WO2019000274A1 - 成膜设备及成膜方法 - Google Patents

成膜设备及成膜方法 Download PDF

Info

Publication number
WO2019000274A1
WO2019000274A1 PCT/CN2017/090554 CN2017090554W WO2019000274A1 WO 2019000274 A1 WO2019000274 A1 WO 2019000274A1 CN 2017090554 W CN2017090554 W CN 2017090554W WO 2019000274 A1 WO2019000274 A1 WO 2019000274A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
film thickness
material container
thickness distribution
film forming
Prior art date
Application number
PCT/CN2017/090554
Other languages
English (en)
French (fr)
Inventor
刘启富
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to PCT/CN2017/090554 priority Critical patent/WO2019000274A1/zh
Priority to CN201780050854.2A priority patent/CN109642314A/zh
Publication of WO2019000274A1 publication Critical patent/WO2019000274A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process

Definitions

  • the present application relates to the field of display technologies, and in particular, to a film forming apparatus and a film forming method.
  • a film forming apparatus In the semiconductor industry, the electronics industry, and the mechanical industry, in order to impart certain characteristics to the components used, a film forming apparatus is usually used to deposit a film on the surface of the element by an evaporation process. Whether the thickness of the film is uniform or not directly affects the performance of the component. However, the existing film formation method cannot guarantee the uniformity of the film thickness.
  • the application provides a film forming apparatus and a film forming method.
  • a film forming method comprising: forming a first film on a substrate; determining a film thickness at each position of the first film; forming a second film on the first film according to the determined result, such that The film thickness of each layer of the film layer after the second film is superposed with the first film is uniform.
  • a film forming apparatus comprising a machine table, wherein the machine table is provided with at least two material containers and at least two secondary driving devices side by side; each of the material containers is arranged with a plurality of spraying portions side by side;
  • the secondary drive is associated with a material container for driving the material container to rotate.
  • each material container can be adjusted according to the film thickness distribution of the first film, and each material container is controlled to deposit a material on the first film to form a second film. After the two layers of film are superimposed, the thick areas on the two films are just complementary, and/or the areas of uniform film thickness are directly laminated, so that the overall film thickness is uniform.
  • FIG. 1 is a schematic structural view of a film forming apparatus according to an embodiment of the present application.
  • Figure 2 is a side view showing the structure of the film forming apparatus of Figure 1;
  • FIG. 3 is a schematic view showing a film thickness distribution curve of an embodiment of the present application.
  • FIG. 4 is a schematic view showing another film thickness distribution curve of the embodiment of the present application.
  • FIG. 5 is a schematic view showing another film thickness distribution curve of the embodiment of the present application.
  • FIG. 6 is a schematic view showing another film thickness distribution curve of the embodiment of the present application.
  • FIG. 7 is a schematic view showing another film thickness distribution curve of the embodiment of the present application.
  • FIG. 8 is a schematic view showing another film thickness distribution curve of an embodiment of the present application.
  • FIG. 9 is a schematic structural view of another film forming apparatus according to an embodiment of the present application.
  • FIG. 10 is a schematic flow chart of a film forming method according to an embodiment of the present application.
  • Embodiments of the present application provide a film forming apparatus for performing a film forming process.
  • the film forming apparatus can be used to perform an evaporation process.
  • the following examples of the present application are described by taking the film forming apparatus for an evaporation process as an example.
  • the film forming apparatus 10 of the first embodiment of the present application includes a machine table 11. At least two material containers and at least two secondary driving devices are arranged side by side on the machine table 11; each of the material containers is arranged with a plurality of spraying portions side by side; one of the secondary driving devices and one of the material containers Correspondingly connected for driving the material container to rotate.
  • the machine table 11 is provided with side by side material containers 14 and material containers 16, as well as secondary drive means 13 and secondary drive means 15.
  • the secondary drive unit 13 is coupled to the material container 14 for driving the material container 14 to rotate; the secondary drive unit 15 is coupled to the material container 16 for driving the material container 16 to rotate.
  • the machine table 11 is a main mechanical bearing mechanism and an electric control center of the entire film forming apparatus 10, and the material container and the secondary driving device are mounted thereon to control the material container for material spraying, and Controlling functions such as operation of the secondary drive unit. It should be understood that the machine 11 includes The components of various mechanical and electrical functions are now shown in FIG. 1 only for a schematic view of the machine 11, and the detailed construction of the machine 11 is not illustrated.
  • both the material container 14 and the material container 16 may be a vapor deposition line source for loading and spraying materials.
  • both the material container 14 and the material container 16 may be elongated, and a plurality of spaced apart spray portions may be provided in the extending direction.
  • the material container 14 and the material container 16 extend in the horizontal direction, and the material container 14 is provided with a plurality of spraying portions 141 in the horizontal direction, and the material container 16 is provided with a plurality of spraying portions 161 in the horizontal direction.
  • the material container 14 and the material container 16 are loaded with a vapor deposition material, and the material container 14 and the material container 16 heat the evaporation material to be melted into steam.
  • the vaporized vapor deposition material is ejected from the plurality of spray portions 141 and the plurality of spray portions 161, and is deposited on the surface of the substrate 100 above the material container 14 and the material container 16 to form a film.
  • the material container 14 and the material container 16 are arranged side by side to cover the width (or length) of the substrate 100. At the time of vapor deposition, the material container 14 and the material container 16 can be scanned from one end to the other end of the substrate 100 while spraying the vapor deposition material.
  • the evaporation of the material container 14 will be described below as an example.
  • the material container 14 is configured with a starting position A and a ending position B, and the material container 14 is scanned from the starting position A to the ending position B while spraying the vapor deposition material. Since the material container 14 has a certain length, the material container 14 can perform a scanning movement to spray a rectangular area on the substrate 100.
  • the machine table 11 may be provided with a slide rail 17, and the material container 14 is mounted on the slide rail 17.
  • the secondary drive 13 is also capable of driving the material container 14 to slide along the slide rails 17.
  • the material container 14 is slid on the slide rail 17 from the starting position A to the end position B while being vapor-deposited.
  • the material container 14 can be controlled smoothly and flexibly using the slide rails.
  • Fig. 2 due to the viewing angle, only a schematic view of the material container 14 being erected on the slide rail 17 is shown.
  • the material container 16 is also disposed on the slide rail, and the secondary drive unit 15 is also capable of driving the material container 16 along the slide rail. slide.
  • Separate sets of slide rails can be provided for material container 16 and material container 14 to control different vapor deposition line sources, respectively.
  • other motion mechanisms can be designed to drive the material container 16 and material container 14 to translate, not limited to the manner in which the rails are employed.
  • the material container 14 and the material container 16 can be made in advance. Evaporation to form a first film. Further, the positional state of the material container 14 and/or the material container 16 is adjusted according to the film thickness distribution of the film deposited by each of the spraying portions 141 and the respective spraying portions 161, and the material container 14 and the material container 16 are controlled at the first The film is again vapor-deposited to form a second film, so that the film thickness tends to be uniform. The specific process will be described in detail below.
  • FIG. 3 shows a film thickness distribution curve obtained by measuring the film thickness of the first film on the substrate 100 after the material container 14 and the material container 16 have been subjected to vapor deposition in advance.
  • the horizontal axis d of the film thickness distribution curve indicates the positions of the respective spray coating portions 141 and the respective spray coating portions 161, that is, the respective positions in the extending direction of the material container 14 and the material container 16; the longitudinal axis t of the film thickness distribution curve Indicates the film thickness.
  • the sub-film thickness distribution curve corresponding to the material container 14 and the material container 16 can be determined from the film thickness distribution curve. For example, d16 in FIG.
  • the film thickness distribution curve corresponding to d16 is the sub-film thickness distribution curve s16 of the material container 16.
  • the film thickness distribution curve corresponding to d14 is the sub-film thickness distribution curve s14 of the material container 14.
  • the direction perpendicular to the plane of FIG. 3 is the scanning movement direction of the material container 14 and the material container 16. In this direction, the single spray portion 161 and the vapor deposition film thickness of the single spray portion 141 are kept in agreement. Therefore, in consideration of the film thickness distribution of the first film on the substrate 100, it is only necessary to pay attention to the film thickness distributed along the extending direction of the material container 14 and the material container 16, that is, it is only necessary to pay attention to the film thickness distribution curve.
  • both s16 and s14 are oblique lines, that is, the slopes are not equal to 0 (all greater than 0). Therefore, it is understood that the vapor deposition film thickness of the plurality of spray portions 161 and the plurality of spray portions 141 is sequentially increased in the extending direction, that is, the steam ejection amounts of the plurality of spray portions 161 and the plurality of spray portions 141 are sequentially increased.
