WO2020242046A1 - 불소알켄화합물 전구체, 상기 전구체 합성방법 및 상기 전구체를 이용한 불소알켄화합물 제조방법 - Google Patents

불소알켄화합물 전구체, 상기 전구체 합성방법 및 상기 전구체를 이용한 불소알켄화합물 제조방법 Download PDF

Info

Publication number
WO2020242046A1
WO2020242046A1 PCT/KR2020/004938 KR2020004938W WO2020242046A1 WO 2020242046 A1 WO2020242046 A1 WO 2020242046A1 KR 2020004938 W KR2020004938 W KR 2020004938W WO 2020242046 A1 WO2020242046 A1 WO 2020242046A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkene compound
fluorine alkene
precursor
fluorine
compound precursor
Prior art date
Application number
PCT/KR2020/004938
Other languages
English (en)
French (fr)
Inventor
이선우
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Publication of WO2020242046A1 publication Critical patent/WO2020242046A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C22/00Cyclic compounds containing halogen atoms bound to an acyclic carbon atom
    • C07C22/02Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings
    • C07C22/04Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings containing six-membered aromatic rings
    • C07C22/08Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings containing six-membered aromatic rings containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement

Definitions

  • the present invention relates to a technology for efficient synthesis of fluorine alkene compounds, and more specifically, a fluorine alkene compound precursor capable of efficiently synthesizing various types of fluorine alkene compounds, a method for synthesizing the precursor, and a method for preparing a fluorine alkene compound using the precursor. It is about.
  • Fluoroalkene compounds one of many fluorine-containing compounds, are an important structural motif found in many bioactive compounds and are a useful building block.
  • Various synthetic methods for fluorine alkene compounds have been reported in the literature, and hydrofluorination of alkynes is one such direct method (Fig. 1(a)).
  • Sadighi first reported the hydrofluorination of alenine using a gold (Au) catalyst to supply fluorine alkenes in good yield.
  • Au gold
  • Various groups have developed the fluorination reaction of alkynine by various gold catalysts.
  • alkynes having a carbonyl group can be converted to the corresponding fluorine alkenes under metal-free or copper catalyst conditions (Fig. 1(b)).
  • 1,2-fluoro iodine alkenes is carried out by using HF-based reagents with iodine reactants such as I 2 , Tol-IF 2 , IF 5 , PhIO and 1,3-diiodine-5,5-dimethyl hydantoin. Achieved by fluoro iodination of alkynes (DIH). In contrast, much less attention was paid to gem-dihalo-substituted fluoroalkenes, but in theory they are likely to be used as coupling partners in cross-coupling reactions for the preparation of mono- and di-substituted fluoroalkenes. Very high. It has been reported that the production of gem-dibromo and gem-dichlorofluoroalkene from aldehyde requires a multi-step process (Fig. 1(d)).
  • the method that is widely used as a method of synthesizing an alkene compound containing fluorine is a method of proceeding a reaction with a compound having a fluorine functional group using an alkyne compound as a starting material, and an alkyne compound containing a carbonyl group. It is a method of synthesis through reaction with
  • the fluoroalkene compound synthesized through this method has a disadvantage in that the (Z)-alkene selectivity is low, and the method using an aldehyde used as a starting material to solve this problem has a problem in that the synthesis step is long.
  • the present inventors completed the present invention by developing a technology capable of synthesizing various structures of fluorine alkene compounds in a single step reaction.
  • an object of the present invention is to provide a fluorine alkene compound precursor having a new structure that can be prepared inexpensively and easily as well as being able to very efficiently synthesize a fluorine alkene compound having various types of aryl groups introduced therein, and a method for preparing the same.
  • Another object of the present invention is to provide a method for producing a fluorine alkene compound capable of economically and efficiently synthesizing fluorine alkene compounds of various structures through a selective arylation reaction in a single step using a fluorine alkene compound precursor.
  • the object of the present invention is not limited to the above-mentioned object, and even if not explicitly mentioned, the object of the invention that one of ordinary skill in the art can recognize from the description of the detailed description of the invention to be described later may naturally be included. .
  • the present invention provides a fluorine alkene compound precursor represented by the following formula (1).
  • Ar is an aryl group.
  • the aryl group has a substituent at one or more of the ortho, meta and para positions on the phenyl group or the aryl ring.
  • the precursor is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N
  • the precursor is used as a coupling partner in a Suzuki coupling reaction to form a diaryl coupling product.
  • the precursor is used as a coupling partner in a Hiyama coupling reaction to form a monoaryl coupling product.
  • the monoaryl coupling product is a (Z)-fluoroethene derivative.
  • the present invention provides a method for preparing a fluorine alkene compound precursor comprising a step of decarboxylation of alkynic acid to produce a fluorine alkene compound precursor represented by the following formula (1).
  • Ar is an aryl group.
  • the step of generating the fluorine alkene compound precursor comprises the steps of reacting the alkynic acid with 1,3-diiodine-5,5-dimethyl hydantoin (DIH) to generate an alkynyl iodide; And the step of reacting the alkynyl iodide with Py.HF and DIH to generate a fluorine alkene compound precursor.
  • DIH 1,3-diiodine-5,5-dimethyl hydantoin
  • reaction of the alkynyl iodide with Py.HF and DIH is carried out under a silver catalyst.
  • the silver catalyst is any one selected from the group consisting of silver acetate (AgOAc), silver oxide (Ag 2 O), and silver iodide (AgI).
  • the step of generating the fluorine alkene compound precursor is carried out in a temperature range of 25 to 80 degrees under any one solvent selected from the group consisting of acetonitrile (CH 3 CN), THF, toluene, and acetone.
  • any one solvent selected from the group consisting of acetonitrile (CH 3 CN), THF, toluene, and acetone.
  • the step of producing the fluoroalkene compound precursor is resistant to at least one functional group selected from the group comprising bromide, chloride, alcohol, nitrile, ketone, ester, aldehyde and nitro.
  • the present invention is a fluorine alkene compound comprising the steps of performing a Suzuki coupling reaction using any one of the above-described fluorine alkene compound precursor or a fluorine alkene compound precursor prepared by any one of the above-described manufacturing method as a coupling partner; It provides a method for preparing a compound.
  • the present invention provides a fluorine alkene compound prepared by the above-described manufacturing method, which has a C-F bond activated by palladium.
  • the present invention is to perform a Hiyama coupling reaction using any one of the above-described fluorine alkene compound precursor or the fluorine alkene compound precursor prepared by any one of the above-described manufacturing method as a coupling partner; fluorine alkene comprising a. It provides a method for preparing a compound.
  • the fluorine alkene compound is a (Z)-fluorine ethene derivative.
  • the present invention provides a fluorine alkene compound prepared by the above-described manufacturing method, which has a C-F bond activated by palladium.
  • a fluorine alkene compound into which various types of aryl groups are introduced can be synthesized very efficiently, as well as inexpensively and easily.
  • a fluorine alkene compound having various structures can be economically and efficiently synthesized through a selective arylation reaction in a single step using a fluorine alkene compound precursor.
  • Figure 2 schematically shows a method for synthesizing a fluorine alkene compound according to the present invention.
  • FIG 3 illustrates a method for preparing a fluorine alkene compound precursor according to an embodiment of the present invention.
  • Figure 4 shows a method for producing a fluorine alkene compound precursor according to another embodiment of the present invention.
  • FIG. 5 is a view showing an intermediate body formed in the manufacturing method shown in FIG. 3.
  • 6A to 6C illustrate a process of preparing a fluorine alkene compound through a Suzuki coupling reaction or a Hiyama coupling reaction using the fluorine alkene compound precursor of the present invention as a starting material.
