WO2018236199A1 - 구리 착물 형성을 위한 리간드, 팔라듐 착물 형성을 위한 리간드, 구리 착물 촉매, 팔라듐 착물 촉매 및 이의 제조방법과 용도 - Google Patents

구리 착물 형성을 위한 리간드, 팔라듐 착물 형성을 위한 리간드, 구리 착물 촉매, 팔라듐 착물 촉매 및 이의 제조방법과 용도 Download PDF

Info

Publication number
WO2018236199A1
WO2018236199A1 PCT/KR2018/007167 KR2018007167W WO2018236199A1 WO 2018236199 A1 WO2018236199 A1 WO 2018236199A1 KR 2018007167 W KR2018007167 W KR 2018007167W WO 2018236199 A1 WO2018236199 A1 WO 2018236199A1
Authority
WO
WIPO (PCT)
Prior art keywords
ligand
formula
catalyst
palladium
copper
Prior art date
Application number
PCT/KR2018/007167
Other languages
English (en)
French (fr)
Inventor
홍석원
강창묵
박다애
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Publication of WO2018236199A1 publication Critical patent/WO2018236199A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/08Copper compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table

Definitions

  • the present invention relates to ligands for the formation of copper complexes, ligands for the formation of palladium complexes, copper complex catalysts, palladium complex catalysts, and their preparation and use.
  • N-Heterocyclic carbene is a strong ⁇ -electron donor and a weak ⁇ -electron acceptor ligand. When it is compounded with a metal precursor, it is stable in air, Is known to be higher than metal compounds.
  • NHCs metal catalysts having various structural and electronic properties have been developed and used in various chemical reactions through the change of the basic skeleton of N-heterocycarbine, various substituent changes, and introduction of heteroatoms.
  • one of the most representative and commercialized examples is the Grubbs Catalyst 2nd generation catalyst disclosed in FIG.
  • imidazo [1,5-a] pyridine N-heterocyclic carbene (ImPy) structure which is a bicyclic variant of N-heterocycarbine, It was first developed in 2005 by the Glorius and Lassaletta groups.
  • the imidazo [1,5-a] pyridine N-heterocyclic carbene (ImPy) structure is more stable than the N-heterocyclic carbene ligand of the basic single ring, Structure, and thus the extended? Electron system can increase the electron density of the carbine.
  • the position of the substituent R 1 of the ligand skeleton may exist close to the metal to be bonded to the carbine, so that it may affect the catalyst in three dimensions and electronically.
  • a simple synthesis of the ImPy ligand was developed by the Aron group to introduce various functional groups at the R 2 position.
  • the present inventors have developed a bifunctional ImPy ligand by introducing a polyether group known as a functional group capable of interacting with a cation or carbon dioxide as a functional group and having an ImPy ligand as a basic skeleton to develop a bifunctional NHCs ligand Respectively.
  • a DEG-ImPy ligand was prepared using a diethylene glycol unit (DEG) in a polyether group containing n oxygen atoms.
  • DEG diethylene glycol unit
  • a DEG-ImPy ligand was prepared using a diethylene glycol unit (DEG) having three oxygen atoms in a polyether group.
  • DEG diethylene glycol unit
  • the present invention is to provide a copper complex ligand, a palladium complex ligand, a copper complex and a palladium complex having high catalytic activity and high electrical and structural properties.
  • the ligand for forming the copper complex of the present invention may have a structure represented by the following formula (1a).
  • the ligand for forming the palladium complex of the present invention may have the structure of the following formula (1b).
  • the copper complex catalyst of the present invention may have a structure represented by the following formula (2a).
  • the palladium complex catalyst of the present invention may have the structure of the following formula (2b).
  • a novel ligand of the polyether-functionalized imidazo [1,5-a] pyridine N-heterocyclic carbene (imidazo [1,5, -a] pyridine N-heterocycarbene) structure of the present invention and a novel ligand of copper or palladium Metal catalysts synthesized using metal precursors can have high catalytic activity, electrical properties, and structural properties.
  • the metal catalyst of the present invention is an imidazopyridine ligand which is basically a ligand of NHC (N-Heterocyclic carbene) type and at the same time structurally similar to a biarylphosphine ligand. .
  • FIG. 1 is a diagram showing a general structure of NHCs and a Grubbs Catalyst 2nd generation catalyst which is a typical metal catalyst of NHC.
  • Figure 2 is a diagram showing various types of ImPy metal catalysts and their synthesis.
  • FIG. 3 is a diagram for explaining DEG-ImPy ligand synthesis.
  • 5 is a diagram showing the X-RAY structure of DEG-ImPy-copper, DEG-ImPy-palladium catalyst.
  • FIG. 6 is a diagram for explaining the mechanism of action of Buchwald-Hartwig Amination (amination).
  • FIG. 7 is a view for explaining a bialylphosphine ligand.
  • FIG. 9 is a diagram for explaining application to DEG-ImPy palladium aryl halide and aniline of the present invention.
  • FIG. 10 is a diagram for explaining a direct carbon-hydrogen carboxylation reaction using the DEG-ImPy copper catalyst of the present invention.
  • FIG. 11 is a view for explaining an application example of a reactant having various substituents by using the DEG-ImPy ligand (4g) of the present invention.
  • a catalyst comprising an imidazopyridine ligand structurally similar to an NHC (N-Heterocyclic carbene) type ligand at the same time has a high activity, and thus, a polyether-functionalized imidazo [ -a] pyridine N-heterocyclic carbene (imidazo [1,5, -a] pyridine N-heterocycarbine) structure and a copper or palladium metal precursor.