  • the secondary driving device 15 drives the material container 16 to rotate by 180 degrees, and sequentially repositions the positions of the plurality of spraying portions 161 with respect to the substrate 100, so that the spraying portion 161 having a large amount of steam ejection is corresponding to the film thickness on the substrate 100.
  • the smaller portion allows the spray portion 161 having a smaller amount of steam to be discharged to correspond to a position where the film thickness on the substrate 100 is large.
  • the material container 16 is again vapor-deposited over the first film.
  • the material container 14 does the same, that is, the secondary drive unit 13 drives the material container 14 to rotate 180 degrees, and then the material container 14 is again vapor-deposited over the first film.
  • a second film is formed on the first film.
  • the second film is exactly complementary to the thin thick region of the first film, and the film thickness after the two films are superposed is uniform.
  • the slopes of s16 and s14 are both less than zero.
  • the vapor deposition film thickness of the plurality of spray portions 161 and the plurality of spray portions 141 is sequentially decreased in the extending direction, that is, the vapor discharge amounts of the plurality of spray portions 161 and the plurality of spray portions 141 are sequentially decreased.
  • the secondary driving device 15 and the secondary driving device 13 respectively drive the material container 16 and the material container 14 to rotate by 180 degrees, so that the spraying portion 161 and the spraying portion 141 which are originally small in the amount of steam ejection correspond to the film thickness on the substrate 100.
  • the sprayed portion 161 and the sprayed portion 141 which have a large amount of steam ejection, correspond to a position where the film thickness on the substrate 100 is small. Thereafter, the material container 16 and the material container 14 are again vapor-deposited on the first film to form a second film.
  • the second film is exactly complementary to the thin thick region of the first film, and the film thickness after the two films are superposed is uniform.
  • the slope of s16 is less than 0, and the slope of s14 is greater than zero. Therefore, in the extending direction, the vapor deposition film thickness of the plurality of spray portions 161 is sequentially decreased, that is, the vapor ejection amounts of the plurality of spray portions 161 are sequentially decreased; and the vapor deposition film thickness of the plurality of spray portions 141 is sequentially increased. The steam ejection amount of the plurality of spray portions 141 is increased in order.
  • the secondary driving device 15 and the secondary driving device 13 respectively drive the material container 16 and the material container 14 to rotate by 180 degrees, so that the spraying portion 161 and the spraying portion 141 which are originally small in the amount of steam ejection correspond to the film thickness on the substrate 100.
  • the sprayed portion 161 and the sprayed portion 141 which have a large amount of steam ejection, correspond to a position where the film thickness on the substrate 100 is small.
  • the material container 16 and the material container 14 are again vapor-deposited on the first film to form a second film.
  • the second film is exactly complementary to the thin thick region of the first film, and the film thickness after the two films are superposed is uniform.
  • the slope of s16 is greater than 0, and the slope of s14 is less than zero. Therefore, it is understood that the vapor deposition film thickness of the plurality of spray portions 161 is sequentially increased in the extending direction, that is, the vapor ejection amounts of the plurality of spray portions 161 are sequentially increased; and the vapor deposition film thickness of the plurality of spray portions 141 is sequentially decreased. Small, that is, the amount of steam ejection of the plurality of spray portions 141 is sequentially decreased.
  • the secondary driving device 15 and the secondary driving device 13 respectively drive the material container 16 and the material container 14 to rotate by 180 degrees, so that the spraying portion 161 and the spraying portion 141 which are originally small in the amount of steam ejection correspond to the film thickness on the substrate 100.
  • the sprayed portion 161 and the sprayed portion 141 which have a large amount of steam ejection, correspond to a position where the film thickness on the substrate 100 is small.
  • the material container 16 and the material container 14 are again vapor-deposited on the first film to form a second film.
  • the second film is exactly complementary to the thin thick region of the first film, and the film thickness after the two films are superposed is uniform.
  • the slope of s16 is equal to 0, and the slope of s14 is The rate is greater than zero. Therefore, it is understood that the vapor deposition film thickness of the plurality of spray portions 161 is uniform in the extending direction, that is, the vapor ejection amounts of the plurality of spray portions 161 are uniformly uniform, and the vapor deposition film thickness of the plurality of spray portions 141 is sequentially increased. That is, the amount of steam ejection of the plurality of spray portions 141 is sequentially increased. At this time, the material container 16 does not rotate, but maintains the previous position state.
  • the secondary driving device 13 rotates the material container 14 by 180 degrees so that the spraying portion 141 having a small amount of steam ejection corresponds to a position where the film thickness on the substrate 100 is large, so that the spraying portion 141 having a large amount of steam ejection is large. Corresponding to a position where the film thickness on the substrate 100 is small.
  • the material container 16 and the material container 14 are again vapor-deposited on the first film to form a second film.
  • the portion of the material container 14 that is vapor-deposited is exactly complementary to the thin portion of the portion of the first film in which the material container 14 is vapor-deposited; and during the two-time evaporation process, the material container 16 is evaporated.
  • the part always maintains the same film thickness. Therefore, the film thickness after the first film and the second film are superposed is uniform.
  • the slope of s16 is greater than 0, and the slope of s14 is equal to zero. Therefore, in the extending direction, the vapor deposition film thickness of the plurality of spray portions 161 is sequentially increased, that is, the vapor ejection amounts of the plurality of spray portions 161 are sequentially increased, and the vapor deposition film thickness of the plurality of spray portions 141 is uniform. That is, the amount of steam ejection of the plurality of spray portions 141 is uniform. At this time, the material container 14 does not rotate, but maintains the previous positional state.
  • the secondary driving device 15 rotates the material container 16 by 180 degrees so that the spraying portion 161 having a small amount of steam ejection corresponds to a position where the film thickness on the substrate 100 is large, so that the spraying portion 161 having a large amount of steam ejection is large. Corresponding to a position where the film thickness on the substrate 100 is small.
  • the material container 16 and the material container 14 are again vapor-deposited on the first film to form a second film.
  • the portion of the material container 16 that is vapor-deposited is exactly complementary to the thin portion of the portion of the first film in which the material container 16 is vapor-deposited; and during the two-time evaporation process, the material container 14 is evaporated.
  • the part always maintains the same film thickness. Therefore, the film thickness after the first film and the second film are superposed is uniform.
  • the corresponding secondary driving device rotates the evaporation wire source by 180 degrees. Then, the vapor deposition line source is again vapor-deposited on the first vapor-deposited film to form the second film; if it is determined that the slope of the sub-film thickness distribution curve of one of the vapor deposition line sources is 0, then It is not necessary to rotate the vapor deposition line source, and the vapor deposition line source is again vapor-deposited on the first vapor-deposited film to form the second film. Thereby, the film thickness superimposed on the second film and the first film is uniform.
  • the number of the vapor deposition line source and the secondary driving device may be appropriately increased according to the situation, so as to minimize the influence of the unevenness of the vapor ejection amount of each of the vapor deposition line sources on the overall film thickness. Moreover, the rotation of each of the vapor deposition line sources is controlled more finely and flexibly, thereby increasing the film formation uniformity of the film forming apparatus 10.
  • the film forming apparatus 10 of the present embodiment can pass through at least two material containers and at least two secondary driving devices arranged side by side, and can pass through when the film thickness of the first deposited film layer of a material container is uneven.
  • the corresponding secondary drive drives the material container to rotate 180 degrees, and then controls the material container for secondary spraying to form a superimposed two-layer film.
  • the thin thick regions of the two films are just complementary, and/or the regions of uniform film thickness are directly laminated, so that the film thickness after the superposition is uniform.
  • the entire driving device 19 may be disposed on the machine table 11.
  • the unitary drive unit 19 is coupled to both the material container 14 and the material container 16 for driving at least the material container 14 and the material container 16 to rotate simultaneously.
  • both the material container 14 and the material container 16 need to be rotated by 180 degrees and then evaporated.
  • the material container 14 and the material container 16 are driven to rotate by 180 degrees by the integral driving device 19 without driving the material container 14 and the material container 16 to be respectively rotated by the secondary driving driving device 13 and the driving device 15.
  • the integral driving device 19 the mechanism design can be simplified, the drive control of the material container can be simplified, and the drive control error can be reduced.
  • the machine table 11 may include a support table 18.
  • the material container 16, the material container 14, and the secondary drive unit 15 and the secondary drive unit 13 are both disposed above the support table 18.
  • the integral drive unit 19 is disposed below the support table 18.
  • the integral drive unit 19 is coupled to the support table 18 to drive the support table 18 to rotate, thereby causing the material container 16 to rotate simultaneously with the material container 14.
