WO2019000285A1 - 一种导热胶膜 - Google Patents
一种导热胶膜 Download PDFInfo
- Publication number
- WO2019000285A1 WO2019000285A1 PCT/CN2017/090627 CN2017090627W WO2019000285A1 WO 2019000285 A1 WO2019000285 A1 WO 2019000285A1 CN 2017090627 W CN2017090627 W CN 2017090627W WO 2019000285 A1 WO2019000285 A1 WO 2019000285A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- adhesive
- thermally conductive
- component
- film according
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
Definitions
- the invention relates to the technical field of thermal conductive materials, in particular to a thermal conductive adhesive film.
- a heat conductive material needs to be disposed between the heat generating component and the heat radiating component for heat conduction, and a high requirement is placed on the heat conductivity of the heat conductive material.
- the thermal conductive film has the following problems:
- the adhesive force of the adhesive is lowered to cause the thermal conductive film to peel off from the heating element or the heat dissipating component, thereby forming a high thermal resistance state of the contact gap, causing damage to other equipment.
- the contact surface between the heating element and the heat dissipating component is a non-true plane due to processing roughness or tolerance, etc., and there is a certain gap between the two surfaces; and the air present in the gap is high thermal resistance.
- the poor thermal conductor when the thermal conductive film is bonded to the heating element or the heat dissipating component, the air cannot be completely exhausted between the two, thereby forming an air bubble, thereby forming an air gap with high thermal resistance, and the heat cannot be discharged and accumulated in time. At high temperatures, it degrades the performance, reliability and longevity of electronic products.
- thermoly conductive adhesive film comprising a composite adhesive layer comprising a first component thermosetting adhesive and a second component pressure sensitive material adhesive
- the mixture of the first component thermosetting adhesive and the second component pressure sensitive material adhesive is 15%-95%: 5%-85% by weight.
- the method further includes a bottom tie layer overlying the composite adhesive layer, and a top layer overlying the composite adhesive layer and having a release effect.
- the bottom connecting layer is a release film layer or a matrix layer.
- the bottom connecting layer is a matrix layer selected from any one of a metal substrate, a silica gel substrate, a graphite substrate, a ceramic substrate or a polymer substrate.
- the weight percentage of the first component thermosetting adhesive and the second component pressure sensitive material adhesive is 40%-70%: 30%-60%.
- the first component thermosetting adhesive comprises the following components by weight: 70%-100% of the epoxy resin polymer; 0%-30% of the thermal conductive agent.
- the second component pressure sensitive material adhesive comprises the following components by weight: 70%-100% of the acrylic polymer; 0%-30% of the thermal conductive agent.
- a plurality of venting grooves are formed on the upper and/or lower surface of the composite adhesive layer, and the venting grooves are pierced from the side of the composite adhesive layer.
- a layer of supporting base layer is further disposed in the middle of the composite adhesive layer.
- the material of the supporting base layer is selected from one or a combination of paper fibers, glass fibers, metal fibers, carbon fibers, non-woven fabrics, nylon fibers or polymer films.
- a coating layer covering the upper and/or lower surface of the composite adhesive layer, the material of the coating layer being selected from at least one of metal, carbon material or ceramic.
- thermosetting adhesive block a composite adhesive layer comprising a first component thermosetting adhesive block and a second component pressure sensitive
- the material adhesive block forms an exhaust passage between the first component thermosetting adhesive block and/or the second component pressure sensitive material adhesive block.
- the method further includes a bottom tie layer overlying the composite adhesive layer, and a top layer overlying the composite adhesive layer and having a release effect.
- the bottom connecting layer is a release film layer or a matrix layer.
- the bottom connecting layer is a matrix layer selected from any one of a metal substrate, a silica gel substrate, a graphite substrate, a ceramic substrate or a polymer substrate.
- a layer of supporting base layer is further disposed in the middle of the composite adhesive layer.
- the material of the supporting base layer is selected from the group consisting of paper fiber, glass fiber, metal fiber, carbon One or more combinations of fibers, nonwovens, nylon fibers, or polymeric films.
- the support base layer has a thickness of from 5 to 2000 ⁇ m.
- the shape of the first component thermosetting adhesive block and the second component pressure sensitive material adhesive block are one or a combination of a line shape, a polygon shape and a circle shape, respectively.
- the first component thermosetting adhesive block comprises the following components by weight: 70%-100% epoxy resin; 0%-30% thermal conductive agent.
- the second component pressure sensitive material adhesive block comprises the following components by weight: 70%-100% of the acrylic polymer; 0%-30% of the thermal conductive agent.
- a coating layer covering the upper and/or lower surface of the composite adhesive layer, the material of the coating layer being selected from at least one of metal, carbon material or ceramic.
- the inventors of the present invention have found that in the prior art, when the temperature of the heat generating component exceeds the softening temperature of the adhesive, the adhesive force of the adhesive is lowered to cause the thermal conductive film to be peeled off from the heat generating component or the heat dissipating component, thereby forming a contact gap high heat. Resistive state, causing damage to other equipment. Therefore, the technical task to be achieved by the present invention or the technical problem to be solved is not thought of or expected by those skilled in the art, so the present invention is a new technical solution.
- the thermal conductive adhesive film provided by the invention combines the high adhesive strength of the second component pressure sensitive material adhesive and the thermosetting property of the first component thermosetting adhesive while bonding the heat generating component and the heat dissipating component, thereby
- the heating element and the heat dissipating component are stably combined at a normal temperature, and the thermal conductive film is prevented from being peeled off from the heating element or the heat dissipating component at a high temperature.
- the thermal conductive film of the present invention can be used to bond the bonding interface between two different temperature materials.
- the thermally conductive adhesive film of the present invention when the thermally conductive adhesive film of the present invention is bonded to the heat generating component or the heat radiating element, the air can be completely discharged. In this way, no air bubbles are formed, and the high thermal resistance state of the contact gap is avoided, which causes damage to other equipment, and improves the heat dissipation effect and service life of the product.
- Figure 1 is a cross-sectional view showing a thermally conductive adhesive film according to a first embodiment of the present invention.
- Fig. 2 is a perspective view of Fig. 1;
- Figure 3 is a cross-sectional view showing another thermally conductive adhesive film according to Embodiment 1 of the present invention.
