WO2018235786A1 - 角膜内皮細胞マーカー及びその利用 - Google Patents

角膜内皮細胞マーカー及びその利用 Download PDF

Info

Publication number
WO2018235786A1
WO2018235786A1 PCT/JP2018/023185 JP2018023185W WO2018235786A1 WO 2018235786 A1 WO2018235786 A1 WO 2018235786A1 JP 2018023185 W JP2018023185 W JP 2018023185W WO 2018235786 A1 WO2018235786 A1 WO 2018235786A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell population
cells
corneal endothelial
corneal
endothelial cells
Prior art date
Application number
PCT/JP2018/023185
Other languages
English (en)
French (fr)
Inventor
幸二 西田
元一 辻川
原 進
諭 川▲崎▼
正仁 吉原
昌可 伊藤
英哉 川路
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to EP18821289.8A priority Critical patent/EP3643776A4/en
Priority to CN201880039833.5A priority patent/CN110770334A/zh
Priority to SG11201911983RA priority patent/SG11201911983RA/en
Priority to US16/621,528 priority patent/US11839697B2/en
Priority to KR1020197038464A priority patent/KR102343384B1/ko
Publication of WO2018235786A1 publication Critical patent/WO2018235786A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3808Endothelial cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/54Ovaries; Ova; Ovules; Embryos; Foetal cells; Germ cells
    • A61K35/545Embryonic stem cells; Pluripotent stem cells; Induced pluripotent stem cells; Uncharacterised stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0621Eye cells, e.g. cornea, iris pigmented cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/06Quantitative determination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • Human corneal endothelial cells basically do not regenerate in vivo once damaged, and the number of cells decreases irreversibly, and when the cell density is extremely reduced, it results in bullous keratopathy and the transparency of the cornea is lost. I have trouble.
  • corneal transplants using donor corneas have been performed, but corneal endothelium injury is the number one indication for corneal transplants, and the shortage of donor corneas is a serious problem.
  • Item A1 (1) preparing a cell population cultured under conditions suitable for inducing differentiation into corneal endothelial cells, and (2) at least one gene selected from the group consisting of POU6F2, LMX1B, and TFAP2B for the cell population
  • a method of producing a cell population suitable for transplantation to a cornea comprising the step of measuring expression.
  • Item A2 The method according to paragraph A1, wherein the expression level of the gene in a cell population suitable for transplantation to the cornea is at or above a reference value.
  • Item A3 The method according to Item A1 or A2, wherein the step (1) is a step of culturing the stem cells under conditions suitable for inducing differentiation into corneal endothelial cells.
  • Item A4 The method according to any one of Items A1 to A3 in which Step (1) is continued until the expression level of the gene reaches or exceeds a standard value.
  • Item A5 The method according to any one of Items A1 to A4, wherein the gene is at least one gene selected from the group consisting of POU6F2 and LMX1B.
  • Item B1 The cell population comprising measuring the expression of at least one gene selected from the group consisting of POU6F2, LMX1B, and TFAP2B in a cell population cultured under conditions suitable for inducing differentiation to corneal endothelial cells is How to determine if it is suitable for transplantation.
  • Item B2 The method according to Item B1, wherein the cell population is a cell population in which stem cells are cultured under conditions suitable for inducing differentiation into corneal endothelial cells.
  • Item B3 The method according to Item B1 or B2, wherein the cell population is judged to be suitable for transplantation to the cornea when the expression level of the gene is equal to or higher than a reference value.
  • Item B4 The method according to any one of Items B1 to B3, wherein the gene is at least one gene selected from the group consisting of POU6F2 and LMX1B.
  • Item C1 (1) preparing a cell population cultured under conditions suitable for culturing a corneal endothelial cell, and (2) expressing the at least one gene selected from the group consisting of POU6F2, LMX1B, and TFAP2B for the cell population.
  • a method of producing a cell population suitable for transplantation to the cornea comprising the step of measuring.
  • Item C2 The method according to Item C1, wherein the expression level of the gene of the cell population suitable for transplantation to the cornea is equal to or higher than a reference value.
  • Item C3 The method according to Item C1 or C2, wherein the cell population cultured in the step (1) under conditions suitable for culturing the corneal endothelial cells is cells obtained from corneal endothelium.
  • Item C4 The method according to any one of Items C1 to C3, wherein the gene is at least one gene selected from the group consisting of POU6F2 and LMX1B.
  • Item D1 Measuring the expression of at least one gene selected from the group consisting of POU6F2, LMX1B, and TFAP2B in a cell population cultured under conditions suitable for culturing a corneal endothelial cell, wherein the cell population is for transplantation into the cornea How to determine if it is suitable.
  • Item D2 The method according to Item D1, wherein the cell population cultured under conditions suitable for culturing the corneal endothelial cells is cells obtained from corneal endothelium.
  • Item D3 The method according to Item D1 or D2, wherein the cell population is judged to be suitable for transplantation to the cornea when the expression level of the gene is equal to or higher than a reference value.
  • Item D4 The method according to any one of items D1 to D3 wherein the gene is at least one gene selected from the group consisting of POU6F2 and LMX1B.
  • Item E1 (1) preparing a cell population cultured under conditions suitable for inducing differentiation to corneal endothelial cells; (2) measuring the expression of at least one gene selected from the group consisting of POU6F2, LMX1B, and TFAP2B for the cell population, and (3) a suspension, a sheet comprising a cell population expressing the gene, Or preparing the spheres, A method of producing a suspension, sheet or sphere comprising a cell population, comprising: Item E2 The method according to Item E1, wherein the step (1) is a step of culturing the stem cells under conditions suitable for inducing differentiation into corneal endothelial cells.
  • Item E3 The method according to any of paragraphs E1 or E2, wherein the gene is at least one gene selected from the group consisting of POU6F2 and LMX1B.
  • Item F1 (1) preparing a cell population cultured under conditions suitable for inducing differentiation to corneal endothelial cells; (2) measuring the expression of at least one gene selected from the group consisting of POU6F2, LMX1B, and TFAP2B for the cell population, and (3) corneal transplantation of a cell population expressing the gene is required Administering to the patient, A method of treating said patient, comprising Item F2 The method according to Item F1, wherein the step (1) is a step of culturing the stem cells under conditions suitable for inducing differentiation into corneal endothelial cells.
  • Item F3 The method according to any of paragraphs F1 or F2, wherein the gene is at least one gene selected from the group consisting of POU6F2 and LMX1B.
  • Item G1 (1) preparing a cell population cultured under conditions suitable for culturing corneal endothelial cells; (2) measuring the expression of at least one gene selected from the group consisting of POU6F2, LMX1B, and TFAP2B for the cell population, and (3) a suspension, a sheet comprising a cell population expressing the gene, Or preparing the spheres, A method of producing a suspension comprising a cell population, comprising: Item G2 The method according to Item G1, wherein the cell population cultured under conditions suitable for culturing the corneal endothelial cells is cells obtained from corneal endothelium. Item G3 The method according to any of paragraphs G1 or G2, wherein the gene is at least one gene selected from the group consisting of POU6F2 and LMX1B.
  • Item H1 (1) preparing a cell population cultured under conditions suitable for culturing corneal endothelial cells; (2) measuring the expression of at least one gene selected from the group consisting of POU6F2, LMX1B, and TFAP2B for the cell population, and (3) corneal transplantation of a cell population expressing the gene is required Administering to the patient, A method of treating said patient, comprising Item H2 The method according to paragraph H1, wherein the cell population cultured under conditions suitable for culturing the corneal endothelial cells is cells obtained from corneal endothelium.
  • Item H3 The method according to any of Items H1 or H2, wherein the gene is at least one gene selected from the group consisting of POU6F2 and LMX1B.
  • Item I1 Use of at least one gene selected from the group consisting of POU6F2, LMX1B, and TFAP2B for determining whether a cell population is suitable for transplantation to the cornea.
  • Item I2 Use of shell I1, wherein said gene is at least one gene selected from the group consisting of POU6F2 and LMX1B.
  • a means is provided to determine whether the cell population is suitable for corneal transplantation. In one embodiment, a means is provided for efficiently producing a cell population suitable for corneal transplantation.
  • FIG. 1 shows the expression level of TFAP2B in human tissue samples.
  • FIG. 2 shows the expression level of TFAP2B in human cultured cell samples.
  • FIG. 3 shows the expression level of LMX1B in human tissue samples.
  • FIG. 4 shows the expression level of LMX1B in human cultured cell samples.
  • FIG. 5 shows the expression level of POU6F2 in human tissue samples.
  • FIG. 6 shows the expression level of POU6F2 in human cultured cell samples.
  • FIG. 7 shows the results of quantitative PCR measurement of expression in induced cells (such as neural crest cells (iNC)) from iPS cells (iPS) and tissues in the eye.
  • iNC neural crest cells
  • iPS iPS cells
  • iNC neural crest cells derived from iPS cells
  • HCEC cultured corneal endothelial cells
  • HCEP corneal endothelial progenitor cells
  • dHCEP differentiation-induced corneal endothelial progenitor cells
  • Cendo living corneal endothelium
  • CS corneal parenchyma
  • IS iris parenchyma
  • CB ciliary body
  • TM trabecular meshwork
  • Clim corneal epithelial ring
  • Cepi central corneal epithelium
  • LF corneal ring fibroblast
  • Cj conjunctival epithelium
  • LN lens
  • IE Indicates the iris epithelium
  • RPE indicates the retinal pigment epithelium
  • Retina indicates the retina
  • ON indicates the optic nerve.
  • FIG. 8 shows the results of analysis of RNA-seq data on human adult-derived corneal endothel
  • Cell population means a population composed of a plurality of cells.
  • the individual cells forming the cell population may be allogeneic or xenogeneic cells.
  • condition suitable for inducing differentiation into corneal endothelial cells means conditions known (or to be developed in the future) as conditions suitable for inducing differentiation of cells into corneal endothelial cells.
  • conditions suitable for inducing differentiation into corneal endothelial cells for example, conditions disclosed in WO2013 / 051722, WO2016 / 114242, WO2016 / 114285 or WO2016 / 035874 can be mentioned.
  • WO 2013/051722, WO 2016/114242, WO 2016/114285 and WO 2016/035874 are incorporated herein by reference.
  • the “cell population cultured under conditions suitable for inducing differentiation into corneal endothelial cells” can be rephrased as “a cell population induced to differentiate into corneal endothelial cells”.
  • the cell population induced to differentiate into corneal endothelial cells may include corneal endothelial cells and / or corneal endothelial precursor cells.
  • the medium used to induce differentiation into corneal endothelial cells is not limited as long as its purpose is achieved.
  • the medium is preferably a serum free medium.
  • Serum-free medium means medium free of unregulated or unpurified serum.
  • a medium in which a purified blood-derived component or animal tissue-derived component (eg, growth factor) is mixed corresponds to a serum-free medium.
  • Examples of usable media include DMEM media, BME media, ⁇ MEM media, serum-free DMEM / F12 media, BGJb media, CMRL 1066 media, Glasgow MEM media, Improved MEM Zinc Option media, IMDM media, Medium 199 media, Eagle MEM medium, ham medium, RPMI 1640 medium, Fischer's medium, McCoy's medium, Williams E medium, Essential 8 Medium, mTeSR1 (Stemcell Technologies), TeSR-E8 medium (Stemcell Technologies), StemSure (Wako Pure Chemical Industries, Ltd.), mESF medium (Wako Pure Chemical Industries, Ltd.), StemFit (Ajinomoto Co., Ltd.), S-medium (DS Pharma), ReproXF (Reprocel), PSGro-free Human iPSC / ESC Growth Medium (StemRD), hPSC Growth Medium (Takara Bio) , ReproFF2 (Reprocell), EX-CELL 302 medium (SAFC), Knock
  • the culture medium may contain serum substitutes.
  • Serum substitutes include, for example, albumin (eg, lipid-rich albumin), transferrin, fatty acids, collagen precursors, trace elements (eg, zinc, selenium), B-27 (trademark) supplement, N2 supplement, knockout serum replacement (KSR: Invitrogen), 2-mercaptoethanol, 3 'thiol glycerol and the like.
  • concentration of serum substitute in the medium is, for example, 0.01 to 10% by weight, or 0.5 to 4% by weight, as in the case of the B-27 supplement.
  • Various substances can be added to the medium for the purpose of inducing maintenance and / or differentiation of cells.
  • Such substances include, for example, glycerol, glucose, fructose, sucrose, lactose, honey, starch, carbon source such as dextrin, fatty acids, fats and oils, lecithin, hydrocarbons such as alcohols, ammonium sulfate, ammonium nitrate, Nitrogen sources such as ammonium chloride, urea and sodium nitrate, salt, potassium salts, phosphates, magnesium salts, calcium salts, calcium salts, iron salts, inorganic salts such as manganese salts, monopotassium phosphate, dipotassium phosphate, magnesium sulfate, Sodium chloride, ferrous sulfate, sodium molybdate, sodium tungstate and manganese sulfate, various vitamins, amino acids and the like can be mentioned.
