏感层(03)来降低光刻对敏感层(03)的影响,减小对敏感层(03)的灵敏度的影响。

Description

具有垂直侧壁敏感层的红外探测器及其制备方法 技术领域
本发明涉及图像传感器技术领域,具体涉及一种具有垂直侧壁敏感层的红外探测器及其制备方法。
背景技术
传统非制冷式红外探测器敏感层是平面结构,上下电极之间夹设敏感层。传统电阻设计时,其阻值受到光刻和刻蚀尺寸、薄膜厚度等诸多因素的影响,导致其均匀性变差;阵列内像元敏感电阻均匀性变差以后,需要通过ASIC电路设计中增加补偿电阻进行补偿,但该技术的补偿能力是有限的,且会增加电路的复杂性和成本,导致产品整体性能下降、成本上升。此外由于部分敏感材料的电阻率较高,而减小偏制电压必须降低敏感电阻的设计值,此时,对传统平面结构来说是非常困难的。
因此,急需研究如何降低光刻、薄膜厚度对敏感层的影响,从而提高敏感层精度和整个器件的灵敏度。
发明内容
为了克服以上问题,本发明旨在提供一种红外探测器及其制备方法,通过设置垂直侧壁敏感层来降低光刻对敏感层的影响。
为了达到上述目的,本发明提供了一种红外探测器,其包括:至少一条鳍结构;以及位于鳍结构的侧壁的敏感层。
优选地,所述鳍结构包括多条沿第一方向的平行的鳍和一条沿第二方向的鳍,沿第二方向的鳍将沿第一方向的两条鳍的端部连接起来;第一方向和第二方向相互垂直。
优选地,所述鳍结构呈M形、或U形。
优选地,位于鳍结构底部的下电极层,下电极层与敏感层底部相 接触;以及位于鳍结构上方的上电极层,上电极层与敏感层顶部相接触。
优选地,所述第二方向的鳍结构的一侧壁的一部分不设置敏感层,所述上电极层的引出端连接上电极层的一边缘,并且贴着不设置敏感层的所述第二方向的鳍结构的侧壁延伸至半导体衬底表面;并且,所述上电极层的引出端底部不与下电极层相接触。
优选地,所述敏感层还位于所述鳍结构的顶部。
优选地,所述敏感层仅位于所述鳍结构侧壁,且敏感层环绕贴附所述鳍结构,且敏感层具有一开口,从而形成敏感层在开口两侧的端部。
优选地,所述敏感层依附所述鳍结构的内侧壁和外侧壁,且不设置于所述沿第二方向的鳍的侧壁。
优选地,所述探测器还包括第一电极层和第二电极层,第一电极层和第二电极层分别与两个端部一一连接,并且第一电极层和第二电极层之间互不接触。
优选地,所述第一电极层依附在鳍结构的一个侧壁的端部表面,所述第二电极层依附在鳍结构的另一个侧壁的端部表面。
优选地,所述开口的宽度小于或等于第一电极层和第二电极层之间的距离。
优选地,位于敏感层之间的鳍结构顶部还设置有离子注入形成的阻挡层。
优选地,所述敏感层环绕鳍结构的多条鳍的侧壁呈连续态。
为了达到上述目的,本发明还提供了一种红外探测器的制备方法,其包括:
步骤01:提供一半导体衬底;
步骤02:在半导体衬底表面制备下电极层;
步骤03:在下电极层上制备至少一条鳍结构;
步骤04:在鳍结构的侧壁形成敏感层;
步骤05:在鳍结构上方形成上电极层,上电极层与敏感层顶部相接触。
优选地,所述步骤03中,采用刻蚀工艺制备鳍结构,所述鳍结构包括多条沿第一方向的平行的鳍和一条沿第二方向的鳍,沿第二方向的鳍将沿第一方向的两条鳍的端部连接起来;第一方向和第二方向相互垂直。