- Fig. 4 is a perspective view of Fig. 3;
- Figure 5 is a cross-sectional view showing a thermally conductive adhesive film according to a fourth embodiment of the present invention.
- Figure 6 is a cross-sectional view showing another thermally conductive adhesive film according to Embodiment 4 of the present invention.
- Figure 7 is a cross-sectional view showing a thermally conductive adhesive film provided with a plating layer according to an embodiment of the present invention.
- a thermally conductive adhesive film comprises a composite adhesive layer.
- the composite adhesive layer comprises a mixture of a first component thermosetting adhesive and a second component pressure sensitive material adhesive.
- the weight percentage of the first component thermosetting adhesive to the second component pressure sensitive material adhesive is 15%-95%: 5%-85%.
- the pressure sensitive material needs to apply pressure when bonding to obtain the bonding strength.
- the thermosetting adhesive can be cured under heating to obtain a bonding strength.
- the thermal conductive adhesive film provided by the invention combines the high adhesive strength of the second component pressure sensitive material adhesive and the thermosetting property of the first component thermosetting adhesive while bonding the heat generating component and the heat dissipating component, thereby
- the heating element and the heat dissipating component are stably combined at a normal temperature, and the thermal conductive film is prevented from being peeled off from the heating element or the heat dissipating component at a high temperature.
- the thermal conductive film of the present invention can be used to bond the bonding interface between two different temperature materials.
- the thermally conductive adhesive film of the present invention when the thermally conductive adhesive film of the present invention is bonded to the heat generating component or the heat radiating element, the air can be completely discharged. In this way, no air bubbles are formed, and the high thermal resistance state of the contact gap is avoided, which causes damage to other equipment, and improves the heat dissipation effect and service life of the product.
- the thermally conductive film further comprises a bottom tie layer overlying the composite adhesive layer, and a top layer overlying the composite adhesive layer and having a release effect. In this way, the packaging and use of the thermal conductive film is facilitated.
- the bottom tie layer is a release film layer or a matrix layer.
- the release film layer is removed when the thermal conductive film is used.
- the matrix layer acts as a heat dissipating component.
- the bottom connecting layer is a matrix layer selected from any one of a metal substrate, a silica gel substrate, a graphite substrate, a ceramic substrate or a polymer substrate.
- a metal substrate a silica gel substrate, a graphite substrate, a ceramic substrate or a polymer substrate.
- the heat dissipation effect of the above materials is good.
- the weight percentage of the first component thermosetting adhesive and the second component pressure sensitive material adhesive is 40%-70%: 30%-60%.
- the thermal conductive film formed in the ratio range has good bonding effect and thermosetting effect.
- the first component thermosetting adhesive comprises the following components by weight: 70%-100% of the epoxy resin polymer; 0%-30% of the thermal conductive agent. This ratio range ensures that the thermal paste film has a suitable cure speed.
- the second component pressure sensitive material adhesive comprises the following components by weight: 70%-100% of the acrylic polymer; 0%-30% of the thermal conductive agent.
- the second component of the pressure sensitive material binder in the ratio range has a good pressure-sensing effect of the thermal conductive film and high bonding strength.
- a plurality of venting grooves are formed on the upper and/or lower sides of the composite adhesive layer, and the venting grooves are passed out from the side of the composite adhesive layer.
- a layer of supporting base layer is further disposed in the middle of the composite adhesive layer.
- the support substrate can increase the strength of the composite adhesive layer.
- the material of the supporting base layer is selected from one or more combinations of paper fibers, glass fibers, metal fibers, carbon fibers, non-woven fabrics, nylon fibers or polymer films.
- the material of the coating layer is selected from at least one of metal, carbon material or ceramic.
- carbon materials are selected from graphite grains, graphene, micro carbon spheres, and nanocarbon spheres. These materials have good thermal radiation effects and are capable of rapid heat transfer.
- a plating layer is disposed between the top layer 2 and the composite adhesive layer 1, and an exhaust groove is further provided therebetween.
- the coating layer is overlaid on and/or under the composite adhesive layer by electroplating or electroless plating.
- the coating layer shields electromagnetic waves from electromagnetic waves to prevent interference with electronic products.
- the coating layer can also improve the heat radiation efficiency of the thermal conductive film, so that the electronic product can dissipate heat more quickly.
- thermally conductive adhesive film comprises a composite adhesive layer, and the composite adhesive layer comprises a first component thermosetting adhesive block and a second component pressure sensitive material adhesive block, and the first component thermosetting adhesive region An exhaust passage is formed between the block and/or the second component of the pressure sensitive material adhesive block.
- the thermal conductive adhesive film provided by the present invention combines the high adhesive strength of the second component pressure sensitive material adhesive and the thermosetting property of the first component thermosetting adhesive while bonding the heat generating component and the heat dissipating component.
- the characteristics are such that the heat-generating component and the heat-dissipating component are stably combined at a normal temperature, and the thermal conductive film is prevented from being peeled off from the heat-generating component or the heat-dissipating component at a high temperature.
- the thermal conductive film of the present invention can be used to bond the bonding interface between two different temperature materials.
- the thermally conductive adhesive film of the present invention when the thermally conductive adhesive film of the present invention is bonded to the heat generating component or the heat radiating element, the air can be completely discharged. In this way, no air bubbles are formed, and the high thermal resistance state of the contact gap is avoided, which causes damage to other equipment, and improves the heat dissipation effect and service life of the product.
- the thermally conductive film further comprises a bottom tie layer overlying the composite adhesive layer, and a top layer overlying the composite adhesive layer and having a release effect. In this way, the packaging and use of the thermal conductive film is facilitated.
- the bottom tie layer is a release film layer or a substrate layer.
- the release film layer is removed when the thermal conductive film is used.
- the matrix layer acts as a heat dissipating component.
- the bottom connecting layer is a matrix layer selected from any one of a metal substrate, a silica gel substrate, a graphite substrate, a ceramic substrate or a polymer substrate.
- a metal substrate a silica gel substrate, a graphite substrate, a ceramic substrate or a polymer substrate.
- the heat dissipation effect of the above materials is good.
- a layer of supporting base layer is further disposed in the middle of the composite adhesive layer.
- Support base layer can mention The strength of the high composite adhesive layer.
- the material of the supporting base layer is selected from one or more combinations of paper fibers, glass fibers, metal fibers, carbon fibers, non-woven fabrics, nylon fibers or polymer films.