  • the culture medium may or may not contain a BMP4 (Bone morphogenetic protein 4), a transforming growth factor, and a differentiation inducer such as activin.
  • the medium is preferably substantially free of one or more, two or more, or all of the differentiation inducers.
  • substantially free means that the concentration is, for example, less than 0.5 nM or undetectable level.
  • the culture medium may or may not contain a high concentration of retinoic acid, a BMP inhibitor, a TGF ⁇ inhibitor, and a differentiation induction promoter such as Noggin.
  • high concentration retinoic acid is meant 1 ⁇ M, in particular around 10 ⁇ M retinoic acid.
  • the medium is substantially free of one or more, two or more, or all of the differentiation induction promoters.
  • the medium may or may not contain Wnt, a Wnt signal activator, and Chordin or the like. In one embodiment, the medium is preferably substantially free of these.
  • the medium is one or more, two or more, three or more, four or more, or all of the differentiation selected from the group consisting of GSK3 inhibitors, retinoic acid, TGFb2, insulin and ROCK inhibitors. It is preferred to include an inducer.
  • the pH of the culture medium can be adjusted in the range of 5.5 to 9.0, 6.0 to 8.0, or 6.5 to 7.5.
  • the culture temperature can be set to 36 ° C. to 38 ° C., or 36.5 ° C. to 37.5 ° C.
  • the culture can be performed in an atmosphere of 1% to 25% O 2 , 1% to 15% CO 2 .
  • the culture period is not particularly limited, and can be set, for example, in the range of 1 week to 8 weeks, 2 weeks to 6 weeks, or 3 weeks to 5 weeks.
  • any container used for cell culture can be used.
  • Such containers include, for example, microplates, microwell plates, multiplates, multiwell plates, microslides, chamber slides, petri dishes, flasks, flasks for tissue culture, dishes, Petri dishes, dishes for tissue culture, multidishes , Tubes, trays, culture bags, roller bottles, etc. can be used.
  • the inner surface of the culture vessel is selected from collagen, fibronectin, laminin or laminin fragments (eg, laminin E8 fragment and laminin 511 E8 fragment), vitronectin, basement membrane matrix, gelatin, hyaluronic acid, polylysine, vitronectin, and hyaluronic acid It may be coated with one or more.
  • the type of cells to be subjected to culture under conditions suitable for inducing differentiation to corneal endothelial cells is not particularly limited.
  • the cell is preferably a stem cell.
  • stem cells include induced pluripotent stem cells (iPS cells), embryonic stem cells (ES cells), fetal primordial germ cell-derived pluripotent stem cells (EG cells), and testis-derived pluripotent cells.
  • iPS cells induced pluripotent stem cells
  • ES cells embryonic stem cells
  • EG cells fetal primordial germ cell-derived pluripotent stem cells
  • testis-derived pluripotent cells testis-derived pluripotent cells.
  • Stem cells GS cells
  • human somatic stem cells tissue stem cells
  • the stem cells are preferably iPS cells.
  • IPS cells can be obtained by any method including known methods and methods to be developed in the future.
  • iPS cells can be generated by introducing specific reprogramming factors in the form of DNA or protein into somatic cells.
  • the reprogramming factor for example, Oct3 / 4, Sox2, Sox1, Sox3, Sox15, Sox17, Sox17, Klf4, Klf2, c-Myc, N-Myc, L-Myc, Nanog, Lin28, Fbx15, ERas, ECAT15-2, Tcl1, beta-catenin, Lin28b, Sall1, Sall4, Esrrb, Nr5a2, Tbx3, Glis1 and the like can be mentioned.
  • the reprogramming factors may be used alone or in any combination. Combinations of initialization factors are exemplified in, for example, WO2007 / 069666, WO2008 / 118820, WO2009 / 007852, WO2009 / 032194, WO2009 / 058413, and WO2009 / 057831.
  • the type of somatic cell is not particularly limited, and includes any cell that has been confirmed to produce iPS cells and any cell that will be reported in the future.
  • Preferred somatic cells in one embodiment include, for example, fibroblasts and leukocytes.
  • the preferred somatic cell source is human.
  • ES cells can be obtained by any method, for example, established by removing the inner cell mass from the blastocyst of a mammalian (preferably human) fertilized egg and culturing the inner cell mass on a fibroblast feeder. can do.
  • the mammal is not particularly limited, but is preferably human.
  • Maintenance of ES cells by subculture is performed by adding a culture solution to which a substance such as leukemia inhibitory factor (LIF) and / or basic fibroblast growth factor (bFGF) has been added. It can be done using.
  • LIF leukemia inhibitory factor
  • bFGF basic fibroblast growth factor
  • the selection of ES cells can be performed using, for example, expression of gene markers such as OCT-3 / 4, NANOG, ECAD, etc. as an indicator.
  • EG cells are cells with pluripotency similar to ES cells, established from embryonic primordial germ cells, and primordial reproduction in the presence of substances such as LIF, bFGF, and stem cell factor It can be established by culturing the cells (Y. Matsui et al. (1992), Cell, 70: 841-847; JL Resnick et al. (1992), Nature, 359: 550-551).
  • GS cells are testicular-derived pluripotent stem cells, and are cells from which spermatogenesis originates. These cells, like ES cells, can be induced to differentiate into cells of various lineages. GS cells are capable of self-replication in a culture solution containing glial cell line-derived neurotrophic factor (GDNF), and are repeatedly passaged under culture conditions similar to ES cells. Sperm stem cells can be obtained (M. Kanatsu-Shinohara et al. (2003) Biol. Reprod., 69: 612-616).
  • GDNF glial cell line-derived neurotrophic factor
  • somatic stem cells that can differentiate into corneal endothelial cells include neural crest stem cells (COPs) derived from corneal parenchyma, mesenchymal stem cells, and skin-derived pluripotent progenitor cells (skin-derived) precursors (SKPs) and the like. Preferred are COPs and SKPs.
  • COPs can be prepared, for example, by removing the epithelium and endothelium from the cornea, treating the corneal parenchyma with collagenase, and culturing the separated cells in DMEM / F12 medium supplemented with EGF, FGF2, B27 supplement, and LIF.
  • SKPs can be prepared, for example, according to the method described in Nat Cell Biol., 2001 vol. 3, 778-784.
  • Constants suitable for culturing corneal endothelial cells means conditions suitable for growing corneal endothelial cells while maintaining their characteristics.
  • the “conditions suitable for culturing corneal endothelial cells” may or may not be conditions under which corneal endothelial cells can be grown.
  • Consditions suitable for culturing corneal endothelial cells include conditions known as conditions suitable for growing corneal endothelial cells while maintaining their specification (for example, conditions disclosed in WO 2014/104366), And such conditions include conditions to be developed in the future.
  • the cell population cultured under conditions suitable for culturing corneal endothelial cells may include corneal endothelial cells and / or corneal endothelial precursor cells.
  • Specific conditions suitable for culturing corneal endothelial cells include culture conditions in the medium generally used for the culture of animal cells described above.
  • glucose can be added to the culture medium.
  • the glucose concentration in the medium can be adjusted to 2.0 g / L or less, or 0.1 to 1.0 g / L.
  • the medium contains, as a growth factor, hepatocyte growth factor (HGF), epidermal growth factor (EGF), recombinant EGF (rEGF), insulin and / or fibroblast growth factor (FGF), etc. It is preferable to do.
  • HGF hepatocyte growth factor
  • EGF epidermal growth factor
  • rEGF recombinant EGF
  • FGF fibroblast growth factor
  • the concentration of growth factor in the medium is usually 1 to 100 ng / mL, preferably 2 to 5 ng / mL. From the viewpoint of efficiently culturing corneal endothelial cells, it is preferable to mix 5 to 1,000 ⁇ g / mL of an ascorbic acid derivative such as ascorbic acid 2-phosphate in the medium.
  • an ascorbic acid derivative such as ascorbic acid 2-phosphate
  • the pH, temperature, culture vessel and the like of the medium may be those described above.
  • the culture period is not particularly limited, but can be performed until, for example, a stage (steady state) in which the cells become confluent (for example, 1 to 5 days). In one embodiment, it is preferable to use a conditioned medium of mesenchymal stem cells (MSCs) for culturing corneal endothelial cells.
  • MSCs mesenchymal stem cells
  • the type of cells to be subjected to culture under conditions suitable for culturing corneal endothelial cells is not particularly limited.
  • corneal endothelial cells isolated from the cornea or cells obtained by inducing differentiation of cells other than corneal endothelium into corneal endothelial cells (for example, the above-mentioned “conditions suitable for inducing differentiation into membrane endothelial cells”) Cells obtained by differentiation induction) can be used.
  • the means for isolating corneal endothelial cells from the cornea is not particularly limited, and a known method and a method to be developed in the future can be selected appropriately.
  • Descemet's membrane is collected in a state in which corneal endothelial cells are attached from human scleral corneal fragments, then minced and cultured in a medium containing about 0.2% collagenase at 37 ° C. for 1 to 3 hours in a medium containing 5% CO 2 Do.
  • the medium DME medium containing 15% fetal calf serum (FCS) and 2 ng / mL of basic fibroblast growth factor (bFGF) can be used. Thereafter, fibroblasts and the like are removed by centrifugal washing, and trypsin digestion is performed to obtain a cell population (primary culture cells) containing pelleted corneal endothelial cells.
  • POU6F2 is a gene encoding a transcription factor belonging to the POU family having a POU homeodomain. Its expression in the central nervous system, retinal ganglion cells, and amacrine cells has been reported, and it is also called retina-derived POU-domain factor-1 (RPF-1) (Zhou H et al. J Neurosci. 1996. PMID: 8601806). In addition, germ cell mutations have been reported in patients with Willms tumor and have been suggested to be responsible for gene expression regulation at the developmental stage of the kidney (Perrotti D et al. Hum Mutat. 2004. PMID: 15459955, Fiorino A et al. Int J Biochem Cell Biol. 2016. PMID: 27425396).
  • LMX1 B is a gene encoding a transcription factor belonging to the LIM homeodomain family. It is known as a causative gene for Nail-Patella syndrome (nail patella syndrome) and has been reported to be involved not only in limb development but also in glomerular basement membrane development in the kidney.
  • TFAP2B is a gene encoding a transcription factor belonging to the AP-2 family. It has been reported as a causative gene of Char syndrome mainly caused by a specific face, arterial duct patency, and fifth finger mid-segmental hypoplasia (Satoda M et al. Nat Genet. 2000. PMID: 10802654).
  • the step of preparing a cell population cultured under conditions suitable for inducing differentiation into corneal endothelial cells can be carried out by culturing the cells described above under conditions suitable for inducing differentiation into corneal endothelial cells described above.
  • the cell population cultured under conditions suitable for inducing differentiation into corneal endothelial cells may be a cell population sorted based on the presence of a molecule known as a corneal endothelial cell marker.
  • Corneal endothelial cell markers include, for example, the molecules disclosed in WO2009 / 057831 (for example, ZP4, MRGPRX3, GRIP1, GLP1R, HTR1D, CLRN1, SCNN1D, PKD1, CNTN6, NSF, CNTN3, PPIP5K1 and PCDHB7) Can. Sorting of the cell population using the corneal endothelial cell marker as an index can be performed using any method, for example, using FACS. In one embodiment, it is preferable to further culture a cell population, which is differentiated using a corneal endothelial marker as an indicator, under conditions suitable for inducing differentiation into corneal endothelial cells.
  • the morphology of the cell population cultured under conditions suitable for inducing differentiation to corneal endothelial cells is not particularly limited.
  • the cell population may be in the form of monolayer, multilayer, sheet, sphere or suspension according to a conventional method.
  • the cell population is preferably in a state of suspension.
  • the cell population cultured under the conditions suitable for inducing differentiation to corneal endothelial cells is in the form of a monolayer, the cell population can be brought into a state of suspension according to a conventional method.
  • Suspension-like cell populations can be obtained, for example, by suspending cell populations using a proteolytic enzyme (eg, trypsin) and / or a chelating agent to break intercellular adhesion molecules.
  • a proteolytic enzyme eg, trypsin
  • the cell population has a monolayer, multilayer, sheet, sphere, or suspension before or after measuring the expression of at least one gene selected from the group consisting of POU6F2, LMX1B, and TFAP2B. It can be prepared in any form such as
  • the measurement of the expression of the gene of (1) can be carried out using any method known or later developed as a method of measuring gene expression in cells. Although it is sufficient if the measurement can determine the presence or absence of gene expression, in one embodiment, it is preferable that it is a quantitative measurement. For example, it is preferable to measure (preferably, quantitatively measure) mRNA in cells of each gene by PCR or the like.
