WO2018233721A1 - 一种用于弯道施工的掘进定位系统及方法 - Google Patents

一种用于弯道施工的掘进定位系统及方法 Download PDF

Info

Publication number
WO2018233721A1
WO2018233721A1 PCT/CN2018/096511 CN2018096511W WO2018233721A1 WO 2018233721 A1 WO2018233721 A1 WO 2018233721A1 CN 2018096511 W CN2018096511 W CN 2018096511W WO 2018233721 A1 WO2018233721 A1 WO 2018233721A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
positioning
total station
tunneling
prism
Prior art date
Application number
PCT/CN2018/096511
Other languages
English (en)
French (fr)
Inventor
刘送永
朱真才
周公博
江红祥
彭玉兴
李伟
沈刚
唐玮
张新
吴洪状
Original Assignee
中国矿业大学
徐州秩润矿山设备科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学, 徐州秩润矿山设备科技有限公司 filed Critical 中国矿业大学
Priority to GB1905646.4A priority Critical patent/GB2573652B/en
Priority to AU2018289881A priority patent/AU2018289881B2/en
Priority to RU2019113454A priority patent/RU2699091C1/ru
Publication of WO2018233721A1 publication Critical patent/WO2018233721A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/003Arrangement of measuring or indicating devices for use during driving of tunnels, e.g. for guiding machines
    • E21D9/004Arrangement of measuring or indicating devices for use during driving of tunnels, e.g. for guiding machines using light beams for direction or position control
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/24Remote control specially adapted for machines for slitting or completely freeing the mineral