- the thickness of the support base layer is from 5 to 2000 ⁇ m.
- the shape of the first component thermosetting adhesive block and the second component pressure sensitive material adhesive block are one or a combination of a line shape, a polygon shape and a circle shape, respectively.
- the first component thermosetting adhesive block comprises the following components by weight: 70%-100% epoxy resin; 0%-30% thermal conductive agent. This ratio range ensures that the thermal paste film has a suitable cure speed.
- the second component pressure sensitive material adhesive block comprises the following components by weight: 70%-100% of the acrylic polymer; 0%-30% of the thermal conductive agent.
- the second component of the pressure sensitive material binder in the ratio range has a good pressure-sensing effect of the thermal conductive film and high bonding strength.
- a coating layer covering the upper and/or lower surface of the composite adhesive layer, the material of the coating layer being selected from at least one of metal, carbon material or ceramic.
- carbon materials are selected from graphite grains, graphene, micro carbon spheres, and nanocarbon spheres. These materials have good thermal radiation effects and are capable of rapid heat transfer.
- the coating layer is overlaid on and/or under the composite adhesive layer by electroplating or electroless plating.
- the coating layer shields electromagnetic waves from electromagnetic waves to prevent interference with electronic products.
- the coating layer can also improve the heat radiation efficiency of the thermal conductive film, so that the electronic product can dissipate heat more quickly.
- an embodiment of the present invention provides a thermally conductive adhesive film.
- the thermal adhesive film comprises an intermediate composite adhesive layer 1, a bottom connection layer 3 covering the composite adhesive layer 1, and a top layer 2 overlying the composite adhesive layer 1.
- the bottom tie layer 3 can be the same as the top layer 2, both of which are release film layers.
- the top layer 2 and the bottom connecting layer 3 are separated from the composite adhesive layer 1 in order, and the heat generating component and the heat dissipating component are connected through the composite adhesive layer 1.
- the release force of the bottom connecting layer and the top layer 2 with respect to the composite adhesive layer 1 is different.
- the top 2 can have a release force of 8gf/inch
- bottom The release force of the tie layer is 15 gf/inch.
- top layer 2 and the bottom connecting layer may be composed of two separate release films; or the single-piece release film may be treated on both sides, so that the upper and lower sides of the release film are respectively attached to the upper and lower sides of the composite adhesive layer. Combined to form a thermally conductive film in the form of a reel.
- the bottom tie layer 3 can also be different from the top layer 2.
- the top layer 2 is a release film layer and the bottom connection layer 3 is a matrix layer.
- the substrate layer acts as a heat dissipating component.
- the top layer 2 is removed, and the composite adhesive layer 1 is connected to the heating element to achieve heat dissipation. In this way, it is omitted to provide other heat dissipating components outside the thermal conductive film.
- the matrix layer improves the ease of use of the thermal film and reduces the risk of operational errors.
- the substrate layer is selected from any one of a metal substrate, a silica gel substrate, a graphite substrate, a ceramic substrate, or a polymer substrate.
- the composite adhesive layer 1 is a mixture of a first component thermosetting adhesive and a second component pressure sensitive material adhesive.
- first and second components are chemically bonded.
- the weight percentage of the first component thermosetting adhesive to the second component pressure sensitive material adhesive is 30%: 70%.
- the first component thermoset adhesive includes, but is not limited to, an epoxy resin or a phenolic resin.
- the second component pressure sensitive material adhesive includes, but is not limited to, polyurethanes, polyacrylates, silicones, styrene butadiene rubber, polyisobutylene or butyl rubber.
- the first component thermosetting adhesive comprises the following components by weight: 85% epoxy resin; 15% thermal conductive agent; the second component pressure sensitive material adhesive comprises the following components by weight fraction: acrylic acid polymerization 85%; thermal conductivity 15%.
- the heat conductive agent is made of a material commonly used in the art, such as graphite.
- a plurality of exhaust grooves 11 are formed on the upper surface and/or the lower surface of the composite adhesive layer 1.
- the venting groove exits from the side of the composite adhesive layer.
- the venting groove 11 is opened above and below the composite adhesive layer 1.
- the venting groove 11 is opened only on the composite adhesive layer 1.
- the exhaust grooves 11 may be disposed in parallel with each other or may be disposed to intersect each other.
- the pore gas between the composite adhesive layer 1 and the heat generating component or the heat dissipating component is removed through the exhaust groove 11 to avoid a high thermal resistance state of the contact gap, resulting in Other equipment is damaged.
- a supporting base layer is further disposed in the middle of the composite adhesive layer to increase the strength of the composite adhesive layer.
- the supporting base material is selected from one or more combinations of paper fibers, glass fibers, metal fibers, carbon fibers, non-woven fabrics, nylon fibers, or polymer films.
- the support base layer has a thickness of from 5 to 2000 ⁇ m.
- the embodiment of the present invention provides a thermal conductive adhesive film.
- the difference from the first embodiment is that the weight percentage of the first component thermosetting adhesive and the second component pressure sensitive material adhesive is 40%: 60%.
- the first component thermosetting adhesive is an epoxy resin; and the second component pressure sensitive material adhesive is an acrylic polymer.
- the embodiment of the invention provides a thermal conductive adhesive film.
- the difference from the first embodiment is that the weight percentage of the first component thermosetting adhesive and the second component pressure sensitive material adhesive is 60%: 40%.
- the first component thermosetting adhesive comprises the following components by weight fraction: epoxy resin 90%; thermal conductive agent 10%; second component pressure sensitive material adhesive comprises the following weight fraction component: acrylic polymer 90%; thermal conductivity 10%.
- the embodiment provides a thermal conductive adhesive film, wherein the weight percentage of the first component thermosetting adhesive and the second component pressure sensitive material adhesive is 50%: 50%.
- the first component thermosetting adhesive comprises the following components by weight fraction: epoxy resin 90%; thermal conductive agent 10%; second component pressure sensitive material adhesive comprises the following weight fraction component: acrylic polymer 90%; thermal conductivity 10%.
- an embodiment of the present invention provides a thermal conductive adhesive film including a composite adhesive layer 1 , a bottom connecting layer 3 covering the back surface of the composite adhesive layer 1 , and a composite adhesive layer.
- the composite adhesive layer 1 of the present embodiment is pressure-sensitive by the first component thermosetting adhesive block 4 of the plurality of epoxy resins and the second component of the plurality of acrylic polymers.
