WO2018235262A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2018235262A1
WO2018235262A1 PCT/JP2017/023201 JP2017023201W WO2018235262A1 WO 2018235262 A1 WO2018235262 A1 WO 2018235262A1 JP 2017023201 W JP2017023201 W JP 2017023201W WO 2018235262 A1 WO2018235262 A1 WO 2018235262A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
compressor
refrigeration cycle
cycle apparatus
time
Prior art date
Application number
PCT/JP2017/023201
Other languages
English (en)
French (fr)
Inventor
克也 前田
雅章 上川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019524827A priority Critical patent/JP6847216B2/ja
Priority to EP17914906.7A priority patent/EP3643979A4/en
Priority to PCT/JP2017/023201 priority patent/WO2018235262A1/ja
Publication of WO2018235262A1 publication Critical patent/WO2018235262A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/03Oil level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a refrigeration cycle apparatus, and more particularly to compressor protection.
  • refrigeration oil (hereinafter referred to as oil) is always injected in the vicinity of the compression chamber from the viewpoint of suppression of refrigerant leakage in the compression chamber, suppression of seizure of sliding surfaces, bearing lubrication, etc. It has a structure that In addition, since the refrigerant gas discharged from the compression chamber of the compressor also contains oil, the refrigeration cycle apparatus is provided with what is called an oil separator as a mechanism for recovering the oil.
  • oil separators there are a demister type in which oil and refrigerant are separated by pressure drop as in a wire mesh type, and a cyclone type using centrifugal force and the weight of oil.
  • FIG. 7 is a schematic view of a longitudinal section showing an example of a conventional demister type oil separator.
  • the refrigerant and the oil are separated through a medium such as the wire mesh type mesh 11 before discharging the compressed high-temperature, high-pressure refrigerant / oil before the discharge. Only the refrigerant that has passed through the mesh 11 is discharged, and the oil drops from the wire mesh type mesh 11 by its own weight and is returned to the oil reservoir 12.
  • FIG. 8 is a schematic view of a longitudinal section showing an example of a conventional cyclone type oil separator.
  • the outer periphery of a cylinder in which compressed high-temperature, high-pressure refrigerant / oil extends vertically downward from the circumferential cyclone oil separator lid 21.
  • the inner periphery of the cyclone oil separator 23 it adheres to the inner peripheral surface of the cyclone oil separator 23 by centrifugal force.
  • the adhered oil falls down by its own weight and is finally returned to the oil reservoir 22.
  • the oil recovered by the oil reservoirs 12 and 22 is returned from the oil reservoirs 12 and 22 to the low pressure side such as immediately before the start of compression, immediately after the start of compression, or suction piping by differential pressure.
  • the oil return cooling system provided with a mechanism for cooling the oil when oil is returned from the oil reservoirs 12 and 22.
  • the amount of oil in the oil reservoirs 12 and 22 may be too small, which may result in an operation in which the above-described low pressure side oil return can not be appropriately performed, that is, an oil withering operation.
  • This oil depletion operation is one of the most severe conditions for a compressor and can be a cause of serious compressor failure.
  • the gap between the outer surface of the screw rotor forming the compression chamber and the inner surface of the casing opposite thereto is managed with an accuracy of ⁇ m.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a refrigeration cycle apparatus capable of improving the reliability of a compressor while suppressing the cost.
  • the refrigeration cycle apparatus includes a refrigerant circuit in which a compressor, an oil separator, a condenser, an expansion valve, and an evaporator are sequentially connected by a refrigerant pipe, and an oil level in the oil separator is at a reference position. It is provided with the float switch which detects whether it is below, and the control apparatus which determines whether it is oil dead based on the detection time and non-detection time of the said float switch within reference time.
  • one float switch is provided, and the oil surface is roughened to determine whether or not the oil is dead based on the detection time and the non-detection time of the float switch within the reference time.
  • the oil level can be detected accurately, and the reliability of the compressor can be improved while suppressing the cost.
  • Embodiment 1 is a functional block diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. It is a figure which shows the oil level detection result of the float switch which concerns on Embodiment 1 of this invention. It is a figure which shows the control flow of the oil withering determination process of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. It is a figure which shows the 1st control flow of the oil withering determination process of the refrigerating-cycle apparatus which concerns on Embodiment 2 of this invention.
  • the pressure level is not particularly determined in relation to the absolute value, but is relatively determined in the state or operation of the system or apparatus. Also, with respect to a plurality of similar devices distinguished by subscripts, etc., the subscripts and the like may be omitted and described, in particular, when it is not necessary to distinguish or specify.
  • FIG. 1 is a diagram showing a configuration of a refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus 100 according to the first embodiment includes a refrigerant circuit in which a compressor 102, an oil separator 103, a condenser 104, an expansion valve 105, and an evaporator 106 are sequentially connected by refrigerant piping. ing. Furthermore, the refrigeration cycle apparatus 100 includes an inverter device 101 and a control device 110.
  • the compressor 102 includes a driving motor 3 and a compression unit 4.
  • the oil separator 103 includes an oil reservoir (not shown), and has a mechanism for returning oil from the oil reservoir to the compression unit 4 with a differential pressure. Further, the oil separator 103 is provided with an ON / OFF contact type float switch 107 for detecting the oil level.
  • the float switch 107 is provided in the oil separator 103 such that the ON / OFF contact position is a predetermined position (hereinafter referred to as a reference position). Then, the float switch 107 detects whether the oil level in the oil separator 103 is below the reference position. That is, the float switch 107 is ON when the oil level in the oil separator 103 is located below the reference position, and is OFF when the oil level in the oil separator 103 is located above the reference position. It becomes.
  • the reference position includes, for example, a position at which oil in the oil separator 103 can not be returned to the compression unit 4, a position at which gas is mixed such that refrigerant and oil mix, and a predetermined amount from the initial charge amount. It is a lost position, etc., and may be set freely. Further, at the position where the float switch 107 is provided, a sensor error and a design margin may be expected.