Definitions

  • the invention relates to the technical field of automated tunneling equipment, and in particular relates to an adaptive cutting control system and method for a roadheader.
  • cantilever roadheaders in the above projects is one of the common construction methods.
  • the cantilever roadheader As an efficient mining machine, the cantilever roadheader is widely used in the excavation of roadways and tunnels. Because the working environment of the roadheader is poor, the danger is large, and the manual operation is very limited, its automation operation is an inevitable trend of development.
  • the first problem to be solved is the precise positioning and positioning of the roadheader in the roadway or tunnel.
  • many literatures have proposed the method of position detection of the roadheader, but due to roadway tunneling
  • Many complex positioning methods have certain limitations in the complex environment of the project and the harsh conditions of the roadheader work.
  • most of the positioning methods can not be used, which can not only provide conditions for the automatic control of the roadheader. And limit the diversity of roadway or tunnel design.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art, and provide a tunneling positioning system and method technology for cornering construction, which can be used in a straight roadway and can be used in a curved roadway by combining
  • the positioning method solves the six-degree-of-freedom pose parameters of the roadheader in the roadway in real time and accurately solves the problem of precise positioning and positioning of the roadheader in the roadway or tunnel, which provides the necessary conditions for the automatic operation of the roadheader.
  • a tunneling positioning system for cornering construction including a tunneling module, a smart total station module, a reflection plane device, a communication and control module, a strapdown inertial navigation module, a dual-axis tilt sensor module and a tunneling positioning prism module; the communication and control module, the strapdown inertial navigation module, the dual-axis tilt sensor module and the positioning prism module are simultaneously disposed on the tunneling module, and the intelligent total station module is set in the tunneling Behind the module, the reflective plane mechanism is located between the tunneling module and the intelligent total station module;
  • the tunneling positioning prism module comprises a front positioning prism assembly and a rear positioning prism assembly arranged in a line;
  • the reflective planar device includes a controller, a traveling mechanism, a slewing drive mechanism, a laser reflecting plane assembly, a reflective planar positioning prism assembly, and a total station rearview prism assembly; the slewing drive mechanism is mounted on the traveling mechanism, the reflection The planar positioning prism assembly is disposed on the swing driving mechanism; the controller is disposed inside the reflecting plane device for controlling the movement of the traveling mechanism and the swing driving mechanism, and storing the rotation angle of the laser reflecting plane with respect to the traveling mechanism in real time.
  • the reflective planar positioning prism assembly includes at least three sets of 360° prisms; the total station rearview prism assembly includes two sets of 360° prisms symmetrically disposed about the traveling mechanism.
  • a tunneling positioning method for cornering construction includes the following steps:
  • the intelligent total station is first positioned directly to the tunneling module within the visible distance;
  • the reflection plane device is disposed in the curved roadway between the tunneling module and the intelligent total station, and is fixed;
  • the positioning prism of the reflection plane device is positioned by the intelligent total station module, thereby obtaining a six-degree-of-freedom pose parameter of the reflection plane device in the roadway, and the rotation angle of the laser reflection plane component relative to the reflection plane device traveling mechanism is controlled by The real-time solution is solved, so the laser reflection plane component can be represented by a known plane equation in the roadway.
  • specular reflection when the coordinates of the tunneling prism module are calculated and calculated by the intelligent total station, the point is relative to the laser reflection plane.
  • the symmetry point of the component is the actual three-dimensional coordinates of the boring positioning prism module in the roadway;
  • the fast station operation of the intelligent total station is required, and the reflection plane is at this time.
  • the pose parameters of the device are still known, ie the three-dimensional coordinates of the total station rear view prism assembly in the roadway are known; the intelligent total station is moved to the appropriate position between the tunneling module and the reflective plane device, using The rear view method locates the intelligent total station through the total station rear view prism assembly, and then moves the reflective planar device to a suitable position between the tunneling module and the intelligent total station, and fixes;
  • the tunneling module can be effectively combined and positioned without the need of a reflective plane device.
  • the positioning method adopts a combined positioning mode combining an intelligent total station module and a strapdown inertial navigation module, and the intelligent total station module can obtain the position of the tunneling module by performing coordinate calculation on the tunneling positioning prism module.
  • the parameters and the body direction angle parameters, and then the two-axis inclination sensor module to obtain the roll angle and pitch angle of the body you can get the six-degree-of-freedom pose parameters of the tunneling module.
  • the strapdown inertial navigation module can also solve the tunneling in real time.
  • the module's six-degree-of-freedom pose parameter combines the two positioning data asynchronously to achieve combined positioning.
  • the reflective planar device when it is required to arrange the reflective planar device, it is disposed outside the curved roadway between the tunneling module and the intelligent total station module, and is located farthest from the intelligent total station, and The laser reflecting plane component needs to adjust the rotation angle of the body relative to the reflecting plane device according to the position of the tunneling module, thereby maximizing the corner positioning distance of the intelligent total station module in single shifting.
  • the present invention has the following advantages over the prior art:
  • It can be used in both straight roadways and curved roadways. It can solve the six-degree-of-freedom pose parameters of the roadheader in the roadway in real time and accurately by the combined positioning method, and solve the roadheader or tunnel in the roadway or tunnel. Precise positioning and positioning problems provide the necessary conditions for automated operation of the roadheader.
  • FIG. 1 is a schematic view showing the arrangement of a tunneling positioning system of the present invention