  • FIG. 7 is a view showing that in the fluorine alkene compound prepared using the fluorine alkene compound precursor of the present invention as a starting material, the C-F bond is activated to synthesize vinyl borane.
  • first and second may be used to describe various components, but the components should not be limited by the terms. These terms are only used for the purpose of distinguishing one component from another component. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, a second component may be referred to as a first component.
  • the technical feature of the present invention lies in a new structure of a fluorine alkene compound precursor and a method for producing the same, which not only can very efficiently synthesize a fluorine alkene compound into which various types of aryl groups are introduced, but is also cheap and easily manufactured.
  • the development of a method for efficiently synthesizing physiologically active compounds containing fluorine not only increases the economic efficiency by reducing the process and cost in product development, but also reduces environmental pollution and treatment costs of additives generated in the process. It is one of the core technologies in the field of organic compound synthesis as it has a very high effect of making it possible to economically and efficiently produce fluorine alkene compounds of various structures through a selective arylation reaction in a single step by using the fluorine alkene compound precursor of the present invention. Because it can be synthesized.
  • the fluorine alkene compound precursor of the present invention includes a compound represented by the following formula (1).
  • Ar is an aryl group.
  • the aryl group (Ar) is not limited as long as it is an aromatic hydrocarbon group, but may be one having a substituent at one or more of the ortho, meta, and para positions on a phenyl group or an aryl ring.
  • the fluorine alkene compound precursor is N-(2-aminoethyl)-2-aminoethyl
  • the present inventors are interested in the decarboxylation of alkynic acid for the synthesis of halogen compounds, and 2,2,2-trichloroacetophenone, 2,2,2- through decarboxylation and halogenation of alkynic acid.
  • the general synthesis of tribromoacetone and 1,2,2-tribromoalkene was reported, and it was found that water acts as a nucleophile and is added to alkynes in the presence of a halogen source. .
  • the fluorine alkene compound precursor of the present invention can be obtained through decarboxylation of alkynic acid if the fluorine reagent acts as a nucleophile in the presence of an iodine source. Completed the method.
  • the method for preparing a fluorine alkene compound precursor of the present invention includes a step of decarboxylating an alkynic acid to produce a fluorine alkene compound precursor represented by Formula 1 above.
  • the step of generating the fluorine alkene compound precursor comprises the steps of reacting the alkynic acid with 1,3-diiodine-5,5-dimethyl hydantoin (DIH) to produce an alkynyl iodide;
  • the alkynyl iodide reacts with Py.HF and DIH to generate a fluorine alkene compound precursor. It may include.
  • the step of generating the alkynyl iodide and the step of generating the fluorine alkene compound precursor may be performed simultaneously.
  • the reaction of alkynyl iodide with Py.HF and DIH may be carried out under a silver catalyst.
  • the silver catalyst all known silver-containing catalyst materials may be used, and as an embodiment, it may be any one selected from the group consisting of silver acetate (AgOAc), silver oxide (Ag 2 O), and silver iodide (AgI). The concentration can be adjusted according to the reaction temperature.
  • the step of generating the fluorine alkene compound precursor may be carried out in a temperature range of 25 to 80 degrees under any one solvent selected from the group consisting of acetonitrile (CH 3 CN), THF, toluene, and acetone.
  • any one solvent selected from the group consisting of acetonitrile (CH 3 CN), THF, toluene, and acetone.
  • the step of producing the fluorine alkene compound precursor is performed under relatively mild conditions and has a high degree of functional group resistance, in particular, excellent resistance to functional groups such as bromide, chloride, alcohol, nitrile, ketone, ester, aldehyde and nitro. Showed.
  • the method for producing a fluorine alkene compound of the present invention uses the above-described fluorine alkene compound precursor as a starting material, that is, as a coupling partner, as shown in FIG. 2, the Suzuki coupling reaction or Hiyama coupling reaction. It can be produced in a very efficient and simple single step reaction.
  • the fluorine alkene compound prepared by the method for producing a fluorine alkene compound of the present invention may be a diaryl coupling product and a monoaryl coupling product having high stereoselectivity, and in particular, may be a (Z)-fluoroalkene compound.
  • 1-fluoro-2,2-diiodine vinylbenzene was synthesized as follows, and optimum conditions were determined when preparing the fluorine alkene compound precursor of the present invention.
  • Phenylpropiolic acid is selected as a standard substrate and reacted with 1,3-diiodine-5,5-dimethyl hydantoin (DIH) and other fluorine reagents under the conditions shown in Table 1 to obtain 1-fluoro-2,2-diiodine Vinylbenzene (1-fluoro-2,2-diiodovinylbenzene) was synthesized, and the results are shown in Table 1.
  • reaction conditions were phenylpropiolic acid (1a: 1.0 mmol), DIH (1.1 mmol) and a fluorine source were reacted in a solvent (4.0 mL) for 16 hours, and the yield (Yield) was HNMR and gas chromatography according to internal standards. And in particular c is the separated yield.
  • the formula of the alkene compound precursor is shown in FIG. 4.
  • the separation yield is shown in the horizontal line of each chemical formula.
  • fluorine alkene compound precursors shown in FIG. 4 are cases in which arylpropiolic acid methyl-substituted with alkynic acid is used, and 4-ethyl and 4-tert-butyl-substituted phenylpropiolic acid When this was used, fluorine alkene compound precursors having the same structure as 2f and 2g could be obtained in 82% and 84% yields, respectively.
  • alcohol, nitrile, ketone, ester and aldehyde groups showed good resistance to the formation of 2s, 2t, 2u, 2v and 2w, respectively.
  • the fluorine alkene compound precursor of the present invention shows a wide range of resistance to functional groups such as halogen, alcohol, nitrile, ketone, ester, aldehyde and nitro, and such a high degree of functional group resistance is the fluorine of the present invention. It is predicted that the alkene compound precursor will provide a good opportunity for further functionalization.
  • a control experiment was performed as shown in FIG. 5 in order to study the reaction route when preparing 1-fluoro-2,2-diiodovinylarene, which is a fluorine alkene compound precursor of the present invention.
  • iodoethynylbenzene (A) was formed in a yield of 91%.
  • benzene (2a) was formed in an 88% yield by treating iodoethynylbenzene under standard conditions as shown in the lower part of FIG. 5 (1-fluoro-2,2-diiodovinyl). . From this result, it was confirmed that alkynyl iodide was an intermediate in the conversion process of synthesizing the fluorine alkene compound precursor of the present invention through decarboxylation of alkynic acid.
  • reaction condition A The Suzuki coupling reaction of 1-fluoro-2,2-diiodine vinylarene and aryl boronic acid in reaction condition A was evaluated. Specific reaction conditions are 1 (1.5 mmol), 4 (3.75 mmol), Pd 2 (dba) 3 (0.075 mmol), PPh 3 (0.3 mmol) and K 2 CO 3 at 80 °C in toluene/H 2 O/EtOH, It's 12 hours.
  • diaryl coupling product 6 As shown in FIG. 6B, 2a reacted with substituted aryl boronic acid to provide a diaryl coupling product 6 in good yield.
  • 1-fluoro-2,2-diiodine vinylarene having substituents such as methyl and chloride also obtained diaryl coupling products 6g, 6h and 6i in good yield.
  • reaction condition B the Hiyama coupling reaction of 1-fluoro-2,2-diiodo vinylarene and aryl siloxane was evaluated. Specific reaction conditions are 1 (1.5mmol), 5 (3.75mmol), Pd (0Ac) 2 (0.15mmol), DABCO (0.3mmol) and TBAF (4.5mmol) at 80 °C in 1,4-dioxane, 12 hours to be.
  • the CF bond of fluorine alkene 6b and 7b obtained by coupling reaction of the fluorine alkene compound precursor of the present invention is activated by palladium and reacted with bis (pinacolato) diboron (B2Pin2) to react with the corresponding vinyl borane. It was confirmed that can be supplied in a good yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 불소알켄화합물의 효율적 합성기술에 관한 것으로, 보다 구체적으로는 다양한 형태의 불소알켄화합물을 효율적으로 합성할 수 있는 불소알켄화합물 전구체, 상기 전구체 합성방법 및 상기 전구체를 이용한 불소알켄화합물 제조방법에 관한 것이다. 본 발명에 의하면 다양한 형태의 아릴기가 도입된 불소알켄화합물을 매우 효율적으로 합성할 수 있을 뿐만 아니라 저렴하고 쉽게 제조 가능하다.