优选地,所述步骤04包括:首先,在鳍的侧壁和顶部沉积敏感层;然后,刻蚀去除位于第二方向的鳍的外侧壁的部分敏感层,将第二方向的鳍的外侧壁暴露出来。
优选地,所述步骤05包括:首先,在完成步骤04的半导体衬底上沉积一层上电极层;然后,刻蚀去除敏感层侧壁的上电极层和部分半导体衬底表面的上电极层,并保留敏感层顶部和鳍结构顶部的上电极层、所述第二方向的鳍所暴露的外侧壁的上电极层,从而形成上电极层图案以及形成上电极层的引出端图案。
优选地,所述步骤04中,刻蚀时,还去除位于鳍结构顶部的敏感层。
为了达到上述目的,本发明还提供了一种红外探测器的制备方法,其包括:
步骤01:形成至少一鳍结构;
步骤02:在鳍结构的全部侧壁形成敏感层;
步骤03:刻蚀鳍结构的部分侧壁上的敏感层,在敏感层中刻蚀出一开口,从而使得敏感层具有两个端部,且两个端部不接触,并且开口将部分鳍结构的侧壁暴露出来;
步骤04:在两个端部分别形成第一电极层和第二电极层,第一电极层和第二电极层不接触。
优选地,所述步骤01和步骤02之间,还包括:在鳍结构的顶部进行离子注入形成阻挡层。
优选地,所述步骤04包括:首先,在鳍结构顶部和暴露的鳍结构的侧壁、敏感层顶部和侧壁形成电极材料层;然后,刻蚀电极材料层,形成第一电极层和第二电极层,第一电极层和第二电极层不接触。
优选地,步骤03中,所形成的开口的宽度小于或等于第一电极层和第二电极层之间的距离。
本发明的红外探测器,采用垂直侧壁敏感层的设计,根据公式R=ρ*L/(W*t),W是宽度,L是长度,t是厚度,这里,忽略掺杂薄膜的厚度,非掺杂薄膜厚度作为L,鳍结构的长度作为W,从而得到的误差R较小。
附图说明
图1为本发明的一个较佳实施例的红外探测器的俯视结构示意图
图2为图1沿AA’方向的一种红外探测器的截面结构示意图
图3为图1沿BB’方向的一种红外探测器的截面结构示意图
图4为图1沿AA’方向的另一种红外探测器的截面结构示意图
图5为图1沿BB’方向的另一种红外探测器的截面结构示意图
图6为本发明的一个较佳实施例的红外探测器的制备方法的流程示意图
图7~14为图6的红外探测器的制备方法的各个制备步骤示意图
图15为本发明的一个较佳实施例的红外探测器的俯视结构示意图
图16为图15的红外探测器的沿A方向的结构示意图
图17为本发明的另一个较佳实施例的红外探测器的俯视结构示意图
图18为图17的红外探测器沿B方向的结构示意图
图19为本发明的一个较佳实施例的红外探测器的制备方法的流程示意图
图20~29为图19的红外探测器的制备方法的各个制备步骤示意图
具体实施方式
为使本发明的内容更加清楚易懂,以下结合说明书附图,对本发明的内容作进一步说明。当然本发明并不局限于该具体实施例,本领域内的技术人员所熟知的一般替换也涵盖在本发明的保护范围内。
本发明的红外探测器包括:至少一条鳍结构;以及位于鳍结构的侧壁的敏感层。
本发明的一个实施例的鳍结构可以包括多条沿第一方向的平行的鳍和一条沿第二方向的鳍,沿第二方向的鳍将沿第一方向的两条鳍的端部连接起来;第一方向和第二方向相互垂直。例如,可以呈梳齿形。
本发明的一个实施例的鳍结构可以呈M形、或U形。
实施例一