  • FIG. 2 is a schematic structural view of a cantilever type roadheader according to the present invention.
  • FIG. 3 is a three-dimensional schematic view of a reflecting plane mechanism of the present invention.
  • Figure 5 is a schematic view showing the farthest effective positioning distance of the roadheader of the present invention.
  • Fig. 6 is a schematic view showing the influence of the angle of the laser reflection plane of the present invention on the system.
  • cantilever type roadheader 1.1, communication and control system; 1.2, strapdown inertial navigation module; 1.3, dual axis tilt angle sensor; 1.4, roadheader positioning prism; 2, reflective plane mechanism; 2.1, walking mechanism; 2.2, rotary drive device; 2.3, stepper motor; 2.4, laser reflection plane; 2.5, reflective plane mechanism positioning prism; 2.6, total station rear view prism; 3, intelligent total station; 4, roadway; 5, coal rock .
  • the roadheader positioning system suitable for cornering construction includes a cantilever roadheader 1, a reflection plane mechanism 2 and a smart total station 3.
  • the cantilever roadheader 1 is arranged with a communication and control system 1.1, a strapdown inertial navigation module 1.2, a dual axis tilt sensor 1.3 and two roadhead positioning prisms 1.4; the strapdown inertial navigation module 1.2 is connected with the communication and control system 1.1.
  • the dual-axis tilt sensor 1.3 is also connected to the communication and control system 1.1; the two roadhead positioning prisms 1.4 are 360° prisms, mounted on the center line of the roadheader, arranged one after the other.
  • the reflecting plane mechanism 2 comprises a running mechanism 2.1, a slewing drive 2.2, a stepping motor 2.3, a laser reflecting plane 2.4, a reflecting plane mechanism positioning prism 2.5, and a total station rear view prism 2.6;
  • the slewing drive device 2.2 is mounted on the vehicle body,
  • the stepping motor 2.3 provides power to drive the laser reflecting plane 2.4 to rotate;
  • the reflecting plane mechanism 2 is equipped with a controller, which can control the movement of the running mechanism 2.1 and the movement of the stepping motor 2.3, and store at the moment due to the movement of the stepping motor 2.3.
  • the intelligent total station 3 can only position the roadheader within a short distance; when the intelligent total station 3 and the roadheader positioning prism 1.4 cannot be effectively positioned due to non-line of sight, Then, the reflection plane mechanism 2 is placed at a suitable position between the roadheader 1 and the intelligent total station 3, and the three total reflection plane mechanism positioning prisms 2.5 are positioned by the intelligent total station 3, thereby obtaining the reflection plane mechanism 2 in the roadway.
  • the laser reflection plane 2.4 can be solved in real time with respect to the rotation angle of the body of the reflection plane mechanism 2, the laser reflection plane 2.4 can be represented by the known plane equation in the roadway 4, and the measurement is calculated by the smart total station 3 by the specular reflection principle.
  • the symmetry point of the point relative to the laser reflection plane 2-4 is obtained, that is, the three-dimensional coordinates of the actual roadhead positioning prism 1.4 in the roadway 4.
  • the use of the reflection plane mechanism 2 will also be able to effectively position the roadheader positioning prism 1.4 due to non-line of sight, then the fast station operation of the intelligent total station 3 is required, and the intelligent station is fully integrated.
  • the instrument 3 is moved to a suitable position between the roadheader 1 and the reflecting plane mechanism 2, and the pose parameters of the reflecting plane mechanism 2 are still known, that is, the three-dimensional coordinates of the total station rearview prism 2.6 in the roadway are It is known that the intelligent total station 3 is positioned by the total station rear view prism 2.6 using the rear view method, and then the reflective plane mechanism 2 is moved to a suitable position between the cantilever roadheader 1 and the intelligent total station 3.
  • the positioning of the cantilever roadheader 1 adopts a combined positioning mode, and the intelligent total station 3 calculates the position parameters of the roadheader 1 and the body direction angle parameter by performing coordinate calculation on the two roadheader positioning prisms 1.4, and uses the dual-axis tilt angle sensor 1.3.
  • the six-degree-of-freedom pose parameters of the roadheader can be obtained.
  • the strapless inertial guidance module 1.2 can also calculate the six-degree-of-freedom pose parameter of the roadheader in real time; Station positioning method has high positioning accuracy, no cumulative error, but the positioning takes a long time, the real-time performance is not good, and the strapdown inertial navigation positioning method has good real-time performance, but there is accumulated error, long-term positioning accuracy is poor, using combined positioning method,
  • the two kinds of positioning data are asynchronously combined, and the advantages of the two positioning methods are utilized, and the positioning and the shortness are complemented, and the positioning accuracy and the positioning real-time are improved.
  • the roadheader 1 first works in a straight roadway. At this time, the roadheader can be effectively combined and positioned without the need of the reflection plane mechanism 2. When the roadheader has just entered the curved roadway, the reflection plane mechanism 2 is still not needed at this time;
  • the intelligent total station will not be able to effectively position the roadhead positioning prism 1.4 due to non-line of sight, then the reflective plane mechanism 2 needs to be placed at the appropriate position of the roadway and fixed;
  • the roadheader continues to work in the curved roadway, and finally the specular reflection method cannot effectively locate the roadheader due to the non-line of sight. Therefore, the rapid station shift operation of the intelligent total station 3 is required, and the mirror does not need to be reflected after rapid shifting.
  • the plane mechanism 2 can also effectively position the roadheader for a distance;
  • Cycle b ⁇ d real-time precise combination positioning of the roadheader during the whole curved roadway excavation process
  • the roadheader completes the curved roadway and enters the straight roadway construction, and can effectively combine the roadheader without the need of the reflection plane mechanism 2.
  • the smart The total station emits a laser that is tangent to the inner sidewall of the roadway, and adjusts the angle of the laser reflection plane 2.4 so that it is perpendicular to the arc radius of the tunnel passing through the center of the laser reflection plane 2.4.
  • the laser reflection plane 2.4 needs to be adjusted according to the position of the roadheader 1 with respect to the rotation angle of the body of the reflection plane mechanism 2, and is realized by the precise control of the stepping motor 2.3, so that the roadheader can be intelligently fully before reaching the farthest positioning distance.
  • the station is effectively positioned.

