WO2018235828A1 - 硫化マグネシウム材料、硫化マグネシウム複合材料、二次電池用の正極部材、ワイドバンドギャップ半導体材料及びマグネシウム二次電池、並びに、閃亜鉛鉱型硫化マグネシウムの製造方法 - Google Patents

硫化マグネシウム材料、硫化マグネシウム複合材料、二次電池用の正極部材、ワイドバンドギャップ半導体材料及びマグネシウム二次電池、並びに、閃亜鉛鉱型硫化マグネシウムの製造方法 Download PDF

Info

Publication number
WO2018235828A1
WO2018235828A1 PCT/JP2018/023336 JP2018023336W WO2018235828A1 WO 2018235828 A1 WO2018235828 A1 WO 2018235828A1 JP 2018023336 W JP2018023336 W JP 2018023336W WO 2018235828 A1 WO2018235828 A1 WO 2018235828A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
positive electrode
secondary battery
magnesium sulfide
sulfide
Prior art date
Application number
PCT/JP2018/023336
Other languages
English (en)
French (fr)
Inventor
憲陽 上口
隆平 松本
潔 熊谷
慎 細井
有理 中山
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201880041817.XA priority Critical patent/CN110799671A/zh
Priority to JP2019525636A priority patent/JP6856120B2/ja
Publication of WO2018235828A1 publication Critical patent/WO2018235828A1/ja
Priority to US16/720,963 priority patent/US11394027B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/42Sulfides or polysulfides of magnesium, calcium, strontium, or barium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/18Alkaline earth metal compounds or magnesium compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present disclosure relates to a magnesium sulfide material, a magnesium sulfide composite material, a positive electrode member for a secondary battery, a wide band gap semiconductor material and a magnesium secondary battery, and a method for producing zinc blende type magnesium sulfide.
  • discharge products products generated at the positive electrode during discharge of the secondary battery
  • discharge products products generated at the positive electrode during discharge of the secondary battery
  • the reason is mainly that the discharge product has an amorphous structure which does not show a diffraction peak in X-ray diffraction.
  • Non-Patent Document 1 PHYSICAL REVIEW B 79, 235310 , 2009
  • Non-patent Document 2 APPLIED PHYSICS LETTERS 102, 032102 (2013)
  • the object of the present disclosure is to provide a magnesium secondary battery having excellent properties, a positive electrode member for a secondary battery suitable for use in such a magnesium secondary battery, for example, a positive electrode member for a secondary battery and various Method of manufacturing magnesium sulfide material, magnesium sulfide composite material and wide band gap semiconductor material applicable to members, devices (or usable for various members, devices), and zinc blende type magnesium sulfide It is to provide.
  • a method of producing zinc blende-type magnesium sulfide of the present disclosure for achieving the above object comprises a sulfur layer formed on a first electrode, and a second electrode containing magnesium or a magnesium compound, and a magnesium salt.
  • the sulfur layer formed on the first electrode is formed as a zinc-blende-type magnesium sulfide layer by arranging in a state of sandwiching the electrolytic solution and generating a discharge between the first electrode and the second electrode.
  • the magnesium sulfide material of the present disclosure for achieving the above object is It consists of amorphous magnesium sulfide, or a mixture of fine crystals with a particle size of 20 nm or less in amorphous magnesium sulfide,
  • the crystallites consist of magnesium sulfide with a zinc blende type crystal structure.
  • the magnesium sulfide composite material of the present disclosure for achieving the above object is Having a magnesium sulfide material layer formed on a substrate,
  • the magnesium sulfide material layer is made of amorphous magnesium sulfide or a mixture of crystallites with a particle size of 20 nm or less in amorphous magnesium sulfide,
  • the crystallites consist of magnesium sulfide with a zinc blende type crystal structure.
  • the positive electrode member of the present disclosure for achieving the above object is formed by forming a magnesium sulfide material layer made of magnesium sulfide having a zinc blende type crystal structure on a positive electrode current collector.
  • the magnesium secondary battery of the present disclosure for achieving the above object is A positive electrode member provided with at least a positive electrode active material layer; A separator disposed opposite to the positive electrode member, A negative electrode member comprising a magnesium or magnesium compound disposed opposite to the separator, and Electrolyte containing magnesium salt, A magnesium secondary battery provided with The positive electrode active material layer is made of magnesium sulfide having a zinc blende type crystal structure.
  • the wide band gap semiconductor material of the present disclosure for achieving the above object is It consists of amorphous magnesium sulfide, or a mixture of fine crystals with a particle size of 20 nm or less in amorphous magnesium sulfide,
  • the crystallites consist of magnesium sulfide with a zinc blende type crystal structure.
  • a discharge is generated between the first electrode and the second electrode (that is, based on the electrochemical method) on the first electrode.
  • the formed sulfur layer is a zinc blende type magnesium sulfide layer. Therefore, bulky or powdery zinc blende type magnesium sulfide layer can be obtained by an extremely easy method.
  • magnesium ions can be relatively easily released from zinc blende type magnesium sulfide or magnesium sulfide having a zinc blende type crystal structure. Therefore, it is possible to realize magnesium secondary batteries having high energy density and excellent cycle characteristics, and electronic devices (for example, solar cells) and electrochemical devices having excellent characteristics.
  • the effects described in the present specification are merely examples and are not limited, and may have additional effects.
  • FIG. 1 is a schematic exploded view of a magnesium secondary battery of Example 1.
  • FIG. FIG. 2A is a graph showing a discharge curve when the first discharge is performed and a charge curve when the first charge is performed in the magnesium secondary battery of Example 1
  • FIG. 2B is a graph showing It is a graph which shows the charge curve when the 1st charge in the magnesium secondary battery of comparative example 1 is performed.
  • FIG. 3A shows the results of solid 25 Mg-NMR measurement and solid 33 S-NMR measurement of the positive electrode active material layer in the magnesium secondary batteries of Example 1 and Comparative Example 1 and the chemical shift calculation obtained by the first principle calculation.
  • FIG. 1 is a schematic exploded view of a magnesium secondary battery of Example 1.
  • FIG. 2A is a graph showing a discharge curve when the first discharge is performed and a charge curve when the first charge is performed in the magnesium secondary battery of Example 1
  • FIG. 2B is a graph showing It is a graph which shows the charge curve when the 1st charge in the magnesium secondary battery of comparativ
  • FIG. 3B is a graph showing high-energy X-ray diffraction (HE-XRD) measurement of the positive electrode active material layer in the magnesium secondary battery of Example 1 and extraction results of atomic pair correlation functions.
  • FIG. 4 is a graph showing X-ray diffraction results of the positive electrode active material layer and the like in the magnesium secondary battery of Example 1.
  • FIG. 5 is a view showing a crystal structure of magnesium sulfide having a zinc blende type crystal structure and a crystal structure of magnesium sulfide having a sodium chloride type 6-coordinated structure.
  • FIG. 6 is a conceptual view of an electrochemical device (flow-type secondary battery) of Example 2.
  • FIG. 7 is a schematic cross-sectional view of the electrochemical device (solar cell) of Example 3.
  • FIG. 8 is a schematic cross-sectional view of a magnesium secondary battery (cylindrical magnesium secondary battery) in Example 4.
  • FIG. 9 is a schematic cross-sectional view of a magnesium secondary battery (flat plate type laminated film type magnesium secondary battery) in Example 4.
  • FIG. 10 is a block diagram showing a circuit configuration example in the fourth embodiment in which the magnesium secondary battery of the present disclosure described in the first embodiment is applied to a battery pack.
  • 11A, 11B, and 11C are block diagrams showing the configuration of an application example (electric vehicle) of the present disclosure in the fourth embodiment, and represent the configuration of an application example (power storage system) of the present disclosure in the fourth embodiment.
  • FIG. 16 is a block diagram and a block diagram illustrating a configuration of an application (power tool) of the present disclosure in a fourth embodiment.
  • FIG. 12 is a conceptual view of a magnesium secondary battery of Example 1.
  • magnesium sulfide material of the present disclosure a magnesium sulfide composite material, a positive electrode member for a secondary battery, a wide band gap semiconductor material and a magnesium secondary battery, and a method for producing zinc blende-type magnesium sulfide.
  • Example 1 A magnesium sulfide material of the present disclosure, a magnesium sulfide composite material, a positive electrode member for a secondary battery, a wide band gap semiconductor material and a magnesium secondary battery, and a method for producing zinc blende type magnesium sulfide) 3.
  • Example 2 Modification of Example 1 4.
  • Example 3 Modification of Example 1, Wide Band Gap Semiconductor Material.
  • Example 4 Application Example of Magnesium Secondary Battery of Example 1 6.
  • the magnesium sulfide material of the present disclosure a magnesium sulfide composite material, a positive electrode member for a secondary battery, a wide band gap semiconductor material and a magnesium secondary battery, and a method for producing zinc blende type magnesium sulfide>
  • the first electrode and the second electrode are electrically connected to each other through the resistor, whereby the first electrode and the second electrode are connected. A discharge can occur.
  • the resistor may be a resistor provided in an appropriate electric circuit or electronic circuit.
  • magnesium sulfide composite material of the present disclosure only the magnesium sulfide material layer may be formed on the substrate, and in some cases, it is configured to have a sulfur layer between the substrate and the magnesium sulfide material layer. It can also be done.
  • the magnesium sulfide material layer is It consists of amorphous magnesium sulfide, or a mixture of fine crystals with a particle size of 20 nm or less in amorphous magnesium sulfide,
  • the crystallites can be in the form of magnesium sulfide having a zinc blende type crystal structure.
  • the positive electrode active material layer is It consists of amorphous magnesium sulfide, or a mixture of fine crystals with a particle size of 20 nm or less in amorphous magnesium sulfide,
  • the crystallites can be in the form of magnesium sulfide having a zinc blende type crystal structure.
  • the electrolytic solution can be in the form of a solvent comprising sulfone and a magnesium salt dissolved in the solvent.
  • the positive electrode active material layer is formed on the positive electrode current collector
  • the positive electrode active material layer is a zinc-blende type It may be in the form of an aggregate of crystallites of magnesium sulfide having a crystal structure, or between the aggregate of crystallites of magnesium sulfide having a zinc blende-type crystal structure and a positive electrode current collector. It may be in the form in which a sulfur layer is present.
  • magnesium sulfide is composed of amorphous magnesium sulfide or a mixture of crystallites having a particle size of 20 nm or less in amorphous magnesium sulfide.
  • amorphous magnesium sulfide or “a mixture containing fine crystals with a particle size of 20 nm or less in amorphous magnesium sulfide” means magnesium sulfide in a region of several tens ⁇ m (eg, 50 ⁇ m ⁇ 50 ⁇ m) When observed by X-ray diffraction method (using a Cu-K ⁇ ray, the wavelength is 0.15405 nm) in the region of or larger than the above, diffraction peaks except those belonging to a mixture other than the positive electrode active material Is not observed (specifically, the intrinsic sharp diffraction peak of magnesium sulfide is not observed).
  • the tube voltage is 45 kV
  • the tube current is 20 milliamperes
  • the scanning speed is 0.5 degree / minute
  • the diffraction angle 2 ⁇ is 10 degrees
  • the measurement range may be up to 60 degrees.
  • microcrystals have a zinc blende type crystal structure
  • it can be determined based on an NMR measurement method whether or not the “microcrystals have a zinc blende type crystal structure”. That is, solid 25 Mg-NMR measurement is performed by the following method. Specifically, the powder sample to be analyzed is not washed with a solvent, and after vacuum drying as it is, the sample is packed in a 3.2 mm diameter sample tube for solid NMR measurement. Then, the sample tube is set to a 3.2 mm diameter Magic Angle Spinning (MAS) probe attached to an 800 MHz solid state NMR apparatus (measurement magnetic field strength 18.79 T), and measurement is performed under the conditions of Table 1 below.
  • MAS Magic Angle Spinning
  • G (r) As a result of calculating the atomic pair correlation function G (r), when the Mg-S interatomic distance of the sample is 2.5 ⁇ (see FIG. 3B), the main phase is magnesium sulfide almost in a single phase and can not be observed by NMR It can be judged that polysulfides are not mixed.
  • the sulfur layer can be composed of S 8 or polysulfides. Moreover, a sulfone can be mentioned as a material which comprises an electrolyte solution or a solvent, An ether, a wide aprotic solvent can also be mentioned.
  • the positive electrode member may be composed of a positive electrode active material layer, or alternatively, a positive electrode current collector and a positive electrode active formed on the positive electrode current collector (on one side or both sides of the positive electrode current collector). It may be composed of a material layer.
  • the method for producing zinc blende type magnesium sulfide of the present disclosure of the present disclosure or the electrolyte solution constituting the electrolyte layer in the magnesium secondary battery of the present disclosure includes, for example, sulfone and a magnesium salt dissolved in sulfone.
  • sulfone and a magnesium salt dissolved in sulfone.
  • the electrolyte solution which concerns on the 1st form of this indication is called "the electrolyte solution which concerns on the 1st form of this indication" for convenience.
  • the magnesium salt can be in the form of MgX n (where n is 1 or 2 and X is a monovalent or divalent anion).
  • X can be in the form of a molecule containing halogen, -SO 4 , -NO 3 or a hexaalkyl disiazide group.
  • the magnesium salt is a mixture of MgCl 2 and Mg (TFSI) 2 [magnesium bistrifluoromethanesulfonyl imide], magnesium perchlorate (Mg (ClO 4 ) 2 ), magnesium nitrate (Mg (NO 3 ) 2 ), Magnesium sulfate (MgSO 4 ), magnesium acetate (Mg (CH 3 COO) 2 ), magnesium trifluoroacetate (Mg (CF 3 COO) 2 ), magnesium tetrafluoroborate (Mg (BF 4 ) 2 ), tetraphenylboron
  • Mg (B (C 6 H 5 ) 4 ) 2 magnesium hexafluorophosphate (Mg (PF 6 ) 2 ), magnesium hexafluoroarsenate (Mg (AsF 6 ) 2 ), perfluoroalkylsulfonic acid magnesium ((Mg (R f1 SO 3 )
  • magnesium salt-A The magnesium salt mentioned above from magnesium fluoride to (Mg (HRDS) 2 ) is referred to as “magnesium salt-A” for convenience.
  • the molar ratio of sulfone to the magnesium salt is, for example, preferably 4 or more and 35 or less, more preferably 6 or more and 16 or less, and preferably 7 or more and 9 or less. Is more preferable, but not limited thereto.
  • magnesium borohydride (Mg (BH 4 ) 2 ) can be mentioned as a magnesium salt in the electrolyte according to the first embodiment of the present disclosure.
  • the magnesium salt to be used consists of magnesium borohydride (Mg (BH 4 ) 2 ) and does not contain a halogen atom, it is necessary to prepare various members constituting the magnesium secondary battery from materials having high corrosion resistance. Will disappear.
  • Such an electrolytic solution can be produced by dissolving magnesium borohydride in sulfone.
  • a magnesium salt consisting of magnesium borohydride (Mg (BH 4 ) 2 ) is conveniently referred to as “magnesium salt-B”.
  • the electrolytic solution in the present disclosure is a magnesium ion-containing non-aqueous electrolytic solution in which a magnesium salt -B is dissolved in a solvent comprising sulfone.
  • the molar ratio of sulfone to magnesium salt-B in the electrolytic solution is, for example, 50 or more and 150 or less, typically 60 or more and 120 or less, and preferably 65 or more and 75 or less. It is not limited to this.
  • the sulfone in the electrolyte according to the first aspect of the present disclosure is typically an alkyl sulfone or alkyl sulfone represented by R 1 R 2 SO 2 (wherein R 1 and R 2 represent an alkyl group). It is a derivative.
  • the type (carbon number and combination) of R 1 and R 2 is not particularly limited, and may be selected as necessary.
  • the carbon number of each of R 1 and R 2 is preferably 4 or less.
  • the sum of the carbon number of R 1 and the carbon number of R 2 is preferably 4 or more and 7 or less, but is not limited thereto.
  • R 1 and R 2 are each independently, for example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group and / or t-butyl group It is fundamental.
  • alkyl sulfone specifically, dimethyl sulfone (DMS), methyl ethyl sulfone (MES), methyl n-propyl sulfone (MnPS), methyl i-propyl sulfone (MiPS), methyl n-butyl sulfone (MnBS) ), Methyl-i-butyl sulfone (MiBS), methyl-s-butyl sulfone (MsBS), methyl-t-butyl sulfone (MtBS), ethyl methyl sulfone (EMS), diethyl sulfone (DES), ethyl-n-propyl Sulfone (EnPS), Ethyl-i-propyl sulfone (EiPS), Ethyl-n-butyl sulfone (EnBS), Ethyl-i-butyl sulfone (EiBS), E
  • alkyl sulfone derivative ethyl phenyl sulfone (EPhS) can be mentioned. And, among these sulfones, at least one selected from the group consisting of EnPS, EiPS, EsBS and DnPS is preferable.
  • the electrolyte in the present disclosure can be in the form of containing an ether (generally an aprotic solvent) and a magnesium salt dissolved in an ether (aprotic solvent).
  • an ether generally an aprotic solvent
  • a magnesium salt dissolved in an ether (aprotic solvent)
  • electrolyte solution which concerns on the 2nd form of this indication
  • the ether can be in the form of cyclic ether and / or linear ether.
  • the cyclic ether can include at least one cyclic ether selected from the group consisting of tetrahydrofuran (THF), dioxolane, dioxane, epoxides and furans.
  • THF tetrahydrofuran
  • dioxolane dioxane
  • epoxides epoxides
  • furans epoxides
  • linear ethers mention may be made of dialkyl glycol ethers.
  • the dialkyl glycol ether is selected from the group consisting of ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, pentaethylene glycol dimethyl ether, hexaethylene glycol dimethyl ether, polyethylene glycol dimethyl ether and triethylene glycol butyl methyl ether At least one dialkyl glycol ether may be mentioned, but is not limited thereto.
  • the magnesium salt is Mg (AlCl 3 R 1 ) 2 or Mg (AlCl 2 R 2 R 3 ) 2 (wherein R 1 , R 2 and R 3 are each an alkyl group) Form.
  • the type (carbon number and combination) of R 1 , R 2 and R 3 is not particularly limited, and may be selected as necessary.
  • the carbon number of each of R 1 , R 2 and R 3 is preferably 4 or less, but is not limited thereto.
  • the sum of the carbon number of R 2 and the carbon number of R 3 is preferably 4 or more and 7 or less, but is not limited thereto.
  • R 1 , R 2 and R 3 for example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group and / or t- A butyl group can be mentioned.
  • the electrolyte in the present disclosure has a solvent consisting of a sulfone and a nonpolar solvent, and a magnesium salt-A dissolved in the solvent.
  • the nonpolar solvent is selected as necessary, but is preferably a non-aqueous solvent having a relative dielectric constant and a number of donors of 20 or less.
  • the nonpolar solvent more specifically, for example, at least one nonpolar solvent selected from the group consisting of aromatic hydrocarbons, ethers, ketones, esters and chain carbonates can be mentioned.
  • the aromatic hydrocarbon include toluene, benzene, o-xylene, m-xylene, p-xylene and / or 1-methylnaphthalene.
  • the ether for example, diethyl ether and / or tetrahydrofuran can be mentioned.
  • the ketone for example, 4-methyl-2-pentanone and the like can be mentioned.
  • ester methyl acetate and / or ethyl acetate etc. can be mentioned, for example.
  • chain carbonate for example, dimethyl carbonate, diethyl carbonate and / or ethyl methyl carbonate can be mentioned.
  • the sulfone and magnesium salt-A are as described above. Moreover, you may add the additive mentioned above to electrolyte solution as needed. And the molar ratio of sulfone to magnesium salt-A is, for example, more preferably 4 or more and 20 or less, more preferably 6 or more and 16 or less, and still more preferably 7 or more and 9 or less However, it is not limited to these.
  • solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, acetonitrile, dimethoxyethane, diethoxyethane, vinylene carbonate, ⁇ -butyrolactone and / or tetrahydrofuran may also be used as a solvent.
  • solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, acetonitrile, dimethoxyethane, diethoxyethane, vinylene carbonate, ⁇ -butyrolactone and / or tetrahydrofuran may also be used as a solvent.
  • one of them may be used alone, or two or more of them may be mixed and used.
  • the solvent is preferably composed of linear ether.
  • linear ethers include ethylene glycol dimethyl ether (dimethoxyethane), diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, pentaethylene glycol dimethyl ether, hexaethylene glycol dimethyl ether, polyethylene glycol dimethyl ether and / or triethylene glycol butyl methyl Among these, it is preferable to use ethylene glycol dimethyl ether (dimethoxyethane, DME).
  • the electrolyte layer can also be composed of an electrolytic solution in the present disclosure and a polymer compound composed of a holder that holds the electrolytic solution.
  • the polymer compound may be swollen by an electrolytic solution.
  • the polymer compound swollen by the electrolytic solution may be in the form of gel.
  • polyacrylonitrile for example, polyacrylonitrile, polyvinylidene fluoride, copolymer of vinylidene fluoride and hexafluoropropylene, polytetrafluoroethylene, polyhexafluoropropylene, polyethylene oxide, polypropylene oxide, polyphosphazene, polysiloxane
  • the electrolyte layer can also be a solid electrolyte layer.
  • the magnesium salt comprises magnesium chloride, among others More preferably, the electrolyte comprises ethyl-n-propyl sulfone (EnPS).
  • the positive electrode current collector is made of, for example, a metal foil or alloy foil such as nickel, stainless steel and / or molybdenum, a metal plate, an alloy plate, or a carbon material.
  • the positive electrode member may have a structure including only the positive electrode active material layer (layered positive electrode active material) without the positive electrode current collector.
  • the positive electrode active material layer may optionally contain at least one of a conductive additive and a binder.
  • the base and the first electrode can also be made of, for example, the material constituting the above-mentioned positive electrode current collector.
  • the negative electrode member or the second electrode contains magnesium or a magnesium compound.
  • the negative electrode member or the second electrode is made of magnesium (magnesium metal alone), a magnesium alloy or a magnesium compound.
  • the negative electrode active material layer may be formed on the surface of the base constituting the negative electrode member (specifically, the negative electrode current collector) or the second electrode, and in this case, the negative electrode active material layer And a magnesium (Mg) -based material can be mentioned as a material constituting the negative electrode active material layer, and it is further composed of carbon (C) and oxygen (O And sulfur (S) and halogen may be contained at least.
  • such a negative electrode active material layer have a single peak derived from magnesium in the range of 40 eV or more and 60 eV or less.
  • the halogen for example, at least one selected from the group consisting of fluorine (F), chlorine (Cl), bromine (Br) and iodine (I) can be mentioned.
  • the oxidation state of magnesium is substantially constant from the surface of the negative electrode active material layer in the depth direction to 2 ⁇ 10 ⁇ 7 m.
  • the back surface of the negative electrode active material layer means the surface on the side constituting the interface between the negative electrode current collector or the base of the second electrode and the negative electrode active material layer, of the both surfaces of the negative electrode active material layer.
  • the surface of the material layer means the surface opposite to the back surface of the negative electrode active material layer.
  • the negative electrode active material layer may optionally contain at least one of a conductive additive and a binder.
  • the negative electrode member is made of, for example, a plate-like material or a foil-like material, but is not limited thereto, and may be formed (shaped) using powder.
  • the negative electrode member may include the negative electrode current collector. Examples of the material constituting the base of the negative electrode current collector or the second electrode include metal foils or alloy foils such as copper, nickel, stainless steel and / or magnesium, metal plates, and alloy plates.
  • carbon materials such as graphite, carbon fiber, carbon black, a carbon nanotube
  • VGCF vapor growth carbon fiber
  • carbon black for example, acetylene black and / or ketjen black
  • MWCNT multi-wall carbon nanotube
  • SWCNT single wall carbon nanotube
  • DWCNT double wall carbon nanotube
  • materials other than carbon materials can be used, and for example, metal materials such as Ni powder, conductive polymer materials, and the like can be used.
  • a binder contained in the positive electrode active material layer or the negative electrode active material layer for example, a fluorine resin such as polyvinylidene fluoride (PVdF) and / or polytetrafluoroethylene (PTFE), a polyvinyl alcohol (PVA) resin, and And / or polymer resins such as styrene-butadiene copolymer rubber (SBR) resins can be used.
  • a conductive polymer may be used as a binder.
  • the conductive polymer for example, substituted or unsubstituted polyaniline, polypyrrole, polythiophene, and / or (co) polymer consisting of one or two or more selected from these can be used.
  • the positive electrode member and the negative electrode member are separated by an inorganic separator or an organic separator which allows magnesium ions to pass while preventing a short circuit due to the contact of both electrodes.
  • an inorganic separator a glass filter and / or glass fiber can be mentioned, for example.