  • the present inventors have found that polyether-functionalized imidazo [1,5-a] pyridine N-heterocyclic carbene (imidazo [1,5, -a] pyridine N-heterocycarbine ) Structure of the ligand.
  • the present inventors developed an imPy ligand as a basic skeleton and a bifunctional ImPy ligand as a functional group by introducing a polyether group to develop a bifunctional NHCs ligand.
  • Polyether groups are well known as functional groups that can interact with cations or carbon dioxide.
  • the present invention relates to a DEG-ImPy ligand using a diethylene glycol unit (DEG) in a polyether group containing n oxygen atoms.
  • DEG diethylene glycol unit
  • the present invention relates to a DEG-ImPy ligand using a diethylene glycol unit (DEG) having three oxygen atoms in a polyether group.
  • DEG diethylene glycol unit
  • the ligand synthesis was synthesized by the following synthesis method.
  • 6-bromopicolinaldehyde (5) was synthesized using commercially available 2,6-dibromopyridine by Bouveault aldehyde synthesis.
  • a ligand was synthesized by cyclization reaction of two kinds of anilines (2,4) containing diethylene glycol functional groups and an aldehyde (6) containing an aryl group.
  • the ligand of Formula 1a was coupled with copper, and the ligand of Formula 1b was coupled with palladium to synthesize a metal catalyst of Formula 2a and Formula 2b.
  • the catalyst synthesis was synthesized by the following synthesis method.
  • copper and palladium catalysts were synthesized using copper metal and palladium metal, respectively.
  • a copper complex has a linear structure
  • a palladium complex has a rectangular plane structure
  • the ligands of the above general formulas (1a) and (1b) are combined with the copper metal and the palladium metal, but the embodiment is not limited thereto.
  • the metal catalyst of the present invention may include various metal catalysts to which various metals capable of binding with the ligands of the above general formulas (1a) and (1b) are bonded.
  • the metal catalyst of the present invention may include a nickel complex catalyst or a platinum complex catalyst formed by combining nickel (Ni) or platinum (Pt) with ligands of the above general formulas (1a) and (1b).
  • the present inventors experimented with the activity of the copper complex and the palladium complex in the chemical reaction using a catalyst synthesized using the ligand and copper or palladium.
  • Buchwald and Hartwig have independently studied Buchwald-Hartwig Amination (amination), which makes carbon-nitrogen bonds through the coupling reaction of amines with aryl halides using palladium metal.
  • the catalyst of the present invention was an imidazopyridine ligand, which was basically a ligand of NHC (N-Heterocyclic carbene) type and structurally similar to a biarylphosphine ligand at the same time, and could bring about both electrical and structural characteristics through this form .
  • NHC N-Heterocyclic carbene
  • catalyst 1 (56% yield) having a biaryl structure showed higher reactivity than conventional catalyst 3 (26% yield).
  • catalyst 2 (79% yield) with diethylene glycol showed better reactivity than catalyst 1.
  • catalyst 2 having the best reactivity was also applied to aryl halides and anilines having various substituents.
  • a catalyst in the form of a palladium complex instead of using a catalyst in the form of a palladium complex, it can be produced in situ during the reaction from the ligand and Pd (OAc) 2 .
  • the amination reaction showed good reactivity (74% yield) using 1.0 mol% of the catalyst.
  • the ligand used is a bulky structure as compared to the ligand in which the complex was formed, and there are three isopropyl substituents in the lower phenyl group of the biaryl structure.
  • Direct carbon-hydrogen Carboxylation Reaction Direct C-H Carboxylation
  • the present inventors have applied the direct C-H carboxylation reaction using DEG-ImPy copper catalyst and benzoxazole and carbon dioxide as reactants.
  • Carbon dioxide (CO 2) has a number of research interest of using it as a sustainable material C1.
  • the direct CH-carboxylation reaction using CO 2 is known as an economical synthesis method because it provides a carboxylic acid derivative.
  • the catalytic activity of the ImPy-Cu metal was applied to the direct CH carboxylation of benzoxazole using CO 2 .
  • catalysts formed in situ from CuCl and NHC ligands show superior yields than Cu complexes (items 1 to 3).
  • the ImPy ligand of the present invention having a diethylene glycol moiety (4 g, DEG-ImPy) exhibited excellent activity and the desired product was obtained in quantitative yield (item 12).
  • the yields were much better than those of the IPrCuCl or IPrHCl and CuCl in situ catalysts (items 1 and 5).
  • Reaction conditions were benzoxazole 6a (0.5 mmol), CuCl (5 mol%), ligand (5 mol%), KOtBu (1.15 eq.), THF (2.5 ml) After THF was evaporated, DMF (2.5 mL) and C6H13I (1.0 mmol) were reacted at a temperature of 80 DEG C for 6 hours. The yield of the separated products (average of two runs) was measured.
  • the DEG-ImPy ligand (4 g) of the present invention was used to apply reactants having various substituents to the same reaction. Referring to FIG. 11, it can be seen that overall, good yield is obtained in most of the reactants.
  • a Cu catalyst having DEG-ImPy ⁇ HCl (4 g) exhibits better catalytic activity than IPr ⁇ Cl l. That is, as shown in Table 2, the introduction of the diethylene glycol group in the ImPy ligand skeleton of the present invention improves the catalytic activity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 발명은 구리 착물 형성을 위한 리간드, 팔라듐 착물 형성을 위한 리간드, 구리 착물 촉매, 팔라듐 착물 촉매 및 이의 제조방법과 용도에 관한 것이다.

