WO2018232952A1 - 一种智能空调控制方法和装置 - Google Patents

一种智能空调控制方法和装置 Download PDF

Info

Publication number
WO2018232952A1
WO2018232952A1 PCT/CN2017/098219 CN2017098219W WO2018232952A1 WO 2018232952 A1 WO2018232952 A1 WO 2018232952A1 CN 2017098219 W CN2017098219 W CN 2017098219W WO 2018232952 A1 WO2018232952 A1 WO 2018232952A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
air conditioner
control
air conditioning
operating parameter
Prior art date
Application number
PCT/CN2017/098219
Other languages
English (en)
French (fr)
Inventor
杜光东
Original Assignee
深圳市盛路物联通讯技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市盛路物联通讯技术有限公司 filed Critical 深圳市盛路物联通讯技术有限公司
Publication of WO2018232952A1 publication Critical patent/WO2018232952A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements

Definitions

  • the present invention relates to the field of Internet of Things technologies, and in particular, to a smart air conditioner control method and apparatus.
  • air conditioners have been widely used to reach thousands of households and become one of the essential appliances in the family.
  • people of different ages and different physical conditions have different requirements for air conditioning operating parameter values, such as the requirements for air conditioning temperature, air conditioning humidity, and air volume.
  • air conditioning temperature Take the air conditioning temperature as an example.
  • the intelligent air conditioner on the market can only adjust the operating parameters of the air conditioner through a single user setting. This method can only reflect the optimal air conditioning operating parameters of a single user, and cannot reflect the multi-user environment, suitable for most users, especially suitable.
  • the optimal air conditioning operating parameters of a child or a special group with poor physical condition will inevitably reduce the user's air conditioning comfort.
  • the present invention provides a smart air conditioner control method and apparatus.
  • an embodiment of the present invention provides a smart air conditioning control method, including the following steps:
  • Step 1 Obtain user information corresponding to the user who uses the target air conditioner in the preset time period
  • Step 2 Obtain an air conditioner operating parameter preference value of each user in the preset time period
  • Step 3 Obtain, according to user information, a control weight of each target air conditioner of the user;
  • Step 4 Calculate an optimal value of the operating parameter of the target air conditioner in the preset time period according to the air conditioner operating parameter preference value and the corresponding control weight of all users;
  • Step 5 Send the operating parameter optimal value to the control system of the target air conditioner to drive the control system to control the target air conditioner to operate according to the optimal value of the operating parameter during the preset time period.
  • Embodiments of the present invention provide a smart air conditioner control method in a multi-person environment.
  • each user has different requirements for the target air conditioner, and the same air conditioner operating parameters will have different effects on different users, such as the same sleep temperature of 20 degrees.
  • Adults may feel a little cold, and children may catch a cold directly. Therefore, it is necessary to control the operating parameters of the target air conditioner to better meet the needs of children.
  • the embodiment of the present invention by obtaining the control weight of each user on the target air conditioner and the preference value of the air conditioning operation parameter of each user, it is possible to calculate the optimal air conditioning operation suitable for multiple people in the same space and in the environment where multiple users use the air conditioner together.
  • the parameters, and the optimal air conditioning operating parameters more meet the needs of users with higher air conditioning control weights, not only add a new range of new control modes to smart air conditioners, but also greatly improve the comfort of air conditioning for each user in the home. To meet the user's air conditioning needs.
  • air conditioning operating parameters include air conditioning temperature, air conditioning humidity, air conditioning air volume, air conditioning running time, air conditioner fan swing head direction, and air conditioner fan swing angle.
  • any air conditioning function that can be quantized into a numerical value can calculate the optimal value of each air conditioning operating parameter in a multi-user environment according to the method of the present invention, thereby expanding the scope of use of the present invention and further improving the range.
  • the use effect of the present invention can calculate the optimal value of each air conditioning operating parameter in a multi-user environment according to the method of the present invention, thereby expanding the scope of use of the present invention and further improving the range. The use effect of the present invention.
  • step S102 is specifically: acquiring a landscape map of the home, identifying the target air conditioner in the landscape map according to the installation location information of the target air conditioner, and identifying a control area of the target air conditioner, and generating corresponding control Regional information.
  • the control area of each air conditioner can be directly identified in the pattern, and the control area is the range of the room where the air conditioner is located, thereby obtaining the corresponding control more simply and quickly.
  • Regional information
  • the S103 is specifically: collecting a monitoring video of the control area, and identifying, by using the monitoring video, all users that use the target air conditioner;
  • the present invention provides a smart air conditioning control device, including a first acquisition module, a second acquisition module, a third acquisition module, a calculation module, and a control module.