Abstract

一种用于弯道施工的掘进定位系统,包括掘进模块、智能全站仪模块、反射平面机构(2)、通信与控制模块、捷联惯导模块(1.2)、双轴倾角传感器模块和掘进定位棱镜模块;通信与控制模块、捷联惯导模块(1.2)、双轴倾角传感器模块和定位棱镜模块同时设置在掘进模块上,智能全站仪模块设置在掘进模块后方,反射平面机构(2)位于掘进模块和智能全站仪模块之间;定位系统通过组合定位方法实时精确的对掘进机在巷道中的六自由度位姿参数进行解算。

Description

一种用于弯道施工的掘进定位系统及方法 技术领域
本发明专利涉及自动化掘进装备技术领域,具体涉及一种掘进机自适应截割控制系统及方法。
背景技术
我国是煤炭的开采与消费大国,煤矿建设及煤炭开采过程中都面临对隧道或巷道的掘进问题;同时,在公路、铁路、隧道工程、水电工程等基础设施建设中也存在大量的隧洞掘进要求。
上述工程中使用悬臂式掘进机是常见的施工方式之一。悬臂式掘进机作为一种高效的采掘机械,广泛应用于巷道和隧道的挖掘。由于掘进机工作环境差,危险性大,人工操作局限性很大,其自动化作业是发展的必然趋势。
要想实现掘进机的自动化作业,首先要解决的就是在巷道或隧道中对掘进机精确定位和定姿等问题;目前,已有很多文献提出了掘进机位姿检测的方法,但是由于巷道掘进工程中的复杂环境和掘进机工作的恶劣条件,很多定位方法都存在一定的局限性,尤其是在弯曲巷道施工中,大多数的定位方法都无法使用,不仅无法为掘进机的自动控制提供条件,而且限制了巷道或隧道设计时的多样性。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供了一种用于弯道施工的掘进定位系统及方法技术,既能够在直线巷道中使用,又能够在弯曲巷道中使用,通过组合定位方法实时精确的对掘进机在巷道中的六自由度位姿参数进行解算,解决了掘进机在巷道或隧道中的精确定位和定姿问题,为实现掘进机自动化作业提供了必要条件。
为达到上述目的,本发明采用的技术方案是:一种用于弯道施工的掘进定位系统,包括掘进模块、智能全站仪模块、反射平面装置、通信与控制模块、捷联惯导模块、双轴倾角传感器模块和掘进定位棱镜模块;所述通信与控制模块、捷联惯导模块、双轴倾角传感器模块和定位棱镜模块同时设置在掘进模块上,所述智能全站仪模块设置在掘进模块后方,所述反射平面机构位于掘进模块和智能全站仪模块之间;
所述掘进定位棱镜模块包括共线设置的前定位棱镜组件和后定位棱镜组件;
所述反射平面装置包括控制器、行走机构、回转驱动机构、激光反射平面组件、反射平面定位棱镜组件和全站仪后视棱镜组件;所述的回转驱动机构安装在行走机构上,所述反射平面定位棱镜组件设置在回转驱动机构上;所述控制器设置在反射平面装置内部,用于控制行走机构和回转驱动机构的运动,并实时存储激光反射平面相对于行走机构的旋转角度。
作为本发明进一步改进的,所述反射平面定位棱镜组件包括至少3组360°棱镜;所述全站仪后视棱镜组件包括2组关于行走机构对称设置的360°棱镜。
作为本发明进一步改进的,一种用于弯道施工的掘进定位方法包括以下步骤:
a.掘进模块在巷道内工作时,首先由智能全站仪在可视距离内直接对掘进模块定位;
b.当智能全站仪模块对掘进机定位棱镜由于巷道弯曲等非视距原因无法有效定位时,将反射平面装置设置在掘进模块与智能全站仪之间的弯曲巷道内,并固定;
c.由智能全站仪模块对反射平面装置的定位棱镜进行定位,从而得到反射平面装置在巷道中的六自由度位姿参数,激光反射平面组件相对于反射平面装置行走机构的旋转角度由控制器实时解算,故激光反射平面组件在巷道中可由已知的平面方程表示;通过镜面反射原理,当智能全站仪测量计算得到掘进定位棱镜模块的坐标后,求该点相对于激光反射平面组件的对称点,即为掘进定位棱镜模块在巷道中的实际三维坐标;
d.当掘进模块前进足够远的距离,使用激光反射平面机构也因超出视距范围而不能对掘进定位棱镜模块进行有效定位时,则需要智能全站仪的快速移站操作,此时反射平面装置的位姿参数仍然是已知的,即全站仪后视棱镜组件在巷道中的三维坐标是已知的;将智能全站仪移动到掘进模块与反射平面装置之间的合适位置,使用后视法通过全站仪后视棱镜组件对智能全站仪进行定位,然后将反射平面装置移动到掘进模块与智能全站仪之间的合适位置,并固定;
e.重复步骤c至步骤d,即可实现整个弯曲巷道掘进过程中掘进模块的实时精确定位;
f.当掘进机进入直线巷道施工,不需要反射平面装置就能够对掘进模块进行有效的组合定位。
作为本发明进一步改进的,所述定位方法采用智能全站仪模块与捷联惯导模块结合的组合定位方式,智能全站仪模块通过对掘进定位棱镜模块进行坐标计算,能够得到掘进模块的位置参数与机体方向角参数,再通过双轴倾角传感器模块得到机体的横滚角与俯仰角,即可得到掘进模块六自由度位姿参数,另外,使用捷联惯导模块也能实时解算掘进模块六自由度位姿参数,将两种定位数据进行异步融合,即可实现组合定位。
作为本发明进一步改进的,当需要布置反射平面装置时,将具布置在掘进模块与智能全站仪模块之间的弯曲巷道的外侧,并距离智能全站仪最远的位置,并且,所述的激光反射平面组件需要根据掘进模块的位置调整相对于反射平面装置机体的旋转角度,从而尽量增加智能全站仪模块单次移站时的弯道定位距离。
由于上述技术方案的运用,本发明与现有技术相比具有下列优点:
既能够在直线巷道中使用,又能够在弯曲巷道中使用,通过组合定位方法实时精确的对掘进机在巷道中的六自由度位姿参数进行解算,解决了掘进机在巷道或隧道中的精确定位和定姿问题,为实现掘进机自动化作业提供了必要条件。
附图说明
下面结合附图对本发明技术方案作进一步说明:
图1是本发明掘进定位系统布置示意图;
图2是本发明悬臂式掘进机结构示意图;
图3是本发明反射平面机构三维示意图;
图4是本发明镜面反射定位方法原理示意图;