  • the organic separator include porous membranes made of synthetic resin made of polytetrafluoroethylene, polypropylene and / or polyethylene, etc. A structure in which two or more types of porous membranes are laminated can also be used. . Among them, a porous membrane made of polyolefin is preferable because it is excellent in the short circuit preventing effect and can improve the safety of the battery by the shutdown effect.
  • the magnesium secondary battery of the present disclosure is, for example, a laptop personal computer, a PDA (personal digital assistant), a mobile phone, a smartphone, a base unit or a handset of a cordless telephone, a video movie, a digital still camera, an electronic book, an electronic dictionary, Portable music player, radio, headphones, game console, navigation system, memory card, cardiac pacemaker, hearing aid, electric tool, electric shaver, refrigerator, air conditioner, television receiver, stereo, water heater, microwave, dishwasher, Washing machines, dryers, lighting devices, toys, medical devices, IoT devices and IoT terminals, robots, road conditioners, traffic lights, railway cars, golf carts, electric carts, electric cars (including hybrid cars) Used as an auxiliary power supply Rukoto can.
  • PDA personal digital assistant
  • a converter that converts power into driving force by supplying power is generally a motor.
  • the control device (control unit) that performs information processing related to vehicle control includes a control device that performs battery remaining amount display based on information regarding the remaining amount of the magnesium secondary battery.
  • a magnesium secondary battery can also be used in the electrical storage apparatus in what is called a smart grid.
  • Such a power storage device can not only supply power but also store power by receiving supply of power from another power source.
  • power sources for example, thermal power generation, nuclear power generation, hydroelectric power generation, solar cells, wind power generation, geothermal power generation, fuel cells (including biofuel cells) and the like can be used.
  • a secondary battery a control unit (control unit) that performs control regarding the secondary battery, and a secondary battery in a battery pack having an outer package including the secondary battery, including the above-described various preferable embodiments and configurations of the preferred embodiments
  • a magnesium secondary battery can be applied.
  • the control means controls, for example, charge and discharge, overdischarge, or overcharge related to the secondary battery.
  • the magnesium secondary battery of the present disclosure including the various preferred embodiments and configurations described above can be applied to a secondary battery in an electronic device that receives power supply from the secondary battery.
  • a secondary in an electric vehicle having a conversion device that receives supply of electric power from a secondary battery and converts it into driving force of the vehicle, and a control device (control unit) that performs information processing related to vehicle control based on information on the secondary battery
  • the magnesium secondary battery of the present disclosure including the various preferred embodiments and configurations described above can be applied to the battery.
  • the conversion device typically receives power supplied from a magnesium secondary battery to drive a motor to generate a driving force. Regenerative energy can also be used to drive the motor.
  • the control device (control unit) performs information processing related to vehicle control, for example, based on the battery remaining amount of the magnesium secondary battery.
  • the electric vehicle includes, for example, so-called hybrid vehicles as well as electric vehicles, electric motorcycles, electric bicycles, railway vehicles and the like.
  • the present disclosure including various preferred forms and configurations described above for a secondary battery in a power system configured to receive supply of power from the secondary battery and / or supply power from the power source to the secondary battery.
  • the magnesium secondary battery can be applied.
  • This power system may be any power system as long as it uses approximately power, and also includes a mere power device.
  • the power system includes, for example, a smart grid, a home energy management system (HEMS), a vehicle, and the like, and can also store power.
  • HEMS home energy management system
  • the magnesium secondary battery of the present disclosure including the various preferred embodiments and configurations described above for the secondary battery in a power storage power supply configured to be connected to an electronic device having a secondary battery and to which power is supplied. Can be applied.
  • the power storage power source can be basically used in any power system or power device regardless of the application of the power source, but it can be used, for example, in a smart grid.
  • the wide band gap semiconductor material of the present disclosure is a bulk or powder semiconductor material which is a direct transition type and has a large band gap of 3 eV or more. And not only can it be applied to the positive electrode member for a secondary battery, it can also be applied to electronic devices such as solar cells, light receiving elements, imaging elements, light emitting elements, semiconductor devices, various sensors, etc. It can also be applied to electrochemical devices such as rechargeable batteries.
  • the flow type secondary battery includes a positive electrode, a negative electrode, and a separator which is sandwiched between the positive electrode and the negative electrode and in which an electrolytic solution is impregnated.
  • Example 1 relates to the magnesium sulfide material of the present disclosure, a magnesium sulfide composite material, a positive electrode member for a secondary battery, a wide band gap semiconductor material and a magnesium secondary battery, and a method for producing zinc blende type magnesium sulfide.
  • the positive electrode member 23 of Example 1 is formed by forming a magnesium sulfide material layer 23B made of magnesium sulfide having a zinc blende type crystal structure on the positive electrode current collector 23A.
  • the magnesium secondary battery 20 of Example 1 is A positive electrode member 23 provided with at least a positive electrode active material layer 23B (specifically, in Example 1, a positive electrode member 23 provided with a positive electrode current collector 23A and a positive electrode active material layer 23B); A separator 24 disposed opposite to the positive electrode member 23 (more specifically, the positive electrode active material layer 23B); A negative electrode member 25 containing magnesium or a magnesium compound disposed opposite to the separator 24; Electrolyte containing magnesium salt, Is a magnesium secondary battery equipped with The positive electrode active material layer 23B is made of magnesium sulfide having a zinc blende type crystal structure.
  • the magnesium sulfide material of Example 1 or the wide band gap semiconductor material of Example 1 is It consists of amorphous magnesium sulfide, or a mixture of fine crystals with a particle size of 20 nm or less in amorphous magnesium sulfide,
  • the microcrystals have a zinc blende type crystal structure (magnesium sulfide material of Example 1), or alternatively, the microcrystals consist of magnesium sulfide having a zinc blende type crystal structure (wide width of Example 1) Band gap semiconductor material).
  • the magnesium sulfide composite material of Example 1 is Having a magnesium sulfide material layer formed on a substrate,
  • the magnesium sulfide material layer is made of amorphous magnesium sulfide or a mixture of crystallites with a particle size of 20 nm or less in amorphous magnesium sulfide,
  • the crystallites consist of magnesium sulfide with a zinc blende type crystal structure.
  • the magnesium sulfide material layer was composed of amorphous magnesium sulfide or contained fine crystals with a particle diameter of 20 nm or less in amorphous magnesium sulfide.
  • the microcrystals consist of magnesium sulfide having a zinc blende type crystal structure.
  • the positive electrode active material layer 23B is made of amorphous magnesium sulfide, or a mixture containing crystallites having a particle size of 20 nm or less in amorphous magnesium sulfide.
  • the crystallites consist of magnesium sulfide having a zinc blende type crystal structure.
  • the electrolyte comprises a solvent comprising sulfone and a magnesium salt dissolved in the solvent. More specifically, in the magnesium secondary battery of Example 1, the positive electrode active material layer 23B is formed on the positive electrode current collector 23A, but the positive electrode active material layer 23B has a zinc blende type crystal structure. It has an aggregate of crystallites made of magnesium sulfide.
  • the magnesium salt comprises magnesium chloride (MgCl 2 ), and the sulfone constituting the solvent comprises ethyl-n-propyl sulfone (EnPS).
  • the sulfur layer is composed of sulfur S 8.
  • Example 1 the materials shown in Table 3 below were used as various members constituting the magnesium secondary battery.
  • sulfur (S) in the positive electrode active material constituent material is used to prepare the magnesium secondary battery of Example 1
  • MgS of sodium chloride type 6 coordination structure is used as the magnesium secondary battery of Comparative Example 1.
  • S sulfur
  • MgS of sodium chloride type 6 coordination structure is used as the magnesium secondary battery of Comparative Example 1.
  • the crystal structure of magnesium sulfide having a zinc blende type crystal structure is shown on the left side of FIG. 5, and the crystal structure of magnesium sulfide having a sodium chloride type 6 coordination structure is shown on the right side of FIG.
  • Electrolyte component MgCl 2 (anhydride): Sigma-Aldrich ethyl normal propyl sulfone (EnPS) : Dehydration specification for battery for Toyama Pharmaceutical Co., Ltd./Separator constituent material: Glass filter GC50 made by Advantech Co., Ltd.
  • a positive electrode member was manufactured by the following method. That is, sulfur and ketjen black were mixed at a mass ratio of 7: 3 and water, ethanol, a styrene-butadiene rubber suspension, and an aqueous solution of carboxymethyl cellulose were added to the obtained mixture and mixed for 5 minutes. The slurry thus obtained was applied onto a stainless steel foil as a positive electrode current collector using a doctor blade. The gap of the doctor blade was set to 150 ⁇ m. Subsequently, the positive electrode member in Example 1 was produced by vacuum-drying at 40 degreeC for 12 hours. In this positive electrode member, the sulfur layer 23b is formed on the positive electrode current collector 23A, and may be referred to as a positive electrode member / starting member.
  • a positive electrode member was manufactured by the following method. That is, MgS of a sodium chloride type 6 coordination structure, ketjen black and polytetrafluoroethylene (PTFE) were mixed at a mass ratio of 1: 6: 3 using a rattan mortar. Next, it was rolled and formed about 10 times with a roller compactor while conforming to acetone. Thereafter, vacuum drying was performed at 70 ° C. for 12 hours to produce a positive electrode member in Comparative Example 1.
  • MgS of a sodium chloride type 6 coordination structure, ketjen black and polytetrafluoroethylene (PTFE) were mixed at a mass ratio of 1: 6: 3 using a rattan mortar. Next, it was rolled and formed about 10 times with a roller compactor while conforming to acetone. Thereafter, vacuum drying was performed at 70 ° C. for 12 hours to produce a positive electrode member in Comparative Example 1.
  • Example 1 MgCl 2 / ethyl normal propyl sulfone (molar ratio 1: 8) was used as an electrolytic solution.
  • a magnesium plate having a diameter of 15 mm and a thickness of 0.20 mm was used as the negative electrode member 25.
  • An electrolytic solution (MgCl 2 -EnPS) was prepared as follows.
  • the sample after methanol removal had white turbidity when MgCl 2 was dissolved in methanol, so it was filtered in a glove box (pore diameter: 0.45 ⁇ m; made by Whatman).
  • the configuration of the magnesium secondary battery (coin battery 20, CR2016 type) of Example 1 is shown in the schematic view of FIG. 1, but a gasket 22 is placed on the coin battery can 21 and a positive electrode member 23 (sulfur (S 8 )) Positive electrode current collector 23A and positive electrode active material layer 23B), separator 24, negative electrode member 25 made of Mg plate of 1.5 mm in diameter and 0.25 mm in thickness, spacer 26 made of stainless steel plate of 0.5 mm in thickness, coin battery After stacking the lids 27 in order, the coin battery can 21 was crimped and sealed. The spacer 26 was spot-welded to the coin battery cover 27 in advance.
  • the separator 24 contains the above-mentioned electrolytic solution.
  • Example 1 the sulfur layer 23b formed on the first electrode (specifically, the positive electrode current collector 23A), and the second electrode containing magnesium or a magnesium compound (specifically, The negative electrode member 25) is disposed in a state of sandwiching the electrolytic solution containing a magnesium salt, and a discharge is generated between the first electrode (positive electrode current collector 23A) and the second electrode (negative electrode member 25).
  • the first electrode positive electrode current collector 23A
  • the second electrode negative electrode member 25
  • a discharge may be generated (that is, a normal discharge in a secondary battery may be generated).
  • the magnesium salt is made of magnesium chloride (MgCl 2 ), and the electrolyte contains ethyl-n-propyl sulfone (EnPS).
  • magnesium ions (Mg 2+ ) from the negative electrode member 11 are electrolytes during the first discharge.
  • the sulfur layer 23b of the positive electrode member 10 By moving to the sulfur layer 23b of the positive electrode member 10 through the layer 12, the sulfur layer 23b formed on the positive electrode current collector is made into a zinc blende type magnesium sulfide layer (positive electrode active material layer 23B).
  • the magnesium secondary battery of Example 1 the magnesium ion (Mg 2+ ) passes from the positive electrode active material layer 23B through the electrolyte layer 12 to the negative electrode member at the time of the first charging or later. By moving to 11, electrical energy is converted to chemical energy and stored. On the other hand, at the time of the second discharge or at the time of the subsequent discharge, electric energy is generated by the return of magnesium ions (Mg 2+ ) from the negative electrode member 11 through the electrolyte layer 12 to the positive electrode active material layer 23B. That is, the magnesium secondary battery of Example 1 is a magnesium secondary battery of charge start or discharge start.
  • the discharge curve (it shows with "A" in FIG. 2A) at the time of performing 1st discharge in the magnesium secondary battery of Example 1 to FIG. 2A, and the charge curve when 1st charge is performed. (Shown as “B” in FIG. 2A).
  • a charge plateau was observed from around the charge voltage of 2 volts, and the charge reaction capacity was also large, and good charge characteristics were obtained. That is, in the magnesium secondary battery of Example 1, MgS having a zinc blende structure constituting the positive electrode active material layer 23B can electrochemically desorb magnesium ions, and a magnesium-sulfur secondary battery It turned out that it fully functions as a positive electrode active material of
  • MgS having a sodium chloride type 6-coordinated structure has low ion conductivity, and as shown in FIG. 2B, a charge curve when the first charging is performed in the magnesium secondary battery of Comparative Example 1, a positive electrode active material In the sodium chloride type 6-coordinate MgS constituting the layer, no charge plateau was observed even if the charge voltage exceeded 2 volts, and it was found that the charge reaction capacity was low, that is, it was not charged.
  • MgS having a sodium chloride type 6 coordination structure magnesium ions do not electrochemically desorb and do not function as a positive electrode active material of a magnesium-sulfur secondary battery.
  • the magnesium secondary battery of Example 1 obtained as described above was disassembled in a glove box, and the positive electrode active material layer was taken out and observed under an argon atmosphere by X-ray diffraction according to the method described above . As a result, it was confirmed that magnesium sulfide was amorphous.
  • the graph which shows the X-ray-diffraction result, such as a positive electrode active material layer in the magnesium secondary battery of Example 1, is shown in FIG. In FIG. 4, “A” is the result of X-ray diffraction of the positive electrode active material layer in the magnesium secondary battery of Example 1 after the first discharge, and “B” is the first discharge.
  • the result of X-ray diffraction of the positive electrode active material layer in the magnesium secondary battery of Example 1 before performing the step “C” is the result of X-ray diffraction of sulfur (S 8 ).
  • Sulfur is present in the positive electrode active material layer in the magnesium secondary battery of Example 1 before the first discharge, but the magnesium secondary battery of Example 1 after the first discharge is performed It can be clearly seen that no sulfur is present in the positive electrode active material layer in.
  • Example 1 and Comparative Example 1 obtained as described above are disassembled in a glove box, the positive electrode active material layer is taken out, the positive electrode active material layer is scraped, and a powdery positive electrode active material is obtained.
  • solid 25 Mg-NMR measurement and solid 33 S-NMR measurement were performed according to the method described above.
  • chemical shift calculations of 25 Mg-NMR and 33 S-NMR of MgS having a zinc blende type structure and MgS having a sodium chloride type 6-coordinated structure were performed by first principles calculation using NMR CASTEP. These results are shown in FIG. 3A.
  • “A”, “B”, “C”, “D”, “E”, “F”, “G” and “H” show the following results.
  • the positive electrode active material in the magnesium secondary battery of Example 1 is in good agreement with the NMR measurement results and the calculation results, and the positive electrode active material in the magnesium secondary battery of Example 1 is MgS having a zinc blende type structure It could be confirmed that it consists of Similarly, in the positive electrode active material (MgS of sodium chloride type 6 coordination structure) in the magnesium secondary battery of Comparative Example 1, the NMR measurement result and the calculation result are in good agreement, and solid 25 Mg-NMR measurement and solid The validity of the 33 S-NMR measurement and the first principle calculation using NMR CASTEP could be verified.
  • the magnesium secondary battery of Example 1 obtained as described above is disassembled in a glove box, the positive electrode active material layer is taken out, the positive electrode active material layer is scraped, and a powdery positive electrode active material is obtained. The Then, HE-XRD measurement was performed, and the result of extracting the atomic pair correlation function is shown in FIG. 3B.
  • the magnesium-sulfur interatomic distance in the positive electrode active material of the magnesium secondary battery of Example 1 was found to be 2.5 angstrom. This value is smaller than the magnesium-sulfur interatomic distance of 2.6 angstroms of sodium chloride-type hexacoordinated MgS (J. Phys. Chem. C 2015, 119, 731-740), and zinc blende It is a possible value if it is MgS having a mold structure.
  • the discharge is generated between the first electrode and the second electrode (that is, based on the electrochemical method), Since the sulfur layer formed on the first electrode is a zinc blende type magnesium sulfide layer, a bulk or powdery zinc blende type magnesium sulfide layer can be obtained by an extremely easy method.
  • magnesium sulfide obtained by the method for producing zinc blende type magnesium sulfide of Example 1, and the magnesium sulfide material of Example 1, magnesium sulfide composite material of Example 1, two of Example 1 A bulk or powdery sulfide having a zinc blende type crystal structure in each of a positive electrode member for a secondary battery, the wide band gap semiconductor material of Example 1, and the positive electrode active material layer of the magnesium secondary battery of Example 1 Since magnesium is in a metastable state, magnesium ions can be relatively easily released from zinc blende type magnesium sulfide or magnesium sulfide having a zinc blende type crystal structure.
  • the magnesium secondary battery of the present disclosure can be either a discharge start type or a charge start type.
  • Example 2 is a modification of Example 1.
  • the electrochemical device of Example 2 is composed of a flow type secondary battery (redox flow battery) as a conceptual diagram is shown in FIG.
  • the flow type secondary battery includes, for example, a positive electrode current collector 61, a positive electrode electrolyte solution 62, a positive electrode electrolyte solution transport pump 63, a fuel flow path 64, a positive electrode electrolyte storage container 65, a negative electrode current collector 71, and a negative electrode.
  • the positive electrode electrolyte 62 continuously or intermittently flows (circulates) through the positive electrode electrolyte storage container 65 and the positive electrode electrolyte transfer pump 63, and the fuel flow In the channel 74, the negative electrode electrolyte 72 continuously or intermittently flows (circulates) through the negative electrode electrolyte storage container 75 and the negative electrode electrolyte transport pump 73, and the positive electrode current collector Power generation is performed between the electrode 61 and the negative electrode current collector 71.
  • the electrolytic solution 62 for positive electrode one obtained by adding the positive electrode active material to the electrolytic solution of Example 1 can be used, and as the electrolytic solution 72 for negative electrode, one using the negative electrode active material added to the electrolytic solution of Example 1 is used. be able to.
  • Example 3 is also a modification of Example 1.
  • the wide band gap semiconductor material described in Example 1 was applied to an electronic device, specifically, a solar cell.
  • an n-type comprised of the current collector 30, the p-type semiconductor layer 31, and the wide band gap semiconductor material described in Example 1
  • the semiconductor layer 32 and the electrode 33 are stacked.
  • the current collector 30 may be made of any conductive and electrochemically durable material, and from the viewpoint of heat resistance, for example, iron, copper, aluminum, nickel, stainless steel, Metal materials such as titanium, tantalum, molybdenum, gold and platinum are preferred.
  • the current collector 30 can also be configured from an insulating material such as glass and a conductive layer formed on the insulating material.
  • the p-type semiconductor material constituting the p-type semiconductor layer 31 may be appropriately selected from well-known materials.
  • the electrode 33 may be made of a known conductive material.
  • the wide band gap semiconductor material described in the first embodiment can also be used as a material constituting the electrode of the water-splitting apparatus.
  • Example 4 an electrochemical device (specifically, a magnesium secondary battery) of the present disclosure and an application example thereof will be described.
  • the magnesium secondary battery of the present disclosure described in the first embodiment is a machine, an apparatus, an apparatus, a system (a plurality of machines, an apparatus, an apparatus, and The present invention can be applied to a collection of devices and the like without particular limitation.
  • the magnesium secondary battery (specifically, a magnesium-sulfur secondary battery) used as a power source may be a main power source (a power source used preferentially) or an auxiliary power source (in place of the main power source) Or, it may be a power supply used by switching from the main power supply).
  • the main power source is not limited to the magnesium secondary battery.
  • Power storage systems such as TV systems, home energy servers (home power storage devices), power supply systems; power storage units and backup power supplies; electric vehicles, electric bikes, electric bicycles, electric vehicles such as Segway (registered trademark); aircraft and ships
  • a power driving force conversion device specifically, for example, a power motor
  • the magnesium secondary battery of the present disclosure is applied to a battery pack, an electric vehicle, an electric power storage system, an electric power supply system, an electric tool, an electronic device, an electric device and the like.
  • the battery pack is a power source using the magnesium secondary battery of the present disclosure, and is a so-called assembled battery or the like.
  • the electric vehicle is a vehicle that operates (travels) using the magnesium secondary battery of the present disclosure as a driving power source, and may be an automobile (hybrid vehicle or the like) that is provided with a driving source other than the secondary battery.
  • the power storage system (power supply system) is a system using the magnesium secondary battery of the present disclosure as a power storage source.
  • the electric power tool is a tool in which a movable portion (for example, a drill or the like) moves using the magnesium secondary battery of the present disclosure as a power supply for driving.
  • the electronic device and the electric device are devices that exhibit various functions as a power supply (power supply source) for operating the magnesium secondary battery of the present disclosure.
  • FIG. 1 A schematic cross-sectional view of a cylindrical magnesium secondary battery 100 is shown in FIG.
  • the electrode structure 121 and the pair of insulating plates 112 and 113 are accommodated in the substantially hollow cylindrical electrode structure accommodating member 111.
  • the electrode structure 121 can be produced, for example, by laminating the positive electrode member 122 and the negative electrode member 124 via the separator 126 to obtain an electrode structure, and then winding the electrode structure.
  • the positive electrode member 122 includes the magnesium sulfide material or the wide band gap semiconductor material of Example 1, or alternatively, is made of the magnesium sulfide composite material of Example 1 or the positive electrode member.
  • the electrode structure storage member (battery can) 111 has a hollow structure in which one end is closed and the other end is opened, and is made of iron (Fe), aluminum (Al) or the like.
  • the surface of the electrode structure storage member 111 may be plated with nickel (Ni) or the like.
  • the pair of insulating plates 112 and 113 sandwich the electrode structure 121 and is arranged to extend perpendicularly to the winding circumferential surface of the electrode structure 121.
  • a battery cover 114, a safety valve mechanism 115 and a thermal resistance element (PTC element, positive temperature coefficient element) 116 are crimped via a gasket 117, whereby the electrode The structure storage member 111 is sealed.
