WO2018233349A1 - 偏航刹车片及其制备方法 - Google Patents

偏航刹车片及其制备方法 Download PDF

Info

Publication number
WO2018233349A1
WO2018233349A1 PCT/CN2018/082397 CN2018082397W WO2018233349A1 WO 2018233349 A1 WO2018233349 A1 WO 2018233349A1 CN 2018082397 W CN2018082397 W CN 2018082397W WO 2018233349 A1 WO2018233349 A1 WO 2018233349A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
yaw brake
brake pad
graphite
carbon
Prior art date
Application number
PCT/CN2018/082397
Other languages
English (en)
French (fr)
Inventor
张鹏飞
Original Assignee
方达能源集团有限公司
张鹏飞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 方达能源集团有限公司, 张鹏飞 filed Critical 方达能源集团有限公司
Priority to US16/623,710 priority Critical patent/US11592069B2/en
Priority to EP18745805.4A priority patent/EP3447089B1/en
Publication of WO2018233349A1 publication Critical patent/WO2018233349A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/025Compositions based on an organic binder
    • F16D69/026Compositions based on an organic binder containing fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/06Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/14Carbides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/023Composite materials containing carbon and carbon fibres or fibres made of carbonizable material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2071/00Use of polyethers, e.g. PEEK, i.e. polyether-etherketone or PEK, i.e. polyetherketone or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2507/00Use of elements other than metals as filler
    • B29K2507/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • B29K2509/02Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/16Frictional elements, e.g. brake or clutch linings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group
    • C08G2650/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group containing ketone groups, e.g. polyarylethylketones, PEEK or PEK
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3009Sulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0204Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/90Braking
    • F05B2260/902Braking using frictional mechanical forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/10Inorganic materials, e.g. metals
    • F05B2280/105Copper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/20Inorganic materials, e.g. non-metallic materials
    • F05B2280/2006Carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/20Inorganic materials, e.g. non-metallic materials
    • F05B2280/2007Carbides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/20Inorganic materials, e.g. non-metallic materials
    • F05B2280/2008Nitrides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0034Materials; Production methods therefor non-metallic
    • F16D2200/0052Carbon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/006Materials; Production methods therefor containing fibres or particles
    • F16D2200/0065Inorganic, e.g. non-asbestos mineral fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0082Production methods therefor
    • F16D2200/0086Moulding materials together by application of heat and pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to the technical field of friction materials, in particular to a yaw brake pad and a preparation method thereof.
  • the yaw brake is used to avoid the oscillating wind direction change, causing the yaw tooth to produce an alternating load.
  • the yaw brake should be used to absorb the small free yaw oscillation to prevent yaw
  • the alternating stress of the gear causes premature damage of the gear teeth, and the yaw brake prevents the fan from yaw under the action of the yaw brake pad.
  • One of the objects of the present invention is to provide a yaw brake pad to alleviate the current use of metal-based friction materials for international and domestic yaw brake pads, but metal-based friction materials have excessive hardness, easy rust, and damage to the dual disk.
  • Technical problems such as uneven braking and self-exciting howling.
  • the yaw brake pad provided by the invention is mainly prepared from the following raw materials in terms of mass parts: 70-75 parts of polyetheretherketone, 10-20 parts of carbon fiber, 3-5 parts of glass fiber and 3-5 parts of graphite.
  • the yaw brake pad is mainly prepared from the following raw materials in mass parts: 70-75 parts of polyetheretherketone, 10-15 parts of carbon fiber, 3-5 parts of glass fiber, 3-5 parts of graphite, vulcanized 1-3 parts of copper and 1-3 parts of carbon nanotubes.
  • the yaw brake pad is mainly prepared from the following raw materials in mass parts: 70-75 parts of polyetheretherketone, 10-15 parts of carbon fiber, 3-5 parts of glass fiber, 3-5 parts of graphite, vulcanized 1-2 parts of copper, 1-2 parts of carbon nanotubes, 1-2 parts of molybdenum sulfide, 1-2 parts of carbon nitride, and 1-2 parts of zirconium carbide.
  • the main raw material of the yaw sheet friction material further includes 1-2 parts of the heat stabilizer in parts by mass.
  • the heat stabilizer is selected from one or at least two of an antioxidant 1098, an antioxidant 168, an antioxidant H161, and an anti-anode 412S.
  • the second object of the present invention is to provide a method for preparing the above yaw brake pad, so as to alleviate the current use of metal-based friction materials for international and domestic yaw brake pads, but the metal-based friction material has too high hardness, easy rust, and injury.
  • Technical problems with defects such as dual discs, uneven brakes, and self-excited howling.
  • the method for preparing the yaw brake pad further includes a step (s), the step (s) being disposed between the step (a) and the step (b), wherein the step (s) is to squeeze the mixture Granulation is carried out to obtain a mixture pellet.
  • an injection machine is used for injection molding.
  • the preparation method of the yaw brake pad provided by the invention is simple in operation and continuous in process, and the preparation efficiency of the yaw brake pad is remarkably improved, and the preparation cost of the yaw brake pad is reduced.
  • the present invention provides a yaw brake pad which is mainly prepared from the following raw materials in parts by mass: 70-75 parts of polyetheretherketone, 10-20 parts of carbon fiber, 3-5 fiberglass Parts, 3-5 parts of graphite.
  • Polyetheretherketone refers to a linear polymer composed of an aryl group, a ketone bond and an ether bond in a macromolecular backbone.