  • Designing the support table 18 can increase the structural strength of the mechanical connection of the material container, secondary drive, and integral drive unit 19.
  • the secondary drive unit and the integral drive unit 19 are not limited to being supported by the support table 18.
  • both the secondary drive unit 15 and the secondary drive unit 13 may include a motor.
  • An output shaft of the motor is coupled to a bottom wall of the material container to drive the material container to rotate.
  • the motor is mature and reliable. The use of a motor makes the design and control of the drive mechanism simple.
  • a vacuum mechanism and a vapor deposition chamber 12 may be disposed on the machine table 11.
  • Material container 16, material container 14, and secondary drive device 15, secondary drive Each of the 13 is housed in the vapor deposition chamber 12.
  • the vacuum mechanism is used to maintain the vapor deposition chamber 12 in a vacuum environment to facilitate vapor deposition of the substrate 100 in the vapor deposition chamber 12.
  • the film forming apparatus of the present embodiment has been described in detail above.
  • the film forming method of the present embodiment will be described in detail below.
  • This embodiment provides a film forming method for forming a thin film on a substrate 100.
  • the film forming method includes, but is not limited to, an evaporation film forming method.
  • the film forming method 200 of this embodiment includes:
  • a material may be deposited on the substrate 100 in advance to form a first film. Further, a second film is superposed on the first film according to a film thickness distribution of the first film.
  • the thin areas of the two layers of film are just complementary, and/or the areas of the two layers of film having a uniform film thickness are directly laminated, so that the film thickness after the superposition is uniform.
  • the film forming method 200 can be formed by using the film forming apparatus in the above apparatus embodiment.
  • the following description will be made in conjunction with the above device embodiments.
  • the film forming method 200 may further include:
  • the film forming apparatus comprising a machine table, wherein the machine table is provided with at least two material containers side by side, and each of the material containers is provided with a plurality of spraying portions side by side at intervals;
  • Controlling at least two of the material containers deposit material on the substrate to form the first film on the substrate.
  • film formation can be performed by the film forming apparatus 10 or 20.
  • the material container 16 and the material container 14 can be controlled to be scanned from one end of the substrate 100 to the other while material spraying is performed.
  • the material container 14 and the material container 14 extend in the horizontal direction, and the material container 14 is provided with a plurality of spraying portions 141 in the horizontal direction, and the material container 16 is provided with a plurality of spraying portions 161 in the horizontal direction.
  • the material container 14 and the material container 16 are loaded with a vapor deposition material, and the material container 14 and the material container 16 heat the evaporation material to be melted into steam.
  • the vaporized vapor deposition material is ejected from the plurality of spray portions 141 and the plurality of spray portions 161 and deposited on the material container 14 and the material container 16
  • the surface of the substrate 100 forms the first film.
  • S220 can include:
  • a film thickness distribution curve of the first film Determining a film thickness distribution curve of the first film, wherein the film thickness distribution curve is used to indicate a film thickness corresponding to each of the sprayed portions on at least two of the material containers, the film thickness distribution curve including a plurality of sub-surfaces a film thickness distribution curve for indicating a film thickness corresponding to each of the sprayed portions on a single of the material containers; determining the first film according to a plurality of the film thickness distribution curves Film thickness at each location.
  • the film thickness distribution curve can be obtained by measuring the film thickness of each position of the first film and performing data processing.
  • the film thickness distribution curve indicates the mapping relationship between the positions of the entire coating portion 161 and the entire coating portion 141 and the film thickness.
  • the film thickness distribution curve includes a plurality of sub-film thickness distribution curves indicating a mapping relationship between the position of each of the coating portions 161 in the material container 16 and the film thickness, or each of the material containers 14 The mapping relationship between the position of the spraying portion 141 and the film thickness.
  • Each of the sub-film thickness distribution curves are sequentially connected to form the film thickness distribution curve. After obtaining the film thickness distribution curve of the first film, any one of the sub-film thickness distribution curves is naturally acquired. Thereby, the film thickness of each position of the first film can be determined according to a plurality of the sub-film thickness distribution curves. (The position of each of the sprayed portions is the respective positions of the first film.)
  • S230 can include:
  • the material container corresponding to the sub-film thickness distribution curve is controlled to be rotated by 180 degrees, and the material container is controlled to deposit material on the first film;
  • the slope of each of the sub-film thickness distribution curves may be calculated to determine whether the slope of each of the sub-film thickness distribution curves is zero. And according to the judgment result, the corresponding material container is controlled to be sprayed again.
  • the slope of all of the sub-film thickness distribution curves not to be 0 (greater than 0 or less than 0)
  • controlling the material container corresponding to the sub-film thickness distribution curve to rotate by 180 degrees, and in the first film Spraying again on top; maintaining a slope of 0 for all of the sub-film thickness profiles, maintaining The position of the material container corresponding to the sub-film thickness profile is unchanged, and is sprayed directly over the first film.
  • the respective material containers are separately controlled for secondary spraying to finally form the second film.
  • the amount of steam ejected from each of the sprayed portions is uneven due to manufacturing errors of the material containers or temperature differences at various positions on the material containers, etc., which results in film thickness of the film deposited by each of the sprayed portions. Uneven.
  • the material container 14 and the material container 16 may be subjected to material deposition in advance to form the first film. Further adjusting the positional state of the material container 14 and/or the material container 16 according to the sub-film thickness distribution curve of the film deposited by each of the spraying portions 141 and the respective spraying portions 161, and controlling the material container 14 and the material container 16 in the A material is deposited again on a film to form the second film. Both layers of the film include regions of varying thickness and/or regions of uniform film thickness. After the superposition, the thin areas on the two films are just complementary, and/or the areas of uniform film thickness are directly laminated, so that the overall film thickness is uniform. For example, as shown in FIGS.
  • the positional states of the material container 14 and the material container 16 are respectively adjusted for different sub-film thickness distribution curves, and secondary material deposition is performed to form the second film.
  • the film thickness after the superposition of the two films is uniform. This process has been described in detail since the above device embodiment, and will not be described again here.
  • At least two secondary driving devices may be disposed on the machine table 11, and one of the secondary driving devices is correspondingly connected to one of the material containers for driving the material container to rotate.
  • the machine table 11 may be provided with a secondary drive unit 15 and a secondary drive unit 13 respectively connected to the material container 16 and the material container 14 for driving the material container 16 and the material container 14 respectively.
  • the material container can be driven to rotate by 180 degrees by controlling the operation of the secondary drive corresponding to the material container.
  • the secondary drive 15 and secondary drive 13 can be separately operated to drive the material container 16 and the material container 14 to rotate 180 degrees, respectively.
  • an integral driving device 19 may be disposed on the machine table 11.
  • the unitary drive unit 19 is coupled to both the material container 16 and the material container 14 for driving the material container 16 and the material container 14 to rotate simultaneously.
  • the material container 16 and the material container 14 can be driven to rotate 180 degrees simultaneously by controlling the operation of the integral driving device 19;
  • the control material container 16 and the material container 14 are again subjected to material deposition on the first film to form the second film.
  • FIGS. 3 and 4 the slopes of the sub-film thickness distribution curves s16 and s14 are all the same and are not zero, that is, the film thickness distribution curve is a continuous oblique line.
  • the material container 16 and the material container 14 can be simultaneously rotated by the integral driving device 19 without driving the material container 14 and the material container 16 to be respectively rotated by the secondary drive driving device 13 and the driving device 15.
  • the integral driving device 19 the drive control of the vapor deposition line source can be simplified and the drive control error can be reduced.
  • the film forming method 200 may further include:
  • the material container corresponding to the sub-film thickness profile is controlled to rotate 180 degrees and moved from the end position to the starting position to deposit material on the first film.
  • the starting position A and the ending position B of the material container 14 may be preset, and the material container 14 is scanned from the starting position A to the ending position B while depositing material.
  • the control material container 14 is moved from the starting position A to the ending position B.
  • the material container 14 is at the end position B.
  • the material container 14 is moved from the end position B to the starting position A.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种成膜设备及成膜方法,所述成膜设备(10)包括机台(11),所述机台(11)上并排设有至少两个材料容器(14、16)及至少两个次级驱动装置(13、15);每个所述材料容器(14、16)上并排间隔设有多个喷涂部(141、161);一个所述次级驱动装置(13、15)与一个所述材料容器(14、16)对应相连,用于驱动所述材料容器(14、16)转动。所述成膜方法包括:在基板(100)上形成第一薄膜;确定所述第一薄膜的各个位置的膜厚;根据所确定的结果,在所述第一薄膜上形成第二薄膜,使得所述第二薄膜与所述第一薄膜叠加之后的膜层的各个位置的膜厚一致。