  • the battery cover 114 is made of, for example, the same material as the electrode structure storage member 111.
  • the safety valve mechanism 115 and the thermal resistance element 116 are provided inside the battery cover 114, and the safety valve mechanism 115 is electrically connected to the battery cover 114 via the thermal resistance element 116.
  • the disc plate 115A is reversed when the internal pressure becomes equal to or higher than a predetermined value due to internal short circuit or external heating. Then, the electrical connection between the battery cover 114 and the electrode structure 121 is cut off. In order to prevent abnormal heat generation caused by a large current, the resistance of the heat sensitive resistance element 116 increases with the temperature rise.
  • the gasket 117 is made of, for example, an insulating material. Asphalt etc. may be applied to the surface of the gasket 117.
  • the positive electrode lead portion 123 made of a conductive material such as aluminum is connected to the positive electrode member 122. Specifically, the positive electrode lead portion 123 is attached to the positive electrode current collector.
  • a negative electrode lead portion 125 made of a conductive material such as copper is connected to the negative electrode member 124. Specifically, the negative electrode lead portion 125 is attached to the negative electrode current collector.
  • the negative electrode lead portion 125 is welded to the electrode structure storage member 111 and is electrically connected to the electrode structure storage member 111.
  • the positive electrode lead portion 123 is welded to the safety valve mechanism 115 and electrically connected to the battery lid 114.
  • the negative electrode lead portion 125 is at one place (the outermost periphery of the wound electrode assembly), but at two places (the outermost periphery and the outermost periphery of the wound electrode assembly) It may be provided on the inner circumference).
  • the electrode structure 121 includes a positive electrode member 122 having a positive electrode active material layer formed on the positive electrode current collector (specifically, on both sides of the positive electrode current collector), and on the negative electrode current collector (specifically, And the negative electrode member 124 in which the negative electrode active material layer was formed on both surfaces of the negative electrode current collector is laminated via the separator 126.
  • the positive electrode active material layer is not formed in the region of the positive electrode current collector to which the positive electrode lead portion 123 is attached, and the negative electrode active material layer is not formed in the region of the negative electrode current collector to which the negative electrode lead portion 125 is attached.
  • the specifications of the magnesium secondary battery 100 are exemplified in Table 4 below, but are not limited thereto.
  • the magnesium secondary battery 100 can be manufactured, for example, based on the following procedure.
  • a sulfur layer for forming a positive electrode active material layer is formed on both sides of a positive electrode current collector, and a negative electrode active material layer is formed on both sides of a negative electrode current collector.
  • the positive electrode lead portion 123 is attached to the positive electrode current collector using a welding method or the like.
  • the negative electrode lead portion 125 is attached to the negative electrode current collector using a welding method or the like.
  • the positive electrode member 122 and the negative electrode member 124 are laminated through a separator 126 made of a microporous polyethylene film with a thickness of 20 ⁇ m and wound (more specifically, the positive electrode member 122 / separator 126 / negative electrode
  • a protective tape (not shown) is attached to the outermost periphery.
  • the center pin 118 is inserted into the center of the electrode structure 121.
  • the electrode structure 121 is housed inside the electrode structure housing member (battery can) 111 while sandwiching the electrode structure 121 between the pair of insulating plates 112 and 113.
  • the front end portion of the positive electrode lead portion 123 is attached to the safety valve mechanism 115 and the front end portion of the negative electrode lead portion 125 is attached to the electrode structure storage member 111 using a welding method or the like.
  • the electrolyte solution of Example 1 is injected based on the pressure reduction method to impregnate the separator 126 with the electrolyte solution.
  • the battery cover 114, the safety valve mechanism 115, and the heat sensitive resistance element 116 are crimped to the open end of the electrode structure storage member 111 via the gasket 117.
  • the zinc layer formed on the positive electrode current collector has a zinc-blende-type magnesium sulfide layer (zinc-blende-type crystal structure A layer of magnesium sulfide).
  • the magnesium secondary battery 100 can be obtained.
  • FIG. 1 A schematic exploded perspective view of a magnesium secondary battery is shown in FIG.
  • the same electrode structure 221 as that described above is basically housed inside the exterior member 200 made of a laminate film.
  • the electrode structure 221 can be manufactured by winding the laminated structure after laminating the positive electrode member and the negative electrode member via the separator and the electrolyte layer.
  • the positive electrode lead portion 223 is attached to the positive electrode member, and the negative electrode lead portion 225 is attached to the negative electrode member.
  • the outermost periphery of the electrode structure 221 is protected by a protective tape.
  • the positive electrode lead portion 223 and the negative electrode lead portion 225 protrude from the inside to the outside of the package member 200 in the same direction.
  • the positive electrode lead portion 223 is formed of a conductive material such as aluminum.
  • the negative electrode lead portion 225 is formed of a conductive material such as copper, nickel and / or stainless steel.
  • the exterior member 200 is a single sheet of film foldable in the direction of the arrow R shown in FIG. 9, and a recess (emboss) for housing the electrode structure 221 is provided in part of the exterior member 200.
  • the exterior member 200 is, for example, a laminate film in which a fusion bonding layer, a metal layer, and a surface protective layer are laminated in this order.
  • the package member 200 may be a laminate of two laminated films with an adhesive or the like.
  • the fusion layer comprises, for example, a film such as polyethylene and / or polypropylene.
  • the metal layer is made of, for example, an aluminum foil or the like.
  • the surface protective layer is made of, for example, nylon and / or polyethylene terephthalate.
  • the exterior member 200 is preferably an aluminum laminate film in which a polyethylene film, an aluminum foil, and a nylon film are laminated in this order.
  • the exterior member 200 may be a laminate film having another laminated structure, a polymer film such as polypropylene, or a metal film.
  • a moisture resistant aluminum laminate film (total thickness) in which a nylon film (thickness 30 ⁇ m), an aluminum foil (thickness 40 ⁇ m), and a non-oriented polypropylene film (thickness 30 ⁇ m) are laminated in this order from the outside 100 ⁇ m).
  • the adhesive film 201 is inserted between the exterior member 200 and the positive electrode lead portion 223 and between the exterior member 200 and the negative electrode lead portion 225 in order to prevent the intrusion of the outside air.
  • the adhesive film 201 is a material having adhesiveness to the positive electrode lead portion 223 and the negative electrode lead portion 225, for example, a polyolefin resin etc., more specifically, a polyolefin resin such as polyethylene, polypropylene, modified polyethylene and / or modified polypropylene. It consists of
  • the battery pack is a simple battery pack (so-called soft pack) using one of the magnesium secondary batteries of the present disclosure, and is mounted on, for example, an electronic device represented by a smartphone.
  • it comprises a battery assembly composed of six magnesium secondary batteries of the present disclosure connected in two parallel three series.
  • the connection type of the magnesium secondary battery may be in series, in parallel, or a combination of both.
  • the battery pack includes a cell (assembled battery) 1001, an exterior member, a switch unit 1021, a current detection resistor 1014, a temperature detection element 1016, and a control unit 1010.
  • the switch unit 1021 includes a charge control switch 1022 and a discharge control switch 1024.
  • the battery pack includes a positive electrode terminal 1031 and a negative electrode terminal 1032, and during charging, the positive electrode terminal 1031 and the negative electrode terminal 1032 are connected to the positive electrode terminal and the negative electrode terminal of the charger, respectively, to perform charging.
  • the positive electrode terminal 1031 and the negative electrode terminal 1032 are connected to the positive electrode terminal and the negative electrode terminal of the electronic device, respectively, and discharge is performed.
  • the cell 1001 is configured by connecting a plurality of magnesium secondary batteries 1002 of the present disclosure in series and / or in parallel. Note that FIG. 10 shows the case where six magnesium secondary batteries 1002 are connected in two parallel three series (2P3S), but in addition, like p parallel q series (where p and q are integers). Any connection method may be used.
  • the switch unit 1021 includes a charge control switch 1022 and a diode 1023, and a discharge control switch 1024 and a diode 1025, and is controlled by the control unit 1010.
  • the diode 1023 has a reverse direction to the charge current flowing from the positive electrode terminal 1031 to the cell 1001 and a forward direction to the discharge current flowing from the negative electrode terminal 1032 to the cell 1001.
  • the diode 1025 has a forward direction with respect to the charge current and a reverse direction with respect to the discharge current.
  • the switch portion is provided on the plus (+) side in the example, it may be provided on the minus ( ⁇ ) side.
  • the charge control switch 1022 is closed when the battery voltage becomes the overcharge detection voltage, and is controlled by the control unit 1010 so that the charge current does not flow in the current path of the cell 1001. After the charge control switch 1022 is closed, only discharge can be performed through the diode 1023.
  • the control unit 1010 is controlled to be closed and to cut off the charging current flowing in the current path of the cell 1001.
  • the discharge control switch 1024 is closed when the battery voltage becomes the overdischarge detection voltage, and is controlled by the control unit 1010 so that the discharge current does not flow in the current path of the cell 1001. After the discharge control switch 1024 is closed, only charging can be performed through the diode 1025.
  • the control unit 1010 is controlled to be closed and to interrupt the discharge current flowing in the current path of the cell 1001.
  • the temperature detection element 1016 is, for example, a thermistor, and is provided in the vicinity of the cell 1001.
  • the temperature measurement unit 1015 measures the temperature of the cell 1001 using the temperature detection element 1016 and sends the measurement result to the control unit 1010.
  • the voltage measuring unit 1012 measures the voltage of the cell 1001 and the voltage of each of the magnesium secondary batteries 1002 that constitute the cell 1001, A / D converts the measurement result, and sends it to the control unit 1010.
  • the current measurement unit 1013 measures the current using the current detection resistor 1014, and sends the measurement result to the control unit 1010.
  • the switch control unit 1020 controls the charge control switch 1022 and the discharge control switch 1024 of the switch unit 1021 based on the voltage and current sent from the voltage measurement unit 1012 and the current measurement unit 1013.
  • the switch control unit 1020 controls the switch unit 1021 when any voltage of the magnesium secondary battery 1002 falls below the overcharge detection voltage or the overdischarge detection voltage, or when a large current rapidly flows. By sending a signal, overcharge and overdischarge, and over current charge and discharge are prevented.
  • the charge control switch 1022 and the discharge control switch 1024 can be composed of, for example, a semiconductor switch such as a MOSFET. In this case, diodes 1023 and 1025 are configured by parasitic diodes of the MOSFETs.
  • the switch control unit 1020 supplies the control signal DO and the control signal CO to the gate portions of the charge control switch 1022 and the discharge control switch 1024.
  • the charge control switch 1022 and the discharge control switch 1024 are turned on by the gate potential which is lower than the source potential by a predetermined value or more. That is, in the normal charge and discharge operation, the control signal CO and the control signal DO are set to the low level, and the charge control switch 1022 and the discharge control switch 1024 are brought into conduction. Then, for example, in the case of overcharge or overdischarge, the control signal CO and the control signal DO are set to the high level, and the charge control switch 1022 and the discharge control switch 1024 are closed.
  • the memory 1011 is formed of, for example, an EPROM (Erasable Programmable Read Only Memory) which is a non-volatile memory.
  • the memory 1011 stores in advance the numerical value calculated by the control unit 1010, the internal resistance value of the magnesium secondary battery in the initial state of each magnesium secondary battery 1002 measured at the stage of the manufacturing process, and the like. And can be rewritten as appropriate. Further, by storing the full charge capacity of the magnesium secondary battery 1002, for example, the remaining capacity can be calculated together with the control unit 1010.
  • EPROM Erasable Programmable Read Only Memory
  • the temperature measurement unit 1015 measures the temperature using the temperature detection element 1016, performs charge / discharge control at the time of abnormal heat generation, and performs correction in calculation of the remaining capacity.
  • FIG. 11A shows a block diagram showing a configuration of an electric-powered vehicle such as a hybrid car which is an example of the electric-powered vehicle.
  • the motor-driven vehicle includes a control unit 2001, various sensors 2002, a power supply 2003, an engine 2010, a generator 2011, inverters 2012 and 2013, a driving motor 2014, a differential gear 2015, and the like inside a metal case 2000.
  • a transmission 2016 and a clutch 2017 are provided.
  • the electric vehicle includes, for example, a front wheel drive shaft 2021, a front wheel 2022, a rear wheel drive shaft 2023, and a rear wheel 2024 connected to the differential device 2015 and the transmission 2016.
  • the electric vehicle can travel, for example, using either the engine 2010 or the motor 2014 as a drive source.
  • the engine 2010 is a main power source, such as a gasoline engine.
  • the driving force (rotational force) of the engine 2010 is transmitted to the front wheel 2022 or the rear wheel 2024 via, for example, the differential device 2015 as a driving unit, the transmission 2016, and the clutch 2017.
  • the rotational force of the engine 2010 is also transmitted to the generator 2011, and the generator 2011 generates alternating current power using the rotational force, and the alternating current power is converted to direct current power via the inverter 2013 and stored in the power supply 2003 .
  • the motor 2014 which is a conversion unit is used as a motive power source
  • the electric power (DC power) supplied from the power source 2003 is converted into AC power via the inverter 2012, and the motor 2014 is driven using AC power.
  • the driving force (rotational force) converted from the electric power by the motor 2014 is transmitted to the front wheel 2022 or the rear wheel 2024 via, for example, the differential device 2015 as a driving unit, the transmission 2016, and the clutch 2017.
  • the resistance during deceleration is transmitted to the motor 2014 as a rotational force, and the rotational force may be used to cause the motor 2014 to generate AC power.
  • AC power is converted to DC power via inverter 2012, and DC regenerative power is stored in power supply 2003.
  • the control unit 2001 controls the operation of the entire electric vehicle, and includes, for example, a CPU.
  • the power source 2003 includes one or more magnesium secondary batteries (not shown) described in the first embodiment.
  • the power supply 2003 may be connected to an external power supply, and may be configured to store power by receiving power supply from the external power supply.
  • the various sensors 2002 are used, for example, to control the rotational speed of the engine 2010 and to control the opening degree (throttle opening degree) of a throttle valve (not shown).
  • the various sensors 2002 include, for example, a speed sensor, an acceleration sensor, an engine rotational speed sensor, and the like.
  • the electric vehicle may be a vehicle (electric vehicle) that operates only using the power supply 2003 and the motor 2014 without using the engine 2010.
  • the power storage system includes, for example, a control unit 3001, a power supply 3002, a smart meter 3003, and a power hub 3004 inside a house 3000 such as a home or a commercial building.
  • the power supply 3002 is connected to, for example, an electric device (electronic device) 3010 installed inside the house 3000, and can be connected to an electric vehicle 3011 stopped outside the house 3000.
  • the power supply 3002 is connected to, for example, a private generator 3021 installed in a house 3000 via a power hub 3004, and can be connected to an external centralized power system 3022 via a smart meter 3003 and a power hub 3004. is there.
  • the electrical device (electronic device) 3010 includes, for example, one or more home appliances. As a household appliance, a refrigerator, an air-conditioner, a television receiver, a water heater etc. can be mentioned, for example.
  • the private generator 3021 is configured of, for example, a solar power generator, a wind power generator, or the like.
  • Examples of the electric vehicle 3011 include an electric car, a hybrid car, an electric motorcycle, an electric bicycle, Segway (registered trademark), and the like.
  • a centralized power system 3022 a commercial power source, a power generation device, a power transmission network, a smart grid (next generation power transmission network) can be mentioned, and also, for example, a thermal power plant, a nuclear power plant, a hydroelectric power plant, a wind power plant
  • various solar cells, fuel cells, wind power generators, micro-hydro power generators, geothermal power generators, etc. can be exemplified as the power generators provided in the centralized power grid 3022. It is not limited to these.
  • the control unit 3001 controls the operation of the entire power storage system (including the use state of the power supply 3002), and includes, for example, a CPU.
  • the power supply 3002 includes one or more magnesium secondary batteries (not shown) described in the first embodiment.
  • the smart meter 3003 is, for example, a network compatible power meter installed in a house 3000 on the power demand side, and can communicate with the power supply side. The smart meter 3003 can perform efficient and stable energy supply by controlling the balance of supply and demand in the house 3000 while communicating with the outside, for example.
  • the power storage system for example, power is stored in the power supply 3002 from the centralized power system 3022 which is an external power supply via the smart meter 3003 and the power hub 3004, and from an independent generator 3021 to the power hub 3004. Power is then stored in the power supply 3002.
  • the electric power stored in the power supply 3002 is supplied to the electric device (electronic device) 3010 and the electric vehicle 3011 according to the instruction of the control unit 3001, so that the electric device (electronic device) 3010 can be operated and The vehicle 3011 can be charged.
  • the power storage system is a system that enables storage and supply of power in the house 3000 using the power supply 3002.
  • the power stored in the power supply 3002 is arbitrarily available. Therefore, for example, power can be stored in the power supply 3002 from the centralized power system 3022 at midnight, at which the electricity charge is inexpensive, and the power stored in the power supply 3002 can be used during the day when the electricity charge is high.
  • the power storage system described above may be installed for each household (one household), or may be installed for each household (plural households).
  • the power tool is, for example, a power drill, and includes a control unit 4001 and a power supply 4002 inside a tool main body 4000 made of a plastic material or the like.
  • a drill portion 4003 which is a movable portion is rotatably attached to the tool main body 4000.
  • the control unit 4001 controls the operation of the entire electric power tool (including the use state of the power supply 4002), and includes, for example, a CPU.
  • the power supply 4002 includes one or more magnesium secondary batteries (not shown) described in the first embodiment.
  • the control unit 4001 supplies power from the power supply 4002 to the drill unit 4003 according to the operation of the operation switch (not shown).
  • the present disclosure has been described above based on the preferred embodiments, the present disclosure is not limited to these embodiments.
  • the raw materials, manufacturing methods, manufacturing conditions, electronic devices and electrochemical devices, and configurations and structures of magnesium secondary batteries of various members constituting magnesium secondary batteries described in the examples are exemplifications, and the present invention is not limited thereto. Also, it can be changed as appropriate.
  • the magnesium sulfide composite material of the present disclosure only the magnesium sulfide material layer may be formed on the substrate as described in Example 1, and in some cases, the substrate and the magnesium sulfide material layer It may be in the form of having a sulfur layer between them.
  • the present disclosure can also be configured as follows.
  • [A01] ⁇ Manufacturing method of zinc blende type magnesium sulfide ⁇
  • the sulfur layer formed on the first electrode and the second electrode containing magnesium or a magnesium compound are disposed in a state of sandwiching the electrolytic solution containing a magnesium salt, and discharge is performed between the first electrode and the second electrode.
  • the method for producing zinc blende-type magnesium sulfide, wherein the sulfur layer formed on the first electrode is formed into zinc blende-type magnesium sulfide layer by [A02] The zinc blende type according to [A01], in which a discharge is generated between the first electrode and the second electrode by electrically connecting the first electrode and the second electrode via a resistor. Method of producing magnesium sulfide.
  • Magnesium salt consists of magnesium chloride, The method for producing zinc blende-type magnesium sulfide according to [A01] or [A02], wherein the electrolytic solution contains ethyl-n-propyl sulfone.
  • Magnesium sulfide material >> It consists of amorphous magnesium sulfide, or a mixture of fine crystals with a particle size of 20 nm or less in amorphous magnesium sulfide,
  • the microcrystal is a magnesium sulfide material comprising magnesium sulfide having a zinc blende type crystal structure.
  • the magnesium sulfide material layer is made of amorphous magnesium sulfide or a mixture of crystallites with a particle size of 20 nm or less in amorphous magnesium sulfide, A magnesium sulfide composite material, wherein the crystallites consist of magnesium sulfide having a zinc blende type crystal structure.
  • the magnesium sulfide composite material according to [C01] having a sulfur layer between the substrate and the magnesium sulfide material layer.
  • a positive electrode member for a secondary battery wherein a magnesium sulfide material layer made of magnesium sulfide having a zinc blende type crystal structure is formed on a positive electrode current collector.
  • the magnesium sulfide material layer is made of amorphous magnesium sulfide, or a mixture of fine crystals with a particle size of 20 nm or less in amorphous magnesium sulfide,
  • the positive electrode member for a secondary battery according to [D01] wherein the microcrystals are made of magnesium sulfide having a zinc blende type crystal structure.
  • the positive electrode active material layer is made of amorphous magnesium sulfide or a mixture of fine crystals with a particle size of 20 nm or less in amorphous magnesium sulfide,
  • the electrolytic solution comprises a solvent comprising sulfone, and a magnesium salt dissolved in the solvent.
  • Magnesium salt consists of magnesium chloride,
  • the sulfone constituting the solvent includes ethyl-n-propyl sulfone [M03] a magnesium secondary battery according to [E03].
  • "Wide band gap semiconductor material” It consists of amorphous magnesium sulfide, or a mixture of fine crystals with a particle size of 20 nm or less in amorphous magnesium sulfide, The microcrystal is a wide band gap semiconductor material comprising magnesium sulfide having a zinc blende type crystal structure.
  • Battery pack A battery pack comprising a secondary battery, control means for controlling the secondary battery, and an outer package containing the secondary battery,
  • the secondary battery is a battery pack comprising the magnesium secondary battery according to any one of [E01] to [E04].
  • Electrics An electronic device that receives power supply from a secondary battery,
  • the secondary battery is an electronic device comprising the magnesium secondary battery according to any one of [E01] to [E04].
  • Power system A power system configured to receive supply of power from a secondary battery and / or supply power from a power source to the secondary battery, An electric power system which consists of a magnesium rechargeable battery given in any 1 paragraph of [E01] thru [E04] a rechargeable battery.
  • a power storage power supply comprising a secondary battery and configured to be connected to an electronic device to which power is supplied
  • a secondary battery is a power storage power supply comprising the magnesium secondary battery according to any one of [E01] to [E04].
  • Power hub 3010 ... Electric equipment (electronic equipment), 3011 ... Electric vehicle, 3021 ... Private generator, 3022 ... Centralized electric power system, 4000 ... ⁇ Tool body, 4001 ⁇ ⁇ ⁇ Control unit, 4002 ⁇ ⁇ ⁇ Power supply, 4003 ⁇ ⁇ ⁇ Drill portion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Metallurgy (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