  • FIG. 1 shows the oil separator 103 separately provided from the compressor 102
  • the present invention is not limited thereto, and the compressor 102 may be an integral type provided with the oil separator 103.
  • the compressor 102 may be of an oil return cooling system provided with a mechanism for cooling the oil when oil is returned from the oil reservoir to the compression unit 4.
  • the type of the oil separator 103 may be a demister system or a cyclone system. Further, regardless of the type of the compressor 102, a single screw compressor, a twin screw compressor, a scroll compressor, or a reciprocating compressor may be used. Furthermore, in the first embodiment, although the inverter-driven compressor 102 is used, the present invention is not limited thereto, and a constant speed compressor may be used.
  • the inverter device 101 controls the power supply to the compressor 102 based on the instructed frequency to control the driving frequency of the compressor 102. Then, the compressor 102 is driven by the power supplied from the power supply source (not shown) via the inverter device 101.
  • the condenser 104 cools and condenses the gas refrigerant which is a gaseous refrigerant discharged by the compressor 102.
  • the expansion valve 105 serving as a pressure reducing device decompresses and expands the liquid refrigerant that is a liquid refrigerant that has flowed out of the condenser 104.
  • the evaporator 106 evaporates the refrigerant that has passed through the expansion valve 105.
  • the control device 110 controls the frequency of the inverter device 101, the opening degree of the expansion valve 105, and the like, and sends an instruction to each device. Further, the control device 110 can detect the contact ON / OFF of the float switch 107, and the operation unit 112 makes a judgment set in advance to control the refrigeration cycle apparatus 100.
  • the control device 110 may be, for example, a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor) that executes dedicated hardware or a program stored in the storage unit 115 described later. Say).
  • FIG. 2 is a functional block diagram of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention.
  • the control device 110 includes a timer unit 111, an operation unit 112, a determination unit 113, a drive unit 114, and a storage unit 115.
  • the controller 110 is configured to receive a signal from the float switch 107. In addition, a signal is output to the inverter device 101 and the expansion valve 105.
  • the timer unit 111 measures time. Based on the measurement time and the oil level detection result of the float switch 107, the calculation unit 112 calculates the sum A (hereinafter referred to as the ON time sum A) of the ON time which is the detection time of the float switch 107 described later. The sum B of the OFF time which is the non-detection time of the float switch 107 (hereinafter referred to as the OFF time total B) is calculated.
  • the determination unit 113 determines whether or not the oil is dead, which will be described later, based on the calculation result of the calculation unit 112.
  • the drive unit 114 drives the inverter device 101 and the expansion valve 105 based on the determination result of the determination unit 113.
  • the storage unit 115 stores a threshold C described later and the like.
  • FIG. 3 is a diagram showing the oil level detection result of the float switch 107 according to the first embodiment of the present invention
  • FIG. 4 is a processing for oil deadness determination processing of the refrigeration cycle apparatus 100 according to the first embodiment of the present invention. It is a figure which shows a control flow.
  • a control flow of the oil deadness determination process of the refrigeration cycle apparatus 100 according to the first embodiment will be described using FIGS. 3 and 4.
  • control device 110 After the start of the oil shortage determination process, control device 110 obtains ON time total A and OFF time total B of float switch 107 within preset reference time T (for example, 10 sec) (steps S101 to S105).
  • preset reference time T for example, 10 sec
  • control device 110 detects whether the oil level in the oil separator 103 is below the reference position by the float switch 107 every control interval I (for example, 1 sec), that is, the float switch 107 It is determined whether it is ON or OFF (step S102). When it is determined that the float switch 107 is ON (YES in step S102), the control device 110 adds the control interval I to the total ON time A (step S103).
  • I for example, 1 sec
  • the float switch 107 chatters to repeat detection and non-detection, that is, ON and OFF. Therefore, the oil level detection result of the float switch 107 when the oil level in the oil separator 103 is rough is as shown in FIG. 3 within the reference time T.
  • control device 110 determines whether a value obtained by dividing OFF time total B (3 sec in FIG. 3) from ON time total A (7 sec in FIG. 3) is less than a preset threshold C or not. (Step S106). Here, the control device 110 determines whether or not the oil is dead based on whether the formula of ON time total A / OFF time total B ⁇ threshold C is satisfied.
  • step S106 determines that the ON time total A / OFF time total B is greater than or equal to the threshold C, that is, if it is determined that the oil is dead and the required oil amount is not secured (NO in step S106). As a protection operation of the compressor 102, the operation of the compressor 102 is stopped (step S107).
  • step S106 when the control device 110 determines that the ON time total A / OFF time total B is less than the threshold C, that is, when it is determined that the required oil amount is secured rather than oil wither (YES in step S106) After resetting the measurement time t, the ON time total A, and the ON time total B (step S106), the operation of the compressor 102 is continued (step S108).
  • the threshold C is preset according to the operation mode, but may be set in the range of 0.2 to 1.5 (however, it is not limited to the above range). Also, the threshold C need not always be the same value.
  • the threshold C may be changed on the basis of a predetermined operating frequency. For example, in the demister type oil separator 103, the oil level in the oil separator 103 is likely to be roughened at a high operating frequency of 65 Hz or more, so the threshold C is set to a large value (such as 1.2). The threshold C may be set to a small value (such as 0.4) because the oil level in the oil separator 103 is unlikely to be roughened if the frequency is less than 65 Hz. Further, as a method of determining whether or not the oil is dead, it may be determined whether or not the ON time total A / (ON time total A + OFF time total B) is less than the threshold C.
  • the refrigeration cycle apparatus 100 includes the refrigerant circuit in which the compressor 102, the oil separator 103, the condenser 104, the expansion valve 105, and the evaporator 106 are sequentially connected by refrigerant piping, and oil Based on the float switch 107 for detecting whether the oil level in the separator 103 is below the reference position and the sum of detection time of the float switch 107 and the sum of non-detection time within the reference time And a controller 110 for determining whether or not it is determined.