Description

成膜设备及成膜方法 技术领域
本申请涉及显示技术领域,尤其涉及一种成膜设备及成膜方法。
背景技术
在半导体工业、电子工业、及机械工业领域,为了对所使用的元件赋与某种特性,通常会使用成膜设备,采用蒸镀工艺在元件表面沉积一层薄膜。薄膜各处的厚度是否均一,直接影响元件的性能。然而,现有的成膜方式无法保证膜厚的均匀性。
发明内容
本申请提供了一种成膜设备及成膜方法。
一种成膜方法,包括:在基板上形成第一薄膜;确定所述第一薄膜的各个位置的膜厚;根据所确定的结果,在所述第一薄膜上形成第二薄膜,使得所述第二薄膜与所述第一薄膜叠加之后的膜层的各个位置的膜厚一致。
一种成膜设备,包括机台,所述机台上并排设有至少两个材料容器及至少两个次级驱动装置;每个所述材料容器上并排间隔设有多个喷涂部;一个所述次级驱动装置与一个所述材料容器对应相连,用于驱动所述材料容器转动。
本申请的方案,能够根据所述第一薄膜的膜厚分布,调整各个材料容器的位置状态,并控制各个材料容器在所述第一薄膜上再次沉积材料,形成第二薄膜。两层薄膜相叠加之后,两层薄膜上的薄厚区域恰好互补,和/或膜厚均匀的区域直接层叠,从而使整体膜厚均匀一致。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例的一种成膜设备的结构示意图;
图2是图1中的成膜设备的侧视结构示意图;
图3是本申请实施例的一种膜厚分布曲线的示意图;
图4是本申请实施例的另一种膜厚分布曲线的示意图;
图5是本申请实施例的另一种膜厚分布曲线的示意图;
图6是本申请实施例的另一种膜厚分布曲线的示意图;
图7是本申请实施例的另一种膜厚分布曲线的示意图;
图8是本申请实施例的另一种膜厚分布曲线的示意图;
图9是本申请实施例的另一种成膜设备的结构示意图。
图10是本申请实施例的成膜方法的示意性流程框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本申请的一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本申请保护的范围。
本申请实施例提供了一种成膜设备,用于进行成膜工艺。例如,所述成膜设备可用于进行蒸镀工艺。本申请以下实施例以所述成膜设备用于蒸镀工艺为例进行描述。
如图1所示,本申请第一实施例的成膜设备10包括机台11。机台11上并排设有至少两个材料容器及至少两个次级驱动装置;每个所述材料容器上并排间隔设有多个喷涂部;一个所述次级驱动装置与一个所述材料容器对应相连,用于驱动所述材料容器转动。例如,机台11上设有并排的材料容器14和材料容器16,以及次级驱动装置13和次级驱动装置15。次级驱动装置13与材料容器14相连,用于驱动材料容器14转动;次级驱动装置15与材料容器16相连,用于驱动材料容器16转动。
具体的,机台11是整个成膜设备10的主要机械承载机构与电气控制中枢,其上安装有所述材料容器及所述次级驱动装置,起到控制所述材料容器进行材料喷涂,及控制所述次级驱动装置运转等功能。应理解,机台11包括用于实 现各类机械功能及电气功能的组件,图1仅示出了机台11的简图,并未示意机台11的详细构造。
本实施例中,材料容器14和材料容器16均可以为蒸镀线源,用于装载和喷涂材料。如图1所示,材料容器14和材料容器16均可以为长条形,其延伸方向上可以设有多个间隔分布的喷涂部。例如,图1中材料容器14与材料容器16的延伸方向为水平方向,材料容器14上沿水平方向设有多个喷涂部141,材料容器16上沿水平方向设有多个喷涂部161。材料容器14和材料容器16内装载有蒸镀材料,材料容器14和材料容器16将蒸镀材料加热,使其熔化变成蒸汽。汽化的蒸镀材料从多个喷涂部141和多个喷涂部161中喷出,并沉积在材料容器14和材料容器16上方的基板100表面,形成薄膜。材料容器14和材料容器16并排布置,以覆盖基板100的宽度(或长度)。在蒸镀时,材料容器14和材料容器16均可从基板100的一端到另一端做扫描式移动,同时进行蒸镀材料的喷涂。下文将以材料容器14的蒸镀为例进行描述。
具体的,如图2所示,材料容器14被配置有起始位置A和终止位置B,材料容器14由起始位置A到终止位置B进行扫描式移动,同时喷涂蒸镀材料。由于材料容器14具有一定长度,材料容器14进行一次扫描式移动就可以喷涂基板100上的一个矩形区域。
具体的,本实施例中,如图2所示,机台11上可以设有滑轨17,材料容器14架设于滑轨17上。次级驱动装置13还能够驱动材料容器14沿滑轨17滑动。材料容器14在滑轨17上从起始位置A滑动到终止位置B,同时进行蒸镀。使用滑轨能够平滑、灵活的对材料容器14进行控制。图2中由于视角的关系,仅示出了材料容器14架设在滑轨17上的示意图,实际上材料容器16也是设在滑轨上,次级驱动装置15也能够驱动材料容器16沿滑轨滑动。可以对材料容器16和材料容器14设置独立的两组滑轨,以分别对不同的蒸镀线源进行控制。在其他实施例中,不限于采用滑轨的方式,可以设计其他运动机构来驱动材料容器16和材料容器14平移。
由于材料容器14的制造误差,或者材料容器14上各个位置的温度差异等原因,各个喷涂部141的蒸汽喷出量不均,这导致各个喷涂部141所蒸镀的薄膜的膜厚不均。本实施例中,可以令材料容器14和材料容器16预先进行一次 蒸镀,形成第一薄膜。再根据各个喷涂部141与各个喷涂部161所蒸镀的薄膜的膜厚分布,来调节材料容器14和/或材料容器16的位置状态,并控制材料容器14和材料容器16在所述第一薄膜上再次进行蒸镀,形成第二薄膜,达到使膜厚趋于均匀的目的。具体过程将在下文详细描述。
例如,图3示出了材料容器14和材料容器16在预先经过一次蒸镀后,对基板100上的第一薄膜的膜厚进行测量得到的膜厚分布曲线。所述膜厚分布曲线的横轴d表示各个喷涂部141与各个喷涂部161的位置,也即材料容器14和材料容器16的延伸方向上的各个位置;所述膜厚分布曲线的纵轴t表示膜厚。从所述膜厚分布曲线上可以确定材料容器14和材料容器16所对应的子膜厚分布曲线。例如,图3中d16表示材料容器16的延伸长度区间,也即各个喷涂部161的位置区间,而d16所对应的膜厚分布曲线即为材料容器16的子膜厚分布曲线s16。同理,d14所对应的膜厚分布曲线即为材料容器14的子膜厚分布曲线s14。另外,垂直于图3图面的方向为材料容器14和材料容器16的扫描式移动方向。在此方向上,单个喷涂部161与单个喷涂部141的蒸镀膜厚保持一致。因此,考察基板100上的第一薄膜的膜厚分布,只需关注沿材料容器14和材料容器16的延伸方向分布的膜厚,即只需关注所述膜厚分布曲线即可。
如图3所示,s16和s14都为斜线,即斜率均不等于0(均大于0)。由此可知,沿所述延伸方向,多个喷涂部161与多个喷涂部141的蒸镀膜厚依次增大,也即多个喷涂部161与多个喷涂部141的蒸汽喷出量依次增大。此时,次级驱动装置15驱动材料容器16转动180度,将多个喷涂部161相对基板100的位置依次重新对应,使原本蒸汽喷出量较大的喷涂部161对应到基板100上膜厚较小的位置,使原本蒸汽喷出量较小的喷涂部161对应到基板100上膜厚较大的位置。之后,材料容器16在所述第一薄膜之上再次进行一次蒸镀。同理,材料容器14也做同样动作,即次级驱动装置13驱动材料容器14转动180度,然后材料容器14在所述第一薄膜之上再次进行一次蒸镀。材料容器16与材料容器14再次蒸镀后,在所述第一薄膜之上形成第二薄膜。所述第二薄膜与所述第一薄膜的薄厚区域恰好互补,两层薄膜叠加之后的膜厚均匀一致。
