WO2018233444A1 - 具有空气净化功能的空调器室内机及其控制方法 - Google Patents
具有空气净化功能的空调器室内机及其控制方法 Download PDFInfo
- Publication number
- WO2018233444A1 WO2018233444A1 PCT/CN2018/088220 CN2018088220W WO2018233444A1 WO 2018233444 A1 WO2018233444 A1 WO 2018233444A1 CN 2018088220 W CN2018088220 W CN 2018088220W WO 2018233444 A1 WO2018233444 A1 WO 2018233444A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- indoor unit
- air
- purification
- air conditioner
- purifying
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Definitions
- the invention relates to a home air conditioner technology, in particular to an air conditioner indoor unit with an air purifying function and a control method thereof.
- An air conditioner (Air Conditioner for short) is an appliance for directly supplying treated air to a closed space or area.
- an air conditioner is generally used to adjust the temperature of a working environment. As people's demands for environmental comfort are getting higher and higher, the functions of air conditioners are becoming more and more abundant.
- an object of the present invention to provide an air conditioner indoor unit having an air purifying function that overcomes the above problems or at least partially solves the above problems, and a control method therefor.
- Another further object of the invention is to reduce the effects of wind resistance generated by the purification assembly.
- the present invention provides a control method for an indoor unit of an air conditioner having an air purifying function, the air conditioner indoor unit including a driving device and a purifying assembly, the purifying assembly being made of a flexible material having a fixed setting in the indoor unit a fixed end of one side of the tuyere and a movable end that is telescoped under the driving of the driving device, the purifying assembly covers the area of the air inlet of the indoor unit through the expansion and contraction of the movable end, and the control method comprises: acquiring a trigger signal of the air conditioner entering the purifying mode; detecting Air pollution parameters of the indoor working environment of the air conditioner; determining the purification level corresponding to the air pollution parameter, each purification level stipulates that the purification component needs to cover the area of the air inlet; and the control driving device drives the movable end to the prescribed position of the purification level, Purify the airflow entering the indoor unit.
- the trigger signal includes: a signal that the air pollution parameter exceeds a preset purge start threshold.
- the method further comprises: continuously detecting the air pollution parameter, and adjusting the purification level according to the change of the air pollution parameter until the trigger condition for exiting the purification is satisfied.
- the triggering condition for exiting the purification comprises any one or more of the following: a signal that reduces the air pollution parameter to a preset purge closing threshold; a signal that the cleaning time expires; and the air pollution parameter continues to have no improved signal.
- the method further includes: determining a corresponding indoor fan speed adjustment plan according to the purification level; and adjusting the fan speed of the indoor unit according to the indoor fan speed adjustment plan .
- the indoor fan speed adjustment scheme includes: maintaining the fan speed of the indoor unit unchanged when the area of the air inlet to be cleaned by the cleaning component is less than a set threshold of the first shielding area; and covering the air inlet area of the cleaning component
- the threshold value of the first shielding area is greater than the threshold value of the second shielding area and is smaller than the threshold value of the second shielding area
- the fan speed of the indoor unit is increased by one wind speed level; when the area of the air cleaning port to be covered by the cleaning component is greater than the threshold value of the second shielding area, according to the indoor unit
- the tube temperature of the heat exchanger is feedback controlled to the fan speed of the indoor unit.
- an air conditioner indoor unit having an air purifying function comprising: a casing having an air inlet formed at a top thereof to allow ambient air to enter an indoor unit of the air conditioner; a driving device; a purifying assembly , which is made of a flexible material, has a fixed end fixedly disposed on one side of the air inlet of the indoor unit, and a movable end that is telescoped under the driving of the driving device, and the purifying assembly covers the area of the air inlet of the indoor unit through the expansion and contraction of the movable end, and
- the driving device is further configured to: after obtaining the trigger signal of the air conditioner entering the purifying mode, determining a corresponding purifying level according to the air pollution parameter of the working environment of the indoor unit of the air conditioner, and driving the movable end to a prescribed position of the purifying level to enter the
- the airflow of the indoor unit is purified, wherein each purification level is pre-specified with an area where the purification component needs to cover the
- the indoor unit of the air conditioner further includes: an air quality detecting device configured to detect an air pollution parameter of the working environment of the indoor unit of the air conditioner, and output a trigger signal when the air pollution parameter exceeds a preset cleaning start threshold.
- an air quality detecting device configured to detect an air pollution parameter of the working environment of the indoor unit of the air conditioner, and output a trigger signal when the air pollution parameter exceeds a preset cleaning start threshold.
- the driving device is further configured to: adjust the purification level according to the change of the air pollution parameter until the trigger condition for exiting the purification is met, and the trigger condition for exiting the purification includes any one or more of the following: the air pollution parameter is reduced to the pre- The signal for purifying the shutdown threshold is set; the signal for the timeout of the purge time is exceeded; the signal for the air pollution parameter is continuously improved.
- the indoor unit of the air conditioner further includes: an indoor unit fan configured to determine a corresponding speed adjustment scheme according to the purification level; and adjust the rotation speed according to the indoor unit fan speed adjustment scheme.
- the air conditioner indoor unit with an air purifying function of the present invention is provided with a purifying unit connected to the driving device inside the indoor unit, and the movable section of the purifying unit is driven by the driving device to move inside the indoor unit, so that the covering room can be changed by the expansion and contraction of the movable end.
- the area of the air inlet of the machine changes the degree of air filtration. On the one hand, it satisfies the requirements of air purification. On the other hand, it also minimizes the wind resistance generated by the purification components and avoids the influence on the normal temperature regulation function of the air conditioner.
- the air conditioner indoor unit with the air purifying function of the present invention can automatically turn on the purging after the air pollution parameter exceeds the starting threshold, and adjust the purifying level in real time during the purifying process, thereby improving the user experience.
- the indoor unit of the air conditioner having the air purifying function of the present invention can further determine the corresponding indoor unit fan speed adjustment scheme according to the purification level, thereby further reducing the influence of the wind resistance of the purification unit.
- FIG. 1 is a schematic structural view of an indoor unit of an air conditioner having an air purifying function according to an embodiment of the present invention
- Figure 2 is a schematic structural view of the purification assembly in the indoor unit of the air conditioner shown in Figure 1 in a partially stretched state;
- Figure 3 is a schematic structural view of the purifying assembly in the indoor unit of the air conditioner shown in Fig. 1 in a partially contracted state;
- Figure 4 is a schematic cross-sectional view of the purification assembly of the indoor unit of the air conditioner shown in Figure 1 in a fully stretched state;
- Figure 5 is a schematic cross-sectional view of the purification assembly in the indoor unit of the air conditioner shown in Figure 1 in a fully contracted state;
- FIG. 6 is a schematic exploded view of a driving device and a purifying assembly in an indoor unit of an air conditioner having an air purifying function according to an embodiment of the present invention
- Figure 7 is a schematic exploded view of the driving device in the indoor unit of the air conditioner having the air purifying function shown in Figure 6;
- FIG. 8 is a schematic view showing a movement trajectory of a movable end of a purification assembly in an indoor unit of an air conditioner having an air purifying function according to an embodiment of the present invention
- FIG. 9 is a functional block diagram of an indoor unit of an air conditioner having an air purifying function according to an embodiment of the present invention.
- Figure 10 is a schematic diagram of a control method of an indoor unit of an air conditioner having an air purifying function according to an embodiment of the present invention.
- the embodiment first provides an air conditioner indoor unit having an air purifying function, and the purifying function of the air conditioner can be turned on and off as needed.
- the indoor unit of the air conditioner is provided with a driving device and a purifying assembly, wherein the purifying assembly is made of a flexible material, and has a fixed end fixedly disposed on one side of the air inlet of the indoor unit and a movable end extending and contracting under the driving of the driving device.
- the purifying assembly covers the area of the indoor air inlet through the expansion and contraction of the movable end, so that the degree of filtering of the air entering the indoor unit can be changed.
- the purification component In the case of poor air quality, the purification component completely covers the air inlet as much as possible, so that the air is fully filtered; in the case of a general degree of air pollution, the purification component can cover a part of the air inlet, so that part of the air is filtered.
- the air conditioner indoor unit with the air purifying function of the embodiment satisfies the requirements of air purification on the one hand, and minimizes the wind resistance generated by the purifying assembly on the other hand, and reduces the influence on the normal temperature regulating function of the air conditioner.
- the air conditioner indoor unit having the air purifying function may preferably be a wall-mounted indoor unit. Since the wall-mounted indoor unit has a more compact structure, the space for arranging the purifying assembly is more narrow. This embodiment optimizes the structure of the wall-mounted indoor unit and utilizes more.
- the compact structure achieves the above purification function.
- 1 is a schematic structural view of an air conditioner indoor unit 100 having an air purifying function according to an embodiment of the present invention.
- Fig. 2 is a schematic structural view of the purification unit 150 in the air conditioner indoor unit 100 shown in Fig. 1 in a partially stretched state.
- Fig. 3 is a schematic structural view of the purification unit 150 in the air conditioner indoor unit 100 shown in Fig. 1 in a partially contracted state.