  • the first obtaining module is configured to acquire user information corresponding to a user who uses the target air conditioner for a preset time period
  • the second obtaining module is configured to obtain an air conditioning operating parameter preference value of each user in the preset time period
  • the third obtaining module is configured to acquire, according to user information, a control weight of each target air conditioner by the user;
  • the calculating module is configured to calculate, according to an air conditioning operating parameter preference value of all users and a corresponding control weight, an operating parameter optimal value of the target air conditioner in the preset time period in a multi-user environment;
  • the control module is configured to send the operating parameter optimal value to a control system of the target air conditioner, to drive the control system to control the target air conditioner in the preset time period, according to the operating parameter optimal The value runs.
  • Embodiments of the present invention provide a smart air conditioner control apparatus in a multi-person environment.
  • each user has different requirements for the target air conditioner, and the same air conditioner operating parameters will have different effects on different users, such as the same sleep temperature of 20 degrees.
  • Adults may feel a little cold, and children may catch a cold directly. Therefore, it is necessary to control the operating parameters of the target air conditioner to better meet the needs of children.
  • the embodiment of the present invention by obtaining the control weight of each user on the target air conditioner and the preference value of the air conditioning operation parameter of each user, it is possible to calculate the optimal air conditioning operation suitable for multiple people in the same space and in the environment where multiple users use the air conditioner together.
  • the parameters, and the optimal air conditioning operating parameters more meet the needs of users with higher air conditioning control weights, not only add a new range of new control modes to smart air conditioners, but also greatly improve the comfort of air conditioning for each user in the home. To meet the user's air conditioning needs.
  • air conditioning operating parameters include air conditioning temperature, air conditioning humidity, air conditioning air volume, air conditioning running time, air conditioner fan swing head direction, and air conditioner fan swing angle.
  • any air conditioning function that can be quantized into a numerical value can calculate the optimal value of each air conditioning operating parameter in a multi-user environment according to the method of the present invention, thereby expanding the scope of use of the present invention.
  • the step improves the use effect of the present invention.
  • the first generating unit is configured to acquire a landscape map of the home, identify the target air conditioner in the landscape map according to the installation location information of the target air conditioner, and identify a control area of the target air conditioner to generate a corresponding Control area information.
  • the control area of each air conditioner can be directly identified in the pattern, and the control area is the range of the room where the air conditioner is located, thereby obtaining the corresponding control more simply and quickly.
  • Regional information
  • the identifying unit is specifically configured to collect a monitoring video of the control area, identify all users using the target air conditioner by using the monitoring video, and identify the location in the vehicle by using a GPS and/or a Beidou satellite positioning system. All users of the control area; and for identifying all users of the control area according to the signal strength of the wireless communication used by the user; and for reading the user's entry and exit room data through the access control system set at the room entrance and exit, identifying All users in the control area; and for quick pairing between users through the NFC device to identify all users in the control area.
  • FIG. 1 is a schematic flowchart of a smart air conditioner control method according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic flowchart of step 1 in a smart air conditioner control method according to Embodiment 2 of the present invention
  • step 3 is a schematic flowchart of step 3 in a smart air conditioner control method according to Embodiment 3 of the present invention.
  • FIG. 4 is a network topology diagram of a smart air conditioner control apparatus according to Embodiment 4 of the present invention.
  • FIG. 5 is a schematic structural diagram of a smart air conditioner control apparatus according to Embodiment 5 of the present invention.
  • FIG. 6 is a schematic structural diagram of a first acquiring module in a smart air conditioner control device according to Embodiment 6 of the present invention.
  • FIG. 7 is a schematic structural diagram of a second acquiring module in a smart air conditioner control device according to Embodiment 7 of the present invention.
  • FIG. 8 is a schematic structural diagram of a third acquiring module in a smart air conditioner control apparatus according to Embodiment 8 of the present invention.
  • FIG. 1 is a schematic flowchart of a smart air conditioner control method according to Embodiment 1 of the present invention.
  • the execution body of the method may be a smart home scheduling server. As shown in FIG. 1 , the method includes the following steps:
  • Step 1 Obtain user information corresponding to the user who uses the target air conditioner in the preset time period
  • Step 2 Obtain an air conditioner operating parameter preference value of each user in the preset time period
  • Step 3 Obtain, according to user information, a control weight of each target air conditioner of the user;
  • Step 4 Calculate an optimal value of the operating parameter of the target air conditioner in the preset time period according to the air conditioner operating parameter preference value and the corresponding control weight of all users;
  • Step 5 Send the operating parameter optimal value to the control system of the target air conditioner to drive the control system to control the target air conditioner to operate according to the optimal value of the operating parameter during the preset time period.