或者,如图4所示,与图3不同的是,s16和s14的斜率均小于0。由此 可知,沿所述延伸方向,多个喷涂部161与多个喷涂部141的蒸镀膜厚依次减小,也即多个喷涂部161与多个喷涂部141的蒸汽喷出量依次减小。此时,次级驱动装置15与次级驱动装置13分别驱动材料容器16和材料容器14转动180度,使原本蒸汽喷出量较小的喷涂部161和喷涂部141对应到基板100上膜厚较大的位置,使原本蒸汽喷出量较大的喷涂部161和喷涂部141对应到基板100上膜厚较小的位置。之后,材料容器16和材料容器14在所述第一薄膜之上再次进行一次蒸镀,形成第二薄膜。所述第二薄膜与所述第一薄膜的薄厚区域恰好互补,两层薄膜叠加之后的膜厚均匀一致。
又或者,如图5所示,与图3不同的是,s16的斜率小于0,而s14的斜率大于0。由此可知,沿所述延伸方向,多个喷涂部161的蒸镀膜厚依次减小,也即多个喷涂部161蒸汽喷出量依次减小;而多个喷涂部141的蒸镀膜厚依次增大,也即多个喷涂部141蒸汽喷出量依次增大。此时,次级驱动装置15与次级驱动装置13分别驱动材料容器16和材料容器14转动180度,使原本蒸汽喷出量较小的喷涂部161和喷涂部141对应到基板100上膜厚较大的位置,使原本蒸汽喷出量较大的喷涂部161和喷涂部141对应到基板100上膜厚较小的位置。之后,材料容器16和材料容器14在所述第一薄膜之上再次进行一次蒸镀,形成第二薄膜。所述第二薄膜与所述第一薄膜的薄厚区域恰好互补,两层薄膜叠加之后的膜厚均匀一致。
又或者,如图6所示,与图3不同的是,s16的斜率大于0,而s14的斜率小于0。由此可知,沿所述延伸方向,多个喷涂部161的蒸镀膜厚依次增大,也即多个喷涂部161蒸汽喷出量依次增大;而多个喷涂部141的蒸镀膜厚依次减小,也即多个喷涂部141蒸汽喷出量依次减小。此时,次级驱动装置15与次级驱动装置13分别驱动材料容器16和材料容器14转动180度,使原本蒸汽喷出量较小的喷涂部161和喷涂部141对应到基板100上膜厚较大的位置,使原本蒸汽喷出量较大的喷涂部161和喷涂部141对应到基板100上膜厚较小的位置。之后,材料容器16和材料容器14在所述第一薄膜之上再次进行一次蒸镀,形成第二薄膜。所述第二薄膜与所述第一薄膜的薄厚区域恰好互补,两层薄膜叠加之后的膜厚均匀一致。
又或者,如图7所示,与图3不同的是,s16的斜率等于0,而s14的斜 率大于0。由此可知,沿所述延伸方向,多个喷涂部161的蒸镀膜厚均匀一致,也即多个喷涂部161蒸汽喷出量均匀一致;而多个喷涂部141的蒸镀膜厚依次增大,也即多个喷涂部141蒸汽喷出量依次增大。此时,材料容器16不进行转动,而是维持之前的位置状态。次级驱动装置13则驱动材料容器14转动180度,使原本蒸汽喷出量较小的喷涂部141对应到基板100上膜厚较大的位置,使原本蒸汽喷出量较大的喷涂部141对应到基板100上膜厚较小的位置。之后,材料容器16和材料容器14在所述第一薄膜之上再次进行一次蒸镀,形成第二薄膜。所述第二薄膜中,材料容器14所蒸镀的部分与所述第一薄膜中材料容器14所蒸镀的部分的薄厚区域恰好互补;而两次蒸镀过程中,材料容器16所蒸镀的部分始终保持膜厚一致。因此,所述第一薄膜与所述第二薄膜叠加之后的膜厚均匀一致。
再或者,如图8所示,与图3不同的是,s16的斜率大于0,而s14的斜率等于0。由此可知,沿所述延伸方向,多个喷涂部161的蒸镀膜厚依次增大,也即多个喷涂部161蒸汽喷出量依次增大;而多个喷涂部141的蒸镀膜厚均匀一致,也即多个喷涂部141蒸汽喷出量均匀一致。此时,材料容器14不进行转动,而是维持之前的位置状态。次级驱动装置15则驱动材料容器16转动180度,使原本蒸汽喷出量较小的喷涂部161对应到基板100上膜厚较大的位置,使原本蒸汽喷出量较大的喷涂部161对应到基板100上膜厚较小的位置。之后,材料容器16和材料容器14在所述第一薄膜之上再次进行一次蒸镀,形成第二薄膜。所述第二薄膜中,材料容器16所蒸镀的部分与所述第一薄膜中材料容器16所蒸镀的部分的薄厚区域恰好互补;而两次蒸镀过程中,材料容器14所蒸镀的部分始终保持膜厚一致。因此,所述第一薄膜与所述第二薄膜叠加之后的膜厚均匀一致。
综合可知,在获得所述膜厚分布曲线后,若确定某个所述蒸镀线源的子膜厚分布曲线斜率不为0,相应的次级驱动装置则将此蒸镀线源转动180度,然后此蒸镀线源在第一次蒸镀的薄膜之上再次进行蒸镀,形成所述第二薄膜;若确定某个所述蒸镀线源的子膜厚分布曲线斜率为0,则无需转动此蒸镀线源,此蒸镀线源维持原位置在第一次蒸镀的薄膜之上再次进行蒸镀,形成所述第二薄膜。由此,所述第二薄膜与所述第一薄膜上叠加后的膜厚均匀一致。
本实施例中,可以根据情况适当增多所述蒸镀线源及所述次级驱动装置的数目,以尽量减小各个所述蒸镀线源的蒸汽喷出量不均对整体膜厚的影响,并更加精细、灵活地控制各个所述蒸镀线源的转动,从而增加成膜设备10的成膜均匀性。
由此,本实施例的成膜设备10,通过设计并排布置的至少两个材料容器及至少两个次级驱动装置,能够在某个材料容器首次所沉积膜层的膜厚不均时,通过对应的次级驱动装置驱动此材料容器转动180度,再控制此材料容器进行二次喷涂,形成叠加的两层薄膜。两层薄膜的薄厚区域恰好互补,和/或膜厚均匀的区域直接层叠,使得叠加之后的膜厚均匀一致。
如图9所示,与上述第一实施例不同的是,本申请第二实施例的成膜设备20中,机台11上还可以设置整体驱动装置19。整体驱动装置19与材料容器14和材料容器16均相连,用于驱动至少材料容器14和材料容器16同时转动。具体的,针对图3与和图4的所述膜厚分布曲线,材料容器14和材料容器16均需要转动180度再进行蒸镀。此时,通过整体驱动装置19驱动材料容器14和材料容器16同步转动180度即可,而无需通过次级驱动驱动装置13与驱动装置15驱动材料容器14和材料容器16分别转动。由此,通过增设整体驱动装置19,能够简化机构设计,简化材料容器的驱动控制并减少驱动控制误差。
具体的,如图9所示,机台11可以包括支撑台18。材料容器16、材料容器14,及次级驱动装置15与次级驱动装置13均设在支撑台18之上。整体驱动装置19则设于支撑台18之下。整体驱动装置19与支撑台18相连,以驱动支撑台18转动,进而使材料容器16与材料容器14同时转动。设计支撑台18能够增加材料容器、次级驱动装置及整体驱动装置19的机构连接的结构强度。在其他实施例中,不限于采用支撑台18的方式连接次级驱动装置与整体驱动装置19。
本实施例中,次级驱动装置15和次级驱动装置13均可以包括马达。所述马达的输出轴与所述材料容器的底壁相连,以驱动所述材料容器转动。马达使用成熟,性能可靠。使用马达使驱动机构的设计与控制变得简单。
本实施例中,如图1、图2和图9所示,机台11上还可以设置真空机构和蒸镀室12。材料容器16、材料容器14,及次级驱动装置15、次级驱动装置 13均收容在蒸镀室12内。所述真空机构用于使蒸镀室12保持真空环境,以利于在蒸镀室12内对基板100进行蒸镀。
以上详细描述了本实施例的成膜设备。下文将详细描述本实施例的成膜方法。