  • one float switch 107 is provided, and based on the sum of the detection time of the float switch 107 and the sum of the non-detection time within the reference time, it is oil dead or not. Therefore, even if the oil level is rough, the oil level can be accurately detected, and the reliability of the compressor 102 can be improved while suppressing the cost.
  • control device 110 of the refrigeration cycle apparatus 100 is configured to stop the operation of the compressor 102 as a protection operation of the compressor 102 when it is determined that the oil is dead.
  • the compressor 102 is appropriately protected to stop the operation of the compressor 102 as the protection operation of the compressor 102 when it is determined that the oil is dead. it can.
  • the refrigeration cycle apparatus 100 according to the second embodiment is different from that of the first embodiment only in the control flow of the oil dead time determination process.
  • the second embodiment only portions different from the first embodiment will be described, and portions not described in the first embodiment are the same as the first embodiment.
  • FIG. 5A is a diagram showing a first control flow of oil deadness determination processing of the refrigeration cycle apparatus 100 according to the second embodiment of the present invention
  • FIG. 5B is a refrigeration cycle apparatus according to the second embodiment of the present invention It is a figure which shows the 2nd control flow of an oil withering determination process of 100.
  • FIG. 5A shows a control flow when the type of the oil separator 103 is a demister type
  • FIG. 5B shows a control flow when the type of the oil separator 103 is a cyclone type.
  • FIGS. 5A and 5B a control flow of the oil deadness determination process of the refrigeration cycle apparatus 100 according to the second embodiment will be described using FIGS. 5A and 5B.
  • control device 110 After the start of the oil shortage determination process, control device 110 obtains ON time total A and OFF time total B of float switch 107 within preset reference time T (for example, 10 sec) (steps S201 to S205).
  • preset reference time T for example, 10 sec
  • control device 110 detects whether the oil level in the oil separator 103 is below the reference position by the float switch 107 every control interval I (for example, 1 sec), that is, the float switch 107 It is determined whether it is ON or OFF (step S202). Then, when it is determined that the float switch 107 is ON (YES in step S202), the control device 110 adds the control interval I to the total ON time A (step S203).
  • I for example, 1 sec
  • control device 110 determines that the float switch 107 is OFF (NO in step S202)
  • the control interval I is added to the total OFF time B (step S204).
  • control device 110 determines whether a value obtained by dividing OFF time total B from ON time total A is less than a predetermined threshold C (step S206). Here, the control device 110 determines whether or not the oil is dead based on whether the formula of ON time total A / OFF time total B ⁇ threshold C is satisfied.
  • step S206 If it is determined that the ON time total A / OFF time total B is less than the threshold C, that is, if it is determined that the required oil amount is secured instead of oil wither (YES in step S206), the control device 110 The process proceeds to step S210.
  • control device 110 determines that the ON time total A / OFF time total B is greater than or equal to the threshold C, that is, when it is determined that oil is dead and the required oil amount is not secured (NO in step S206) And different processing depending on the type of oil separator 103).
  • the control device 110 reduces the operating frequency F of the compressor 102 by a preset set value E as shown in FIG. 5A (step S207A). The process proceeds to step S208.
  • the demister type oil separator 103 is likely to cause more oil to be discharged than oil returning from the suction side in the high operating frequency region, and is likely to cause oil death. Therefore, by lowering the operating frequency F of the compressor 102, the amount of oil discharged is reduced, and the oil withering is eliminated.
  • the operating frequency F of the compressor 102 is increased by a preset set value G (step S207B), and the process proceeds to step S208. move on.
  • the cyclone type oil separator 103 separates the oil and the refrigerant by the centrifugal force and the weight of the oil, so that the effect of the centrifugal separation is reduced in a region where the operating frequency is low, and the oil contained in the discharged refrigerant is As a result, the oil in the compressor 102 runs short. Furthermore, since the operating frequency is low and the circulating amount of refrigerant is also small, the amount of oil returned from the suction side is also small. The combination of these two events causes oil to die. Therefore, by raising the operating frequency F of the compressor 102, the amount of discharged oil is increased, and the oil withering is eliminated.
  • step S208 the control device 110 continues the operation of the compressor 102 after resetting the measurement time t, the ON time total A, and the ON time total B (step S201).
  • control device 110 of the refrigeration cycle apparatus 100 changes the operating frequency of the compressor 102 as the protection operation of the compressor 102.
  • the continuous operation of the compressor 102 is performed to change the operating frequency of the compressor 102 without stopping the operation of the compressor 102 as the protection operation of the compressor 102. Operation is possible and energy saving can be achieved.
  • the control device 110 of the refrigeration cycle apparatus 100 reduces the operation frequency by the set value when the type of the oil separator 103 is the demister type.
  • the type of the oil separator 103 is a cyclone system, the operating frequency is increased by the set value.
  • the control method of the refrigeration cycle apparatus 100 may be changed according to the frequency at the time of oil withdrawing determination. For example, when it is assumed that the frequency 50 Hz is an operating condition that is less likely to cause oil wither, the controller 110 performs control to lower the operating frequency F of the compressor 102 when oil wither is determined in an operation higher than 50 Hz. If it is determined that the oil has run out in the operation of less than, control may be performed to increase the operating frequency F of the compressor 102.
  • FIG. 6 is a diagram showing an example of a functional block of a refrigeration cycle apparatus 100 according to Embodiment 2 of the present invention.
  • the control of the operating frequency F of the compressor 102 has been described above to suppress oil withering of the refrigeration cycle apparatus 100.
  • the controller 110 determines that the amount of oil returning from the suction side is smaller than the discharged oil, and turns on the mechanical capacity control valve 120 Load and increase the amount of oil returned from the suction side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