  • polyetheretherketone is a linear aromatic polymer compound which belongs to semi-crystalline thermoplastic and has a melting point of 334 ° C. It has high mechanical strength, high temperature resistance, impact resistance, flame retardancy and acid resistance. Alkali, hydrolysis resistance, abrasion resistance, fatigue resistance, radiation resistance and good electrical properties. In addition, polyetheretherketone also has superior dimensional stability, and temperature and humidity have little effect on polyetheretherketone.
  • Carbon fiber is a new type of fiber material with high strength and high modulus fiber containing more than 95% carbon. It is made up of organic fibers such as flake graphite crystallites stacked along the axial direction of the fiber, and carbonized and graphitized. And the obtained microcrystalline graphite material. Carbon fiber is “outer and softer inside”, its quality is lighter than that of metal aluminum, but its strength is higher than that of steel, and it has corrosion resistance and high modulus. It also has the soft processability of textile fiber, and it is a new generation of reinforcing fiber. Carbon fiber has many excellent properties, high axial strength and modulus, low density, high specific performance, no creep, high temperature resistance in non-oxidizing environment, good fatigue resistance, small thermal expansion coefficient, and anisotropy. Good corrosive, excellent electrical, thermal and electromagnetic shielding properties.
  • Glass fiber is an inorganic non-metallic material with excellent performance. It has good insulation, heat resistance, good corrosion resistance, high mechanical strength, non-combustible and excellent sound insulation.
  • the main components are silica, alumina and calcium oxide. Boron oxide, magnesium oxide and sodium oxide.
  • Graphite is soft, black gray, with good chemical stability, corrosion resistance and thermal conductivity.
  • typical but non-limiting parts by mass of the polyetheretherketone are 70.2, 70.4, 70.6, 70.8, 71, 71.2, 71.4, 71.6, 71.8, 72, 72.2, 72.4, 72.6, 72.8, 73. , 73.2, 73.4, 73.6, 73.8, 74, 74.2, 74.4, 74.6 or 74.8;
  • typical but non-limiting parts by mass of carbon fibers are 10.2, 10.4, 10.6, 10.8, 11.1, 11.2, 11.4, 11.6, 11.8, 12. 12.2, 12.4, 12.6, 12.8, 13, 13.2, 13.4, 13.6, 13.8, 14, 14.2, 14.4, 14.6, 14.8, 15, 15.2, 15.4, 15.6, 15.8, 16.6, 16.2, 16.4, 16.6, 16.8, 17.
  • Polyetheretherketone not only has excellent comprehensive properties such as high heat resistance, high strength, high modulus and high toughness, but also excellent hydrolysis resistance and dimensional stability, but it has low heat distortion temperature and high friction coefficient. The defects lead to rapid heat generation during the friction process, difficulty in heat conduction, and severe heat accumulation. Therefore, the polyetheretherketone needs to be blended with other modified materials to prepare a yaw brake pad with excellent performance.
  • Copper sulphide is an inorganic compound, a sulfide of divalent copper, black monoclinic or hexagonal crystal, dark brown, extremely insoluble.
  • Carbon nanotubes are one-dimensional quantum materials with a special structure (the radial dimension is on the order of nanometers, the axial dimension is on the order of micrometers, and the ends of the tube are substantially sealed).
  • the carbon nanotubes are mainly composed of a plurality of coaxial tubes of a plurality of layers of carbon atoms arranged in a hexagonal shape. The layer is maintained at a fixed distance between the layers, about 0.34 nm, and generally has a diameter of 2 to 20 nm.
  • carbon nanotubes are light in weight, hexagonal structure is perfectly connected, and have many abnormal mechanical, electrical and chemical properties.
  • typical but non-limiting parts by mass of copper sulfide are 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5. 2.6, 2.7, 2.8 or 2.9;
  • typical but non-limiting mass fractions of carbon nanotubes are 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8 or 2.9.
  • the yaw brake pad is mainly prepared from the following raw materials in mass parts: 70-75 parts of polyetheretherketone, 10-15 parts of carbon fiber, 3-5 parts of glass fiber, graphite 3- 5 parts, 1-2 parts of copper sulfide, 1-2 parts of carbon nanotubes, 1-2 parts of molybdenum sulfide, 1-2 parts of carbon nitride, and 1-2 parts of zirconium carbide.
  • Molybdenum sulfide also known as molybdenum disulfide, is a black solid powder with a metallic luster, melting point of 1185 ° C, density of 4.80 g / cm, Mohs hardness of 1.0-1.5, decomposition at 1370 ° C, decomposition of metal molybdenum and sulfur at 1600 ° C, Molybdenum disulfide is insoluble in water and only soluble in aqua regia and boiled concentrated sulfuric acid.
  • the main function of molybdenum sulfide for friction materials is to reduce friction at low temperatures and to increase grinding at high temperatures, while also preventing other materials from being oxidized.
  • Carbonitride is a new type of covalent compound whose hardness can be compared with diamond and has not been discovered in nature. Thermogravimetric analysis shows that carbon nitride can still exist stably in an air atmosphere of 600 ° C, which proves that it is a high temperature resistant , a material that is not easily decomposed, and in a conventional solvent (including water, ethanol, dimethyl fumarate, tetrahydrofuran, diethyl ether, toluene, etc.), carbon nitride does not exhibit solubility and reactivity, demonstrating that it is in an organic solvent. Stability.
  • the wear resistance of the yaw brake pad is improved, and during the braking process, the material has good responsiveness, the friction process is smooth, and the brake is free from screaming.
  • Zirconium carbide is a black solid, a high-melting material with high hardness and excellent high-temperature refractory material. It has good high temperature resistance, corrosion resistance and wear resistance. It is a good high temperature structure and also has excellent thermal conductivity.
  • the hardness and corrosion resistance of the yaw brake pad can be significantly improved, and the high temperature resistance can be improved.
  • the typical but non-limiting mass fraction of molybdenum sulfide is 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8 or 1.9; typical but non-limiting mass of carbon nitride
  • the number of parts is 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8 or 1.9;