本实施例提供了一种成膜方法,用于在基板100上形成薄膜。所述成膜方法包括但不限于为蒸镀成膜方法。
如图10所示,本实施例的成膜方法200包括:
S210,在基板上形成第一薄膜;
S220,确定所述第一薄膜的各个位置的膜厚;
S230,根据所确定的结果,在所述第一薄膜上形成第二薄膜,使得所述第二薄膜与所述第一薄膜叠加之后的膜层的各个位置的膜厚一致。
本实施例中,可以预先在基板100上沉积材料,形成第一薄膜。再根据所述第一薄膜的膜厚分布,在所述第一薄膜上叠加第二薄膜。两层薄膜的薄厚区域恰好互补,和/或两层薄膜上膜厚均匀的区域直接层叠,使得叠加之后的膜厚均匀一致。
本实施中,成膜方法200可以使用上述装置实施例中的所述成膜设备进行成膜。以下将结合上述装置实施例进行说明。
进一步的,成膜方法200还可以包括:
提供成膜设备,所述成膜设备包括机台,所述机台上并排设有至少两个材料容器,每个所述材料容器上并排间隔设有多个喷涂部;
控制至少两个所述材料容器在所述基板上沉积材料,以在所述基板上形成所述第一薄膜。
具体的,如图1所示,可以通过成膜设备10或20进行成膜。可以控制材料容器16和材料容器14从基板100的一端到另一端做扫描式移动,同时进行材料喷涂。图1中材料容器14与材料容器14的延伸方向为水平方向,材料容器14上沿水平方向设有多个喷涂部141,材料容器16上沿水平方向设有多个喷涂部161。材料容器14和材料容器16内装载有蒸镀材料,材料容器14和材料容器16将蒸镀材料加热,使其熔化变成蒸汽。汽化的蒸镀材料从多个喷涂部141和多个喷涂部161中喷出,并沉积在材料容器14和材料容器16上方 的基板100表面,形成所述第一薄膜。
进一步的,S220可以包括:
确定所述第一薄膜的膜厚分布曲线,所述膜厚分布曲线用于指示至少两个所述材料容器上的各个所述喷涂部所对应的膜厚,所述膜厚分布曲线包括多个子膜厚分布曲线,所述子膜厚分布曲线用于指示单个所述材料容器上的各个所述喷涂部所对应的膜厚;根据多个所述子膜厚分布曲线确定所述第一薄膜的各个位置的膜厚。
具体的,可以通过测量第一薄膜的各个位置的膜厚,并进行数据处理以得到所述膜厚分布曲线。所述膜厚分布曲线指示了全部喷涂部161及全部喷涂部141的位置与膜厚的映射关系。所述膜厚分布曲线包括多个子膜厚分布曲线,所述子膜厚分布曲线则指示了材料容器16中的每个喷涂部161的位置与膜厚的映射关系,或者材料容器14上的每个喷涂部141的位置与的膜厚的映射关系。各个所述子膜厚分布曲线依次相连,构成所述所膜厚分布曲线。获取所述第一薄膜的膜厚分布曲线后,也自然获取了任意一个所述子膜厚分布曲线。由此,可以根据多个所述子膜厚分布曲线确定所述第一薄膜的各个位置的膜厚。(各个所述喷涂部的位置即所述第一薄膜的各个位置。)
进一步的,S230可以包括:
计算每个所述子膜厚分布曲线的斜率;
所述子膜厚分布曲线的斜率不等于零时,控制与所述子膜厚分布曲线对应的所述材料容器转动180度,并控制所述材料容器在所述第一薄膜上再次沉积材料;
所述子膜厚分布曲线的斜率等于零时,维持与所述子膜厚分布曲线对应的所述材料容器的位置不变,并控制所述材料容器在所述第一薄膜上再次沉积材料。
具体的,可以对每个所述子膜厚分布曲线的斜率进行计算,判断每个所述子膜厚分布曲线的斜率是否为0。并根据判断结果,控制相应的所述材料容器进行再次喷涂。对于所有所述子膜厚分布曲线的斜率不为0的(大于0或小于0),则控制与所述子膜厚分布曲线对应的所述材料容器转动180度,并在所述第一薄膜之上再次喷涂;对于所有所述子膜厚分布曲线的斜率为0的,则维持 与所述子膜厚分布曲线对应的所述材料容器的位置不变,直接在所述第一薄膜之上再次喷涂。针对此两种情况,分别控制相应的材料容器进行二次喷涂,最终形成所述第二薄膜。
由上述装置实施例所述,由于材料容器的制造误差,或者材料容器上各个位置的温度差异等原因,各个喷涂部的蒸汽喷出量不均,这导致各个喷涂部所沉积的薄膜的膜厚不均。
本实施例中,可以令材料容器14和材料容器16预先进行一次材料沉积,形成所述第一薄膜。再根据各个喷涂部141与各个喷涂部161所沉积的薄膜的子膜厚分布曲线,来调节材料容器14和/或材料容器16的位置状态,并控制材料容器14和材料容器16在所述第一薄膜上再次沉积材料,形成所述第二薄膜。两层薄膜上均包括薄厚不一的区域和/或膜厚均匀的区域。相叠加之后,两层薄膜上的薄厚区域恰好互补,和/或膜厚均匀的区域直接层叠,从而使整体膜厚均匀一致。例如,如图3-图8所示,针对不同的所述子膜厚分布曲线,分别调整材料容器14和材料容器16的位置状态,并进行二次材料沉积,以形成所述第二薄膜,两层薄膜叠加之后的膜厚均匀一致。由于上述装置实施例已对此过程做详细描述,此处不再赘述。
进一步的,本实施例中,机台11上还可以设置至少两个次级驱动装置,一个所述次级驱动装置与一个所述材料容器对应相连,用于驱动所述材料容器转动。例如,如图1所示,机台11上可以设有次级驱动装置15和次级驱动装置13,分别与材料容器16和材料容器14对应相连,分别用于驱动材料容器16和材料容器14转动。其中,可以通过控制与所述材料容器对应的所述次级驱动装置运转,以驱动所述材料容器转动180度。例如,图3-图8所示,可以分别控制次级驱动装置15和次级驱动装置13运转,以分别驱动材料容器16和材料容器14转动180度。
进一步的,本实施例中,如图9所示,机台11上还可以设置整体驱动装置19。整体驱动装置19与材料容器16和材料容器14均相连,用于驱动材料容器16和材料容器14同时转动。
其中,当全部子膜厚分布曲线的斜率均相同且不为零时,可以通过控制整体驱动装置19运转,来驱动材料容器16和材料容器14同时转动180度;并 控制材料容器16和材料容器14在所述第一薄膜上再次进行材料沉积,形成所述第二薄膜。此种情况可以对应图3和图4所示。图3和图4中,子膜厚分布曲线s16和s14的斜率均相同且不为零,即所述膜厚分布曲线为一条连续斜线。此时,可以通过整体驱动装置19驱动材料容器16和材料容器14同时转动,而无需通过次级驱动驱动装置13与驱动装置15驱动材料容器14和材料容器16分别转动。由此,通过增设整体驱动装置19,能够简化蒸镀线源的驱动控制并减少驱动控制误差。
进一步的,成膜方法200还可以包括:
预设至少两个所述材料容器的起始位置与终止位置;
控制至少两个所述材料容器由所述起始位置移动到所述终止位置,并在所述基板上沉积材料,形成所述第一薄膜;
控制与所述子膜厚分布曲线对应的所述材料容器转动180度,并由所述终止位置移动到所述起始位置,在所述第一薄膜上再次沉积材料。
具体的,如图2所示,可以预设材料容器14的起始位置A与终止位置B,材料容器14由起始位置A到终止位置B做扫描式移动,同时沉积材料。在首次沉积时,控制材料容器14由起始位置A移动到终止位置B。首次沉积完成时,材料容器14位于终止位置B。在进行二次沉积时,材料容器14转动180度之后,材料容器14由终止位置B移动到起始位置A。此种设计可以有效利用材料容器14的行程进行沉积,避免材料容器14空跑,提升了沉积效率。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易的想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (11)