图5是本发明掘进机弯道施工时最远有效定位距离示意图;
图6是本发明激光反射平面角度变化时对系统的影响示意图。
图中:1、悬臂式掘进机;1.1、通信与控制系统;1.2、捷联惯导模块;1.3、双轴倾角传感器;1.4、掘进机定位棱镜;2、反射平面机构;2.1、行走机构;2.2、回转驱动装置;2.3、步进电机;2.4、激光反射平面;2.5、反射平面机构定位棱镜;2.6、全站仪后视棱镜;3、智能全站仪;4、巷道;5、煤岩。
具体实施方式
下面结合具体实施例对本发明作进一步的详细说明。
如图1至图4所示的适用于弯道施工的掘进机定位系统,包括悬臂式掘进机1、反射平面机构2与智能全站仪3。悬臂式掘进机1上布置安装有通信与控制系统1.1、捷联惯导模块1.2、双轴倾角传感器1.3以及两个掘进机定位棱镜1.4;捷联惯导模块1.2与通信与控制系统1.1连接,双轴倾角传感器1.3也与通信与控制系统1.1连接;两个掘进机定位棱镜1.4为360°棱镜,安装在掘进机中心线上,一前一后布置。
反射平面机构2包括行走机构2.1、回转驱动装置2.2、步进电机2.3、激光反射平面2.4、反射平面机构定位棱镜2.5以及全站仪后视棱镜2.6;回转驱动装置2.2安装在车体上,由步进电机2.3提供动力,带动激光反射平面2.4旋转;反射平面机构2内安装有控制器,能够控制行走机构2.1的运动与步进电机2.3的运动,并时刻存储由于步进电机2.3的运动导致的激光反射平面2.4相对于反射平面机构2机体的旋转角度;反射平面机构定位棱镜2.5与全站仪后视棱镜2.6结构相同,都为360°棱镜,前者有3个,不共线布置,用于反射平面机构2的定位,后者有2个,用于全站仪移站时全站仪3的定位。
悬臂式掘进机1在弯曲巷道工作时,智能全站仪3只能在一小段距离内对掘进机定位;当智能全站仪3与掘进机定位棱镜1.4由于非视距原因无法有效定位时,则将反射平面机构2放置在掘进机1与智能全站仪3之间的合适位置处,由智能全站仪3对3个反射平面机构定位棱镜2.5进行定位,从而得到反射平面机构2在巷道4中的六自由度位姿参数。
由于激光反射平面2.4相对于反射平面机构2机体的旋转角度可实时解算,故激光反射平面2.4在巷道4中可由已知的平面方程表示,通过镜面反射原理,当智能全站仪3测量计算得到掘进机定位棱镜1.4的坐标后,求该点相对于激光反射平面2-4的对称点,即为实际的掘进机定位棱镜1.4在巷道4中的三维坐标。
当掘进机工作了足够远的距离,使用反射平面机构2也会由于非视距不能对掘进机定位棱镜1.4进行有效定位时,则需要智能全站仪3的快速移站操作,将智能全站仪3移动到掘进机1与反射平面机构2之间的合适位置,此时反射平面机构2的位姿参数仍然是已知的,即全站仪后视棱镜2.6在巷道中的三维坐标是已知的,使用后视法通过全站仪后视棱镜2.6对智能全站仪3进行定位,然后将反射平面机构2移动到悬臂式掘进机1与智能全站仪3之间的合适位置。
悬臂式掘进机1的定位采用组合定位方式,智能全站仪3通过对两个掘进机定位棱镜1.4进行坐标计算,能够得到掘进机1的位置参数与机体方向角参数,使用双轴倾角传感器1.3得到机体的横滚角与俯仰角,即可得到掘进机六自由度位姿参数,另外,使用捷联惯导模块1.2也能实时解算掘进机1六自由度位姿参数;具中智能全站仪定位方法定位精度高,没有累计误差,但是定位耗时长,实时性不好,而捷联惯导定位方法实时性好,但是存在 累计误差,长时间定位精度差,使用组合定位方式,将两种定位数据进行异步融合,发挥两种定位方法的优势,取长补短,提高定位精度与定位实时性。
当悬臂式掘进机1开掘直线巷道与弯曲巷道组合的巷道时,其一般工作流程为:
a.掘进机1首先工作于直线巷道,此时不需要反射平面机构2就能够对掘进机进行有效的组合定位,当掘进机刚进入弯曲巷道,此时仍然不需要反射平面机构2;
b.当掘进机继续开掘,智能全站仪会由于非视距无法对掘进机定位棱镜1.4进行有效定位,则需要将反射平面机构2布置在巷道合适位置,并固定;
c.使用智能全站仪3对反射平面机构2上的反射平面机构定位棱镜2.5进行定位,求得激光反射平面2.4在巷道4中的平面方程,并根据步进电机2.3的运动实时更新平面方程,使用镜面反射方法对掘进机进行有效定位,实现掘进机的六自由度组合定位;
d.掘进机在弯曲巷道中继续工作,最终会由于非视距使镜面反射方法也无法对掘进机有效定位,则需要智能全站仪3的快速移站操作,快速移站后,不需要反射平面机构2也能对掘进机有效定位一段距离;
e.循环b~d,即可实现整个弯曲巷道掘进过程中掘进机的实时精确组合定位;
f.掘进机完成弯曲巷道,又进入直线巷道施工,不需要反射平面机构2就能够对掘进机进行有效的组合定位。
如图5所示,当需要布置反射平面机构2时,将其布置在掘进机1与智能全站仪3之间的巷道4外侧,并距离智能全站仪最远的位置,此时,智能全站仪发射激光与巷道内侧壁相切,调整激光反射平面2.4的角度,使其垂直于过激光反射平面2.4中心点的巷道圆弧半径,经过激光反射平面2.4反射的激光与巷道内侧壁相切,这样能够达到掘进机弯道施工时最远的定位距离。
如图6所示,当悬臂式掘进机1与反射平面机构2距离较近,使用图5中激光反射平面2.4的角度时,掘进机关于激光反射平面的对称点为1’,此时掘进机与智能全站仪处于非视距状态,不能有效定位;适当调整激光反射平面2.4的角度后,掘进机关于激光反射平面的对称点为1”,此时掘进机能够有效定位。因此,所述的激光反射平面2.4需要根据掘进机1的位置调整相对于反射平面机构2机体的旋转角度,由步进电机2.3的精确控制实现,从而使掘进机在达到最远定位距离前都能够由智能全站仪有效定位。
以上仅是本发明的具体应用范例,对本发明的保护范围不构成任何限制。凡采用等同变换或者等效替换而形成的技术方案,均落在本发明权利保护范围之内。