冷凍サイクル装置は、圧縮機、油分離器、凝縮器、膨張弁、および、蒸発器が順に冷媒配管で接続された冷媒回路と、油分離器内の油面が基準位置より下か否かを検知するフロートスイッチと、基準時間内における、フロートスイッチの検知時間および非検知時間に基づいて、油枯れか否かを判定する制御装置と、を備えたものである。

Description

冷凍サイクル装置
 本発明は、冷凍サイクル装置に関し、特に圧縮機の保護に関するものである。
 一般的に、冷凍サイクル装置の圧縮機は、圧縮室の冷媒漏れ抑制、摺動面の焼き付き抑制、軸受潤滑などの観点から、常時、圧縮室近傍に冷凍機油(以下、油と称する)をインジェクションする構造となっている。また、圧縮機の圧縮室から吐出される冷媒ガスには油も含まれるため、冷凍サイクル装置は、その油を回収する機構として、油分離器と呼ばれるものを備えている。
 油分離器には、金網式のように圧損により油と冷媒とを分離させるデミスタ方式と、遠心力と油の自重を利用したサイクロン方式とが存在している。
 図7は、従来のデミスタ方式の油分離器の一例を示す縦断面の模式図である。
 図7に示すように、従来のデミスタ方式の油分離器では、圧縮された高温・高圧の冷媒・油を吐出前に金網式メッシュ11などの媒体を通じて、冷媒と油とを分離し、金網式メッシュ11を通過した冷媒のみが吐出され、油が金網式メッシュ11から自重で落下し、油溜り部12に戻される。
 図8は、従来のサイクロン方式の油分離器の一例を示す縦断面の模式図である。
 また、図8に示すように、従来のサイクロン方式の油分離器では、圧縮された高温・高圧の冷媒・油が円周状のサイクロン油分離器蓋21から鉛直下方に伸びている円筒の外周と、サイクロン油分離器23の内周を通過することで遠心力によって、サイクロン油分離器23の内周面に付着する。その付着した油が自重により下へ落下していき、最終的に油溜り部22に戻すものである。
 油溜り部12、22にて回収した油は、油溜り部12、22から差圧により圧縮室の圧縮開始直前、圧縮開始直後、または、吸込配管などの低圧側へ返油される。なお、冷凍サイクル装置の種類によっては、油溜り部12、22から返油する際に、油を冷却する機構を備えた、返油冷却方式も存在する。
 ここで、油分離器は、場合によっては油溜り部12、22の油量が過少となり、上記の低圧側への返油が適切に行えない運転、すなわち油枯れ運転に陥ることがある。この油枯れ運転は、圧縮機にとって最も過酷な状態の一つであり、重大な圧縮機故障の要因となり得る。例えば、スクリュー圧縮機を例に挙げると、圧縮室を形成するスクリューロータの外面と、それと対向するケーシングの内面との間の隙間は、μm単位の精度で管理されている。
 ここで、上記のように、返油冷却方式の場合、油枯れ運転に陥ると、圧縮室を油で冷却する効果がなくなり、吐出温度が上昇する。そうなると、スクリューロータが過度に熱膨張し、スクリューロータの外面とケーシングの内面との間の隙間がなくなり、結果としてスクリューロータ焼き付きの不具合が発生する。その不具合の発生を抑制するためには、油分離器内の油量を適切に検知し、対応することが重要である。
 従来、油分離器の上限レベル検知位置および下限レベル検知位置に、油分離器内の油面の検知機器としてフロートスイッチをそれぞれ設け、油分離器内の油面が下限レベルを下回った場合に周波数を下げて、油分離器内の油面が上限レベルに到達するまで油戻し運転を行い、圧縮機を保護する冷凍サイクル装置が提案されている(例えば、特許文献1参照)。
特許第4250320号公報
 近年では、IPLVなどの年間を通じた運転効率が求められるため、インバータ運転が普及しつつある。ここで、運転周波数が例えば75Hzのように高い場合は、油分離器内の油面が荒れやすい。そのため、特許文献1では、油分離器内の油量が十分であったとしても、油面が荒れ、短時間でも油面が下限レベルを下回れば、油面が上限レベルに到達するまで油戻し運転を開始することとなる。つまり、特許文献1では、油分離器内の油面が荒れた場合、精度よく油面を検知することができず、適切なタイミングで油戻し運転ができないため、圧縮機の故障を招くという課題があった。また、特許文献1では、油面の検知機器としてフロートスイッチを二つ設ける必要があり、コストがかかるという課題があった。
 本発明は、以上のような課題を解決するためになされたもので、コストを抑えつつ、圧縮機の信頼性を向上させることができる冷凍サイクル装置を提供することを目的としている。
 本発明に係る冷凍サイクル装置は、圧縮機、油分離器、凝縮器、膨張弁、および、蒸発器が順に冷媒配管で接続された冷媒回路と、前記油分離器内の油面が基準位置より下か否かを検知するフロートスイッチと、基準時間内における、前記フロートスイッチの検知時間および非検知時間に基づいて、油枯れか否かを判定する制御装置と、を備えたものである。
 本発明に係る冷凍サイクル装置によれば、フロートスイッチを一つ備え、基準時間内における、フロートスイッチの検知時間および非検知時間に基づいて、油枯れか否かを判定するため、油面が荒れても精度よく油面を検知することができ、コストを抑えつつ、圧縮機の信頼性を向上させることができる。
本発明の実施の形態1に係る冷凍サイクル装置の構成を示す図である。 本発明の実施の形態1に係る冷凍サイクル装置の機能ブロック図である。 本発明の実施の形態1に係るフロートスイッチの油面検知結果を示す図である。 本発明の実施の形態1に係る冷凍サイクル装置の油枯れ判定処理の制御フローを示す図である。 本発明の実施の形態2に係る冷凍サイクル装置の油枯れ判定処理の第一の制御フローを示す図である。 本発明の実施の形態2に係る冷凍サイクル装置の油枯れ判定処理の第二の制御フローを示す図である。 本発明の実施の形態2に係る冷凍サイクル装置の機能ブロックの一例を示す図である。 従来のデミスタ方式の油分離器の一例を示す縦断面の模式図である。 従来のサイクロン方式の油分離器の一例を示す縦断面の模式図である。
 以下、本発明の実施の形態について、図面を参照しつつ説明する。ここで、以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。また、明細書全文に示されている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適宜、適用することができる。
 そして、圧力の高低については、特に絶対的な値との関係で高低が定まっているものではなく、システム、装置などにおける状態、動作などにおいて相対的に定まるものとする。また、添字で区別などしている複数の同種の機器などについて、特に区別したり、特定したりする必要がない場合には、添字などを省略して記載する場合がある。
 実施の形態1.
 図1は、本発明の実施の形態1に係る冷凍サイクル装置100の構成を示す図である。
 本実施の形態1に係る冷凍サイクル装置100は、圧縮機102、油分離器103、凝縮器104、膨張弁105、および、蒸発器106が順に冷媒配管で接続され、構成された冷媒回路を備えている。さらに、冷凍サイクル装置100は、インバータ装置101と、制御装置110と、を備えている。
 圧縮機102は、駆動用のモータ3と、圧縮部4とを備えている。油分離器103は、油溜め部(図示せず)を備え、油溜め部から圧縮部4へ油を差圧で返油させる機構を持っている。また、油分離器103には、油面を検知するON/OFF接点式のフロートスイッチ107が設けられている。
