CN111154226A - 一种石墨烯改性聚醚醚酮复合材料 - Google Patents

一种石墨烯改性聚醚醚酮复合材料 Download PDF

Info

Publication number
CN111154226A
CN111154226A CN202010056215.0A CN202010056215A CN111154226A CN 111154226 A CN111154226 A CN 111154226A CN 202010056215 A CN202010056215 A CN 202010056215A CN 111154226 A CN111154226 A CN 111154226A
Authority
CN
China
Prior art keywords
graphene
parts
ether
composite material
polyether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010056215.0A
Other languages
English (en)
Inventor
张荣伟
何大方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boman Medical Technology Changzhou Co Ltd
Original Assignee
Boman Medical Technology Changzhou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boman Medical Technology Changzhou Co Ltd filed Critical Boman Medical Technology Changzhou Co Ltd
Priority to CN202010056215.0A priority Critical patent/CN111154226A/zh
Publication of CN111154226A publication Critical patent/CN111154226A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开一种石墨烯改性聚醚醚酮复合材料,其组成及配比,按重量份计为:聚醚醚酮100份,碳纳米管1‑5份,碳纤维1‑5份,石墨烯5‑10份,氮化硼1‑5份,偶联剂0.5‑3份。本发明通过添加一维的碳纳米管和碳纤维以及二维石墨烯和氮化硼形成三维的网状结构,提高聚醚醚酮复合材料热传导性能、摩擦磨损性能和力学性能,进而延长了使用寿命。