  • Embodiments of the present invention provide a smart air conditioner control method in a multi-person environment.
  • each user has different requirements for the target air conditioner, and the same air conditioner operating parameters will have different effects on different users, such as the same sleep temperature of 20 degrees.
  • Adults may feel a little cold, and children may catch a cold directly. Therefore, it is necessary to control the operating parameters of the target air conditioner to better meet the needs of children.
  • the embodiment of the present invention by obtaining the control weight of each user on the target air conditioner and the preference value of the air conditioning operation parameter of each user, it is possible to calculate the optimal air conditioning operation suitable for multiple people in the same space and in the environment where multiple users use the air conditioner together.
  • the parameters, and the optimal air conditioning operating parameters more meet the needs of users with higher air conditioning control weights, not only add a new range of new control modes to smart air conditioners, but also greatly improve the comfort of air conditioning for each user in the home. To meet the user's air conditioning needs.
  • the same air conditioning operating parameters are analyzed for which populations have a greater impact, and which groups have less impact, and the common characteristics are extracted for the population, and the user information described in step 1 can be obtained.
  • the user information includes user age and user body detection data.
  • the body test data can reflect a person's physical condition. When the physical condition is poor, the possibility of getting sick under the same air conditioning operating parameter is higher, that is, the impact is greater, so the user needs to be given a higher control weight. Make the air conditioning operating parameters more in line with the requirements of this part of the user. Similarly, the younger the user, the worse the resistance to disease, and the higher the likelihood of illness under the same air conditioning operating parameters. Therefore, it is necessary to give higher control weight to younger users and make air conditioning operating parameters. More in line with the requirements of this part of the user.
  • the air conditioning operating parameters include air conditioning temperature, air conditioning humidity, air conditioning air volume, air conditioning running time, air conditioner fan swing head direction, air conditioner fan swing angle, and the like.
  • the air conditioning temperature is taken as the air conditioning operating parameter of the embodiment, and the steps of the present invention are described in detail.
  • other air conditioning operating parameters such as air conditioning humidity, air conditioning air volume, air conditioning running time, and air conditioning fan. Any air conditioning function that can be quantized into a numerical value such as a oscillating direction and/or an air conditioner fan oscillating angle can be calculated according to the method of the present invention, and the optimal value of each air conditioning operating parameter in a multi-user environment is calculated. Detailed descriptions are not separately made.
  • the embodiment of the present invention calculates the In the same space, the optimal temperature common to multiple users, that is, the optimal temperature value of the air conditioner operation in a multi-user environment, satisfies as much as possible the comfort of a multi-person, especially a user with a high control weight.
  • FIG. 2 is a schematic flowchart of step 1 in a smart air conditioner control method according to Embodiment 2 of the present invention. As shown in FIG. 2, step 1 specifically includes the following steps:
  • each of the target air conditioners has a control area, such as an air conditioner installed in the room, and the control area is the room.
  • Step 1 is to obtain user information of all users in the room for a preset time period, such as a family with a baby, and the baby sleeps in the master bedroom with the parents at night, then the preset time period is the night sleep time, and the user information includes Baby information, father information and mother information, etc.
  • the number of users in the control area may change during a preset time period, so the steps S101 to S104 may be repeated at a preset frequency in a preset time period, and the user of the target air conditioning control area may be continuously
  • the information is modified to further improve the use effect of the present invention.
  • the installation location information of the target air conditioner is obtained by querying a preset air conditioner installation table.
  • a preset air conditioner installation table is pre-established, and the installation location information of each air conditioner, such as positioning data, is recorded on the table, and then the air conditioner installation table is queried to obtain the target.
  • Air conditioning installation location information is not limited to this method.
  • the air conditioner installation table may not be established in advance, but after the air conditioners are all installed, the installation location information of each air conditioner may be manually input or detected by sensors such as infrared rays, and the air conditioner installation location information obtained in this manner is more real-time. Accurate and more suitable for environments where air conditioning installation locations change frequently.
  • the step S102 is specifically: acquiring a landscape map of the home, identifying the target air conditioner in the landscape map according to the installation location information of the target air conditioner, and identifying the control of the target air conditioner.
  • the area generates corresponding control area information.