  • typical but non-limiting parts by mass of zirconium carbide are 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8 or 1.9.
  • the polyetheretherketone is in the form of particles
  • the carbon fibers are nanoscale carbon fibers
  • the glass fibers are nanoscale glass fibers
  • the graphite is nanoscale graphite.
  • the heat stabilizer is selected from one or at least two of the antioxidant 1098, the antioxidant 168, the antioxidant H161, and the antioxidant 412S.
  • the heat stabilizer may be any one of the antioxidant 1098, the antioxidant 168, the antioxidant H161, and the antioxidant 412S, or may be the antioxidant 1098 and the antioxidant.
  • the combination of the antioxidant 168 and the antioxidant H161 or any two of the antioxidant H161 and the antioxidant 412S may also be a combination of the antioxidant 1098, the antioxidant 168 and the antioxidant H161.
  • the carbon nitride is subjected to a concentrated ammonia modification treatment.
  • the carbonized carbon is modified by concentrated ammonia, the interlayer distance is further reduced, and when it is compounded with polyetheretherketone, it can exhibit better compatibility.
  • the present invention also provides a method for preparing the above yaw brake pad, comprising the following steps:
  • the yaw brake pad provided by the invention has the advantages of simple operation and continuous process, which significantly improves the preparation efficiency of the yaw brake pad and reduces the preparation cost of the yaw brake pad.
  • the method for preparing a yaw brake pad further includes a step (s), the step (s) being disposed between the step (a) and the step (b), wherein the step (s) is The mixture was subjected to extrusion granulation to obtain a mixture pellet.
  • the mixture pellets are prepared and then injection-molded, so that the various raw materials are more uniformly mixed, and the prepared yaw brake pad has better performance and stability. .
  • the mixed material is melted and plasticized by a twin-screw extruder, and then the molten extrudate is injection molded by an injection machine.
  • This embodiment provides a yaw brake pad prepared from the following materials: 70 parts of polyetheretherketone, 20 parts of nano-scale carbon fiber, 5 parts of nano-scale glass fiber, and 5 parts of nano-scale graphite.
  • This embodiment provides a yaw brake pad prepared from the following raw materials: 73 parts of polyetheretherketone, 18 parts of nano-scale carbon fiber, 4 parts of nano-scale glass fiber, and 4 parts of nano-scale graphite.
  • the embodiment provides a yaw brake pad prepared from the following materials: 70 parts of polyetheretherketone, 15 parts of nanometer carbon fiber, 5 parts of nanometer glass fiber, 5 parts of nanometer graphite, 3 parts of copper sulfide, 2 parts of carbon nanotubes.
  • the embodiment provides a yaw brake pad prepared from the following materials: 73 parts of polyetheretherketone, 13 parts of nanometer carbon fiber, 4 parts of nanometer glass fiber, 4 parts of nanometer graphite, 3 parts of copper sulfide, 3 parts of carbon nanotubes.
  • the embodiment provides a yaw brake pad prepared from the following materials: 75 parts of polyetheretherketone, 10 parts of nanometer carbon fiber, 5 parts of nanometer glass fiber, 3 parts of nanometer graphite, 2 parts of copper sulfide, 2 parts of carbon nanotubes, 1 part of molybdenum sulfide, 1 part of carbon nitride, and 1 part of zirconium carbide, wherein the carbon nitride is modified by concentrated ammonia water.
  • the embodiment provides a yaw brake pad prepared from the following materials: 73 parts of polyetheretherketone, 12 parts of nanometer carbon fiber, 4 parts of nanometer glass fiber, 4 parts of nanometer graphite, 2 parts of copper sulfide, 2 parts of carbon nanotubes, 1 part of molybdenum sulfide, 1 part of carbon nitride, and 1 part of zirconium carbide, wherein carbon nitride is modified by concentrated ammonia water.
  • the embodiment provides a yaw brake pad prepared from the following materials: 72 parts of polyetheretherketone, 12 parts of nano-scale carbon fiber, 4 parts of nano-scale glass fiber, 4 parts of nano-scale graphite, 2 parts of copper sulfide, 2 parts of carbon nanotubes, 1 part of molybdenum sulfide, 1 part of carbon nitride, 1 part of zirconium carbide, and an antioxidant H161, wherein the carbon nitride is modified by concentrated ammonia water.
  • This embodiment differs from Example 7 in that no copper sulfide is added.
  • This embodiment differs from Example 7 in that no carbon nanotubes are added.
  • This embodiment differs from Example 7 in that molybdenum sulfide is not added.
  • This embodiment differs from Example 7 in that no carbon nitride is added.
  • This embodiment differs from Example 7 in that no zirconium carbide is added.
  • the mixture pellets are melted and plasticized by a twin-screw extruder, and then the molten extrudate is injection-molded by an injection machine; wherein the heating temperature of the twin-screw extruder is 370-375 ° C in one zone.
  • the temperature in the second zone is 380-385 ° C
  • the temperature in the four zones is 400-405 ° C
  • the screw speed is 100-300 rpm
  • the injection mold temperature of the injection machine is 100-200 ° C
  • the temperature of the injection cylinder is 350-450 ° C
  • the injection back pressure is 1-5 MPa.
  • the injection pressure is 100-200 MPa.
  • This comparative example is different from Example 2 in that no nano-scale glass fibers were added.
  • the comparison between the embodiment 1-12 and the comparative example 1-5 shows that the yaw brake pad provided by the embodiment 1-12 of the present invention uses polyetheretherketone as the matrix resin, carbon fiber and glass fiber as the reinforcing material, and graphite as the reinforcing material.
  • the yaw brake pads made of heat-conducting materials not only greatly improve the mechanical properties (tensile strength, shear strength and compressive strength) and high temperature resistance (withstand the highest temperature and withstand the highest sustained temperature), but also greatly reduce the yaw
  • the hardness of the brake reduces the wear of the dual, reduces the noise, and also improves the friction stability and working condition adaptability, and can effectively meet the requirements of the yaw low speed brake of the wind power generator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Composite Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Braking Arrangements (AREA)