  • At least one gene selected from the group consisting of POU6F2, LMX1B, and TFAP2B preferably includes POU6F2 or LMX1B, and preferably includes POU6F2. In one embodiment, it is preferred to measure only the expression of POU6F2, and in another embodiment it is preferred to measure the combination of POU6F2 and LMX1B, or the combination of POU6F2, LMX1B, and TFAP2B.
  • the POU6F2, LMX1B, and TFAP2B genes are specifically expressed in corneal endothelial cells and corneal endothelial precursor cells, as shown in the examples described later.
  • the expression of these genes can be used as an index to obtain a corneal endothelium or a cell population suitable for transplantation into the cornea.
  • the expression of these genes can be used as an index to determine whether the cell population is suitable for transplantation to the cornea. That is, if these genes are expressed in the cell population, it can be judged that they are suitable for transplantation to the cornea, and if they are not, it is judged that they are not suitable for transplantation to the cornea. it can.
  • POU6F2 is expressed at high levels in relatively mature corneal endothelial cells. Therefore, it is possible to obtain a relatively mature corneal endothelial cell or a cell population suitable for transplantation to the cornea, using POU6F2 expression or its level as an indicator.
  • the measurement of the expression of at least one gene selected from the group consisting of POU6F2, LMX1B, and TFAP2B is directly measured on all the cells constituting the cell population cultured under conditions suitable for inducing differentiation into corneal endothelial cells. Although it is good, it does not need to measure.
  • By measuring the gene expression level of a part of cells constituting a cell population it is possible to indirectly measure the gene expression level in the remaining cells constituting the cell population.
  • the measurement of the gene expression is preferably performed on a part of cells constituting the cell population and the remaining cells are preferably measured indirectly. This is particularly so when employing methods involving cell death as a method of measuring gene expression.
  • the high expression level of at least one gene selected from the group consisting of POU6F2, LMX1B, and TFAP2B in the cell population is an indicator that the cell population is a cell population suitable for transplantation to the cornea.
  • the expression level of the gene of the cell population is preferably equal to or higher than a predetermined reference value.
  • the reference value can be arbitrarily determined in terms of being suitable for transplantation to the cornea.
  • the reference value can be set equal to or higher than the expression level of the gene in living corneal endothelial cells and / or cultured corneal endothelium.
  • the cell population cultured under conditions suitable for inducing differentiation to corneal endothelial cells does not express at least one gene selected from the group consisting of POU6F2, LMX1B, and TFAP2B, or POU6F2, LMX1B, in the cells.
  • the cell population can be further subjected to culture under conditions suitable for inducing differentiation into corneal endothelial cells. Such further culture can be continued until the cell population expresses the gene, or until the expression level of the gene is judged to be sufficient (e.g., it is above the reference value).
  • the cell population in which the expression of at least one gene selected from the group consisting of POU6F2, LMX1B, and TFAP2B is confirmed can be used as a cell population suitable for transplantation to the cornea.
  • the cell population can be used as a cell preparation for regenerating corneal endothelium.
  • the cell preparation containing the cell population may contain scaffold materials, components, and other pharmaceutically acceptable carriers for assisting maintenance, proliferation or administration to the affected area of the cell population.
  • Components for maintenance or growth of cells include medium sources such as carbon sources, nitrogen sources, vitamins, minerals, salts, and various cytokines, and extracellular matrix preparations such as MatrigelTM.
  • Scaffold materials or components include, for example, biodegradable polymers such as collagen, polylactic acid, hyaluronic acid, cellulose, and derivatives thereof and complexes of two or more thereof; for example, physiological saline, medium, PBS, etc. And physiological injectable solutions such as D-sorbitol, D-mannose, D-mannitol, sodium chloride and the like containing isotonic agents and glucose and other adjuvants.
  • biodegradable polymers such as collagen, polylactic acid, hyaluronic acid, cellulose, and derivatives thereof and complexes of two or more thereof; for example, physiological saline, medium, PBS, etc.
  • physiological injectable solutions such as D-sorbitol, D-mannose, D-mannitol, sodium chloride and the like containing isotonic agents and glucose and other adjuvants.
  • the cell preparation may contain a solubilizing agent such as alcohol, specifically ethanol, polyalcohol such as propylene glycol, polyethylene glycol, nonionic surfactant such as polysorbate 80, HCO-50 and the like.
  • a solubilizing agent such as alcohol, specifically ethanol, polyalcohol such as propylene glycol, polyethylene glycol, nonionic surfactant such as polysorbate 80, HCO-50 and the like.
  • compositions include pharmaceutically acceptable organic solvents, polyvinyl alcohol, polyvinyl pyrrolidone, carboxyvinyl polymer, sodium carboxymethylcellulose, sodium polyacrylate, sodium alginate, water-soluble dextran, carboxymethyl starch Sodium, pectin, methylcellulose, ethylcellulose, xanthan gum, gum arabic, casein, agar, polyethylene glycol, diglycerin, glycerin, propylene glycol, petrolatum, paraffin, stearyl alcohol, stearic acid, mannitol, sorbitol, lactose, acceptable as a pharmaceutical additive Surfactants, buffers, emulsifiers, suspending agents, soothing agents, stabilizers and the like.
  • the subject (patient) to which the cell preparation is to be administered is not particularly limited as long as it is considered to be necessary.
  • subjects include hereditary endothelium disorders such as fuchs corneal endothelium dystrophy, corneal endothelium abnormalities associated with glaucoma, corneal endothelium disorders after internal eye surgery, corneal endothelium disorders after viral infection such as herpes, and corneal endothelium loss after corneal transplantation And those with symptoms accompanied by
  • the subject to which the cell preparation is administered is a patient with corneal endothelial dysfunction (eg, a patient with reduced pump function and barrier function of corneal endothelial cells), bullous keratopathy, corneal edema, corneal white spots, and It may be a patient with keratoconus.
  • the administration form of the cell preparation is not particularly limited, for example, it can be injected into the eye via an injection needle.
  • Method B to determine whether the cell population has been transplanted to the cornea is selected from the group consisting of POU6F2, LMX1B, and TFAP2B of the cell population cultured under conditions suitable for inducing differentiation to corneal endothelial cells. It is preferable to include the step of measuring the expression of at least one gene selected.
  • RNA Stabilization Reagent QIAGEN Inc., Valencia, CA
  • Total RNA is extracted using Qiagen miRNeasy Mini Kit (QIAGEN Inc.) according to the manufacturer's protocol, and Heliscope CAGE library is prepared for 3 samples (Kanamori-Katayama M, et al. (2011), Genome Res .21:. 1150-1159), then SeqLL (Boston, MA) at HeliScope TM single Molecule sequencer (Helicos BioSciences Corp., Cambridge, was sequenced using MA).
  • Descemet membranes isolated as described above were incubated for 30 minutes at 37 ° C. in StemPro Accutase (Thermo Fisher), and corneal endothelial cells were isolated from Descemet membranes. Isolated corneal endothelial cells are collected by gentle centrifugation and collected: 50 U / mL penicillin, 50 ⁇ g / mL streptomycin, 10% fetal bovine serum (ICN Biomedicals, Inc., Aurora, OH) and 2 ng / mL base The cells were suspended in Dulbecco's modified Eagle medium (DMEM) supplemented with neoplastic fibroblast growth factor (bFGF; invitrogen) and then cultured with a cell adhesion reagent (FNC coating mix; Athena ES, Baltimore, MD) The cells were seeded on a dish and cultured at 37 ° C.
  • DMEM Dulbecco's modified Eagle medium
  • bFGF neoplastic fibro
  • the obtained sequence data were mapped with hg19 as a reference genome using Delve (Djebali S, et al. (2012), Nature 489, 101-108.).
  • the number of tags mapped to the 184, 827 promoter regions identified in the FANTOM5 project was counted, and the living corneal endothelium was analyzed with 182 human tissue samples analyzed with FANTOM5, and the cultured corneal endothelial cells were analyzed with FANTOM5.
  • Data and expression levels of 536 human cultured cell samples were compared. Each was corrected with the total number of tags mapped, and the expression level was calculated using tpm (tags per million) as a unit.
  • TFAP2B, LMX1B and POU6F2 were identified as transcription factors specifically expressed commonly in living corneal endothelium and cultured corneal endothelial cells.
  • human transcription factors reference was made to http://fantom.gsc.riken.jp/5/sstar/Browse_Transcription_Factors_hg19.
  • FIG. 1 shows the expression level of TFAP2B in human tissue samples.
  • “a” represents the substantia nigra
  • “b” represents the brain stem locus coeruleus
  • “c” represents the expression level of TFAP2B in the epididymis. It was confirmed that the highest expression is in the corneal endothelium.
  • FIG. 2 shows the expression level of TFAP2B in human cultured cell samples.
  • “a” represents olfactory epithelial cells
  • “b” represents trabecular meshwork cells
  • “c” represents the expression level of TFAP2B in conjunctival fibroblasts. The highest expression was confirmed in cultured corneal endothelial cells.
  • FIG. 3 shows the expression level of LMX1B in human tissue samples.
  • a represents the parotid gland
  • b represents the salivary gland
  • c represents the expression level of LMX1B in the submandibular gland. It was confirmed that the highest expression is in the corneal endothelium.
  • FIG. 4 shows the expression level of LMX1B in human cultured cell samples.
  • a represents the trabecular meshwork cell
  • b represents the corneal stromal cell
  • c represents the expression level of LMX1B in fibroblasts.
  • trabecular meshwork cells the same level of expression was observed as in corneal endothelial cells. It was also confirmed that it was expressed in corneal stroma cells. Since the corneal endothelium, corneal stroma, and trabecular meshwork are all tissues derived from the periocular nerve crest, from this result, LMX1B is expected to be applied as a marker for periocular nerve crest derived tissue as well as corneal endothelial markers .
  • FIG. 5 shows the expression level of POU6F2 in human tissue samples. Although the expression level is around 100 tpm in the corneal endothelium of the living body, the expression level in brain tissue where expression is seen in others is extremely high at less than 10 tpm and extremely high.
  • FIG. 6 shows the expression level of POU6F2 in human cultured cell samples.
  • a shows the expression level of POU6F2 in hepatocytes. While the expression level in cultured corneal endothelial cells is 100 tpm or more, no expression was observed in 535 samples of 536 human cultured cell samples analyzed by FANTOM5. The only expression level observed in hepatocytes is also very low, less than 2 tpm.
  • POU6F2, LMX1B, and TFAP2B are all highly expressed in corneal endothelial cells, and thus are useful as corneal endothelial cell markers, and also for induction of corneal endothelial cells. Can also be used.
  • FIG. 7 shows the results of quantitative PCR measurement of expression in induced cells (such as neural crest cells (iNC)) from iPS cells (iPS) and tissues in the eye.
  • iNC neural crest cells
  • FIG. 7 shows the results of quantitative PCR measurement of expression in induced cells (such as neural crest cells (iNC)) from iPS cells (iPS) and tissues in the eye.
  • iNC neural crest cells
  • POU6F2B LMX1B, and TFAP2B are expressed in cultured corneal endothelial cells (HCEC), corneal endothelial progenitor cells (HCEP), differentiation-induced corneal endothelial progenitor cells (dHCEP), and living corneal endothelium (Cendo) It was confirmed that the level was high.
  • corneal stroma CS
  • iris parenchyma IS
  • ciliary body CB
  • trabecular meshwork TM
  • corneal epithelial ring Clim
  • central corneal epithelium Cepi
  • corneal ring fibroblasts In LF
  • conjunctival epithelium Cj
  • lens LN
  • IE iris epithelium
  • RPE retinal pigment epithelium
  • Retina retina
  • optic nerve ON
  • RNA-seq data (Chen Y, et al. (2013), Hum Mol Genet 22: 1271-1279) in human adult / fetal-derived corneal endothelium revealed no significant change in the expression of TFAP2B and LMX1B
  • POU6F2 was upregulated significantly in adult-derived corneal endothelium (FIG. 8).
  • POU6F2 is expressed on functional mature corneal endothelium and is considered to be associated with the terminal differentiation of the corneal endothelium. Therefore, POU6F2 is considered to be useful for the quality evaluation of corneal endothelial cell products, and also useful for the preparation of corneal endothelial cells, since it is also a transcription factor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Developmental Biology & Embryology (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Botany (AREA)
  • Dermatology (AREA)
  • Transplantation (AREA)
  • Reproductive Health (AREA)
  • Ophthalmology & Optometry (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Toxicology (AREA)