Claims (5)

  1. 一种用于弯道施工的掘进定位系统,其特征在于:包括掘进模块、智能全站仪模块、反射平面装置、通信与控制模块、捷联惯导模块、双轴倾角传感器模块和掘进定位棱镜模块;所述通信与控制模块、捷联惯导模块、双轴倾角传感器模块和定位棱镜模块同时设置在掘进模块上,所述智能全站仪模块设置在掘进模块后方,所述反射平面机构位于掘进模块和智能全站仪模块之间;
    所述掘进定位棱镜模块包括共线设置的前定位棱镜组件和后定位棱镜组件;
    所述反射平面装置包括控制器、行走机构、回转驱动机构、激光反射平面组件、反射平面定位棱镜组件和全站仪后视棱镜组件;所述的回转驱动机构安装在行走机构上,所述反射平面定位棱镜组件设置在回转驱动机构上;所述控制器设置在反射平面装置内部,用于控制行走机构和回转驱动机构的运动,并实时存储激光反射平面相对于行走机构的旋转角度。
  2. 根据权利要求1所述的用于弯道施工的掘进定位系统,其特征在于:所述反射平面定位棱镜组件包括至少3组360°棱镜;所述全站仪后视棱镜组件包括2组关于行走机构对称设置的360°棱镜。
  3. 一种用于弯道施工的掘进定位方法,其特征在于,包括以下步骤:
    a.掘进模块在巷道内工作时,首先由智能全站仪在可视距离内直接对掘进模块定位;
    b.当智能全站仪模块对掘进机定位棱镜由于巷道弯曲等非视距原因无法有效定位时,将反射平面装置设置在掘进模块与智能全站仪之间的弯曲巷道内,并固定;
    c.由智能全站仪模块对反射平面装置的定位棱镜进行定位,从而得到反射平面装置在巷道中的六自由度位姿参数,激光反射平面组件相对于反射平面装置行走机构的旋转角度由控制器实时解算,故激光反射平面组件在巷道中可由已知的平面方程表示;通过镜面反射原理,当智能全站仪测量计算得到掘进定位棱镜模块的坐标后,求该点相对于激光反射平面组件的对称点,即为掘进定位棱镜模块在巷道中的实际三维坐标;
    d.当掘进模块前进足够远的距离,使用激光反射平面机构也因超出视距范围而不能对掘进定位棱镜模块进行有效定位时,则需要智能全站仪的快速移站操作,此时反射平面装置的位姿参数仍然是已知的,即全站仪后视棱镜组件在巷道中的三维坐标是已知的;将智能全站仪移动到掘进模块与反射平面装置之间的合适位置,使用后视法通过全站仪后视棱镜组件对智能全站仪进行定位,然后将反射平面装置移动到掘进模块与智能全站仪之间的合适位置,并固定;
    e.重复步骤c至步骤d,即可实现整个弯曲巷道掘进过程中掘进模块的实时精确定位;
    f.当掘进机进入直线巷道施工,不需要反射平面装置就能够对掘进模块进行有效的组合定位。
  4. 根据权利要求3所述的用于弯道施工的掘进定位方法,其特征在于:所述定位方法采用智能全站仪模块与捷联惯导模块结合的组合定位方式,智能全站仪模块通过对掘进定位棱镜模块进行坐标计算,能够得到掘进模块的位置参数与机体方向角参数,再通过双轴倾角传感器模块得到机体的横滚角与俯仰角,即可得到掘进模块六自由度位姿参数;另外,使用捷联惯导模块也能实时解算掘进模块六自由度位姿参数,将两种定位数据进行异步融合,即可实现组合定位。
  5. 根据权利要求3或4所述的适用于弯道施工的掘进机定位方法,其特征在于:当需要 布置反射平面装置时,将其布置在掘进模块与智能全站仪模块之间的弯曲巷道的外侧,并距离智能全站仪最远的位置;所述的激光反射平面组件根据掘进模块的位置调整相对于反射平面装置机体的旋转角度,从而尽量增加智能全站仪模块单次移站时的弯道定位距离。
PCT/CN2018/096511 2017-06-19 2018-07-20 一种用于弯道施工的掘进定位系统及方法 WO2018233721A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1905646.4A GB2573652B (en) 2017-06-19 2018-07-20 Excavation positioning system and method for curved roadway construction
AU2018289881A AU2018289881B2 (en) 2017-06-19 2018-07-20 Excavation positioning system and method for curved roadway construction
RU2019113454A RU2699091C1 (ru) 2017-06-19 2018-07-20 Система позиционирования экскаватора и способ строительства подземного прохода криволинейного профиля