Abstract

本发明提供了一种偏航刹车片及其制备方法,涉及摩擦材料技术领域,主要由按质量份数计的如下原料制备:聚醚醚酮70-75份,碳纤维10-20份,玻璃纤维3-5份,石墨3-5份,缓解了目前国际和国内风力发电机偏航刹车片普遍采用金属基摩擦材料,但是金属基摩擦材料存在容易起锈、伤对偶盘和产生啸叫的技术问题,达到了不仅大幅提高了力学性能和耐高温性能,而且大幅降低了偏航刹车片的硬度,减少了对偶的磨损,降低了噪音污染,同时还改善了其摩擦稳定性和工况适应性,能够有效满足风力发电机偏航低速制动的要求的技术效果。

Description

偏航刹车片及其制备方法
相关申请的交叉引用
本申请要求于2017年06月20日提交中国专利局的申请号为201710470375.8、名称为“偏航刹车片及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及摩擦材料技术领域,尤其是涉及一种偏航刹车片及其制备方法。
背景技术
随着科技的进步和经济的高速发展,人类对电力的需求不断扩大。利用煤、石油等不可再生能源发电,都面临资源日益贫乏的窘境。风能作为绿色清洁能源,不仅符合国际能源改革方向,而且又是可再生资源,对环境保护也具有积极意义,已经受到越来越多国家的重视。
风力发电机发电过程中,需要因风力方向的改变而调整叶片的方向,将风力发电机的叶片固定朝向风力最理想的方向,从而保证风力发电机的工作效率最大化。调整风力发电机叶片的方向是靠偏航系统实现的,偏航制动器为避免振荡的风向变化,引起偏航轮齿产生交变负荷,应采用偏航制动器来吸收微小自由偏转振荡,防止偏航齿轮的交变应力引起轮齿过早损伤,偏航制动器在偏航刹车片的作用下,防止风机偏摆。
目前,国际和国内偏航刹车片多为采用金属基摩擦材料,但是金属基摩擦材料存在材料硬度过高、容易起锈、伤对偶盘、刹车不平顺和产生自激性啸叫等缺陷,因此,本领域技术技术人员亟需研制一种新型偏航刹车片。
有鉴于此,特提出本发明。
发明内容
本发明的目的之一在于提供一种偏航刹车片,以缓解目前国际和国内偏航刹车片普遍采用金属基摩擦材料,但是金属基摩擦材料存在材料硬度过高、容易起锈、伤对偶盘、刹车不平顺和产生自激性啸叫等缺陷的技术问题。
本发明提供的偏航刹车片,主要由按质量份数计的如下原料制备:聚醚醚酮70-75份,碳纤维10-20份,玻璃纤维3-5份,石墨3-5份。
进一步地,所述偏航刹车片主要由按质量份数计的如下原料制备:聚醚醚酮70-75份,碳纤维10-15份,玻璃纤维3-5份,石墨3-5份,硫化铜1-3份,碳纳米管1-3份。
进一步地,所述偏航刹车片主要由按质量份数计的如下原料制备:聚醚醚酮70-75份,碳纤维10-15份,玻璃纤维3-5份,石墨3-5份,硫化铜1-2份,碳纳米管1-2份,硫化钼1-2份,氮化碳1-2份,碳化锆1-2份。
进一步地,所述聚醚醚酮为颗粒状,所述碳纤维为纳米级碳纤维,所述玻璃纤维为纳米级玻璃纤维,所述石墨为纳米级石墨。
进一步地,所述偏航片摩擦材料的主要原料还包括按质量份数计的热稳定剂1-2份。
进一步地,所述热稳定剂选自抗氧剂1098、抗氧剂168、抗氧剂H161和抗阳极412S中的一种或至少两种。
进一步地,所述氮化碳经过浓氨水改性处理。
本发明的目的之二在于提供上述偏航刹车片的制备方法,以缓解目前国际和国内偏航刹车片普遍采用金属基摩擦材料,但是金属基摩擦材料存在材料硬度过高、容易起锈、伤对偶盘、刹车不平顺和产生自激性啸叫等缺陷的技术问题。
本发明提供的偏航刹车片的制备方法,包括如下步骤:
(a)将聚醚醚酮、碳纤维、玻璃纤维、石墨、任选的硫化铜、任选的碳纳米管、任选的硫化钼、任选的氮化碳和任选的碳化锆混合均匀;
(b)将混合物进行注塑成型,制得偏航刹车片。
进一步地,所述偏航刹车片的制备方法还包括步骤(s),所述步骤(s)设置于步骤(a)和步骤(b)之间,所述步骤(s)为将混合物进行挤出造粒,制得混合物粒料。
进一步地,采用注射机进行注塑成型。
本发明以聚醚醚酮为基体材料,以碳纤维和玻璃纤维为增强材料,以石墨为导热材料制得的偏航刹车片,不仅大幅提高了力学性能和耐高温性能,而且大幅降低了偏航刹车的硬度,减少了对偶的磨损,降低了噪音,同时还改善其摩擦稳定性和工况适应性,能够有效满足风力发电机偏航低速制动的要求。
本发明提供的偏航制动片的制备方法操作简单,过程连续,显著提高了偏航制动片的制备效率,降低了偏航制动片的制备成本。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。实施例中 未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
根据本发明的一个方面,本发明提供了一种偏航刹车片,主要由按质量份数计的如下原料制备:聚醚醚酮70-75份,碳纤维10-20份,玻璃纤维3-5份,石墨3-5份。
聚醚醚酮是指大分子主链由芳基、酮键和醚键组成的线性聚合物,其分子式为
Figure PCTCN2018082397-appb-000001
从上述分子式可以看出,聚醚醚酮是一种线性芳香族高分子化合物,其属于半结晶热塑性塑料,其熔点为334℃,具有机械强度高、耐高温、耐冲击、阻燃、耐酸碱、耐水解、耐磨、耐疲劳、耐辐照及良好的电性能。另外,聚醚醚酮还具有优越的尺寸稳定性,温度和湿度对聚醚醚酮的影响很小。