以下结合附图1~14和具体实施例对本发明作进一步详细说明。需说明的是,附图均采用非常简化的形式、使用非精准的比例,且仅用以方便、清晰地达到辅助说明本实施例的目的。
请参阅图1~3,本实施例的一种红外探测器包括:半导体衬底00、鳍结构02、敏感层03、上电极层04和下电极层01。
具体的,请参阅图1,图1中虚线表示下电极层,仅用于表达。本实施例中位于半导体衬底00上的鳍结构02一共有四条鳍;敏感层03位于鳍结构02侧壁。这里,敏感层03环绕四条鳍形成的鳍结构02的侧壁呈连续态。具体的,本实施例的四条鳍构成的鳍结构02中,三条鳍02平行排列,其中剩余的一条鳍02与上述三条鳍02的每个端部呈垂直相交排列,如图1中所示,该鳍结构呈M状。
请参阅图2,下电极层01位于鳍结构02底部,下电极层01与敏感层03底部相接触。同时,上电极层04位于鳍结构02上方,上电极层04与敏感层03顶部相接触。这里,下电极层01嵌入半导体衬底00表层;或者,下电极层01也可以位于半导体衬底00表面上,并且在下电极层01之外暴露的半导体衬底00表面沉积介质层。
本实施例中,为了避免上电极层04和下电极层01的短路,上电极层04的引出端041底部不与下电极层01相接触,如图3所示,本实施例中,在上电极层04的引出端041所在鳍结构02底部不设置下 电极层01。进一步的,由于敏感层03也可以作为信号传输体,因此,为了更好的避免上电极层04和下电极层01之间发生短路,剩余的一条鳍的外侧壁的一部分不设置敏感层03,这里为水平的鳍的外侧壁的一部分不设置敏感层03;上电极层04的引出端041连接上电极层04的一边缘,并且贴着不设置敏感层03的剩余的一条鳍(水平的鳍)的侧壁延伸至半导体衬底00表面。此外,本实施例中,上电极层04的引出端04还延伸至半导体衬底00表面,并且继续沿着半导体衬底00表面延伸而呈水平部分。
这样,本实施例的上述红外探测器,根据公式R=ρ*L/(W*t),W是宽度,L是长度,t是厚度,这里,掺杂薄膜为敏感层03,忽略敏感层03的厚度,非掺杂薄膜厚度也即是鳍结构02的高度作为L,多条鳍构成的一个鳍结构的周长近似作为W,从而得到的误差R较小。
此外,请参阅图4~5,本发明的其它实施例的红外探测器,其与上述实施例的红外探测器的区别在于,敏感层03还位于鳍结构02的顶部,从而可以减小位于鳍结构02顶部的上电极层04的线条宽度,更进一步减小电阻率ρ。此外,根据公式R=ρ*L/(W*t),由于敏感层03厚度是可以忽略的,鳍结构02的高度仍然为L,因此,在鳍结构02顶部的敏感层03不会影响误差R的整体效果。
请参阅图6,本实施例以上述的一种红外探测器的制备方法为例来进行说明,其具体包括:
步骤01:请参阅图7,提供一半导体衬底00;
具体的,半导体衬底00可以但不限于为硅衬底。
步骤02:请参阅图8,在半导体衬底00表面制备下电极层01;
具体的,下电极层01的制备可以包括:首先在半导体衬底00表面沉积下电极层01,然后可以但不限于采用光刻和刻蚀工艺来刻蚀下电极层01,形成所需的下电极层01的图案,再在暴露的半导体衬底00表面沉积介质层。或者,下电极层01的制备可以包括:在半导体衬底00表面刻蚀用于填充下电极层01的沟槽,然后在沟槽内沉积下电极层01,并采用化学机械抛光工艺平坦化下电极层01表面与半导体衬底00表面齐平。