Description

불소알켄화합물 전구체, 상기 전구체 합성방법 및 상기 전구체를 이용한 불소알켄화합물 제조방법
본 발명은 불소알켄화합물의 효율적 합성기술에 관한 것으로, 보다 구체적으로는 다양한 형태의 불소알켄화합물을 효율적으로 합성할 수 있는 불소알켄화합물 전구체, 상기 전구체 합성방법 및 상기 전구체를 이용한 불소알켄화합물 제조방법에 관한 것이다.
불소를 함유한 많은 유기분자가 자연에서 발견된다. 또한 중요한 기능성 물질뿐만 아니라 많은 생물학적 및 의약품에는 불소의 기능성이 있다. 유기물질에서 수소를 불소로 치환하면 해당 화합물의 반응성과 화학적, 물리적 및 생물학적 특성이 크게 달라질 수 있다. 결과적으로, 플루오르화 화합물은 최근 다양한 분야에서 상당한 주목을 받았고, 유기 화합물에 불소 작용기를 도입하는 방법론의 수는 지난 수십 년 동안 급격히 증가했다.
많은 불소함유 화합물 중 하나인 불소알켄화합물은 많은 생체 활성 화합물에서 발견되는 중요한 구조 모티프이며 유용한 빌딩 블록이다. 불소알켄화합물에 대한 다양한 합성 방법이 문헌에서 보고되었으며 알킨(alkynes)의 하이드로플루오르화(hydrofluorination)는 그러한 직접적인 방법 중 하나이다(도 1(a)). Sadighi는 먼저 금(Au) 촉매를 사용하여 플루오르 알켄을 좋은 수율로 공급하는 알류닌의 하이드로 플루오르화를 보고했다. 여러가지 그룹에 의해 여러가지 금촉매에 의한 알키닌의 플루오르화 반응이 개발되었다. 또한, 카르보닐기를 갖는 알킨은 무금속 또는 구리 촉매 조건 하에서 대응하는 불소알켄으로 전환 될 수 있다고 보고되었다 (도 1 (b)).
또한 fluoroalkene 유도체인 1,2-bromofluoro-와 1,2-fluoroiodo- alkenes은 유용한 불소화 된 빌딩 블록으로서 상당한 주목을 받았다. 왜냐하면 이들 브롬화 비닐과 요오드화물은 cross-coupling 반응(도 1(c))을 통해 다양한 분자로 더 변형 될 수 있기 때문이다. 장은 1,2- 브로모 불소알켄이 말단 알킨과 NBS / AgF의 반응에 의해 합성 될 수 있음을 보여 주었다. 1,2-플루오로 요오드 알켄의 합성은 I 2, Tol-IF 2, IF 5, PhIO 및 1,3- 디요오드 -5,5- 디메틸 히단토인과 같은 요오드반응물과 함께 HF계 시약을 사용하는 알킨의 플루오로 요오드화에 의해 달성되었다(DIH). 대조적으로 gem- 디할로 - 치환된 플루오 로알켄에 대해서는 훨씬 덜 주의를 기울였지만 이론적으로 이들은 모노- 및 디- 치환된 불소알켄화합물의 제조를 위한 크로스 - 커플링 반응에서 커플링 파트너로서 사용될 가능성이 매우 높다. 알데히드로부터의 gem - 디브로모 및 gem- 디클로로 불소알켄의 제조에는 다단계 공정이 필요하다는 보고가 있다 (도 1 (d)).
이와 같이, 불소를 포함하는 알켄화합물을 합성하는 방법으로 많이 사용되고 있는 방법은 알킨(alkyne)화합물을 출발 물질로 하여 불소작용기를 가지고 있는 화합물과 반응을 진행시키는 방법 및 카보닐기를 포함하고 있는 알킨 화합물과의 반응을 통하여 합성하는 방법이다. 그러나 이러한 방법을 통해 합성된 불소알켄 화합물은 (Z)-알켄 선택성이 낮다는 단점이 있고 이를 해결하는 방법으로 이용되는 알데히드를 출발물질로 사용한 방법은 합성 단계가 길다는 문제가 있다.
따라서, 이러한 문제점이 해결하여 불소알켄화합물을 보다 효율적으로 합성할 수 있는 새로운 합성방법이 개발될 필요가 있다.
본 발명자들은 다수 연구 노력결과 단일단계 반응으로 다양한 구조의 불소알켄화합물을 합성할 수 있는 기술을 개발함으로써 본 발명을 완성하였다.
따라서, 본 발명의 목적은 다양한 형태의 아릴기가 도입된 불소알켄화합물을 매우 효율적으로 합성할 수 있을 뿐만 아니라 저렴하고 쉽게 제조 가능한 새로운 구조의 불소알켄화합물 전구체 및 그 제조방법을 제공하는 것이다.
본 발명의 다른 목적은 불소알켄화합물 전구체를 이용하여 단일단계 과정으로 선택적 아릴화 반응을 통해 다양한 구조의 불소알켄화합물을 경제적이고 효율적으로 합성할 수 있는 불소알켄화합물 제조방법을 제공하는 것이다.
본 발명의 목적은 이상에서 언급한 목적으로 제한되지 않으며, 명시적으로 언급되지 않았더라도 후술되는 발명의 상세한 설명의 기재로부터 통상의 지식을 가진 자가 인식할 수 있는 발명의 목적 역시 당연히 포함될 수 있을 것이다.
상술된 본 발명의 목적을 달성하기 위해, 본 발명은 하기 화학식 1로 표시되는 불소알켄화합물 전구체를 제공한다.
[화학식 1]
Figure PCTKR2020004938-appb-img-000001
여기서, Ar은 아릴기이다.
바람직한 실시예에 있어서, 상기 아릴기는 페닐기 또는 아릴 고리상의 오르토, 메타 및 파라 위치 중 하나 이상에 치환기를 갖는다.
바람직한 실시예에 있어서, 상기 전구체는
Figure PCTKR2020004938-appb-img-000002
Figure PCTKR2020004938-appb-img-000003
Figure PCTKR2020004938-appb-img-000004
Figure PCTKR2020004938-appb-img-000005
Figure PCTKR2020004938-appb-img-000006
Figure PCTKR2020004938-appb-img-000007
Figure PCTKR2020004938-appb-img-000008
Figure PCTKR2020004938-appb-img-000009
Figure PCTKR2020004938-appb-img-000010
Figure PCTKR2020004938-appb-img-000011
Figure PCTKR2020004938-appb-img-000012
Figure PCTKR2020004938-appb-img-000013
Figure PCTKR2020004938-appb-img-000014
로 구성된 그룹에서 선택된 어느 하나이다.
바람직한 실시예에 있어서, 상기 전구체는 스즈키 커플링 반응에서 커플링 파트너로 사용되어 디아릴커플링생성물을 형성한다.
바람직한 실시예에 있어서, 상기 전구체는 히야마 커플링 반응에서 커플링 파트너로 사용되어 모노아릴커플링생성물을 형성한다.
바람직한 실시예에 있어서, 상기 모노아릴커플링생성물은 (Z)-불소에텐유도체이다.
또한, 본 발명은 알키닌산을 탈카르복실화반응시켜 하기 화학식 1로 표시되는 불소알켄화합물 전구체를 생성하는 단계;를 포함하는 불소알켄화합물 전구체 제조방법을 제공한다.
[화학식 1]
Figure PCTKR2020004938-appb-img-000015
여기서, Ar은 아릴기이다.
바람직한 실시예에 있어서, 상기 불소알켄화합물 전구체를 생성하는 단계는 상기 알키닌산이 1,3-디요오드-5,5 -디메틸 히단토인(DIH)과 반응하여 알키닐요오드화물이 생성되는 단계; 상기 알키닐요오드화물이 Py.HF 및 DIH와 반응하여 불소알켄화합물 전구체가 생성되는 단계;를 포함한다.
바람직한 실시예에 있어서, 상기 알키닐요오드화물과 Py.HF 및 DIH의 반응은 은촉매하에서 수행된다.