少なくとも正極活物質層23Bを備えた正極部材23、正極部材23に対向して配設されたセパレータ24、セパレータ24に対向して配設されたマグネシウム又はマグネシウム化合物を含む負極部材25、並びに、マグネシウム塩を含む電解液を備えたマグネシウム二次電池が提供される。正極活物質層23Bは、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成る。

Description

硫化マグネシウム材料、硫化マグネシウム複合材料、二次電池用の正極部材、ワイドバンドギャップ半導体材料及びマグネシウム二次電池、並びに、閃亜鉛鉱型硫化マグネシウムの製造方法
 本開示は、硫化マグネシウム材料、硫化マグネシウム複合材料、二次電池用の正極部材、ワイドバンドギャップ半導体材料及びマグネシウム二次電池、並びに、閃亜鉛鉱型硫化マグネシウムの製造方法に関する。
 これまでにも、硫黄を正極活物質として用いたマグネシウム-硫黄二次電池に関する報告はあるが、二次電池の放電時、正極において生成する生成物(便宜上、『放電生成物』と呼ぶ)の構造は明らかにされていなかった。その理由は、主に、放電生成物が、X線回折において回折ピークを示さない非晶質構造を有することにある。実際、これまでの報告でも、閃亜鉛鉱型構造を有する硫化マグネシウム(MgS)は、標準の状態で準安定層を取ることが判明しているが(非特許文献1:PHYSICAL REVIEW B 79, 235310, 2009)、その存在は、基板のストレスを利用した薄膜試料でしか確認されていない(非特許文献2:APPLIED PHYSICS LETTERS 102, 032102 (2013))。
PHYSICAL REVIEW B 79, 235310, 2009 APPLIED PHYSICS LETTERS 102, 032102 (2013)
 優れた特性を有するマグネシウム二次電池の実現が期待されているが、現状のマグネシウム二次電池では、未だ、十分とは云い難い。また、充電スタートのマグネシウム二次電池の実現も期待されている。
 従って、本開示の目的は、優れた特性を有するマグネシウム二次電池、斯かるマグネシウム二次電池での使用に適した二次電池用の正極部材、例えば、二次電池用の正極部材や種々の部材、機器に適用可能な(あるいは又、種々の部材、機器に対して使用可能な)硫化マグネシウム材料、硫化マグネシウム複合材料及びワイドバンドギャップ半導体材料、並びに、閃亜鉛鉱型硫化マグネシウムの製造方法を提供することにある。
 上記の目的を達成するための本開示の閃亜鉛鉱型硫化マグネシウムの製造方法は、第1電極上に形成された硫黄層と、マグネシウム又はマグネシウム化合物を含む第2電極とを、マグネシウム塩を含む電解液を挟んだ状態で配置し、第1電極と第2電極との間で放電を生じさせることで、第1電極上に形成された硫黄層を閃亜鉛鉱型硫化マグネシウム層にする。
 上記の目的を達成するための本開示の硫化マグネシウム材料は、
 非晶質の硫化マグネシウムから成り、又は、非晶質の硫化マグネシウム中に粒径20nm以下の微結晶を含んだ混合物から成り、
 微結晶は、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成る。
 上記の目的を達成するための本開示の硫化マグネシウム複合材料は、
 基体上に形成された硫化マグネシウム材料層を有し、
 硫化マグネシウム材料層は、非晶質の硫化マグネシウムから成り、又は、非晶質の硫化マグネシウム中に粒径20nm以下の微結晶を含んだ混合物から成り、
 微結晶は、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成る。
 上記の目的を達成するための本開示の正極部材は、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成る硫化マグネシウム材料層が正極集電体上に形成されて成る。
 上記の目的を達成するための本開示のマグネシウム二次電池は、
 少なくとも正極活物質層を備えた正極部材、
 正極部材に対向して配設されたセパレータ、
 セパレータに対向して配設されたマグネシウム又はマグネシウム化合物を含む負極部材、並びに、
 マグネシウム塩を含む電解液、
を備えたマグネシウム二次電池であって、
 正極活物質層は、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成る。
 上記の目的を達成するための本開示のワイドバンドギャップ半導体材料は、
 非晶質の硫化マグネシウムから成り、又は、非晶質の硫化マグネシウム中に粒径20nm以下の微結晶を含んだ混合物から成り、
 微結晶は、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成る。
 本開示の閃亜鉛鉱型硫化マグネシウムの製造方法にあっては、第1電極と第2電極との間で放電を生じさせることで(即ち、電気化学的方法に基づき)、第1電極上に形成された硫黄層を閃亜鉛鉱型硫化マグネシウム層にする。よって、極めて容易な方法で、バルク状又は粉体状の閃亜鉛鉱型硫化マグネシウム層を得ることができる。そして、本開示の閃亜鉛鉱型硫化マグネシウムの製造方法によって得られた閃亜鉛鉱型硫化マグネシウム、並びに、本開示の硫化マグネシウム材料、本開示の硫化マグネシウム複合材料、本開示の二次電池用の正極部材、本開示のワイドバンドギャップ半導体材料及び本開示のマグネシウム二次電池の正極活物質層のそれぞれにおける閃亜鉛鉱型の結晶構造を有するバルク状又は粉体状の硫化マグネシウムは、準安定状態にあるが故に、閃亜鉛鉱型硫化マグネシウムあるいは閃亜鉛鉱型の結晶構造を有する硫化マグネシウムからマグネシウムイオンが比較的容易に離脱することができる。それ故、高いエネルギー密度、サイクル特性に優れたマグネシウム二次電池や、優れた特性を有する電子デバイス(例えば、太陽電池)や電気化学デバイスの実現が可能となる。尚、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また、付加的な効果があってもよい。
図1は、実施例1のマグネシウム二次電池の模式的な分解図である。 図2Aは、実施例1のマグネシウム二次電池における第1回目の放電を行ったときの放電曲線、及び、第1回目の充電を行ったときの充電曲線を示すグラフであり、図2Bは、比較例1のマグネシウム二次電池における第1回目の充電を行ったときの充電曲線を示すグラフである。 図3Aは、実施例1及び比較例1のマグネシウム二次電池における正極活物質層の固体25Mg-NMR測定結果及び固体33S-NMR測定結果並びに第一原理計算により求めた化学シフト計算を示すグラフであり、図3Bは、実施例1のマグネシウム二次電池における正極活物質層の高エネルギーX線回折(HE-XRD)測定を行い、原子対相関関数を抽出した結果を示すグラフである。 図4は、実施例1のマグネシウム二次電池における正極活物質層等のX線回折結果を示すグラフである。 図5は、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムの結晶構造、及び、塩化ナトリウム型6配位構造の硫化マグネシウムの結晶構造を示す図である。 図6は、実施例2の電気化学デバイス(フロー型二次電池)の概念図である。 図7は、実施例3の電気化学デバイス(太陽電池)の模式的な断面図である。 図8は、実施例4におけるマグネシウム二次電池(円筒型のマグネシウム二次電池)の模式的な断面図である。 図9は、実施例4におけるマグネシウム二次電池(平板型のラミネートフィルム型マグネシウム二次電池)の模式的な断面図である。 図10は、実施例1において説明した本開示のマグネシウム二次電池を電池パックに適用した場合の実施例4における回路構成例を示すブロック図である。 図11A、図11B及び図11Cは、それぞれ、実施例4における本開示の適用例(電動車両)の構成を表すブロック図、実施例4における本開示の適用例(電力貯蔵システム)の構成を表すブロック図、及び、実施例4における本開示の適用例(電動工具)の構成を表すブロック図である。 図12は、実施例1のマグネシウム二次電池の概念図である。
 以下、図面を参照して、実施例に基づき本開示を説明するが、本開示は実施例に限定されるものではなく、実施例における種々の数値や材料は例示である。尚、説明は、以下の順序で行う。
1.本開示の硫化マグネシウム材料、硫化マグネシウム複合材料、二次電池用の正極部材、ワイドバンドギャップ半導体材料及びマグネシウム二次電池、並びに、閃亜鉛鉱型硫化マグネシウムの製造方法、全般に関する説明
2.実施例1(本開示の硫化マグネシウム材料、硫化マグネシウム複合材料、二次電池用の正極部材、ワイドバンドギャップ半導体材料及びマグネシウム二次電池、並びに、閃亜鉛鉱型硫化マグネシウムの製造方法)
3.実施例2(実施例1の変形)
4.実施例3(実施例1の変形、ワイドバンドギャップ半導体材料)
5.実施例4(実施例1のマグネシウム二次電池の応用例)
6.その他
〈本開示の硫化マグネシウム材料、硫化マグネシウム複合材料、二次電池用の正極部材、ワイドバンドギャップ半導体材料及びマグネシウム二次電池、並びに、閃亜鉛鉱型硫化マグネシウムの製造方法、全般に関する説明〉
 本開示の閃亜鉛鉱型硫化マグネシウムの製造方法にあっては、第1電極と第2電極とを抵抗器を介して電気的に接続することで、第1電極と第2電極との間で放電を生じさせることができる。抵抗器は、適切な電気回路や電子回路に備えられた抵抗器を用いればよい。
 本開示の硫化マグネシウム複合材料にあっては、基体上に硫化マグネシウム材料層のみが形成されていてもよいし、場合によっては、基体と硫化マグネシウム材料層との間に硫黄層を有する形態とすることもできる。
 本開示の二次電池用の正極部材において、硫化マグネシウム材料層は、
 非晶質の硫化マグネシウムから成り、又は、非晶質の硫化マグネシウム中に粒径20nm以下の微結晶を含んだ混合物から成り、
 微結晶は、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成る形態とすることができる。
 本開示のマグネシウム二次電池においても、正極活物質層は、
 非晶質の硫化マグネシウムから成り、又は、非晶質の硫化マグネシウム中に粒径20nm以下の微結晶を含んだ混合物から成り、
 微結晶は、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成る形態とすることができる。そして、このような形態を含む本開示のマグネシウム二次電池において、電解液は、スルホンから成る溶媒、及び、溶媒に溶解したマグネシウム塩から成る形態とすることができる。また、本開示のマグネシウム二次電池にあっては、より具体的には、例えば、正極集電体上に正極活物質層が形成されているが、正極活物質層は、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成る微結晶の集合物から成る形態であってもよいし、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成る微結晶の集合物と正極集電体との間に硫黄層が存在する形態であってもよい。
 本開示において、硫化マグネシウムは、非晶質の硫化マグネシウムから成り、又は、非晶質の硫化マグネシウム中に粒径20nm以下の微結晶を含んだ混合物から成る。本開示において「非晶質の硫化マグネシウム」あるいは「非晶質の硫化マグネシウム中に粒径20nm以下の微結晶を含んだ混合物」とは、硫化マグネシウムを数十μmの領域(例えば、50μm×50μmの領域あるいはそれ以上の大きな領域)においてX線回折法(Cu-Kα線を使用、波長は0.15405nm)にて観察したとき、正極活物質以外の混合物に帰属されるものを除いて回折ピークが観測されない(具体的には、硫化マグネシウムの固有の鋭い回折ピークが観測されない)ことを意味する。尚、株式会社リガク製のX線回折装置(RINT-TTRII)を用い、管球電圧を45kV、管球電流を20ミリアンペア、走査速度を0.5度/分とし、回折角2θが10度から60度までを測定範囲とすればよい。
 また、微結晶は閃亜鉛鉱型の結晶構造を有するが、「閃亜鉛鉱型の結晶構造を有する微結晶」であるか否かは、NMR測定方法に基づき決定することができる。即ち、固体25Mg-NMR測定を以下の方法で行う。具体的には、分析すべき粉体試料の溶媒による洗浄は行わず、そのまま真空乾燥した後、直径3.2mmの固体NMR測定用試料管に試料を詰める。そして、試料管を800MHz固体NMR装置(測定磁場強度=18.79T)に付属する直径3.2mmの Magic Angle Spinning(MAS)プローブにセットし、以下の表1の条件で測定を行う。
〈表1〉
共鳴周波数     :49.00MHz
観測範囲      :147kHz
MAS回転数    :15kHz
化学シフト標準   :MgCl2水溶液(0ppm)
測定バルスシーケンス:シングルパルス法
測定パルス幅    :1.6μ秒(30°パルス)
繰り返し時間    :5秒
積算回数      :32000回
 また、固体33S-NMR測定を以下の方法で行う。具体的には、分析すべき粉体試料の溶媒による洗浄は行わず、そのまま真空乾燥した後、直径3.2mmの固体NMR測定用試料管に試料を詰める。そして、試料管を800MHz固体NMR装置(測定磁場強度=18.79T)に付属する直径3.2mmのMASプローブにセットし、以下の表2の条件で測定を行う。尚、実施例に関しては、33Sの低い天然存在比(0.76%)に起因した低感度を改善するため、33S同位体ラベルした硫黄を用いて作製した試料について測定を行った。
〈表2〉
共鳴周波数     :61.42MHz
観測範囲      :123kHz
MAS回転数    :15kHz
化学シフト標準   :硫化カルシウム(-29ppm)
測定バルスシーケンス:シングルパルス法
測定パルス幅    :1.0μ秒(30°パルス)
繰り返し時間    :0.5秒
積算回数      :160000回
 以上のNMR測定方法に基づいて試料を測定したとき、NMRスペクトルにおいて、図3Aに示すような25Mg(図3Aの「D」参照)又は33S(図3Aの「H」参照)のケミカルシフトが認められれば、閃亜鉛鉱型の結晶構造を有する微結晶が存在すると判断することができる。25Mg、33Sのいずれを用いても判断が可能であるが、33Sよりも感度の高い25Mgの測定の方が比較的容易である。
 また、HE-XRD法を用いた試料の原子対相関関数(Atomic Pair Difference Function)の抽出を行う。具体的には、分析すべき粉体試料の溶媒による洗浄は行わず、そのまま真空乾燥した後、直径2.0mmの石英ガラス試料管に試料を詰める。そして、61.4keVのエネルギーを有するX線を試料に照射し、CdTe半導体検出器を用いて2θ=49°までの回折データを取得する。そして、得られた回折データに対してICP分析から得た組成を基に吸収補正を行い、Q=25.6Å-1までのS(Q)を抽出する。そして、S(Q)をΔQ=0.05Å-1の条件でフーリエ変換し、二体分布関数g(r)及び原子対相関関数G(r)を算出する。原子対相関関数G(r)を算出した結果、試料のMg-S原子間距離が2.5Åである場合(図3B照)、主相がほぼ単相の硫化マグネシウムであり、NMRで観測できない多硫化物は混合していないと判断することができる。
 硫黄層は、S8あるいは多硫化物から構成することができる。また、電解液あるいは溶媒を構成する材料としてスルホンを挙げることができるし、エーテル、広くは、非プロトン溶媒を挙げることもできる。正極部材は、正極活物質層から構成されていてもよいし、あるいは又、正極集電体、及び、正極集電体上(正極集電体の片面上あるいは両面上)に形成された正極活物質層から構成されていてもよい。
 即ち、本開示の本開示の閃亜鉛鉱型硫化マグネシウムの製造方法あるいは本開示のマグネシウム二次電池における電解質層を構成する電解液は、例えば、スルホン、及び、スルホンに溶解したマグネシウム塩を含んでいる形態とすることができる。尚、このような形態を、便宜上、『本開示の第1の形態に係る電解液』と呼ぶ。
 そして、マグネシウム塩は、MgXn(但し、nは1又は2であり、Xは、1価又は2価のアニオン)から成る形態とすることができる。この場合、Xは、ハロゲンを含む分子、-SO4、-NO3、又は、ヘキサアルキルジシアジド基から成る形態とすることができる。具体的には、ハロゲンを含む分子(ハロゲン化物)は、MgX2(X=F,Cl,Br,I)から成る形態とすることができる。より具体的には、フッ化マグネシウム(MgF2)、塩化マグネシウム(MgCl2)、臭化マグネシウム(MgBr2)および/またはヨウ化マグネシウム(MgI2)を挙げることができる。あるいは、マグネシウム塩は、MgCl2及びMg(TFSI)2[マグネシウムビストリフルオロメタンスルホニルイミド]の混合系、過塩素酸マグネシウム(Mg(ClO42)、硝酸マグネシム(Mg(NO32)、硫酸マグネシム(MgSO4)、酢酸マグネシウム(Mg(CH3COO)2)、トリフルオロ酢酸マグネシウム(Mg(CF3COO)2)、テトラフルオロホウ酸マグネシウム(Mg(BF42)、テトラフェニルホウ酸マグネシウム(Mg(B(C6542)、ヘキサフルオロリン酸マグネシウム(Mg(PF62)、ヘキサフルオロヒ酸マグネシウム(Mg(AsF62)、パーフルオロアルキルスルホン酸マグネシウム((Mg(Rf1SO32)、但し、Rf1はパーフルオロアルキル基)、パーフルオロアルキルスルホニルイミド酸マグネシウム(Mg((Rf2SO22N)2、但し、Rf2はパーフルオロアルキル基)、及び、ヘキサアルキルジシアジドマグネシウム((Mg(HRDS)2)、但し、Rはアルキル基)から成る群より選択された少なくとも1種類のマグネシウム塩である形態とすることができる。尚、上記のフッ化マグネシウムから(Mg(HRDS)2)までに挙げたマグネシウム塩を、便宜上、『マグネシウム塩-A』と呼ぶ。そして、マグネシウム塩-Aにおいて、マグネシウム塩に対するスルホンのモル比は、例えば、4以上、35以下とすることが好ましく、6以上、16以下とすることがより好ましく、7以上、9以下とすることが一層好ましいが、これらに限定されるものではない。
 あるいは又、本開示の第1の形態に係る電解液におけるマグネシウム塩として、水素化ホウ素マグネシウム(Mg(BH42)を挙げることができる。このように、使用するマグネシウム塩が、水素化ホウ素マグネシウム(Mg(BH42)から成り、ハロゲン原子を含まないと、マグネシウム二次電池を構成する各種部材を耐食性の高い材料から作製する必要が無くなる。尚、このような電解液は、水素化ホウ素マグネシウムをスルホンに溶解させることによって製造することができる。水素化ホウ素マグネシウム(Mg(BH42)から成るマグネシウム塩を、便宜上、『マグネシウム塩-B』と呼ぶ。このような本開示における電解液は、スルホンから成る溶媒にマグネシウム塩-Bが溶解したマグネシウムイオン含有非水系電解液である。電解液中のマグネシウム塩-Bに対するスルホンのモル比は、例えば、50以上、150以下であり、典型的には、60以上、120以下であり、好ましくは、65以上、75以下であるが、これに限定するものではない。
 本開示の第1の形態に係る電解液におけるスルホンは、典型的には、R12SO2(式中、R1、R2はアルキル基を表す)で表されるアルキルスルホン又はアルキルスルホン誘導体である。ここで、R1、R2の種類(炭素数及び組み合わせ)は特に限定されず、必要に応じて選ばれる。R1、R2の炭素数はいずれも好適には4以下である。また、R1の炭素数とR2の炭素数との和は、好適には4以上、7以下であるが、これに限定されるものではない。R1およびR2は、それぞれ独立して、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基および/またはt-ブチル基等である。アルキルスルホンとして、具体的には、ジメチルスルホン(DMS)、メチルエチルスルホン(MES)、メチル-n-プロピルスルホン(MnPS)、メチル-i-プロピルスルホン(MiPS)、メチル-n-ブチルスルホン(MnBS)、メチル-i-ブチルスルホン(MiBS)、メチル-s-ブチルスルホン(MsBS)、メチル-t-ブチルスルホン(MtBS)、エチルメチルスルホン(EMS)、ジエチルスルホン(DES)、エチル-n-プロピルスルホン(EnPS)、エチル-i-プロピルスルホン(EiPS)、エチル-n-ブチルスルホン(EnBS)、エチル-i-ブチルスルホン(EiBS)、エチル-s-ブチルスルホン(EsBS)、エチル-t-ブチルスルホン(EtBS)、ジ-n-プロピルスルホン(DnPS)、ジ-i-プロピルスルホン(DiPS)、n-プロピル-n-ブチルスルホン(nPnBS)、n-ブチルエチルスルホン(nBES)、i-ブチルエチルスルホン(iBES)、s-ブチルエチルスルホン(sBES)及びジ-n-ブチルスルホン(DnBS)から成る群より選ばれた少なくとも1種類のアルキルスルホンを挙げることができる。また、アルキルスルホン誘導体として、エチルフェニルスルホン(EPhS)を挙げることができる。そして、これらのスルホンの内でも、EnPS、EiPS、EsBS及びDnPSから成る群より選ばれた少なくとも1種類が好ましい。
 あるいは又、本開示における電解液は、エーテル(広くは、非プロトン溶媒)、及び、エーテル(非プロトン溶媒)に溶解したマグネシウム塩を含んでいる形態とすることができる。尚、このような形態を、便宜上、『本開示の第2の形態に係る電解液』と呼ぶ。
 エーテルは、環状エーテルおよび/または直鎖エーテルから成る形態とすることができる。具体的には、環状エーテルとして、テトラヒドロフラン(THF)、ジオキソラン、ジオキサン、エポキシド類及びフラン類から成る群より選択された少なくとも1種類の環状エーテルを挙げることができる。直鎖エーテルとして、ジアルキルグリコールエーテルを挙げることができる。ジアルキルグリコールエーテルとしては、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、ペンタエチレングリコールジメチルエーテル、ヘキサエチレングリコールジメチルエーテル、ポリエチレングリコールジメチルエーテル及びトリエチレングリコールブチルメチルエーテルから成る群より選択された少なくとも1種類のジアルキルグリコールエーテルを挙げることができるが、これらに限定するものではない。