步骤03:请参阅图9和10,在下电极层01上制备至少一条鳍结构02;
具体的,图10为图9的俯视结构示意图;这里,可以但不限于采用光刻和刻蚀工艺制备鳍结构02,针对上述实施例的四条鳍构成的鳍结构02,可以采用双重图形化工艺,可以但不限于,将上述鳍结构的图形拆分为竖直的鳍子图形和水平的鳍子图形,然后,分别采用每个子图形进行光刻和刻蚀工艺来得到最终的鳍结构图形。需要注意的是,下电极层01与水平的鳍的边缘不平齐,为了避免上电极层和下电极层短路。
步骤04:请参阅图11和12,在鳍结构02的侧壁形成敏感层03;
具体的,图12为图11的俯视结构示意图;首先,在鳍结构02侧壁和顶部、以及半导体衬底00表面沉积敏感层03,采用离子注入使敏感层03形成P型;然后,刻蚀去除位于剩余的一条鳍的外侧壁的部分敏感层03,将剩余的一条鳍的外侧壁暴露出来,这里,在刻蚀时,还包括去除位于鳍结构02顶部的敏感层03。
步骤05:请参阅图13和14,在鳍结构02上方形成上电极层04,上电极层04与敏感层03顶部相接触。
具体的,图14为图13的俯视结构示意图。首先,在完成步骤04的半导体衬底00上沉积一层上电极层04;然后,刻蚀去除敏感层03侧壁的上电极层04和部分半导体衬底00表面的上电极层04,并保留敏感层03顶部和鳍结构02顶部的上电极层04、以及保留剩余的一条鳍(水平的鳍)所暴露的外侧壁的上电极层04,从而形成上电极层04的图案以及形成上电极层04的引出端041的图案。
实施例二
以下结合附图15~29和具体实施例对本发明作进一步详细说明。需说明的是,附图均采用非常简化的形式、使用非精准的比例,且仅用以方便、清晰地达到辅助说明本实施例的目的。
本实施例的一种红外探测器包括:鳍结构201、敏感层203、第一电极与第二电极204。
具体的,请参阅图15~16,本实施例的鳍结构201可以具有一条U型鳍结构,包括两条沿第一方向的鳍和沿第二方向的鳍,沿第二方向的鳍将沿第一方向的两条鳍的端部连接起来。这里的第一方向和第二方向垂直,第一方向为竖直方向,第二方向为水平方向。敏感层203设置在鳍结构201的侧壁,并且,具有一开口,从而使得敏感层203形成两个贴附侧壁的端部,且两个端部不接触。具体的,敏感层203依附U型鳍结构的内侧壁和外侧壁,且不设置于U型鳍结构的沿第二方向(水平方向)的鳍的侧壁。这里,开口的宽度可以小于或等于第一电极层与第二电极层204之间的距离。当然,在其它实施例中,开口的宽度大于第一电极层与第二电极层204之间的距离,此时,开口不设置于U型鳍结构的沿水平方向的鳍的侧壁,而设置于U型鳍结构的两个沿竖直方向的鳍的侧壁。
此外,本实施例中,在敏感层203之间的鳍结构201顶部还可以设置有离子注入形成的阻挡层202,避免鳍结构201两侧壁的敏感层203之间的电连而发生短路。
第一电极层与第二电极层204分别与敏感层203的两个端部一一连接,并且第一电极层与第二电极层204之间互不接触。本实施例中,为了实现第一电极层与第二电极层204的引出,第一电极层依附在鳍结构201的开口的一个侧壁的端部表面,第二电极层依附在鳍结构201的开口的另一个侧壁的端部表面。
根据公式R=ρ*L/(W*t),W是宽度,L是长度,t是厚度,这里,掺杂薄膜为敏感层,非掺杂薄膜为鳍,忽略敏感层的厚度,鳍的高度为W,鳍结构的周长作为L,从而得到较高的电阻率R,因此,在确保电阻均匀性的前提下以及在降低光刻、薄膜厚度对敏感层的影响的前提下,利用垂直侧壁实现对敏感层203的电阻大小的灵活调节。
此外,在本发明的其它实施例中,请参阅图17~18,这里的鳍结构201为一条矩形鳍结构,敏感层203设置在鳍结构201的侧壁,并且,具有一开口,从而使得敏感层203形成两个贴附侧壁的端部,且两个端部不接触;第一电极层与第二电极层204分别与两个端部一一连接,并且第一电极层与第二电极层204之间互不接触。关于矩形鳍 结构构成的探测器与上述U型鳍结构构成的探测器的其它结构均相同,这里不再赘述。
此外,请参阅图19,本实施例中针对上述的U型鳍结构的红外探测器的制备方法可以包括以下步骤:
步骤01:请参阅图20~22,形成至少一鳍结构201;
具体的,可以包括:请参阅图20,提供一衬底00,为了避免后续形成的U型鳍结构中鳍两侧壁的敏感层203之间的电连和短路,还包括:在衬底200上沉积鳍结构的材料层,然后,离子注入在鳍结构的材料层表面形成阻挡层202,最后,图案化阻挡层202和鳍结构的材料层,从而形成如图21和图22所示的结构,图22为图21的俯视结构示意图。
步骤02:请参阅图23~25,在鳍结构201的全部侧壁形成敏感层203;
具体的,可以首先在完成步骤01的衬底00上沉积敏感层203,如图23所示;然后采用等离子体各向异性刻蚀工艺去除鳍结构201的敏感层203,保留鳍结构201侧壁的敏感层203,如图24和图25所示,图25为图24的俯视结构示意图。
步骤03:请参阅图26,刻蚀鳍结构201的部分侧壁上的敏感层203,在敏感层203中刻蚀出一开口,从而使得敏感层203具有两个端部,且两个端部不接触,并且开口将部分鳍结构201的侧壁暴露出来;
具体的,可以但不限于采用光刻和刻蚀工艺去除鳍结构201的水平的鳍的外侧壁的敏感层203,所形成的开口的宽度小于或等于第一电极层与第二电极层之间的距离,开口将水平的鳍的外侧壁暴露出来。
步骤04:请参阅图27~29,在两个端部分别形成第一电极层与第二电极层204,第一电极层与第二电极层204不接触。
具体的,在沉积第一电极层与第二电极层204之前,还可以将敏感层203两端部的顶部略刻蚀一定厚度,从而确保第一电极层与第二电极层204的顶部与鳍结构201的顶部齐平,如图27所示,图27为 图26的沿箭头方向的截面结构示意图;第一电极层与第二电极层04制备还包括:首先,在鳍结构201顶部和暴露的鳍结构201的侧壁、敏感层203顶部和侧壁形成电极材料层;然后,刻蚀电极材料层,形成第一电极层与第二电极层204,第一电极层与第二电极层204不接触,如图28和图29所示,图29为图28的俯视结构示意图。
虽然本发明已以较佳实施例揭示如上,然实施例仅为了便于说明而举例而已,并非用以限定本发明,本领域的技术人员在不脱离本发明精神和范围的前提下可作若干的更动与润饰,本发明所主张的保护范围应以权利要求书为准。

Claims (22)

  1. 一种红外探测器,其特征在于,包括:至少一条鳍结构;以及位于鳍结构的侧壁的敏感层。
  2. 根据权利要求1所述的红外探测器,其特征在于,所述鳍结构包括多条沿第一方向的平行的鳍和一条沿第二方向的鳍,沿第二方向的鳍将沿第一方向的两条鳍的端部连接起来;第一方向和第二方向相互垂直。
  3. 根据权利要求2所述的红外探测器,其特征在于,所述鳍结构呈M形、或U形。
  4. 根据权利要求2所述的红外探测器,其特征在于,位于鳍结构底部的下电极层,下电极层与敏感层底部相接触;以及位于鳍结构上方的上电极层,上电极层与敏感层顶部相接触。
  5. 根据权利要求4所述的红外探测器,其特征在于,所述第二方向的鳍结构的一侧壁的一部分不设置敏感层,所述上电极层的引出端连接上电极层的一边缘,并且贴着不设置敏感层的所述第二方向的鳍结构的侧壁延伸至半导体衬底表面;并且,所述上电极层的引出端底部不与下电极层相接触。
  6. 根据权利要求4所述的红外探测器,其特征在于,所述敏感层还位于所述鳍结构的顶部。
  7. 根据权利要求2所述的红外探测器,其特征在于,所述敏感层仅位于所述鳍结构侧壁,且敏感层环绕贴附所述鳍结构,且敏感层具有一开口,从而形成敏感层在开口两侧的端部。
  8. 根据权利要求7所述的红外探测器,其特征在于,所述敏感层依附所述鳍结构的内侧壁和外侧壁,且不设置于所述沿第二方向的鳍的侧壁。
  9. 根据权利要求7所述的红外探测器,其特征在于,所述探测器还包括第一电极层和第二电极层,第一电极层和第二电极层分别与两个端部一一连接,并且第一电极层和第二电极层之间互不接触。
  10. 根据权利要求9所述的红外探测器,其特征在于,所述第一电极层依附在鳍结构的一个侧壁的端部表面,所述第二电极层依附在鳍结构的另一个侧壁的端部表面。
  11. 根据权利要求9所述的红外探测器,其特征在于,所述开口的宽度小于或等于第一电极层和第二电极层之间的距离。
  12. 根据权利要求7所述的红外探测器,其特征在于,位于敏感层之间的鳍结构顶部还设置有离子注入形成的阻挡层。
  13. 根据权利要求1所述的红外探测器,其特征在于,所述敏感层环绕鳍结构的多条鳍的侧壁呈连续态。
  14. 一种红外探测器的制备方法,其特征在于,包括:
    步骤01:提供一半导体衬底;
    步骤02:在半导体衬底表面制备下电极层;
    步骤03:在下电极层上制备至少一条鳍结构;
    步骤04:在鳍结构的侧壁形成敏感层;
    步骤05:在鳍结构上方形成上电极层,上电极层与敏感层顶部相接触。
  15. 根据权利要求14所述的红外探测器的制备方法,其特征在于,所述步骤03中,采用刻蚀工艺制备鳍结构,所述鳍结构包括多条沿第一方向的平行的鳍和一条沿第二方向的鳍,沿第二方向的鳍将沿第一方向的两条鳍的端部连接起来;第一方向和第二方向相互垂直。
  16. 根据权利要求15所述的红外探测器的制备方法,其特征在于,所述步骤04包括:首先,在鳍的侧壁和顶部沉积敏感层;然后,刻蚀去除位于第二方向的鳍的外侧壁的部分敏感层,将第二方向的鳍的外侧壁暴露出来。
  17. 根据权利要求16所述的红外探测器的制备方法,其特征在于,所述步骤05包括:首先,在完成步骤04的半导体衬底上沉积一层上电极层;然后,刻蚀去除敏感层侧壁的上电极层和部分半导体衬底表面的上电极层,并保留敏感层顶部和鳍结构顶部的上电极层、所述第二方向的鳍所暴露的外侧壁的上电极层,从而形成上电极层图案以及形成上电极层的引出端图案。
  18. 根据权利要求15所述的红外探测器的制备方法,其特征在于,所述步骤04中,刻蚀时,还去除位于鳍结构顶部的敏感层。
  19. 一种红外探测器的制备方法,其特征在于,包括:
    步骤01:形成至少一鳍结构;
    步骤02:在鳍结构的全部侧壁形成敏感层;
    步骤03:刻蚀鳍结构的部分侧壁上的敏感层,在敏感层中刻蚀出一开口,从而使得敏感层具有两个端部,且两个端部不接触,并且开口将部分鳍结构的侧壁暴露出来;
    步骤04:在两个端部分别形成第一电极层和第二电极层,第一电极层和第二电极层不接触。
  20. 根据权利要求19所述的红外探测器的制备方法,其特征在于,所述步骤01和步骤02之间,还包括:在鳍结构的顶部进行离子注入形成阻挡层。
  21. 根据权利要求19所述的红外探测器的制备方法,其特征在于,所述步骤04包括:首先,在鳍结构顶部和暴露的鳍结构的侧壁、敏感层顶部和侧壁形成电极材料层;然后,刻蚀电极材料层,形成第一电极层和第二电极层,第一电极层和第二电极层不接触。
  22. 根据权利要求19所述的红外探测器的制备方法,其特征在于,步骤03中,所形成的开口的宽度小于或等于第一电极层和第二电极层之间的距离。
PCT/CN2017/091082 2017-06-29 2017-06-30 具有垂直侧壁敏感层的红外探测器及其制备方法 WO2019000384A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/624,907 US20220149106A1 (en) 2017-06-29 2017-06-30 Infrared detector having vertical sidewall sensitive layer and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710516500.4A CN107180888B (zh) 2017-06-29 2017-06-29 一种高电阻率的红外探测器及其制备方法
CN201710516500.4 2017-06-29
CN201710516399.2A CN107393999B (zh) 2017-06-29 2017-06-29 具有垂直侧壁敏感层的红外探测器及其制备方法
CN201710516399.2 2017-06-29

Publications (1)

Publication Number Publication Date
WO2019000384A1 true WO2019000384A1 (zh) 2019-01-03

Family

ID=64740297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091082 WO2019000384A1 (zh) 2017-06-29 2017-06-30 具有垂直侧壁敏感层的红外探测器及其制备方法

Country Status (2)

Country Link
US (1) US20220149106A1 (zh)
WO (1) WO2019000384A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5450053A (en) * 1985-09-30 1995-09-12 Honeywell Inc. Use of vanadium oxide in microbolometer sensors
CN101445215A (zh) * 2008-10-16 2009-06-03 上海集成电路研发中心有限公司 红外探测器及其制造方法
CN102683475A (zh) * 2011-03-18 2012-09-19 浙江大立科技股份有限公司 一种基于临时释放保护层的红外探测器制作方法
CN104409530A (zh) * 2014-12-05 2015-03-11 西安电子科技大学 应变SiGeSn鳍型光电探测器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5450053A (en) * 1985-09-30 1995-09-12 Honeywell Inc. Use of vanadium oxide in microbolometer sensors
CN101445215A (zh) * 2008-10-16 2009-06-03 上海集成电路研发中心有限公司 红外探测器及其制造方法
CN102683475A (zh) * 2011-03-18 2012-09-19 浙江大立科技股份有限公司 一种基于临时释放保护层的红外探测器制作方法
CN104409530A (zh) * 2014-12-05 2015-03-11 西安电子科技大学 应变SiGeSn鳍型光电探测器

Also Published As

Publication number Publication date
US20220149106A1 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
TWI416634B (zh) 形成積體電路結構的方法
US9190497B2 (en) Method for fabricating semiconductor device with loop-shaped fin
TWI774831B (zh) 製造半導體裝置的方法以及半導體裝置
EP3499550B1 (en) Vdmos device and manufacturing method therefor
KR102264601B1 (ko) 자기 메모리 소자 및 이의 제조 방법
US20150147874A1 (en) Method for forming a semiconductor structure
US20200203348A1 (en) Memory device having vertical structure
EP3499581B1 (en) Vdmos device and manufacturing method therefor
US9337224B2 (en) CMOS image sensor and method of manufacturing the same
WO2023087808A1 (zh) 半导体器件及其制造方法
US20190252241A1 (en) Semiconductor structure and manufacturing method thereof
TWI582968B (zh) 陣列基板結構及接觸結構
WO2019000872A1 (zh) 一种小尺寸红外传感器结构及其制备方法
TWI557914B (zh) Semiconductor element and manufacturing method thereof
WO2019000384A1 (zh) 具有垂直侧壁敏感层的红外探测器及其制备方法
JP2001203284A (ja) フラッシュメモリ素子の製造方法
US9105590B2 (en) Semiconductor structure having material layers which are level with each other and manufacturing method thereof
US11335560B2 (en) Semiconductor devices and fabrication methods thereof
CN107180888B (zh) 一种高电阻率的红外探测器及其制备方法
US11855107B2 (en) Manufacturing method for image sensor structure
US7547622B2 (en) Fabrication of CCD image sensors using single layer polysilicon
TWI773774B (zh) 半導體元件及其形成方法
CN107393999B (zh) 具有垂直侧壁敏感层的红外探测器及其制备方法
JP2003332554A (ja) 固体撮像素子の製造方法
KR100670398B1 (ko) 수평 방향으로 접혀진 유전막을 포함하는 커패시터 및제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17915207

Country of ref document: EP

Kind code of ref document: A1