Abstract

角膜への移植に適した細胞を同定する手段、又は、それを利用した角膜への移植に適した細胞集団を製造する手段の提供。 (1)角膜内皮細胞への分化誘導に適した条件で培養した細胞集団を準備する工程、及び (2)前記細胞集団についてPOU6F2、LMX1B、及びTFAP2Bから成る群より選択される少なくとも一種の遺伝子の発現を測定する工程 を含む、角膜への移植に適した細胞集団を製造する方法。

Description

角膜内皮細胞マーカー及びその利用
 角膜内皮細胞の同定、評価、及び製造に関する技術が開示される。
 ヒト角膜内皮細胞は生体内では一度障害を受けると基本的に再生せず、不可逆的に細胞数が減少し、細胞密度が極度に低下すると水疱性角膜症を来たし角膜の透明性が失われ視力障害を来たす。これまでドナー角膜を用いた角膜移植が行われているが、角膜内皮障害は角膜移植の適応疾患の第1位となっており、ドナー角膜の不足は深刻な問題である。
 現在、体性幹細胞や多能性幹細胞を用いた角膜内皮再生治療の開発が行われている。しかし、信頼性の高い角膜内皮細胞特異的マーカーが存在しないため、最終目的産物である角膜内皮細胞を同定することは容易ではない。これまでに角膜内皮細胞のマーカーとなり得る幾つかの分子が報告されている(特許文献1)。しかし、成熟した角膜内皮細胞を同定するマーカーは報告されておらず、また角膜内皮細胞の成熟に関する分子機構も明らかでない。
WO2016/035874
 角膜移植に適した細胞を同定する手段、及び、それを利用した角膜移植に適した細胞を製造する手段等の提供が1つの目的である。
 発明者らは、鋭意研究を重ねた結果、特定の遺伝子が角膜内皮細胞に特有なマーカーとなり得ることを見出した。斯かる知見に基づき更なる研究と検討を重ねた末、下記に代表される発明が提供される。
項A1
(1)角膜内皮細胞への分化誘導に適した条件で培養した細胞集団を準備する工程、及び(2)前記細胞集団についてPOU6F2、LMX1B、及びTFAP2Bから成る群より選択される少なくとも一種の遺伝子の発現を測定する工程
を含む、角膜への移植に適した細胞集団を製造する方法。
項A2
角膜への移植に適した細胞集団の該遺伝子の発現レベルが基準値以上である、項A1に記載の方法。
項A3
工程(1)が、幹細胞を角膜内皮細胞への分化誘導に適した条件で培養する工程である、項A1又はA2に記載の方法。
項A4
該遺伝子の発現レベルが基準値以上になるまで工程(1)を継続する、項A1~A3のいずれかに記載の方法。
項A5
該遺伝子が、POU6F2及びLMX1Bから成る群より選択される少なくとも一種の遺伝子である、項A1~A4のいずれかに記載の方法。
項B1
角膜内皮細胞への分化誘導に適した条件で培養した細胞集団のPOU6F2、LMX1B、及びTFAP2Bから成る群より選択される少なくとも一種の遺伝子の発現を測定することを含む、該細胞集団が角膜への移植に適しているか判定する方法。
項B2
該細胞集団が、幹細胞を角膜内皮細胞への分化誘導に適した条件で培養した細胞集団である、項B1に記載の方法。
項B3
該遺伝子の発現レベルが基準値以上である場合に該細胞集団が角膜への移植に適していると判断する、項B1又はB2に記載の方法。
項B4
該遺伝子が、POU6F2及びLMX1Bから成る群より選択される少なくとも一種の遺伝子である、項B1~B3のいずれかに記載の方法。
項C1
(1)角膜内皮細胞の培養に適した条件で培養した細胞集団を準備する工程、及び
(2)前記細胞集団についてPOU6F2、LMX1B、及びTFAP2Bから成る群より選択される少なくとも一種の遺伝子の発現を測定する工程
を含む、角膜への移植に適した細胞集団を製造する方法。
項C2
角膜への移植に適した細胞集団の該遺伝子の発現レベルが基準値以上である、項C1に記載の方法。
項C3
工程(1)が、該角膜内皮細胞の培養に適した条件で培養した細胞集団が、角膜内皮から取得された細胞である、項C1又はC2に記載の方法。
項C4
該遺伝子が、POU6F2及びLMX1Bから成る群より選択される少なくとも一種の遺伝子である、項C1~C3のいずれかに記載の方法。
項D1
角膜内皮細胞の培養に適した条件で培養した細胞集団についてPOU6F2、LMX1B、及びTFAP2Bから成る群より選択される少なくとも一種の遺伝子の発現を測定する工程を含む、該細胞集団が角膜への移植に適しているか判定する方法。
項D2
該角膜内皮細胞の培養に適した条件で培養した細胞集団が、角膜内皮から取得された細胞である、項D1に記載の方法。
項D3
該遺伝子の発現レベルが基準値以上である場合に該細胞集団が角膜への移植に適していると判断する、項D1又はD2に記載の方法。
項D4
該遺伝子が、POU6F2及びLMX1Bから成る群より選択される少なくとも一種の遺伝子である、項D1~D3のいずれかに記載の方法。
項E1
(1)角膜内皮細胞への分化誘導に適した条件で培養した細胞集団を準備する工程、
(2)前記細胞集団についてPOU6F2、LMX1B、及びTFAP2Bから成る群より選択される少なくとも一種の遺伝子の発現を測定する工程、及び
(3)該遺伝子を発現している細胞集団を含むサスペンション、シート、又はスフィアを調製する工程、
を含む、細胞集団を含むサスペンション、シート、又はスフィアの製造方法。
項E2
工程(1)が、幹細胞を角膜内皮細胞への分化誘導に適した条件で培養する工程である、項E1に記載の方法。
項E3
該遺伝子が、POU6F2及びLMX1Bから成る群より選択される少なくとも一種の遺伝子である、項E1又はE2のいずれかに記載の方法。
項F1
(1)角膜内皮細胞への分化誘導に適した条件で培養した細胞集団を準備する工程、
(2)前記細胞集団についてPOU6F2、LMX1B、及びTFAP2Bから成る群より選択される少なくとも一種の遺伝子の発現を測定する工程、及び
(3)該遺伝子を発現している細胞集団を角膜移植が必要な患者に投与する工程、
を含む、該患者の治療方法。
項F2
工程(1)が、幹細胞を角膜内皮細胞への分化誘導に適した条件で培養する工程である、項F1に記載の方法。
項F3
該遺伝子が、POU6F2及びLMX1Bから成る群より選択される少なくとも一種の遺伝子である、項F1又はF2のいずれかに記載の方法。
項G1
(1)角膜内皮細胞の培養に適した条件で培養した細胞集団を準備する工程、
(2)前記細胞集団についてPOU6F2、LMX1B、及びTFAP2Bから成る群より選択される少なくとも一種の遺伝子の発現を測定する工程、及び
(3)該遺伝子を発現している細胞集団を含むサスペンション、シート、又はスフィアを調製する工程、
を含む、細胞集団を含むサスペンションの製造方法。
項G2
該角膜内皮細胞の培養に適した条件で培養した細胞集団が、角膜内皮から取得された細胞である、項G1に記載の方法。
項G3
該遺伝子が、POU6F2及びLMX1Bから成る群より選択される少なくとも一種の遺伝子である、項G1又はG2のいずれかに記載の方法。
項H1
(1)角膜内皮細胞の培養に適した条件で培養した細胞集団を準備する工程、
(2)前記細胞集団についてPOU6F2、LMX1B、及びTFAP2Bから成る群より選択される少なくとも一種の遺伝子の発現を測定する工程、及び
(3)該遺伝子を発現している細胞集団を角膜移植が必要な患者に投与する工程、
を含む、該患者の治療方法。
項H2
該角膜内皮細胞の培養に適した条件で培養した細胞集団が、角膜内皮から取得された細胞である、項H1に記載の方法。
項H3
該遺伝子が、POU6F2及びLMX1Bから成る群より選択される少なくとも一種の遺伝子である、項H1又はH2のいずれかに記載の方法。
項I1
細胞集団が角膜への移植に適しているか否か判断するための、POU6F2、LMX1B、及びTFAP2Bから成る群より選択される少なくとも一種の遺伝子の使用。
項I2
該遺伝子が、POU6F2及びLMX1Bから成る群より選択される少なくとも一種の遺伝子である、甲I1の使用。
 一実施形態において、細胞集団が角膜移植に適しているか否かを判定する手段が提供される。一実施形態において、角膜移植に適した細胞集団を効率的に製造する手段が提供される。
図1は、ヒト組織サンプルにおけるTFAP2Bの発現量を示す。 図2は、ヒト培養細胞サンプルにおけるTFAP2Bの発現量を示す。 図3は、ヒト組織サンプルにおけるLMX1Bの発現量を示す。 図4は、ヒト培養細胞サンプルにおけるLMX1Bの発現量を示す。 図5は、ヒト組織サンプルにおけるPOU6F2の発現量を示す。 図6は、ヒト培養細胞サンプルにおけるPOU6F2の発現量を示す。 図7は、iPS細胞(iPS)からの誘導細胞(神経堤細胞(iNC)等)、及び眼内の各組織における発現を定量PCRで測定した結果を示す。iPS はiPS細胞、iNCはiPS細胞から誘導した神経堤細胞、HCECは培養角膜内皮細胞、HCEPは角膜内皮前駆細胞、dHCEPは分化誘導角膜内皮前駆細胞、Cendoは生体角膜内皮、CSは角膜実質、ISは虹彩実質、CBは毛様体、TMは繊維柱帯、Climは角膜上皮輪部、Cepiは角膜上皮中央部、LFは角膜輪部線維芽細胞、Cjは結膜上皮、LNはレンズ、IEは虹彩上皮、RPEは網膜色素上皮、Retinaは網膜、ONは視神経を示す。 図8は、ヒト成人由来角膜内皮及びヒト胎児由来角膜内皮におけるRNA-seqデータをPOU6F2、LMX1B、及びTFAP2Bについて解析した結果を示す。
 以下、上記代表的な発明を中心に説明する。
 「細胞集団」とは、複数個の細胞で構成される集団を意味する。細胞集団を形成する個々の細胞は、同種の細胞であっても異種の細胞であってもよい。
 「角膜内皮細胞への分化誘導に適した条件」とは、細胞を角膜内皮細胞に分化誘導するために適している条件として知られている(又は、今後開発される)条件を意味する。角膜内皮細胞への分化誘導に適した条件としては、例えば、WO2013/051722、WO2016/114242、WO2016/114285又はWO2016/035874に開示される条件を挙げることができる。WO2013/051722、WO2016/114242、WO2016/114285及びWO2016/035874は、援用によって本書に取り込まれる。「角膜内皮細胞への分化誘導に適した条件で培養した細胞集団」とは、「角膜内皮細胞に分化誘導させた細胞集団」と言い換えることが可能である。角膜内皮細胞に分化誘導させた細胞集団は、角膜内皮細胞及び/又は角膜内皮前駆細胞を含み得る。
 角膜内皮細胞への分化誘導に使用する培地は、その目的が達成される限り制限されない。一実施形態において、培地は無血清培地であることが好ましい。無血清培地とは、無調整又は未精製の血清を含まない培地を意味する。精製された血液由来成分や動物組織由来成分(例えば、増殖因子)が混入している培地は無血清培地に該当する。
 使用可能な培地の例としては、DMEM培地、BME培地、αMEM培地、無血清DMEM/F12培地、BGJb培地、CMRL 1066培地、Glasgow MEM培地、Improved MEM Zinc Option培地、IMDM培地、Medium 199培地、Eagle MEM培地、ハム培地、RPMI 1640培地、Fischer’s培地、McCoy’s培地、ウイリアムスE培地、Essential8 Medium、mTeSR1(ステムセルテクノロジーズ社)、TeSR-E8 medium(ステムセルテクノロジーズ社)、StemSure(和光純薬社)、mESF培地(和光純薬社)、StemFit(味の素社)、S‐medium(DSファーマ社)、ReproXF(リプロセル社)、PSGro-free Human iPSC/ESC Growth Medium(StemRD社)、hPSC Growth Medium(タカラバイオ社)、ReproFF2(リプロセル社)、EX-CELL 302培地(SAFC社)、KnockOutTMDMEM、Medium 154、StemPro(登録商標)hESC SFM、EX-CELL-CD-CHO(SAFC社)又はSTEMdiff APEL Medium(ステムセルテクノロジーズ社)など及びこれらの混合物などの動物細胞の培養に用いることのできる培地を挙げることができる。一実施形態において好ましい培地は、幹細胞用培地である。
 培地は、血清代替物を含んでいてもよい。血清代替物としては、例えば、アルブミン(例えば、脂質リッチアルブミン)、トランスフェリン、脂肪酸、コラーゲン前駆体、微量元素(例えば亜鉛、セレン)、B-27(登録商標)サプリメント、N2サプリメント、ノックアウトシーラムリプレースメント(KSR:Invitrogen社製)、2-メルカプトエタノール、3’チオールグリセロール等が挙げられる。培地中の血清代替物の濃度は、B-27サプリメントの場合を例にすると、0.01~10重量%、又は0.5~4重量%である。
 培地には、細胞の維持増殖及び/又は分化誘導の目的で種々の物質を添加することができる。そのような物質としては、例えば、グリセロール、グルコース、果糖、ショ糖、乳糖、ハチミツ、デンプン、デキストリン等の炭素源、また、脂肪酸、油脂、レシチン、アルコール類等の炭化水素類、硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウム、尿素、硝酸ナトリウム等の窒素源、食塩、カリウム塩、リン酸塩、マグネシウム塩、カルシウム塩、鉄塩、マンガン塩等の無機塩類、リン酸一カリウム、リン酸二カリウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、モリブデン酸ナトリウム、タングステン酸ナトリウム及び硫酸マンガン、各種ビタミン類、アミノ酸類等を挙げることができる。
 培地は、BMP4(Bone morphogenetic protein 4)、トランスフォーミング増殖因子、及びアクチビンのような分化誘導剤を含んでもよいが、含まなくてもよい。一実施形態において、培地は、前記分化誘導剤の1以上、2以上、又はすべてを実質的に含まないことが好ましい。ここで、実質的に含まないとは、例えば、濃度が0.5nM未満又は検出不能なレベルであることを意味する。