碳纤维是一种含碳量在95%以上的高强度、高模量纤维的新型纤维材料,它是由片状石墨微晶等有机纤维沿纤维轴向方向堆砌而成,经碳化及石墨化处理而得到的微晶石墨材料。碳纤维“外柔内刚”,质量比金属铝轻,但强度却高于钢铁,并且具有耐腐蚀性、高模量的特性,同时又兼备纺织纤维的柔软可加工性,是新一代增强纤维。碳纤维具有许多优良性能,其轴向强度和模量高,密度低、比性能高,无蠕变,非氧化环境下耐超高温,耐疲劳性好,热膨胀系数小,且具有各向异性,耐腐蚀性好,导电、导热和电磁屏蔽性能优良。
玻璃纤维是一种性能优异的无机非金属材料,绝缘性好、耐热性强、抗腐蚀性好,机械强度高,不燃、隔音性能优良,主要成分为二氧化硅、氧化铝、氧化钙、氧化硼、氧化镁和氧化钠等。
石墨质软,黑灰色,具有良好的化学稳定性、耐腐蚀性和导热性。
在本发明中,聚醚醚酮的典型但非限制性的质量份数如为70.2、70.4、70.6、70.8、71、71.2、71.4、71.6、71.8、72、72.2、72.4、72.6、72.8、73、73.2、73.4、73.6、73.8、74、74.2、74.4、74.6或74.8;碳纤维的典型但非限制性的质量份数如为10.2、10.4、10.6、10.8、11、11.2、11.4、11.6、11.8、12、12.2、12.4、12.6、12.8、13、13.2、13.4、13.6、13.8、14、14.2、14.4、14.6、14.8、15、15.2、15.4、15.6、15.8、16、16.2、16.4、16.6、16.8、17、17.2、17.4、17.6、17.8、18、18.2、18.4、18.6、18.8、19、19.2、19.4、19.6或19.8;玻璃纤维的典型但非限制性的质量份数如为3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4、4.1、4.2、4.3、4.4、 4.5、4.6、4.7、4.8或4.9;石墨的典型但非限制性的质量份数如为3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8或4.9。
聚醚醚酮不仅具有高耐热性、高强度、高模量和高韧性等优异的综合性能,而且具有出色的耐水解性和尺寸稳定性,但是其存在热变形温度偏低、摩擦系数高的缺陷,导致其在摩擦过程中生热很快,导热困难,聚热严重,因此聚醚醚酮需要与其它改性料共混以制备性能优良的偏航刹车片。
本发明以聚醚醚酮为基体材料,以碳纤维和玻璃纤维为增强材料,以石墨为导热材料制得的偏航刹车片,不仅大幅提高了力学性能和耐高温性能,而且大幅降低了偏航刹车的硬度,减少了对偶的磨损,降低了噪音,同时还改善其摩擦稳定性和工况适应性,能够有效满足风力发电机偏航低速制动的要求。
在本发明的优选实施方式中,偏航刹车片主要由按质量份数计的如下原料制备:聚醚醚酮70-75份,碳纤维10-15份,玻璃纤维3-5份,石墨3-5份,硫化铜1-3份,碳纳米管1-3份。
硫化铜是一种无机化合物,是二价铜的硫化物,黑色单斜或六方晶体,呈黑褐色,极难溶。
碳纳米管是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级,管子两端基本上都封口)的一维量子材料。碳纳米管主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。层与层之间保持固定的距离,约0.34nm,直径一般为2~20nm。碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。
在本优选实施方式中,硫化铜的典型但非限制性的质量份数如为1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8或2.9;碳纳米管的典型但非限制性的质量份数如为1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8或2.9。
本发明中通过聚醚醚酮、石墨、碳纤维、玻璃纤维、硫化铜和碳纳米管的相互协同,有效降低了偏航刹车片的磨损率,减少了对偶盘的伤害,同时还提高了拉伸强度、抗压强度和剪切强度。
在本发明的优选实施方式中,偏航刹车片主要由按质量份数计的如下原料制备:聚醚醚酮70-75份,碳纤维10-15份,玻璃纤维3-5份,石墨3-5份,硫化铜1-2份,碳纳米管1-2份,硫化钼1-2份,氮化碳1-2份,碳化锆1-2份。
硫化钼又称二硫化钼,是一种黑色固体粉末,有金属光泽,熔点1185℃,密度4.80g/cm,莫氏硬度1.0-1.5,1370℃开始分解,1600℃分解为金属钼和硫,二硫化 钼不溶于水,只溶于王水和煮沸的浓硫酸。硫化钼用于磨擦材料主要功能是低温时减磨,高温时增磨,同时还能够防止其它材料被氧化。
氮化碳是一种硬度可以和金刚石媲美而在自然界中尚未被发现的新型共价化合物,其热重分析表明在600℃空气气氛中氮化碳仍可稳定存在,证明它是一种耐高温,不易分解的材料,同时在传统的溶剂中(包括水、乙醇、富马酸二甲酯、四氢呋喃、乙醚和甲苯等),氮化碳没有表现出可溶性和反应活性,证明它在有机溶剂中的稳定性。
通过在偏航刹车片中添加氮化碳,使得偏航刹车片的耐磨性能提高,在进行制动的过程中,材料应答性好,摩擦过程平稳,制动无尖叫。
碳化锆为黑色固体,是一种硬度大的高熔点材料和极好的高温耐火材料,具有良好的耐高温、耐腐蚀和耐磨性能,是良好的高温结构,同时还具有优良的导热性。