 ここで、フロートスイッチ107は、ON/OFFの接点位置が予め定められた位置(以下、基準位置と称する)となるように、油分離器103に設けられている。そして、フロートスイッチ107は、油分離器103内の油面が基準位置より下か否かを検知する。つまり、フロートスイッチ107は、油分離器103内の油面が基準位置より下に位置している場合にONとなり、油分離器103内の油面が基準位置以上に位置している場合にOFFとなる。
 なお、基準位置とは、例えば、油分離器103内の油を圧縮部4へ返油不可能になる位置、冷媒と油とが入り混じるようなガス噛みする位置、初期チャージ量から所定量がなくなった位置などであり、自由に設定してよい。また、フロートスイッチ107を設ける位置には、センサ誤差および設計裕度を見込んでもよい。
 なお、図1では、油分離器103が圧縮機102とは別体となった別置きタイプを示しているが、それに限定されず、圧縮機102が油分離器103を備えた一体型でもよい。また、圧縮機102は、油溜め部から圧縮部4へ返油する際に、油を冷却する機構を備えた、返油冷却方式としてもよい。
 また、油分離器103の種類はデミスタ方式でもサイクロン方式でもよい。また、圧縮機102の種類は問わず、シングルスクリュー圧縮機、ツインスクリュー圧縮機、スクロール圧縮機、または、レシプロ圧縮機でも構わない。さらに、本実施の形態1では、インバータ駆動式の圧縮機102を用いているが、それに限定されず、一定速の圧縮機を用いてもよい。
 インバータ装置101は、指示された周波数に基づいて圧縮機102への電力供給を制御して、圧縮機102の駆動周波数を制御する。そして、圧縮機102は、電力供給源(図示せず)から、インバータ装置101を介して供給された電力で駆動する。
 凝縮器104は、圧縮機102が吐出した気体状の冷媒であるガス冷媒を冷却し、凝縮させる。また、減圧装置となる膨張弁105は凝縮器104から流出した液状の冷媒である液冷媒を減圧させ、膨張させる。蒸発器106は、膨張弁105を通過した冷媒を蒸発させる。
 制御装置110は、インバータ装置101の周波数、膨張弁105の開度などを制御し、各機器に指示を送る。また、制御装置110は、フロートスイッチ107の接点ON/OFFを検知可能であり、演算部112において予め設定された判定を行い、冷凍サイクル装置100を制御させる。制御装置110は、例えば、専用のハードウェア、または後述する記憶部115に格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサともいう)で構成される。
 図2は、本発明の実施の形態1に係る冷凍サイクル装置100の機能ブロック図である。
 制御装置110は、タイマ部111と、演算部112と、判定部113と、駆動部114と、記憶部115と、を備えている。制御装置110は、フロートスイッチ107から信号が入力されるようになっている。また、インバータ装置101および膨張弁105に信号を出力するようになっている。
 タイマ部111は、時間を計測するものである。演算部112は、計測時間およびフロートスイッチ107の油面検知結果に基づいて、後述するフロートスイッチ107の検知時間であるON時間の総和A(以下、ON時間総和Aと称する)、および、後述するフロートスイッチ107の非検知時間であるOFF時間の総和B(以下、OFF時間総和Bと称する)を演算するものである。判定部113は、演算部112の演算結果に基づき、後述する油枯れか否かの判定を行うものである。駆動部114は、判定部113の判定結果に基づき、インバータ装置101および膨張弁105を駆動するものである。記憶部115は、後述する閾値Cなどを記憶するものである。
 図3は、本発明の実施の形態1に係るフロートスイッチ107の油面検知結果を示す図であり、図4は、本発明の実施の形態1に係る冷凍サイクル装置100の油枯れ判定処理の制御フローを示す図である。
 以下、本実施の形態1に係る冷凍サイクル装置100の油枯れ判定処理の制御フローについて、図3および図4を用いて説明する。
 油枯れ判定処理開始後、制御装置110は、予め設定された基準時間T(例えば10sec)内における、フロートスイッチ107のON時間総和AおよびOFF時間総和Bをそれぞれ求める(ステップS101~S105)。
 具体的には、制御装置110は、制御インターバルI(例えば1sec)毎にフロートスイッチ107により、油分離器103内の油面が基準位置より下か否かを検知する、つまり、フロートスイッチ107がONかOFFかを判定する(ステップS102)。そして、制御装置110は、フロートスイッチ107がONであると判定した場合(ステップS102のYES)、ON時間総和Aに制御インターバルIを加算する(ステップS103)。
 一方、制御装置110は、フロートスイッチ107がOFFであると判定した場合(ステップS102のNO)、OFF時間総和Bに制御インターバルIを加算する(ステップS104)。その後、制御装置110は、ステップS101に戻り、計測時間tに制御インターバルIを加算し、上記と同様の加算処理を行う。そして、制御装置110は、この加算処理を、計測時間t=基準時間Tとなるまで繰り返す。
 ここで、油分離器103内の油面が荒れている場合、フロートスイッチ107はチャタリングし、検知と非検知つまりONとOFFを繰り返す。そのため、油分離器103内の油面が荒れている場合のフロートスイッチ107の油面検知結果は、基準時間T内において、図3に示すようになる。
 ステップS101~S105の後、制御装置110は、ON時間総和A(図3では7sec)からOFF時間総和B(図3では3sec)を除した値が予め設定された閾値C未満か否かを判定する(ステップS106)。ここで、制御装置110は、ON時間総和A/OFF時間総和B<閾値Cの式を満たすか否かにより、油枯れか否かを判定する。
 制御装置110は、ON時間総和A/OFF時間総和Bが閾値C以上であると判定した場合、つまり、油枯れであり必要油量を確保していないと判定した場合(ステップS106のNO)、圧縮機102の保護動作として、圧縮機102の運転を停止させる(ステップS107)。
 一方、制御装置110は、ON時間総和A/OFF時間総和Bが閾値C未満であると判定した場合、つまり、油枯れではなく必要油量を確保していると判定した場合(ステップS106のYES)、計測時間t、ON時間総和A、ON時間総和Bをリセットした後(ステップS106)、圧縮機102の運転を継続させる(ステップS108)。
 ここで、閾値Cは運転モードに応じて予め設定されるが、0.2~1.5の範囲で設定するとよい(ただし、上記範囲に限定するものではない)。また、上記閾値Cは常に同じ値である必要もない。例えば、所定の運転周波数を境界に閾値Cを変更してもよい。例えばデミスタ方式の油分離器103は、65Hz以上の高運転周波数において油分離器103内の油面が荒れやすいので、裕度をみて閾値Cを大きな値(1.2など)に設定するが、65Hz未満では油分離器103内の油面が荒れにくいので、閾値Cを小さな値(0.4など)に設定してもよい。また、油枯れか否かの判定方法として、ON時間総和A/(ON時間総和A+OFF時間総和B)が、閾値C未満か否かで判定してもよい。
 以上、本実施の形態1に係る冷凍サイクル装置100は、圧縮機102、油分離器103、凝縮器104、膨張弁105、および、蒸発器106が順に冷媒配管で接続された冷媒回路と、油分離器103内の油面が基準位置よりも下か否かを検知するフロートスイッチ107と、基準時間内における、フロートスイッチ107の検知時間の総和および非検知時間の総和に基づいて、油枯れか否かを判定する制御装置110と、を備えたものである。