- FIG. 4 is a schematic cross-sectional view of the purification assembly 150 in the air conditioner indoor unit 100 shown in FIG. 1 in a fully stretched state
- FIG. 5 is a view showing the purification assembly 150 in the air conditioner indoor unit 100 shown in FIG. Schematic cross-sectional view.
- the wall-mounted air conditioner indoor unit 100 may generally include a body frame 110, a cover 120, a front panel 130, a driving device 140, a purification assembly 150, and the like.
- the body frame 110 constitutes an accommodation space of the heat exchanger 160 and the fan 170.
- the cover 120 covers the front portion of the body frame 110 to close the heat exchanger 160 and the fan 170.
- the top of the cover 120 is formed with an air inlet 121, and the cover is formed.
- the 120 is fixed to the body frame 110, and the front portion of the cover 120 is provided with a front panel 130, and the front panel 130 is detachably mounted on the cover 120.
- the purification assembly 150 has oppositely disposed fixed ends 150-1 and movable ends 150-2.
- the fixed end 150-1 may be directly connected to the cover 120 through other connection structures to be fixed to the air conditioner of the air conditioner indoor unit 100.
- the movable end 150-2 is coupled to the driving device 140 to move the movable end 150-2 relative to the fixed end 150-1 under the driving of the driving device 140.
- the fixed end 150-1 can be attached to the inner rear or inner upper surface of the casing 120. That is, it is located below the rear side of the air inlet 121 or below the rear side of the air inlet 121.
- the movable end 150-2 and the driving device 140 are movably disposed on the casing 120, and the movable end 150-2 and the driving device 140 are movable back and forth inside the air inlet 121.
- the driving device 140 is disposed on the casing 120.
- the movable end 150-2 of the cleaning assembly 150 is coupled to the driving device 140.
- the movable end 150-2 of the cleaning assembly 150 can be moved toward or away from the fixed end 150-1 by the driving of the driving device 140.
- the purification assembly 150 is compressed or stretched to cause the purification assembly 150 to switch between a purge mode and a non-purification mode.
- the movable end 150-2 of the purifying assembly 150 can be driven by the driving device 140 to move away from the fixed end 150-1 in the purifying mode, so that the purifying assembly 150 is stretched, gradually obscuring the air inlet 121, and adjusting the area of the shielding air inlet 121, thereby
- the airflow entering the indoor unit 100 can be purified.
- the movable end 150-2 of the purification assembly 150 can be driven by the driving device 140 to move toward the fixed end 150-1 when exiting the purification mode, so that the purification assembly 150 is compressed, thereby exposing the air inlet 121, and the airflow does not directly enter through the purification assembly 150. In the indoor unit 100.
- the air conditioner indoor unit 100 having the air purifying function of the present embodiment sets different movable end positions for different purging requirements, and correspondingly changes the area of the purifying port 120 covering the air inlet 121.
- the movable end 150-2 of the purification assembly 150 can be driven by the drive unit 140 to a position where the purification assembly 150 completely shields the air inlet 121.
- the purification assembly 150 can be shielded from half the area of the air inlet 121.
- the purification assembly 150 can completely expose the air inlet 121, so that the air directly enters the interior of the indoor unit 100 without being purified.
- the drive unit 140 described above may be implemented by a rack and pinion drive assembly, for example, the drive unit 140 may include a rail assembly, a motor, a gear, and a curved rack.
- the rail assembly may be disposed at a frame at a lateral side end of the casing.
- the motor can be disposed on the rail assembly, the gear is coupled to the output shaft of the motor, the curved rack meshes with the gear, and the movable end 150-2 of the purification assembly 150 is directly or indirectly connected to the curved rack, and the motor 141 passes through the gear and the arc.
- the movable end 150-2 of the rack-driven cleaning assembly 150 slides along the rail assembly.
- FIG. 6 is a schematic exploded view of a driving device 140 and a purifying assembly 150 in an air conditioner indoor unit 100 having an air purifying function according to an embodiment of the present invention.
- Figure 7 is a schematic exploded view of the driving device 140 in the air conditioner indoor unit 100 having the air purifying function shown in Figure 6, and
- Figure 8 is a cleaning of the air conditioner indoor unit 100 having an air purifying function according to an embodiment of the present invention. Schematic diagram of the movement path of the active end of the component 150.
- the drive device 140 can include a rail assembly, a motor 141, a gear 142, a curved rack 143, and a link 146.
- the rail assembly may be disposed at a frame at a lateral side end of the casing 120.
- the movable end 150-2 of the purification assembly 150 is coupled to the curved rack 143 by a link 146.
- the first end of the connecting rod 146 is rotatably connected to the curved rack 143, the motor 141 drives the gear 142 to rotate, the gear 142 drives the curved rack 143 to slide, and the curved rack 143 drives the connecting rod 146 connected thereto to rotate. And slide.
- the second end of the link 146 is rotatably coupled to the movable end 150-2 of the purification assembly 150.
- the movable end 150-2 of the purification assembly 150 is rotatably and slidably engaged with the guide rail assembly by the link 146. The movable end 150-2 of the purification assembly 150 is thereby moved toward or away from the fixed end 150-1 to contract or stretch the purification assembly 150.
- the rail assembly may include a base 144 and a side cover 145 disposed at a frame at a lateral side end of the casing 120, for example, the base 144 may be fixed to a frame at a lateral side end of the casing 120 by screws, and the side cover 145 is buckled
- the side cover 145 and the base 144 form a space for accommodating the gear 142 and the curved rack 143.
- the output shaft of the motor 141 is connected to the gear 142 through the base 144, and the motor 141 passes through the gear.
- the 142 drives the curved rack 143 to slide.
- the connecting rod 146 is disposed in the receiving space formed by the base 144 and the side cover 145.
- the first end of the connecting rod 146 is rotatably connected with the curved rack 143, and the second end of the connecting rod 146 and the movable end 150-2 of the purifying assembly Rotating the connection, the link 146 drives the movable end 150-2 of the purification assembly 150 to be rotatably and slidably engaged with the guide rail assembly, thereby causing the movable end 150-2 of the purification assembly 150 to move toward or away from the fixed end 150-1 to Shrinking or stretching the purification assembly 150 causes the purification assembly 150 to transition between a purge mode and a non-purification mode.
- the second end of the connecting rod 146 may be provided with a positioning strut 146-1.
- the positioning strut 146-1 is rotatably connected to the movable end 150-2 of the purifying assembly 150 through the side cover 145, and the second guiding rail 145-7 extends therein.
- a hollowing area is formed in the direction, and the positioning sliding column 146-1 is rotatably connected to the movable end 150-2 of the cleaning assembly 150 through the hollowing area, and the connecting rod 146-1 is positioned during the movement of the connecting rod 146 along the curved rack 143. Sliding in the hollowed out zone simultaneously drives the movable end 150-2 of the purification assembly 150 to move along the second rail 145-7.
- the movable end 150-2 of the purifying assembly 150 is moved by the driving of the connecting rod 146 from the position inside the front panel to the rear side of the air inlet 121 to shrink the purifying assembly 150 and expose the air inlet 121 so that the airflow does not pass through the purifying assembly.
- the purification of 150 directly enters the indoor unit 100.
- the movable end 150-2 of the purification assembly 150 is moved by the driving of the link 146 from the position on the rear side of the air inlet 121 to the position inside the front panel to stretch the purification assembly 150 to filter and purify the air flow.
- the side of the base 144 facing the curved rack 143 may further be formed with an arcuate groove 144-4.
- the side of the curved rack 143 adjacent to the base 144 is provided with at least one second roller 143-3, and the second roller 143 The -3 can be received in the arcuate slot 144-4 and slidably coupled to the arcuate slot 144-4. Thereby, the curved rack 143 can be stably slid along the curved groove 144-4, thereby improving the stability of the operation of the driving device 140.
- a side of the side cover 145 away from the base 144 may be formed with a second rail 145-7, and the movable end 150-2 of the purifying assembly 150 is rotatably and slidably engaged with the second rail 145-7 by the connecting rod 146. Moving toward or away from the fixed end 150-1 to contract or stretch the purification assembly 150 causes the purification assembly 150 to switch between a purge mode and a non-purification mode.
- the motor 141 drives the curved rack 143 to slide along the curved groove 144-4 through the gear 142.
- the link 146 slides along the curved rack 143 and is between the curved rack 143 and the curved rack 143.
- the rotational relative motion is generated, and the movable end 150-2 of the cleaning assembly 150 is moved by the link 146 and moves along the path of the second rail 145-7 along the second rail 145-7, thereby changing the cleaning assembly 150 to cover the air inlet 121. area.
- the second guide rail 145-7 may include a first curved section 145-7-1 and a second curved section 145-7-2 that is in contact with the first curved section 145-7-1, the first curved section 145 -7-1 is different from the curvature of the second curved segment 145-7-2, that is, the degree of bending of the first curved segment 145-7-1 and the second curved segment 145-7-2 is different.
- the corresponding position of 121, the second curved section 145-7-2 extends forward and downward to the inner side of the front panel 130.
- the arcuate slot 144-4 can also extend to the inside of the front panel 130, and the second arcuate section 145-7-2 can be located outside of the arcuate slot 144-4, that is, with the arcuate slot 144-4
- the second curved section 145-7-2 is closer to the front panel 130 than the position.