通过在偏航刹车片中加入碳化锆,能够显著提高偏航刹车片的硬度和耐腐蚀性,提高其耐高温性。
在本优选实施方式中,硫化钼的典型但非限制性的质量份数如为1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8或1.9;氮化碳的典型但非限制性的质量份数如为1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8或1.9;碳化锆的典型但非限制性的质量份数如为1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8或1.9。
在本发明的优选实施方式中,所述聚醚醚酮为颗粒状,所述碳纤维为纳米级碳纤维,所述玻璃纤维为纳米级玻璃纤维,所述石墨为纳米级石墨。
在本发明的优选实施方式中,聚醚醚酮的熔融指数(MI)为在400℃下,4-8g/10min。
选用颗粒状聚醚醚酮、纳米级碳纤维、纳米级玻璃纤维和纳米级石墨为原料,更便于多种原料混合均匀,在形成偏航刹车片时,多种原料相互协同作用,使制得的偏航刹车片力学性能更高,摩擦更稳定,硬度更低,噪音更小。
在本发明的优选实施方式中,碳纳米管的长度为140-160nm,优选为150nm。
在本发明的优选实施方式中,偏航摩擦片的主要原料还包括按质量份数计的热稳定剂1-2份。
通过在偏航刹车片的主要原料中添加热稳定剂,一方面能够提高偏航摩擦片的耐高温性能,另一方面也能够避免在后续加工过程中,其它原料发生分解现象,影响制得的偏航刹车片的综合性能。
在本发明的优选实施方式中,热稳定剂选自抗氧剂1098、抗氧剂168、抗氧剂H161和抗氧剂412S中的一种或至少两种。
在本发明的优选实施中,热稳定剂既可以为抗氧剂1098、抗氧剂168、抗氧剂H161和抗氧剂412S中的任意一种,也可以为抗氧剂1098与抗氧剂168,抗氧剂168与抗氧剂H161或抗氧剂H161与抗氧剂412S中任意两种的组合,还可以为抗氧剂1098、抗氧剂168和抗氧剂H161三种的组合。
在本发明的优选实施方式中,氮化碳经过浓氨水改性处理。
氮化碳经过浓氨水改性处理后,进一步缩小其层间距离,与聚醚醚酮复合时,能够表现出更好的相容性。
根据本发明的另一个方面,本发明还提供了上述偏航刹车片的制备方法,包括如下步骤:
(a)将聚醚醚酮、碳纤维、玻璃纤维、石墨、任选的硫化铜、任选的碳纳米管、任选的硫化钼、任选的氮化碳和任选的碳化锆混合均匀;
(b)将混合物进行注塑成型,制得偏航刹车片。
本发明提供的偏航刹车片通过注塑成型,操作简单,过程连续,显著提高了偏航制动片的制备效率,降低了偏航制动片的制备成本。
在本发明的优选实施方式中,偏航刹车片的制备方法还包括步骤(s),所述步骤(s)设置于步骤(a)和步骤(b)之间,所述步骤(s)为将混合物进行挤出造粒,制得混合物粒料。
通过将偏航刹车片的主要原料先进行挤出造粒,制成混合物粒料后再进行注塑成型,使得多种原料混合得更均匀,所制得的偏航刹车片性能更优良、更稳定。
在本发明的优选实施方式中,采用注射机进行注塑成型。
将混合后的物料经过双螺杆挤出机熔融塑化后挤出,然后再将熔融的挤出料经注射机注塑成型。
通过采用注射机进行注塑成型,生产效率和成品率高,加工成本低,更易实现大规模工业化生产。
为了更好地理解本发明,下面结合实施例对本发明作进一步的描述。
实施例1
本实施例提供了一种偏航刹车片,由以下原料制备而成:聚醚醚酮70份,纳米级碳纤维20份,纳米级玻璃纤维5份,纳米级石墨5份。
实施例2
本实施例提供了一种偏航刹车片,由以下原料制备而成:聚醚醚酮73份,纳米级碳纤维18份,纳米级玻璃纤维4份,纳米级石墨4份。
实施例3
本实施例提供了一种偏航刹车片,由以下原料制备而成:聚醚醚酮70份,纳米级碳纤维15份,纳米级玻璃纤维5份,纳米级石墨5份,硫化铜3份,碳纳米管2份。
实施例4
本实施例提供了一种偏航刹车片,由以下原料制备而成:聚醚醚酮73份,纳米级碳纤维13份,纳米级玻璃纤维4份,纳米级石墨4份,硫化铜3份,碳纳米管3份。
实施例5
本实施例提供了一种偏航刹车片,由以下原料制备而成:聚醚醚酮75份,纳米级碳纤维10份,纳米级玻璃纤维5份,纳米级石墨3份,硫化铜2份,碳纳米管2份,硫化钼1份,氮化碳1份,碳化锆1份,其中氮化碳经过浓氨水改性处理。
实施例6
本实施例提供了一种偏航刹车片,由以下原料制备而成:聚醚醚酮73份,纳米级碳纤维12份,纳米级玻璃纤维4份,纳米级石墨4份,硫化铜2份,碳纳米管2份,硫化钼1份,氮化碳1份,碳化锆1份,其中,氮化碳经过浓氨水改性处理。
实施例7
本实施例提供了一种偏航刹车片,由以下原料制备而成:聚醚醚酮72份,纳米级碳纤维12份,纳米级玻璃纤维4份,纳米级石墨4份,硫化铜2份,碳纳米管2份,硫化钼1份,氮化碳1份,碳化锆1份,抗氧剂H161,其中,氮化碳经过浓氨水改性处理。
实施例8
本实施例与实施例7的区别在于,未添加硫化铜。
实施例9
本实施例与实施例7的区别在于,未添加碳纳米管。
实施例10
本实施例与实施例7的区别在于,未添加硫化钼。
实施例11
本实施例与实施例7的区别在于,未添加氮化碳。
实施例12
本实施例与实施例7的区别在于,未添加碳化锆。
上述实施例1-12所提供的偏航刹车片的制备方法如下:
(a)将聚醚醚酮、碳纤维、玻璃纤维、石墨、任选的硫化铜、任选的碳纳米管、任选的硫化钼、任选的氮化碳和任选的碳化锆混合均匀;