 培地は、高濃度レチノイン酸、BMP阻害剤、TGFβ阻害剤、及びNoggin等の分化誘導促進剤を含んでもよいが、含まなくてもよい。高濃度レチノイン酸とは、1μM、特に10μM程度のレチノイン酸を意味する。一実施形態において、培地は、前記分化誘導促進剤の1以上、2以上、又はすべてを実質的に含まないことが好ましい。培地は、Wnt、Wntシグナル活性化剤、及びChordin等も含んでもよいが、含まなくてもよい。一実施形態において、培地は、これらを実質的に含まないことが好ましい。
 一実施系形態において、培地は、GSK3阻害剤、レチノイン酸、TGFb2、インスリン及びROCK阻害剤から成る群より選択される1種以上、2種以上、3種以上、4種以上、又は全ての分化誘導因子を含むことが好ましい。
 培地のpHは、5.5~9.0、6.0~8.0、又は6.5~7.5の範囲に調整することができる。培養温度は、36℃~38℃、又は36.5℃~37.5℃に設定することができる。培養は、1%~25%O、1%~15%COの雰囲気下で行うことができる。
 培養期間は、特に制限されないが、例えば、1週~8週間、2週~6週間、又は3週間~5週間の範囲で設定することができる。
 培養には、細胞培養に使用される任意の容器を使用することができる。そのような容器としては、例えば、マイクロプレート、マイクロウエルプレート、マルチプレート、マルチウェルプレート、マイクロスライド、チャンバースライド、シャーレ、フラスコ、組織培養用フラスコ、ディッシュ、ペトリデッシュ、組織培養用ディッシュ、マルチディッシュ、チューブ、トレイ、培養バック、及びローラーボトル等を使用することができる。
 培養容器の内表面は、コラーゲン、フィブロネクチン、ラミニン又はラミニンフラグメント(例えば、ラミニンE8フラグメント及びラミニン511E8フラグメント)、ビトロネクチン、基底膜マトリックス、ゼラチン、ヒアルロン酸、ポリリジン、ビトロネクチン、及びヒアルロン酸から選ばれるいずれか1以上でコーティングされていてもよい。
 角膜内皮細胞への分化誘導に適した条件での培養に供される細胞の種類は、特に制限されない。一実施形態において、当該細胞が、幹細胞であることが好ましい。幹細胞としては、例えば、人工多能性幹細胞(induced pluripotent stem cells;iPS細胞)、胚性幹細胞(ES細胞)、胎児の始原生殖細胞由来の多能性幹細胞(EG細胞)、精巣由来の多能性幹細胞(GS細胞)、及び角膜内皮細胞に分化可能なヒト体性幹細胞(組織幹細胞)等を挙げることができる。一実施形態において、幹細胞はiPS細胞であることが好ましい。
 iPS細胞は、公知の手法及び今後開発される手法を含む任意の手法で得ることができる。例えば、iPS細胞は、特定の初期化因子をDNA又はタンパク質の形態で体細胞に導入することによって作製できる。初期化因子としては、例えば、Oct3/4、Sox2、Sox1、Sox3、Sox15、Sox17、Klf4、Klf2、c-Myc、N-Myc、L-Myc、Nanog、Lin28、Fbx15、ERas、ECAT15-2、Tcl1、beta-catenin、Lin28b、Sall1、Sall4、Esrrb、Nr5a2、Tbx3、及びGlis1等を挙げることができる。初期化因子は、単独で用いても良く、任意に組み合わせて用いることもできる。初期化因子の組み合わせは、例えば、WO2007/069666、WO2008/118820、WO2009/007852、WO2009/032194、WO2009/058413、及びWO2009/057831等に例示されている。体細胞の種類は、特に制限されず、これまでにiPS細胞の製造が確認されている任意の細胞及び今後報告される任意の細胞を含む。一実施形態において好ましい体細胞としては、例えば、線維芽細胞、及び白血球等を挙げることができる。好ましい体細胞の由来はヒトである。
 ES細胞は、任意の手法によって取得でき、例えば、哺乳類(好ましくは、ヒト)の受精卵の胚盤胞から内部細胞塊を取出し、内部細胞塊を線維芽細胞のフィーダー上で培養することによって樹立することができる。哺乳動物は特に制限されないが、好ましくはヒトである。継代培養によるES細胞の維持は、白血病抑制因子(leukemia inhibitory factor (LIF))、及び/又は塩基性線維芽細胞成長因子(basic fibroblast growth factor (bFGF))等の物質を添加した培養液を用いて行うことができる。ES細胞の選択は、例えば、OCT-3/4、NANOG、ECAD等の遺伝子マーカーの発現を指標として行うことができる。
 EG細胞は、胎生期の始原生殖細胞から樹立される、ES細胞と同様な多能性をもつ細胞であり、LIF、bFGF、及び幹細胞因子(stem cell factor)等の物質の存在下で始原生殖細胞を培養することによって樹立できる(Y. Matsui et al. (1992), Cell, 70:841-847;J.L. Resnick et al. (1992), Nature, 359:550-551)。
 GS細胞は、精巣由来の多能性幹細胞であり、精子形成のための起源となる細胞である。この細胞は、ES細胞と同様に、種々の系列の細胞に分化誘導可能である。GS細胞は、神経膠細胞系由来神経栄養因子(glial cell line-derived neurotrophic factor (GDNF))を含む培養液で自己複製可能であり、ES細胞と同様の培養条件下で継代を繰り返すことにより、精子幹細胞を得ることができる(M. Kanatsu-Shinohara et al. (2003) Biol. Reprod., 69:612-616)。
 角膜内皮細胞へと分化し得る体性幹細胞としては、例えば、角膜実質に由来する神経堤幹細胞(COPs)、間葉系幹細胞(mesenchymal stem cells)、及び皮膚由来多能性前駆細胞(skin-derived precursors:SKPs)等が挙げられる。好ましくはCOPs及びSKPsである。COPsは、例えば、角膜から上皮及び内皮を取り除いた後、角膜実質をコラゲナーゼで処置し、EGF、FGF2、B27サプリメント、及びLIFを添加したDMEM/F12培地で分離した細胞を培養することにより調製できる。SKPsは、例えばNat Cell Biol., 2001 vol. 3, 778-784に記載された方法に準じて調製することができる。
 「角膜内皮細胞の培養に適した条件」とは、角膜内皮細胞をその特性を維持したまま生育させるのに適した条件を意味する。「角膜内皮細胞の培養に適した条件」は、角膜内皮細胞を増殖させることのできる条件であてもよいが、そうでなくてもよい。「角膜内皮細胞の培養に適した条件」には、角膜内皮細胞をその特定を維持したまま生育させるのに適した条件として知られている条件(例えば、WO2014/104366に開示される条件)、及びそのような条件として今後開発される条件が含まれる。角膜内皮細胞の培養に適した条件で培養した細胞集団は、角膜内皮細胞及び/又は角膜内皮前駆細胞を含み得る。
 具体的な角膜内皮細胞の培養に適した条件としては、上述の動物細胞の培養に一般的に使用される培地での培養条件を挙げることができる。一実施形態において、培地にグルコースを添加することができる。培地中のグルコース濃度は、2.0 g/L 以下、又は0.1~1.0 g/Lに調整することができる。一実施形態において、培地には、成長因子として、肝細胞増殖因子(HGF)、上皮成長因子(EGF)、組換えEGF(rEGF)、インスリン及び/又は線維芽細胞増殖因子(FGF)等を添加することが好ましい。これらの因子は1種のみを単独で用いても良く、複数を適宜組み合わせて培地に添加しても良い。培地中の成長因子の濃度は、通常1~100ng/mL、好ましくは2~5 ng/mLである。効率的に角膜内皮細胞を培養する観点から、培地には、アスコルビン酸2-リン酸等のアスコルビン酸誘導体を5~1,000μg/mL配合することが好ましい。その他、培地のpH、温度、及び培養容器等は上述のものを使用できる。培養期間は、特に制限されないが、例えば、細胞が集密(コンフルエント)になる段階(定常状態)まで(例えば、1~5日)行うことができる。一実施形態において、角膜内皮細胞の培養に、間葉系幹細胞(MSC)の馴化培地を用いることが好ましい。
 角膜内皮細胞の培養に適した条件での培養に供する細胞の種類は特に制限されない。例えば、角膜から単離した角膜内皮細胞、又は角膜内皮以外の細胞を角膜内皮細胞に分化誘導させて得られた細胞(例えば、上述の「膜内皮細胞への分化誘導に適した条件」での分化誘導で得られた細胞)を用いることができる。
 角膜から角膜内皮細胞を単離する手段は特に制限されず、公知の方法及び今後開発される方法を適宜選択して行うことが出来る。例えば、ヒト強角膜片から角膜内皮細胞が付着した状態でデスメ膜を採取した後、細切し、コラゲナーゼを約0.2%含む培地中で5% CO2、37℃の条件で1~3時間培養する。培地には15%牛胎児血清(FCS)及び2ng/mLの塩基性線維芽細胞増殖因子(bFGF)を含むDME培地を用いることができる。その後、遠心洗浄により線維芽細胞等を除去し、トリプシン消化を行うことによりペレット状の角膜内皮細胞を含む細胞集団(初代培養細胞)を得ることができる。
 「POU6F2」とは、POUホメオドメインを持つPOUファミリーに属する転写因子をコードする遺伝子である。中枢神経系や網膜神経節細胞、アマクリン細胞での発現が報告されており、retina-derived POU-domain factor-1 (RPF-1)とも呼ばれている (Zhou H et al. J Neurosci. 1996. PMID: 8601806)。また、生殖細胞変異がWillms腫瘍患者で報告されており、腎臓の発生段階において遺伝子発現制御を担うことが示唆されている(Perotti D et al. Hum Mutat. 2004. PMID: 15459955, Fiorino A et al. Int J Biochem Cell Biol. 2016. PMID: 27425396)。
 「LMX1B」とは、LIMホメオドメインファミリーに属する転写因子をコードする遺伝子である。Nail-Patella症候群(爪膝蓋症候群)の原因遺伝子として知られており、四肢の発生だけでなく腎臓の糸球体基底膜の発生にも関与することが報告されている。
 「TFAP2B」とは、AP-2ファミリーに属する転写因子をコードする遺伝子である。特異的顔貌、動脈管開存、第5指中節骨低形成を主症状とするChar症候群の原因遺伝子として報告されている (Satoda M et al. Nat Genet. 2000. PMID: 10802654)。
 角膜内皮細胞への分化誘導に適した条件で培養した細胞集団を準備する工程は、上述する細胞を上述する角膜内皮細胞への分化誘導に適した条件で培養することで実施できる。一実施形態において、角膜内皮細胞への分化誘導に適した条件で培養した細胞集団は、角膜内皮細胞マーカーとして知られる分子の存在を指標にして分取された細胞集団であってもよい。角膜内皮細胞マーカーとしては、例えば、WO2009/057831に開示されている分子(例えば、ZP4、MRGPRX3、GRIP1、GLP1R、HTR1D、CLRN1、SCNN1D、PKD1、CNTN6、NSF、CNTN3、PPIP5K1及びPCDHB7)を挙げることができる。角膜内皮細胞マーカーを指標とした細胞集団の分取は、任意の手法を用いて行うことができ、例えば、FACSを用いて行うことができる。一実施形態において、角膜内皮マーカーを指標に分種した細胞集団を更に角膜内皮細胞への分化誘導に適した条件で培養することが好ましい。
 角膜内皮細胞への分化誘導に適した条件で培養した細胞集団の形態は特に制限されない。例えば、当該細胞集団は、常法に従って、単層状、多層状、シート状、スフィア状、又はサスペンジョンの形態であり得る。一実施形態において、当該細胞集団はサスペンジョンの状態であることが好ましい。角膜内皮細胞への分化誘導に適した条件で培養された細胞集団が単層状である場合、常法に従って細胞集団をサスペンジョンの状態にすることができる。サスペンジョン状の細胞集団は、例えば、タンパク質分解酵素(例えば、トリプシン)及び/又は細胞間接着分子を破壊するためのキレート剤を用いて、細胞集団を懸濁させて得ることができる。当該細胞集団は、POU6F2、LMX1B、及びTFAP2Bから成る群より選択される少なくとも一種の遺伝子の発現を測定する前、又はその後のいずれのタイミングで単層状、多層状、シート状、スフィア状、又はサスペンジョン等の任意の形態に調製することができる。
 角膜内皮細胞への分化誘導に適した条件で培養した細胞集団、又は、角膜内皮細胞の培養に適した条件で培養した細胞集団について、POU6F2、LMX1B、及びTFAP2Bから成る群より選択される少なくとも一種の遺伝子の発現を測定することは、細胞内の遺伝子発現の測定方法として知られている又は今後開発される任意の方法を用いて実施できる。測定は、遺伝子の発現の有無を判断できれば足りるが、一実施形態において、定量的な測定であることが好ましい。例えば、各遺伝子の細胞内でのmRNAをPCR法等で測定(好ましくは定量的測定)することが好ましい。
 一実施形態において、POU6F2、LMX1B、及びTFAP2Bから成る群より選択される少なくとも一種の遺伝子は、POU6F2、又はLMX1Bを含むことが好ましく、POU6F2を含むことが好ましい。一実施形態において、POU6F2の発現だけを測定することが好ましく、他の実施形態においてPOU6F2及びLMX1Bの組み合わせ、又はPOU6F2、LMX1B、及びTFAP2Bの組み合わせを測定することが好ましい。