- the motor 141 drives the gear 142 to rotate.
- the gear 142 drives the curved rack 143 to slide in the arcuate groove 144-4.
- the link 146 slides along the curved rack 143 and is curved.
- the relative movement between the racks 143 is generated, and the movable end 150-2 of the purifying assembly 150 is driven by the connecting rod 146 along the irregularly shaped second rail 145-7 at the inner side of the front panel 130 and the air inlet 121 Movement between the inboard positions, thereby compressing or stretching the purification assembly 150, effecting the conversion of the purification assembly 150 between the purge mode and the non-purification mode, and the motion path of the movable end 150-2 of the purification assembly 150 is located in the arcuate slot The outside of 144-4.
- the connecting rod 146 drives the movable end 150-2 of the purifying assembly 150 to occupy a smaller space with the movement of the irregularly shaped second rail 145-7, and the internal space of the air conditioner indoor unit 100 can be saved.
- A is an irregular shape formed by the first curved segment 145-7-1 and the second curved segment 145-7-2 different from the first curved segment 145-7-1.
- the path of the second rail 145-7, B is the path of the curved first rail 145-3, and the irregularly shaped second rail 145-7 is located outside the curved first rail 145-3.
- the movable end 150-2 of the purification assembly 150 requires less space for the movement of the irregularly shaped second guide rail 145-7 by the link 146, which allows more internal space of the indoor unit 100 without increasing the indoor unit.
- the volume of 100 while arranging the drive unit 140 and the purification assembly 150, also provides sufficient space for the arrangement of the heat exchanger 160, the fan 170, and other components.
- the movable end 150-2 of the purification assembly 150 can be detachably coupled to the drive unit 140 to facilitate cleaning and replacement of the purification assembly 150.
- the purification assembly 150 can include a cradle and a purification module 151 disposed on the cradle.
- the shape and the size of the purification module 151 can be determined according to the internal space of the indoor unit 100 and the size of the air inlet 121.
- the purification module 151 can be formed by stacking a plurality of flexible filters, for example, the particulate matter in the air can be efficiently filtered.
- the bracket may include two oppositely disposed connecting portions 152.
- a cross bar 153 may be disposed between the connecting portions 152. The two ends of the cross bar 153 are respectively connected to the two connecting portions 152, and the front end of the cleaning module 151 abuts the cross bar. 153.
- the curved rack 143 directly drives the purifying assembly 150 to slide along the curved rail
- the two connecting portions 152 are directly connected to the corresponding curved rack 143; the curved rack 143 drives the purifying assembly through the connecting rod 146.
- the two connecting portions 152 are rotatably coupled to the corresponding link 146.
- the front end of the purification module 151 is disposed on the connection portion 152 and located between the two connection portions 152.
- the rear end of the purification module 151 can be directly fixed inside the front panel to constitute the fixed end 150-1 of the purification assembly 150.
- the front end of the purification module 151 and the bracket together form the movable end 150-2 of the purification assembly 150.
- a plurality of purifying levels are set by optimizing the control mode of the driving device 140 to adapt to different working environments.
- 9 is a functional block diagram of an air conditioner indoor unit 100 having an air purifying function according to an embodiment of the present invention.
- the purifying assembly 140 covers the area of the indoor unit air inlet 121 by the expansion and contraction of the movable end 150-2, and the operation of the driving device 140 is performed.
- the process includes: after obtaining the trigger signal of the air conditioner entering the purification mode, determining a corresponding purification level according to the air pollution parameter of the working environment of the indoor unit 100 of the air conditioner, and driving the movable end 150-2 to a predetermined position of the corresponding purification level,
- the airflow entering the indoor unit 100 is purified, wherein each purification level is predetermined to cover the area of the air inlet 121 to be cleaned.
- the above purification level may be set to three or more. For example, when purification is not required, the purification assembly 140 may completely expose the air inlet 121 so that all air is not purified; the purification assembly 140 may completely shield the air inlet 121 when full purification is required. , so that all the air is purified.
- a plurality of intermediate positions may be provided, for example, the cleaning position of the movable end is set at a position of one-third or two-thirds of the area of the shielding air inlet 121, respectively.
- an air quality detecting device 180 is provided.
- the air quality detecting device 180 is configured to detect an air pollution parameter of an operating environment of the air conditioner indoor unit 100.
- the trigger signal entering the purification mode may include an air pollution overrun signal reported by the air quality detecting device 180, a start operation signal from the user, and a timing start signal.
- the air quality detecting device 180 may automatically output a trigger signal to initiate the purging when the air pollution parameter exceeds the preset purging activation threshold.
- the purge start threshold can be configured based on air quality.
- the driving device 140 can also adjust the purification level according to the change of the air pollution parameter until the trigger condition for exiting the purification is satisfied.
- the triggering conditions for exiting the purification include any one or more of the following: a signal that reduces the air pollution parameter to a preset purge closing threshold; a signal that the cleaning time expires; and a signal that the air pollution parameter continues to improve. For example, after purification, the working environment of the air conditioner indoor unit 100 has been improved, and then the purification can be exited. In addition, if the continuous purification time exceeds a certain period of time, you can also exit the purification. In the purification process, if the air pollution parameter continues to be no improvement or deteriorates, it indicates that the purification component 150 does not function, and the purification can also be withdrawn at this time.
- the indoor unit fan 170 can determine a corresponding speed adjustment scheme according to the purification level; and adjust the rotation speed according to the indoor unit fan 170 speed adjustment scheme.
- a specific speed adjustment scheme is:
- the speed of the fan 170 of the indoor unit is maintained, and the threshold of the first shielding area may be set small, for example, the area covered does not exceed the air inlet. In the case of one-third of 121, it is considered that the wind resistance caused by the purification unit 150 is small, and the rotation speed of the indoor unit fan 170 can be maintained.
- the cleaning component needs to cover the area of the air inlet to be larger than the first shielding area threshold and less than the set second shielding area threshold (for example, the covered area is larger than one third of the air inlet 121 but smaller than two thirds of the air inlet)
- the speed of the fan 170 of the indoor unit is increased by one wind speed level, for example, the fan 170 of the indoor unit with low air operation is adjusted to a stroke operation, and the indoor unit fan 170 of the stroke operation is adjusted to a high wind operation, and the high air operation is performed.
- the indoor unit fan 170 is adjusted to operate intensively.
- the fan of the indoor unit is used according to the tube temperature of the heat exchanger 160 of the indoor unit. 170 speed for feedback control.
- the machine 100 can set the target tube temperature of the heat exchanger 160 of the indoor unit 100, and detect the heat exchanger tube of the indoor unit 100 in real time.
- the indoor unit fan 170 is feedback-controlled, thereby stabilizing the tube temperature of the heat exchanger 160, preventing the heat exchanger 160 from being overheated or undercooled, and causing a high load problem.
- the compression refrigeration cycle utilizes a refrigerant in a compression phase change cycle of a compressor, a condenser, an evaporator, and a throttling device to achieve heat transfer.
- the refrigeration system may also be provided with a reversing valve to change the flow direction of the refrigerant, so that the indoor unit heat exchanger 160 alternately functions as an evaporator or a condenser to realize a cooling or heating function. Since the compression refrigeration cycle in the air conditioner is well known to those skilled in the art, its working principle and configuration will not be described again.
- the compressor uses an inverter compressor
- the throttle device uses an electronic expansion valve whose opening degree is adjustable.
- the specific control scheme can be:
- the fan 170 of the indoor unit 100 may be feedback-controlled according to the difference.
- the first temperature difference threshold for example, 3 degrees
- the opening of the throttling device of the compression refrigeration cycle is increased, and if the temperature is still not guaranteed
- the compressor is down-converted to prevent the indoor unit heat exchanger 160 from being too low in temperature to cause a high load.
- the fan of the indoor unit 100 may be feedback controlled according to the difference.
- the higher the temperature of the tube of the heat exchanger 160 the faster the fan speed of the indoor unit 100. If the increase of the fan speed of the indoor unit 100 does not ensure that the tube temperature of the heat exchanger 160 is maintained within the first temperature difference threshold within the first temperature difference threshold, the opening of the throttling device of the compression refrigeration cycle is increased, if the heat exchange is still not guaranteed.
- the compressor is down-converted, thereby preventing the heat exchanger of the indoor unit 100 from being overheated and causing a high load.
- the first temperature difference threshold and the second temperature difference threshold may be configured according to the specifications and usage requirements of the indoor unit heat exchanger 160, for example, setting the first temperature difference threshold to plus or minus 3 degrees Celsius and setting the second temperature difference threshold to plus or minus 5 degrees Celsius.
- FIG. 10 is a schematic diagram of a control method of an air conditioner indoor unit 100 having an air purifying function according to an embodiment of the present invention.
- the control method can generally include:
- Step S1002 Acquire a trigger signal for the air conditioner to enter the purification mode; the trigger signals may include, but are not limited to, an air pollution overrun signal reported by the air quality detecting device 180, a start operation signal from the user, and a timing start signal.
- the air conditioner may be triggered to enter the purification. mode.