Description

一种石墨烯改性聚醚醚酮复合材料
技术领域
本发明涉及复合材料技术领域,尤其涉及一种石墨烯改性聚醚醚酮复合材料。
背景技术
聚醚醚酮(poly-ether-ether-ketone,简称PEEK)是英国ICI公司于1978年首先开发出的一种全芳香族半结晶热塑性工程塑料,其大分子链上含有刚性的苯环、柔顺的醚键及羰基,结构规整。其熔点为334℃,具有机械强度高、耐高温、耐冲击、阻燃、耐酸碱、耐水解、耐磨、耐疲劳、耐辐照及良好的电性能。由于聚醚醚酮PEEK具有优良的综合性能,在许多特殊领域可以替代金属、陶瓷等传统材料。该塑料的耐高温、自润滑、耐磨损和抗疲劳等特性,使之成为当今最热门的高性能工程塑料之一,它主要应用于航空航天、汽车工业、电子电气和医疗器械等领域。
常规的聚醚醚酮复合材料虽然具有机械强度高、耐高温、耐冲击、阻燃、耐酸碱、耐水解、耐磨、耐疲劳、耐辐照及良好的电性能,但其热传导性能和耐磨损性能还是不能满足现阶段的使用要求,因此,需要一种具有很好的热传导性能、摩擦磨损性能和力学性能的聚醚醚酮复合材料。
发明内容
本发明的目的是提供一种具有很好的热传导性能、摩擦磨损性能和力学性能的石墨烯改性聚醚醚酮复合材料。
实现本发明目的的技术方案是:一种石墨烯改性聚醚醚酮复合材料,其组成及配比,按重量份计为:聚醚醚酮100份,碳纳米管1-5份,碳纤维1-5份,石墨烯5-10份,氮化硼1-5份,偶联剂0.5-3份。
所述聚醚醚酮为注塑级聚醚醚酮,熔融指数为10-50g/10min。
所述碳纳米管包括单壁碳纳米管或多壁碳纳米管中的一种或两种。
所述碳纤维的纤维长度为50-200μm,直径为10-15μm。
所述石墨烯的含氧量为1-10wt%,石墨烯片层的厚度为0.5-5nm。
所述氮化硼包括立方氮化硼或者六方氮化硼的一种或者两种。
所述石墨烯为通过热还原氧化石墨烯方法制备的石墨烯粉体。
采用了上述技术方案,本发明具有以下的有益效果:
(1)本发明通过添加一维的碳纳米管和碳纤维以及二维石墨烯和氮化硼形成三维的网状结构,提高聚醚醚酮复合材料热传导性能、摩擦磨损性能和力学性能。
(2)本发明采用注塑级聚醚醚酮,具有更优异的力学性能和耐摩擦磨损性能。
(3)本发明采用碳纳米管,具有很好的力学强度,能有效增加材料的力学强度。
(4)本发明采用碳纤维,相比于常规的石墨纤维,碳纤维具有更好的耐高温、抗摩擦、导电、导热及耐腐蚀特性,进一步增加复合材料的耐高温性能和抗摩擦能力。
(5)本发明通过添加高热导率的石墨烯和氮化硼来提高聚醚醚酮复合材料的热传导率;当作为摩擦材料使用时,片状的石墨烯和氮化硼能起到很好的润滑作用,高热导率的复合材料在摩擦过程中能更好的带走摩擦产生的热量从而大大降低磨损率。
(7)本发明的石墨烯为通过热还原氧化石墨烯方法制备的石墨烯粉体,这种石墨烯结构更为稳定,提高性能。
具体实施方式
(实施例1)
本实施例的石墨烯改性聚醚醚酮复合材料,其组成及配比,按重量份计为:聚醚醚酮100份、单壁碳纳米管1份、碳纤维5份、石墨烯5份、立方氮化硼1份、偶联剂0.5份。
聚醚醚酮为注塑级聚醚醚酮,熔融指数为10g/10min,注塑级聚醚醚酮具有更优异的力学性能和耐摩擦磨损性能;
碳纳米管具有很好的力学强度,能有效增加材料的力学强度;
碳纤维长径比为5:1,相比于常规的石墨纤维,碳纤维具有更好的耐高温、抗摩擦、导电、导热及耐腐蚀特性,进一步增加复合材料的耐高温性能和抗摩擦能力;
石墨烯为通过热还原氧化石墨烯方法制备的石墨烯粉体。石墨烯的含氧量为1%,石墨烯片层的厚度为0.5-5nm。
通过添加高热导率的石墨烯和氮化硼来提高聚醚醚酮复合材料的热传导率;且当作为摩擦材料使用时,片状的石墨烯和氮化硼能起到很好的润滑作用,高热导率的复合材料在摩擦过程中能更好的带走摩擦产生的热量从而大大降低磨损率;
偶联剂采用KH550。
通过添加一维的碳纳米管和碳纤维以及二维石墨烯和氮化硼形成三维的网状结构,提高聚醚醚酮复合材料热传导性能、摩擦磨损性能和力学性能,进而延长了使用寿命。
本实施例的石墨烯改性聚醚醚酮复合材料的制备方法,包括以下步骤:
步骤一、根据前述组成及配比,称取各个组分;