  • the control area of each air conditioner can be directly identified in the pattern, and the control area is the range of the room where the air conditioner is located, thereby obtaining the corresponding control more simply and quickly.
  • Regional information is specifically: acquiring a landscape map of the home, identifying the target air conditioner in the landscape map according to the installation location information of the target air conditioner, and identifying the control of the target air conditioner.
  • the area generates corresponding control area information.
  • the S103 is specifically: collecting monitoring video of the control area, and identifying all users using the target air conditioner by using the monitoring video.
  • the monitoring video may be subjected to portrait detection, and the number of users corresponding to the control area and the characteristics of each user, such as gender, height, age, and the like, may be identified, and then the preset first user information table is queried.
  • User information corresponding to different features that is, user information corresponding to each user, can be obtained.
  • each user wears an electronic wearable device or other client, such as a smart watch, a smart phone, etc., with a positioning module, a wireless communication module, or an identity in the electronic wearable device or other client.
  • the identification module or the like can identify all users in the corresponding control area, that is, using the target air conditioner, through the positioning module, the wireless communication module or the identity recognition module.
  • the electronic wearable device or other client has a unique device code, and the device code is the corresponding user identity code. By querying the preset second user information table, the user information corresponding to the different user identity codes can be obtained.
  • the S103 may use a GPS and/or a Beidou satellite positioning system to locate an electronic wearable device or other client, that is, locate the user, thereby identifying all users in the control area.
  • the S103 can utilize the user's electronic wearable device or other client wireless communication used by the user.
  • the signal strength of the signal such as Wi-Fi signal strength, infrared signal strength, Bluetooth signal strength, or Zigbee node signal strength, identifies all users in the control area.
  • WiFi positioning technology uses a wireless local area network (WLAN) composed of wireless access points (including wireless routers), and uses a combination of signal strength synthesis maps and signal propagation models of peripheral Wi-Fi to access mobile devices (such as Positioning with electronic wearables or other clients) with a maximum accuracy of between 1 and 20 meters.
  • WLAN wireless local area network
  • Bluetooth communication is a short-distance, low-power wireless transmission technology. After installing an appropriate Bluetooth LAN access point indoors, the network is configured to be based on a multi-user basic network connection mode, and the Bluetooth LAN access point is always this. The master device of the micro network, so that the location information of the user can be obtained by detecting the signal strength.
  • Bluetooth positioning is mainly used for small-scale positioning, such as single-level halls. For a mobile terminal device with integrated Bluetooth function, such as an electronic wear device or other client, the Bluetooth indoor positioning system can determine the position of the device as long as the Bluetooth function of the device is turned on.
  • Infrared technology indoor positioning is through the optical sensor installed indoors, receiving mobile devices, such as electronic wearable devices or other clients to emit modulated infrared rays for positioning, with relatively high indoor positioning accuracy.
  • ZigBee is a short-range, low-rate wireless network technology. It is located between RFID and Bluetooth. It can position the device through coordinated communication between sensors. These sensors require only a small amount of energy to relay. The way to transmit data from one sensor to another via radio waves, ZigBee's most notable feature is its low power consumption and low cost.
  • all users in the control area may be identified by the electromagnetic signal strength of other wireless communications, and all users in the control area are identified by the electromagnetic signal strength of other wireless communications.
  • the S103 may set an access control system at an entrance and exit of the room, and read and receive room data of the user's electronic wearable device or other clients used by the user through the access control system, thereby identifying all users in the control area.
  • NFC the full name of Near Field Communication
  • NFC is a short-range wireless communication, which is a wireless connection technology that is easy, safe and fast communication. Its transmission range is relatively small, bandwidth is high, and energy consumption is low. By judging whether users can perform NFC wireless. Communication, all users in the control area can be identified.
  • the step 2 is specifically: acquiring an air conditioning operation record table, where the air conditioner operation record table includes a history operation record corresponding to the at least one user identification code in a preset time period, in the history operation record The air conditioning function setting value is extracted, and the air conditioning operating parameter preference value corresponding to the user in the at least one user identification code is obtained in the preset time period; or the search data is obtained by querying the preset search engine, where the search is performed.
  • the data includes air conditioning usage suggestions and/or health data corresponding to different user information, and then obtains an air conditioning operating parameter preference value corresponding to the user information in a preset time period according to the search data; or queries a preset database, the preset database
  • a mapping relationship between different user information and air conditioner operating parameter preference values is stored therein And obtaining, according to the mapping relationship table, an air conditioning operating parameter preference value corresponding to the user information in a preset time period.