- the user can manually trigger the air conditioner to enter the purification mode through the remote controller or other air conditioner human-computer interaction interface.
- the air conditioner can be cleaned regularly according to the running time, for example, the accumulated work for 8 hours, and the purification is started for 1 hour.
- the trigger signal for the air conditioner to enter the purification mode can be set according to the user's requirements for air purification.
- the air quality detecting device 180 may automatically output a trigger signal to initiate the purging when the air pollution parameter exceeds the preset purging activation threshold.
- Step S1004 detecting air pollution parameters of the working environment of the air conditioner indoor unit 100, and determining a purification level corresponding to the air pollution parameter; the air quality detecting device 180 can detect parameters such as a microparticle index in the working environment, thereby correspondingly determining corresponding air pollution parameters.
- Purification level Each purification level defines an area in which the purification assembly needs to cover the air inlet 121.
- step S1006 the control driving device 140 drives the movable end 150-2 to a predetermined position of the determined purification level to purify the airflow entering the indoor unit 100.
- the air pollution parameter can be continuously detected after the active end is driven to the specified position of the purification level, and the purification level is adjusted according to the change of the air pollution parameter until the trigger condition for exiting the purification is satisfied.
- the trigger conditions for exiting the purification include any one or more of the following: a signal that reduces the air pollution parameter to a preset purge shutdown threshold; a signal that the purge time expires; and a signal that the air pollution parameter continues to improve. For example, after purification, the working environment of the air conditioner indoor unit 100 has been improved, and then the purification can be exited. In addition, if the continuous purification time exceeds a certain period of time, you can also exit the purification. In the purification process, if the air pollution parameter continues to be no improvement or deteriorates, it indicates that the purification component 150 does not function, and the purification can also be withdrawn at this time.
- the corresponding indoor unit fan 170 speed adjustment scheme may be determined according to the purification level after the step S1006; and the indoor unit's fan 170 speed is adjusted according to the indoor unit fan speed adjustment scheme.
- the area covered does not exceed one third of the air inlet 121, it is considered that the wind resistance caused by the purification unit 150 is small, and the rotation speed of the indoor unit fan 170 can be maintained.
- the cleaning component needs to cover the area of the air inlet to be larger than the first shielding area threshold and less than the set second shielding area threshold (for example, the covered area is larger than one third of the air inlet 121 but smaller than two thirds of the air inlet)
- the speed of the fan 170 of the indoor unit is increased by one wind speed level, for example, the fan 170 of the indoor unit with low air operation is adjusted to a stroke operation, and the indoor unit fan 170 of the stroke operation is adjusted to a high wind operation, and the high air operation is performed.
- the indoor unit fan 170 is adjusted to operate intensively.
- the fan of the indoor unit is used according to the tube temperature of the heat exchanger 160 of the indoor unit. 170 speed for feedback control.
- the indoor of this embodiment When the area of the purifying unit 150 covering the air inlet 121 is greater than the second shielding area threshold, the target tube temperature of the heat exchanger 160 of the indoor unit 100 can be set, and the heat exchanger tube of the indoor unit 100 can be detected in real time.
- the indoor unit fan 170 is feedback-controlled, thereby stabilizing the tube temperature of the heat exchanger 160, preventing the heat exchanger 160 from being overheated or undercooled, and causing a high load problem.
- the specific control scheme can be:
- the fan 170 of the indoor unit 100 may be feedback-controlled according to the difference.
- the first temperature difference threshold for example, 3 degrees
- the opening of the throttling device of the compression refrigeration cycle is increased, and if the temperature is still not guaranteed
- the compressor is down-converted to prevent the indoor unit heat exchanger 160 from being too low in temperature to cause a high load.
- the fan of the indoor unit 100 may be feedback controlled according to the difference.