 そして、この場合、マグネシウム塩は、Mg(AlCl312、又は、Mg(AlCl223 )2(但し、R1,R2およびR3は、それぞれアルキル基である)から成る形態とすることができる。R1、R2,R3の種類(炭素数及び組み合わせ)は特に限定されず、必要に応じて選ばれる。R1、R2およびR3の各々の炭素数は、好ましくは4以下であるが、これに限定するものではない。また、R2の炭素数とR3の炭素数との和は、好ましくは、4以上、7以下であるが、これに限定するものではない。R1、R2およびR3の各々としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基および/またはt-ブチル基を挙げることができる。
 あるいは又、本開示における電解液は、スルホン及び非極性溶媒から成る溶媒、並びに、溶媒に溶解したマグネシウム塩-Aを有する。
 非極性溶媒は、必要に応じて選ばれるが、好適には、比誘電率及びドナー数がいずれも20以下である非水系溶媒である。非極性溶媒として、より具体的には、例えば、芳香族炭化水素、エーテル、ケトン、エステル及び鎖状炭酸エステルから成る群より選ばれた少なくとも1種類の非極性溶媒を挙げることができる。芳香族炭化水素として、例えば、トルエン、ベンゼン、o-キシレン、m-キシレン、p-キシレンおよび/または1-メチルナフタレン等を挙げることができる。エーテルとして、例えば、ジエチルエーテルおよび/またはテトラヒドロフラン等を挙げることができる。ケトンとして、例えば、4-メチル-2-ペンタノン等を挙げることができる。エステルとして、例えば、酢酸メチルおよび/または酢酸エチル等を挙げることができる。鎖状炭酸エステルとして、例えば、炭酸ジメチル、炭酸ジエチルおよび/または炭酸エチルメチル等を挙げることができる。
 スルホン及びマグネシウム塩-Aについては、上述したとおりである。また、必要に応じて、電解液に上述した添加剤を加えてもよい。そして、マグネシウム塩-Aに対するスルホンのモル比は、例えば、4以上、20以下とすることがより好ましく、6以上、16以下とすることがより好ましく、7以上、9以下とすることが一層好ましいが、これらに限定されるものではない。
 あるいは又、溶媒として、その他、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、アセトニトリル、ジメトキシエタン、ジエトキシエタン、ビニレンカーボネート、γ-ブチロラクトンおよび/またはテトラヒドロフランを挙げることができ、これらの内、1種類を単独で用いてもよく、2種類以上を混合して用いてもよい。
 あるいは又、溶媒は、直鎖エーテルから構成されていることが好ましい。直鎖エーテルの具体例として、エチレングリコールジメチルエーテル(ジメトキシエタン)、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、ペンタエチレングリコールジメチルエーテル、ヘキサエチレングリコールジメチルエーテル、ポリエチレングリコールジメチルエーテルおよび/またはトリエチレングリコールブチルメチルエーテルを挙げることができるが、中でも、エチレングリコールジメチルエーテル(ジメトキシエタン,DME)を用いることが好ましい。
 電解質層を、本開示における電解液、及び、電解液を保持する保持体から成る高分子化合物から構成することもできる。高分子化合物は、電解液によって膨潤されるものであってもよい。この場合、電解液により膨潤された高分子化合物はゲル状であってもよい。高分子化合物として、例えば、ポリアクリロニトリル、ポリフッ化ビニリデン、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサン、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン-ブタジエンゴム、ニトリル-ブタジエンゴム、ポリスチレンおよび/またはポリカーボネートを挙げることができる。特に、電気化学的な安定性の観点から、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレンおよび/またはポリエチレンオキサイドが好ましい。電解質層を、固体電解質層とすることもできる。
 上記の好ましい形態を含む本開示の閃亜鉛鉱型硫化マグネシウムの製造方法、あるいは又、上記の好ましい形態を含む本開示のマグネシウム二次電池にあっては、中でも、マグネシウム塩は塩化マグネシウムから成り、電解液はエチル-n-プロピルスルホン(EnPS)を含むことが、より好ましい。
 本開示のマグネシウム二次電池において、正極集電体は、例えば、ニッケル、ステンレス鋼および/もしくはモリブデン等の金属箔あるいは合金箔、金属板、合金板、又は、炭素材料から成る。但し、前述したとおり、正極部材は、正極集電体を備えず、正極活物質層(層状の正極活物質)のみから成る構造とすることもできる。正極活物質層には、必要に応じて導電助剤及び結着剤の内の少なくとも1種類が含まれていてもよい。また、基体や第1電極も、例えば、上記の正極集電体を構成する材料から構成することができる。
 負極部材あるいは第2電極は、マグネシウム又はマグネシウム化合物を含む。具体的には、負極部材あるいは第2電極は、マグネシウム(マグネシウム金属単体)、マグネシウム合金あるいはマグネシウム化合物から成る。あるいは又、負極部材(具体的には、負極集電体)あるいは第2電極を構成する基部の表面に負極活物質層が形成された構造とすることもでき、この場合、負極活物質層は、マグネシウムイオン伝導性を有する層から構成され、具体的には、負極活物質層を構成する材料として、マグネシウム(Mg)系材料を挙げることができ、更には、炭素(C)、酸素(O)、硫黄(S)及びハロゲンを少なくとも含んでいてもよい。このような負極活物質層は、40eV以上、60eV以下の範囲にマグネシウム由来の単一のピークを有することが好ましい。ハロゲンとして、例えば、フッ素(F)、塩素(Cl)、臭素(Br)及びヨウ素(I)から成る群より選ばれた少なくとも1種類を挙げることができる。そして、この場合、負極活物質層の表面から2×10-7mまでの深さに亙り、40eV以上、60eV以下の範囲にマグネシウム由来の単一のピークを有することがより好ましい。負極活物質層が、その表面から内部に亙り、良好な電気化学的活性を示すからである。また、同様の理由から、マグネシウムの酸化状態が、負極活物質層の表面から深さ方向に2×10-7mに亙りほぼ一定であることが好ましい。ここで、負極活物質層の裏面とは、負極活物質層の両面の内、負極集電体あるいは第2電極の基部と負極活物質層の界面を構成する側の面を意味し、負極活物質層の表面とは、負極活物質層の裏面とは反対側の面を意味する。負極活物質層が上記の元素を含んでいるか否かはXPS(X-ray Photoelectron Spectroscopy)法に基づき確認することができる。また、負極活物質層が上記ピークを有すること、及び、マグネシウムの酸化状態も、XPS法に基づき、同様に確認することができる。負極活物質層には、必要に応じて導電助剤及び結着剤の内の少なくとも1種類が含まれていてもよい。負極部材は、例えば、板状材料あるいは箔状材料から作製されるが、これに限定するものではなく、粉末を用いて形成(賦形)することも可能である。上述したとおり、負極部材は負極集電体を備えていてもよい。負極集電体あるいは第2電極の基部を構成する材料として、銅、ニッケル、ステンレス鋼および/またはマグネシウム等の金属箔あるいは合金箔、金属板、合金板を挙げることができる。
 正極活物質層あるいは負極活物質層に含まれる導電助剤として、例えば、黒鉛、炭素繊維、カーボンブラック、カーボンナノチューブ等の炭素材料を挙げることができ、これらの1種類又が2種類以上を混合して用いることができる。炭素繊維として、例えば、気相成長炭素繊維(Vapor Growth Carbon Fiber:VGCF)等を用いることができる。カーボンブラックとして、例えば、アセチレンブラックおよび/またはケッチェンブラック等を用いることができる。カーボンナノチューブとして、例えば、シングルウォールカーボンナノチューブ(SWCNT)および/またはダブルウォールカーボンナノチューブ(DWCNT)等のマルチウォールカーボンナノチューブ(MWCNT)等を用いることができる。導電性が良好な材料であれば、炭素材料以外の材料を用いることもでき、例えば、Ni粉末のような金属材料、導電性高分子材料等を用いることもできる。正極活物質層あるいは負極活物質層に含まれ結着剤として、例えば、ポリフッ化ビニリデン(PVdF)および/もしくはポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂、ポリビニルアルコール(PVA)系樹脂、ならびに/または、スチレン-ブタジエン共重合ゴム(SBR)系樹脂等の高分子樹脂を用いることができる。また、結着剤として導電性高分子を用いてもよい。導電性高分子として、例えば、置換又は無置換のポリアニリン、ポリピロール、ポリチオフェン、および/または、これらから選ばれた1種類又は2種類から成る(共)重合体等を用いることができる。
 正極部材と負極部材とは、両極の接触による短絡を防止しつつ、マグネシウムイオンを通過させる無機セパレータあるいは有機セパレータによって分離されている。無機セパレータとして、例えば、ガラスフィルターおよび/またはグラスファイバーを挙げることができる。有機セパレータとして、例えば、ポリテトラフルオロエチレン、ポリプロピレンおよび/またはポリエチレン等から成る合成樹脂製の多孔質膜を挙げることができ、これらの2種類以上の多孔質膜を積層した構造とすることもできる。中でも、ポリオレフィン製の多孔質膜は短絡防止効果に優れ、且つ、シャットダウン効果による電池の安全性向上を図ることができるので好ましい。
 本開示のマグネシウム二次電池は、例えば、ノート型パーソナルコンピュータ、PDA(携帯情報端末)、携帯電話、スマートフォン、コードレス電話の親機や子機、ビデオムービー、デジタルスチルカメラ、電子書籍、電子辞書、携帯音楽プレイヤー、ラジオ、ヘッドホン、ゲーム機、ナビゲーションシステム、メモリーカード、心臓ペースメーカー、補聴器、電動工具、電気シェーバー、冷蔵庫、エアコンディショナー、テレビジョン受像機、ステレオ、温水器、電子レンジ、食器洗浄器、洗濯機、乾燥機、照明機器、玩具、医療機器、IoT機器やIoT端末、ロボット、ロードコンディショナー、信号機、鉄道車両、ゴルフカート、電動カート、電気自動車(ハイブリッド自動車を含む)等の駆動用電源又は補助用電源として使用することができる。また、住宅をはじめとする建築物又は発電設備用の電力貯蔵用電源等に搭載し、あるいは、これらに電力を供給するために使用することができる。電気自動車において、電力を供給することにより電力を駆動力に変換する変換装置は、一般的にはモータである。車両制御に関する情報処理を行う制御装置(制御部)としては、マグネシウム二次電池の残量に関する情報に基づき、電池残量表示を行う制御装置等が含まれる。また、マグネシウム二次電池を、所謂スマートグリッドにおける蓄電装置において用いることもできる。このような蓄電装置は、電力を供給するだけでなく、他の電力源から電力の供給を受けることにより蓄電することができる。他の電力源としては、例えば、火力発電、原子力発電、水力発電、太陽電池、風力発電、地熱発電、燃料電池(バイオ燃料電池を含む)等を用いることができる。
 二次電池、二次電池に関する制御を行う制御手段(制御部)、及び、二次電池を内包する外装を有する電池パックにおける二次電池に、上記の各種の好ましい形態、構成を含む本開示のマグネシウム二次電池を適用することができる。この電池パックにおいて、制御手段は、例えば、二次電池に関する充放電、過放電又は過充電の制御を行う。
 二次電池から電力の供給を受ける電子機器における二次電池に、上記の各種の好ましい形態、構成を含む本開示のマグネシウム二次電池を適用することができる。
 二次電池から電力の供給を受けて車両の駆動力に変換する変換装置、及び、二次電池に関する情報に基づいて車両制御に関する情報処理を行う制御装置(制御部)を有する電動車両における二次電池に、上記の各種の好ましい形態、構成を含む本開示のマグネシウム二次電池を適用することができる。この電動車両において、変換装置は、典型的には、マグネシウム二次電池から電力の供給を受けてモータを駆動させ、駆動力を発生させる。モータの駆動には、回生エネルギーを利用することもできる。また、制御装置(制御部)は、例えば、マグネシウム二次電池の電池残量に基づいて車両制御に関する情報処理を行う。この電動車両には、例えば、電気自動車、電動バイク、電動自転車、鉄道車両等の他、所謂ハイブリッド車が含まれる。
 二次電池から電力の供給を受け、及び/又は、電力源から二次電池に電力を供給するように構成された電力システムにおける二次電池に、上記の各種の好ましい形態、構成を含む本開示のマグネシウム二次電池を適用することができる。この電力システムは、およそ電力を使用するものである限り、どのような電力システムであってもよく、単なる電力装置も含む。この電力システムは、例えば、スマートグリッド、家庭用エネルギー管理システム(HEMS)、車両等を含み、蓄電も可能である。
 二次電池を有し、電力が供給される電子機器が接続されるように構成された電力貯蔵用電源における二次電池に、上記の各種の好ましい形態、構成を含む本開示のマグネシウム二次電池を適用することができる。この電力貯蔵用電源の用途は問わず、基本的にはどのような電力システム又は電力装置にも用いることができるが、例えば、スマートグリッドに用いることができる。
 本開示のワイドバンドギャップ半導体材料は、直接遷移型であり、3eV以上の大きなバンドギャップを有するバルク状あるいは粉体状の半導体材料である。そして、二次電池用の正極部材に適用することができるだけでなく、電子デバイス、例えば、太陽電池や受光素子、撮像素子、発光素子、半導体装置、各種センサ等に適用することもできるし、フロー型二次電池等の電気化学デバイスに適用することもできる。フロー型二次電池は、正極、負極、及び、正極と負極に挟まれ、電解液が含浸されたセパレータを備えている。
 実施例1は、本開示の硫化マグネシウム材料、硫化マグネシウム複合材料、二次電池用の正極部材、ワイドバンドギャップ半導体材料及びマグネシウム二次電池、並びに、閃亜鉛鉱型硫化マグネシウムの製造方法に関する。
 実施例1の正極部材23は、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成る硫化マグネシウム材料層23Bが正極集電体23A上に形成されて成る。
 また、実施例1のマグネシウム二次電池20は、
 少なくとも正極活物質層23Bを備えた正極部材23(実施例1にあっては、具体的には、正極集電体23A及び正極活物質層23Bを備えた正極部材23)、
 正極部材23(より具体的には、正極活物質層23B)に対向して配設されたセパレータ24、
 セパレータ24に対向して配設されたマグネシウム又はマグネシウム化合物を含む負極部材25、並びに、
 マグネシウム塩を含む電解液、
を備えたマグネシウム二次電池であり、
 正極活物質層23Bは、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成る。
 また、実施例1の硫化マグネシウム材料、あるいは、実施例1のワイドバンドギャップ半導体材料は、
 非晶質の硫化マグネシウムから成り、又は、非晶質の硫化マグネシウム中に粒径20nm以下の微結晶を含んだ混合物から成り、
 微結晶は、閃亜鉛鉱型の結晶構造を有し(実施例1の硫化マグネシウム材料)、あるいは又、微結晶は、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成る(実施例1のワイドバンドギャップ半導体材料)。
 また、実施例1の硫化マグネシウム複合材料は、
 基体上に形成された硫化マグネシウム材料層を有し、
 硫化マグネシウム材料層は、非晶質の硫化マグネシウムから成り、又は、非晶質の硫化マグネシウム中に粒径20nm以下の微結晶を含んだ混合物から成り、
 微結晶は、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成る。
 尚、実施例1の二次電池用の正極部材において、硫化マグネシウム材料層は、非晶質の硫化マグネシウムから成り、又は、非晶質の硫化マグネシウム中に粒径20nm以下の微結晶を含んだ混合物から成り、微結晶は、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成る。
 また、実施例1のマグネシウム二次電池において、正極活物質層23Bは、非晶質の硫化マグネシウムから成り、又は、非晶質の硫化マグネシウム中に粒径20nm以下の微結晶を含んだ混合物から成り、微結晶は、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成る。更には、電解液は、スルホンから成る溶媒、及び、溶媒に溶解したマグネシウム塩から成る。実施例1のマグネシウム二次電池において、より具体的には、正極集電体23A上に正極活物質層23Bが形成されているが、正極活物質層23Bは、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成る微結晶の集合物から成る。また、マグネシウム塩は塩化マグネシウム(MgCl2)から成り、溶媒を構成するスルホンはエチル-n-プロピルスルホン(EnPS)を含む。更には、硫黄層は、硫黄S8から構成されている。
 実施例1にあっては、より具体的には、マグネシウム二次電池を構成する各種部材として、以下の表3に示す材料を用いた。尚、正極活物質構成材料における硫黄(S)を、実施例1のマグネシウム二次電池を作製するために使用し、塩化ナトリウム型6配位構造のMgSを、比較例1のマグネシウム二次電池を作製するために使用した。閃亜鉛鉱型の結晶構造を有する硫化マグネシウムの結晶構造を図5の左手側に、塩化ナトリウム型6配位構造の硫化マグネシウムの結晶構造を図5の右手側に示す。
〈表3〉
・正極活物質構成材料
  硫黄(S)              :和光純薬株式会社製
  塩化ナトリウム型6配位構造のMgS  :添川理化学株式会社製
・導電助剤
  ケッチェンブラック          :ライオン株式会社製ECP600JD
・結着剤
  ポリテトラフルオロエチレン(PTFE):旭硝子株式会社製
・負極部材構成材料
  マグネシウム板            :リカザイ株式会社製
                      純度99.9%、厚さ0.20mm
・電解液構成材料
  MgCl2(無水物)          : シグマアルドリッチ製
  エチルノルマルプロピルスルホン(EnPS)
                     :富山薬品工業株式会社製電池用脱水仕様
・セパレータ構成材料           :アドバンテック株式会社製
                      グラスフィルターGC50
 実施例1のマグネシウム二次電池の製造に際しては、先ず、以下の方法で正極部材を作製した。即ち、硫黄とケッチェンブラックを質量比7:3にて混合し、得られた混合物に水、エタノール、スチレン-ブタジエンゴム懸濁液、カルボキシメチルセルロース水溶液を投入し、5分間、混合した。こうして得られたスラリーを、正極集電体としてのステンレス鋼箔上に、ドクターブレードを用いて塗布した。尚、ドクターブレードのギャップを150μmに設定した。次いで、40゜C、12時間、真空乾燥することで実施例1における正極部材を作製した。この正極部材にあっては、正極集電体23Aの上に硫黄層23bが形成されており、正極部材・出発部材とも云える。
 比較例1のマグネシウム二次電池の製造に際しては、先ず、以下の方法で正極部材を作製した。即ち、塩化ナトリウム型6配位構造のMgSとケッチェンブラックとポリテトラフルオロエチレン(PTFE)を質量比1:6:3にて瑪瑙製の乳鉢を用いて混合した。
次に、アセトンで馴染ませながらローラーコンパクターで10回程度圧延成型した。その後、70゜C、12時間、真空乾燥することで比較例1における正極部材を作製した。
 実施例1および比較例1ともに、電解液として、MgCl2/エチルノルマルプロピルスルホン(モル比1:8)を用いた。また、負極部材25として、上記の表3に示すとおり、直径15mmおよび厚さ0.20mmのマグネシウム板を用いた。
 尚、以下のようにして、電解液(MgCl2-EnPS)を調製した。
 試薬の計量及び混合はグローブボックス内(アルゴンガス雰囲気/露点-80゜C乃至-90゜C)で行った。脱水メタノール100ミリリットルをスターラを用いて撹拌しながら、無水塩化マグネシウム(II)(MgCl2)3.81グラムを加えた。MgCl2をメタノールに溶解させる際に若干の発熱があることを、接触型温度計による反応容器外部の温度測定により確認した。この発熱は、メタノールがMgに配位する際の反応熱によるものであり、メタノール中のMgにメタノールが配位した構造を有していると考えられる。また、MgCl2溶解後も若干の白濁があった。これは、メタノール中に残存している水とMgとが反応し、Mg(OH)2が生成したことによるものと考えられる。白濁は極僅かであるため、濾過せずに操作を継続した。
 MgCl2溶解後、スターラを用いて撹拌しながら、EnPS43.6グラムを加えた。次いで、大気が混入しない状態にこの溶液を保ちながらグローブボックス外に出し、ロータリーポンプを用いて減圧しながら、120゜C、2時間、加熱、攪拌することで、メタノールを除去した。メタノールが減少すると白色沈殿が生成したが、減圧加熱を継続すると、生成した沈殿物は溶解した。この溶解度の変化は、Mgの配位子がメタノールからEnPSに交換したことによるものであると考えられる。メタノールの除去を、1H NMR測定によって確認した。
 メタノール除去後の試料にはMgCl2をメタノールに溶解した際の白濁が残っていたため、グローブボックス内にて濾過(ポア径0.45μm;Whatman 製)した。得られた電解液は、Mg:Cl:EnPS=1:2:8(モル比)、Mg濃度0.95モル/リットルであった。