  • all users in the control area that is, all users using the target air conditioner do not operate the target air conditioner, for example, the baby in the master bedroom feels the effect of the target air conditioner, but the baby The target air conditioner is not controlled.
  • the air conditioner operation record table may be collected for a period of time, and the air conditioner operation record table is analyzed to obtain the air conditioner operation parameter of the user in the preset time period. Preference value.
  • the air conditioning operation record table includes a user identification code corresponding to the user information, an operation instruction and/or an operation time corresponding to different user identification codes, and the operation instruction is an instruction for adjusting an air conditioning operation parameter.
  • the operation instruction of this embodiment is to set the air conditioning temperature, and the specific air conditioning operation record table is as shown in Table 1:
  • the above form is the air conditioning operation record of mom and dad between 18:00 and 20:00 on a certain day, where User1 indicates mother and User2 indicates father.
  • the mother's air conditioning operating parameter preference value and the father's air conditioning operating parameter preference value can be obtained.
  • statistics, probability, machine learning, data mining, and the like can also be used for acquisition. It is worth noting that under different seasons, climates, and space conditions, there will be some differences in the air conditioning temperature preference values of users during the same time period.
  • the temperature preference value of the air conditioner in the current environment is 24 degrees Celsius; in the former environment, the air conditioner temperature preference value is 26 degrees Celsius.
  • the air conditioner operation parameter preference value corresponding to the user information in the preset time period is obtained by querying the preset search engine or the preset database. For example, for a baby, you can get the age of the baby, and then query the default search engine and the default database to get the most suitable air conditioning temperature for the baby of that age, such as 27 degrees Celsius.
  • the method for obtaining the air conditioning operating parameter preference value is simple and fast, but also the acquired data is relatively accurate and complete, and the implementation effect of the present invention is further improved.
  • FIG. 3 is a schematic flowchart of step 3 in a smart air conditioner control method according to Embodiment 3 of the present invention. As shown in FIG. 3, the step 3 is specifically:
  • S301 Calculate a user health score according to the user body detection data, and generate a corresponding user health level according to the interval in the preset user health level table according to the user health score;
  • S302 Acquire an initial control weight corresponding to the user's health level by querying a preset weight correspondence table. Then querying a preset coefficient table, obtaining a corresponding correction coefficient according to the age of the user, and calculating a product of the correction coefficient and the initial control weight, where the product is a target control weight of the user; The lower the user's health level, the higher the control weight. In the coefficient table, the smaller the user age, the higher the correction coefficient.
  • the home appliance control between the individual users is calculated according to the user's age and the user's body detection data, and who should give a heavier dominance.
  • people who are greatly affected by the air conditioning effect have greater control weights, or users who need to be taken care have greater control weight, but give the group users a certain degree.
  • Temperature control flexibility in line with the social group life rules.
  • the method for acquiring the user control weight of the present invention is not limited to the air conditioning temperature control, and can also be used in the air conditioning operating parameter control such as the air conditioning humidity and the air conditioning air volume.
  • different air conditioning functions have different user control weights, which can be calculated separately.
  • the air volume of the air conditioner is particularly concerned, and the air conditioning air volume has a great influence on it, so the user adjusts the air conditioning air volume.
  • This parameter has a higher control weight.
  • the sum of the control weights of all users is equal to 1.
  • the user health score is first calculated according to the user's body detection data. In the calculation formula, the calculation weight corresponding to each body detection data is different, and the more the body detection data of the body health degree can be indicated.
  • the father's body test data is ideal, so the health level is higher, the control weight of the air conditioner temperature is 0.2; the mother's body test data is worse than that of the father, so the health level is lower than that of the father, and the weight of the air conditioner temperature is 0.3; For younger ages, the health of the body test data is moderate, so the weight of the air conditioning temperature is 0.5.
  • step 4 of the preferred embodiment the calculation method of the optimal value of the operating parameter is:
  • the OPV is the optimal operating parameter of the target air conditioner
  • the vi to vn are the air conditioning operating parameter preference values corresponding to the users of the number i to the number n
  • the ai ⁇ an are the users of the number i to the number n in the control area.
  • the control weight corresponding to the air conditioning operating parameter.
  • the system architecture includes at least: a smart wearable device, a client, a sensor node, and an Internet of Things system, wherein the Internet of Things system includes an Internet of Things access device, an Internet of Things interconnection device, and an Internet of Things application server.
  • the Internet of Things access device includes an Internet of Things remote access interface and an Internet of Things local access interface for establishing an external terminal and an Internet of Things service subsystem through the Internet of Things remote access interface and the Internet of Things local access interface. Connection.