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710462526.5A CN107269276B (zh) 2017-06-19 2017-06-19 一种用于弯道施工的掘进定位系统及方法
CN201710462526.5 2017-06-19

Publications (1)

Publication Number Publication Date
WO2018233721A1 true WO2018233721A1 (zh) 2018-12-27

Family

ID=60067771

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/085977 WO2018233390A1 (zh) 2017-06-19 2018-05-08 一种用于弯道施工的掘进定位系统及方法
PCT/CN2018/096511 WO2018233721A1 (zh) 2017-06-19 2018-07-20 一种用于弯道施工的掘进定位系统及方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085977 WO2018233390A1 (zh) 2017-06-19 2018-05-08 一种用于弯道施工的掘进定位系统及方法

Country Status (5)

Country Link
CN (1) CN107269276B (zh)
AU (1) AU2018289881B2 (zh)
GB (1) GB2573652B (zh)
RU (1) RU2699091C1 (zh)
WO (2) WO2018233390A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114485614A (zh) * 2022-01-05 2022-05-13 中国煤炭科工集团太原研究院有限公司 基于双全站仪的采掘设备的导航定位系统及方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107269276B (zh) * 2017-06-19 2019-09-06 中国矿业大学 一种用于弯道施工的掘进定位系统及方法
CN109209418A (zh) * 2018-09-28 2019-01-15 三重型装备有限公司 掘进机及其控制方法
CN109341675B (zh) * 2018-11-22 2019-07-12 山东新矿信息技术有限公司 一种掘进机三维空间定位箱、系统以及定位方法
CN109356608B (zh) * 2018-11-22 2019-08-06 山东新矿信息技术有限公司 一种掘进机、系统及方法
CN111412911A (zh) * 2020-04-07 2020-07-14 中国煤炭科工集团太原研究院有限公司 一种煤矿井下连续采煤机器人多传感器组合导航系统
CN113252044A (zh) * 2021-05-25 2021-08-13 中国煤炭科工集团太原研究院有限公司 一种掘进装备机身偏差计算方法
CN115075828B (zh) * 2022-07-14 2022-12-02 三一重型装备有限公司 巷道作业机械实时定位方法、系统及作业机械