 POU6F2、LMX1B、及びTFAP2Bの遺伝子は、後述する実施例に示されるとおり、角膜内皮細胞及び角膜内皮前駆細胞に特異的に発現している。よって、これらの遺伝子の発現を指標として角膜内皮細胞又は角膜への移植に適した細胞集団を得ることができる。また、これらの遺伝子の発現を指標として、細胞集団が角膜への移植に適しているか否か判断することができる。即ち、細胞集団において、これらの遺伝子が発現していれば、角膜への移植に適していると判断することができ、発現していなければ、角膜への移植に適していないと判断することができる。また、POU6F2は、比較的成熟した角膜内皮細胞において高レベルで発現している。よって、POU6F2の発現又はそのレベルを指標として、比較的成熟した角膜内皮細胞又は角膜への移植に適した細胞集団を取得することができる。
 POU6F2、LMX1B、及びTFAP2Bから成る群より選択される少なくとも一種の遺伝子の発現の測定は、角膜内皮細胞への分化誘導に適した条件で培養した細胞集団を構成する全ての細胞について直接的に測定しても良いが、測定しなくてもよい。細胞集団を構成する一部の細胞について遺伝子発現レベルを測定することにより、当該細胞集団を構成する残りの細胞における遺伝子発現レベルを間接的に測定することができる。一実施形態において、当該遺伝子発現の測定は、当該細胞集団を構成する一部の細胞について行い、残る細胞については間接的に測定することが好ましい。これは、遺伝子発現の測定方法として細胞の死滅を伴う方法を採用する場合に特にそうである。
 細胞集団におけるPOU6F2、LMX1B、及びTFAP2Bから成る群より選択される少なくとも一種の遺伝子の発現レベルが高いことは、当該細胞集団が角膜への移植に適した細胞集団であることの指標となる。一実施形態において、当該細胞集団の当該遺伝子の発現レベルは、予め定めた基準値以上であることが好ましい。基準値は、角膜への移植に適しているという観点で任意に定めることができる。例えば、基準値は、生体角膜内皮細胞及び/又は培養角膜内皮における当該遺伝子の発現レベルと同等以上に設定することができる。
 角膜内皮細胞への分化誘導に適した条件で培養した細胞集団がPOU6F2、LMX1B、及びTFAP2Bから成る群より選択される少なくとも一種の遺伝子を発現していない場合、又は、当該細胞におけるPOU6F2、LMX1B、及びTFAP2Bから成る群より選択される少なくとも一種の遺伝子の発現レベルが十分でないと判断される場合、当該細胞集団を更に角膜内皮細胞への分化誘導に適した条件での培養に供することができる。このような更なる培養は、細胞集団が当該遺伝子を発現するまで、又は、当該遺伝子の発現レベルが十分と判断されるまで(例えば、基準値以上になるまで)継続することができる。
 このようにしてPOU6F2、LMX1B、及びTFAP2Bから成る群より選択される少なくとも一種の遺伝子の発現が確認された細胞集団を角膜への移植に適した細胞集団として利用することができる。当該細胞集団は、角膜内皮を再生するための細胞製剤として利用することができる。当該細胞集団を含む細胞製剤は、細胞集団の維持、増殖、又は患部への投与を補助するための足場材料、成分、その他の医薬的に許容しうる担体を含んでいてもよい。細胞の維持又は増殖のための成分としては、炭素源、窒素源、ビタミン、ミネラル、塩類、各種サイトカイン等の培地成分、あるいはマトリゲルTM等の細胞外マトリックス調製品等が挙げられる。
 足場材料又は成分としては、例えば、コラーゲン、ポリ乳酸、ヒアルロン酸、セルロース、及びこれらの誘導体、ならびにその2種以上からなる複合体等の生分解性ポリマー;例えば、生理食塩水、培地、PBSなどの生理緩衝液、ブドウ糖やその他の補助剤を含む等張液(例えばD-ソルビトール、D-マンノース、D-マンニトール、塩化ナトリウム)等の注射用水溶液等が挙げられる。
 細胞製剤は、溶解補助剤、例えばアルコール、具体的にはエタノール、ポリアルコール、例えばプロピレングリコール、ポリエチレングリコール、非イオン性界面活性剤、例えばポリソルベート80、HCO-50等を含んでいてもよい。
 その他の医薬的に許容しうる担体としては、医薬的に許容される有機溶剤、ポリビニルアルコール、ポリビニルピロリドン、カルボキシビニルポリマー、カルボキシメチルセルロースナトリウム、ポリアクリル酸ナトリウム、アルギン酸ナトリウム、水溶性デキストラン、カルボキシメチルスターチナトリウム、ペクチン、メチルセルロース、エチルセルロース、キサンタンガム、アラビアゴム、カゼイン、寒天、ポリエチレングリコール、ジグリセリン、グリセリン、プロピレングリコール、ワセリン、パラフィン、ステアリルアルコール、ステアリン酸、マンニトール、ソルビトール、ラクトース、医薬添加物として許容される界面活性剤、緩衝剤、乳化剤、懸濁剤、無痛化剤、安定剤等を含んでいてもよい。
 細胞製剤を投与する対象(患者)は、それが必要と考えられるものであれば特に制限されない。例えば、対象は、フックス角膜内皮ジストロフィなどの遺伝性内皮障害、緑内障に伴う角膜内皮異常、内眼手術後の角膜内皮障害、ヘルペスなどのウイルス感染後の角膜内皮障害、角膜移植後の角膜内皮減少を伴う症状を有するものを挙げることができる。一実施形態において、細胞製剤を投与する対象は、角膜内皮機能不全患者(例えば、角膜内皮細胞のポンプ機能及びバリア機能の低下した患者)であり、水疱性角膜症、角膜浮腫、角膜白斑、及び/又は円錐角膜の患者であり得る。細胞製剤の投与形態は特に制限されないが、例えば、注射針を通じて眼球内に注入して行うことができる。
3.細胞集団が角膜への移植にてきしているか判断する方法B
 一実施形態において、細胞集団が角膜への移植にてきしているか判断する方法は、角膜内皮細胞への分化誘導に適した条件で培養した細胞集団のPOU6F2、LMX1B、及びTFAP2Bから成る群より選択される少なくとも一種の遺伝子の発現を測定する工程を含むことが好ましい。
 以下、実施例により本発明についてさらに詳細に説明するが、本発明はこれらに制限されるものではない。
 ヒトの強角膜片を入手し、顕微鏡下でDescemet膜剥離を行い、生体角膜内皮を回収した。回収した角膜内皮はすぐにRNA later RNA Stabilization Reagent (QIAGEN Inc., Valencia, CA)に投入し、-70 ℃で保存した。その後、Qiagen miRNeasy Mini Kit (QIAGEN Inc.)を用いて製造者のプロトコールに従い、Total RNAを抽出し、3サンプルについてHeliscope CAGE libraryを調製し(Kanamori-Katayama M, et al. (2011), Genome Res.21:1150-1159.)、その後SeqLL (Boston, MA)にてHeliScopeTM Single Molecule Sequencer (Helicos BioSciences Corp., Cambridge, MA)を用いてシーケンシングを行った。
 上述のようにして単離したDescemet膜を、StemPro Accutase(Thermo Fisher)中で37 ℃にて30分間インキュベートし、角膜内皮細胞をDescemet膜から単離した。単離した角膜内皮細胞を穏やかに遠心分離して回収し、50 U/mL ペニシリン、50 μg/mL ストレプトマイシン、10 %ウシ胎児血清(ICN Biomedicals, Inc.、オハイオ州オーロラ)及び2 ng/mL 塩基性線維芽細胞成長因子(bFGF;invitrogen)を添加したダルベッコ変法イーグル培地(DMEM)中で懸濁させた後、細胞付着試薬(FNCコーティングミックス;Athena ES、メリーランド州バルチモア)でコーティングした培養皿上に播種し、5 % COの加湿雰囲気下、37 ℃で培養した。その後、Qiagen miRNeasy Mini Kit (QIAGEN Inc.)を用いて製造者のプロトコールに従い、Total RNAを抽出した。尚、RNA抽出に使用された細胞は全て第1代継代のものであった。これについても2サンプルについてHeliscope CAGE libraryを調製し、その後SeqLL (Boston, MA)にてHeliScopeTM Single Molecule Sequencer (Helicos BioSciences Corp., Cambridge, MA)を用いてシーケンシングを行った。
 得られたシーケンスデータはDelve (Djebali S, et al. (2012), Nature 489, 101-108.)を用いてhg19をリファレンスゲノムとしてマッピングを行った。さらに、FANTOM5プロジェクトで同定された184,827のプロモーター領域にマッピングされたタグ数をカウントし、それぞれ生体角膜内皮はFANTOM5にて解析された182のヒト組織サンプルと、培養角膜内皮細胞はFANTOM5にて解析された536のヒト培養細胞サンプルのデータと発現量の比較を行った。それぞれ、マッピングされた総タグ数で補正し、tpm (tags per million)を単位として発現量を算出した。edgeR(Robinson, M.D. et al., (2010), Bioinformatics 26, 139-140.)を用いて発現変動解析を行い、1) 角膜内皮サンプルとその他のサンプルでfalse discovery rate (FDR)が0.01未満のもの、2) 角膜内皮サンプルで10 tpm以上発現しているもの、 3) 角膜内皮以外の全サンプルにおける発現量の平均が3 tpm未満のもの、 4) 角膜内皮以外の全サンプルで最も高発現しているものの発現量が、角膜内皮サンプルでの発現量の平均よりも小さいもの、 5) 角膜内皮サンプルにおける発現量の平均が他の全サンプルにおける発現量の平均の32倍以上、の全てを満たすものを、角膜内皮細胞特異的に発現する遺伝子マーカーとして同定した。得られた角膜内皮特異的遺伝子候補から、生体角膜内皮・培養角膜内皮細胞に共通して特異的に発現する転写因子として、TFAP2B、LMX1BとPOU6F2を同定した。ヒト転写因子のリファレンスとして、http://fantom.gsc.riken.jp/5/sstar/Browse_Transcription_Factors_hg19を参照した。
 図1は、ヒト組織サンプルにおけるTFAP2Bの発現量を示す。aは中脳黒質、bは脳幹青斑核、cは精巣上体におけるTFAP2Bの発現量を示す。生体角膜内皮において最も高発現していることが確認された。
 図2は、ヒト培養細胞サンプルにおけるTFAP2Bの発現量を示す。aは嗅上皮細胞、bは線維柱帯細胞、cは結膜線維芽細胞におけるTFAP2Bの発現量を示す。培養角膜内皮細胞において最も高発現していることが確認された。
 図3は、ヒト組織サンプルにおけるLMX1Bの発現量を示す。aは耳下腺、bは唾液腺、cは顎下腺におけるLMX1Bの発現量を示す。生体角膜内皮において最も高発現していることが確認された。
 図4は、ヒト培養細胞サンプルにおけるLMX1Bの発現量を示す。aは線維柱帯細胞細胞、bは角膜実質細胞、cは線維芽細胞におけるLMX1Bの発現量を示す。線維柱帯細胞においても角膜内皮細胞と同レベルの発現が観測された。また、角膜実質細胞にも発現していることが確認された。角膜内皮、角膜実質、線維柱帯はいずれも眼周囲神経堤由来組織であるため、この結果から、LMX1Bは、角膜内皮マーカーのみでなく眼周囲神経堤由来組織のマーカーとしての応用も期待される。
 図5は、ヒト組織サンプルにおけるPOU6F2の発現量を示す。生体角膜内皮で100 tpm前後の発現量となっているが、その他で発現の見られる脳組織における発現量は10 tpm未満と極めて特異性が高い。
 図6は、ヒト培養細胞サンプルにおけるPOU6F2の発現量を示す。aは肝細胞におけるPOU6F2の発現量を示す。培養角膜内皮細胞における発現量が100 tpm以上であるのに対し、FANTOM5で解析されている536のヒト培養細胞サンプルのうち535サンプルで全く発現が観測されなかった。唯一観測された肝細胞における発現量も2tpm未満と極めて低い発現である。
 以上図1~図6の結果から、POU6F2、LMX1B、及びTFAP2Bは、いずれも角膜内皮細胞において有意に高発現していることから、角膜内皮細胞マーカーとして有用であり、また角膜内皮細胞の誘導にも使用できると考えられる。
 上記の3遺伝子について、角膜内皮及び他の組織での定量的発現解析を行った。図7は、iPS細胞(iPS)からの誘導細胞(神経堤細胞(iNC)等)、及び眼内の各組織における発現を定量PCRで測定した結果を示す。図7に示されるとおり、POU6F2、LMX1B、及びTFAP2Bは、培養角膜内皮細胞(HCEC)、角膜内皮前駆細胞(HCEP)、分化誘導角膜内皮前駆細胞(dHCEP)、及び生体角膜内皮(Cendo)において発現レベルが高いことが確認された。一方、角膜実質(CS)、虹彩実質(IS)、毛様体(CB)、繊維柱帯(TM)、角膜上皮輪部(Clim)、角膜上皮中央部(Cepi)、角膜輪部線維芽細胞(LF)、結膜上皮(Cj)、レンズ(LN)、虹彩上皮(IE)、網膜色素上皮(RPE)、網膜(Retina)、及び視神経(ON)において、POU6F2は殆ど発現がみとめられなかった。LMX1Bに関しては、神経堤由来組織である線維柱帯、角膜実質、及び虹彩実質でも発現がみられた。TFAP2Bに関してはiPS由来神経堤細胞で高い発現がみられた。これらの結果からPOU6F2、LMX1B、及びTFAP2Bは、角膜内皮細胞のマーカーとして有用であると考えられる。
 ヒト成人・胎児由来角膜内皮におけるRNA-seqデータ(Chen Y, et al. (2013), Hum Mol Genet 22: 1271-1279)を解析したところ、TFAP2B、及びLMX1Bは有意な発現変動を認めなかったのに対し、POU6F2は成人由来角膜内皮で有意に発現上昇していた(図8)。これにより、POU6F2は機能的な成熟角膜内皮に発現しており、角膜内皮の最終分化に関連していると考えられる。よって、POU6F2は、角膜内皮細胞製品の品質評価に有用であり、及び、また転写因子であることから、角膜内皮細胞の作成にも有用であると考えられる。