 実施例1のマグネシウム二次電池(コイン電池20、CR2016タイプ)の構成状態を図1の模式図に示すが、コイン電池缶21にガスケット22を載せ、硫黄(S8)から成る正極部材23(正極集電体23A及び正極活物質層23B)、セパレータ24、直径1.5mm、厚さ0.25mmのMg板から成る負極部材25、厚さ0.5mmのステンレス鋼板から成るスペーサ26、コイン電池蓋27の順に積層した後、コイン電池缶21をかしめて封止した。スペーサ26はコイン電池蓋27に予めスポット溶接しておいた。セパレータ24には、上記の電解液が含まれている。
 実施例1のマグネシウム二次電池にあっては、先ず、室温下、0.1ミリアンペアの定電流での放電を行った後、0.1ミリアンペアの定電流での充電を行った。一方、比較例1のマグネシウム二次電池にあっては、先ず、室温下、0.1ミリアンペアの定電流での充電を行った。
 即ち、実施例1にあっては、第1電極(具体的には、正極集電体23A)上に形成された硫黄層23bと、マグネシウム又はマグネシウム化合物を含む第2電極(具体的には、負極部材25)とを、マグネシウム塩を含む電解液を挟んだ状態で配置し、第1電極(正極集電体23A)と第2電極(負極部材25)との間で放電を生じさせることで、第1電極(負極部材25)上に形成された硫黄層23bを閃亜鉛鉱型硫化マグネシウム層(正極活物質層23Bであり、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成る層)にする。具体的には、第1電極と第2電極とを抵抗器を介して電気的に接続することで、第1電極(正極集電体23A)と第2電極(負極部材25)との間で放電を生じさせればよい(即ち、二次電池における通常の放電を生じさせればよい)。尚、前述したとおり、マグネシウム塩は塩化マグネシウム(MgCl2)から成り、電解液は、エチル-n-プロピルスルホン(EnPS)を含む。
 即ち、以上に説明した構成を有する実施例1のマグネシウム二次電池においては、概念図を図12に示すように、第1回目の放電時、マグネシウムイオン(Mg2+)が負極部材11から電解質層12を通って正極部材10の硫黄層23bに移動することにより、正極集電体上に形成された硫黄層23bを閃亜鉛鉱型硫化マグネシウム層(正極活物質層23B)にする。
 また、実施例1のマグネシウム二次電池においては、第1回目の充電時、あるいは、それ以降の充電時、マグネシウムイオン(Mg2+)が正極活物質層23Bから電解質層12を通って負極部材11に移動することにより電気エネルギーを化学エネルギーに変換して蓄電する。一方、第2回目の放電時、あるいは、それ以降の放電時、負極部材11から電解質層12を通って正極活物質層23Bにマグネシウムイオン(Mg2+)が戻ることにより電気エネルギーを発生させる。即ち、実施例1のマグネシウム二次電池は、充電スタートあるいは放電スタートのマグネシウム二次電池である。
 図2Aに、実施例1のマグネシウム二次電池における第1回目の放電を行ったときの放電曲線(図2Aでは「A」で示す)、及び、第1回目の充電を行ったときの充電曲線(図2Aでは「B」で示す)を示す。図2Aに示すように、充電電圧2ボルト付近から充電プラトーが観察され、充電反応容量も大きく、良好な充電特性が得られた。つまり、実施例1のマグネシウム二次電池において、正極活物質層23Bを構成する閃亜鉛鉱型構造を有するMgSは、電気化学的にマグネシウムイオンを脱離させることができ、マグネシウム-硫黄二次電池の正極活物質として十分に機能することが判った。
 一方、塩化ナトリウム型6配位構造のMgSはイオン導電性が低く、比較例1のマグネシウム二次電池における第1回目の充電を行ったときの充電曲線を図2Bに示すように、正極活物質層を構成する塩化ナトリウム型6配位構造のMgSでは、充電電圧が2ボルトを超えても充電プラトーが観察されず、充電反応容量が低い、即ち、充電されないことが判った。この結果は、塩化ナトリウム型6配位構造のMgSにあっては、マグネシウムイオンが電気化学的に脱離せず、マグネシウム-硫黄二次電池の正極活物質として機能しないことを示している。
 上記のようにして得られた実施例1のマグネシウム二次電池をグローブボックス内で分解して、正極活物質層を取り出し、前述した方法に則り、X線回折法にてアルゴン雰囲気下で観察した。その結果、硫化マグネシウムがアモルファスであることを確認できた。尚、実施例1のマグネシウム二次電池における正極活物質層等のX線回折結果を示すグラフを図4に示す。図4において、「A」は、第1回目の放電を行った後の実施例1のマグネシウム二次電池における正極活物質層のX線回折結果であり、「B」は、第1回目の放電を行う前の実施例1のマグネシウム二次電池における正極活物質層のX線回折結果であり、「C」は、硫黄(S8)のX線回折結果である。第1回目の放電を行う前の実施例1のマグネシウム二次電池における正極活物質層には硫黄が存在しているが、第1回目の放電を行った後の実施例1のマグネシウム二次電池における正極活物質層には硫黄が存在していないことが明確に判る。
 密度汎関数理論に基づいた第一原理電子状態計算を用いて、閃亜鉛鉱型構造を有するMgSと塩化ナトリウム型6配位構造のMgSにおける固体25Mg-NMR及び固体33S-NMRの化学シフト計算を行った。計算コードは Materials Studio(CASTEP)を利用し、計算条件を以下のように設定した。即ち、計算の基底は Gauge Including Projector Augmented Wave(GIPAW)とし、そのカットオフエネルギーを540eVとした。また、エネルギー汎関数は Perdew-Burke-Ernzerhof(PBE)型とし、計算においては一般勾配近似(Generalized Gradient Approximation:GGA)を採用した。サンプルk点は、0.05Å-1間隔のメッシュ点から Monkhorst-Pack 法を用いて抽出した。
 上記のようにして得られた実施例1及び比較例1のマグネシウム二次電池をグローブボックス内で分解して、正極活物質層を取り出し、正極活物質層を削り、粉体状の正極活物質を得た。次いで、固体25Mg-NMR測定及び固体33S-NMR測定を、前述した方法に則り行った。また、NMR CASTEPを用いた第一原理計算により、閃亜鉛鉱型構造を有するMgSと塩化ナトリウム型6配位構造のMgSの25Mg-NMR及び33S-NMRの化学シフト計算を行った。これらの結果を図3Aに示す。尚、図3Aにおいて、「A」、「B」、「C」、「D」、「E」、「F」、「G」及び「H」は、以下の結果を示す。
A:塩化ナトリウム型6配位構造のMgSの固体25Mg-NMRにおける化学シフト計算結果
B:塩化ナトリウム型6配位構造のMgSの固体25Mg-NMR測定結果
C:閃亜鉛鉱型構造を有するMgSの固体25Mg-NMRにおける化学シフト計算結果
D:閃亜鉛鉱型構造を有するMgSの固体25Mg-NMR測定結果
E:塩化ナトリウム型6配位構造のMgSの固体33S-NMRにおける化学シフト計算結果
F:塩化ナトリウム型6配位構造のMgSの固体33S-NMR測定結果
G:閃亜鉛鉱型構造を有するMgSの固体33S-NMRにおける化学シフト計算結果
H:閃亜鉛鉱型構造を有するMgSの固体33S-NMR測定結果
 実施例1のマグネシウム二次電池における正極活物質は、NMR測定結果と計算結果とが良く一致しており、実施例1のマグネシウム二次電池における正極活物質は、閃亜鉛鉱型構造を有するMgSから成ることを確認することができた。同様に、比較例1のマグネシウム二次電池における正極活物質(塩化ナトリウム型6配位構造のMgS)は、NMR測定結果と計算結果とが良く一致しており、固体25Mg-NMR測定及び固体33S-NMR測定と、NMR CASTEPを用いた第一原理計算との妥当性を検証することができた。
 また、上記のようにして得られた実施例1のマグネシウム二次電池をグローブボックス内で分解して、正極活物質層を取り出し、正極活物質層を削り、粉体状の正極活物質を得た。そして、HE-XRD測定を行い、原子対相関関数を抽出した結果を図3Bに示す。
実施例1のマグネシウム二次電池における正極活物質中のマグネシウム-硫黄原子間距離は2.5オングストロームであることが判った。この値は、塩化ナトリウム型6配位構造のMgSのマグネシウム-硫黄原子間距離2.6オングストローム(J. Phys. Chem. C 2015, 119, 731-740)よりも小さい値であり、閃亜鉛鉱型構造を有するMgSであれば、あり得る値である。
 以上のとおり、実施例1の閃亜鉛鉱型硫化マグネシウムの製造方法にあっては、第1電極と第2電極との間で放電を生じさせることで(即ち、電気化学的方法に基づき)、第1電極上に形成された硫黄層を閃亜鉛鉱型硫化マグネシウム層にするので、極めて容易な方法で、バルク状又は粉体状の閃亜鉛鉱型硫化マグネシウム層を得ることができる。そして、実施例1の閃亜鉛鉱型硫化マグネシウムの製造方法によって得られた閃亜鉛鉱型硫化マグネシウム、並びに、実施例1の硫化マグネシウム材料、実施例1の硫化マグネシウム複合材料、実施例1の二次電池用の正極部材、実施例1のワイドバンドギャップ半導体材料及び実施例1のマグネシウム二次電池の正極活物質層のそれぞれにおける閃亜鉛鉱型の結晶構造を有するバルク状又は粉体状の硫化マグネシウムは、準安定状態にあるが故に、閃亜鉛鉱型硫化マグネシウムあるいは閃亜鉛鉱型の結晶構造を有する硫化マグネシウムからマグネシウムイオンが比較的容易に離脱することができる。それ故、高いエネルギー密度、サイクル特性に優れたマグネシウム二次電池や、優れた特性を有する電子デバイスや電気化学デバイスを実現することができるし、低価格、且つ、安全性の高い次世代二次電池を実現することができる。また、本開示のマグネシウム二次電池は、放電スタート型、充電スタート型のいずれも可能である。
 実施例2は、実施例1の変形である。実施例2の電気化学デバイスは、概念図を図6に示すように、フロー型二次電池(レドックスフロー電池)から成る。このフロー型二次電池は、例えば、正極集電体61、正極用電解液62、正極用電解液輸送ポンプ63、燃料流路64、正極用電解液貯蔵容器65、負極集電体71、負極用電解液72、負極用電解液輸送ポンプ73、燃料流路74、負極用電解液貯蔵容器75、イオン交換膜66から構成されている。燃料流路64には、正極用電解液貯蔵容器65、正極用電解液輸送ポンプ63を介して、正極用電解液62が連続的又は断続的に流れており(循環しており)、燃料流路74には、負極用電解液貯蔵容器75、負極用電解液輸送ポンプ73を介して、負極用電解液72が連続的又は断続的に流れており(循環しており)、正極集電体61と負極集電体71との間で発電が行われる。正極用電解液62として、実施例1の電解液に正極活物質を添加したものを用いることができ、負極用電解液72として、実施例1の電解液に負極活物質を添加したものを用いることができる。
 実施例3も実施例1の変形である。実施例3にあっては、実施例1において説明したワイドバンドギャップ半導体材料を電子デバイス、具体的には、太陽電池に適用した。図7に模式的な断面図を示すように、実施例3の太陽電池にあっては、集電体30、p型半導体層31、実施例1において説明したワイドバンドギャップ半導体材料から成るn型半導体層32及び電極33が積層されている。集電体30は、導電性を有し、且つ、電気化学的に耐久性のある材料であればよく、耐熱性を有するといった観点からは、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、モリブデン、金、白金等の金属材料が好ましい。また、集電体30を、ガラス等の絶縁材料、及び、絶縁材料の上に形成された導電層から構成することもできる。p型半導体層31を構成するp型半導体材料は、周知の材料から、適宜、選択すればよい。電極33は、周知の導電材料から構成すればよい。
 尚、実施例1において説明したワイドバンドギャップ半導体材料を、その他、光水分解装置の電極を構成する材料として使用することもできる。
 実施例4においては、本開示の電気化学デバイス(具体的には、マグネシウム二次電池)、及び、その適用例について説明する。
 実施例1において説明した本開示のマグネシウム二次電池は、二次電池を駆動用・作動用の電源又は電力蓄積用の電力貯蔵源として利用可能な機械、機器、器具、装置、システム(複数の機器等の集合体)に対して、特に限定されることなく、適用することができる。電源として使用されるマグネシウム二次電池(具体的には、マグネシウム-硫黄二次電池)は、主電源(優先的に使用される電源)であってもよいし、補助電源(主電源に代えて、又は、主電源から切り換えて使用される電源)であってもよい。マグネシウム二次電池を補助電源として使用する場合、主電源はマグネシウム二次電池に限られない。
 本開示のマグネシウム二次電池(具体的には、マグネシウム-硫黄二次電池)の用途として、具体的には、ビデオカメラやカムコーダ、デジタルスチルカメラ、携帯電話機、パーソナルコンピュータ、テレビジョン受像機、各種表示装置、コードレス電話機、ヘッドホンステレオ、音楽プレーヤ、携帯用ラジオ、電子ブックや電子新聞等の電子ペーパー、PDAを含む携帯情報端末といった各種電子機器、電気機器(携帯用電子機器を含む);玩具;電気シェーバ等の携帯用生活器具;室内灯等の照明器具;ペースメーカや補聴器等の医療用電子機器;メモリカード等の記憶用装置;着脱可能な電源としてパーソナルコンピュータ等に用いられる電池パック;電動ドリルや電動鋸等の電動工具;非常時等に備えて電力を蓄積しておく家庭用バッテリシステム等の電力貯蔵システムやホームエネルギーサーバ(家庭用蓄電装置)、電力供給システム;蓄電ユニットやバックアップ電源;電動自動車、電動バイク、電動自転車、セグウェイ(登録商標)等の電動車両;航空機や船舶の電力駆動力変換装置(具体的には、例えば、動力用モータ)の駆動を例示することができるが、これらの用途に限定するものではない。
 中でも、本開示のマグネシウム二次電池は、電池パック、電動車両、電力貯蔵システム、電力供給システム、電動工具、電子機器、電気機器等に適用されることが有効である。
電池パックは、本開示のマグネシウム二次電池を用いた電源であり、所謂組電池等である。電動車両は、本開示のマグネシウム二次電池を駆動用電源として作動(走行)する車両であり、二次電池以外の駆動源を併せて備えた自動車(ハイブリッド自動車等)であってもよい。電力貯蔵システム(電力供給システム)は、本開示のマグネシウム二次電池を電力貯蔵源として用いるシステムである。例えば、家庭用の電力貯蔵システム(電力供給システム)では、電力貯蔵源である本開示のマグネシウム二次電池に電力が蓄積されているため、電力を利用して家庭用の電気製品等が使用可能となる。電動工具は、本開示のマグネシウム二次電池を駆動用の電源として可動部(例えばドリル等)が可動する工具である。電子機器や電気機器は、本開示のマグネシウム二次電池を作動用の電源(電力供給源)として各種機能を発揮する機器である。
 以下、円筒型のマグネシウム二次電池及び平板型のラミネートフィルム型のマグネシウム二次電池を説明する。
 円筒型のマグネシウム二次電池100の模式的な断面図を図8に示す。マグネシウム二次電池100にあっては、ほぼ中空円柱状の電極構造体収納部材111の内部に、電極構造体121及び一対の絶縁板112,113が収納されている。電極構造体121は、例えば、セパレータ126を介して正極部材122と負極部材124とを積層して電極構造体を得た後、電極構造体を捲回することで作製することができる。正極部材122は、実施例1の硫化マグネシウム材料あるいはワイドバンドギャップ半導体材料を備え、あるいは又、実施例1の硫化マグネシウム複合材料あるいは正極部材から成る。電極構造体収納部材(電池缶)111は、一端部が閉鎖され、他端部が開放された中空構造を有しており、鉄(Fe)やアルミニウム(Al)等から作製されている。電極構造体収納部材111の表面にはニッケル(Ni)等がメッキされていてもよい。一対の絶縁板112,113は、電極構造体121を挟むと共に、電極構造体121の捲回周面に対して垂直に延在するように配置されている。電極構造体収納部材111の開放端部には、電池蓋114、安全弁機構115及び熱感抵抗素子(PTC素子、Positive Temperature Coefficient 素子)116がガスケット117を介してかしめられており、これによって、電極構造体収納部材111は密閉されている。電池蓋114は、例えば、電極構造体収納部材111と同様の材料から作製されている。安全弁機構115及び熱感抵抗素子116は、電池蓋114の内側に設けられており、安全弁機構115は、熱感抵抗素子116を介して電池蓋114と電気的に接続されている。安全弁機構115にあっては、内部短絡や、外部からの加熱等に起因して内圧が一定以上になると、ディスク板115Aが反転する。そして、これによって、電池蓋114と電極構造体121との電気的接続が切断される。大電流に起因する異常発熱を防止するために、熱感抵抗素子116の抵抗は温度の上昇に応じて増加する。ガスケット117は、例えば、絶縁性材料から作製されている。ガスケット117の表面にはアスファルト等が塗布されていてもよい。
 電極構造体121の捲回中心には、センターピン118が挿入されている。但し、センターピン118は、捲回中心に挿入されていなくともよい。正極部材122には、アルミニウム等の導電性材料から作製された正極リード部123が接続されている。具体的には、正極リード部123は正極集電体に取り付けられている。負極部材124には、銅等の導電性材料から作製された負極リード部125が接続されている。具体的には、負極リード部125は負極集電体に取り付けられている。負極リード部125は、電極構造体収納部材111に溶接されており、電極構造体収納部材111と電気的に接続されている。正極リード部123は、安全弁機構115に溶接されていると共に、電池蓋114と電気的に接続されている。尚、図8に示した例では、負極リード部125は1箇所(捲回された電極構造体の最外周部)であるが、2箇所(捲回された電極構造体の最外周部及び最内周部)に設けられている場合もある。
 電極構造体121は、正極集電体上に(具体的には、正極集電体の両面に)正極活物質層が形成された正極部材122と、負極集電体上に(具体的には、負極集電体の両面に)負極活物質層が形成された負極部材124とが、セパレータ126を介して積層されて成る。正極リード部123を取り付ける正極集電体の領域には、正極活物質層は形成されていないし、負極リード部125を取り付ける負極集電体の領域には、負極活物質層は形成されていない。
 マグネシウム二次電池100の仕様を以下の表4に例示するが、これらに限定されるものではない。
〈表4〉
正極集電体    厚さ20μmのニッケル箔
正極活物質層   片面当たり厚さ50μm
正極リード部   厚さ100μmのニッケル箔
負極集電体    厚さ20μmの銅箔
負極活物質層   片面当たり厚さ50μm
負極リード部   厚さ100μmのニッケル(Ni)箔
 マグネシウム二次電池100は、例えば、以下の手順に基づき製造することができる。
 先ず、正極集電体の両面に正極活物質層を形成するための硫黄層を形成し、負極集電体の両面に負極活物質層を形成する。
 その後、溶接法等を用いて、正極集電体に正極リード部123を取り付ける。また、溶接法等を用いて、負極集電体に負極リード部125を取り付ける。次に、厚さ20μmの微多孔性ポリエチレンフィルムから成るセパレータ126を介して正極部材122と負極部材124とを積層し、捲回して、(より具体的には、正極部材122/セパレータ126/負極部材124/セパレータ126の電極構造体(積層構造体)を捲回して)、電極構造体121を作製した後、最外周部に保護テープ(図示せず)を貼り付ける。その後、電極構造体121の中心にセンターピン118を挿入する。次いで、一対の絶縁板112,113で電極構造体121を挟みながら、電極構造体121を電極構造体収納部材(電池缶)111の内部に収納する。この場合、溶接法等を用いて、正極リード部123の先端部を安全弁機構115に取り付けると共に、負極リード部125の先端部を電極構造体収納部材111に取り付ける。その後、減圧方式に基づき実施例1の電解液を注入して、電解液をセパレータ126に含浸させる。次いで、ガスケット117を介して電極構造体収納部材111の開口端部に電池蓋114、安全弁機構115及び熱感抵抗素子116をかしめる。
 そして、電池蓋114と電極構造体収納部材111との間で放電を生じさせることで、正極集電体上に形成された硫黄層を閃亜鉛鉱型硫化マグネシウム層(閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成る層)にする。こうして、マグネシウム二次電池100を得ることができる。
 次に、平板型のラミネートフィルム型のマグネシウム二次電池を説明する。マグネシウム二次電池の模式的な分解斜視図を図9に示す。このマグネシウム二次電池にあっては、ラミネートフィルムから成る外装部材200の内部に、基本的に前述したと同様の電極構造体221が収納されている。電極構造体221は、セパレータ及び電解質層を介して正極部材と負極部材とを積層した後、この積層構造体を捲回することで作製することができる。正極部材には正極リード部223が取り付けられており、負極部材には負極リード部225が取り付けられている。電極構造体221の最外周部は、保護テープによって保護されている。正極リード部223及び負極リード部225は、外装部材200の内部から外部に向かって同一方向に突出している。正極リード部223は、アルミニウム等の導電性材料から形成されている。負極リード部225は、銅、ニッケルおよび/またはステンレス鋼等の導電性材料から形成されている。
 外装部材200は、図9に示す矢印Rの方向に折り畳み可能な1枚のフィルムであり、外装部材200の一部には、電極構造体221を収納するための窪み(エンボス)が設けられている。外装部材200は、例えば、融着層と、金属層と、表面保護層とがこの順に積層されたラミネートフィルムである。マグネシウム二次電池の製造工程では、融着層同士が電極構造体221を介して対向するように外装部材200を折り畳んだ後、融着層の外周縁部同士を融着する。但し、外装部材200は、2枚のラミネートフィルムが接着剤等を介して貼り合わされたものでもよい。融着層は、例えば、ポリエチレンおよび/またはポリプロピレン等のフィルムから成る。金属層は、例えば、アルミニウム箔等から成る。表面保護層は、例えば、ナイロンおよび/またはポリエチレンテレフタレート等から成る。中でも、外装部材200は、ポリエチレンフィルムと、アルミニウム箔と、ナイロンフィルムとがこの順に積層されたアルミラミネートフィルムであることが好ましい。但し、外装部材200は、他の積層構造を有するラミネートフィルムでもよいし、ポリプロピレン等の高分子フィルムでもよいし、金属フィルムでもよい。具体的には、ナイロンフィルム(厚さ30μm)と、アルミニウム箔(厚さ40μm)と、無延伸ポリプロピレンフィルム(厚さ30μm)とが外側からこの順に積層された耐湿性のアルミラミネートフィルム(総厚100μm)から成る。