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933246A (ja) * 1995-07-17 1997-02-07 Nanno Kensetsu Kk 隧道の位置測定装置と管体の推進装置
JPH1123271A (ja) * 1997-07-01 1999-01-29 Okumura Corp 推進工法の測量方法
CN1584290A (zh) * 2004-05-27 2005-02-23 上海市第二市政工程有限公司 盾构三维姿态精密监测系统
CN101266134A (zh) * 2008-04-30 2008-09-17 山西焦煤集团有限责任公司 悬臂掘进机头位姿的测量系统及其方法
CN105371871A (zh) * 2015-12-02 2016-03-02 中国矿业大学 井下采煤机捷联惯导系统的组合初始对准系统及对准方法
CN107269276A (zh) * 2017-06-19 2017-10-20 中国矿业大学 一种用于弯道施工的掘进定位系统及方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU121566A1 (ru) * 1958-12-22 1959-11-30 П.Я. Гальперин Горный тахеометр
SU754060A1 (ru) * 1978-01-25 1980-08-07 Новочеркасский ордена Трудового Красного Знамени политехнический институт им. Серго Орджоникидзе Устройство дл автоматического управлени положением горнопроходческой машины в плане и профиле пласта
JP2728332B2 (ja) * 1992-02-13 1998-03-18 日立造船株式会社 移動体の位置・姿勢自動計測装置
JP2002156228A (ja) * 2000-11-21 2002-05-31 Hitachi Constr Mach Co Ltd 管推進機の位置計測方法及び管推進機の位置計測装置
JP3836699B2 (ja) * 2001-09-27 2006-10-25 進和技術開発株式会社 推進工法における掘進機位置の測定方法
CN201013380Y (zh) * 2006-10-27 2008-01-30 三一重型装备有限公司 全自动掘进机
FI123638B (fi) * 2007-04-20 2013-08-30 Sandvik Mining & Constr Oy Menetelmä porauskaavion suuntaamiseksi kaarevissa tunneleissa, kallionporauslaite sekä ohjelmistotuote
CN101975063B (zh) * 2010-09-10 2012-08-08 中国矿业大学 掘进机激光引导定位定向装置及方法
CN102589514B (zh) * 2011-01-15 2014-05-07 辽宁工程技术大学 掘进机位姿参数测量装置及其方法
CN102937437A (zh) * 2012-11-21 2013-02-20 中国铁建重工集团有限公司 全站仪棱镜组和隧道施工的顶管机导向系统及其导向方法
CN204163727U (zh) * 2014-09-02 2015-02-18 李永海 一种掘进机自动控制装置
CN204738816U (zh) * 2015-05-12 2015-11-04 中国矿业大学(北京) 掘进机自主定位定向系统及方法
CN105781566B (zh) * 2015-08-26 2018-03-30 中铁工程装备集团有限公司 一种盾构机双激光靶导向系统
CN105649641B (zh) * 2016-02-01 2017-12-08 中铁十六局集团北京轨道交通工程建设有限公司 盾构在上软下硬地层中急曲线施工的轴线控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933246A (ja) * 1995-07-17 1997-02-07 Nanno Kensetsu Kk 隧道の位置測定装置と管体の推進装置
JPH1123271A (ja) * 1997-07-01 1999-01-29 Okumura Corp 推進工法の測量方法
CN1584290A (zh) * 2004-05-27 2005-02-23 上海市第二市政工程有限公司 盾构三维姿态精密监测系统
CN101266134A (zh) * 2008-04-30 2008-09-17 山西焦煤集团有限责任公司 悬臂掘进机头位姿的测量系统及其方法
CN105371871A (zh) * 2015-12-02 2016-03-02 中国矿业大学 井下采煤机捷联惯导系统的组合初始对准系统及对准方法
CN107269276A (zh) * 2017-06-19 2017-10-20 中国矿业大学 一种用于弯道施工的掘进定位系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114485614A (zh) * 2022-01-05 2022-05-13 中国煤炭科工集团太原研究院有限公司 基于双全站仪的采掘设备的导航定位系统及方法
CN114485614B (zh) * 2022-01-05 2023-10-13 中国煤炭科工集团太原研究院有限公司 基于双全站仪的采掘设备的导航定位系统及方法

Also Published As

Publication number Publication date
CN107269276A (zh) 2017-10-20
GB2573652B (en) 2022-02-16
AU2018289881A1 (en) 2019-05-16
GB2573652A (en) 2019-11-13
GB201905646D0 (en) 2019-06-05
RU2699091C1 (ru) 2019-09-03
WO2018233390A1 (zh) 2018-12-27
CN107269276B (zh) 2019-09-06
AU2018289881B2 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
WO2018233721A1 (zh) 一种用于弯道施工的掘进定位系统及方法
AU2018296041B2 (en) Automatic shearer height adjustment apparatus based on advanced detection of shearer seismic source and method therefor
CN102322857B (zh) 机动设备位姿测量系统及测量方法
CN105736007B (zh) 融合地层信息的盾构机定位及纠偏系统及方法
CN110736458B (zh) 基于航位推算的掘进机自主导航系统及方法
CN102518445B (zh) 盾构机的激光导向控制系统及方法
CN104536008B (zh) 一种凿岩台车炮孔激光测距定位方法
CN102589514B (zh) 掘进机位姿参数测量装置及其方法
CN109579831A (zh) 矿用悬臂式掘进机可视化辅助导引方法和系统
CN111121735A (zh) 一种隧道、地铁和矿井开挖掘进自主定位定向系统及方法
CN101266134A (zh) 悬臂掘进机头位姿的测量系统及其方法
CN111412911A (zh) 一种煤矿井下连续采煤机器人多传感器组合导航系统
CN104729501A (zh) 基于旋转扇面激光的悬臂式掘进机位姿测量方法
CN111380522A (zh) 一种悬臂式掘进机的导航定位及自动截割方法
CN109296370A (zh) 一种自动测绘定位的掘进方法及系统
JPWO2015040726A1 (ja) 測定治具
CN111044042A (zh) 基于陀螺全站仪和惯导设备的掘进机定位导航系统及方法
CN102436260A (zh) 一种室内自主定位与定向的二维导航系统
CN114689045A (zh) 一种掘进机定位导航系统以及定位导航方法
CN105954760B (zh) 巷道掘进机自动找正方法
CN101303815A (zh) 一种模型盾构机的掘进导向装置
CN113970329A (zh) 捷联惯导和激光感知复合的掘进机位姿检测系统与方法
CN112325887A (zh) 一种悬臂式掘进机截割轨迹验证方法及系统
CN114485614B (zh) 基于双全站仪的采掘设备的导航定位系统及方法
CN102679974A (zh) 高速定位免换站式盾构掘进姿态实时测量方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820621

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201905646

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20180720

ENP Entry into the national phase

Ref document number: 2018289881

Country of ref document: AU

Date of ref document: 20180720

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18820621

Country of ref document: EP

Kind code of ref document: A1