 本実施の形態1に係る冷凍サイクル装置100によれば、フロートスイッチ107を一つ備え、基準時間内における、フロートスイッチ107の検知時間の総和および非検知時間の総和に基づいて、油枯れか否かを判定するため、油面が荒れても精度よく油面を検知することができ、コストを抑えつつ、圧縮機102の信頼性を向上させることができる。
 また、本実施の形態1に係る冷凍サイクル装置100の制御装置110は、油枯れと判定した場合、圧縮機102の保護動作として、圧縮機102の運転を停止させるものである。
 本実施の形態1に係る冷凍サイクル装置100によれば、油枯れと判定した場合、圧縮機102の保護動作として、圧縮機102の運転を停止させるため、圧縮機102を適切に保護することができる。
 実施の形態2.
 本実施の形態2に係る冷凍サイクル装置100は、実施の形態1とは油枯れ判定処理の制御フローのみ異なる。なお、本実施の形態2では、実施の形態1と異なる箇所のみを説明するものとし、実施の形態1で説明されていない箇所については、実施の形態1と同様である。
 図5Aは、本発明の実施の形態2に係る冷凍サイクル装置100の油枯れ判定処理の第一の制御フローを示す図であり、図5Bは、本発明の実施の形態2に係る冷凍サイクル装置100の油枯れ判定処理の第二の制御フローを示す図である。なお、図5Aは、油分離器103の種類がデミスタ方式である場合の制御フローを示しており、図5Bは、油分離器103の種類がサイクロン方式である場合の制御フローを示している。
 以下、本実施の形態2に係る冷凍サイクル装置100の油枯れ判定処理の制御フローについて、図5Aおよび図5Bを用いて説明する。
 油枯れ判定処理開始後、制御装置110は、予め設定された基準時間T(例えば10sec)内における、フロートスイッチ107のON時間総和AおよびOFF時間総和Bをそれぞれ求める(ステップS201~S205)。
 具体的には、制御装置110は、制御インターバルI(例えば1sec)毎にフロートスイッチ107により、油分離器103内の油面が基準位置より下か否かを検知する、つまり、フロートスイッチ107がONかOFFかを判定する(ステップS202)。そして、制御装置110は、フロートスイッチ107がONであると判定した場合(ステップS202のYES)、ON時間総和Aに制御インターバルIを加算する(ステップS203)。
 一方、制御装置110は、フロートスイッチ107がOFFであると判定した場合(ステップS202のNO)、OFF時間総和Bに制御インターバルIを加算する(ステップS204)。その後、制御装置110は、ステップS201に戻り、計測時間tに制御インターバルIを加算し、上記と同様の加算処理を行う。そして、制御装置110は、この加算処理を、計測時間t=基準時間Tとなるまで繰り返す。
 ステップS201~S205の後、制御装置110は、ON時間総和AからOFF時間総和Bを除した値が予め設定された閾値C未満か否かを判定する(ステップS206)。ここで、制御装置110は、ON時間総和A/OFF時間総和B<閾値Cの式を満たすか否かにより、油枯れか否かを判定する。
 制御装置110は、ON時間総和A/OFF時間総和Bが閾値C未満であると判定した場合、つまり、油枯れではなく必要油量を確保していると判定した場合(ステップS206のYES)、ステップS210に進む。
 一方、制御装置110は、ON時間総和A/OFF時間総和Bが閾値C以上であると判定した場合、つまり、油枯れであり必要油量を確保していないと判定した場合(ステップS206のNO)、油分離器103の種類によって、異なる処理を行う。
 制御装置110は、油分離器103の種類がデミスタ方式である場合、図5Aに示すように、圧縮機102の運転周波数Fを、予め設定された設定値E分だけダウンさせ(ステップS207A)、ステップS208に進む。デミスタ方式の油分離器103は、高運転周波数の領域において吸込側から戻る油よりも吐出される油が多くなりやすく、油枯れを誘発させやすい。そのため、圧縮機102の運転周波数Fをダウンさせることで、吐出される油量を減少させて、油枯れを解消させる。
 一方、油分離器103の種類がサイクロン方式である場合、図5Bに示すように、圧縮機102の運転周波数Fを、予め設定された設定値G分だけアップさせ(ステップS207B)、ステップS208に進む。サイクロン方式の油分離器103は、遠心力と油の自重とにより油と冷媒とを分離させるため、運転周波数が低い領域において、遠心分離の効果が低下し、吐出される冷媒に含まれる油が多くなり、その結果、圧縮機102内の油が不足してしまう。さらに、運転周波数が低く、冷媒の循環量も小さくなるため、吸込側から戻る油も少なくなる。これら二つの事象が重なることにより、油枯れが発生する。そのため、圧縮機102の運転周波数Fをアップさせることで、吐出される油量を増加させて、油枯れを解消させる。
 その後、ステップS208において、制御装置110は、計測時間t、ON時間総和A、ON時間総和Bをリセットした後、圧縮機102の運転を継続させる(ステップS201)。
 以上、本実施の形態2に係る冷凍サイクル装置100の制御装置110は、圧縮機102の保護動作として、圧縮機102の運転周波数を変更するものである。
 本実施の形態2に係る冷凍サイクル装置100によれば、圧縮機102の保護動作として、圧縮機102の運転を停止させることなく、圧縮機102の運転周波数を変更するため、圧縮機102の連続的な運転が可能となり、省エネルギー化を図ることができる。
 また、本実施の形態2に係る冷凍サイクル装置100の制御装置110は、圧縮機102の保護動作として、油分離器103の種類がデミスタ方式である場合は、設定値の分だけ運転周波数をダウンさせ、油分離器103の種類がサイクロン方式である場合は、設定値の分だけ運転周波数をアップさせるものである。
 また、油枯れしにくい周波数帯がある場合は、油枯れ判定時の周波数に応じて冷凍サイクル装置100の制御方法を変えてもよい。例えば、周波数50Hzが油枯れしにくい運転状態であると仮定した場合において、制御装置110は、50Hz以上の運転において油枯れ判定した場合、圧縮機102の運転周波数Fをダウンさせる制御を行い、50Hz未満の運転において油枯れ判定した場合、圧縮機102の運転周波数Fをアップさせる制御を行ってもよい。
 図6は、本発明の実施の形態2に係る冷凍サイクル装置100の機能ブロックの一例を示す図である。
 上記にて圧縮機102の運転周波数Fの制御により冷凍サイクル装置100の油枯れを抑制するものを示した。それ以外にも、一定速圧縮機の場合は図6に示す機械式容量制御弁120によるオンロードおよびアンロードにより冷凍サイクル装置100の油枯れを制御する方法もある。具体的には、制御装置110は、機械式容量制御弁120がオンロード時に油枯れと判定した場合は、吐出される油が吸込側から戻る油よりも多いと判定し、機械式容量制御弁120をアンロードし、吐出される油量を減少させる。一方、制御装置110は、機械式容量制御弁120がアンロード時に油枯れと判定した場合は、吐出される油よりも吸込側から戻る油が少ないと判定し、機械式容量制御弁120をオンロードし、吸込側から戻る油量を増加させる。
 3 モータ、4 圧縮部、11 金網式メッシュ、12 油溜り部、21 サイクロン油分離器蓋、22 油溜り部、23 サイクロン油分離器、100 冷凍サイクル装置、101 インバータ装置、102 圧縮機、103 油分離器、104 凝縮器、105 膨張弁、106 蒸発器、107 フロートスイッチ、110 制御装置、111 タイマ部、112 演算部、113 判定部、114 駆動部、115 記憶部、120 機械式容量制御弁。