- the material adhesive block 5 is composed.
- An exhaust passage 6 is formed between the agent block 4 and/or the second component pressure sensitive material adhesive block 5.
- the top layer 2 is selected from the release film layer, and the bottom connection layer 3 is selected as the substrate layer; or the bottom portion
- the tie layer 3 can be the same as the top layer 2, both of which are release film layers.
- a supporting base layer 12 is disposed in the middle of the composite adhesive layer 1.
- the material of the supporting base layer 12 is selected from the group consisting of paper fiber, glass fiber, metal fiber, carbon fiber, non-woven fabric, nylon fiber or polymer film. Or a variety of combinations.
- the support base layer 12 is a 50 micrometer thick carbon fiber base layer.
- the support base layer has a thickness of from 5 to 2000 ⁇ m.
- the first component thermosetting adhesive block 4 has the same shape as the second component pressure sensitive material adhesive block 5, and each has a rectangular strip shape, and the first component thermosetting adhesive block 4
- the second component pressure sensitive material adhesive block 5 is sequentially spaced apart, and the two spaced regions form the exhaust passage 6.
- the first component thermosetting adhesive block 4 and the second component pressure sensitive material adhesive block 5 have the same shape, both of which are rectangular blocks, and the first component thermosetting adhesive block 4 And the length, width and height of the second component pressure sensitive material adhesive block 5 are 2 mm, 2 mm, 80 ⁇ m, respectively, the first component thermosetting adhesive block 4 and the second component pressure sensitive material adhesive
- the blocks 5 are arranged in an array in order, and the spaced regions form an exhaust passage 6, and the width of the exhaust passage 6 may be 0.5 mm. It can be understood that the length, width and height of the first component thermosetting adhesive block 4 and the second component pressure sensitive material adhesive block 5 and the width of the exhaust passage 6 can be modified according to actual needs.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Adhesive Tapes (AREA)
Abstract
一种导热胶膜,包括复合胶黏剂层,复合胶黏剂层包括第一组分热固性胶黏剂与第二组分感压材料胶黏剂的混合物,第一组分热固性胶黏剂与第二组分感压材料胶黏剂的重量百分比为15%-95%:5%-85%。导热胶膜在粘接发热元件与散热元件的同时,结合了第二组分感压材料胶黏剂的高黏接强度和第一组分热固性胶黏剂的热固性的特性,使得发热元件与散热元件在常温下结合稳定,并在高温下防止了导热胶膜与发热元件或散热元件之间剥离,可用于黏接两不同温度材料中间的粘结界面。导热胶膜在与发热元件或散热元件贴合时,可以完全排出空气,不会形成空气泡,避免了高热阻的空气间隙的形成,提高了产品的散热效果和使用寿命。
Description
本发明涉及导热材料技术领域,尤其是涉及一种导热胶膜。
随着电子产品的产品功率的不断提升,使用时会伴随着越来越多的热量产生,而产生的热量需经发热元件与散热元件的紧密接触进行排放。因此,发热元件与散热元件之间需要设置导热材料进行导热,且对导热材料的导热性能提出较高的要求。
而导热胶膜作为一种广泛使用的导热材料,还存在下列问题:
(1)当发热元件温度超过粘胶的软化温度时,将导致粘胶黏结力降低而造成导热胶膜与发热元件或散热元件剥离,进而形成接触间隙高热阻状态,造成其他设备损坏。