(s)将混合物通过挤出机进行挤出造粒,制得混合物粒料;
(b)混合物粒料经过双螺杆挤出机熔融塑化后挤出,然后再将熔融的挤出料经注射机注塑成型;其中,双螺杆挤出机一区加热温度为370-375℃,二区温度为380-385℃,四区温度400-405℃,螺杆转速为100-300rpm,注射机的注射模具温度为100-200℃,注射筒温度350-450℃,注射背压1-5MPa,注射压力100-200MPa。
对比例1
本对比例提供了一种偏航刹车片,由以下原料制备而成:聚醚醚酮50份,纳米级碳纤维20份,纳米级玻璃纤维10份,纳米级石墨10份。
对比例2
本对比例提供了一种偏航刹车片,由以下原料制备而成:聚醚醚酮90份,纳米级碳纤维6份,纳米级玻璃纤维2份,纳米级石墨2份。
对比例3
本对比例与实施例2的不同之处在于,未添加纳米级碳纤维。
对比例4
本对比例与实施例2的不同之处在于,未添加纳米级玻璃纤维。
对比例5
本对比例与实施例2的不同之处在于,未添加纳米级石墨。
上述对比例1-5提供的偏航刹车片的制备方法同实施例2,在此不再赘述。
将实施例1-12所提供的偏航刹车片和对比例1-5提供的偏航刹车片分别进行力学、噪音、耐热性能和磨损率的测试,测试数据如表1所示:
表1 偏航刹车片性能测试数据表
Figure PCTCN2018082397-appb-000002
Figure PCTCN2018082397-appb-000003
通过实施例1-12与对比例1-5的对比可知,本发明实施例1-12提供的偏航刹车片以聚醚醚酮为基体树脂,以碳纤维和玻璃纤维为增强材料,以石墨为导热材料制得的偏航刹车片,不仅大幅提高了力学性能(拉伸强度、剪切强度和抗压强度)和耐高温性能(承受最高温度和承受最高持续温度),而且大幅降低了偏航刹车的硬度,减少了对偶的磨损,降低了噪音,同时还改善了其摩擦稳定性和工况适应性,能够有效满足风力发电机偏航低速制动的要求。
通过实施例5-7与实施例8-12的对比可以看出,以聚醚醚酮、纳米级石墨、纳米级碳纤维、纳米级玻璃纤维、碳纳米管、硫化铜、硫化钼、氮化碳和碳化锆相互协同配合制备的偏航刹车片其摩擦系数进一步增大,耐高温性能进一步提升,力学性能进一步增强,综合性能得到进一步提高。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种偏航刹车片,其特征在于,主要由按质量份数计的如下原料制备:聚醚醚酮70-75份,碳纤维10-20份,玻璃纤维3-5份,石墨3-5份。
  2. 根据权利要求1所述的偏航刹车片,其特征在于,主要由按质量份数计的如下原料制备:聚醚醚酮70-75份,碳纤维10-15份,玻璃纤维3-5份,石墨3-5份,硫化铜1-3份,碳纳米管1-3份。
  3. 根据权利要求1所述的偏航刹车片,其特征在于,主要由按质量份数计的如下原料制备:聚醚醚酮70-75份,碳纤维10-15份,玻璃纤维3-5份,石墨3-5份,硫化铜1-2份,碳纳米管1-2份,硫化钼1-2份,氮化碳1-2份,碳化锆1-2份。
  4. 根据权利要求1-3任一项所述的偏航刹车片,其特征在于,所述聚醚醚酮为颗粒状,所述碳纤维为纳米级碳纤维,所述玻璃纤维为纳米级玻璃纤维,所述石墨为纳米级石墨。
  5. 根据权利要求1-3任一项所述的偏航刹车片,其特征在于,主要原料还包括按质量份数计的热稳定剂1-2份。
  6. 根据权利要求5所述的偏航刹车片,其特征在于,所述热稳定剂选自抗氧剂1098、抗氧剂168、抗氧剂H161和抗氧剂412S中的一种或至少两种。
  7. 根据权利要求3所述的偏航刹车片,其特征在于,所述氮化碳经过浓氨水改性处理。
  8. 根据权利要求1-7任一项所述的偏航刹车片的制备方法,其特征在于,包括如下步骤:
    (a)将聚醚醚酮、碳纤维、玻璃纤维、石墨、任选的硫化铜、任选的碳纳米管、任选的硫化钼、任选的氮化碳和任选的碳化锆混合均匀;
    (b)将混合物进行注塑成型,制得偏航刹车片。
  9. 根据权利要求8所述的偏航刹车片的制备方法,其特征在于,还包括步骤(s),所述步骤(s)设置于步骤(a)和步骤(b)之间,所述步骤(s)为将混合物进行挤出造粒,制得混合物粒料。
  10. 根据权利要求8或9所述的偏航刹车片的制备方法,其特征在于,采用注射机进行注塑成型。
PCT/CN2018/082397 2017-06-20 2018-04-09 偏航刹车片及其制备方法 WO2018233349A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/623,710 US11592069B2 (en) 2017-06-20 2018-04-09 Yaw brake pad and method of producing the same
EP18745805.4A EP3447089B1 (en) 2017-06-20 2018-04-09 Yaw brake block and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710470375.8 2017-06-20
CN201710470375.8A CN107286570B (zh) 2017-06-20 2017-06-20 偏航刹车片及其制备方法