Claims (14)

  1.  圧縮機、油分離器、凝縮器、膨張弁、および、蒸発器が順に冷媒配管で接続された冷媒回路と、
     前記油分離器内の油面が基準位置より下か否かを検知するフロートスイッチと、
     基準時間内における、前記フロートスイッチの検知時間および非検知時間に基づいて、油枯れか否かを判定する制御装置と、を備えた
     冷凍サイクル装置。
  2.  前記制御装置は、
     前記フロートスイッチの検知時間の総和および非検知時間の総和に基づいて、油枯れか否かを判定する
     請求項1に記載の冷凍サイクル装置。
  3.  前記制御装置は、
     油枯れと判定した場合、前記圧縮機の保護動作を行う
     請求項1または2に記載の冷凍サイクル装置。
  4.  前記制御装置は、
     前記圧縮機の保護動作として、前記圧縮機の運転を停止させる
     請求項3に記載の冷凍サイクル装置。
  5.  前記制御装置は、
     前記圧縮機の保護動作として、前記圧縮機の運転周波数を変更する
     請求項3に記載の冷凍サイクル装置。
  6.  前記制御装置は、
     前記圧縮機の保護動作として、前記油分離器がデミスタ方式である場合は、設定値の分だけ運転周波数をダウンさせる
     請求項5に記載の冷凍サイクル装置。
  7.  前記制御装置は、
     前記圧縮機の保護動作として、前記油分離器がサイクロン方式である場合は、設定値の分だけ運転周波数をアップさせる
     請求項5に記載の冷凍サイクル装置。
  8.  前記制御装置は、
     前記圧縮機の保護動作として、油枯れ判定時の運転周波数に応じて、運転周波数を設定値の分だけアップもしくはダウンさせる
     請求項5に記載の冷凍サイクル装置。
  9.  前記制御装置は、
     前記圧縮機の保護動作として、油枯れ判定時の運転周波数が予め設定された運転周波数よりも高い場合は運転周波数をダウンさせ、油枯れ判定時の運転周波数が予め設定された運転周波数よりも低い場合運転周波数をアップさせる
     請求項8に記載の冷凍サイクル装置。
  10.  機械式容量制御弁を備え、
     前記制御装置は、
     前記圧縮機の保護動作として、油枯れ判定時に、前記機械式容量制御弁を制御する
     請求項3に記載の冷凍サイクル装置。
  11.  前記制御装置は、
     前記圧縮機の保護動作として、油枯れ判定時に前記機械式容量制御弁がアンロードの場合はオンロードし、油枯れ判定時に前記機械式容量制御弁がオンロードの場合はアンロードする
     請求項10に記載の冷凍サイクル装置。
  12.  前記圧縮機は、インバータ駆動である
     請求項1~9のいずれか一項に記載の冷凍サイクル装置。
  13.  前記圧縮機は、シングルスクリュー圧縮機である
     請求項1~12のいずれか一項に記載の冷凍サイクル装置。
  14.  前記圧縮機は、ツインスクリュー圧縮機である
     請求項1~12のいずれか一項に記載の冷凍サイクル装置。
PCT/JP2017/023201 2017-06-23 2017-06-23 冷凍サイクル装置 WO2018235262A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019524827A JP6847216B2 (ja) 2017-06-23 2017-06-23 冷凍サイクル装置
EP17914906.7A EP3643979A4 (en) 2017-06-23 2017-06-23 REFRIGERATION CIRCUIT
PCT/JP2017/023201 WO2018235262A1 (ja) 2017-06-23 2017-06-23 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/023201 WO2018235262A1 (ja) 2017-06-23 2017-06-23 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2018235262A1 true WO2018235262A1 (ja) 2018-12-27