  1. 一种成膜方法,其特征在于,包括:
    在基板上形成第一薄膜;
    确定所述第一薄膜的各个位置的膜厚;
    根据所确定的结果,在所述第一薄膜上形成第二薄膜,使得所述第二薄膜与所述第一薄膜叠加之后的膜层的各个位置的膜厚一致。
  2. 根据权利要求1所述的成膜方法,其特征在于,还包括:
    提供成膜设备,所述成膜设备包括机台,所述机台上并排设有至少两个材料容器,每个所述材料容器上并排间隔设有多个喷涂部;
    控制至少两个所述材料容器在所述基板上沉积材料,以在所述基板上形成所述第一薄膜。
  3. 根据权利要求2所述的成膜方法,其特征在于,
    所述确定所述第一薄膜的各个位置的膜厚包括:
    确定所述第一薄膜的膜厚分布曲线,所述膜厚分布曲线用于指示至少两个所述材料容器上的各个所述喷涂部所对应的膜厚,所述膜厚分布曲线包括多个子膜厚分布曲线,所述子膜厚分布曲线用于指示单个所述材料容器上的各个所述喷涂部所对应的膜厚;根据多个所述子膜厚分布曲线确定所述第一薄膜的各个位置的膜厚。
  4. 根据权利要求3所述的成膜方法,其特征在于,
    所述根据所确定的结果,在所述第一薄膜上形成第二薄膜包括:
    计算每个所述子膜厚分布曲线的斜率;
    所述子膜厚分布曲线的斜率不等于零时,控制与所述子膜厚分布曲线对应的所述材料容器转动180度,并控制所述材料容器在所述第一薄膜上再次沉积材料;
    所述子膜厚分布曲线的斜率等于零时,维持与所述子膜厚分布曲线对应的所述材料容器的位置不变,并控制所述材料容器在所述第一薄膜上再次沉积材料。
  5. 根据权利要求4所述的成膜方法,其特征在于,
    所述机台上还设有用于驱动至少两个所述材料容器同时转动的整体驱动装置;
    其中,当全部子膜厚分布曲线的斜率均相同且不等于零时,控制所述整体驱动装置运转,以驱动至少两个所述材料容器同时转动180度,并在所述第一薄膜上再次沉积材料,形成所述第二薄膜。
  6. 根据权利要求4所述的成膜方法,其特征在于,还包括:
    预设至少两个所述材料容器的起始位置与终止位置;
    控制至少两个所述材料容器由所述起始位置移动到所述终止位置,并在所述基板上沉积材料,形成所述第一薄膜;
    控制与所述子膜厚分布曲线对应的所述材料容器转动180度,并由所述终止位置移动到所述起始位置,在所述第一薄膜上再次沉积材料。
  7. 一种成膜设备,其特征在于,
    包括机台,所述机台上并排设有至少两个材料容器及至少两个次级驱动装置;每个所述材料容器上并排间隔设有多个喷涂部;一个所述次级驱动装置与一个所述材料容器对应相连,用于驱动所述材料容器转动。
  8. 根据权利要求7所述的成膜设备,其特征在于,
    所述机台上还设有整体驱动装置,所述整体驱动装置与至少两个所述材料容器均相连,用于驱动至少两个所述材料容器同时转动。
  9. 根据权利要求8所述的成膜设备,其特征在于,
    所述机台包括支撑台,至少两个材料容器及至少两个次级驱动装置均设在所述支撑台之上;所述整体驱动装置设于所述支撑台之下,所述整体驱动装置与所述支撑台相连,以驱动所述支撑台转动,进而使至少两个所述材料容器同时转动。
  10. 根据权利要求7-9中任一项所述的成膜设备,其特征在于,
    所述机台上设有滑轨,至少两个所述材料容器均架设于所述滑轨上;所述次级驱动装置还用于驱动所述材料容器沿所述滑轨滑动。
  11. 根据权利要求7-9中任一项所述的成膜设备,其特征在于,
    所述成膜设备用于进行蒸镀工艺,所述材料容器为蒸镀线源;所述机台上 设有真空机构和蒸镀室,所述真空机构用于使所述蒸镀室内保持真空环境,至少两个所述蒸镀线源及至少两个所述次级驱动装置均收容在所述蒸镀室内。
PCT/CN2017/090554 2017-06-28 2017-06-28 成膜设备及成膜方法 WO2019000274A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/090554 WO2019000274A1 (zh) 2017-06-28 2017-06-28 成膜设备及成膜方法
CN201780050854.2A CN109642314A (zh) 2017-06-28 2017-06-28 成膜设备及成膜方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/090554 WO2019000274A1 (zh) 2017-06-28 2017-06-28 成膜设备及成膜方法