바람직한 실시예에 있어서, 상기 은촉매는 은아세테이트(AgOAc), 산화은(Ag 2O), 요오드화은(AgI)로 구성된 그룹에서 선택되는 어느 하나이다.
바람직한 실시예에 있어서, 상기 불소알켄화합물 전구체를 생성하는 단계는 아세토니트릴(CH 3CN), THF, 톨루엔, 아세톤으로 구성된 그룹에서 선택되는 어느 하나의 용매 하에서 25 내지 80도의 온도범위로 수행된다.
바람직한 실시예에 있어서, 상기 불소알켄화합물 전구체를 생성하는 단계는 브롬화물, 염화물, 알코올, 니트릴, 케톤, 에스테르, 알데히드 및 니트로를 포함하는 그룹에서 선택되는 하나 이상의 작용기에 대해 내성을 갖는다.
또한, 본 발명은 상술된 어느 하나의 불소알켄화합물 전구체 또는 상술된 어느 하나의 제조방법으로 제조된 불소알켄화합물 전구체를 커플링 파트너로 사용하여 스즈키 커플링 반응을 수행하는 단계;를 포함하는 불소알켄화합물 제조방법을 제공한다.
또한, 본 발명은 상술된 제조방법으로 제조된 불소알켄화합물로서, 팔라듐에 의해 활성화되는 C-F결합을 갖는 것을 특징으로 하는 불소알켄화합물을 제공한다.
또한, 본 발명은 상술된 어느 하나의 불소알켄화합물 전구체 또는 상술된 어느 하나의 제조방법으로 제조된 불소알켄화합물 전구체를 커플링 파트너로 사용하여 히야마 커플링 반응을 수행하는 단계;를 포함하는 불소알켄화합물 제조방법을 제공한다.
바람직한 실시예에 있어서, 상기 불소알켄화합물은 (Z)-불소에텐유도체이다.
또한, 본 발명은 상술된 제조방법으로 제조된 불소알켄화합물로서, 팔라듐에 의해 활성화되는 C-F결합을 갖는 것을 특징으로 하는 불소알켄화합물을 제공한다.
상술된 본 발명에 의하면 다음과 같은 효과를 달성할 수 있다.
먼저, 본 발명의 불소알켄화합물 전구체 및 그 제조방법에 의하면 다양한 형태의 아릴기가 도입된 불소알켄화합물을 매우 효율적으로 합성할 수 있을 뿐만 아니라 저렴하고 쉽게 제조 가능하다.
또한, 본 발명의 불소알켄화합물 제조방법에 의하면 불소알켄화합물 전구체를 이용하여 단일단계 과정으로 선택적 아릴화 반응을 통해 다양한 구조의 불소알켄화합물을 경제적이고 효율적으로 합성할 수 있다.
본 발명의 이러한 기술적 효과들은 이상에서 언급한 범위만으로 제한되지 않으며, 명시적으로 언급되지 않았더라도 후술되는 발명의 실시를 위한 구체적 내용의 기재로부터 통상의 지식을 가진 자가 인식할 수 있는 발명의 효과 역시 당연히 포함된다.
도 1은 공지된 불소알켄화합물의 합성방법을 도시한 것이다.
도 2는 본 발명에 따른 불소알켄화합물의 합성방법을 개략적으로 도시한 것이다.
도 3은 본 발명의 일 실시예에 따른 불소알켄화합물 전구체 제조방법을 도시한 것이다.
도 4는 본 발명의 다른 실시예에 따른 불소알켄화합물 전구체 제조방법을 도시한 것이다.
도 5는 도 3에 도시된 제조방법에서 형성된 중간체를 보여주는 도면이다.
도 6a 내지 도 6c는 본 발명의 불소알켄화합물 전구체를 출발물질로 하여 스즈키 커플링반응 또는 히야마 커플링반응을 통해 불소알켄화합물을 제조하는 과정을 도시한 것이다.
도 7은 본 발명의 불소알켄화합물 전구체를 출발물질로 하여 제조된 불소알켄화합물에서 C-F결합이 활성화되어 비닐보란을 합성할 수 있음을 보여주는 도면이다.
본 발명에서 사용하는 용어는 단지 특정한 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 발명의 설명에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
구성 요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다. 특히, 정도의 용어 "약", "실질적으로" 등이 사용되는 경우 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되는 것으로 해석될 수 있다.
시간 관계에 대한 설명일 경우, 예를 들어, '~후에', '~에 이어서', '~다음에', '~전에' 등으로 시간 적 선후관계가 설명되는 경우, '바로' 또는 '직접'이 사용되지 않는 이상 연속적이지 않은 경우도 포함한다.
이하, 첨부한 도면 및 바람직한 실시예들을 참조하여 본 발명의 기술적 구성을 상세하게 설명한다.
그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 명세서 전체에 걸쳐 본 발명을 설명하기 위해 사용되는 동일한 참조번호는 동일한 구성요소를 나타낸다.
본 발명의 기술적 특징은 다양한 형태의 아릴기가 도입된 불소알켄화합물을 매우 효율적으로 합성할 수 있을 뿐만 아니라 저렴하고 쉽게 제조 가능한 새로운 구조의 불소알켄화합물 전구체 및 그 제조방법에 있다.
즉, 불소를 포함하는 생리 활성 화합물을 효율적으로 합성하는 방법의 개발은 제품 개발에서 공정 및 단가를 줄여줌으로 인하여 경제성을 높이는 효과뿐 아니라 공정 과정에서 생성되는 부가물의 환경적 오염 및 처리 비용을 절감시켜주는 효과가 매우 높음으로 유기화합물 합성 분야에서는 가장 핵심적인 기술 중 하나인데, 본 발명의 불소알켄화합물 전구체를 이용하면 단일단계 과정으로 선택적 아릴화 반응을 통해 다양한 구조의 불소알켄화합물을 경제적이고 효율적으로 합성할 수 있기 때문이다.
따라서, 본 발명의 불소알켄화합물 전구체는 하기 화학식 1로 표시되는 화합물을 포함한다.
[화학식 1]
Figure PCTKR2020004938-appb-img-000016
여기서, Ar은 아릴기이다.
화학식 1에서 아릴기(Ar)는 방향족 탄화수소기이기만 하면 제한되지 않으나, 일 구현예로서 페닐기 또는 아릴 고리상의 오르토, 메타 및 파라 위치 중 하나 이상에 치환기를 갖는 것일 수 있다.
본 발명에서 불소알켄화합물 전구체는
Figure PCTKR2020004938-appb-img-000017
Figure PCTKR2020004938-appb-img-000018
Figure PCTKR2020004938-appb-img-000019
Figure PCTKR2020004938-appb-img-000020
Figure PCTKR2020004938-appb-img-000021
Figure PCTKR2020004938-appb-img-000022
Figure PCTKR2020004938-appb-img-000023
Figure PCTKR2020004938-appb-img-000024
Figure PCTKR2020004938-appb-img-000025
Figure PCTKR2020004938-appb-img-000026
Figure PCTKR2020004938-appb-img-000027
Figure PCTKR2020004938-appb-img-000028
Figure PCTKR2020004938-appb-img-000029
로 구성된 그룹에서 선택된 어느 하나일 수 있다.