- the compressor is down-converted, thereby preventing the heat exchanger of the indoor unit 100 from being overheated and causing a high load.
- the first temperature difference threshold and the second temperature difference threshold may be configured according to the specifications and usage requirements of the indoor unit heat exchanger 160. For example, the first temperature difference threshold is set to plus or minus 3 degrees Celsius, and the second temperature difference threshold is set to plus or minus 5 degrees Celsius.
- the above control method is used to set a plurality of purification levels, and the filter area is adjusted accordingly to meet the purification requirements and improve the user experience.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
Abstract
一种具有空气净化功能的空调器室内机(100)的控制方法,其中空调器室内机(100)包括驱动装置(140)以及净化组件(150),净化组件(150)为柔性材料制成,其具有固定设置于室内机进风口(121)的一侧的固定端(150-1)和在驱动装置(140)的带动下伸缩的活动端(150-2),净化组件(150)通过活动端(150-2)的伸缩改变覆盖室内机进风口(121)的面积,并且控制方法包括:获取空调器进入净化模式的触发信号(S1002);检测空调器室内机(100)工作环境的空气污染参数,确定空气污染参数对应的净化等级(S1003);控制驱动装置(140)将活动端(150-2)带动至净化等级的规定的位置,以对进入室内机(100)的气流进行净化(S1006)。另外还公开了一种具有空气净化功能的空调器室内机(100)。
Description
本发明涉及家用空调器技术,特别是涉及一种具有空气净化功能的空调器室内机及其控制方法。
空气调节器(Air Conditioner,简称空调器)是用于向封闭的空间或区域直接提供经过处理的空气的电器,在现有技术中,空调器一般用于对工作环境的温度进行调节。随着人们对环境舒适度的要求越来越高,空调器的功能也越来越丰富。
由于人们对空气洁净程度的要求越来越高,目前出现了一些在空调器内设置净化装置的方案,其对进入空调器的部分空气进行净化,然而这些带有净化功能的空调器存在以下问题:由于仅能对部分空气进行净化,净化效果较差;另外,由于净化装置长时间工作,即使空气处于非常清洁的情况下,仍然保持工作,使得净化装置使用寿命降低,并且还容易带来二次污染。
发明内容
鉴于上述问题,本发明的一个目的是要提供一种克服上述问题或者至少部分地解决上述问题的具有空气净化功能的空调器室内机及其控制方法。
本发明一个进一步的目的是根据空气污染参数提供相应的净化等级,以适应空气净化的需要。
本发明另一个进一步的目的是要减小净化组件产生的风阻的影响。
特别地,本发明提供了一种具有空气净化功能的空调器室内机的控制方法,该空调器室内机包括驱动装置以及净化组件,净化组件为柔性材料制成,其具有固定设置于室内机进风口的一侧的固定端和在驱动装置的带动下伸缩的活动端,净化组件通过活动端的伸缩改变覆盖室内机进风口的面积,并且控制方法包括:获取空调器进入净化模式的触发信号;检测空调器室内机工作环境的空气污染参数;确定空气污染参数对应的净化等级,每个净化等级规定有净化组件需覆盖进风口的面积;控制驱动装置将活动端带动至净化等级的规定的位置,以对进入室内机的气流进行净化。
可选地,触发信号包括:空气污染参数超过预设净化启动阈值的信号。
可选地,在将活动端带动至净化等级的规定的位置之后还包括:持续检测空气污染参数,根据空气污染参数的变化并相应调整净化等级,直至满足退出净化的触发条件。
可选地,退出净化的触发条件包括以下任意一项或多项:空气污染参数降低至预设的净化关闭阈值的信号;净化时间超时的信号;空气污染参数持续无改善的信号。
可选地,控制驱动装置将活动端带动至净化等级的规定的位置之后还包括:根据净化等级确定对应的室内机风机转速调整方案;按照室内机风机转速调整方案对室内机的风机转速进行调整。
可选地,室内机风机转速调整方案包括:在净化组件需覆盖进风口的面积小于设定 的第一遮蔽面积阈值时,维持室内机的风机转速不变;在净化组件需覆盖进风口的面积大于第一遮蔽面积阈值并且小于设定的第二遮蔽面积阈值时,将室内机的风机转速提高一个风速等级;在净化组件需覆盖进风口的面积大于第二遮蔽面积阈值时,按照室内机的换热器的管温对室内机的风机转速进行反馈控制。
根据本发明的另一个方面,还提供了一种具有空气净化功能的空调器室内机,其包括:罩壳,其顶部形成有进风口以允许环境空气进入空调器室内机;驱动装置;净化组件,为柔性材料制成,其具有固定设置于室内机进风口的一侧的固定端和在驱动装置的带动下伸缩的活动端,净化组件通过活动端的伸缩改变覆盖室内机进风口的面积,并且驱动装置还配置成:在获取空调器进入净化模式的触发信号后,根据空调器室内机工作环境的空气污染参数确定对应的净化等级,将活动端带动至净化等级的规定的位置,以对进入室内机的气流进行净化,其中每个净化等级预先规定有净化组件需覆盖进风口的面积。
可选地,上述空调器室内机还包括:空气质量检测装置,配置成检测空调器室内机工作环境的空气污染参数,并在空气污染参数超过预设净化启动阈值时,输出触发信号。
可选地,驱动装置还配置成:根据空气污染参数的变化并相应调整净化等级,直至满足退出净化的触发条件,退出净化的触发条件包括以下任意一项或多项:空气污染参数降低至预设的净化关闭阈值的信号;净化时间超时的信号;空气污染参数持续无改善的信号。
可选地,上述空调器室内机还包括:室内机风机,配置成根据净化等级确定对应的转速调整方案;并按照室内机风机转速调整方案对转速进行调整。
本发明的具有空气净化功能的空调器室内机,在室内机内部设置与驱动装置连接的净化组件,净化组件的活动段由驱动装置驱动在室内机内部移动,从而通过活动端的伸缩可以改变覆盖室内机进风口的面积,相应改变空气经过过滤的程度,一方面满足了空气净化的要求,另一方面也尽量减少净化组件产生的风阻,避免对空调正常调温功能产生影响。
进一步地,本发明的具有空气净化功能的空调器室内机,可以在空气污染参数超过启动阈值后自动开启净化,并在净化过程中,实时调节净化等级,提高了用户的使用体验。
更进一步地,本发明的具有空气净化功能的空调器室内机,还可以根据净化等级制定对应的室内机风机转速调整方案,进一步减小净化组件风阻的影响。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的具有空气净化功能的空调器室内机的示意性结构图;
图2是图1所示的空调器室内机中净化组件在部分拉伸状态下的示意性结构图;
图3是1所示的空调器室内机中净化组件在部分收缩状态下的示意性结构图;
图4是图1所示的空调器室内机中净化组件在完全拉伸状态下的示意性剖视图;
图5是图1所示的空调器室内机中净化组件在完全收缩状态下的示意性剖视图;
图6是根据本发明一个实施例的具有空气净化功能的空调器室内机中驱动装置和净化组件的示意性分解图;
图7是图6所示的具有空气净化功能的空调器室内机中驱动装置的示意性分解图;
图8是根据本发明一个实施例的具有空气净化功能的空调器室内机中净化组件活动端的移动轨迹示意图;
图9是根据本发明一个实施例的具有空气净化功能的空调器室内机的功能框图;以及
图10是根据本发明一个实施例的具有空气净化功能的空调器室内机的控制方法的示意图。
本实施例首先提供了一种具有空气净化功能的空调器室内机,该空调器的净化功能可以根据需要进行开启和关闭。空调器的室内机内设置有驱动装置以及净化组件,其中净化组件为柔性材料制成,其具有固定设置于室内机进风口的一侧的固定端和在驱动装置的带动下伸缩的活动端,净化组件通过活动端的伸缩改变覆盖室内机进风口的面积,从而可以改变进入室内机的空气被过滤的程度。在空气质量较差的情况下,使得净化组件尽量完全覆盖进风口,从而使得空气进行全面过滤;在空气污染程度一般的情况下,可以使净化组件覆盖进风口的一部分,使得部分空气经过过滤。本实施例的具有空气净化功能的空调器室内机一方面满足了空气净化的要求,另一方面也尽量减少净化组件产生的风阻,减小了对空调正常调温功能产生影响。
该具有空气净化功能的空调器室内机可以优选为壁挂式室内机,由于壁挂式室内机结构更加紧凑,因此布置净化组件的空间更加狭小,本实施例通过优化壁挂式室内机的结构,利用更加紧凑的结构实现了在实现上述净化功能。图1是根据本发明一个实施例的具有空气净化功能的空调器室内机100的示意性结构图。图2是图1所示的空调器室内机100中净化组件150在部分拉伸状态下的示意性结构图。图3是1所示的空调器室内机100中净化组件150在部分收缩状态下的示意性结构图。图4是图1所示的空调器室内机100中净化组件150在完全拉伸状态下的示意性剖视图;图5是图1所示的空调器室内机100中净化组件150在完全收缩状态下的示意性剖视图。
该壁挂式空调室内机100一般性地可以包括机体骨架110、罩壳120、前面板130、驱动装置140和净化组件150等。机体骨架110构成换热器160和风机170的容纳空间,罩壳120罩在机体骨架110的前部,以封闭换热器160和风机170,罩壳120的顶部形成有进风口121,罩壳120固定在机体骨架110上,罩壳120的前部设置有前面板130,前面板130可拆卸地安装在罩壳120上。
净化组件150具有相对设置的固定端150-1和活动端150-2。固定端150-1可直接连接或通过其他连接结构设置于罩壳120上,以和空调室内机100的机身固定。活动端150-2连接于驱动装置140,以使活动端150-2在驱动装置140的驱动下相对于固定端150-1移 动。固定端150-1可连接在罩壳120的内侧后部或内部上表面上。也即是,位于进风口121后侧或进风口121后侧的下方。活动端150-2及驱动装置140可移动地设置在罩壳120上,且活动端150-2及驱动装置140可在进风口121内侧前后移动。
驱动装置140设置在罩壳120上,净化组件150的活动端150-2与驱动装置140连接,净化组件150的活动端150-2由驱动装置140的驱动可以朝向或背离固定端150-1移动,以压缩或拉伸净化组件150,使净化组件150在净化模式与非净化模式之间转换。