(2)发热元件与散热元件的接触面因加工粗糙度或公差等因素,发热元件和散热元件的接触面为非真平面,两面间实际存在一定的间隙;而间隙中存在的空气为高热阻的不良热导体,在导热胶膜与发热元件或散热元件贴合时,两者之间无法完全排出空气,从而形成空气泡,进而形成高热阻的空气间隙,当热量不能及时被排出且积蓄形成高温时,则会降低电子产品的性能、可靠性和使用寿命。
发明内容
本发明的一个目的是提供一种导热胶膜的新技术方案。
根据本发明的第一方面,提供了一种导热胶膜,包括复合胶黏剂层,所述复合胶黏剂层包括第一组分热固性胶黏剂与第二组分感压材料胶黏剂的混合物,所述第一组分热固性胶黏剂与第二组分感压材料胶黏剂的重量百分比为15%-95%:5%-85%。
优选地,还包括覆盖在复合胶黏剂层下面的底部连接层,以及覆盖在复合胶黏剂层上面且具有离型效果的顶层。
优选地,所述底部连接层为离型膜层或基质层。
优选地,所述底部连接层为基质层,所述基质层选自金属基材、硅胶基材、石墨基材、陶瓷基材或高分子基材中的任一种。
优选地,所述第一组分热固性胶黏剂与第二组分感压材料胶黏剂的重量百分比为40%-70%:30%-60%。
优选地,所述第一组分热固性胶黏剂包括如下重量分数的组分:环氧树脂聚合物70%-100%;导热剂0%-30%。
优选地,所述第二组分感压材料胶黏剂包括如下重量分数的组分:丙烯酸聚合物70%-100%;导热剂0%-30%。
优选地,所述复合胶黏剂层的上面和/或下面形成有多个排气槽,所述排气槽从所述复合胶黏剂层的侧面穿出。
优选地,所述复合胶黏剂层中间还设置有一层支撑基层。
优选地,所述支撑基层的材质选自纸纤维、玻璃纤维、金属纤维、碳纤维、不织布、尼龙纤维或高分子膜中的一种或多种组合。
优选地,还包括镀膜层,所述镀膜层覆盖在所述复合胶黏剂层的上面和/或下面,所述镀膜层的材质选自金属、碳材或者陶瓷中的至少一种。
根据本发明的第二方面,提供了另一种导热胶膜,包括复合胶黏剂层,所述复合胶黏剂层包括第一组分热固性胶黏剂区块以及的第二组分感压材料胶黏剂区块,所述第一组分热固性胶黏剂区块和/或第二组分感压材料胶黏剂区块之间形成排气通道。
优选地,还包括覆盖在复合胶黏剂层下面的底部连接层,以及覆盖在复合胶黏剂层上面且具有离型效果的顶层。
优选地,所述底部连接层为离型膜层或基质层。
优选地,所述底部连接层为基质层,所述基质层选自金属基材、硅胶基材、石墨基材、陶瓷基材或高分子基材中的任一种。
优选地,所述复合胶黏剂层中间还设置有一层支撑基层。
优选地,所述支撑基层的材质选自纸纤维、玻璃纤维、金属纤维、碳
纤维、不织布、尼龙纤维或高分子膜中的一种或多种组合。
优选地,所述支撑基层的厚度为5-2000μm。
优选地,所述第一组分热固性胶黏剂区块与第二组分感压材料胶黏剂区块的形状分别为线条形、多边形和圆形中的一种或多种组合。
优选地,所述第一组分热固性胶黏剂区块包括如下重量分数的组分:环氧树脂70%-100%;导热剂0%-30%。
优选地,第二组分感压材料胶黏剂区块包括如下重量分数的组分:丙烯酸聚合物70%-100%;导热剂0%-30%。
优选地,还包括镀膜层,所述镀膜层覆盖在所述复合胶黏剂层的上面和/或下面,所述镀膜层的材质选自金属、碳材或者陶瓷中的至少一种。
本发明的发明人发现,在现有技术中,当发热元件温度超过粘胶的软化温度时,将导致粘胶黏结力降低而造成导热胶膜与发热元件或散热元件剥离,进而形成接触间隙高热阻状态,造成其他设备损坏。因此,本发明所要实现的技术任务或者所要解决的技术问题是本领域技术人员从未想到的或者没有预期到的,故本发明是一种新的技术方案。
本发明提供的导热胶膜在粘接发热元件与散热元件的同时,结合了第二组分感压材料胶黏剂的高黏接强度和第一组分热固性胶黏剂的热固性的特性,使得发热元件与散热元件在常温下结合稳定,并在高温下防止导热胶膜与发热元件或散热元件剥离。
本发明的导热胶膜可用于黏接两不同温度材料中间的粘结界面。
另外,本发明的导热胶膜在与发热元件或散热元件贴合时,可以完全排出空气。这样,不会形成空气泡,避免了形成接触间隙高热阻状态,造成其他设备损坏,提高了产品的散热效果和使用寿命。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
图1是本发明实施例1提供的导热胶膜的剖视图。
图2是图1的立体图。
图3是本发明实施例1提供的另一种导热胶膜的剖视图。
图4是图3的立体图。
图5是本发明实施例4提供的导热胶膜的剖视图。
图6是本发明实施例4提供的另一种导热胶膜的剖视图。
图7是本发明实施例的设置镀膜层的导热胶膜的剖视图。
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
根据本发明的实施例,提供了一种导热胶膜。该导热胶膜包括复合胶黏剂层。复合胶黏剂层包括第一组分热固性胶黏剂与第二组分感压材料胶黏剂的混合物。第一组分热固性胶黏剂与第二组分感压材料胶黏剂的重量百分比为15%-95%:5%-85%。感压材料在粘接时需要施加压力,以获得粘接强度。热固性胶黏剂在加热条件下能够固化,以获得粘接强度。
本发明提供的导热胶膜在粘接发热元件与散热元件的同时,结合了第二组分感压材料胶黏剂的高黏接强度和第一组分热固性胶黏剂的热固性的特性,使得发热元件与散热元件在常温下结合稳定,并在高温下防止导热胶膜与发热元件或散热元件剥离。
本发明的导热胶膜可用于黏接两不同温度材料中间的粘结界面。
另外,本发明的导热胶膜在与发热元件或散热元件贴合时,可以完全排出空气。这样,不会形成空气泡,避免了形成接触间隙高热阻状态,造成其他设备损坏,提高了产品的散热效果和使用寿命。
优选地,导热胶膜还包括覆盖在复合胶黏剂层下面的底部连接层,以及覆盖在复合胶黏剂层上面且具有离型效果的顶层。这样,便于导热胶膜的包装以及使用。
可选地,底部连接层为离型膜层或基质层。离型膜层在导热胶膜使用时被揭走。基质层充当着散热元件。
优选地,底部连接层为基质层,基质层选自金属基材、硅胶基材、石墨基材、陶瓷基材或高分子基材中的任一种。上述材料的散热效果良好。
优选地,第一组分热固性胶黏剂与第二组分感压材料胶黏剂的重量百分比为40%-70%:30%-60%。该比例范围形成的导热胶膜具有良好的粘接效果以及热固效果。
优选地,第一组分热固性胶黏剂包括如下重量分数的组分:环氧树脂聚合物70%-100%;导热剂0%-30%。该比例范围能保证导热胶膜具有合适的固化速度。
优选地,第二组分感压材料胶黏剂包括如下重量分数的组分:丙烯酸聚合物70%-100%;导热剂0%-30%。该比例范围的第二组分感压材料粘结剂使导热胶膜的具有良好的感压效果,粘接强度高。
优选地,复合胶黏剂层的上面和/或下面形成有多个排气槽,排气槽从复合胶黏剂层的侧面穿出。通过排气槽的设置能够进一步地使在导热胶膜与发热元件或散热元件贴合时,二者之间的气泡排干净,避免出现接触间隙高热阻状态。