步骤二、将石墨烯通过热还原氧化石墨烯方法制备为石墨烯粉体,使石墨烯结构更为稳定,提高性能;
步骤三、将聚醚醚酮、碳纤维、石墨烯、碳纳米管和偶联剂通过气流粉碎机进行搅拌混合,因粉碎强度大,产品料度微细,并且可以在机内实现粉碎与干燥、粉碎与混合等联合作业;能量利用率高,节约能源,减少损耗;
步骤四、将混合后的材料从双螺杆挤出机主下料口投入,进行熔融混合挤出造粒,双螺杆挤出机的转速为200rpm,机筒各段温度为350℃,机头温度为360℃,真空段抽出压力为-0.06MPa,通过控制双螺杆机机头和机筒温度不同,提高挤出效果,增加材料稳定性,提高工作效率。
对本实施例的石墨烯改性聚醚醚酮复合材料进行性能测试,其结果如表1所示:
Figure BDA0002372926930000031
Figure BDA0002372926930000041
表1
(实施例2)
本实施例与实施例1基本相同,不同之处在于:本实施例的石墨烯改性聚醚醚酮复合材料的组成及配比,按重量份计为:聚醚醚酮100份,多壁碳纳米管5份,碳纤维5份,石墨烯10份,立方氮化硼5份,偶联剂3份。
聚醚醚酮为注塑级聚醚醚酮,熔融指数为50g/10min;碳纤维长径比为10:1;石墨烯的含氧量为10%,石墨烯片层的厚度为0.5-5nm;偶联剂采用KH570。
对本实施例的石墨烯改性聚醚醚酮复合材料进行性能测试,结果如表2所示:
Figure BDA0002372926930000042
Figure BDA0002372926930000051
表2
(实施例3)
本实施例与实施例1基本相同,不同之处在于:本实施例的石墨烯改性聚醚醚酮复合材料的组成及配比,按重量份计为:聚醚醚酮100份,多壁碳纳米管3份,碳纤维2份,石墨烯7份,六方氮化硼2份,偶联剂2份。
聚醚醚酮为注塑级聚醚醚酮,熔融指数为30g/10min;碳纤维的长径比为7:1;石墨烯的含氧量为1-10wt%,石墨烯片层的厚度为0.5-5nm;偶联剂采用三异硬脂酰基钛酸异丙酯。
对本实施例的石墨烯改性聚醚醚酮复合材料进行性能测试,结果如表3所示:
Figure BDA0002372926930000052
Figure BDA0002372926930000061
表3
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种石墨烯改性聚醚醚酮复合材料,其特征在于:其组成及配比,按重量份计为:聚醚醚酮100份,碳纳米管1-5份,碳纤维1-5份,石墨烯5-10份,氮化硼1-5份,偶联剂0.5-3份。
2.根据权利要求1所述的一种石墨烯改性聚醚醚酮复合材料,其特征在于:所述聚醚醚酮为注塑级聚醚醚酮,熔融指数为10-50g/10min。
3.根据权利要求1所述的一种石墨烯改性聚醚醚酮复合材料,其特征在于:所述碳纳米管包括单壁碳纳米管或多壁碳纳米管中的一种或两种。
4.根据权利要求1所述的一种石墨烯改性聚醚醚酮复合材料,其特征在于:所述碳纤维的纤维长度为50-200μm,直径为10-15μm。
5.根据权利要求1所述的一种石墨烯改性聚醚醚酮复合材料,其特征在于:所述石墨烯的含氧量为1-10wt%,石墨烯片层的厚度为0.5-5nm。
6.根据权利要求1所述的一种石墨烯改性聚醚醚酮复合材料,其特征在于:所述氮化硼包括立方氮化硼或者六方氮化硼的一种或者两种。
CN202010056215.0A 2020-01-18 2020-01-18 一种石墨烯改性聚醚醚酮复合材料 Pending CN111154226A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010056215.0A CN111154226A (zh) 2020-01-18 2020-01-18 一种石墨烯改性聚醚醚酮复合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010056215.0A CN111154226A (zh) 2020-01-18 2020-01-18 一种石墨烯改性聚醚醚酮复合材料