净化组件150的活动端150-2在净化模式下可以由驱动装置140驱动背离固定端150-1移动,以使净化组件150拉伸,逐渐遮蔽进风口121,调整遮蔽进风口121的面积,从而可对进入室内机100的气流进行净化。净化组件150的活动端150-2在退出净化模式时可以由驱动装置140驱动朝向固定端150-1移动,以使净化组件150压缩,从而将进风口121显露,气流不经过净化组件150直接进入室内机100中。
本实施例的具有空气净化功能的空调器室内机100为不同的净化要求设置了不同的活动端位置,对应改变净化组件120覆盖进风口121的面积。例如当空气质量极差时,净化组件150的活动端150-2可以被驱动装置140带动至使净化组件150完全遮蔽进风口121的位置。在空气质量为一般污染时,可以使净化组件150遮蔽进风口121的一半面积。在空气质量较优时,可以使净化组件150完全显露出进风口121,使空气不经过净化直接进入室内机100内部。
上述驱动装置140可以通过齿轮齿条传动组件实现,例如驱动装置140可以包括导轨组件、电机、齿轮和弧形齿条。导轨组件可以设置在罩壳的横向侧端的边框处。电机可以设置在导轨组件上,齿轮与电机的输出轴连接,弧形齿条与齿轮啮合,净化组件150的活动端150-2直接或间接连接在弧形齿条上,电机141通过齿轮和弧形齿条驱动净化组件150的活动端150-2沿导轨组件滑动。
图6是根据本发明一个实施例的具有空气净化功能的空调器室内机100中驱动装置140和净化组件150的示意性分解图。图7是图6所示的具有空气净化功能的空调器室内机100中驱动装置140的示意性分解图,图8是根据本发明一个实施例的具有空气净化功能的空调器室内机100中净化组件150活动端的移动轨迹示意图。
驱动装置140可以包括导轨组件、电机141、齿轮142、弧形齿条143和连杆146。导轨组件可以设置在罩壳120的横向侧端的边框处。
净化组件150的活动端150-2通过连杆146与弧形齿条143连接。具体地,连杆146的第一端与弧形齿条143转动连接,电机141驱动齿轮142转动,齿轮142带动弧形齿条143滑动,弧形齿条143带动与其转动连接的连杆146转动并滑动。并且,连杆146的第二端与净化组件150的活动端150-2转动连接,净化组件150的活动端150-2由连杆146带动可转动且可滑动地与导轨组件配合。由此使得净化组件150的活动端150-2朝向或背离固定端150-1移动,以收缩或拉伸净化组件150。
导轨组件可以包括基座144和侧盖145,基座144设置在罩壳120的横向侧端的边框处,例如基座144可通过螺钉固定在罩壳120的横向侧端的边框处,侧盖145扣合在基座144远离横向侧端的一面,侧盖145与基座144构成容纳齿轮142和弧形齿条143的空间,电机141的输出轴穿过基座144与齿轮142连接,电机141通过齿轮142驱动弧形齿条143滑动。
连杆146布置在基座144和侧盖145构成的容纳空间中,连杆146的第一端与弧形齿条143转动连接,连杆146的第二端与净化组件的活动端150-2转动连接,连杆146带动净化组件150的活动端150-2可转动并可滑动地与导轨组件配合,由此使得净化组件150的活动端150-2朝向或背离固定端150-1移动,以收缩或拉伸净化组件150,使净化组件150在净化模式与非净化模式之间转换。
连杆146的第二端可设置有定位滑柱146-1,定位滑柱146-1穿过侧盖145与净化组件150的活动端150-2转动连接,第二导轨145-7在其延伸方向上形成有镂空区,定位滑柱146-1穿过镂空区与净化组件150的活动端150-2转动连接,连杆146随弧形齿条143运动的过程中,定位滑柱146-1在镂空区中滑动,同时带动净化组件150的活动端150-2沿第二导轨145-7运动。
净化组件150的活动端150-2由连杆146的驱动由前面板内侧的位置运动至进风口121后侧的位置,以收缩净化组件150,并显露出进风口121,使得气流不经过净化组件150的净化直接进入室内机100。
净化组件150的活动端150-2由连杆146的驱动由进风口121后侧的位置运动至前面板内侧的位置,以拉伸净化组件150,对气流进行过滤净化。
基座144朝向弧形齿条143的一侧还可以形成有弧形槽144-4,弧形齿条143靠近基座144的一侧设置有至少一个第二滚轮143-3,第二滚轮143-3可以容纳在弧形槽144-4中并与弧形槽144-4滑动相接。由此可以使得弧形齿条143沿弧形槽144-4稳定滑动,提高驱动装置140运行的稳定性。
侧盖145远离基座144的一侧可以形成有第二导轨145-7,净化组件150的活动端150-2由连杆146的带动可转动且可滑动地与第二导轨145-7配合,以朝向或背离固定端150-1移动,以收缩或拉伸净化组件150,使净化组件150在净化模式与非净化模式之间转换。
电机141通过齿轮142驱动弧形齿条143沿弧形槽144-4滑动,弧形齿条143在滑动过程中,连杆146随弧形齿条143滑动,并与弧形齿条143之间产生转动的相对运动,净化组件150的活动端150-2由连杆146带动并配合第二导轨145-7的路径沿第二导轨145-7运动,由此改变净化组件150覆盖进风口121的面积。
第二导轨145-7可以包括第一弧形段145-7-1和与第一弧形段145-7-1相接的第二弧形段145-7-2,第一弧形段145-7-1与第二弧形段145-7-2的弧度不同,也即是指第一弧形段145-7-1与第二弧形段145-7-2的弯曲程度不同,由此形成了与净化组件150的活动端150-2运动路径一致的不规则形状的第二导轨145-7,第一弧形段145-7-1可位于罩壳120横向侧端的边框与进风口121对应的位置,第二弧形段145-7-2向前下方延伸至前面板130的内侧。弧形槽144-4也可延伸至前面板130的内侧,第二弧形段145-7-2可位于弧形槽144-4的外侧,也即是说,与弧形槽144-4所在的位置相比,第二弧形段145-7-2更靠近前面板130。
电机141驱动齿轮142转动,齿轮142驱动弧形齿条143在弧形槽144-4中滑动,弧形齿条143在滑动过程中,连杆146随弧形齿条143滑动,并与弧形齿条143之间产生转动的相对运动,净化组件150的活动端150-2由连杆146带动沿不规则形状的第二导轨145-7可以在前面板130的内侧的位置与进风口121的内侧的位置之间运动,由此 压缩或拉伸净化组件150,实现净化组件150在净化模式与非净化模式之间的转换,并且净化组件150的活动端150-2的运动路径位于弧形槽144-4的外侧。
连杆146带动净化组件150的活动端150-2配合不规则形状的第二导轨145-7的运动所占的空间更小,可以节省空调器室内机100的内部空间。在图8中A为由第一弧形段145-7-1和与第一弧形段145-7-1弧度不同的第二弧形段145-7-2相接而成的不规则形状的第二导轨145-7的路径,B为呈弧形的第一导轨145-3的路径,不规则形状的第二导轨145-7位于呈弧形的第一导轨145-3的外侧。净化组件150的活动端150-2由连杆146带动沿不规则形状的第二导轨145-7的运动所需空间更小,可以让出室内机100的更多内部空间,无需增大室内机100的体积,在布置驱动装置140和净化组件150的同时,也可为换热器160、风机170及其他部件的布置提供足够的空间。
净化组件150的活动端150-2可以与驱动装置140可拆卸连接,方便净化组件150的清洗和更换。净化组件150可以包括托架和置于托架上的净化模块151。净化模块151的形状和大下可以根据室内机100的内部空间和进风口121的大小进行确定,净化模块151可以由多层柔性过滤网叠加形成,例如可以高效过滤空气中的微颗粒物。
托架可以包括两个相对设置的连接部152,连接部152之间可以设置一横杆153,横杆153的两端分别与两个连接部152连接,净化模块151的前端抵靠在横杆153上。在弧形齿条143直接带动净化组件150沿呈弧形导轨滑动的方案中,两个连接部152直接与对应的弧形齿条143连接;在弧形齿条143通过连杆146带动净化组件150的活动端150-2沿不规则形状的第二导轨145-7运动的方案中,两个连接部152与对应的连杆146转动连接。净化模块151的前端设置在连接部152上并位于两个连接部152之间。净化模块151的后端可直接固定在前面板内侧,以构成净化组件150的固定端150-1。净化模块151的前端和托架共同构成净化组件150的活动端150-2。
本实施例具有空气净化功能的空调器室内机100通过对驱动装置140控制方式的优化,设置多个净化等级,适应于不同的工作环境。图9是根据本发明一个实施例的具有空气净化功能的空调器室内机100的功能框图,净化组件140通过活动端150-2的伸缩改变覆盖室内机进风口121的面积,驱动装置140的工作过程包括:在获取空调器进入净化模式的触发信号后,根据空调器室内机100工作环境的空气污染参数确定对应的净化等级,将活动端150-2带动至对应的净化等级的规定的位置,以对进入室内机100的气流进行净化,其中每个净化等级预先规定有净化组件150需覆盖进风口121的面积。上述净化等级可以设置为三档或者更多,例如在无需净化时,净化组件140可以完全显露出进风口121,使全部空气不经过净化;在需要完全净化时净化组件140可以完全遮蔽进风口121,使全部空气经过净化。在完全显露出进风口121至完全遮蔽进风口121之间,可以为设置一个多个中间位置,例如分别在遮蔽进风口121的面积三分之一、三分之二的位置设置活动端的净化位置。
本实施例具有空气净化功能的空调器室内机100中设置有空气质量检测装置180。该空气质量检测装置180配置成检测空调器室内机100工作环境的空气污染参数。进入净化模式的触发信号可以包括:空气质量检测装置180上报的空气污染超限信号、来自于用户的启动操作信号、定时启动信号。在本实施例中,空气质量检测装置180可以在空气污染参数超过预设净化启动阈值时,自动输出触发信号,启动净化。净化启动阈值可 以根据空气质量进行配置。
在启动净化后,驱动装置140还可以根据空气污染参数的变化并相应调整净化等级,直至满足退出净化的触发条件。退出净化的触发条件包括以下任意一项或多项:空气污染参数降低至预设的净化关闭阈值的信号;净化时间超时的信号;空气污染参数持续无改善的信号。例如经过净化,空调器室内机100工作环境已经得到改善,那么可以退出净化。另外如果持续净化时间超过一定的时间,也可以退出净化。在净化过程中,如果空气污染参数持续无改善或者出现恶化的情况,说明净化组件150没有起到作用,此时也可以退出净化。
室内机风机170可以根据净化等级确定对应的转速调整方案;并按照室内机风机170转速调整方案对转速进行调整。一种具体的转速调整方案为:
在净化组件150需覆盖进风口的面积小于设定的第一遮蔽面积阈值时,维持室内机的风机170转速不变,该第一遮蔽面积阈值可以设置较小,例如覆盖的面积不超过进风口121的三分之一的情况下,认为净化组件150造成的风阻较小,可以维持室内机风机170转速不变。
在净化组件需覆盖述进风口的面积大于第一遮蔽面积阈值并且小于设定的第二遮蔽面积阈值时(例如覆盖的面积大于进风口121的三分之一但小于进风口的三分之二时),将室内机的风机170转速提高一个风速等级,例如将低风运行的室内机的风机170调整为中风运行,将中风运行的室内机风机170调整为高风运行,将高风运行的室内机风机170调整为强力运行。
在净化组件150需覆盖进风口121的面积大于第二遮蔽面积阈值(例如覆盖的面积大于进风口121的三分之二时),按照室内机的换热器160的管温对室内机的风机170转速进行反馈控制。