Claims (13)

  1. (1)角膜内皮細胞への分化誘導に適した条件で培養した細胞集団を準備する工程、及び(2)前記細胞集団についてPOU6F2、LMX1B、及びTFAP2Bから成る群より選択される少なくとも一種の遺伝子の発現を測定する工程
    を含む、角膜への移植に適した細胞集団を製造する方法。
  2. 工程(1)が、幹細胞を角膜内皮細胞への分化誘導に適した条件で培養する工程である、請求項1に記載の方法。
  3. 角膜内皮細胞への分化誘導に適した条件で培養した細胞集団のPOU6F2、LMX1B、及びTFAP2Bから成る群より選択される少なくとも一種の遺伝子の発現を測定することを含む、該細胞集団が角膜への移植に適しているか判定する方法。
  4. 該細胞集団が、幹細胞を角膜内皮細胞への分化誘導に適した条件で培養した細胞集団である、請求項3に記載の方法。
  5. (1)角膜内皮細胞の培養に適した条件で培養した細胞集団を準備する工程、及び
    (2)前記細胞集団についてPOU6F2、LMX1B、及びTFAP2Bから成る群より選択される少なくとも一種の遺伝子の発現を測定する工程
    を含む、角膜への移植に適した細胞集団を製造する方法。
  6. 該角膜内皮細胞の培養に適した条件で培養した細胞集団が、角膜内皮から取得された細胞である、請求項5に記載の方法。
  7. 角膜内皮細胞の培養に適した条件で培養した細胞集団についてPOU6F2、LMX1B、及びTFAP2Bから成る群より選択される少なくとも一種の遺伝子の発現を測定する工程を含む、該細胞集団が角膜への移植に適しているか判定する方法。
  8. 該角膜内皮細胞の培養に適した条件で培養した細胞集団が、角膜内皮から取得された細胞である、請求項7に記載の方法。
  9. (1)角膜内皮細胞への分化誘導に適した条件で培養した細胞集団を準備する工程、
    (2)前記細胞集団についてPOU6F2、LMX1B、及びTFAP2Bから成る群より選択される少なくとも一種の遺伝子の発現を測定する工程、及び
    (3)該遺伝子を発現している細胞集団を含むサスペンション、シート又はスフィアを調製する工程、
    を含む、細胞集団を含むサスペンション、シート又はスフィアの製造方法。
  10. 工程(1)が、幹細胞を角膜内皮細胞への分化誘導に適した条件で培養する工程である、請求項9に記載の方法。
  11. (1)角膜内皮細胞の培養に適した条件で培養した細胞集団を準備する工程、
    (2)前記細胞集団についてPOU6F2、LMX1B、及びTFAP2Bから成る群より選択される少なくとも一種の遺伝子の発現を測定する工程、及び
    (3)該遺伝子を発現している細胞集団を含むサスペンション、シート又はスフィアを調製する工程、
    を含む、細胞集団を含むサスペンション、シート又はスフィアの製造方法。
  12. 該角膜内皮細胞の培養に適した条件で培養した細胞集団が、角膜内皮から取得された細胞である、請求項11に記載の方法。
  13. 該遺伝子が、POU6F2及びLMX1Bから成る群より選択される少なくとも一種の遺伝子である、請求項1~12のいずれかに記載の方法。
PCT/JP2018/023185 2017-06-19 2018-06-19 角膜内皮細胞マーカー及びその利用 WO2018235786A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18821289.8A EP3643776A4 (en) 2017-06-19 2018-06-19 CORNEAL ENDOTHELIAL CELL MARKER, AND APPLICATION OF IT
CN201880039833.5A CN110770334A (zh) 2017-06-19 2018-06-19 角膜内皮细胞标记及其应用
SG11201911983RA SG11201911983RA (en) 2017-06-19 2018-06-19 Corneal endothelial cell marker and use thereof
US16/621,528 US11839697B2 (en) 2017-06-19 2018-06-19 Corneal endothelial cell marker and use thereof
KR1020197038464A KR102343384B1 (ko) 2017-06-19 2018-06-19 각막 내피 세포 마커 및 그 이용