Description

구리 착물 형성을 위한 리간드, 팔라듐 착물 형성을 위한 리간드, 구리 착물 촉매, 팔라듐 착물 촉매 및 이의 제조방법과 용도
본 발명은 구리 착물 형성을 위한 리간드, 팔라듐 착물 형성을 위한 리간드, 구리 착물 촉매, 팔라듐 착물 촉매 및 이의 제조방법과 용도에 관한 것이다.
N-헤테로사이클카빈 (N-Heterocyclic carbene, NHCs)는 강한 σ- 전자주개이면서 약한 π-전자받개 리간드인 특징을 가지며, 금속 전구체와 화합물을 이루었을 경우 공기 중에서 안정하며, 열적 안정성도 기존 포스핀 금속 화합물에 비해 높다고 잘 알려져 있다.
이러한 N-헤테로사이클카빈의 기본 골격과 다양한 치환체의 변화, 헤테로 원자의 도입을 통해 다양한 구조적, 전자적 성질을 갖는 NHCs 금속 촉매들이 개발되어 왔고 다양한 화학반응에서 사용되고 있다. 예를 들어, 가장 대표적이며 상업화되고 있는 예시로서 도 1에 개시되어 있는 Grubbs Catalyst 2nd generation 촉매가 있다.
N-헤테로사이클카빈의 이고리화 변형체(bicyclic variant)인 이미다조 [1,5,-a] 피리딘 N-헤테로사이클 카빈(imidazo[1,5-a]pyridine N-heterocyclic carbene, 이하 ImPy) 구조는 2005년 Glorius와 Lassaletta 그룹에 의해 처음 개발되었다.
이미다조 [1,5,-a] 피리딘 N-헤테로사이클 카빈(imidazo[1,5-a]pyridine N-heterocyclic carbene, ImPy) 구조는 기본의 단일고리의 N-헤테로사이클카빈 리간드에 비해 이고리화 구조를 가지고, 이에 따라 확장된 π 전자 시스템은 카빈의 전자 밀도를 증가시킬 수 있다.
또한, 리간드 골격의 치환체 R1의 위치가 카빈과 결합되는 금속과 가까이에 존재 가능하여, 촉매의 입체적, 전자적으로 영향을 미칠 수 있다. 2011년 Aron 그룹에 의해 ImPy 리간드의 간단한 합성법이 개발되어, 다양한 작용기를 R2 위치에 도입할 수 있다. 이러한 특징들로 인해 도 2에 도시되어 있듯이 다양한 종류의 ImPy 금속 촉매들이 개발되었다.
이에 본 발명자는 두 기능을 가진(bifunctional) NHCs 리간드를 개발하기 위해 ImPy 리간드를 기본 골격으로 하고, 작용기로서 양이온 또는 이산화탄소와 상호 작용 가능한 작용기로 알려진 폴리에테르(polyether) 그룹을 도입하여 bifunctional ImPy 리간드를 개발하였다.
자세하게, 산소원자가 n개 포함된 폴리에테르(polyether) 그룹 중 다이에틸렌 글라이콜 단위체 (DEG)를 사용한 DEG-ImPy 리간드를 완성하였다.
자세하게, 폴리에테르(polyether) 그룹 중 산소원자가 3개 포함된 다이에틸렌 글라이콜 단위체 (DEG)를 사용한 DEG-ImPy 리간드를 완성하였다.
본 발명은 촉매의 활성이 높고, 높은 전기적, 구조적 특성을 가지는 구리 착물 리간드, 팔라듐 착물 리간드, 구리 착물 및 팔라듐 착물을 제공하기 위한 것이다.
본 발명의 구리 착물 형성을 위한 리간드는 하기 화학식 1a의 구조를 가질 수 있다.
[화학식 1a]
Figure PCTKR2018007167-appb-I000001
본 발명의 팔라듐 착물 형성을 위한 리간드는 하기 화학식 1b의 구조를 가질 수 있다.
[화학식 1b]
Figure PCTKR2018007167-appb-I000002
본 발명의 구리 착물 촉매는 하기 화학식 2a의 구조를 가질 수 있다.
[화학식 2a]
Figure PCTKR2018007167-appb-I000003
본 발명의 팔라듐 착물 촉매는 하기 화학식 2b의 구조를 가질 수 있다.
[화학식 2b]
Figure PCTKR2018007167-appb-I000004
본 발명의 Polyether-functionalized imidazo[1,5-a]pyridine N-heterocyclic carbene (이미다조 [1,5,-a] 피리딘 N-헤테로사이클카빈) 구조의 새로운 리간드와, 상기 새로운 리간드와 구리 또는 팔라듐 금속 전구체를 이용하여 합성된 금속 촉매는 높은 촉매 활성, 전기적 특성 및 구조적 특성을 가질 수 있다.