优选地,复合胶黏剂层中间还设置有一层支撑基层。支撑基层能够提高复合胶黏剂层的强度。
优选地,支撑基层的材质选自纸纤维、玻璃纤维、金属纤维、碳纤维、不织布、尼龙纤维或高分子膜中的一种或多种组合。
优选地,还包括镀膜层,所述镀膜层覆盖在所述复合胶黏剂层的上面
和/或下面,所述镀膜层的材质选自金属、碳材或者陶瓷中的至少一种。
其中,碳材可选的是石墨晶粒,石墨烯,微碳球,纳米碳球等。这些材料具有良好的热辐射效果,能够快速传热。
如图7所示,在顶层2与复合胶黏剂层1之间设置有镀膜层,二者之间还设置有排气槽。
可选地,镀膜层采用电镀或者化学镀的方法覆盖在复合胶黏剂层的上面和/或下面。镀膜层能够屏蔽电磁波,以避免电磁波对电子产品造成干扰。
此外,镀膜层还能提高导热胶膜的热辐射效率,使得电子产品散热更迅速。
根据本发明的另一个实施例,提供了另一种导热胶膜。导热胶膜包括复合胶黏剂层,复合胶黏剂层包括第一组分热固性胶黏剂区块以及的第二组分感压材料胶黏剂区块,第一组分热固性胶黏剂区块和/或第二组分感压材料胶黏剂区块之间形成排气通道。
同样地,本发明提供的导热胶膜在粘接发热元件与散热元件的同时,结合了第二组分感压材料胶黏剂的高黏接强度和第一组分热固性胶黏剂的热固性的特性,使得发热元件与散热元件在常温下结合稳定,并在高温下防止导热胶膜与发热元件或散热元件剥离。
本发明的导热胶膜可用于黏接两不同温度材料中间的粘结界面。
另外,本发明的导热胶膜在与发热元件或散热元件贴合时,可以完全排出空气。这样,不会形成空气泡,避免了形成接触间隙高热阻状态,造成其他设备损坏,提高了产品的散热效果和使用寿命。
优选地,导热胶膜还包括覆盖在复合胶黏剂层下面的底部连接层,以及覆盖在复合胶黏剂层上面且具有离型效果的顶层。这样,便于导热胶膜的包装以及使用。
优选地,底部连接层为离型膜层或基质层。离型膜层在导热胶膜使用时被揭走。基质层充当着散热元件。
优选地,底部连接层为基质层,基质层选自金属基材、硅胶基材、石墨基材、陶瓷基材或高分子基材中的任一种。上述材料的散热效果良好。
优选地,复合胶黏剂层中间还设置有一层支撑基层。支撑基层能够提
高复合胶黏剂层的强度。
优选地,支撑基层的材质选自纸纤维、玻璃纤维、金属纤维、碳纤维、不织布、尼龙纤维或高分子膜中的一种或多种组合。
优选地,支撑基层的厚度为5-2000μm。
优选地,第一组分热固性胶黏剂区块与第二组分感压材料胶黏剂区块的形状分别为线条形、多边形和圆形中的一种或多种组合。
优选地,第一组分热固性胶黏剂区块包括如下重量分数的组分:环氧树脂70%-100%;导热剂0%-30%。该比例范围能保证导热胶膜具有合适的固化速度。
优选地,第二组分感压材料胶黏剂区块包括如下重量分数的组分:丙烯酸聚合物70%-100%;导热剂0%-30%。该比例范围的第二组分感压材料粘结剂使导热胶膜的具有良好的感压效果,粘接强度高。
优选地,还包括镀膜层,所述镀膜层覆盖在所述复合胶黏剂层的上面和/或下面,所述镀膜层的材质选自金属、碳材或者陶瓷中的至少一种。
其中,碳材可选的是石墨晶粒,石墨烯,微碳球,纳米碳球等。这些材料具有良好的热辐射效果,能够快速传热。
可选地,镀膜层采用电镀或者化学镀的方法覆盖在复合胶黏剂层的上面和/或下面。镀膜层能够屏蔽电磁波,以避免电磁波对电子产品造成干扰。
此外,镀膜层还能提高导热胶膜的热辐射效率,使得电子产品散热更迅速。
实施例1
参考图1-图4,本发明实施例提供了一种导热胶膜。该导热胶膜包括中间复合胶黏剂层1、覆盖在复合胶黏剂层1下面的底部连接层3,以及覆盖在复合胶黏剂层1上面的顶层2。
参考图1和图2,底部连接层3可以与顶层2相同,两者均为离型膜层。此种导热胶膜在使用时,首先将顶层2和底部连接层3先后与复合胶黏剂层1分离,进而通过复合胶黏剂层1将发热元件和散热元件连接起来。
为了提高导热胶膜使用的便捷性,底部连接层与顶层2相对于复合胶黏剂层1的离型力不相同。例如,顶层2的离型力可以为8gf/inch,底部
连接层的离型力为15gf/inch。
这样,在揭去底部连接层和顶层2时,施力不同。在揭去顶层2时不会对底部连接层造成影响。
另外,顶层2与底部连接层可由独立的两片离型膜组成;也可由单片离型膜经两面处理,使离型膜的上、下两面分别与复合胶黏剂层的上、下面贴合,以形成卷轴形态的导热胶膜。
参考图3和图4,底部连接层3也可以与顶层2不相同。顶层2为离型膜层,底部连接层3为基质层。这样,基质层充当着散热元件。将顶层2去掉,将复合胶黏剂层1连接发热元件即可实现散热。这样,省去了在导热胶膜外设置其他散热元件。
此外,基质层提高了导热胶膜使用的便捷性,降低了操作失误的风险。
可选地,基质层选自金属基材、硅胶基材、石墨基材、陶瓷基材或高分子基材中的任一种。
复合胶黏剂层1是通过第一组分热固性胶黏剂与第二组分感压材料胶黏剂混合物。例如,第一、第二组分经化学键结合。所述第一组分热固性胶黏剂与第二组分感压材料胶黏剂的重量百分比为30%:70%。
例如,第一组分热固性胶黏剂包括但不限于环氧树脂或酚醛树脂。第二组分感压材料胶黏剂包括但不限于聚氨酯类、聚丙烯酸酯类、有机硅类、丁苯橡胶,聚异丁烯或丁基橡胶。
优选地,第一组分热固性胶黏剂包括如下重量分数的组分:环氧树脂85%;导热剂15%;第二组分感压材料胶黏剂包括如下重量分数的组分:丙烯酸聚合物85%;导热剂15%。其中,导热剂采用本领域常用材料,例如石墨。
另外,如图1-4所示,复合胶黏剂层1的上面和/或下面形成有多个排气槽11。排气槽从复合胶黏剂层的侧部穿出。当底部连接层3为离型膜层时,排气槽11开设在复合胶黏剂层1的上面和下面。当底部连接层3为基质层时,排气槽11仅开设在复合胶黏剂层1的上面。
在实际应用中,排气槽11之间可以是相互平行设置,也可以是相互交叉设置。
当复合胶黏剂层1与发热元件或散热元件贴合时,复合胶黏剂层1与发热元件或散热元件之间孔隙气体通过排气槽11被排除,避免形成接触间隙高热阻状态,造成其他设备损坏。
所述复合胶黏剂层中间还设置有一层支撑基层,以提高复合胶黏剂层的强度。
可选地,所述支撑基层材质选自纸纤维、玻璃纤维、金属纤维、碳纤维、不织布、尼龙纤维或高分子膜中的一种或多种组合。
优选的是,支撑基层的厚度为5-2000μm。
实施例2
本发明实施例提供了一种导热胶膜,与上述实施例1不同的是,第一组分热固性胶黏剂与第二组分感压材料胶黏剂的重量百分比为40%:60%。其中,第一组分热固性胶黏剂为环氧树脂;第二组分感压材料胶黏剂为丙烯酸聚合物。
实施例3
本发明实施例提供了一种导热胶膜,与上述实施例1不同的是,第一组分热固性胶黏剂与第二组分感压材料胶黏剂的重量百分比为60%:40%。其中,第一组分热固性胶黏剂包括如下重量分数的组分:环氧树脂90%;导热剂10%;第二组分感压材料胶黏剂包括如下重量分数的组分:丙烯酸聚合物90%;导热剂10%。