由于净化过程中,室内机风机170产生气流的风阻明显不同,在开启净化功能后,气流经过过滤,必然导致经过换热器160的换热效果衰减,容易出现高负荷问题,本实施例的室内机100在净化组件150需覆盖进风口121的面积大于第二遮蔽面积阈值时,可以设定室内机100的换热器160管温的目标管温,并实时检测室内机100的换热器管温,根据检测管温与目标管温的温差对室内机风机170进行反馈控制,从而稳定换热器160管温,防止换热器160过热或者过冷,出现高负荷问题。
如果通过调节室内机风机170不能保证换热器160温度稳定,还可以进一步调整压缩制冷循环的节流装置以及压缩机的工作状态。压缩制冷循环利用制冷剂在压缩机、冷凝器、蒸发器、节流装置的压缩相变循环实现热量的传递。在空调器中,制冷系统还可以设置换向阀,改变制冷剂的流向,使室内机换热器160交替作为蒸发器或冷凝器,实现制冷或者制热功能。由于空调器中压缩制冷循环是本领域技术人员所习知,其工作原理和构造再次不做赘述。在本实施例中,压缩机使用变频压缩机,节流装置使用开度可调的电子膨胀阀。具体的控制方案可以为:
在空调器制冷运行时,如果在净化后换热器160管温低于目标管温不超过第一温差阈值(例如3度)时,可以根据差值对室内机100的风机170进行反馈控制,换热器160管温温度越低,室内机100的风机170转速越快。如果室内机100风机170转速的提升不能保证换热器160管温维持在与目标管温温差在第一温差阈值以内时,则增加压缩制 冷循环的节流装置的开度,如果仍不能保证换热器160管温维持在与目标管温温差在第二温差阈值以内时,则对压缩机进行降频,从而防止室内机换热器160温度过低而出现高负荷。
在空调器进行制热运行时,如果在净化后换热器160管温高于目标管温不超过第一温差阈值(例如3度)时,可以根据差值对室内机100的风机进行反馈控制,换热器160管温温度越高,室内机100的风机转速越快。如果室内机100风机转速的提升不能保证换热器160管温维持在与目标管温温差在第一温差阈值以内时,则增加压缩制冷循环的节流装置的开度,如果仍不能保证换热器160管温维持在与目标管温温差在第二温差阈值以内时,则对压缩机进进行降频,从而防止室内机100换热器温度过高而出现高负荷。
上述第一温差阈值和第二温差阈值可以根据室内机换热器160的规格和使用要求进行配置,例如将第一温差阈值设置正负3摄氏度,将第二温差阈值设置为正负5摄氏度。
以下结合本实施例的具有空气净化功能的空调器室内机100的控制方法,对上述实施例的空调器室内机100的控制过程进行进一步说明,本实施例的带有具有空气净化功能的空调器室内机100的控制方法可以由上述介绍的具有空气净化功能的空调器室内机100执行,通过对驱动装置140、室内机风机170、空气质量检测装置180的控制,满足净化要求。图10是根据本发明一个实施例的具有空气净化功能的空调器室内机100的控制方法的示意图。该控制方法一般性地可以包括:
步骤S1002,获取空调器进入净化模式的触发信号;这些触发信号可以包括但不限于:空气质量检测装置180上报的空气污染超限信号、来自于用户的启动操作信号、定时启动信号。
对于空气污染超限信号,空气质量检测装置180检测到空调器的工作环境的空气污染到达设定超限阈值(例如各项参数超限或者污染等级超限等)后,可以触发空调器进入净化模式。
对于启动操作信号,用户可以通过遥控器或者其他空调器人机交互接口,手动触发空调器进入净化模式。
对于定时启动信号,空调器可以根据运行时间,定期进行净化,例如累计工作8小时,开始净化1小时。
空调器进入净化模式的触发信号可以根据用户对空气净化的要求进行设置。在本实施例中,空气质量检测装置180可以在空气污染参数超过预设净化启动阈值时,自动输出触发信号,启动净化。
步骤S1004,检测空调器室内机100工作环境的空气污染参数,并确定空气污染参数对应的净化等级;空气质量检测装置180可以检测工作环境中微颗粒物指数等参数,从而相应确定空气污染参数对应的净化等级。每个净化等级规定有净化组件需覆盖进风口121的面积。
步骤S1006,控制驱动装置140将活动端150-2带动至确定出的净化等级的规定的位置,以对进入室内机100的气流进行净化。
在启动净化后,也即将活动端带动至净化等级的规定的位置之后还可以持续检测空气污染参数,根据空气污染参数的变化并相应调整净化等级,直至满足退出净化的触发条件。退出净化的触发条件包括以下任意一项或多项:空气污染参数降低至预设的净化 关闭阈值的信号;净化时间超时的信号;空气污染参数持续无改善的信号。例如经过净化,空调器室内机100工作环境已经得到改善,那么可以退出净化。另外如果持续净化时间超过一定的时间,也可以退出净化。在净化过程中,如果空气污染参数持续无改善或者出现恶化的情况,说明净化组件150没有起到作用,此时也可以退出净化。
为了减小净化组件150造成的风阻增大,在步骤S1006之后还可以根据净化等级确定对应的室内机风机170转速调整方案;按照室内机风机转速调整方案对室内机的风机170转速进行调整。
例如覆盖的面积不超过进风口121的三分之一的情况下,认为净化组件150造成的风阻较小,可以维持室内机风机170转速不变。
在净化组件需覆盖述进风口的面积大于第一遮蔽面积阈值并且小于设定的第二遮蔽面积阈值时(例如覆盖的面积大于进风口121的三分之一但小于进风口的三分之二时),将室内机的风机170转速提高一个风速等级,例如将低风运行的室内机的风机170调整为中风运行,将中风运行的室内机风机170调整为高风运行,将高风运行的室内机风机170调整为强力运行。
在净化组件150需覆盖进风口121的面积大于第二遮蔽面积阈值(例如覆盖的面积大于进风口121的三分之二时),按照室内机的换热器160的管温对室内机的风机170转速进行反馈控制。
由于净化过程中,室内机风机170产生气流的风阻明显不同,在开启净化功能后,气流经过过滤,必然导致经过换热器160的换热效果衰减,容易出现高负荷问题,本实施例的室内机在在净化组件150需覆盖进风口121的面积大于第二遮蔽面积阈值时,可以设定室内机100的换热器160管温的目标管温,并实时检测室内机100的换热器管温,根据检测管温与目标管温的温差对室内机风机170进行反馈控制,从而稳定换热器160管温,防止换热器160过热或者过冷,出现高负荷问题。
如果通过调节室内机风机170不能保证换热器160温度稳定,还可以进一步调整压缩制冷循环的节流装置以及压缩机的工作状态。具体的控制方案可以为:
在空调器制冷运行时,如果在净化后换热器160管温低于目标管温不超过第一温差阈值(例如3度)时,可以根据差值对室内机100的风机170进行反馈控制,换热器160管温温度越低,室内机100的风机170转速越快。如果室内机100风机170转速的提升不能保证换热器160管温维持在与目标管温温差在第一温差阈值以内时,则增加压缩制冷循环的节流装置的开度,如果仍不能保证换热器160管温维持在与目标管温温差在第二温差阈值以内时,则对压缩机进行降频,从而防止室内机换热器160温度过低而出现高负荷。
在空调器进行制热运行时,如果在净化后换热器160管温高于目标管温不超过第一温差阈值(例如3度)时,可以根据差值对室内机100的风机进行反馈控制,换热器管温温度越高,室内机100的风机转速越快。如果室内机100风机转速的提升不能保证换热器160管温维持在与目标管温温差在第一温差阈值以内时,则增加压缩制冷循环的节流装置的开度,如果仍不能保证换热器管温维持在与目标管温温差在第二温差阈值以内时,则对压缩机进进行降频,从而防止室内机100换热器温度过高而出现高负荷。
上述第一温差阈值和第二温差阈值可以根据室内机换热器160的规格和使用要求进 行配置,例如将第一温差阈值设置正负3摄氏度,将第二温差阈值设置为正负5摄氏度。
利用上述控制方法设置多个净化等级,相应调整过滤面积,满足了净化要求,提高了用户的使用体验。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。
Claims (10)
- 一种具有空气净化功能的空调器室内机的控制方法,所述空调器室内机包括驱动装置以及净化组件,所述净化组件为柔性材料制成,其具有固定设置于室内机进风口的一侧的固定端和在所述驱动装置的带动下伸缩的活动端,所述净化组件通过所述活动端的伸缩改变覆盖所述室内机进风口的面积,并且所述控制方法包括:获取所述空调器进入净化模式的触发信号;检测所述空调器室内机工作环境的空气污染参数;确定所述空气污染参数对应的净化等级,每个所述净化等级规定有所述净化组件需覆盖所述进风口的面积;控制所述驱动装置将所述活动端带动至所述净化等级的规定的位置,以对进入所述室内机的气流进行净化。
- 根据权利要求1所述的控制方法,其中,所述触发信号包括:所述空气污染参数超过预设净化启动阈值的信号。
- 根据权利要求1所述的控制方法,其中,在将所述活动端带动至所述净化等级的规定的位置之后还包括:持续检测所述空气污染参数,根据所述空气污染参数的变化并相应调整所述净化等级,直至满足退出净化的触发条件。
- 根据权利要求3所述的控制方法,其中,所述退出净化的触发条件包括以下任意一项或多项:所述空气污染参数降低至预设的净化关闭阈值的信号;净化时间超时的信号;所述空气污染参数持续无改善的信号。
- 根据权利要求1所述的控制方法,其中,控制所述驱动装置将所述活动端带动至所述净化等级的规定的位置之后还包括:根据所述净化等级确定对应的室内机风机转速调整方案;按照所述室内机风机转速调整方案对所述室内机的风机转速进行调整。
- 根据权利要求5所述的控制方法,其中,所述室内机风机转速调整方案包括:在所述净化组件需覆盖所述进风口的面积小于设定的第一遮蔽面积阈值时,维持所述室内机的风机转速不变;在所述净化组件需覆盖所述进风口的面积大于所述第一遮蔽面积阈值并且小于设定的第二遮蔽面积阈值时,将所述室内机的风机转速提高一个风速等级;在所述净化组件需覆盖所述进风口的面积大于所述第二遮蔽面积阈值时,按照所述室内机的换热器的管温对所述室内机的风机转速进行反馈控制。
- 一种具有空气净化功能的空调器室内机,包括:罩壳,其顶部形成有进风口以允许环境空气进入所述空调器室内机;驱动装置;净化组件,为柔性材料制成,其具有固定设置于室内机进风口的一侧的固定端和在所述驱动装置的带动下伸缩的活动端,所述净化组件通过所述活动端的伸缩改变覆盖所 述室内机进风口的面积,并且所述驱动装置还配置成:在获取所述空调器进入净化模式的触发信号后,根据所述空调器室内机工作环境的空气污染参数确定对应的净化等级,将所述活动端带动至所述净化等级的规定的位置,以对进入所述室内机的气流进行净化,其中每个所述净化等级预先规定有所述净化组件需覆盖所述进风口的面积。
- 根据权利要求7所述的空调器室内机,还包括:空气质量检测装置,配置成检测所述空调器室内机工作环境的空气污染参数,并在所述空气污染参数超过预设净化启动阈值时,输出所述触发信号。
- 根据权利要求8所述的空调器室内机,其中所述驱动装置还配置成:根据所述空气污染参数的变化并相应调整所述净化等级,直至满足退出净化的触发条件,所述退出净化的触发条件包括以下任意一项或多项:所述空气污染参数降低至预设的净化关闭阈值的信号;净化时间超时的信号;所述空气污染参数持续无改善的信号。