즉, 본 발명의 금속 촉매는 기본적으로 NHC(N-Heterocyclic carbene) 종류의 리간드이면서, 동시에 바이아릴 포스핀 리간드와 구조적으로 유사한 이미다조피리딘 리간드로서, 이러한 형태를 통해 전기적, 구조적 특성을 양쪽에서 가져올 수 있다.
도 1은 NHCs의 일반적인 구조 및 NHC의 대표적인 금속 촉매인 Grubbs Catalyst 2nd generation 촉매를 도시한 도면이다.
도 2는 다양한 종류의 ImPy 금속 촉매 및 이의 합성법을 도시한 도면이다.
도 3은 DEG-ImPy 리간드 합성을 설명하기 위한 도면이다.
도 4는 DEG-ImPy 금속 촉매 합성을 설명하기 위한 도면이다.
도 5는 DEG-ImPy-구리, DEG-ImPy-팔라듐 촉매의 X-RAY 구조를 도시한 도면이다.
도 6은 Buchwald-Hartwig Amination(아민화)의 작용기작을 설명하기 위한 도면이다.
도 7은 바이아릴 포스핀 리간드를 설명하기 위한 도면이다.
도 8은 아민화 반응에서 팔라듐 착물들의 반응성 비교를 설명하기 위한 도면이다.
도 9는 본 발명의 DEG-ImPy 팔라듐 아릴할라이드와 아닐린에 적용한 것을 설명하기 위한 도면이다.
도 10은 본 발명의 DEG-ImPy 구리 촉매를 이용한 직접 탄소-수소 카복실화 반응을 설명하기 위한 도면이다.
도 11은 본 발명의 DEG-ImPy 리간드(4g)를 사용하여 다양한 치환체를 갖는 반응물을 적용예를 설명하기 위한 도면이다.
이하, 본 발명에 대해 보다 구체적으로 설명한다.
본 발명자는 NHC(N-Heterocyclic carbene) 종류의 리간드이면서, 동시에 바이아릴 포스핀 리간드와 구조적으로 유사한 이미다조피리딘 리간드를 포함하는 촉매가 높은 활성을 가지는 것에 착안하여, Polyether-functionalized imidazo[1,5-a]pyridine N-heterocyclic carbene (이미다조 [1,5,-a] 피리딘 N-헤테로사이클카빈) 구조의 새로운 리간드와 구리 또는 팔라듐 금속 전구체를 이용하여 금속 촉매를 연구하였다.
이에 따라, 본 발명자는 [화학식 1a], [화학식 1b]를 가지는 Polyether-functionalized imidazo[1,5-a]pyridine N-heterocyclic carbene (이미다조 [1,5,-a] 피리딘 N-헤테로사이클카빈) 구조의 새로운 리간드를 완성하였다.
[화학식 1a]
Figure PCTKR2018007167-appb-I000005
[화학식 1b]
Figure PCTKR2018007167-appb-I000006
자세하게, 본 발명자는 두 기능(bifunctional) NHCs 리간드를 개발하기 위해 ImPy 리간드를 기본 골격으로 정하고, 작용기로서 폴리에테르(polyether) 그룹을 도입하여 bifunctional ImPy 리간드를 개발하고자 하였다.
폴리에테르(polyether) 그룹은 양이온 또는 이산화탄소와 상호 작용 가능한 작용기로 많이 알려져 있다. 본 발명은 산소원자가 n개 포함된 폴리에테르(polyether) 그룹 중 다이에틸렌 글라이콜 단위체(DEG)를 사용한 DEG-ImPy 리간드에 관한 것이다.
자세하게, 본 발명은 폴리에테르(polyether) 그룹 중 산소원자가 3개 포함된 다이에틸렌 글라이콜 단위체(DEG)를 사용한 DEG-ImPy 리간드에 관한 것이다.
DEG - ImPy 리간드 합성
리간드 합성은 다음의 합성 방법을 통해 합성하였다.
도 3을 참조하면, 6-bromopicolinaldehyde(5)은 시중에서 구입 가능한 2,6-dibromopyridine를 이용하여 Bouveault 알데하이드 합성법을 통해 합성하였다.
이후, 아릴 보론산 (boronic acids)과의 Suzuki-Miyaura 커플링 반응을 통해 아릴 그룹이 도입된 알데하이드(6)를 합성하였다.
이후, 다이에틸렌 글라이콜 (diethylene glycol) 작용기가 포함된 두 종류의 아닐린 (2, 4)과 아릴 그룹이 도입된 알데하이드(6)와의 고리화(cyclization) 반응을 통해 리간드를 합성하였다.
이때, 다양한 아닐린을 사용하여 여러가지 형태의 치환체를 도입할 수도 있음은 물론이다.
DEG - ImPy 금속 촉매 합성 및 DEG - ImPy 금속 촉매에 대한 X-ray 결정 구조 분석