Family

ID=64736043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023201 WO2018235262A1 (ja) 2017-06-23 2017-06-23 冷凍サイクル装置

Country Status (3)

Country Link
EP (1) EP3643979A4 (ja)
JP (1) JP6847216B2 (ja)
WO (1) WO2018235262A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113677938A (zh) * 2019-04-05 2021-11-19 三菱电机株式会社 制冷循环装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112097418B (zh) * 2020-06-24 2022-03-08 广东积微科技有限公司 一种压缩机自动油位保持系统及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002061993A (ja) * 2000-08-21 2002-02-28 Mitsubishi Electric Corp 油分離器および室外機
JP2002257426A (ja) * 2001-03-01 2002-09-11 Sanyo Electric Co Ltd 空気調和装置
JP2004360543A (ja) * 2003-06-04 2004-12-24 Calsonic Compressor Inc 空気調和装置および気体圧縮機
JP4250320B2 (ja) 2000-10-06 2009-04-08 株式会社神戸製鋼所 油冷圧縮形冷凍機の運転方法
JP2009150368A (ja) * 2007-12-22 2009-07-09 Samsung Electronics Co Ltd 均油機構
JP2013108649A (ja) * 2011-11-18 2013-06-06 Sanyo Electric Co Ltd 冷凍装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5259944B2 (ja) * 2006-10-11 2013-08-07 三菱重工業株式会社 空気調和装置
JP5484930B2 (ja) * 2010-01-25 2014-05-07 三菱重工業株式会社 空気調和機
JP2015038407A (ja) * 2013-08-19 2015-02-26 ダイキン工業株式会社 冷凍装置
JP6230931B2 (ja) * 2014-02-20 2017-11-15 三菱重工サーマルシステムズ株式会社 マルチ形空気調和機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002061993A (ja) * 2000-08-21 2002-02-28 Mitsubishi Electric Corp 油分離器および室外機
JP4250320B2 (ja) 2000-10-06 2009-04-08 株式会社神戸製鋼所 油冷圧縮形冷凍機の運転方法
JP2002257426A (ja) * 2001-03-01 2002-09-11 Sanyo Electric Co Ltd 空気調和装置
JP2004360543A (ja) * 2003-06-04 2004-12-24 Calsonic Compressor Inc 空気調和装置および気体圧縮機
JP2009150368A (ja) * 2007-12-22 2009-07-09 Samsung Electronics Co Ltd 均油機構
JP2013108649A (ja) * 2011-11-18 2013-06-06 Sanyo Electric Co Ltd 冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3643979A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113677938A (zh) * 2019-04-05 2021-11-19 三菱电机株式会社 制冷循环装置
US20220154981A1 (en) * 2019-04-05 2022-05-19 Mitsubishi Electric Corporation Refrigeration Cycle Apparatus
US11988419B2 (en) 2019-04-05 2024-05-21 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Also Published As

Publication number Publication date
JPWO2018235262A1 (ja) 2020-01-09
EP3643979A4 (en) 2020-07-15
JP6847216B2 (ja) 2021-03-24
EP3643979A1 (en) 2020-04-29

Similar Documents

Publication Publication Date Title
US10627146B2 (en) Liquid slugging detection and protection
US8241007B2 (en) Oil-injection screw compressor
KR101317541B1 (ko) 2단 압축 냉동 장치
JP5669642B2 (ja) 冷凍装置
US11137179B2 (en) Refrigeration apparatus
JP2015038407A (ja) 冷凍装置
WO2018235262A1 (ja) 冷凍サイクル装置
JP5783783B2 (ja) 熱源側ユニット及び冷凍サイクル装置
JP5203117B2 (ja) 空気圧縮機のドレン排出方法及びドレン排出機構
JP5646282B2 (ja) 圧縮装置及びその運転制御方法
JP2017223235A (ja) 油冷式空気圧縮機及びその制御方法
CN101008391A (zh) 螺旋压缩机的容量控制装置及容量控制方法
JP4792383B2 (ja) スクリュー圧縮機の運転方法
EP3604808B1 (en) Liquid-feed type gas compressor
JP2006170575A (ja) 圧縮機制御システム
CN110100137B (zh) 涡旋卸载检测系统
CN103512279B (zh) 空调器
JP7425028B2 (ja) 給液式気体圧縮機
JP2005325733A (ja) 密閉型圧縮機
JP6065361B2 (ja) 空気圧縮装置とその制御方法
KR200390963Y1 (ko) 디지털제어식 냉동장치
JP2016095103A (ja) 冷凍装置
JPH04318299A (ja) 圧縮機の運転装置
JP2005330823A (ja) 密閉型圧縮機
KR20060116589A (ko) 냉동장치 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17914906

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019524827

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017914906

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017914906

Country of ref document: EP

Effective date: 20200123