实施例4
本实施例提供了一种导热胶膜,第一组分热固性胶黏剂与第二组分感压材料胶黏剂的重量百分比为50%:50%。其中,第一组分热固性胶黏剂包括如下重量分数的组分:环氧树脂90%;导热剂10%;第二组分感压材料胶黏剂包括如下重量分数的组分:丙烯酸聚合物90%;导热剂10%。
参考图5-图6,本发明实施例提供了一种导热胶膜,该导热胶膜包括复合胶黏剂层1、覆盖在复合胶黏剂层1背面的底部连接层3以及覆盖在复合胶黏剂层1正面的顶层2。与上述实施例1不同的是,本实施例的复合胶黏剂层1由多个环氧树脂的第一组分热固性胶黏剂区块4以及多个丙烯酸聚合物的第二组分感压材料胶黏剂区块5组成。第一组分热固性胶黏
剂区块4和/或第二组分感压材料胶黏剂区块5之间形成有排气通道6。
为了连接并支撑第一组分热固性胶黏剂区块4与第二组分感压材料胶黏剂区块5,顶层2选用离型膜层,底部连接层3在此选用基质层;或者底部连接层3可以与顶层2相同,两者均为离型膜层。此时,在复合胶黏剂层1中间设置一层支撑基层12,所述支撑基层12的材质选自纸纤维、玻璃纤维、金属纤维、碳纤维、不织布、尼龙纤维或高分子膜中的一种或多种组合。进一步,支撑基层12为50微米厚的碳纤维基层。优选的是,支撑基层的厚度为5-2000μm。
参考图5,第一组分热固性胶黏剂区块4与第二组分感压材料胶黏剂区块5的形状相同,均为矩形条状,第一组分热固性胶黏剂区块4与第二组分感压材料胶黏剂区块5依次间隔设置,两者间隔区域形成排气通道6。
参考图6,第一组分热固性胶黏剂区块4与第二组分感压材料胶黏剂区块5的形状相同,均为矩形块状,第一组分热固性胶黏剂区块4和第二组分感压材料胶黏剂区块5的长度、宽度和高度分别为2mm、2mm、80μm,第一组分热固性胶黏剂区块4与第二组分感压材料胶黏剂区块5呈阵列依次排列设置,两者间隔区域形成排气通道6,排气通道6的宽度可以是0.5mm。可以理解的是,第一组分热固性胶黏剂区块4和第二组分感压材料胶黏剂区块5的长度、宽度和高度以及排气通道6的宽度可以根据实际需要进行改动。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。
Claims (22)
- 一种导热胶膜,其特征在于,包括复合胶黏剂层,所述复合胶黏剂层包括第一组分热固性胶黏剂与第二组分感压材料胶黏剂的混合物,所述第一组分热固性胶黏剂与第二组分感压材料胶黏剂的重量百分比为15%-95%:5%-85%。
- 根据权利要求1所述的导热胶膜,其特征在于,还包括覆盖在复合胶黏剂层下面的底部连接层,以及覆盖在复合胶黏剂层上面且具有离型效果的顶层。
- 根据权利要求2所述的导热胶膜,其特征在于,所述底部连接层为离型膜层或基质层。
- 根据权利要求3所述的导热胶膜,其特征在于,所述底部连接层为基质层,所述基质层选自金属基材、硅胶基材、石墨基材、陶瓷基材或高分子基材中的任一种。
- 根据权利要求1所述的导热胶膜,其特征在于,所述第一组分热固性胶黏剂与第二组分感压材料胶黏剂的重量百分比为40%-70%:30%-60%。
- 根据权利要求1-5中的任一项所述的导热胶膜,其特征在于,所述第一组分热固性胶黏剂包括如下重量分数的组分:环氧树脂70%-100%;导热剂0%-30%。
- 根据权利要求1-5中的任一项所述的导热胶膜,其特征在于,所述第二组分感压材料胶黏剂包括如下重量分数的组分:丙烯酸聚合物或有机硅类70%-100%;导热剂0%-30%。
- 根据权利要求1所述的导热胶膜,其特征在于,所述复合胶黏剂层的上面和/或下面形成有多个排气槽,所述排气槽从所述复合胶黏剂层的侧面穿出。
- 根据权利要求1所述的导热胶膜,其特征在于,所述复合胶黏剂层中间还设置有一层支撑基层。
- 根据权利要求9所述的导热胶膜,其特征在于,所述支撑基层的材质选自纸纤维、玻璃纤维、金属纤维、碳纤维、不织布、尼龙纤维或高 分子膜中的一种或多种组合。
- 根据权利要求1所述的导热胶膜,其特征在于,还包括镀膜层,所述镀膜层覆盖在所述复合胶黏剂层的上面和/或下面,所述镀膜层的材质选自金属、碳材或者陶瓷中的至少一种。
- 一种导热胶膜,其特征在于,包括复合胶黏剂层,所述复合胶黏剂层包括第一组分热固性胶黏剂区块以及第二组分感压材料胶黏剂区块,所述第一组分热固性胶黏剂区块和/或第二组分感压材料胶黏剂区块之间形成排气通道。
- 根据权利要求12所述的导热胶膜,其特征在于,还包括覆盖在复合胶黏剂层下面的底部连接层,以及覆盖在复合胶黏剂层上面且具有离型效果的顶层。
- 根据权利要求13所述的导热胶膜,其特征在于,所述底部连接层为离型膜层或基质层。
- 根据权利要求14所述的导热胶膜,其特征在于,所述底部连接层为基质层,所述基质层选自金属基材、硅胶基材、石墨基材、陶瓷基材或高分子基材中的任一种。
- 根据权利要求12所述的导热胶膜,其特征在于,所述复合胶黏剂层中间还设置有一层支撑基层。
- 根据权利要求16所述的导热胶膜,其特征在于,所述支撑基层材质选自纸纤维、玻璃纤维、金属纤维、碳纤维、不织布、尼龙纤维或高分子膜中的一种或多种组合。
- 根据权利要求16所述的导热胶膜,其特征在于,所述支撑基层的厚度为5-2000μm。
- 根据权利要求11所述的导热胶膜,其特征在于,所述第一组分热固性胶黏剂区块与第二组分感压材料胶黏剂区块的形状分别为线条形、多边形和圆形中的一种或多种组合。
- 根据权利要求11所述的导热胶膜,其特征在于,所述第一组分热固性胶黏剂区块包括如下重量分数的组分:环氧树脂70%-100%;导热剂0%-30%。
- 根据权利要求11所述的导热胶膜,其特征在于,第二组分感压材料胶黏剂区块包括如下重量分数的组分:丙烯酸聚合物或有机硅类70%-100%;导热剂0%-30%。
- 根据权利要求12所述的导热胶膜,其特征在于,还包括镀膜层,所述镀膜层覆盖在所述复合胶黏剂层的上面和/或下面,所述镀膜层的材质选自金属、碳材或者陶瓷中的至少一种。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/090627 WO2019000285A1 (zh) | 2017-06-28 | 2017-06-28 | 一种导热胶膜 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/090627 WO2019000285A1 (zh) | 2017-06-28 | 2017-06-28 | 一种导热胶膜 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019000285A1 true WO2019000285A1 (zh) | 2019-01-03 |