Publications (1)

Publication Number Publication Date
CN111154226A true CN111154226A (zh) 2020-05-15

Family

ID=70563907

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010056215.0A Pending CN111154226A (zh) 2020-01-18 2020-01-18 一种石墨烯改性聚醚醚酮复合材料

Country Status (1)

Country Link
CN (1) CN111154226A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112060581A (zh) * 2020-08-31 2020-12-11 四川大学 具有仿生梯度模量局域功能化的牙种植体及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030105269A1 (en) * 2001-10-15 2003-06-05 Arihiro Kanada Polyether aromatic ketone resin composition and its film and sheet
CN107325483A (zh) * 2017-07-06 2017-11-07 长沙五犇新材料科技有限公司 一种耐高温耐磨复合材料、制备方法及应用
CN109111682A (zh) * 2018-06-13 2019-01-01 福建翔丰华新能源材料有限公司 一种聚醚醚酮基改性纳米复合材料的制备工艺
CN109627679A (zh) * 2018-11-09 2019-04-16 苏州聚泰新材料有限公司 一种高导电聚醚醚酮复合材料及其制备方法
CN110591283A (zh) * 2019-09-30 2019-12-20 新奥(内蒙古)石墨烯材料有限公司 导电石墨烯复合材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030105269A1 (en) * 2001-10-15 2003-06-05 Arihiro Kanada Polyether aromatic ketone resin composition and its film and sheet
CN107325483A (zh) * 2017-07-06 2017-11-07 长沙五犇新材料科技有限公司 一种耐高温耐磨复合材料、制备方法及应用
CN109111682A (zh) * 2018-06-13 2019-01-01 福建翔丰华新能源材料有限公司 一种聚醚醚酮基改性纳米复合材料的制备工艺
CN109627679A (zh) * 2018-11-09 2019-04-16 苏州聚泰新材料有限公司 一种高导电聚醚醚酮复合材料及其制备方法
CN110591283A (zh) * 2019-09-30 2019-12-20 新奥(内蒙古)石墨烯材料有限公司 导电石墨烯复合材料及其制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112060581A (zh) * 2020-08-31 2020-12-11 四川大学 具有仿生梯度模量局域功能化的牙种植体及其制备方法
CN112060581B (zh) * 2020-08-31 2021-11-23 四川大学 具有仿生梯度模量局域功能化的牙种植体及其制备方法

Similar Documents

Publication Publication Date Title
Yang et al. Dramatic mechanical and thermal increments of thermoplastic composites by multi-scale synergetic reinforcement: Carbon fiber and graphene nanoplatelet
Du et al. The present status and key problems of carbon nanotube based polymer composites
US9505903B2 (en) Resin composition for EMI shielding, comprising carbon hydride composite
JP4538502B2 (ja) ピッチ系炭素繊維、マットおよびそれらを含む樹脂成形体
EP3369779A1 (en) Continuous long carbon fiber reinforced, thermoplastic resin-based nanocomposite material, preparation method and applications thereof
US20090294736A1 (en) Nanocarbon-reinforced polymer composite and method of making
CN109627679A (zh) 一种高导电聚醚醚酮复合材料及其制备方法
Ghose et al. Thermal conductivity of UltemTM/carbon nanofiller blends
CN103613883B (zh) 一种以石墨烯为填料的耐磨损硬质复合材料及其制备方法
CN110903531B (zh) 一种碳纳米管改性的聚烯烃双抗材料及其制备方法和应用
WO2019147895A1 (en) Lignin-based polymers with enhanced melt extrusion ability
CN111732778B (zh) 一种高导热复合材料的制备方法
CN104099683B (zh) 一种聚合物/导电填料/金属复合纤维及其制备方法
CN104877283A (zh) 抗静电碳纳米材料-聚四氟乙烯复合材料的制备方法
CN111171509A (zh) 一种石墨烯改性聚醚醚酮复合材料的制备方法
CN111154226A (zh) 一种石墨烯改性聚醚醚酮复合材料
Lamoriniere et al. Carbon nanotube enhanced carbon Fibre-Poly (ether ether ketone) interfaces in model hierarchical composites
Li et al. Simultaneous enhancement of electrical conductivity and interlaminar shear strength of CF/EP composites through MWCNTs doped thermoplastic polyurethane film interleaves
US11592069B2 (en) Yaw brake pad and method of producing the same
Miao et al. Tribological properties of carbon nanotube/polymer composites: A mini-review
CN106674959A (zh) 一种阻燃导热垫片及其制备方法
Weng et al. Short carbon nanotubes: From matrix toughening to interlaminar toughening of CFRP composites
CN111777818A (zh) 一种高填充高导热聚丙烯复合材料及其制备方法
CN111748188A (zh) 一种超高导电纳米碳母粒及其制备方法和应用
Verma et al. A review on the effect of processing techniques and functionalization of filler on mechanical properties of polymer nanocomposites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200515