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017119518A JP6758631B2 (ja) 2017-06-19 2017-06-19 角膜内皮細胞マーカー及びその利用
JP2017-119518 2017-06-19

Publications (1)

Publication Number Publication Date
WO2018235786A1 true WO2018235786A1 (ja) 2018-12-27

Family

ID=64735601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023185 WO2018235786A1 (ja) 2017-06-19 2018-06-19 角膜内皮細胞マーカー及びその利用

Country Status (7)

Country Link
US (1) US11839697B2 (ja)
EP (1) EP3643776A4 (ja)
JP (1) JP6758631B2 (ja)
KR (1) KR102343384B1 (ja)
CN (1) CN110770334A (ja)
SG (1) SG11201911983RA (ja)
WO (1) WO2018235786A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7218901B2 (ja) * 2019-01-04 2023-02-07 株式会社ユニバーサルエンターテインメント 遊技機
JP7218900B2 (ja) * 2019-01-04 2023-02-07 株式会社ユニバーサルエンターテインメント 遊技機
JP7218898B2 (ja) * 2019-01-04 2023-02-07 株式会社ユニバーサルエンターテインメント 遊技機
JP7134878B2 (ja) * 2019-01-04 2022-09-12 株式会社ユニバーサルエンターテインメント 遊技機
JP7218899B2 (ja) * 2019-01-04 2023-02-07 株式会社ユニバーサルエンターテインメント 遊技機
JP7218902B2 (ja) * 2019-01-04 2023-02-07 株式会社ユニバーサルエンターテインメント 遊技機
MX2023013079A (es) * 2021-05-03 2023-11-16 Astellas Inst For Regenerative Medicine Metodos de generacion de celulas maduras del endotelio corneal.

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187281A (ja) * 2004-12-09 2006-07-20 Shiro Amano ヒト角膜内皮細胞由来の前駆細胞、細胞凝集体及びそれら作製方法、並びに前駆細胞および細胞凝集体の移植方法
WO2007069666A1 (ja) 2005-12-13 2007-06-21 Kyoto University 核初期化因子
WO2008118820A2 (en) 2007-03-23 2008-10-02 Wisconsin Alumni Research Foundation Somatic cell reprogramming
WO2009007852A2 (en) 2007-06-15 2009-01-15 Izumi Bio, Inc Multipotent/pluripotent cells and methods
WO2009032194A1 (en) 2007-08-31 2009-03-12 Whitehead Institute For Biomedical Research Wnt pathway stimulation in reprogramming somatic cells
WO2009057831A1 (ja) 2007-10-31 2009-05-07 Kyoto University 核初期化方法
WO2009058413A1 (en) 2007-10-29 2009-05-07 Shi-Lung Lin Generation of human embryonic stem-like cells using intronic rna
JP2009268433A (ja) * 2008-05-09 2009-11-19 Tohoku Univ 組織幹細胞/組織前駆細胞からの角膜内皮細胞の生成方法
WO2013051722A1 (ja) 2011-10-06 2013-04-11 学校法人 慶應義塾 角膜内皮細胞の製造方法
WO2014007402A1 (ja) * 2012-07-06 2014-01-09 京都府公立大学法人 眼細胞の分化マーカーおよび分化制御
WO2014104366A1 (ja) 2012-12-27 2014-07-03 新田ゼラチン株式会社 ヒト角膜内皮細胞シート
WO2015016371A1 (ja) * 2013-07-30 2015-02-05 京都府公立大学法人 角膜内皮細胞マーカー
WO2016035874A1 (ja) 2014-09-05 2016-03-10 国立研究開発法人理化学研究所 角膜内皮細胞マーカー
WO2016114242A1 (ja) 2015-01-13 2016-07-21 国立大学法人大阪大学 表面外胚葉系細胞から誘導された角膜上皮様細胞
WO2016114285A1 (ja) 2015-01-15 2016-07-21 国立大学法人大阪大学 多能性幹細胞からの角膜上皮細胞の分化誘導

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006092894A1 (ja) 2004-12-09 2006-09-08 Shiro Amano ヒト角膜内皮細胞由来の前駆細胞、細胞凝集体及びそれら作製方法、並びに前駆細胞および細胞凝集体の移植方法
JP6083559B2 (ja) * 2009-07-31 2017-02-22 クロモセル コーポレーション 細胞運命の修飾因子を同定および検証するための方法および組成物
WO2014038639A1 (ja) * 2012-09-07 2014-03-13 日本ケミカルリサーチ株式会社 間葉系幹細胞の馴化培地を含有する角膜内皮細胞培養用培地
CN106167790B (zh) * 2016-06-22 2019-11-19 中国人民解放军总医院 人胚胎干细胞定向诱导分化为角膜内皮细胞的方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187281A (ja) * 2004-12-09 2006-07-20 Shiro Amano ヒト角膜内皮細胞由来の前駆細胞、細胞凝集体及びそれら作製方法、並びに前駆細胞および細胞凝集体の移植方法
WO2007069666A1 (ja) 2005-12-13 2007-06-21 Kyoto University 核初期化因子
WO2008118820A2 (en) 2007-03-23 2008-10-02 Wisconsin Alumni Research Foundation Somatic cell reprogramming
WO2009007852A2 (en) 2007-06-15 2009-01-15 Izumi Bio, Inc Multipotent/pluripotent cells and methods
WO2009032194A1 (en) 2007-08-31 2009-03-12 Whitehead Institute For Biomedical Research Wnt pathway stimulation in reprogramming somatic cells
WO2009058413A1 (en) 2007-10-29 2009-05-07 Shi-Lung Lin Generation of human embryonic stem-like cells using intronic rna
WO2009057831A1 (ja) 2007-10-31 2009-05-07 Kyoto University 核初期化方法
JP2009268433A (ja) * 2008-05-09 2009-11-19 Tohoku Univ 組織幹細胞/組織前駆細胞からの角膜内皮細胞の生成方法
WO2013051722A1 (ja) 2011-10-06 2013-04-11 学校法人 慶應義塾 角膜内皮細胞の製造方法
WO2014007402A1 (ja) * 2012-07-06 2014-01-09 京都府公立大学法人 眼細胞の分化マーカーおよび分化制御
WO2014104366A1 (ja) 2012-12-27 2014-07-03 新田ゼラチン株式会社 ヒト角膜内皮細胞シート
WO2015016371A1 (ja) * 2013-07-30 2015-02-05 京都府公立大学法人 角膜内皮細胞マーカー
WO2016035874A1 (ja) 2014-09-05 2016-03-10 国立研究開発法人理化学研究所 角膜内皮細胞マーカー
WO2016114242A1 (ja) 2015-01-13 2016-07-21 国立大学法人大阪大学 表面外胚葉系細胞から誘導された角膜上皮様細胞
WO2016114285A1 (ja) 2015-01-15 2016-07-21 国立大学法人大阪大学 多能性幹細胞からの角膜上皮細胞の分化誘導

Non-Patent Citations (17)

* Cited by examiner, † Cited by third party
Title
CHEN Y ET AL., HUM MOL GENET, vol. 22, 2013, pages 1271 - 1279
CHEN, Y. ET AL.: "Identification of novel molecular markers through transcriptomic analysis in human fetal and adult corneal endothelial cells", HUMAN MOLECULAR GENETICS, vol. 22, no. 7, April 2013 (2013-04-01), pages 1271 - 1279, XP055294770, ISSN: 0964-6906 *
DJEBALI S ET AL., NATURE, vol. 489, 2012, pages 101 - 108
FIORINO A ET AL., INT J BIOCHEM CELL BIOL., 2016
HARA, SUSUMU ET AL.: "Control of expression of cornea endothelial marker in transcription factor AP -2 beta", REGENERATIVE MEDICINE, vol. 16, pages 270, ISSN: 1347-7919 *
J.L. RESNICK ET AL., NATURE, vol. 359, 1992, pages 550 - 551
KANAMORI-KATAYAMA M ET AL., GENOME RES., vol. 21, 2011, pages 1150 - 1159
M. KANATSU-SHINOHARA ET AL., BIOL. REPROD., vol. 69, 2003, pages 612 - 616
NAT CELL BIOL., vol. 3, 2001, pages 778 - 784
PEROTTI D ET AL., HUM MUTAT., 2004
ROBINSON, M.D. ET AL., BIOINFORMATICS, vol. 26, 2010, pages 139 - 140
SATODA M ET AL., NAT GENET., 2000
See also references of EP3643776A4
Y. MATSUI ET AL., CELL, vol. 70, 1992, pages 841 - 847
YOSHIHARA, M. ET AL.: "Discovery of molecular markers to discriminate corneal endothelial cells in the human body", PLOS ONE, vol. 10, no. 3, 25 March 2015 (2015-03-25), pages 1 - 14, XP055416395, ISSN: 1932-6203 *
YOSHIHARA, M. ET AL.: "Restricted presence of POU6F2 in human corneal endothelial cells uncovered by extension of the promoter- level expression atlas", EBIOMEDICINE, vol. 25, 2017, pages 175 - 186, XP055566451, ISSN: 2352-3964, [retrieved on 20171104], DOI: doi:10.1016/j.ebiom.2017.10.024 *
ZHOU H ET AL., J NEUROSCI., 1996

Also Published As

Publication number Publication date
JP6758631B2 (ja) 2020-09-23
US20200101200A1 (en) 2020-04-02
CN110770334A (zh) 2020-02-07
KR20200012934A (ko) 2020-02-05
SG11201911983RA (en) 2020-01-30
EP3643776A1 (en) 2020-04-29
EP3643776A4 (en) 2021-04-07
JP2019000069A (ja) 2019-01-10
US11839697B2 (en) 2023-12-12
KR102343384B1 (ko) 2021-12-24

Similar Documents

Publication Publication Date Title
JP6758631B2 (ja) 角膜内皮細胞マーカー及びその利用
JP7075556B2 (ja) 神経組織の製造方法
JP7088496B2 (ja) 網膜組織の製造方法
JP6933843B2 (ja) 新規ドーパミン産生神経前駆細胞の誘導方法
US20210371818A1 (en) Method for inducing differentiation of corneal epithelial cells from pluripotent stem cells
JP7356658B2 (ja) ドーパミン産生神経前駆細胞の製造方法
CN110945119B (zh) 包含连续上皮的视网膜组织的成熟方法
KR20180135482A (ko) 망막 조직의 제조 방법
CN105960454B (zh) 用于制备睫状缘区样结构的方法
WO2015064754A1 (ja) 新規軟骨細胞誘導方法
Zhu et al. Directed differentiation of human embryonic stem cells to neural crest stem cells, functional peripheral neurons, and corneal keratocytes
US20220073873A1 (en) Method for purifying neural crest cells or corneal epithelial cells
JP6226349B2 (ja) 角膜内皮細胞マーカー
US20220340871A1 (en) Method for obtaining or maintaining abcg2-positive corneal limbal stem cells
US20220135940A1 (en) Method for producing kidney structure having dendritically branched collecting duct from pluripotent stem cells
CN117769591A (zh) 源自人多能干细胞的大脑皮质细胞制剂的制造方法
Zhu et al. Research Article Directed differentiation of Human Embryonic Stem Cells to Neural Crest Stem Cells, Functional Peripheral Neurons, and Corneal Keratocytes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18821289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197038464

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018821289

Country of ref document: EP

Effective date: 20200120