상기 화학식 1a의 리간드와 구리를 결합하고, 화학식 1b의 리간드와 팔라듐을 결합하여 화학식 2a 및 화학식 2b의 금속 촉매를 합성하였다.
[화학식 2a]
Figure PCTKR2018007167-appb-I000007
[화학식 2b]
Figure PCTKR2018007167-appb-I000008
촉매 합성은 다음의 합성 방법을 통해 합성하였다.
도 4를 참조하면, 구리 금속과 팔라듐 금속을 이용하여 각각의 구리, 팔라듐 촉매를 합성하였다.
또한, 각 합성된 구리와 팔라듐 촉매는 X-ray 결정 구조 분석을 통해 명확한 구조를 확인하였다
도 5를 참조하면, 구리 착물의 경우 선형구조, 팔라듐 착물의 경우 사각 평면 구조를 가진다.
또한, 구조 분석을 통해 왼쪽에 치환된 아릴 그룹이 구리와 팔라듐 금속 중심에 아주 근접해있다는 사실을 확인하였다.
한편, 앞서 설명한 내용에서는, 상기 화학식 1a 및 화학식 1b의 리간드와 구리 금속 및 팔라듐 금속을 결합한 것에 대해서 설명하였으나, 실시예는 이에 제한되지 않는다.
자세하게, 본 발명의 금속 촉매는 상기 화학식 1a 및 화학식 1b의 리간드와 결합 가능한 다양한 금속이 결합된 다양한 금속 촉매를 포함할 수 있다.
예를 들어, 본 발명의 금속 촉매는 상기 화학식 1a 및 화학식 1b의 리간드와 니켈(Ni) 또는 백금(Pt)이 결합되어 형성되는 니켈 착물 촉매 또는 백금 착물 촉매를 포함할 수 있다.
이어서, 본 발명자는 상기 리간드와 구리 또는 팔라듐을 이용하여 합성한 촉매를 이용하여 구리 착물 및 팔라듐 착물의 화학 반응에서의 활성을 실험하였다.
팔라듐- 촉매화 아민화 반응 ( Buchwald - Hartwig Amination )
1990년대부터 Buchwald와 Hartwig은 독자적으로 팔라듐 금속을 사용한 아민과 아릴할라이드의 짝지움 반응을 통해 탄소-질소 결합을 만드는 Buchwald-Hartwig Amination(아민화)를 연구했다.
이는 기존에 탄소-질소 결합을 만드는 울만(Ullmann) 반응에 대한 대안 방법으로서, 구리 금속을 사용한 전통적인 울만(Ullmann) 반응은 조건이 까다롭고, 좁은 기질 적용 범위를 진다는 한계를 보이는 것을 극복하기 위해 제시되었다.
Buchwald-Hartwig Amination(아민화)은 보다 온화한 반응 조건에서도 좋은 반응성으로 다양한 기질에 적용 가능하다. 작용 기작은 도 6과 같이 제시되었다.
이것을 기반으로 Buchwald는 보다 높은 반응성을 가지는 촉매 구조를 연구하여 도 7과 같은 XPhos, BrettPhos 및 RuPhos와 같은 아릴고리가 두개 있는 바이아릴 포스핀 리간드(biaryl phosphine ligand)를 합성하고, 실제 아민화 반응에 사용할 수 있었다.
한편, 본 발명의 촉매는 기본적으로 NHC(N-Heterocyclic carbene) 종류의 리간드이면서, 동시에 바이아릴 포스핀 리간드와 구조적으로 유사한 이미다조피리딘 리간드로서 이러한 형태를 통해 전기적, 구조적 특성을 양쪽에서 가져올 수 있었다.
위와 같은 반응 조건에서 촉매 1, 촉매 2(본원발명) 그리고 기존에 아민화 반응에 사용된 것으로 알려진 촉매 3(IPr-PEPPSI)의 반응성을 비교했다.
기본적으로 바이아릴 구조를 가지는 촉매 1(56% 수율)은 기존의 촉매 3(26% 수율) 보다 높은 반응성을 보여줬다. 여기에 다이에틸렌 글라이콜(Diethylene glycol)이 달린 촉매 2(79% 수율)는 촉매 1 보다 더 좋은 반응성을 보였다.
이를 통해 다이에틸렌 글라이콜(diethylene glycol)이 아민화 반응에 도움이 되는 것을 확인할 수 있었다.
한편, 가장 좋은 반응성을 보인 촉매 2를 이용해 다양한 치환체를 가지는 아릴할라이드와 아닐린에 대해서도 적용해보았다.
도 9를 참조하면, 4-chloroanisole은 전자가 부족하거나(8b,8d), 입체적으로 복잡한(8c) 아닐린과의 반응에서도 준수한 수율을 보였고, 뿐만 아니라 2차 알킬아민과도 높은 수율의 반응성을 보였다.(8j)