 外気の侵入を防止するために、外装部材200と正極リード部223との間、及び、外装部材200と負極リード部225との間には、密着フィルム201が挿入されている。
密着フィルム201は、正極リード部223及び負極リード部225に対して密着性を有する材料、例えば、ポリオレフィン樹脂等、より具体的には、ポリエチレン、ポリプロピレン、変性ポリエチレンおよび/または変性ポリプロピレン等のポリオレフィン樹脂から成る。
 次に、本開示のマグネシウム二次電池の幾つかの適用例について具体的に説明する。尚、以下で説明する各適用例の構成は、あくまで一例であり、構成は適宜変更可能である。
 電池パックは、1つの本開示のマグネシウム二次電池を用いた簡易型の電池パック(所謂ソフトパック)であり、例えば、スマートフォンに代表される電子機器等に搭載される。あるいは又、2並列3直列となるように接続された6つの本開示のマグネシウム二次電池から構成された組電池を備えている。尚、マグネシウム二次電池の接続形式は、直列でもよいし、並列でもよいし、あるいは、双方の混合型でもよい。
 本開示のマグネシウム二次電池を電池パックに適用した場合の回路構成例を示すブロック図を図10に示す。電池パックは、セル(組電池)1001、外装部材、スイッチ部1021、電流検出抵抗器1014、温度検出素子1016及び制御部1010を備えている。スイッチ部1021は、充電制御スイッチ1022及び放電制御スイッチ1024を備えている。また、電池パックは、正極端子1031及び負極端子1032を備えており、充電時には正極端子1031及び負極端子1032は、それぞれ、充電器の正極端子、負極端子に接続され、充電が行われる。また、電子機器使用時には、正極端子1031及び負極端子1032は、それぞれ、電子機器の正極端子、負極端子に接続され、放電が行われる。
 セル1001は、複数の本開示のマグネシウム二次電池1002が直列及び/又は並列に接続されることで、構成される。尚、図10では、6つのマグネシウム二次電池1002が、2並列3直列(2P3S)に接続された場合を示しているが、その他、p並列q直列(但し、p,qは整数)のように、どのような接続方法であってもよい。
 スイッチ部1021は、充電制御スイッチ1022及びダイオード1023、並びに、放電制御スイッチ1024及びダイオード1025を備えており、制御部1010によって制御される。ダイオード1023は、正極端子1031からセル1001の方向に流れる充電電流に対して逆方向、負極端子1032からセル1001の方向に流れる放電電流に対して順方向の極性を有する。ダイオード1025は、充電電流に対して順方向、放電電流に対して逆方向の極性を有する。尚、例ではプラス(+)側にスイッチ部を設けているが、マイナス(-)側に設けてもよい。充電制御スイッチ1022は、電池電圧が過充電検出電圧となった場合に閉状態とされて、セル1001の電流経路に充電電流が流れないように制御部1010によって制御される。充電制御スイッチ1022が閉状態となった後には、ダイオード1023を介することによって放電のみが可能となる。また、充電時に大電流が流れた場合に閉状態とされて、セル1001の電流経路に流れる充電電流を遮断するように、制御部1010によって制御される。放電制御スイッチ1024は、電池電圧が過放電検出電圧となった場合に閉状態とされて、セル1001の電流経路に放電電流が流れないように制御部1010によって制御される。放電制御スイッチ1024が閉状態となった後には、ダイオード1025を介することによって充電のみが可能となる。また、放電時に大電流が流れた場合に閉状態とされて、セル1001の電流経路に流れる放電電流を遮断するように、制御部1010によって制御される。
 温度検出素子1016は例えばサーミスタから成り、セル1001の近傍に設けられ、温度測定部1015は、温度検出素子1016を用いてセル1001の温度を測定し、測定結果を制御部1010に送出する。電圧測定部1012は、セル1001の電圧、及びセル1001を構成する各マグネシウム二次電池1002の電圧を測定し、測定結果をA/D変換して、制御部1010に送出する。電流測定部1013は、電流検出抵抗器1014を用いて電流を測定し、測定結果を制御部1010に送出する。
 スイッチ制御部1020は、電圧測定部1012及び電流測定部1013から送られてきた電圧及び電流を基に、スイッチ部1021の充電制御スイッチ1022及び放電制御スイッチ1024を制御する。スイッチ制御部1020は、マグネシウム二次電池1002のいずれかの電圧が過充電検出電圧若しくは過放電検出電圧以下になったとき、あるいは又、大電流が急激に流れたときに、スイッチ部1021に制御信号を送ることにより、過充電及び過放電、過電流充放電を防止する。充電制御スイッチ1022及び放電制御スイッチ1024は、例えばMOSFET等の半導体スイッチから構成することができる。
この場合、MOSFETの寄生ダイオードによってダイオード1023,1025が構成される。MOSFETとして、pチャネル型FETを用いる場合、スイッチ制御部1020は、充電制御スイッチ1022及び放電制御スイッチ1024のそれぞれのゲート部に、制御信号DO及び制御信号COを供給する。充電制御スイッチ1022及び放電制御スイッチ1024は、ソース電位より所定値以上低いゲート電位によって導通する。即ち、通常の充電及び放電動作では、制御信号CO及び制御信号DOをローレベルとし、充電制御スイッチ1022及び放電制御スイッチ1024を導通状態とする。そして、例えば過充電若しくは過放電の際には、制御信号CO及び制御信号DOをハイレベルとし、充電制御スイッチ1022及び放電制御スイッチ1024を閉状態とする。
 メモリ1011は、例えば、不揮発性メモリであるEPROM(Erasable Programmable Read Only Memory)等から成る。メモリ1011には、制御部1010で演算された数値や、製造工程の段階で測定された各マグネシウム二次電池1002の初期状態におけるマグネシウム二次電池の内部抵抗値等が予め記憶されており、また、適宜、書き換えが可能である。また、マグネシウム二次電池1002の満充電容量を記憶させておくことで、制御部1010と共に例えば残容量を算出することができる。
 温度測定部1015では、温度検出素子1016を用いて温度を測定し、異常発熱時に充放電制御を行い、また、残容量の算出における補正を行う。
 次に、電動車両の一例であるハイブリッド自動車といった電動車両の構成を表すブロック図を図11Aに示す。電動車両は、例えば、金属製の筐体2000の内部に、制御部2001、各種センサ2002、電源2003、エンジン2010、発電機2011、インバータ2012,2013、駆動用のモータ2014、差動装置2015、トランスミッション2016及びクラッチ2017を備えている。その他、電動車両は、例えば、差動装置2015やトランスミッション2016に接続された前輪駆動軸2021、前輪2022、後輪駆動軸2023、後輪2024を備えている。
 電動車両は、例えば、エンジン2010又はモータ2014のいずれか一方を駆動源として走行可能である。エンジン2010は、主要な動力源であり、例えば、ガソリンエンジン等である。エンジン2010を動力源とする場合、エンジン2010の駆動力(回転力)は、例えば、駆動部である差動装置2015、トランスミッション2016及びクラッチ2017を介して前輪2022又は後輪2024に伝達される。エンジン2010の回転力は発電機2011にも伝達され、回転力を利用して発電機2011が交流電力を発生させ、交流電力はインバータ2013を介して直流電力に変換され、電源2003に蓄積される。一方、変換部であるモータ2014を動力源とする場合、電源2003から供給された電力(直流電力)がインバータ2012を介して交流電力に変換され、交流電力を利用してモータ2014を駆動する。モータ2014によって電力から変換された駆動力(回転力)は、例えば、駆動部である差動装置2015、トランスミッション2016及びクラッチ2017を介して前輪2022又は後輪2024に伝達される。
 図示しない制動機構を介して電動車両が減速すると、減速時の抵抗力がモータ2014に回転力として伝達され、その回転力を利用してモータ2014が交流電力を発生させるようにしてもよい。交流電力はインバータ2012を介して直流電力に変換され、直流回生電力は電源2003に蓄積される。
 制御部2001は、電動車両全体の動作を制御するものであり、例えば、CPU等を備えている。電源2003は、実施例1において説明した1又は2以上のマグネシウム二次電池(図示せず)を備えている。電源2003は、外部電源と接続され、外部電源から電力供給を受けることで電力を蓄積する構成とすることもできる。各種センサ2002は、例えば、エンジン2010の回転数を制御すると共に、図示しないスロットルバルブの開度(スロットル開度)を制御するために用いられる。各種センサ2002は、例えば、速度センサ、加速度センサ、エンジン回転数センサ等を備えている。
 尚、電動車両がハイブリッド自動車である場合について説明したが、電動車両は、エンジン2010を用いずに電源2003及びモータ2014だけを用いて作動する車両(電気自動車)でもよい。
 次に、電力貯蔵システム(電力供給システム)の構成を表すブロック図を図11Bに示す。電力貯蔵システムは、例えば、一般住宅及び商業用ビル等の家屋3000の内部に、制御部3001、電源3002、スマートメータ3003、及び、パワーハブ3004を備えている。
 電源3002は、例えば、家屋3000の内部に設置された電気機器(電子機器)3010に接続されていると共に、家屋3000の外部に停車している電動車両3011に接続可能である。また、電源3002は、例えば、家屋3000に設置された自家発電機3021にパワーハブ3004を介して接続されていると共に、スマートメータ3003及びパワーハブ3004を介して外部の集中型電力系統3022に接続可能である。電気機器(電子機器)3010は、例えば、1又は2以上の家電製品を含んでいる。家電製品として、例えば、冷蔵庫、エアコンディショナー、テレビジョン受像機、給湯器等を挙げることができる。自家発電機3021は、例えば、太陽光発電機や風力発電機等から構成されている。電動車両3011として、例えば、電動自動車、ハイブリッド自動車、電動オートバイ、電動自転車、セグウェイ(登録商標)等を挙げることができる。集中型電力系統3022として、商用電源、発電装置、送電網、スマートグリッド(次世代送電網)を挙げることができるし、また、例えば、火力発電所、原子力発電所、水力発電所、風力発電所等を挙げることもできるし、集中型電力系統3022に備えられた発電装置として、種々の太陽電池、燃料電池、風力発電装置、マイクロ水力発電装置、地熱発電装置等を例示することができるが、これらに限定するものではない。
 制御部3001は、電力貯蔵システム全体の動作(電源3002の使用状態を含む)を制御するものであり、例えば、CPU等を備えている。電源3002は、実施例1において説明した1又は2以上のマグネシウム二次電池(図示せず)を備えている。スマートメータ3003は、例えば、電力需要側の家屋3000に設置されるネットワーク対応型の電力計であり、電力供給側と通信可能である。そして、スマートメータ3003は、例えば、外部と通信しながら、家屋3000における需要・供給のバランスを制御することで、効率的で安定したエネルギー供給が可能となる。
 この電力貯蔵システムでは、例えば、外部電源である集中型電力系統3022からスマートメータ3003及びパワーハブ3004を介して電源3002に電力が蓄積されると共に、独立電源である自家発電機3021からパワーハブ3004を介して電源3002に電力が蓄積される。電源3002に蓄積された電力は、制御部3001の指示に応じて電気機器(電子機器)3010及び電動車両3011に供給されるため、電気機器(電子機器)3010の作動が可能になると共に、電動車両3011が充電可能になる。即ち、電力貯蔵システムは、電源3002を用いて、家屋3000内における電力の蓄積及び供給を可能にするシステムである。
 電源3002に蓄積された電力は、任意に利用可能である。そのため、例えば、電気料金が安価な深夜に集中型電力系統3022から電源3002に電力を蓄積しておき、電源3002に蓄積しておいた電力を電気料金が高い日中に用いることができる。
 以上に説明した電力貯蔵システムは、1戸(1世帯)毎に設置されていてもよいし、複数戸(複数世帯)毎に設置されていてもよい。
 次に、電動工具の構成を表すブロック図を図11Cに示す。電動工具は、例えば、電動ドリルであり、プラスチック材料等から作製された工具本体4000の内部に、制御部4001及び電源4002を備えている。工具本体4000には、例えば、可動部であるドリル部4003が回動可能に取り付けられている。制御部4001は、電動工具全体の動作(電源4002の使用状態を含む)を制御するものであり、例えば、CPU等を備えている。電源4002は、実施例1において説明した1又は2以上のマグネシウム二次電池(図示せず)を備えている。制御部4001は、図示しない動作スイッチの操作に応じて、電源4002からドリル部4003に電力を供給する。
 以上、本開示を好ましい実施例に基づき説明したが、本開示はこれらの実施例に限定されるものではない。実施例において説明したマグネシウム二次電池を構成する各種部材の原材料、製造方法、製造条件、電子デバイスや電気化学デバイス、マグネシウム二次電池の構成、構造は例示であり、これらに限定するものではなく、また、適宜、変更することができる。例えば、本開示の硫化マグネシウム複合材料にあっては、実施例1において説明したとおり、基体上に硫化マグネシウム材料層のみが形成されていてもよいし、場合によっては、基体と硫化マグネシウム材料層との間に硫黄層を有する形態とすることもできる。
 尚、本開示は、以下のような構成を取ることもできる。
[A01]《閃亜鉛鉱型硫化マグネシウムの製造方法》
 第1電極上に形成された硫黄層と、マグネシウム又はマグネシウム化合物を含む第2電極とを、マグネシウム塩を含む電解液を挟んだ状態で配置し、第1電極と第2電極との間で放電を生じさせることで、第1電極上に形成された硫黄層を閃亜鉛鉱型硫化マグネシウム層にする閃亜鉛鉱型硫化マグネシウムの製造方法。
[A02]第1電極と第2電極とを抵抗器を介して電気的に接続することで、第1電極と第2電極との間で放電を生じさせる[A01]に記載の閃亜鉛鉱型硫化マグネシウムの製造方法。
[A03]マグネシウム塩は、塩化マグネシウムから成り、
 電解液は、エチル-n-プロピルスルホンを含む[A01]又は[A02]に記載の閃亜鉛鉱型硫化マグネシウムの製造方法。
[B01]《硫化マグネシウム材料》
 非晶質の硫化マグネシウムから成り、又は、非晶質の硫化マグネシウム中に粒径20nm以下の微結晶を含んだ混合物から成り、
 微結晶は、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成る硫化マグネシウム材料。
[C01]《硫化マグネシウム複合材料》
 基体上に形成された硫化マグネシウム材料層を有し、
 硫化マグネシウム材料層は、非晶質の硫化マグネシウムから成り、又は、非晶質の硫化マグネシウム中に粒径20nm以下の微結晶を含んだ混合物から成り、
 微結晶は、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成る、硫化マグネシウム複合材料。
[C02]基体と硫化マグネシウム材料層との間に硫黄層を有する[C01]に記載の硫化マグネシウム複合材料。
[D01]《二次電池用の正極部材》
 閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成る硫化マグネシウム材料層が正極集電体上に形成されて成る二次電池用の正極部材。
[D02]硫化マグネシウム材料層は、非晶質の硫化マグネシウムから成り、又は、非晶質の硫化マグネシウム中に粒径20nm以下の微結晶を含んだ混合物から成り、
 微結晶は、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成る[D01]に記載の二次電池用の正極部材。
[E01]《マグネシウム二次電池》
 少なくとも正極活物質層を備えた正極部材、
 正極部材に対向して配設されたセパレータ、
 セパレータに対向して配設されたマグネシウム又はマグネシウム化合物を含む負極部材、並びに、
 マグネシウム塩を含む電解液、
を備えたマグネシウム二次電池であって、
 正極活物質層は、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成るマグネシウム二次電池。
[E02]正極活物質層は、非晶質の硫化マグネシウムから成り、又は、非晶質の硫化マグネシウム中に粒径20nm以下の微結晶を含んだ混合物から成り、
 微結晶は、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成る[E01]に記載のマグネシウム二次電池。
[E03]電解液は、スルホンから成る溶媒、及び、溶媒に溶解したマグネシウム塩から成る[E01]又は[E02]に記載のマグネシウム二次電池。
[E04]マグネシウム塩は、塩化マグネシウムから成り、
 溶媒を構成するスルホンは、エチル-n-プロピルスルホンを含む[E03]に記載のマグネシウム二次電池。
[F01]《ワイドバンドギャップ半導体材料》
 非晶質の硫化マグネシウムから成り、又は、非晶質の硫化マグネシウム中に粒径20nm以下の微結晶を含んだ混合物から成り、
 微結晶は、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成るワイドバンドギャップ半導体材料。
[G01]《電池パック》
 二次電池、二次電池に関する制御を行う制御手段、及び、二次電池を内包する外装を有する電池パックであって、
 二次電池は、[E01]乃至[E04]のいずれか1項に記載のマグネシウム二次電池から成る電池パック。
[G02]《電子機器》
 二次電池から電力の供給を受ける電子機器であって、
 二次電池は、[E01]乃至[E04]のいずれか1項に記載のマグネシウム二次電池から成る電子機器。
[G03]《電動車両》
 二次電池から電力の供給を受けて車両の駆動力に変換する変換装置、及び、二次電池に関する情報に基づいて車両制御に関する情報処理を行う制御装置を有する電動車両であって、
 二次電池は、[E01]乃至[E04]のいずれか1項に記載のマグネシウム二次電池から成る電動車両。
[G04]《電力システム》
 二次電池から電力の供給を受け、及び/又は、電力源から二次電池に電力を供給するように構成された電力システムであって、
 二次電池は、[E01]乃至[E04]のいずれか1項に記載のマグネシウム二次電池から成る電力システム。
[G05]《電力貯蔵用電源》
 二次電池を有し、電力が供給される電子機器が接続されるように構成された電力貯蔵用電源であって、
 二次電池は、[E01]乃至[E04]のいずれか1項に記載のマグネシウム二次電池から成る電力貯蔵用電源。
10・・・正極部材、11・・・負極部材、12・・・電解質層、20・・・マグネシウム二次電池(コイン電池)、21・・・コイン電池缶、22・・・ガスケット、23・・・正極部材、23A・・・正極集電体、23B・・・硫化マグネシウム材料層(正極活物質層)、24・・・セパレータ、25・・・負極部材、26・・・スペーサ、27・・・コイン電池蓋、30・・・集電体、31・・・p型半導体層、32・・・n型半導体層、33・・・電極、61・・・正極集電体、62・・・正極用電解液、63・・・正極用電解液輸送ポンプ、64・・・燃料流路、65・・・正極用電解液貯蔵容器、71・・・負極集電体、72・・・負極用電解液、73・・・負極用電解液輸送ポンプ、74・・・燃料流路、75・・・負極用電解液貯蔵容器、66・・・イオン交換膜、100・・・マグネシウム二次電池、111・・・電極構造体収納部材(電池缶)、112,113・・・絶縁板、114・・・電池蓋、115・・・安全弁機構、115A・・・ディスク板、116・・・熱感抵抗素子(PTC素子)、117・・・ガスケット、118・・・センターピン、121・・・電極構造体、122・・・正極部材、123・・・正極リード部、124・・・負極部材、125・・・負極リード部、126・・・セパレータ、200・・・外装部材、201・・・密着フィルム、221・・・電極構造体、223・・・正極リード部、225・・・負極リード部、1001・・・セル(組電池)、1002・・・マグネシウム二次電池、1010・・・制御部、1011・・・メモリ、1012・・・電圧測定部、1013・・・電流測定部、1014・・・電流検出抵抗器、1015・・・温度測定部、1016・・・温度検出素子、1020・・・スイッチ制御部、1021・・・スイッチ部、1022・・・充電制御スイッチ、1024・・・放電制御スイッチ、1023,1025・・・ダイオード、1031・・・正極端子、1032・・・負極端子、CO,DO・・・制御信号、2000・・・筐体、2001・・・制御部、2002・・・各種センサ、2003・・・電源、2010・・・エンジン、2011・・・発電機、2012,2013・・・インバータ、2014・・・駆動用のモータ、2015・・・差動装置、2016・・・トランスミッション、2017・・・クラッチ、2021・・・前輪駆動軸、2022・・・前輪、2023・・・後輪駆動軸、2024・・・後輪、3000・・・家屋、3001・・・制御部、3002・・・電源、3003・・・スマートメータ、3004・・・パワーハブ、3010・・・電気機器(電子機器)、3011・・・電動車両、3021・・・自家発電機、3022・・・集中型電力系統、4000・・・工具本体、4001・・・制御部、4002・・・電源、4003・・・ドリル部