Publications (1)

Publication Number Publication Date
WO2019000274A1 true WO2019000274A1 (zh) 2019-01-03

Family

ID=64740247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090554 WO2019000274A1 (zh) 2017-06-28 2017-06-28 成膜设备及成膜方法

Country Status (2)

Country Link
CN (1) CN109642314A (zh)
WO (1) WO2019000274A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050066901A1 (en) * 2003-09-30 2005-03-31 Fuji Photo Film Co., Ltd. Vacuum deposition method and vacuum deposition device
US20050279285A1 (en) * 2004-06-10 2005-12-22 Fuji Photo Film Co., Ltd. Phosphor sheet manufacturing apparatus
JP3859875B2 (ja) * 1997-12-26 2006-12-20 三星電子株式会社 半導体製造用蒸着設備の膜厚さ調節方法
CN102191475A (zh) * 2011-04-15 2011-09-21 中国科学院上海光学精密机械研究所 提高薄膜光谱性能的膜厚监控方法
CN202968674U (zh) * 2012-12-14 2013-06-05 株式会社新柯隆 薄膜形成装置
CN103938161A (zh) * 2014-04-29 2014-07-23 京东方科技集团股份有限公司 基板蒸镀装置和蒸镀方法
US20150176129A1 (en) * 2010-11-04 2015-06-25 Canon Kabushiki Kaisha Film formation apparatus and film formation method
CN105755433A (zh) * 2016-05-17 2016-07-13 京东方科技集团股份有限公司 一种薄膜蒸镀方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10128091C1 (de) * 2001-06-11 2002-10-02 Applied Films Gmbh & Co Kg Vorrichtung für die Beschichtung eines flächigen Substrats
CN102383097A (zh) * 2010-09-01 2012-03-21 上海宏力半导体制造有限公司 一种铝硅铜薄膜的制备方法
CN101969105B (zh) * 2010-11-12 2012-09-19 四川虹视显示技术有限公司 基板及其蒸镀方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3859875B2 (ja) * 1997-12-26 2006-12-20 三星電子株式会社 半導体製造用蒸着設備の膜厚さ調節方法
US20050066901A1 (en) * 2003-09-30 2005-03-31 Fuji Photo Film Co., Ltd. Vacuum deposition method and vacuum deposition device
US20050279285A1 (en) * 2004-06-10 2005-12-22 Fuji Photo Film Co., Ltd. Phosphor sheet manufacturing apparatus
US20150176129A1 (en) * 2010-11-04 2015-06-25 Canon Kabushiki Kaisha Film formation apparatus and film formation method
CN102191475A (zh) * 2011-04-15 2011-09-21 中国科学院上海光学精密机械研究所 提高薄膜光谱性能的膜厚监控方法
CN202968674U (zh) * 2012-12-14 2013-06-05 株式会社新柯隆 薄膜形成装置
CN103938161A (zh) * 2014-04-29 2014-07-23 京东方科技集团股份有限公司 基板蒸镀装置和蒸镀方法
CN105755433A (zh) * 2016-05-17 2016-07-13 京东方科技集团股份有限公司 一种薄膜蒸镀方法及装置

Also Published As

Publication number Publication date
CN109642314A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
US8961692B2 (en) Evaporating apparatus
TWI429783B (zh) 真空汽相沉積裝置
TWI579952B (zh) 用於增進製程腔室利用率的系統及其操作方法
US11732349B2 (en) In-line coater for vacuum deposition of thin film coatings
JP2010525162A5 (zh)
TW201631204A (zh) 電漿輔助原子層沉積中之射頻補償用方法及設備
JP2013211137A6 (ja) 真空蒸着方法及びその装置
TW201323634A (zh) 用於材料沈積之可調整的邊緣排除遮罩及其沈積設備與方法
JP2013211137A (ja) 真空蒸着方法及びその装置
JP6811760B2 (ja) 成膜装置及び成膜方法
JP2003188115A (ja) 半導体配線形成方法及び装置、半導体デバイス製造方法及び装置、並びにウエハ
KR101619308B1 (ko) 원자층 증착 시스템
WO2019000274A1 (zh) 成膜设备及成膜方法
JP7464692B2 (ja) 基板上にフィルムを形成するための蒸発器チャンバ
JP4251857B2 (ja) 真空成膜装置及び真空成膜方法
JP2008088509A (ja) 成膜装置及び成膜装置による成膜方法
KR20150103292A (ko) 적층체 및 그것의 제조 방법
KR101239906B1 (ko) 유기물 증착 장치 및 이를 이용한 유기물 증착 방법
JP7360851B2 (ja) シャッタ装置、成膜装置、成膜方法及び電子デバイスの製造方法
JP2008013817A (ja) スパッタリングによる薄膜の製造方法及び製造装置
US9797038B2 (en) Organic material deposition apparatus, and organic material deposition method using same
TWI835440B (zh) 蒸鍍裝置和蒸鍍方法
TWI834901B (zh) 用於在基板上形成薄膜的蒸發器腔室
JP7434261B2 (ja) 蒸着装置及び蒸着方法
CN215163072U (zh) 沉积设备和沉积系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17915890

Country of ref document: EP

Kind code of ref document: A1