Family
ID=64740856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/090627 WO2019000285A1 (zh) | 2017-06-28 | 2017-06-28 | 一种导热胶膜 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019000285A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050077618A1 (en) * | 2002-12-19 | 2005-04-14 | 3M Innovative Properties Company | Flexible heat sink |
CN202003978U (zh) * | 2011-01-24 | 2011-10-05 | 陈鸿文 | 具金刚石导热厚膜的发热组件导热基座结构 |
CN102464954A (zh) * | 2010-11-19 | 2012-05-23 | 富葵精密组件(深圳)有限公司 | 复合胶粘片、包括该复合胶粘片的胶片及胶片的制作方法 |
CN102602076A (zh) * | 2012-03-01 | 2012-07-25 | 昆山市中迪新材料技术有限公司 | 一种导热绝缘片及结构胶 |
CN103881597A (zh) * | 2014-04-09 | 2014-06-25 | 太仓泰邦电子科技有限公司 | 无基材导热双面胶 |
CN104694032A (zh) * | 2013-12-04 | 2015-06-10 | 凯尔凯德新材料科技泰州有限公司 | 一种具有高导热率的导热胶带及其制作方法 |
-
2017
- 2017-06-28 WO PCT/CN2017/090627 patent/WO2019000285A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050077618A1 (en) * | 2002-12-19 | 2005-04-14 | 3M Innovative Properties Company | Flexible heat sink |
CN102464954A (zh) * | 2010-11-19 | 2012-05-23 | 富葵精密组件(深圳)有限公司 | 复合胶粘片、包括该复合胶粘片的胶片及胶片的制作方法 |
CN202003978U (zh) * | 2011-01-24 | 2011-10-05 | 陈鸿文 | 具金刚石导热厚膜的发热组件导热基座结构 |
CN102602076A (zh) * | 2012-03-01 | 2012-07-25 | 昆山市中迪新材料技术有限公司 | 一种导热绝缘片及结构胶 |
CN104694032A (zh) * | 2013-12-04 | 2015-06-10 | 凯尔凯德新材料科技泰州有限公司 | 一种具有高导热率的导热胶带及其制作方法 |
CN103881597A (zh) * | 2014-04-09 | 2014-06-25 | 太仓泰邦电子科技有限公司 | 无基材导热双面胶 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI513592B (zh) | 異向性熱傳導元件及製造方法 | |
JP6302034B2 (ja) | 熱伝導シート、熱伝導シートの製造方法、放熱部材及び半導体装置 | |
KR101442717B1 (ko) | 얇은 전사막 또는 금속화막을 구비한 열계면재 | |
US20180014431A1 (en) | Thermal Pad and Electronic Device | |
JP5384522B2 (ja) | ヒートシンク、および楔係止システムを用いたヒートシンク形成方法 | |
KR101419426B1 (ko) | 방열시트 | |
JP5421451B2 (ja) | 熱拡散シート | |
JP2008066374A (ja) | 放熱性基板およびその製造方法ならびにこれを用いたパワーモジュール | |
JP7160101B2 (ja) | 半導体デバイスの製造方法、熱伝導シート、及び熱伝導シートの製造方法 | |
WO2019212051A1 (ja) | 熱伝導体、及びこれを用いた電子機器 | |
JP2017092345A (ja) | 熱伝導シート、及びその製造方法、並びに半導体装置 | |
JP2016036019A (ja) | 被覆熱伝導性粒子、熱伝導性接合材料及び接合構造体 | |
KR101989077B1 (ko) | 열제어능을 구비한 방열부재, 방열시트 및 이의 제조방법 | |
JP5424984B2 (ja) | 半導体モジュールの製造方法 | |
TWM540741U (zh) | 多層複合熱傳導結構體 | |
WO2019000285A1 (zh) | 一种导热胶膜 | |
JP7031203B2 (ja) | 放熱用接着シート、放熱接着部材用積層体、及び複合部材 | |
KR102075360B1 (ko) | 열확산 시트 및 그 제조방법 | |
KR102068493B1 (ko) | 열확산 시트 및 그 제조방법 | |
CN209210695U (zh) | 一种导热双面胶 | |
KR102068492B1 (ko) | 열확산 시트 및 그 제조방법 | |
JP2009123766A (ja) | サーマルインターフェース材、およびサーマルインターフェース材の製造方法 | |
JP7345222B2 (ja) | 熱伝導体及び熱伝導体の製造方法 | |
JP7338738B2 (ja) | 半導体デバイスの製造方法、熱伝導シート、及び熱伝導シートの製造方法 | |
TWM312189U (en) | Multi-layer composite heat conduction structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17915935 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17915935 Country of ref document: EP Kind code of ref document: A1 |