  • the Internet of Things interconnection device includes an Internet of Things interconnection interface for connecting to an IoT access device, an Internet of Things application server, and an internal terminal, respectively, for providing the IoT access device through the Internet of Things interconnection interface, and the The interconnection of the IoT service subsystem.
  • FIG. 5 is a schematic structural diagram of a smart air conditioner control apparatus according to Embodiment 5 of the present invention. As shown in FIG. 5, the apparatus includes a first acquisition module 500, a second acquisition module 510, a third acquisition module 520, and a calculation module 530. And control module 540,
  • the first obtaining module 500 is configured to acquire user information corresponding to a user who uses a target air conditioner for a preset time period;
  • the second obtaining module 510 is configured to obtain an air conditioning operating parameter preference value of each user in the preset time period
  • the third obtaining module 520 is configured to acquire, according to user information, a control weight of each target air conditioner by the user;
  • the calculating module 530 is configured to calculate, according to an air conditioning operating parameter preference value of all users and a corresponding control weight, an operating parameter optimal value of the target air conditioner in the preset time period in a multi-user environment;
  • the control module 540 is configured to send the operating parameter optimal value to the control system of the target air conditioner, to drive the control system to control the target air conditioner in the preset time period, according to the operating parameter.
  • the value of the value is running.
  • Embodiments of the present invention provide a smart air conditioner control apparatus in a multi-person environment.
  • each user has different requirements for the target air conditioner, and the same air conditioner operating parameters will have different effects on different users, such as the same sleep temperature of 20 degrees.
  • Adults may feel a little cold, and children may catch a cold. Therefore, the control module 540 needs to control the operating parameters of the target air conditioner to better meet the needs of children.
  • the third acquisition module 520 acquires the control weight of each user on the target air conditioner
  • the second acquisition module 510 acquires the air conditioner operation parameter preference value of each user, and can calculate that the air conditioner is used by multiple users in the same space.
  • the optimal air conditioning operating parameters In the environment, it is suitable for the optimal air conditioning operating parameters of many people. At the same time, the optimal air conditioning operating parameters more satisfy the needs of users with higher air conditioning control weights, not only adding a new range of new control modes to smart air conditioners, but also It improves the comfort of each user in the home using air conditioners and meets the user's air conditioning needs.
  • the first obtaining module 500 first analyzes which groups of the same air conditioning operating parameters have a greater impact on which groups of people, and which groups have less influence on them, and extracts the common features from the people to obtain the user information.
  • the user information includes user age and user body detection data.
  • the body test data can reflect a person's physical condition. When the physical condition is poor, the possibility of getting sick under the same air conditioning operating parameters is high. That is to say, the impact on it is greater, so the user needs to be given a higher control weight, so that the air conditioning operating parameters are more in line with the requirements of this part of the user. Similarly, the younger the user, the worse the resistance to disease, and the higher the likelihood of illness under the same air conditioning operating parameters. Therefore, it is necessary to give higher control weight to younger users and make air conditioning operating parameters. More in line with the requirements of this part of the user.
  • the air conditioning operating parameters include air conditioning temperature, air conditioning humidity, air conditioning air volume, air conditioning running time, air conditioner fan swing head direction, air conditioner fan swing angle, and the like.
  • the air conditioning temperature is taken as the air conditioning operating parameter of the present embodiment, and the device of the present invention is described in detail.
  • other air conditioning operating parameters such as air conditioning humidity, air conditioning air volume, air conditioning running time, and air conditioning fan.
  • Any tunable numerical value air conditioning function such as the oscillating direction and/or the air conditioner fan oscillating angle, can calculate the optimal value of each air conditioning operating parameter in a multi-user environment according to the device of the present invention, and the calculation process is here. Detailed descriptions are not separately made.
  • FIG. 6 is a schematic structural diagram of a first acquiring module 500 in a smart air conditioning control device according to Embodiment 6 of the present invention.
  • the first acquiring module 500 specifically includes a first acquiring unit 5001. a first generation unit 5002, an identification unit 5003, and a second acquisition unit 5004,
  • the first obtaining unit 5001 is configured to acquire installation location information of the target air conditioner.
  • the first generating unit 5002 is configured to generate control area information of the target air conditioner according to the installation location information;
  • the identifying unit 5003 is configured to identify all users in the control area corresponding to the control area information
  • the second obtaining unit 5004 is configured to acquire user information corresponding to each user.