또한, 다른 아릴 할라이드(aryl halide) 파트너인 4-chlorotoluene은 기본 아닐린(8e) 및 4-fluoroaniline과(8f) 우수한 수율로 반응했고, 고리에 질소가 포함된3-chloropyridine 역시 아릴할라이드로 작용해 아닐린과 좋은 반응성을 보여줬다.(8g, 8h)
한편, 팔라듐 착물 형태의 촉매를 사용하는 대신, 리간드와 Pd(OAc)2 로부터 반응중에 인 시츄(in-situ)로 생성될 수 있다. 아민화 반응에서 1.0mol% 의 촉매를 사용해 좋은 반응성(74% 수율)을 보였다. 이때 사용된 리간드는 착물을 형성했던 리간드에 비해 부피가 큰 구조로서 바이 아릴 구조의 아래쪽 페닐 그룹에 3개의 아이소프로필 치환체가 있다.
Figure PCTKR2018007167-appb-I000009
직접 탄소-수소 카복실화 반응 (Direct C-H Carboxylation )
본 발명자는 DEG-ImPy 구리 촉매와 반응물로 벤조옥사졸과 이산화탄소를 이용한 직접 C-H 카복실화반응에 적용하였다.
이산화탄소(CO2)는 지속 가능한 C1 원료로서 이를 이용하는 연구가 많은 관심을 가지고 있다. 특히 CO2를 이용한 촉매 직접 C-H 카복실화 반응은 카복실산 유도체를 제공하므로, 경제적인 합성방법으로 알려져 있다.
알킨의 다양한 C-H 결합, 알켄/아렌, 및 알칸 반응물이 CO2H 생성물로로 치환 될 수 있다. 또한, 구리, 은, 금과 같은 금속과 NHC 리간드를 포함한 촉매의 경우 직접 C-H 카복실화 반응에 효율적인 촉매로서 알려져 있다.
다양한 ImPy 리간드를 사용하여 ImPy-Cu 금속의 촉매 활성을 CO2를 사용한 벤조옥사졸의 직접 C-H 카복실화반응에 적용하였다.
도 10 및 표 1을 참조하면, CuCl 및 NHC 리간드로 부터의 인 시츄 (in situ)로 형성된 촉매(항목 5~7)는 Cu 착물(항목 1~3)보다 우수한 수율을 가지는 것을 알 수 있다.
또한, 하드록시(OH) 작용기가 포함된 리간드(4d)의 경우, 오히려 수율이 떨어지는 반면(항목 9), 메톡시(OMe)작용기가 포함된 리간드(4e 및 4f)는 높은 수율을 가지는 것을 알 수 있다.(항목 10~11).
또한, 다이에틸렌 글리콜 부분(4g, DEG-ImPy)을 갖는 본 발명의 ImPy 리간드는 우수한 활성을 나타내었고, 원하는 생성물을 정량적 수율로 얻었다(항목 12). 특히, 기존에 알려진 IPrCuCl 촉매를 사용하거나 IPrHCl, CuCl을 이용한 인 시츄로 촉매를 합성한 두 가지 경우(항목 1, 5)에 비해 훨씬 좋은 수율을 보였다.
항목 금속염(metal salt) 리간드(ligand) 수율(yield of 7a, %)
1 IPr-CuCl - 80
2 5a - 52
3 5b - 63
4 5c - 95
5 5d IPr·HCl 84
6 CuCl 4a 95
7 CuCl 4b 95
8 CuCl 4c 81
9 CuCl 4d 44
10 CuCl 4e 92
11 CuCl 4f 94
12 CuCl 4g 99
(반응 조건 은 벤즈옥사졸 6a (0.5mmol), CuCl (5mol %), 리간드 (5mol %), KOtBu (1.15 당량), THF (2.5ml), CO2 (1atm), 80 ℃의 온도에서 14시간 반응한 뒤, THF를 증발시키고, DMF (2.5 mL), C6H13I (1.0 mmol), 80 ℃의 온도에서 6시간 반응하였다. 또한, 수율은 분리된 생성물의 수율(2 회 수행의 평균)을 측정하였다.
또한, 항목1의 금속염은 [(IPr) CuCl] = 1,3- 비스 (2,6- 다이이소프로필페닐) 이미다졸륨 구리 (I) 클로라이드로 정의된다,)
이어서, 도 10과 같이 본 발명의 DEG-ImPy 리간드(4g)를 사용하여 다양한 치환체를 갖는 반응물을 적용하여 같은 반응에 적용하였다. 도 11을 참조하면, 전반적으로, 대부분의 반응물에서 좋은 수율을 보임을 알 수 있다.
표 2 및 도 10을 참조하면, DEG-ImPy·HCl(4g)을 갖는 Cu 촉매는 IPr·HCl보다 우수한 촉매 활성을 나타낸다. 즉, 상기 표 2와 같이 본 발명의 ImPy 리간드 골격에서 다이에틸렌글라이콜 그룹의 도입은 촉매 활성을 향상시킨다는 사실을 알 수 있다.
7a 7b 7c 7d
IPr·HCl 85% 61% 73% 78%
DEG-ImPy·HCl(4g) 99% 94% 92% 83%

Claims (11)

  1. 화학식 1a의 구조를 가지는 구리 착물 형성을 위한 리간드.
    [화학식 1a]
    Figure PCTKR2018007167-appb-I000010
  2. 화학식 1b의 구조를 가지는 팔라듐 착물 형성을 위한 리간드.
    [화학식 1b]
    Figure PCTKR2018007167-appb-I000011
  3. 화학식 2a의 구조를 가지는 구리 착물 촉매.
    [화학식 2a]
    Figure PCTKR2018007167-appb-I000012
  4. 제 3항에 있어서,
    상기 화학식 2a는 선형 구조를 가지는 구리 착물 촉매.
  5. 화학식 2b의 구조를 가지는 팔라듐 착물 촉매.
    [화학식 2b]
    Figure PCTKR2018007167-appb-I000013
  6. 제 5항에 있어서,
    상기 화학식 2b는 사각 평면 구조를 가지는 팔라듐 착물 촉매.
  7. 제 3항에 따른 구리 착물 촉매를 직접 탄소-수소 카복실화 반응에서 촉매로 사용하는 방법.
  8. 제 5항에 따른 팔라듐 착물 촉매를 아민화 반응에서 촉매로 사용하는 방법.
  9. dibromopyridine를 이용하여 Bouveault 알데하이드 합성법을 통해 bromopicolinaldehyde을 합성하는 단계;
    아릴 보론산 (boronic acids)과의 Suzuki-Miyaura 커플링 반응을 통해 아릴 그룹이 도입된 알데하이드를 합성하는 단계;
    산소원자가 n개 포함된 폴리에테르 작용기를 도입한 아닐린과 아릴 그룹이 도입된 상기 알데하이드와의 고리화(cyclization) 반응을 통해 화학식 1a 구조를 가지는 리간드를 형성하는 단계;
    [화학식 1a]
    Figure PCTKR2018007167-appb-I000014
    상기 리간드를 구리와 결합시켜 화학식 2a 구조를 가지는 구리 착물 촉매를 형성시키는 단계를 포함하는 구리 착물 촉매의 제조방법.
    [화학식 2a]
    Figure PCTKR2018007167-appb-I000015
  10. dibromopyridine를 이용하여 Bouveault 알데하이드 합성법을 통해 bromopicolinaldehyde을 합성하는 단계;
    아릴 보론산 (boronic acids)과의 Suzuki-Miyaura 커플링 반응을 통해 아릴 그룹이 도입된 알데하이드를 합성하는 단계;
    산소원자가 n개 포함된 폴리에테르 작용기를 도입한 아닐린과 아릴 그룹이 도입된 상기 알데하이드와의 고리화(cyclization) 반응을 통해 화학식 1b 구조를 가지는 리간드를 형성하는 단계;
    [화학식 1b]
    Figure PCTKR2018007167-appb-I000016
    상기 리간드를 팔라듐과 결합시켜 화학식 2b 구조를 가지는 팔라듐 착물 촉매를 형성시키는 단계를 포함하는 팔라듐 착물 촉매의 제조방법.
    [화학식 2b]
    Figure PCTKR2018007167-appb-I000017
  11. 화학식 1a 및 화학식 1b의 구조를 가지는 리간드와, 상기 리간드와 결합되는 니켈 또는 백금을 포함하는 금속 촉매.
    [화학식 1a]
    Figure PCTKR2018007167-appb-I000018
    [화학식 1b]
    Figure PCTKR2018007167-appb-I000019
PCT/KR2018/007167 2017-06-23 2018-06-25 구리 착물 형성을 위한 리간드, 팔라듐 착물 형성을 위한 리간드, 구리 착물 촉매, 팔라듐 착물 촉매 및 이의 제조방법과 용도 WO2018236199A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762523807P 2017-06-23 2017-06-23
US62/523,807 2017-06-23

Publications (1)

Publication Number Publication Date
WO2018236199A1 true WO2018236199A1 (ko) 2018-12-27

Family

ID=64737324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007167 WO2018236199A1 (ko) 2017-06-23 2018-06-25 구리 착물 형성을 위한 리간드, 팔라듐 착물 형성을 위한 리간드, 구리 착물 촉매, 팔라듐 착물 촉매 및 이의 제조방법과 용도

Country Status (1)

Country Link
WO (1) WO2018236199A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058255A1 (ja) * 2005-11-17 2007-05-24 Idemitsu Kosan Co., Ltd. 遷移金属錯体化合物
US20140248646A1 (en) * 2013-03-04 2014-09-04 Indiana University Research And Technology Corporation IMIDAZO[1,5-a]PYRIDINIUM ION FLUOROPHORES, AND METHODS OF MAKING AND USING THE SAME

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058255A1 (ja) * 2005-11-17 2007-05-24 Idemitsu Kosan Co., Ltd. 遷移金属錯体化合物
US20140248646A1 (en) * 2013-03-04 2014-09-04 Indiana University Research And Technology Corporation IMIDAZO[1,5-a]PYRIDINIUM ION FLUOROPHORES, AND METHODS OF MAKING AND USING THE SAME

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BURSTEIN, C. ET AL.: "Imidazo[1,5-a]pyridine-3-ylidenes-pyridine derived N-heterocyclic carbene ligands", TETRAHEDRON, vol. 61, no. 26, 27 June 2005 (2005-06-27), pages 6207 - 6217, XP025383487, DOI: 10.1016/j.tet.2005.03.115 *
KIM, Y.ET AL: "Efficient synthesis of bulkyN-Heterocyclic carbene ligands for coinage metal complexes", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 820, 31 July 2016 (2016-07-31), pages 1 - 7, XP029708086, DOI: 10.1016/j.jorganchem.2016.07.023 *
MEISTER TERESA K; KÜCK JENS W; RIENER KORBINIAN; PÖTHIG ALEXANDER; HERRMANN WOLFGANG A; KÜHN FRITZ E: " Decoding catalytic activity of platinum carbene hydrosilylation catalysts", JOURNAL OF CATALYSIS, vol. 337, 27 February 2016 (2016-02-27), pages 157 - 166, XP029494962, DOI: 10.1016/j.jcat.2016.01.032 *
PARK, D.-A. ET AL.: "Bifunctional N-heterocyclic carbene ligands for Cu-catalyzed direct C–H carboxylation with CO2", RSC ADVANCES, vol. 83, no. 7, 13 November 2017 (2017-11-13), pages 52496 - 52502, XP055656895, DOI: 10.1039/C7RA11414A *

Similar Documents

Publication Publication Date Title
WO2016093562A1 (ko) 고분자 수지에 고정된 이온성 액체계 촉매 및 이를 이용한 n,n'-치환 우레아의 제조 방법
EP3245191B1 (en) Quinolines and process for the preparation thereof
CN114105978A (zh) 一种氧化吲哚类化合物及其制备方法和应用
CN110317221A (zh) 一种多取代炔脒类化合物及其制备方法和应用
CN109134372B (zh) 一种吡啶并茚类化合物的制备方法
US6531607B2 (en) Immobilized palladium complexes
WO2018236199A1 (ko) 구리 착물 형성을 위한 리간드, 팔라듐 착물 형성을 위한 리간드, 구리 착물 촉매, 팔라듐 착물 촉매 및 이의 제조방법과 용도
Qian et al. Methenamine as an Efficient Ligand for Copper‐catalyzed Coupling of Phenols with Aryl Halides
CN115260080B (zh) 一种吲哚-3-甲酰胺化合物的制备方法
CN112694489B (zh) N-杂环卡宾铜催化剂的制备方法
CN113072470B (zh) 一种n-乙腈基双苯磺酰亚胺衍生物及其制备方法与应用
WO2020242046A1 (ko) 불소알켄화합물 전구체, 상기 전구체 합성방법 및 상기 전구체를 이용한 불소알켄화합물 제조방법
CN113845509B (zh) 吲哚基取代螺[环丁烷-1,1′-茚]类化合物的合成方法
CN113045496B (zh) 选择性合成二氢菲啶或菲啶类化合物的方法
CN113004248B (zh) 一种钴催化碳氢胺化反应合成咔唑类化合物的方法
CN108658802B (zh) 一种手性双[n,o]环钯配合物及其合成方法
CN111217654A (zh) 钯催化的间位芳基化反应及其在维罗非尼类似物合成中的应用
US6586599B1 (en) Catalyzed coupling reactions of aryl halides with silanes
CN112028830B (zh) 一种2-h吲唑及其衍生物的合成方法
CN114029086B (zh) 一种轴手性萘-吡咯类膦催化剂及其制备方法与应用
WO2021221283A1 (ko) 크롬 화합물 및 이의 제조 방법
Lindner et al. Preparation, Properties, and Reactions of Metal‐Containing Heterocycles, XCIII. Diosma [5. n. 5. n] ortho‐,‐meta‐, and‐paracyclophanes (n= 0–2)
CN111217747B (zh) 一种扑疟喹啉的制备方法
CN103764613B (zh) 2-烯基胺化合物的制造方法
CN115947698B (zh) 一种吩噁嗪的合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18819918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/03/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18819918

Country of ref document: EP

Kind code of ref document: A1