- 根据权利要求8所述的空调器室内机,还包括:室内机风机,配置成根据净化等级确定对应的转速调整方案;并按照所述室内机风机转速调整方案对转速进行调整。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710488097.9A CN107339743B (zh) | 2017-06-23 | 2017-06-23 | 具有空气净化功能的空调器室内机及其控制方法 |
CN201710488097.9 | 2017-06-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018233444A1 true WO2018233444A1 (zh) | 2018-12-27 |
Family
ID=60220074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/088220 WO2018233444A1 (zh) | 2017-06-23 | 2018-05-24 | 具有空气净化功能的空调器室内机及其控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107339743B (zh) |
WO (1) | WO2018233444A1 (zh) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107339743B (zh) * | 2017-06-23 | 2019-11-05 | 青岛海尔空调器有限总公司 | 具有空气净化功能的空调器室内机及其控制方法 |
CN108679791B (zh) * | 2018-04-16 | 2020-07-28 | 北京晶海科技有限公司 | 空调和净化联合运行控制方法及控制系统 |
CN111512968B (zh) * | 2019-02-01 | 2022-12-13 | 宁波火山电气有限公司 | 自动通风系统及其自动调速和分区方法 |
CN109974099B (zh) * | 2019-04-03 | 2024-09-27 | 广东美的制冷设备有限公司 | 空气处理设备及空气净化控制方法 |
CN112747424A (zh) * | 2019-10-31 | 2021-05-04 | 广东美的制冷设备有限公司 | 空调器的控制方法、空调器及存储介质 |
CN110749066A (zh) * | 2019-10-31 | 2020-02-04 | 广东美的制冷设备有限公司 | 空调器的控制方法、空调器及存储介质 |
CN110631135A (zh) * | 2019-10-31 | 2019-12-31 | 广东美的制冷设备有限公司 | 空气处理设备及空气处理设备的控制方法 |
CN112747425A (zh) * | 2019-10-31 | 2021-05-04 | 广东美的制冷设备有限公司 | 空调器的控制方法、空调器及存储介质 |
CN112178866A (zh) * | 2020-08-20 | 2021-01-05 | 珠海格力电器股份有限公司 | 空气净化方法、空气净化装置、空调器及其控制方法 |
CN114001434B (zh) * | 2021-11-29 | 2023-03-24 | 宁波奥克斯电气股份有限公司 | 空调器的控制方法、空调器及可读存储介质 |
CN115875896B (zh) * | 2022-10-25 | 2024-09-27 | 珠海格力电器股份有限公司 | 一种冰箱及冰箱的除菌控制方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006170613A (ja) * | 2006-03-17 | 2006-06-29 | Fujitsu General Ltd | 空気調和機 |
KR100686768B1 (ko) * | 2005-11-11 | 2007-02-26 | 엘지전자 주식회사 | 공기조화기 및 그 제어 방법 |
CN105972806A (zh) * | 2016-07-01 | 2016-09-28 | 仝达机电工业(惠州)有限公司 | 一种空调滤网循环清洁装置 |
CN106051917A (zh) * | 2016-07-01 | 2016-10-26 | 海信(山东)空调有限公司 | 空调室内机 |
CN106492547A (zh) * | 2016-10-11 | 2017-03-15 | 苏州艾尔新净化科技有限公司 | 智能空气净化器 |
CN206073296U (zh) * | 2016-09-22 | 2017-04-05 | 江苏新科电器有限公司 | 一种带空气净化功能的柜机 |
CN106705245A (zh) * | 2017-01-26 | 2017-05-24 | 珠海格力电器股份有限公司 | 具有净化功能的空调器 |
CN107339743A (zh) * | 2017-06-23 | 2017-11-10 | 青岛海尔空调器有限总公司 | 具有空气净化功能的空调器室内机及其控制方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001116345A (ja) * | 1999-10-20 | 2001-04-27 | Fujitsu General Ltd | 空気調和機 |
JP4788217B2 (ja) * | 2005-07-26 | 2011-10-05 | パナソニック株式会社 | 空気調和機 |
CN102022813A (zh) * | 2010-12-08 | 2011-04-20 | 苏州三星电子有限公司 | 一体式拆卸入风口过滤系统及含有该系统的空调室内机 |
CN203404845U (zh) * | 2013-07-12 | 2014-01-22 | 广东美的暖通设备有限公司 | 空调室内机 |
CN203928153U (zh) * | 2014-06-16 | 2014-11-05 | 美的集团股份有限公司 | 空调器室内机和空调器 |
CN205783682U (zh) * | 2016-05-31 | 2016-12-07 | 广东松下环境系统有限公司 | 空气净化器 |
CN106152420B (zh) * | 2016-08-19 | 2019-04-23 | 青岛海尔空调器有限总公司 | 一种空调智能高效改善室内空气质量的控制方法 |
-
2017
- 2017-06-23 CN CN201710488097.9A patent/CN107339743B/zh active Active
-
2018
- 2018-05-24 WO PCT/CN2018/088220 patent/WO2018233444A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100686768B1 (ko) * | 2005-11-11 | 2007-02-26 | 엘지전자 주식회사 | 공기조화기 및 그 제어 방법 |
JP2006170613A (ja) * | 2006-03-17 | 2006-06-29 | Fujitsu General Ltd | 空気調和機 |
CN105972806A (zh) * | 2016-07-01 | 2016-09-28 | 仝达机电工业(惠州)有限公司 | 一种空调滤网循环清洁装置 |
CN106051917A (zh) * | 2016-07-01 | 2016-10-26 | 海信(山东)空调有限公司 | 空调室内机 |
CN206073296U (zh) * | 2016-09-22 | 2017-04-05 | 江苏新科电器有限公司 | 一种带空气净化功能的柜机 |
CN106492547A (zh) * | 2016-10-11 | 2017-03-15 | 苏州艾尔新净化科技有限公司 | 智能空气净化器 |
CN106705245A (zh) * | 2017-01-26 | 2017-05-24 | 珠海格力电器股份有限公司 | 具有净化功能的空调器 |
CN107339743A (zh) * | 2017-06-23 | 2017-11-10 | 青岛海尔空调器有限总公司 | 具有空气净化功能的空调器室内机及其控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107339743B (zh) | 2019-11-05 |
CN107339743A (zh) | 2017-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018233444A1 (zh) | 具有空气净化功能的空调器室内机及其控制方法 | |
CN107238132B (zh) | 带有净化功能的空调器及其控制方法 | |
CN107327912B (zh) | 具有空气净化功能的空调器室内机及其控制方法 | |
CN107270400B (zh) | 具有空气净化功能的空调器室内机及其控制方法 | |
WO2018219083A1 (zh) | 带有净化功能的空调器及其信息提示方法 | |
CN110873426B (zh) | 一种空调及其自清洁的控制方法 | |
CN109974085A (zh) | 空调室内机及其控制方法 | |
CN107120725B (zh) | 空调室内机、空调室内机的进风方法以及空调器 | |
WO2018228162A1 (zh) | 带有净化功能的空调器及其控制方法 | |
CN107388352B (zh) | 具有空气净化功能的空调器室内机及其控制方法 | |
WO2018219082A1 (zh) | 带有净化功能的空调器及其信息提示方法 | |
WO2018233442A1 (zh) | 带有净化功能的空调器室内机及其控制方法 | |
CN110873407B (zh) | 一种空调及其自清洁的控制方法 | |
CN212588661U (zh) | 一种自助清洁防尘装置 | |
CN107560103B (zh) | 带有净化功能的空调器及其控制方法 | |
JP4655858B2 (ja) | 空気調和機 | |
CN211625475U (zh) | 具有可伸缩过滤装置的空调 | |
CN107152763B (zh) | 带有净化功能的空调器及其控制方法 | |
CN111871077A (zh) | 一种自助清洁防尘装置 | |
JPH11276835A (ja) | 空気調和機の空気清浄機能付室内ユニット | |
WO2023029474A1 (zh) | 用于空调器的控制方法及空调器 | |
WO2018218983A1 (zh) | 壁挂式空调室内机 | |
CN107420983A (zh) | 带有净化功能的空调器室内机及其控制方法 | |
CN107166521B (zh) | 空调室内机 | |
CN213983800U (zh) | 窗式空调器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18819927 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18819927 Country of ref document: EP Kind code of ref document: A1 |