  • each of the target air conditioners has a control area, such as an air conditioner installed in the room, and the control area is the room.
  • the first obtaining module 500 is to obtain user information of all users in the room for a preset time period, such as a family with a baby, and the baby sleeps in the master bedroom with the parents at night, then the preset time period is night sleep. Time, user information includes baby information, father information and mother information.
  • the number of users in the control area may change during a preset time period, so that the first acquiring module 500 may be repeatedly driven at a preset frequency in a preset time period, and the target air conditioner may be continuously controlled.
  • the user information of the area is modified to further improve the use effect of the present invention.
  • the first obtaining unit 5001 is specifically configured to obtain installation location information of the target air conditioner by querying a preset air conditioning installation table.
  • an air conditioning installation table is pre-established, and the installation location information of each air conditioner, such as positioning data, is recorded on the table, and then the air conditioner installation table is queried to obtain the target. Air conditioning installation location information.
  • this method needs to establish an air conditioning installation table in advance, it can simply obtain the required information, and is suitable for an environment where the air conditioner installation position is relatively fixed, and the implementation method is still very fast as a whole.
  • the first obtaining unit 5001 is specifically configured to detect the installation location information of each air conditioner by manual input or by using an infrared sensor.
  • the above embodiment may also not complete the air conditioning installation table in advance, but the air conditioner is completely installed. After that, manually input or use infrared sensors to detect the installation position information of each air conditioner.
  • the air conditioner installation position information obtained in this way is more real-time and accurate, and is more suitable for an environment in which the air-conditioning installation position frequently changes.
  • the first generating unit 5002 is specifically configured to acquire a landscape map of the home, identify the target air conditioner in the landscape map according to the installation location information of the target air conditioner, and identify the target air
  • the adjusted control area generates corresponding control area information.
  • the control area of each air conditioner can be directly identified in the pattern, and the control area is the range of the room where the air conditioner is located, thereby obtaining the corresponding control more simply and quickly.
  • Regional information
  • the identifying unit 5003 is specifically configured to collect a monitoring video of the control area, and identify all users using the target air conditioner by using the monitoring video. Specifically, the identifying unit 5003 may perform portrait detection on the monitoring video, that is, the number of users corresponding to the control area and characteristics of each user, such as gender, height, age, and the like, may be identified, and then the second obtaining unit 5004 Querying the preset first user information table can obtain user information corresponding to different features, that is, user information corresponding to each user.
  • each user wears an electronic wearable device or other client, such as a smart watch, a smart phone, etc., in which the positioning module, the wireless communication module, or the identity is provided in the client.
  • the identification module or the like can identify all users in the corresponding control area, that is, using the target air conditioner, through the positioning module, the wireless communication module or the identity recognition module.
  • the electronic wearable device or other client has a unique device code, and the device code is a corresponding user identity code, and the second obtaining module 5004 can obtain different user identity codes by querying the preset second user information table. Corresponding user information.
  • the identifying unit 5003 is specifically configured to identify all users in the control area by using a GPS and/or a Beidou satellite positioning system.
  • the identifying unit 5003 is specifically configured to identify all users of the control area according to the signal strength of the wireless communication used by the user.
  • the signal strength of the wireless communication includes Wi-Fi signal strength, infrared signal strength, Bluetooth signal strength, or Zigbee node signal strength.
  • WiFi positioning technology uses a wireless local area network (WLAN) composed of wireless access points (including wireless routers), and uses a combination of signal strength synthesis maps and signal propagation models of peripheral Wi-Fi to access mobile devices (such as Positioning with electronic wearables or other clients) with a maximum accuracy of between 1 and 20 meters.
  • WLAN wireless local area network
  • Bluetooth communication is a short-distance, low-power wireless transmission technology. After installing an appropriate Bluetooth LAN access point indoors, the network is configured to be based on a multi-user basic network connection mode, and the Bluetooth LAN access point is always this. The master device of the micro network, so that the location information of the user can be obtained by detecting the signal strength.
  • Bluetooth positioning is mainly used for small-scale positioning, such as single-level halls. For a mobile terminal device with integrated Bluetooth function, such as an electronic wear device or other client, the Bluetooth indoor positioning system can determine the position of the device as long as the Bluetooth function of the device is turned on.
  • Infrared technology indoor positioning is through the optical sensor installed indoors, receiving mobile devices, such as electronic wearable devices or other clients to emit modulated infrared rays for positioning, with relatively high indoor positioning accuracy.