또한, 본 발명자들은 할로겐 화합물의 합성을 위한 알키닌산의 탈카르복실화에 관심을 갖고, 알키닌산의 탈카르복실화 할로겐화를 통한 2,2,2-트리클로로아세토페논, 2,2,2- 트리브로모아세톤 및 1,2,2-트리브로모알켄의 일반적인 합성을 최초로 보고했는데, 물이 친핵체(nucleophile)로 작용하고 할로겐 원천(halogen source)의 존재 하에서 알킨(alkyne)에 첨가됨을 발견했다. 이 연구들로부터, 본 발명의 불소알켄화합물 전구체가 불소시약이 요오드공급원의 존재 하에서 친핵체로서 작용한다면 알킨산의 탈카르복시화를 통해 얻어 질 수 있다는 가설을 세우고 실험한 결과 상술된 불소알켄화합물 전구체 제조방법을 완성하였다.
따라서, 본 발명의 불소알켄화합물 전구체 제조방법은 알키닌산을 탈카르복실화반응시켜 상기 화학식 1로 표시되는 불소알켄화합물 전구체를 생성하는 단계;를 포함한다.
여기서, 불소알켄화합물 전구체를 생성하는 단계는 상기 알키닌산이 1,3-디요오드-5,5 -디메틸 히단토인(DIH)과 반응하여 알키닐요오드화물이 생성되는 단계; 상기 알키닐요오드화물이 Py.HF 및 DIH와 반응하여 불소알켄화합물 전구체가 생성되는 단계;를 포함할 수 있다. 일단 알키닐요오드화물이 생성되면, 알키닐요오드화물이 생성되는 단계 및 불소알켄화합물 전구체가 생성되는 단계는 동시에 수행될 수 있다.
특히, 불소알켄화합물 전구체의 수율을 향상시키기 위해 알키닐요오드화물과 Py.HF 및 DIH의 반응을 은촉매하에서 수행할 수 있다. 은촉매는 공지된 모든 은함유 촉매물질이 사용될 수 있는데, 일 구현예로서 은아세테이트(AgOAc), 산화은(Ag 2O), 요오드화은(AgI)로 구성된 그룹에서 선택되는 어느 하나일 수 있는데, 은촉매의 농도는 반응온도에 따라 조절될 수 있다.
한편, 불소알켄화합물 전구체를 생성하는 단계는 아세토니트릴(CH 3CN), THF, 톨루엔, 아세톤으로 구성된 그룹에서 선택되는 어느 하나의 용매 하에서 25 내지 80도의 온도범위로 수행될 수 있다.
이와 같이 불소알켄화합물 전구체를 생성하는 단계는 비교적 온화한 조건 하에서 수행될 뿐만 아니라 고도의 작용기 내성을 갖는데 특히 브롬화물, 염화물, 알코올, 니트릴, 케톤, 에스테르, 알데히드 및 니트로와 같은 작용기에 대해 우수한 내성을 보였다.
다음으로, 본 발명의 불소알켄화합물제조방법은 도 2에 도시된 바와 같이 상술된 불소알켄화합물 전구체를 출발물질 즉 커플링 파트너로 사용하면 스즈키(Suzuki) 커플링반응 또는 히야마(Hiyama) 커플링반응을 통해 매우 효율적이고 간편한 단일단계 반응으로 제조될 수 있다.
또한, 본 발명의 불소알켄화합물제조방법에 의해 제조된 불소알켄화합물은 디아릴 커플링 생성물 및 높은 입체 선택성을 갖는 모노아릴 커플링 생성물로서, 특히 (Z)-불소알켄화합물일 수 있다.
실시예 1
도 3에 도시된 반응식을 이용하여 다음과 같이 1- 플루오로 -2,2- 디요오드 비닐벤젠을 합성하고, 본 발명의 불소알켄화합물 전구체 제조시 최적 조건을 결정하였다.
페닐프로피올산을 표준 기질로 선택하고 1,3- 디요오드 -5,5- 디메틸 히단토인(DIH) 및 표 1과 같은 조건으로 다른 불소 시약 등과 반응시켜 1- 플루오로 -2,2- 디요오드비닐벤젠(1-fluoro-2,2-diiodovinylbenzene)을 합성하고, 그 결과는 표 1에 나타내었다.
여기서, 반응조건은 페닐프로피올산(1a: 1.0 mmol), DIH (1.1 mmol) 및 불소원을 용매(4.0 mL)에서 16 시간 동안 반응시켰고, 수율(Yield)은 내부 표준에 따라 HNMR 및 가스크로마토그래피로 결정하였으며, 특히 c는 분리된 수율이다.
Entry F source(equiv) Solvent Temp Additive Yield (%) b
(℃) (20mol%) 2a 3a
1 Py .HF(5) CH 3CN 25 - 18 8
2 KF (5) CH 3CN 25 - 0 20
3 CsF (5) CH 3CN 25 - 0 24
4 Et 3N .3HF CH 3CN 25 - 0 2
5 Py .HF(15) CH 3CN 25 - 51 6
6 Py .HF(15) CH 2Cl 2 25 - 17 26
7 Py .HF(15) THF 25 - 3 55
8 Py .HF(15) Toluene 25 - 2 22
9 Py .HF(15) Acetone 25 - 8 2
10 Py .HF(15) CH 3CN 40 - 62 3
11 Py .HF(15) CH 3CN 40 AgI 41 14
12 Py .HF(15) CH 3CN 40 Ag 2O 69 8
13 Py.HF(15) CH 3CN 40 AgOAc 82(81) c 0
14 Py.HF(20) CH 3CN 40 AgOAc 82 0
15 Py.HF(15) CH 3CN 80 AgOAc 73 5
표 1 및 도 3으로부터, 1-fluoro-2,2-diiodovinylbenzene(2a)는 Py.HF가 실온에서 1a와 DIH로 처리 될 때 18 %의 수율로 형성된다는 것을 발견했다 (entry 1). 불소원천으로서 KF, CsF 또는 Et3N ㅇ 3HF를 사용하는 경우, 2a의 형성 없이 트리 아이오도 알켄(3a)가 형성되었다(entry 2-4). Py.HF의 양이 15 equiv로 증가하면 2a의 수율은 51 %로 증가했다. 그러나, 부산물(3a)은 여전히 형성되었다(entry 5). CH 2Cl 2, THF, 톨루엔 및 아세톤과 같은 다른 용매에서의 반응은 만족스런 결과를 나타내지 않았지만 본 발명의 불소알켄화합물 전구체인 2a 형성되었다(entry 6-9). 반응 온도를 40 ℃로 올리면 3a의 양이 적고 2a가 62 % 수율로 나타난다(entry 10). 반응 혼합물에 AgI를 첨가해도 2a의 수율은 향상되지 않았다; 그러나, Ag 2O와의 반응은 2a의 69 % 수율을 제공하였다 (entry 12). 마지막으로 촉매 AgOAc (20mol %)를 사용하여 반응을 수행하면 3a (3a)가 형성되지 않고 2a가 82 %의 수율로 선택적으로 형성되었다. 2a는 성공적으로 81 %의 수율로 단리 되었다. Py.HF의 양을 증가시키더라도 2a의 수율은 향상되지 않았다(entry 14). 80℃에서의 반응은 만족스런 결과를 나타내지 않았다(entry 15).
실시예 2
실시예1에서 얻어진 최적 조건하에서 도 4의 상단에 도시된 반응식에 따라 다음과 같이 다양한 알키닌산을 이용하여 불소알켄화합물 전구체인 1- 플루오로 -2,2- 디요오드비닐아렌을 합성하고 얻어진 불소알켄화합물 전구체의 화학식을 도 4에 나타내었다. 도 4에서 각각 화학식의 가로 안에 분리수율을 나타내었다.
알키닌산(2.0 mmol), DIH (2.2 mmol), Py.HF (30.0 mmol) 및 AgOAc (0.4 mmol)를 CH 3CN에서 40℃로 16 시간 동안 반응시켰다.
도 4에 도시된 불소알켄화합물 전구체 중 2b, 2c, 2d 및 2e는 알키닌 산으로 메틸-치환된 아릴프로피올산이 사용된 경우이고, 4- 에틸 및 4-tert- 부틸 - 치환된 페닐프로피올산이 사용되면 2f 및 2g와 같은 구조의 불소알켄화합물 전구체를 각각 82 % 및 84 % 수율로 얻을 수 있었다.
알키닌산으로 2- 메톡시 -, 4- 메톡시 - 및 3,4- 다이옥시안 그룹을 갖는 아릴프로피올산이 사용되면 1- 플루오로 -2,2- 디요오드 비닐아렌 2h, 2i 및 2j를 양호한 수율로 각각 생성시켰다.
알키닌산으로 1,1'- 비페닐 -4- 일, 1- 나프틸 및 2- 나프틸 프로피올산이 사용되면, 각각 72 %, 71 % 및 76 %의 수율로 2k, 2l 및 2m을 생성하였다.
알키닌 산으로 브로모 -, 클로로 - 및 플루오로 - 치환된 페닐 프로피올산이 사용되면, 2n, 2o, 2p, 2q 및 2r을 56 내지 64 % 범위의 수율로 제공하였다.
알코올, 니트릴, 케톤, 에스테르 및 알데히드 그룹은 각각 2s, 2t, 2u, 2v 및 2w의 형성에 양호한 내성을 보였음을 알 수 있다.
또한, 알키닌산으로 니트로기를 갖는 아릴 프로피올산이 사용되면 2x 및 2y를 약간 낮은 수율로 생성시켰음을 알 수 있다.
참고로, 오티오닉 산(octynoic acid)과 같은 알킬기가 치환된 프로피오릭산 (alkyl-substituted propiolic acid)을 사용하게 되면 원하는 생성물 2z를 얻었지만 컬럼 크로마토그래피로 부산물 (1,1,2-triiodoheptene)을 분리 할 수 없으므로 순수한 형태로 분리하지 못했다.
이러한 결과로부터, (i) 알키닌 산에서 아릴고리상의 치환체의 입체 장애가 이 변형에 영향을 미치지 않으며, 오르토, 메타 및 파라 위치에서 치환기를 갖는 아릴 알키닌 산이 잘 작동한다는 것이 일반화 될 수 있다. (ii) 아릴 고리상의 상이한 치환기의 전자 특성은 생성물의 수율에 영향을 미치고, 전자 공여성기는 반응 효율을 증가시키며, 우수한 수율로 생성물을 생성하고, 전자 흡인기 그룹은 효율을 감소시킨다. 도 4에 도시된 반응에서 본 발명의 불소알켄화합물 전구체는 할로겐, 알코올, 니트릴, 케톤, 에스테르, 알데히드 및 니트로와 같은 관능성 그룹에 대한 광범위한 내성을 보여주는데, 이러한 고도의 작용기 내성은 본 발명의 불소알켄화합물 전구체가 더욱 기능화 될 수 있는 좋은 기회를 제공할 것으로 예측된다.
실시예 3
본 발명의 불소알켄화합물 전구체인 1-플루오로-2,2-디요오드비닐아렌 제조시 반응 경로를 연구하기 위해 대조 실험을 도 5와 같이 수행하였다. 도 5의 상단에 도시된 바와 같이 Py.HF의 부재 하에 페닐프로피올산을 DIH와 반응 시켰을 때, 요오드에티닐벤젠 (A)이 91 %의 수율로 형성되었다. 또한, 도 5의 하단에 도시된 바와 같이 요오드에티닐벤젠을 표준 조건 하에서 처리하면 (1- 플루오로 -2,2- 디요오드 비닐) 벤젠(2a)이 88 %의 수율로 형성된다는 것을 확인하였다. 이 결과로부터, 알키닐요오드화물이 알키닌산의 탈카르복실화를 통해 본 발명의 불소알켄화합물 전구체를 합성하는 변환과정에서 중간체인 것을 확인할 수 있었다.
실시예 4
불소알켄화합물 생성을 위한 Pd- 촉매 커플링 반응에서 커플링 파트너로서 불소알켄화합물 전구체인 1-플루오로-2,2-디요오드비닐아렌의 적용을 더 연구했다. 도 6a와 같이 불소알켄화합물 전구체의 2,2-diiodovinyl 그룹이 스즈키 (Suzuki)와 히야마 (Hiyama) 커플링 반응에서 반응조건에 따라 서로 다른 반응성을 보였다는 것을 확인했다. 결과는 하기 표 2에 요약되어 나타내었다.
Entry Ar-M Equiv of 1a/ Ar-M condition a Yield (%) b
6a 7a
1 4a 1.0 / 2.5 A 91 0
2 5a 1.0 / 2.5 B 0 73
3 4a 1.0 / 1.1 A 34 9
4 4a 1.0 / 2.5 B 40 0
5 5a 1.0 / 1.1 B 0 5
6 5a 1.0 / 2.5 A 0 0
-반응조건 A : 5 mol % Pd 2 (dba) 3, 20 mol% PPh 3 및 K 2CO 3(3.0 당량)을 톨루엔/ H 2O / EtOH에서 80 ℃로 12 시간 동안 처리하였다. -반응조건 B : 디옥산에서 80 ℃로 12 시간 동안 10mol % Pd (OAc) 2, 20mol% DABCO 및 TBAF(3.0 당량)를 처리하였다. -b : 분리된 수율.
도 6a 및 표 2로부터, 다음과 같은 결과를 알 수 있다. 먼저, 반응조건 A로 2.5 당량의 p- 톨릴 보론산을 2a로 처리하면, 디아릴 커플링생성물 6a가 91 % 수율로 생성되었다(Entry 1). 그러나, 반응조건 B로 트리 메톡시 -p- 톨릴 실란을 반응시키는 경우, 디아릴 결합생성물은 발견되지 않고, 단지 73 % 수율로 디요오드모노아릴 커플링 생성물 7a가 형성되었다(Entry 2). 즉, (Z) -7a만이 반응 혼합물에 형성됨을 확인하였다. 2a 및 4a의 스즈키 커플링은 4a를 1.1 당량 사용하고 반응을 조건B (Entry 3 및 4)하에 수행하는 경우에도 주 생성물로서 6a를 제공 하였다. 2a를 1.1 당량의 5a와 반응 시키면 7a만이 5 % 수율로 생성되었다(Entry 5). 또한 히야마 커플링을 반응조건 A(Entry 6)에서 수행 할 때 6a 또는 7a가 형성되지 않았다.
실시예 5
스즈키커플링 반응에서 커플링 파트너로서 불소알켄화합물 전구체인 1-플루오로-2,2-디요오드비닐아렌을 사용하여 도 6b와 같이 불소알켄화합물 생성하였다.
반응조건 A에서 1- 플루오로 -2,2- 디요오드 비닐아렌 및 아릴 보론산의 스즈키 커플링 반응을 평가 하였다. 구체적인 반응조건은 톨루엔/H 2O/EtOH 중 80 ℃에서 1(1.5 밀리몰), 4(3.75 밀리몰), Pd 2(dba) 3 (0.075 밀리몰), PPh 3(0.3 밀리몰) 및 K 2CO 3 , 12 시간이다.
도 6b에 나타낸 바와 같이, 2a는 치환된 아릴 보론산과 반응하여 디아릴 커플링 생성물 6을 양호한 수율로 제공 하였다. 또한, 메틸 및 클로라이드와 같은 치환체를 갖는 1- 플루오로 -2,2- 디요오드 비닐아렌은 또한 디아릴 커플링 생성물 6g, 6h 및 6i를 양호한 수율로 수득 하였다.
실시예 6
히야마커플링 반응에서 커플링 파트너로서 도 6c와 같이 불소알켄화합물 전구체인 1-플루오로-2,2-디요오드비닐아렌을 사용하여 도 6c와 같이 불소알켄화합물 생성하였다.
반응조건 B에서 1- 플루오로 -2,2- 디요오드 비닐아렌 및 아릴 실록산의 히야마 커플링 반응을 평가 하였다. 구체적인 반응조건은 1,4- 디옥산 중 80 ℃에서 1(1.5mmol), 5(3.75mmol), Pd(0Ac) 2(0.15mmol), DABCO(0.3mmol) 및 TBAF(4.5mmol), 12 시간이다.
도 6c에 나타낸 바와 같이, 모든 시험된 아릴 실록산은 모노 아릴 커플링 생성물을 독점적으로 양호한 수율로 수득하게 하였다. 모노- 아릴 커플링 생성물 7 (반응식 5)의 형성에서 (Z)-불소에텐유도체만이 관찰된다는 것이 주목할 만하다.
실시예 7
도 7에 도시된 반응식과 같이 본 발명의 불소알켄화합물 전구체를 커플링 반응시켜 얻어진 불소알켄 6b와 7b의 C-F 결합이 팔라듐에 의해 활성화되어 bis (pinacolato) diboron (B2Pin2)과 반응하여 상응하는 비닐 보란을 좋은 수율로 공급할 수 있음을 확인하였다.
본 발명은 이상에서 살펴본 바와 같이 바람직한 실시 예를 들어 도시하고 설명하였으나, 상기한 실시 예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.

Claims (17)

  1. 하기 화학식 1로 표시되는 불소알켄화합물 전구체.
    [화학식 1]
    Figure PCTKR2020004938-appb-img-000030
    여기서, Ar은 아릴기이다.
  2. 제 1 항에 있어서,
    상기 아릴기는 페닐기 또는 아릴 고리상의 오르토, 메타 및 파라 위치 중 하나 이상에 치환기를 갖는 것을 특징으로 하는 불소알켄화합물 전구체.
  3. 제 1 항에 있어서,
    상기 전구체는
    Figure PCTKR2020004938-appb-img-000031
    Figure PCTKR2020004938-appb-img-000032
    Figure PCTKR2020004938-appb-img-000033
    Figure PCTKR2020004938-appb-img-000034
    Figure PCTKR2020004938-appb-img-000035
    Figure PCTKR2020004938-appb-img-000036
    Figure PCTKR2020004938-appb-img-000037
    Figure PCTKR2020004938-appb-img-000038
    Figure PCTKR2020004938-appb-img-000039
    Figure PCTKR2020004938-appb-img-000040
    Figure PCTKR2020004938-appb-img-000041
    Figure PCTKR2020004938-appb-img-000042
    Figure PCTKR2020004938-appb-img-000043
    로 구성된 그룹에서 선택된 어느 하나인 것을 특징으로 하는 불소알켄화합물 전구체.
  4. 제 1 항에 있어서,
    상기 전구체는 스즈키 커플링 반응에서 커플링 파트너로 사용되어 디아릴커플링생성물을 형성하는 것을 특징으로 하는 불소알켄화합물 전구체.
  5. 제 1 항에 있어서,
    상기 전구체는 히야마 커플링 반응에서 커플링 파트너로 사용되어 모노아릴커플링생성물을 형성하는 것을 특징으로 하는 불소알켄화합물 전구체.
  6. 제 5 항에 있어서,
    상기 모노아릴커플링생성물은 (Z)-불소에텐유도체인 것을 특징으로 하는 불소알켄화합물 전구체.
  7. 알키닌산을 탈카르복실화반응시켜 하기 화학식 1로 표시되는 불소알켄화합물 전구체를 생성하는 단계;를 포함하는 불소알켄화합물 전구체 제조방법.
    [화학식 1]
    Figure PCTKR2020004938-appb-img-000044
    여기서, Ar은 아릴기이다.
  8. 제 7 항에 있어서,
    상기 불소알켄화합물 전구체를 생성하는 단계는 상기 알키닌산이 1,3-디요오드-5,5 -디메틸 히단토인(DIH)과 반응하여 알키닐요오드화물이 생성되는 단계; 상기 알키닐요오드화물이 Py.HF 및 DIH와 반응하여 불소알켄화합물 전구체가 생성되는 단계;를 포함하는 것을 특징으로 하는 불소알켄화합물 전구체 제조방법.
  9. 제 7 항에 있어서,
    상기 알키닐요오드화물과 Py.HF 및 DIH의 반응은 은촉매하에서 수행되는 것을 특징으로 하는 불소알켄화합물 전구체 제조방법.
  10. 제 9 항에 있어서,
    상기 은촉매는 은아세테이트(AgOAc), 산화은(Ag 2O), 요오드화은(AgI)로 구성된 그룹에서 선택되는 어느 하나인 것을 특징으로 하는 불소알켄화합물 전구체 제조방법.
  11. 제 7 항에 있어서,
    상기 불소알켄화합물 전구체를 생성하는 단계는 아세토니트릴(CH 3CN), THF, 톨루엔, 아세톤으로 구성된 그룹에서 선택되는 어느 하나의 용매 하에서 25 내지 80도의 온도범위로 수행되는 것을 특징으로 하는 불소알켄화합물 전구체 제조방법.
  12. 제 7 항에 있어서,
    상기 불소알켄화합물 전구체를 생성하는 단계는 브롬화물, 염화물, 알코올, 니트릴, 케톤, 에스테르, 알데히드 및 니트로를 포함하는 그룹에서 선택되는 하나 이상의 작용기에 대해 내성을 갖는 것을 특징으로 하는 불소알켄화합물 전구체 제조방법.
  13. 제 1 항 내지 제 3 항 중 어느 한 항의 불소알켄화합물 전구체 또는 제 7 항 내지 제 12 항 중 어느 한 항의 제조방법으로 제조된 불소알켄화합물 전구체를 커플링 파트너로 사용하여 스즈키 커플링 반응을 수행하는 단계;를 포함하는 불소알켄화합물 제조방법.
  14. 제 13 항의 제조방법으로 제조된 불소알켄화합물로서, 팔라듐에 의해 활성화되는 C-F결합을 갖는 것을 특징으로 하는 불소알켄화합물.
  15. 제 1 항 내지 제 3 항 중 어느 한 항의 불소알켄화합물 전구체 또는 제 7 항 내지 제 12 항 중 어느 한 항의 제조방법으로 제조된 불소알켄화합물 전구체를 커플링 파트너로 사용하여 히야마 커플링 반응을 수행하는 단계;를 포함하는 불소알켄화합물 제조방법.
  16. 제 14 항에 있어서,
    상기 불소알켄화합물은 (Z)-불소에텐유도체인 것을 특징으로 하는 불소알켄화합물 제조방법.
  17. 제 15 항의 제조방법으로 제조된 불소알켄화합물로서, 팔라듐에 의해 활성화되는 C-F결합을 갖는 것을 특징으로 하는 불소알켄화합물.
PCT/KR2020/004938 2019-05-28 2020-04-10 불소알켄화합물 전구체, 상기 전구체 합성방법 및 상기 전구체를 이용한 불소알켄화합물 제조방법 WO2020242046A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190062793A KR102234565B1 (ko) 2019-05-28 2019-05-28 불소알켄화합물 전구체, 상기 전구체 합성방법 및 상기 전구체를 이용한 불소알켄화합물 제조방법
KR10-2019-0062793 2019-05-28

Publications (1)

Publication Number Publication Date
WO2020242046A1 true WO2020242046A1 (ko) 2020-12-03

Family

ID=73552912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/004938 WO2020242046A1 (ko) 2019-05-28 2020-04-10 불소알켄화합물 전구체, 상기 전구체 합성방법 및 상기 전구체를 이용한 불소알켄화합물 제조방법

Country Status (2)

Country Link
KR (1) KR102234565B1 (ko)
WO (1) WO2020242046A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113831216A (zh) * 2021-10-15 2021-12-24 滁州学院 一种以醛类化合物为原料制备单氟代烯烃的合成方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2804484A (en) * 1953-04-16 1957-08-27 Research Corp Fluoroolefins and process for their preparation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0625214D0 (en) 2006-12-19 2007-01-24 Ineos Fluor Holdings Ltd Process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2804484A (en) * 1953-04-16 1957-08-27 Research Corp Fluoroolefins and process for their preparation

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DAS, J. P ET AL.: "Catalytic Hunsdiecker Reaction of alpha,beta-Unsaturated Carboxylic Acids: How Efficient Is the Catalyst?", J. ORG. CHEM., vol. 67, 2002, pages 7861 - 7864, XP002656407, DOI: 10.1021/JO025868H *
I, Y. ET AL.: "Silver-Assisted Difunctionalization of Terminal Alkynes: Highly Regio- and Stereoselective Synthesis of Bromofluoroalkenes", ADV. SYNTH. CATAL., vol. 354, 2012, pages 2683 - 2688, XP055770097 *
JAYARAMAN, A. ET AL.: "Silver-Mediated Decarboxylative Fluorodiiodination of AlkynoicAcids: Synthesis of Regio- and Stereoselective Fluoroalkenes", ORG LETT., vol. 21, no. 10, 2019, pages 3485 - 3489, XP055770104 *
JAYARAMAN, A. ET AL.: "Synthesis of l-Fluoro-2,2-diiodovinylarenes via Decarboxylation of Alkynoic Acids and Their Coupling Reactions", 123RD GENERAL MEETING OF THE KOREAN CHEMICAL SOCIETY., 2019 *
MALO-FOREST, B. ET AL.: "Synthesis and growth inhibition activity of fluorinated derivatives of tamoxifen", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 23, 2013, pages 1712 - 1715, XP028986037, DOI: 10.1016/j.bmcl.2013.01.057 *
NAHRA, F. ET AL.: "Hydrofluorination of Alkynes Catalysed by GoldBifluorides", CHEMCATCHEM, vol. 7, 2015, pages 240 - 244, XP055770101 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113831216A (zh) * 2021-10-15 2021-12-24 滁州学院 一种以醛类化合物为原料制备单氟代烯烃的合成方法
CN113831216B (zh) * 2021-10-15 2024-05-24 滁州学院 一种以醛类化合物为原料制备单氟代烯烃的合成方法

Also Published As

Publication number Publication date
KR20200136773A (ko) 2020-12-08
KR102234565B1 (ko) 2021-03-30

Similar Documents

Publication Publication Date Title
Lam et al. Copper-promoted/catalyzed C N and C O bond cross-coupling with vinylboronic acid and its utilities
WO2020242046A1 (ko) 불소알켄화합물 전구체, 상기 전구체 합성방법 및 상기 전구체를 이용한 불소알켄화합물 제조방법
Oishi et al. Hypervalent iodine-mediated Beckmann rearrangement of ketoximes
CN113773340B (zh) 一种高效合成9-卤代邻碳硼烷的方法
Wang et al. Efficient Access to cis-Hydrobenzo [b] oxepines: Rhodium (I)-Catalyzed Cyclization of Cyclohexadienone-Tethered o-Tolyl-Substituted Alkynes
CN108658841A (zh) 一种咔唑类化合物及其制备方法
CN107935925B (zh) 一种多取代菲啶化合物的制备方法
CN113943252A (zh) 吡唑烷基磺酰氟化合物及其制备方法
Wang et al. A practical synthesis of sugar-derived cyclic nitrones: Powerful synthons for the synthesis of iminosugars
CN115043788B (zh) 一种三氟甲基噁唑-2-酮类化合物及其制备方法与应用
CN110183443B (zh) 一种吲哚并[3,2-c]喹啉类化合物的合成方法
CN115073495B (zh) 一种吲哚啉类化合物及其制备方法
CN108440384B (zh) 异吲哚酮的三氟甲基羟基化衍生物的制备方法
CN109879792A (zh) 一种多取代异吲哚类化合物及其制备方法
Chai et al. Expeditious Synthesis of Papilionaceous Molecules Containing Oligobenzofurans
Lei et al. Nickel-catalyzed cross-coupling reactions of 4-mesylcoumarins with aryl halides: Facile synthesis of 4-substituted coumarins
CN110885291B (zh) 一种3-氯-5-(二氟甲氧基)苯甲胺的合成方法
CN112778272B (zh) 一种2,2′-联氮杂芳环类双齿配体及其制备方法和应用
CN112266365B (zh) 一种在苯胺衍生物对位引入吩噁嗪/吩噻嗪官能团的方法
JP3541221B2 (ja) アザフラ−レンの製造方法及び精製方法
Li et al. Synthesis of 3-fluoro-2, 5-disubstituted furans and further derivative reactions to access fluorine-containing 3, 3′-bifurans and tetrasubstituted furans
CN110698313A (zh) 一种(z)-4-三氟甲基-5-硫烷基-4-戊烯酮衍生物及其制备方法
CN108658802A (zh) 一种手性双[n,o]环钯配合物及其合成方法
CN110981919B (zh) 一锅法合成八元脒环钯化合物的方法及其应用
CN111635372B (zh) 一种恶唑酮衍生物及其合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20814617

Country of ref document: EP

Kind code of ref document: A1