Publications (1)

Publication Number Publication Date
WO2018233349A1 true WO2018233349A1 (zh) 2018-12-27

Family

ID=60097096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082397 WO2018233349A1 (zh) 2017-06-20 2018-04-09 偏航刹车片及其制备方法

Country Status (4)

Country Link
US (1) US11592069B2 (zh)
EP (1) EP3447089B1 (zh)
CN (1) CN107286570B (zh)
WO (1) WO2018233349A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107286570B (zh) * 2017-06-20 2018-05-29 方达能源集团有限公司 偏航刹车片及其制备方法
CN108192276A (zh) * 2017-12-23 2018-06-22 湛江正信科技服务有限公司 一种耐磨聚醚醚酮复合材料及其制备方法
CN113102757B (zh) * 2021-03-31 2022-03-29 上海连纵轨道交通科技有限公司 金属基复合材料制动闸片及其制备方法
CN118185230A (zh) * 2024-03-28 2024-06-14 江苏君华特种高分子材料股份有限公司 一种耐磨聚醚醚酮基复合材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103772741A (zh) * 2014-01-07 2014-05-07 合肥杰事杰新材料股份有限公司 一种导热耐磨填料及其制备方法与含有该导热耐磨填料的导热耐磨塑料基复合材料
WO2015197460A1 (de) * 2014-06-24 2015-12-30 Aktiebolaget Skf Lagerkäfig oder lagerkäfigsegment
CN105440574A (zh) * 2016-01-16 2016-03-30 温州远勤石化机械有限公司 一种改性peek材料及其制备方法
CN105524291A (zh) * 2015-11-03 2016-04-27 南京肯特复合材料有限公司 双层peek树脂复合材料模块及其制备方法
CN105733181A (zh) * 2014-12-10 2016-07-06 黑龙江鑫达企业集团有限公司 一种高强度、高模量聚醚醚酮复合材料及制备方法
CN106433020A (zh) * 2016-09-12 2017-02-22 中国科学院兰州化学物理研究所 一种二元环保聚醚醚酮基刹车片材料及其制备方法
CN107286570A (zh) * 2017-06-20 2017-10-24 方达能源集团有限公司 偏航刹车片及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1154292A (zh) * 1996-01-10 1997-07-16 中国科学院长春应用化学研究所 高温耐磨密封阀片的制备方法
GB0322598D0 (en) * 2003-09-26 2003-10-29 Victrex Mfg Ltd Polymeric material
CN101413559B (zh) * 2008-10-31 2012-10-31 贵州新安航空机械有限责任公司 偏航刹车片
DK2376797T3 (en) * 2008-12-15 2016-08-22 Jochen Corts Segmented composite bearings and wind generator that uses hydraulic pump / motor combination
JP6056859B2 (ja) * 2012-07-23 2017-01-11 日立化成株式会社 ヨー制御用ブレーキパッド及びブレーキ部材
CN106051008B (zh) * 2016-07-16 2018-02-23 宁波联华汽车部件有限公司 一种摩擦材料及其制备方法
CN106243620B (zh) * 2016-08-05 2018-11-16 大连路阳科技开发有限公司 一种聚醚醚酮导热复合材料及其制备方法和用途

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103772741A (zh) * 2014-01-07 2014-05-07 合肥杰事杰新材料股份有限公司 一种导热耐磨填料及其制备方法与含有该导热耐磨填料的导热耐磨塑料基复合材料
WO2015197460A1 (de) * 2014-06-24 2015-12-30 Aktiebolaget Skf Lagerkäfig oder lagerkäfigsegment
CN105733181A (zh) * 2014-12-10 2016-07-06 黑龙江鑫达企业集团有限公司 一种高强度、高模量聚醚醚酮复合材料及制备方法
CN105524291A (zh) * 2015-11-03 2016-04-27 南京肯特复合材料有限公司 双层peek树脂复合材料模块及其制备方法
CN105440574A (zh) * 2016-01-16 2016-03-30 温州远勤石化机械有限公司 一种改性peek材料及其制备方法
CN106433020A (zh) * 2016-09-12 2017-02-22 中国科学院兰州化学物理研究所 一种二元环保聚醚醚酮基刹车片材料及其制备方法
CN107286570A (zh) * 2017-06-20 2017-10-24 方达能源集团有限公司 偏航刹车片及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3447089A4 *

Also Published As

Publication number Publication date
CN107286570A (zh) 2017-10-24
CN107286570B (zh) 2018-05-29
EP3447089A4 (en) 2019-06-26
EP3447089B1 (en) 2020-06-17
US11592069B2 (en) 2023-02-28
EP3447089A1 (en) 2019-02-27
US20200141462A1 (en) 2020-05-07

Similar Documents

Publication Publication Date Title
WO2018233349A1 (zh) 偏航刹车片及其制备方法
CN100408620C (zh) 复合材料
RU2734476C1 (ru) Графеновые микросферы в виде комка бумаги, композитный материал таких микросфер и способ изготовления таких микросфер
CN101928457B (zh) 一种碳基纳米浇铸尼龙复合材料及其原位聚合制备方法
JP3850427B2 (ja) 炭素繊維結合体およびこれを用いた複合材料
Liu et al. Thermally conductive and electrically insulating alumina-coated graphite/phthalonitrile composites with thermal stabilities
Lee et al. Ultra-high thermal conductivity and mechanical properties of a paraffin composite as a thermal conductive phase change materials for novel heat management
Han et al. Construction of hexagonal boron nitride@ polystyrene nanocomposite with high thermal conductivity for thermal management application
CN102628115A (zh) 一种碳纳米管增强铜基复合材料的制备方法
CN103249769A (zh) 包含聚(芳基醚酮)和石墨烯材料的聚合物组合物
Li et al. Facile synthesis of WS2@ GO nanohybrids for significant improvement in mechanical and tribological performance of EP composites
WO2007058298A1 (ja) リサイクル複合材料
WO2018233350A1 (zh) 偏航制动器隔衬垫及其制备方法
Manap et al. Mechanical, thermal and morphological properties of thermoplastic polyurethane composite reinforced by multi-walled carbon nanotube and titanium dioxide hybrid fillers
WO2007049748A1 (ja) 複合材料
Anju et al. Enhanced mechanical, electrical, thermal, and optical properties of poly (methyl methacrylate)/copper oxide nanocomposites for flexible optoelectronic devices via in‐situ polymerization technique
Cho et al. Enhanced thermal and mechanical properties of 3D-printed PEG containing acrylate composite with surface-treated BN via digital light processing
CN102003480B (zh) 风力发电机阻尼摩擦制动片及其制备方法
CN106397927A (zh) 超高分子量聚乙烯复合材料及其制备方法
CN111154226A (zh) 一种石墨烯改性聚醚醚酮复合材料
CN111171509A (zh) 一种石墨烯改性聚醚醚酮复合材料的制备方法
CN113736150B (zh) 一种高性能胎面橡胶复合材料及其制备方法、应用
Cao et al. Development of high-flowability melt PPS-based composites through blending with g-C3N4
CN104130476A (zh) 一种宽温域高导热橡胶基复合材料及其制备方法
Song et al. Heterostructured rGO/MoS2 to improve friction and wear performance of epoxy resins

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018745805

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018745805

Country of ref document: EP

Effective date: 20180904

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18745805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE