WO2019000872A1 - 一种小尺寸红外传感器结构及其制备方法 - Google Patents

一种小尺寸红外传感器结构及其制备方法 Download PDF

Info

Publication number
WO2019000872A1
WO2019000872A1 PCT/CN2017/118010 CN2017118010W WO2019000872A1 WO 2019000872 A1 WO2019000872 A1 WO 2019000872A1 CN 2017118010 W CN2017118010 W CN 2017118010W WO 2019000872 A1 WO2019000872 A1 WO 2019000872A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
layer
support hole
infrared
electrical connection
Prior art date
Application number
PCT/CN2017/118010
Other languages
English (en)
French (fr)
Inventor
康晓旭
赵宇航
Original Assignee
上海集成电路研发中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海集成电路研发中心有限公司 filed Critical 上海集成电路研发中心有限公司
Priority to US16/624,914 priority Critical patent/US20210358990A1/en
Publication of WO2019000872A1 publication Critical patent/WO2019000872A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1446Devices controlled by radiation in a repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity
    • G01J5/023Particular leg structure or construction or shape; Nanotubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity
    • G01J5/024Special manufacturing steps or sacrificial layers or layer structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14607Geometry of the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14669Infrared imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation

Definitions

  • the invention relates to the technical field of semiconductor integrated circuit manufacturing processes, in particular to a small-sized infrared sensor structure and a preparation method thereof.
  • the infrared sensor usually senses the infrared light emitted by the desired detection substance by the sensitive material, and transmits the detected infrared light signal to the external circuit by the electrical connection layer.
  • the loss of infrared light entering the infrared sensor is faster, resulting in a decrease in detection sensitivity.
  • the size of the infrared sensor is typically reduced to reduce the rate of light loss.
  • the object of the present invention is to remedy the above deficiencies of the prior art.
  • the present invention aims to provide a small-sized infrared sensor structure and a preparation method thereof, thereby simplifying the preparation process.
  • the present invention provides a small-sized infrared sensor structure having a plurality of pixel structures each having an infrared detecting region, a conductive beam electrically connected to the infrared detecting region, and a supporting conductive layer. And a conductive support hole electrically connected to the conductive beam; the adjacent pixel structures are connected together by a conductive beam to a conductive support hole.
  • one of the conductive support holes that are commonly connected to is disposed below the adjacent infrared detecting regions; the center line of one of the conductive support holes to which the conductive support holes are commonly connected is an axis of symmetry, adjacent
  • the cell structure is mirror symmetrical.
  • the conductive beam and the sidewall of the conductive support hole are continuously in the same layer, and the hierarchical structure of the conductive beam and the sidewall of the conductive support hole are the same, each layer of the conductive beam Each of the corresponding layers of the sidewalls of the conductive support holes are continuously in the same layer.
  • the sidewall of the conductive support hole has a first lower release protection layer, a first electrical connection layer, and a first step along the inner diameter direction of the conductive support hole. And releasing a protective layer on the side of the conductive beam adjacent to the infrared detecting region, and having a second lower release protective layer, a second electrical connection layer and a second upper release protective layer, and a first lower release protective layer of the conductive support hole Connected to the second lower release protective layer of the conductive beam, the first upper release protective layer of the conductive support hole and the second upper release protective layer of the conductive beam are connected, the first electrical connection layer of the conductive support hole and the first conductive layer of the conductive beam Two electrical connection layers are connected;
  • the sidewall of the conductive support hole has a first release protection layer and a first electrical connection layer, or a first electricity in sequence along an inner diameter direction of the conductive support hole.
  • a connection layer and a first release protection layer the second side of the conductive beam adjacent to the infrared detection area has a second release protection layer and a second electrical connection layer, or a second electrical connection layer and a second release protection layer;
  • the first release protection layer of the support hole is connected to the second release protection layer of the conductive beam, and the first electrical connection layer of the conductive support hole is connected to the second electrical connection layer of the conductive beam;
  • the sidewall of the conductive support hole is composed of a first electrical connection layer
  • the conductive beam is composed of a second electrical connection layer, the first electrical connection layer and the second electricity
  • the connection layers are connected.
  • the horizontal width of each of the conductive beams is less than the corresponding layer thickness in the top of the support holes.
  • the sidewall of the conductive support hole is stepped, and the sidewall of the trench is stepped.
  • the present invention also provides a method for preparing a small-sized infrared sensor structure, including:
  • Step 01 providing a semiconductor device substrate; the semiconductor device substrate surface has an interconnect layer;
  • Step 02 depositing a sacrificial layer on the interconnect layer on the surface of the semiconductor device substrate;
  • Step 03 separating the infrared detection region, the conductive beam region, and the conductive support hole region on the sacrificial layer; etching the support hole in the sacrificial layer of the conductive support hole region, and etching the trench in the sacrificial layer of the conductive beam region a groove; one end of the groove length intersects the support hole, and the other end of the groove length intersects the infrared detection area;
  • Step 04 depositing a conductive material and an infrared sensitive material layer on the semiconductor device substrate completing step 03, and doping the same by ion implantation; the conductive material and the infrared sensitive material layer covering the trench a sidewall and a bottom, a sidewall and a bottom of the support hole, and an exposed surface of the sacrificial layer;
  • Step 05 patterning the conductive material and the infrared sensitive material layer to form a pattern of an infrared detecting region and a pattern of the conductive supporting hole while removing the conductive material of the bottom of the trench and the outer side of the top of the trench and the a layer of infrared sensitive material retaining the conductive material of the sidewall of the trench and the layer of infrared sensitive material to form a conductive beam on a sidewall of the trench to form a conductive support hole in the support hole;
  • Step 06 Using a release process, all of the sacrificial layers are released.
  • the sacrificial layer is etched by a damascene process to obtain contact holes and trenches having stepped sidewalls.
  • the present invention further provides a method for fabricating the small-sized infrared sensor structure of claim 4, comprising:
  • Step 01 providing a semiconductor device substrate; the semiconductor device substrate surface has an interconnect layer;
  • Step 02 depositing a sacrificial layer on the interconnect layer on the surface of the semiconductor device substrate;
  • Step 03 separating the infrared detection region, the conductive beam region, and the conductive support hole region on the sacrificial layer; etching the support hole in the sacrificial layer of the conductive support hole region, and etching the trench in the sacrificial layer of the conductive beam region a groove; one end of the groove length intersects the support hole, and the other end of the groove length intersects the infrared detection area;
  • Step 04 depositing a conductive material and an infrared sensitive material layer on the semiconductor device substrate completing step 03; wherein, when depositing the infrared sensitive material layer, masking the entire area outside the infrared detecting area, only Exposing an infrared detection area such that the surface of the sacrificial layer of the infrared detection area is covered with a conductive material and an infrared sensitive material layer, and the sidewalls and the bottom of the trench, the sidewalls and the bottom of the support hole are covered with a conductive material;
  • Step 05 patterning the conductive material and the infrared sensitive material layer to form a pattern of an infrared detecting area and a pattern of the conductive supporting hole, while removing the conductive material at the bottom of the groove and the outer side of the top of the groove, and retaining the The conductive material of the sidewall of the trench, thereby forming a conductive beam on the sidewall of the trench, forming a conductive support hole in the support hole;
  • Step 06 Using a release process, all of the sacrificial layers are released.
  • the sacrificial layer is etched by a damascene process to obtain contact holes and trenches having stepped sidewalls.
  • the small-sized infrared sensor structure and the preparation method thereof of the invention form a conductive beam by etching a trench in a conductive beam region, and forming a conductive beam by using a sidewall of the trench, thereby realizing a small common conductive support hole of the adjacent pixel structure.
  • the size of the infrared sensor structure improves the integration of the pixel structure, increases the area of the infrared detection area in the pixel structure, and improves the infrared detection efficiency.
  • FIG. 1 is a top plan view showing a structure of a small-sized infrared sensor according to a preferred embodiment of the present invention
  • Figure 2 is a schematic cross-sectional view of the structure taken along line BB' in Figure 1
  • FIG. 3 is a schematic cross-sectional view of the conductive beam of FIG. 1 along the AA' direction.
  • FIG. 4 is a cross-sectional structural view of the contact region of the conductive beam and the infrared detecting region of FIG. 1 along the CC′ direction.
  • FIG. 5 is a schematic flow chart of a method for fabricating a small-sized infrared sensor structure according to a preferred embodiment of the present invention
  • 6 to 12 are schematic diagrams showing the steps of a method for fabricating a small-sized infrared sensor structure according to a preferred embodiment of the present invention.
  • FIGS. 1 to 12 specific embodiments. It should be noted that the drawings are in a very simplified form, using a non-precise ratio, and are only used to facilitate the purpose of the present embodiment.
  • a small-sized infrared sensor structure of the present embodiment has a plurality of pixel structures. Only two adjacent pixel structures X1 and X2 are illustrated in FIG. 1, and each pixel structure has infrared a detection area S, a conductive beam L electrically connected to the infrared detection area S, and a conductive support hole Z for supporting the conductive beam L and electrically connected to the conductive beam L; passing between adjacent pixel structures such as X1 and X2
  • the conductive beams L are connected in common to one conductive support hole Z.
  • the conductive beam L here is composed of the conductive material 102 and the infrared sensitive material layer 101, but this is not intended to limit the scope of the invention.
  • FIG. 1 is composed of the conductive material 102 and the infrared sensitive material layer 101, but this is not intended to limit the scope of the invention.
  • a substrate 100 has an interconnect layer C having contact holes 104 therein, and an interconnect layer C is located on a surface layer of the substrate 100.
  • the conductive material 101 at the bottom of the conductive support hole Z is in contact with the contact hole 104 in the interconnect layer C, thereby achieving electrical connection of the conductive support hole Z with the interconnect layer C.
  • the conductive support hole Z in the broken line frame indicates the schematic structure after peeling off the conductive material 102 and the infrared sensitive material layer 101 of the top layer thereof, and the upper left and upper right sides in FIG.
  • the conductive support hole Z is a normal top view structure.
  • the conductive support holes Z in the dotted frame are shared by adjacent pixel structures. Specifically, one conductive support hole Z in the dotted frame that is commonly connected is disposed below the adjacent infrared detection regions L.
  • the center line of the conductive support hole Z in the dotted frame to which the dash line is connected is the axis of symmetry, and the adjacent pixel structures X1 and X2 are mirror symmetrical.
  • the conductive beam of the pixel structure X1 and the conductive beam of the pixel structure X2 are connected to the conductive support hole Z in the dotted frame.
  • the conductive beam L and the conductive support hole Z connected thereto are integrally formed.
  • the conductive beam L and the sidewall of the conductive support hole Z are continuously in the same layer, the hierarchical structure of the conductive beam L and the conductive support hole The sidewalls of Z have the same hierarchical structure, and each layer of the conductive beam L is continuously in the same layer as the corresponding layer of the sidewall of the conductive support hole Z.
  • the conductive beam L and the conductive support hole Z connected thereto may also be separately formed, and the conductive beam L and the sidewall of the conductive support hole Z are still connected to the same layer, and the conductive beam L
  • the hierarchical structure is the same as that of the side walls of the conductive support hole Z, and each layer of the conductive beam L is still connected to the same layer as the corresponding layer of the side wall of the conductive support hole Z.
  • the sidewall of the conductive support hole Z is composed of a first electrical connection layer
  • the conductive beam L is composed of a second electrical connection layer
  • the first electrical connection The layer is connected to the second electrical connection layer.
  • a first infrared sensitive material layer is further formed on the sidewall of the first electrical connection layer
  • a second infrared sensitive material layer is further formed on the sidewall of the second electrical connection layer.
  • the first electrical connection layer and the first The two electrical connection layers are the same layer of the electrical connection layer 102, and the first infrared sensitive material layer and the second infrared sensitive material layer are the same layer of the infrared sensitive material layer 101.
  • the first infrared sensitive material layer and the second infrared sensitive material layer may not be the same layer
  • the first electrical connection layer and the second electrical connection layer may not be the same layer.
  • the sidewall of the conductive support hole has a first lower release protection layer, a first electrical connection layer, and sequentially along an inner diameter direction of the conductive support hole.
  • the first upper release protection layer has a second lower release protection layer, a second electrical connection layer and a second upper release protection layer, and a first lower release protection layer of the conductive support hole, in order from the side of the conductive beam adjacent to the infrared detection area.
  • the first upper release protective layer of the conductive support hole and the second upper release protective layer of the conductive beam are connected, the first electrical connection layer of the conductive support hole and the first conductive layer of the conductive beam The two electrical connection layers are connected.
  • the sidewall of the conductive support hole has a first release protection layer and a first electrical connection layer in sequence along the inner diameter direction of the conductive support hole, Or a first electrical connection layer and a first release protection layer
  • the second side of the conductive beam adjacent to the infrared detection area has a second release protection layer and a second electrical connection layer, or a second electrical connection layer and a second release protection layer
  • the first release protection layer of the conductive support hole is connected to the second release protection layer of the conductive beam
  • the first electrical connection layer of the conductive support hole is connected to the second electrical connection layer of the conductive beam.
  • FIG. 2 is a schematic cross-sectional view of the conductive beam of FIG. 1 along the AA' direction
  • FIG. 3 is a schematic cross-sectional structure of the conductive beam of FIG.
  • the horizontal width of each of the conductive beams L is smaller than the thickness of the corresponding layer in the top of the conductive support holes Z.
  • the horizontal width of the infrared sensitive material layer 101 of the conductive beam L is the infrared of the top of the conductive support hole Z connected thereto.
  • the horizontal width of the sensitive material layer 101 is 60 to 70%
  • the horizontal width of the electrical connection layer 102 of the conductive beam L is 60 to 70% of the horizontal width of the electrical connection layer 102 at the top of the conductive support hole Z to which it is connected.
  • the vertical thickness of each layer in the horizontal direction is greater than the horizontal width of the sidewall of the trench, so that the thickness of each layer in the conductive beam L is smaller than that in the horizontal direction of the corresponding layer. Vertical thickness.
  • the size of the conductive beam is further reduced, the photosensitive area of the infrared detection area is improved, and the conversion efficiency of the infrared detector is improved.
  • the horizontal width of the conductive beam is from 0.5 nm to 1 nm because a continuous conductive beam cannot be formed when the horizontal width of the conductive beam is less than 0.5 nm.
  • the horizontal width of the conductive beam is greater than 1 nm, the size of the conductive beam is too large to accelerate the loss of infrared light.
  • the side walls of the conductive support hole Z are arranged in a stepped shape; meanwhile, in order to improve the support of the conductive beam L
  • the ability, bending resistance and impact resistance are also set to the stepped shape of the side wall of the conductive beam L.
  • FIG. 4 is a cross-sectional structural view of the contact region of the conductive beam and the infrared detecting region in the CC′ direction of FIG. 1 , at one end of the conductive beam L contacting the infrared detecting region S, and the conductive beam.
  • the conductive material 102 and the infrared sensitive material layer 101 of the L-direction vertical sidewall (shown in the dotted line in FIG. 4, the elliptical dotted line in FIG. 1) and the corresponding conductive material 102 of the infrared detecting region S and the infrared sensitive
  • the material layers 101 are successively connected one-to-one, thereby achieving electrical connection between the conductive beam L and the infrared detecting region S.
  • the method for preparing the above-mentioned small-sized infrared sensor structure of the embodiment includes:
  • Step 01 Referring to FIG. 6, a semiconductor device substrate 100 is provided; the surface of the semiconductor device substrate 100 has an interconnect layer (not shown);
  • the interconnect layer of the surface layer of the semiconductor device substrate 100 may be an interconnect layer prepared by a front interconnect process.
  • Step 02 Referring to FIG. 7, a sacrificial layer 105 is deposited on the interconnect layer on the surface of the semiconductor device substrate 100;
  • the sacrificial layer 105 may be deposited on the surface of the semiconductor device substrate 100 by a chemical vapor deposition method; the material of the sacrificial layer 105 may be a conventional sacrificial layer material, such as an inorganic sacrificial layer material silicon oxide, or an organic sacrificial layer material. .
  • Step 03 Referring to FIG. 8 and FIG. 9, the infrared detecting area S' (shown by the dotted line in FIG. 9), the conductive beam area and the conductive supporting hole area are separated on the sacrificial layer 105; the sacrifice in the conductive supporting hole area 107
  • the support hole 107 is etched in the layer 105, and the trench 106 is etched in the sacrificial layer 105 of the conductive beam region;
  • the left side of FIG. 8 is a schematic cross-sectional structure of the trench, and the right side of FIG. 8 is a cross section of the support hole.
  • FIG. 9 is a schematic plan view of the structure on the substrate 100. It should be noted that the structural outlines of the trench 106 and the support hole 107 are illustrated in FIG. 9. For ease of expression, the trench is not shown in FIG.
  • one end of the trench 106 in the longitudinal direction intersects the support hole 107, and the other end of the trench 106 in the longitudinal direction intersects the infrared detecting region S'; before the etching, the mask is applied
  • the layout of the infrared detection area, the conductive beam area and the conductive support hole area is prepared in the layout of the version, and the layout pattern is obtained.
  • the layout pattern of the mask can be referred to the top view structure of the substrate shown in FIG. 9;
  • the mask etches the support holes 107 and the trenches 106 at corresponding locations of the sacrificial layer 105. Referring to FIG.
  • the sacrificial layer 105 may also be etched using a damascene process to obtain contact holes 107 and trenches 106 having stepped sidewalls. It should be noted that the depth of the trench 106 determines the height of the conductive beam L. Generally, the depth of the support hole 107 is greater than the depth of the trench 106, as indicated by the dotted line in the schematic diagram of the support hole structure on the right side in FIG. The position of the bottom of the groove.
  • Step 04 Please refer to FIG. 10.
  • the left side of FIG. 10 is a schematic cross-sectional structure of the deposited material in the trench
  • the right side of FIG. 10 is a schematic cross-sectional structure of the deposited material in the support hole.
  • the conductive material 102 and the infrared sensitive material layer 101 are deposited on the semiconductor device substrate 100 on which the step 03 is completed, and doped by ion implantation; in conjunction with FIG. 9, the conductive material 102 and the infrared sensitive material layer 101 are covered.
  • the deposition order of the conductive material 102 and the infrared sensitive material layer 101 may be interchanged. If the infrared sensitive material layer 101 is first deposited, the infrared sensitivity of the bottom of the support hole 107 is increased by one step before depositing the conductive material 102. The step of material layer 101 is such that subsequently deposited conductive material 102 in support aperture 107 can be electrically connected to the contact holes of the interconnect layer.
  • the method before depositing the conductive material 102 and the infrared sensitive material layer 101, the method further includes: depositing a lower release protective layer on the semiconductor device substrate 100 completing step 03; and/or depositing the conductive material 102 and The layer of infrared sensitive material 103 continues to deposit an upper release protective layer.
  • the deposition method for the upper release protective layer and the lower release protective layer may be, but is not limited to, a chemical vapor deposition method, which will be known to those skilled in the art and will not be described herein.
  • Step 05 Please refer to FIG. 11 in conjunction with FIG. 8 and FIG. 1.
  • the left side of FIG. 11 is a schematic cross-sectional structure of the groove after patterning, and the right side of FIG. 11 is a schematic cross-sectional structure of the patterned support hole.
  • the conductive material 102 and the infrared sensitive material layer 101 are patterned to form a pattern of the infrared detection region S and a pattern of the conductive support holes Z while removing the conductive material 102 and the infrared sensitive material layer 101 on the bottom of the trench 106 and the top of the trench 106, The conductive material 102 and the infrared sensitive material layer 101 on the sidewalls of the trench 106 are retained such that a conductive beam L is formed on the sidewall of the trench 106, and a conductive support hole Z is formed in the support hole 107.
  • the conductive material 102 and the infrared sensitive material layer 101 may be patterned by photolithography and etching processes to form a pattern of the infrared detecting region S and a pattern of the conductive supporting holes Z, thereby forming in the support hole 107.
  • Layer 101 eventually forms a conductive beam L.
  • the one-to-one phase is successively connected to each other, thereby achieving electrical connection between the conductive beam L and the conductive support hole Z.
  • a conductive material 102 and an infrared sensitive material layer 101 at the end of the trench 106 in contact with the infrared detecting region S and perpendicular to the longitudinal direction of the trench 106 shown by an elliptical dotted line in FIG.
  • the reason why the material deposited by the sidewalls of the trench 106 is used to form the conductive beam L is that the deposited conductive beam L has a smaller width in the horizontal direction than the conductive material 102 deposited on the surface of the sacrificial layer 105 and infrared sensitive.
  • the sum of the thicknesses of the material layers 101, thereby subtly utilizing the material deposition of the sidewalls of the trenches 106 to reduce the size of the conductive beams L, and subsequently, the conventional anisotropic etching process can be used to etch away the top side of the trenches 106.
  • the conductive material 102 and the infrared sensitive material layer 101 at the bottom of the trench 106 do not increase the process difficulty.
  • the conductive beam L can be reduced by using an existing process without challenging the small-scale photolithography process. size of.
  • the width of the conductive beam L in the horizontal direction is 60 to 70% of the sum of the thicknesses of the conductive material 102 and the infrared sensitive material layer 101 deposited on the surface of the sacrificial layer 105.
  • Step 06 Please refer to FIG. 12.
  • the left side of FIG. 12 is a schematic cross-sectional structure of the trench after the sacrificial layer is released, and the right side of FIG. 12 is a schematic cross-sectional structure of the support hole after the sacrificial layer is released.
  • a release process is used to release all of the sacrificial layer 105.
  • the infrared sensitive material is deposited.
  • the mask may be used to completely cover the area outside the infrared detecting area S, and only the infrared detecting area S is exposed, so that the surface of the sacrificial layer 105 of the infrared detecting area S is covered with the conductive material 102 and the infrared sensitive material.
  • the above step 05 may specifically include: patterning the conductive material 102 and the infrared sensitive material layer 101 to form an infrared
  • the pattern of the detection region S and the pattern of the conductive support holes Z are simultaneously removed from the bottom of the trench 106 and the conductive material 102 on the outer side of the trench 106, leaving the conductive material 102 on the sidewalls of the trench 106 to form a conductive layer on the sidewall of the trench 106.
  • the beam L forms a conductive support hole Z in the support hole 107, so that the subsequently obtained conductive beam L and the conductive support hole 107 do not have the infrared sensitive material layer 101.

Abstract

一种小尺寸红外传感器结构及其制造方法。通过在导电梁区域刻蚀出沟槽(106),利用沟槽侧壁来形成导电梁(L),从而实现了相邻像元结构共同享有一个导电支撑孔(Z)的小尺寸红外传感器结构,从而提高了像元结构的集成度,增大了像元结构中红外探测区域的面积,提高了红外探测效率。

Description

一种小尺寸红外传感器结构及其制备方法
本申请要求于 2017年6月27日提交中国专利局、申请号为 2017105000923、名称为 “一种小尺寸红外传感器结构及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及半导体集成电路制造工艺技术领域,尤其涉及一种小尺寸红外传感器结构及其制备方法。
技术背景
红外传感器通常由敏感材料来感应到所需探测物质发射的红外光线,并且由电连接层将探测到的红外光线信号传输到外界电路中。传统的红外传感器工作过程中,进入红外传感器的红外光线的损失速率较快,造成探测灵敏度下降。通常采用减小红外传感器的尺寸来降低光线的损失速率。
然而,由于现有的光刻和刻蚀工艺条件的限制,小尺寸红外传感器结构的制备过程复杂繁琐,工艺成本升高。
发明概要
本发明的目的在于弥补上述现有技术的不足,为了克服以上问题,本发明旨在提供一种小尺寸红外传感器结构及其制备方法,从而简化制备工艺。
为了达到上述目的,本发明提供了一种小尺寸红外传感器结构,具有多个像元结构,每个像元结构具有红外探测区域、与红外探测区域相电连的导 电梁、以及用于支撑导电梁并与导电梁电连接的导电支撑孔;相邻的所述像元结构之间通过导电梁共同连接至一个导电支撑孔。
优选地,所共同连接至的一个所述导电支撑孔设置于相邻的所述红外探测区域之间的下方;以所共同连接至的一个所述导电支撑孔的中心线为对称轴,相邻的所述像元结构呈镜像对称。
优选地,所述导电梁与所述导电支撑孔的侧壁连续为同一层,所述导电梁的层次结构和所述导电支撑孔的侧壁的层次结构相同,所述导电梁的每一层均与所述导电支撑孔的侧壁的相应层连续为同一层。
优选地,所述导电梁和与之相连接的导电支撑孔中,导电支撑孔的侧壁沿所述导电支撑孔的内径方向依次具有第一下释放保护层、第一电连接层、第一上释放保护层,导电梁靠近所述红外探测区域的一侧向外依次具有第二下释放保护层、第二电连接层和第二上释放保护层,导电支撑孔的第一下释放保护层和导电梁的第二下释放保护层相连接,导电支撑孔的第一上释放保护层和导电梁的第二上释放保护层相连接,导电支撑孔的第一电连接层和导电梁的第二电连接层相连接;
或者,所述导电梁和与之相连接的导电支撑孔中,导电支撑孔的侧壁沿所述导电支撑孔的内径方向依次具有第一释放保护层和第一电连接层、或第一电连接层和第一释放保护层,导电梁靠近所述红外探测区域的一侧向外依次具有第二释放保护层和第二电连接层、或第二电连接层和第二释放保护层;导电支撑孔的第一释放保护层和导电梁的第二释放保护层相连接,导电支撑孔的第一电连接层和导电梁的第二电连接层相连接;
或者,所述导电梁和与之相连接的导电支撑孔中,导电支撑孔的侧壁由 第一电连接层构成,导电梁由第二电连接层构成,第一电连接层和第二电连接层相连接。
优选地,所述导电梁中每一层的水平宽度小于所述支撑孔的顶部中相应层厚度。
优选地,所述导电支撑孔的侧壁呈阶梯状,所述沟槽的侧壁呈阶梯状。
为了达到上述目的,本发明还提供了一种小尺寸红外传感器结构的制备方法,其包括:
步骤01:提供一半导体器件衬底;半导体器件衬底表面具有互连层;
步骤02:在半导体器件衬底表面的互连层上沉积一层牺牲层;
步骤03:在牺牲层上分出红外探测区域、导电梁区域和导电支撑孔区域;在导电支撑孔区域的牺牲层中刻蚀出支撑孔,同时在导电梁区域的牺牲层中刻蚀出沟槽;沟槽长度方向上的一端与支撑孔相交,且沟槽长度方向上的另一端与红外探测区域相交;
步骤04:在完成步骤03的半导体器件衬底上沉积导电材料和红外敏感材料层,并通过离子注入对其进行掺杂处理;所述导电材料和所述红外敏感材料层覆盖于所述沟槽侧壁和底部、所述支撑孔侧壁和底部、以及暴露的牺牲层表面;
步骤05:图案化所述导电材料和所述红外敏感材料层,形成红外探测区域的图案和所述导电支撑孔的图案,同时去除沟槽底部和沟槽顶部外侧的所述导电材料和所述红外敏感材料层,保留所述沟槽侧壁的所述导电材料和所述红外敏感材料层,从而在沟槽侧壁形成导电梁,在支撑孔中形成导电支撑孔;
步骤06:采用释放工艺,释放掉所有的牺牲层。
优选地,所述步骤03中,采用大马士革工艺来刻蚀牺牲层,从而得到具有阶梯状侧壁的接触孔和沟槽。
为了达到上述目的,本发明还提供了一种权利要求4所述的小尺寸红外传感器结构的制备方法,包括:
步骤01:提供一半导体器件衬底;半导体器件衬底表面具有互连层;
步骤02:在半导体器件衬底表面的互连层上沉积一层牺牲层;
步骤03:在牺牲层上分出红外探测区域、导电梁区域和导电支撑孔区域;在导电支撑孔区域的牺牲层中刻蚀出支撑孔,同时在导电梁区域的牺牲层中刻蚀出沟槽;沟槽长度方向上的一端与支撑孔相交,且沟槽长度方向上的另一端与红外探测区域相交;
步骤04:在完成步骤03的半导体器件衬底上沉积导电材料和红外敏感材料层;其中,在沉积红外敏感材料层时,采用掩膜将所述红外探测区域之外的区域全部遮蔽住,只暴露出红外探测区域,从而在红外探测区域的牺牲层表面覆盖有导电材料和红外敏感材料层,并且在沟槽侧壁和底部、支撑孔侧壁和底部覆盖有导电材料;
步骤05:图案化所述导电材料和所述红外敏感材料层,形成红外探测区域的图案和所述导电支撑孔的图案,同时去除沟槽底部和沟槽顶部外侧的所述导电材料,保留所述沟槽侧壁的所述导电材料,从而在沟槽侧壁形成导电梁,在支撑孔中形成导电支撑孔;
步骤06:采用释放工艺,释放掉所有的牺牲层。
优选地,所述步骤03中,采用大马士革工艺来刻蚀牺牲层,从而得到 具有阶梯状侧壁的接触孔和沟槽。
本发明的小尺寸红外传感器结构及其制备方法,通过在导电梁区域刻蚀出沟槽,利用沟槽侧壁来形成导电梁,从而实现了相邻像元结构共同享有一个导电支撑孔的小尺寸红外传感器结构,从而提高了像元结构的集成度,增大了像元结构中红外探测区域的面积,提高了红外探测效率。
附图说明
为能更清楚理解本发明的目的、特点和优点,以下将结合附图对本发明的较佳实施例进行详细描述,其中:
图1为本发明的一个较佳实施例的小尺寸红外传感器结构的俯视示意图
图2为图1中沿BB'方向的截面结构示意图
图3为图1中导电梁沿AA'方向的截面结构示意图
图4为图1中导电梁和红外探测区域接触区域沿CC'方向的截面结构示意图
图5为本发明的一个较佳实施例的小尺寸红外传感器结构的制备方法的流程示意图
图6~12为本发明的一个较佳实施例的小尺寸红外传感器结构的制备方法的各步骤示意图。
发明内容
为使本发明的内容更加清楚易懂,以下结合说明书附图,对本发明的内容作进一步说明。当然本发明并不局限于该具体实施例,本领域内的技术人员所熟知的一般替换也涵盖在本发明的保护范围内。
以下结合附图1~12和具体实施例对本发明作进一步详细说明。需说明的是,附图均采用非常简化的形式、使用非精准的比例,且仅用以方便、清晰地达到辅助说明本实施例的目的。
请参阅图1,本实施例的一种小尺寸红外传感器结构,具有多个像元结构,图1中仅示例出了相邻的两个像元结构X1和X2,每个像元结构具有红外探测区域S、与红外探测区域S相电连的导电梁L、以及用于支撑导电梁L并与导电梁L电连接的导电支撑孔Z;相邻的像元结构例如X1和X2之间通过导电梁L共同连接至一个导电支撑孔Z。这里的导电梁L由导电材料102和红外敏感材料层101构成,但这不用于限制本发明的范围。图1中,衬底100具有互连层C,互连层C中具有接触孔104,互连层C位于衬底100的表层。导电支撑孔Z的底部的导电材料101与互连层C中的接触孔104相接触,从而实现导电支撑孔Z与互连层C的电连。
本实施例中,图1中,为了便于表达,虚线框中的导电支撑孔Z表示剥去其顶层的导电材料102和红外敏感材料层101后的示意结构,图1中左上方和右上方的导电支撑孔Z为正常的俯视结构示意图。虚线框中的导电支撑孔Z为相邻的像元结构所共享的,具体的,所共同连接至的该虚线框中的一个导电支撑孔Z设置于相邻的红外探测区域L之间的下方;以所共同连接至的该虚线框中的导电支撑孔Z的中心线为对称轴,相邻的像元结构X1、X2呈镜像对称。这里,像元结构X1的导电梁和像元结构X2的导电梁相连于虚线框中的导电支撑孔Z。
这里,导电梁L和与之相连接的导电支撑孔Z为一体成型,请参阅图1,导电梁L与导电支撑孔Z的侧壁连续为同一层,导电梁L的层次结构和导 电支撑孔Z的侧壁的层次结构相同,导电梁L的每一层均与导电支撑孔Z的侧壁的相应层连续为同一层。当然,在本发明的其它实施例中,导电梁L和与之相连接的导电支撑孔Z也可以分开成型,而导电梁L与导电支撑孔Z的侧壁仍然连接为同一层,导电梁L的层次结构和导电支撑孔Z的侧壁的层次结构相同,导电梁L的每一层均与导电支撑孔Z的侧壁的相应层仍然连接为同一层。
请参阅图1,导电梁L和与之相连接的导电支撑孔Z中,导电支撑孔Z的侧壁由第一电连接层构成,导电梁L由第二电连接层构成,第一电连接层和第二电连接层相连接。这里,在第一电连接层侧壁还形成有第一红外敏感材料层;在第二电连接层侧壁还形成有第二红外敏感材料层,本实施例中,第一电连接层和第二电连接层为同一层电连接层102,第一红外敏感材料层和第二红外敏感材料层为同一层红外敏感材料层101。当然,在本发明的其它实施例中,第一红外敏感材料层和第二红外敏感材料层还可以不为同一层、第一电连接层和第二电连接层还可以不为同一层。
在本发明的其它实施例中,导电梁和与之相连接的导电支撑孔中,导电支撑孔的侧壁沿导电支撑孔的内径方向依次具有第一下释放保护层、第一电连接层、第一上释放保护层,导电梁靠近红外探测区域的一侧向外依次具有第二下释放保护层、第二电连接层和第二上释放保护层,导电支撑孔的第一下释放保护层和导电梁的第二下释放保护层相连接,导电支撑孔的第一上释放保护层和导电梁的第二上释放保护层相连接,导电支撑孔的第一电连接层和导电梁的第二电连接层相连接。在本发明的又一个实施例中,导电梁和与之相连接的导电支撑孔中,导电支撑孔的侧壁沿导电支撑孔的内径方向依次 具有第一释放保护层和第一电连接层、或第一电连接层和第一释放保护层,导电梁靠近红外探测区域的一侧向外依次具有第二释放保护层和第二电连接层、或第二电连接层和第二释放保护层;导电支撑孔的第一释放保护层和导电梁的第二释放保护层相连接,导电支撑孔的第一电连接层和导电梁的第二电连接层相连接。
本实施例中,请参阅图2和3,图2为图1中沿BB'方向的截面结构示意图,图3为图1中导电梁沿AA'方向的截面结构示意图,需要说明的是,为了便于表达,对图2和图3中的衬底100中的互连层和接触孔未示出。导电梁L中每一层的水平宽度小于导电支撑孔Z的顶部中相应层的厚度,例如,导电梁L的红外敏感材料层101的水平宽度为与之连接的导电支撑孔Z的顶部的红外敏感材料层101的水平宽度的60~70%,导电梁L的电连接层102的水平宽度为与之连接的导电支撑孔Z的顶部的电连接层102的水平宽度的60~70%。这是因为,通过控制沉积各个层的厚度,各层水平方向上的竖直厚度大于在沟槽侧壁的水平宽度,从而得到的导电梁L中各层的厚度小于相应层的水平方向上的竖直厚度。在不提高光刻和刻蚀工艺难度的前提下,实现了导电梁的尺寸的进一步减小,提高了红外探测区域的感光面积,以及提高了红外探测器的转换效率。较佳的,导电梁的水平宽度为0.5nm~1nm,因为当导电梁的水平宽度小于0.5nm时,不能形成连续的导电梁。当导电梁的水平宽度大于1nm时,导电梁的尺寸太大会使得红外光线的损耗加快。
此外,如图2和3所示,为了提高导电支撑孔Z的支撑能力、抗弯曲能力和抗冲击能力,将导电支撑孔Z的侧壁设置为阶梯状;同时,为了提高导电梁L的支撑能力、抗弯曲能力和抗冲击能力,将导电梁L的侧壁也设置为 阶梯状。
需要说明的是,如图1所示,在导电梁L的导电材料102和红外敏感材料层101与导电支撑孔Z的导电材料102和红外敏感材料层101分别一一对应相连续,从而实现导电梁L与导电支撑孔Z的电连。请参阅图4并结合图1,图4为图1中导电梁和红外探测区域接触区域沿CC'方向的截面结构示意图,在导电梁L与红外探测区域S相接触的一端,且与导电梁L长度方向垂直的侧壁(图4中虚线框中所示,图1中椭圆形虚线所示)的导电材料102和红外敏感材料层101与红外探测区域S的相应的导电材料102和红外敏感材料层101分别一一对应相连续,从而实现导电梁L与红外探测区域S的电连。
请参阅图5~10,为了便于表达,图6~10中仅列出了制备导电梁的结构示意图和制备支撑孔的结构示意图,而对其它结构不做示意。本实施例的上述的小尺寸红外传感器结构的制备方法,包括:
步骤01:请参阅图6,提供一半导体器件衬底100;半导体器件衬底100表面具有互连层(未示出);
具体的,半导体器件衬底100表层的互连层可以为前道互连工艺制备的互连层。
步骤02:请参阅图7,在半导体器件衬底100表面的互连层上沉积一层牺牲层105;
具体的,可以但不限于采用化学气相沉积方法在半导体器件衬底100表面沉积牺牲层105;牺牲层105的材料可以采用常规的牺牲层材料,例如无机牺牲层材料氧化硅,或有机牺牲层材料。
步骤03:请参阅图8和图9,在牺牲层105上分出红外探测区域S'(图9 中虚线框所示)、导电梁区域和导电支撑孔区域;在导电支撑孔区域107的牺牲层105中刻蚀出支撑孔107,同时在导电梁区域的牺牲层105中刻蚀出沟槽106;图8中左侧为沟槽的截面结构示意图,图8中右侧为支撑孔的截面结构示意图,图9为衬底100上的结构的俯视示意图,需要说明的是,图9中对于沟槽106和支撑孔107的结构轮廓做了示意,为了便于表达,图9中没有示出沟槽106的阶梯和支撑孔107的阶梯。
具体的,请参阅图9,沟槽106长度方向上的一端与支撑孔107相交,且沟槽106长度方向上的另一端与红外探测区域S'相交;在进行刻蚀之前,先在掩膜版的版图中制备好红外探测区域、导电梁区域和导电支撑孔区域的图案,获得版图图形,掩膜版的版图图形可以参考图9所示衬底的俯视结构示意;然后,利用制备好的掩膜版在牺牲层105相应位置刻蚀出支撑孔107和沟槽106。请继续参阅图8,这里还可以采用大马士革工艺来刻蚀牺牲层105,从而得到具有阶梯状侧壁的接触孔107和沟槽106。这里需要说明的是,沟槽106的深度决定了导电梁L的高度,通常,支撑孔107的深度要大于沟槽106的深度,如图8中右侧的支撑孔结构示意图中的虚线位置表示沟槽底部所在位置。
步骤04:请参阅图10,图10中左侧为在沟槽中沉积材料的截面结构示意图,图10中右侧为在支撑孔中沉积材料的截面结构示意图。这里,在完成步骤03的半导体器件衬底100上沉积导电材料102和红外敏感材料层101,并通过离子注入对其进行掺杂处理;结合图9,导电材料102和红外敏感材料层101覆盖于沟槽106的侧壁和底部、支撑孔107的侧壁和底部、以及暴露的牺牲层105的表面;
需要说明的是,关于导电材料102和红外敏感材料层101的沉积顺序可以互换,如果先沉积红外敏感材料层101,需在沉积导电材料102之前增加一步刻蚀掉支撑孔107底部的红外敏感材料层101的步骤,从而使得支撑孔107中后续沉积的导电材料102能够与互连层的接触孔相电连。
此外,本实施例中,在沉积导电材料102和红外敏感材料层101之前,还包括,在完成步骤03的半导体器件衬底100上沉积下释放保护层;和/或在沉积了导电材料102和红外敏感材料层103之后还继续沉积一层上释放保护层。关于上释放保护层、下释放保护层的沉积方法可以但不限于采用化学气相沉积方法,这是本领域技术人员可以知晓的,这里不再赘述。
步骤05:请参阅图11并结合图8和图1,图11中左侧为在图案化后的沟槽的截面结构示意图,图11中右侧为图案化后的支撑孔的截面结构示意图。图案化导电材料102和红外敏感材料层101,形成红外探测区域S的图案和导电支撑孔Z的图案,同时去除沟槽106底部和沟槽106顶部外侧的导电材料102和红外敏感材料层101,保留沟槽106侧壁的导电材料102和红外敏感材料层101,这样,就在沟槽106侧壁形成导电梁L,在支撑孔107中形成导电支撑孔Z。
具体的,可以但不限于采用光刻和刻蚀工艺来图案化导电材料102和红外敏感材料层101,以形成红外探测区域S的图案和导电支撑孔Z的图案,从而在支撑孔107中形成导电支撑孔Z;刻蚀的时候还同时去除了沟槽106底部和沟槽106顶部外侧的导电材料102和红外敏感材料层101,所保留的沟槽106侧壁的导电材料102和红外敏感材料层101最终形成导电梁L。需要说明的是,请再次参阅图11并结合图1和图8,在沟槽106侧壁的导电材 料102和红外敏感材料层101,与支撑孔107侧壁的导电材料102和红外敏感材料层101分别一一对应相连续,从而实现导电梁L与导电支撑孔Z的电连。在沟槽106与红外探测区域S相接触的一端且与沟槽106长度方向垂直的侧壁(图1中椭圆形虚线框所示)的导电材料102和红外敏感材料层101,与红外探测区域S的相应的导电材料102和红外敏感材料层101分别一一对应相连续,从而实现导电梁L与红外探测区域S的电连。
需要说明的是,这利用沟槽106侧壁沉积的材料来形成导电梁L的原因是,所沉积的导电梁L在水平方向的宽度会小于沉积于牺牲层105表面的导电材料102和红外敏感材料层101的厚度总和,从而巧妙地利用沟槽106侧壁的材料沉积来减小导电梁L的尺寸,同时,后续可以采用常规的各向异性刻蚀工艺来刻蚀去除沟槽106顶部外侧和沟槽106底部的导电材料102和红外敏感材料层101,不会增加工艺难度,因此,在不需要挑战小尺寸光刻工艺的条件下,也即是采用现有工艺即可减少导电梁L的尺寸。较佳的,导电梁L在水平方向的宽度为牺牲层105表面沉积的导电材料102和红外敏感材料层101的厚度总和的60~70%。
步骤06:请参阅图12,图12中左侧为释放掉牺牲层后的沟槽的截面结构示意图,图12中右侧为释放掉牺牲层后的支撑孔的截面结构示意图。这里,请结合图11,采用释放工艺,释放掉所有的牺牲层105。
具体的,可以采用常规释放工艺,这是本领域技术人员可以知晓的,这里不再赘述。
需要说明的是,在本发明的其它实施例中,在上述步骤04中,在完成步骤03的半导体器件衬底100上沉积导电材料102和红外敏感材料层101 的过程中,在沉积红外敏感材料层101时,还可以采用掩膜将红外探测区域S之外的区域全部遮蔽住,只暴露出红外探测区域S,从而在红外探测区域S的牺牲层105表面覆盖了导电材料102和红外敏感材料层101,并且在沟槽106侧壁和底部、支撑孔107侧壁和底部仅覆盖有导电材料102;这样,上述步骤05可以具体包括:图案化导电材料102和红外敏感材料层101,形成红外探测区域S的图案和导电支撑孔Z的图案,同时去除沟槽106底部和沟槽106顶部外侧的导电材料102,保留沟槽106侧壁的导电材料102,从而在沟槽106侧壁形成导电梁L,在支撑孔107中形成导电支撑孔Z,从而使得后续得到的导电梁L和导电支撑孔107中不具有红外敏感材料层101。
虽然本发明已以较佳实施例揭示如上,然所述实施例仅为了便于说明而举例而已,并非用以限定本发明,本领域的技术人员在不脱离本发明精神和范围的前提下可作若干的更动与润饰,本发明所主张的保护范围应以权利要求书所述为准。

Claims (10)

  1. 一种小尺寸红外传感器结构,具有多个像元结构,每个像元结构具有红外探测区域、与红外探测区域相电连的导电梁、以及用于支撑导电梁并与导电梁电连接的导电支撑孔;其特征在于,相邻的所述像元结构之间通过导电梁共同连接至一个导电支撑孔。
  2. 根据权利要求1所述的小尺寸红外传感器结构,其特征在于,所共同连接至的一个所述导电支撑孔设置于相邻的所述红外探测区域之间的下方;以所共同连接至的一个所述导电支撑孔的中心线为对称轴,相邻的所述像元结构呈镜像对称。
  3. 根据权利要求1所述的小尺寸红外传感器结构,其特征在于,所述导电梁与所述导电支撑孔的侧壁连续为同一层,所述导电梁的层次结构和所述导电支撑孔的侧壁的层次结构相同。
  4. 根据权利要求3所述的小尺寸红外传感器结构,其特征在于,所述导电梁和与之相连接的导电支撑孔中,导电支撑孔的侧壁沿所述导电支撑孔的内径方向依次具有第一下释放保护层、第一电连接层、第一上释放保护层,导电梁靠近所述红外探测区域的一侧向外依次具有第二下释放保护层、第二电连接层和第二上释放保护层,导电支撑孔的第一下释放保护层和导电梁的第二下释放保护层相连接,导电支撑孔的第一上释放保护层和导电梁的第二上释放保护层相连接,导电支撑孔的第一电连接层和导电梁的第二电连接层相连接;
    或者,所述导电梁和与之相连接的导电支撑孔中,导电支撑孔的侧壁 沿所述导电支撑孔的内径方向依次具有第一释放保护层和第一电连接层、或第一电连接层和第一释放保护层,导电梁靠近所述红外探测区域的一侧向外依次具有第二释放保护层和第二电连接层、或第二电连接层和第二释放保护层;导电支撑孔的第一释放保护层和导电梁的第二释放保护层相连接,导电支撑孔的第一电连接层和导电梁的第二电连接层相连接;
    或者,所述导电梁和与之相连接的导电支撑孔中,导电支撑孔的侧壁由第一电连接层构成,导电梁由第二电连接层构成,第一电连接层和第二电连接层相连接。
  5. 根据权利要求3所述的小尺寸红外传感器结构,其特征在于,所述导电梁中每一层的水平宽度小于所述支撑孔的顶部中相应层厚度。
  6. 根据权利要求1所述的小尺寸红外传感器结构,其特征在于,所述导电支撑孔的侧壁呈阶梯状。
  7. 一种小尺寸红外传感器结构的制备方法,其特征在于,包括:
    步骤01:提供一半导体器件衬底;半导体器件衬底表面具有互连层;
    步骤02:在半导体器件衬底表面的互连层上沉积一层牺牲层;
    步骤03:在牺牲层上分出红外探测区域、导电梁区域和导电支撑孔区域;在导电支撑孔区域的牺牲层中刻蚀出支撑孔,同时在导电梁区域的牺牲层中刻蚀出沟槽;沟槽长度方向上的一端与支撑孔相交,且沟槽长度方向上的另一端与红外探测区域相交;
    步骤04:在完成步骤03的半导体器件衬底上沉积导电材料和红外敏感材料层,所述导电材料和所述红外敏感材料层覆盖于所述沟槽侧壁和底部、所述支撑孔侧壁和底部、以及暴露的牺牲层表面;
    步骤05:图案化所述导电材料和所述红外敏感材料层,形成红外探测区域的图案和所述导电支撑孔的图案,同时去除沟槽底部和沟槽顶部外侧的所述导电材料和所述红外敏感材料层,保留所述沟槽侧壁的所述导电材料和所述红外敏感材料层,从而在沟槽侧壁形成导电梁,在支撑孔中形成导电支撑孔;
    步骤06:采用释放工艺,释放掉所有的牺牲层。
  8. 根据权利要求7所述的小尺寸红外传感器结构的制备方法,其特征在于,所述步骤03中,采用大马士革工艺来刻蚀牺牲层,从而得到具有阶梯状侧壁的接触孔和沟槽。
  9. 一种权利要求4所述的小尺寸红外传感器结构的制备方法,其特征在于,包括:
    步骤01:提供一半导体器件衬底;半导体器件衬底表面具有互连层;
    步骤02:在半导体器件衬底表面的互连层上沉积一层牺牲层;
    步骤03:在牺牲层上分出红外探测区域、导电梁区域和导电支撑孔区域;在导电支撑孔区域的牺牲层中刻蚀出支撑孔,同时在导电梁区域的牺牲层中刻蚀出沟槽;沟槽长度方向上的一端与支撑孔相交,且沟槽长度方向上的另一端与红外探测区域相交;
    步骤04:在完成步骤03的半导体器件衬底上沉积导电材料和红外敏感材料层,并通过离子注入对其进行掺杂处理;其中,在沉积红外敏感材料层时,采用掩膜将所述红外探测区域之外的区域全部遮蔽住,只暴露出红外探测区域,从而在红外探测区域的牺牲层表面覆盖有导电材料和红外敏感材料层,并且在沟槽侧壁和底部、支撑孔侧壁和底部覆盖有导电材料;
    步骤05:图案化所述导电材料和所述红外敏感材料层,形成红外探测区域的图案和所述导电支撑孔的图案,同时去除沟槽底部和沟槽顶部外侧的所述导电材料,保留所述沟槽侧壁的所述导电材料,从而在沟槽侧壁形成导电梁,在支撑孔中形成导电支撑孔;
    步骤06:采用释放工艺,释放掉所有的牺牲层。
  10. 根据权利要求9所述的小尺寸红外传感器结构的制备方法,其特征在于,所述步骤03中,采用大马士革工艺来刻蚀牺牲层,从而得到具有阶梯状侧壁的接触孔和沟槽。
PCT/CN2017/118010 2017-06-27 2017-12-22 一种小尺寸红外传感器结构及其制备方法 WO2019000872A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/624,914 US20210358990A1 (en) 2017-06-27 2017-12-22 Small-size infrared sensor structure and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710500092.3A CN107316879B (zh) 2017-06-27 2017-06-27 一种小尺寸红外传感器结构及其制备方法
CN201710500092.3 2017-06-27

Publications (1)

Publication Number Publication Date
WO2019000872A1 true WO2019000872A1 (zh) 2019-01-03

Family

ID=60179675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118010 WO2019000872A1 (zh) 2017-06-27 2017-12-22 一种小尺寸红外传感器结构及其制备方法

Country Status (3)

Country Link
US (1) US20210358990A1 (zh)
CN (1) CN107316879B (zh)
WO (1) WO2019000872A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107316879B (zh) * 2017-06-27 2019-10-25 上海集成电路研发中心有限公司 一种小尺寸红外传感器结构及其制备方法
CN110940419B (zh) * 2019-08-30 2021-04-30 上海集成电路研发中心有限公司 一种红外探测器及其制备方法
CN114088209B (zh) * 2021-03-26 2023-08-01 北京北方高业科技有限公司 基于cmos工艺的红外探测器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070108383A1 (en) * 2003-07-03 2007-05-17 Combes David J Thermal detector
CN102169919A (zh) * 2011-03-17 2011-08-31 上海集成电路研发中心有限公司 探测器及其制造方法
CN106129138A (zh) * 2016-06-27 2016-11-16 上海集成电路研发中心有限公司 防串扰红外探测器像元结构及其制备方法
CN106441595A (zh) * 2016-09-28 2017-02-22 杭州大立微电子有限公司 红外探测器阵列级封装结构及其制造方法
CN106430076A (zh) * 2016-07-28 2017-02-22 上海集成电路研发中心有限公司 高填充红外探测器像元结构及其制备方法
CN107316879A (zh) * 2017-06-27 2017-11-03 上海集成电路研发中心有限公司 一种小尺寸红外传感器结构及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8729474B1 (en) * 2009-10-09 2014-05-20 Flir Systems, Inc. Microbolometer contact systems and methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070108383A1 (en) * 2003-07-03 2007-05-17 Combes David J Thermal detector
CN102169919A (zh) * 2011-03-17 2011-08-31 上海集成电路研发中心有限公司 探测器及其制造方法
CN106129138A (zh) * 2016-06-27 2016-11-16 上海集成电路研发中心有限公司 防串扰红外探测器像元结构及其制备方法
CN106430076A (zh) * 2016-07-28 2017-02-22 上海集成电路研发中心有限公司 高填充红外探测器像元结构及其制备方法
CN106441595A (zh) * 2016-09-28 2017-02-22 杭州大立微电子有限公司 红外探测器阵列级封装结构及其制造方法
CN107316879A (zh) * 2017-06-27 2017-11-03 上海集成电路研发中心有限公司 一种小尺寸红外传感器结构及其制备方法

Also Published As

Publication number Publication date
CN107316879A (zh) 2017-11-03
US20210358990A1 (en) 2021-11-18
CN107316879B (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
TWI677993B (zh) 半導體裝置與影像感測器積體晶片的形成方法
JP4260396B2 (ja) 半導体装置およびその製造方法
TWI709216B (zh) 半導體結構及其製造方法
TWI608600B (zh) 影像感測器及其製作方法
JP3562895B2 (ja) ランディングパッドを有する半導体装置の製造方法
WO2019072043A1 (zh) 一种背照式cmos图像传感器结构的制作方法
TW201208051A (en) Light Pipe etch control for CMOS fbrication
WO2019000872A1 (zh) 一种小尺寸红外传感器结构及其制备方法
CN111199880B (zh) 一种半导体器件的制造方法和半导体器件
CN108573983B (zh) 光学探测器及其制备方法、指纹识别传感器、显示装置
JP2001203284A (ja) フラッシュメモリ素子の製造方法
KR20000066340A (ko) 반도체 소자의 배선 형성 방법
TWI718875B (zh) 半導體裝置及其形成方法
US7476612B2 (en) Method for manufacturing semiconductor device
CN108417528B (zh) 一种改善铝垫上残留物的方法
JP2680923B2 (ja) 半導体装置の製造方法
KR102608900B1 (ko) 반도체 소자 제조 방법
US11205572B2 (en) Semiconductor device and fabrication method thereof
CN108878465B (zh) 基于背电极连接的cmos图像传感器及其制备方法
CN101556918A (zh) 提高半导体图形分辨率的方法
KR100687422B1 (ko) 반도체 소자의 제조방법
KR100447258B1 (ko) 반도체소자의캐패시터형성방법
JP2006186084A (ja) 半導体光学素子及びその製造方法
CN113972137A (zh) 对准标记的制备方法和鳍式场效应晶体管的制备方法
KR100413043B1 (ko) 반도체 장치의 게이트 전극 형성 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17915313

Country of ref document: EP

Kind code of ref document: A1