Claims (13)

  1.  第1電極上に形成された硫黄層と、マグネシウム又はマグネシウム化合物を含む第2電極とを、マグネシウム塩を含む電解液を挟んだ状態で配置し、第1電極と第2電極との間で放電を生じさせることで、第1電極上に形成された硫黄層を閃亜鉛鉱型硫化マグネシウム層にする閃亜鉛鉱型硫化マグネシウムの製造方法。
  2.  第1電極と第2電極とを抵抗器を介して電気的に接続することで、第1電極と第2電極との間で放電を生じさせる請求項1に記載の閃亜鉛鉱型硫化マグネシウムの製造方法。
  3.  マグネシウム塩は、塩化マグネシウムから成り、
     電解液は、エチル-n-プロピルスルホンを含む請求項1に記載の閃亜鉛鉱型硫化マグネシウムの製造方法。
  4.  非晶質の硫化マグネシウムから成り、又は、非晶質の硫化マグネシウム中に粒径20nm以下の微結晶を含んだ混合物から成り、
     微結晶は、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成る硫化マグネシウム材料。
  5.  基体上に形成された硫化マグネシウム材料層を有し、
     硫化マグネシウム材料層は、非晶質の硫化マグネシウムから成り、又は、非晶質の硫化マグネシウム中に粒径20nm以下の微結晶を含んだ混合物から成り、
     微結晶は、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成る、硫化マグネシウム複合材料。
  6.  基体と硫化マグネシウム材料層との間に硫黄層を有する請求項5に記載の硫化マグネシウム複合材料。
  7.  閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成る硫化マグネシウム材料層が正極集電体上に形成されて成る二次電池用の正極部材。
  8.  硫化マグネシウム材料層は、非晶質の硫化マグネシウムから成り、又は、非晶質の硫化マグネシウム中に粒径20nm以下の微結晶を含んだ混合物から成り、
     微結晶は、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成る請求項7に記載の二次電池用の正極部材。
  9.  少なくとも正極活物質層を備えた正極部材、
     正極部材に対向して配設されたセパレータ、
     セパレータに対向して配設されたマグネシウム又はマグネシウム化合物を含む負極部材、並びに、
     マグネシウム塩を含む電解液、
    を備えたマグネシウム二次電池であって、
     正極活物質層は、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成るマグネシウム二次電池。
  10.  正極活物質層は、非晶質の硫化マグネシウムから成り、又は、非晶質の硫化マグネシウム中に粒径20nm以下の微結晶を含んだ混合物から成り、
     微結晶は、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成る請求項9に記載のマグネシウム二次電池。
  11.  電解液は、スルホンから成る溶媒、及び、溶媒に溶解したマグネシウム塩から成る請求項9に記載のマグネシウム二次電池。
  12.  マグネシウム塩は、塩化マグネシウムから成り、
     溶媒を構成するスルホンは、エチル-n-プロピルスルホンを含む請求項11に記載のマグネシウム二次電池。
  13.  非晶質の硫化マグネシウムから成り、又は、非晶質の硫化マグネシウム中に粒径20nm以下の微結晶を含んだ混合物から成り、
     微結晶は、閃亜鉛鉱型の結晶構造を有する硫化マグネシウムから成るワイドバンドギャップ半導体材料。
PCT/JP2018/023336 2017-06-21 2018-06-19 硫化マグネシウム材料、硫化マグネシウム複合材料、二次電池用の正極部材、ワイドバンドギャップ半導体材料及びマグネシウム二次電池、並びに、閃亜鉛鉱型硫化マグネシウムの製造方法 WO2018235828A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880041817.XA CN110799671A (zh) 2017-06-21 2018-06-19 硫化镁材料、硫化镁复合材料、二次电池用正极部件、宽带隙半导体材料及镁二次电池以及闪锌矿型硫化镁的制造方法
JP2019525636A JP6856120B2 (ja) 2017-06-21 2018-06-19 硫化マグネシウム材料、硫化マグネシウム複合材料、二次電池用の正極部材、ワイドバンドギャップ半導体材料及びマグネシウム二次電池、並びに、閃亜鉛鉱型硫化マグネシウムの製造方法
US16/720,963 US11394027B2 (en) 2017-06-21 2019-12-19 Magnesium sulfide material, magnesium sulfide composite material, positive electrode member for secondary batteries, wide band gap semiconductor material, magnesium secondary battery, and method for producing zinc blende magnesium sulfide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017121201 2017-06-21
JP2017-121201 2017-06-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/720,963 Continuation US11394027B2 (en) 2017-06-21 2019-12-19 Magnesium sulfide material, magnesium sulfide composite material, positive electrode member for secondary batteries, wide band gap semiconductor material, magnesium secondary battery, and method for producing zinc blende magnesium sulfide

Publications (1)

Publication Number Publication Date
WO2018235828A1 true WO2018235828A1 (ja) 2018-12-27

Family

ID=64735631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023336 WO2018235828A1 (ja) 2017-06-21 2018-06-19 硫化マグネシウム材料、硫化マグネシウム複合材料、二次電池用の正極部材、ワイドバンドギャップ半導体材料及びマグネシウム二次電池、並びに、閃亜鉛鉱型硫化マグネシウムの製造方法

Country Status (4)

Country Link
US (1) US11394027B2 (ja)
JP (1) JP6856120B2 (ja)
CN (1) CN110799671A (ja)
WO (1) WO2018235828A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020235615A1 (ja) * 2019-05-23 2020-11-26 富士フイルム和光純薬株式会社 マグネシウム電池
WO2024190592A1 (ja) * 2023-03-13 2024-09-19 日本電気硝子株式会社 二次電池用電極及びその製造方法、並びに全固体二次電池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115259101B (zh) * 2022-08-04 2023-07-18 上海纳米技术及应用国家工程研究中心有限公司 一种三维核壳空心硫化镁纳米花的制备方法
CN115347230B (zh) * 2022-09-14 2024-09-17 哈尔滨工业大学 一种原位生成镁盐的镁二次电池非亲核电解液及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142812A (ja) * 1993-11-16 1995-06-02 Sony Corp 半導体レーザー
JP2004265675A (ja) * 2003-02-28 2004-09-24 Sanyo Electric Co Ltd 非水電解質電池
JP2014072031A (ja) * 2012-09-28 2014-04-21 Sony Corp 電解液、電解液の製造方法および電気化学デバイス

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3812392A (en) 1973-03-09 1974-05-21 Gen Electric Composite armature core for dynamoelectric machine
US8592935B2 (en) * 2011-06-06 2013-11-26 The Hong Kong University Of Science And Technology MgS solar-blind UV radiation detector
JP2013232567A (ja) * 2012-04-30 2013-11-14 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
US9923182B2 (en) * 2012-07-18 2018-03-20 Panasonic Intellectual Property Management Co., Ltd. Secondary cell, solar secondary cell, and methods of making those cells
CN108118364B (zh) * 2018-01-19 2020-01-21 广东省稀有金属研究所 一种由金属硫化物制备金属及硫化镁的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142812A (ja) * 1993-11-16 1995-06-02 Sony Corp 半導体レーザー
JP2004265675A (ja) * 2003-02-28 2004-09-24 Sanyo Electric Co Ltd 非水電解質電池
JP2014072031A (ja) * 2012-09-28 2014-04-21 Sony Corp 電解液、電解液の製造方法および電気化学デバイス

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020235615A1 (ja) * 2019-05-23 2020-11-26 富士フイルム和光純薬株式会社 マグネシウム電池
WO2024190592A1 (ja) * 2023-03-13 2024-09-19 日本電気硝子株式会社 二次電池用電極及びその製造方法、並びに全固体二次電池

Also Published As

Publication number Publication date
CN110799671A (zh) 2020-02-14
US11394027B2 (en) 2022-07-19
JP6856120B2 (ja) 2021-04-07
US20200176774A1 (en) 2020-06-04
JPWO2018235828A1 (ja) 2020-04-23

Similar Documents

Publication Publication Date Title
US11394027B2 (en) Magnesium sulfide material, magnesium sulfide composite material, positive electrode member for secondary batteries, wide band gap semiconductor material, magnesium secondary battery, and method for producing zinc blende magnesium sulfide
WO2017006629A1 (ja) 電解液及び電気化学デバイス
US11901509B2 (en) Electrolyte solution and electrochemical device
JP7115557B2 (ja) 電解液および電気化学デバイス
US20190157719A1 (en) Electrolytic solution and electrochemical device
CN109075326B (zh) 镁二次电池用负极及其制造方法以及镁二次电池
JP7014228B2 (ja) マグネシウム二次電池及び電解液、並びに、電解液の製造方法
JP7052794B2 (ja) マグネシウム二次電池及びマグネシウム二次電池用の正極材料
US12034120B2 (en) Electrolytic solution and electrochemical device
WO2020027099A1 (ja) 電解液および電気化学デバイス
JP7533597B2 (ja) 電解液および電気化学デバイス
WO2022054813A1 (ja) 電気化学デバイス
CN110546803B (zh) 镁-硫二次电池用正极及其制造方法、以及镁-硫二次电池
WO2020027339A1 (ja) 電気化学デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18819892

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525636

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18819892

Country of ref document: EP

Kind code of ref document: A1