  • ZigBee is a short-range, low-rate wireless network technology. It is located between RFID and Bluetooth. It can position the device through coordinated communication between sensors. These sensors require only a small amount of energy to relay. The way to transmit data from one sensor to another via radio waves, ZigBee's most notable feature is its low power consumption and low cost.
  • all users in the control area may be identified by the electromagnetic signal strength of other wireless communications, and all users in the control area are identified by the electromagnetic signal strength of other wireless communications.
  • the identification unit 5003 is specifically configured to read all the users in the control area by reading the entry and exit room data of the user through the access control system provided at the entrance and exit of the room. Or the identification unit 5003 is configured to perform fast pairing between users through the NFC device to identify all users in the control area.
  • NFC the full name of Near Field Communication
  • NFC is a short-range wireless communication, which is a wireless connection technology that is easy, safe and fast communication. Its transmission range is relatively small, bandwidth is high, and energy consumption is low. By judging whether users can perform NFC wireless. Communication, all users in the control area can be identified.
  • the identification unit 5003 can use various methods to identify all users in the control area, and thus can be selected according to actual conditions, and the scope of use of the present invention is expanded.
  • FIG. 7 is a schematic structural diagram of a second acquiring module 510 in a smart air conditioning control device according to Embodiment 7 of the present invention.
  • the second acquiring module 510 includes a third acquiring unit 5101 and a first Four acquisition unit 5102,
  • the third obtaining unit 5101 is configured to acquire an air conditioning operation record table, where the air conditioner operation record table includes a history operation record corresponding to at least one user identification code in a preset time period, and set a value of the air conditioner function in the historical operation record. Performing extraction to obtain an air conditioning operating parameter preference value corresponding to the user in the at least one user identification code corresponding to the user in a preset time period;
  • the fourth obtaining unit 5102 is configured to obtain search data by querying a preset search engine, where the search data includes air conditioning usage suggestions and/or health data corresponding to different user information, and then acquiring the preset time period according to the search data.
  • the air conditioner operating parameter preference value corresponding to the user information is set in a time period.
  • the third acquiring unit 5101 is specifically configured to collect an air conditioning operation record table for a period of time in advance, and analyze the air conditioner operation record table to obtain the user for a preset time period. Air conditioning operating parameter preference value.
  • the air conditioning operation record table includes a user identification code corresponding to the user information, an operation instruction and/or an operation time corresponding to different user identification codes, and the operation instruction is an instruction for adjusting an air conditioning operation parameter.
  • the operation command of this embodiment is to set the air conditioner temperature.
  • the third obtaining unit 5101 may also collect the air conditioner operating parameter preference value of the preset time period by using statistics, probability, machine learning, data mining, and the like.
  • the fourth obtaining unit 5102 is specifically configured to obtain an air conditioning operating parameter preference value corresponding to the user information in a preset time period by querying a preset search engine or a preset database. For example, for a baby, you can get the age of the baby, and then query the default search engine and the default database to get the most suitable air conditioning temperature for the baby of that age, such as 27 degrees Celsius.
  • the method for obtaining the air conditioning operating parameter preference value is simple and fast, but also the acquired data is relatively accurate and complete, and the implementation effect of the present invention is further improved.
  • FIG. 8 is a schematic structural diagram of a third obtaining module 520 in a smart air conditioner control apparatus according to Embodiment 8 of the present invention.
  • the third acquiring module 520 includes a second generating unit 5201 and a query. Unit 5202,
  • the second generating unit 5201 is configured to calculate a user health score according to the user body detection data, and generate a corresponding user health level according to the interval in the preset user health level table according to the user health score;
  • the query unit 5202 is configured to obtain an initial control weight corresponding to the user's health level by querying a preset weight correspondence table, and then query a preset coefficient table, obtain a corresponding correction coefficient according to the user age, and calculate the correction coefficient. And the product of the initial control weight, wherein the product is the target control weight of the user; in the weight correspondence table, the lower the health level of the user, the higher the control weight, and the smaller the user age in the coefficient table The higher the correction factor.
  • the home appliance control between the individual users is calculated according to the user's age and the user's body detection data, and who should give a heavier dominance.
  • people who are greatly affected by the air conditioning effect have greater control weights, or users who need to be taken care have greater control weight, but give the group users a certain degree.
  • Temperature control flexibility in line with the social group life rules.
  • the method for acquiring the user control weight of the present invention is not limited to the air conditioning temperature control, and can also be used in the air conditioning operating parameter control such as the air conditioning humidity and the air conditioning air volume.
  • different air conditioning functions have different user control weights, which can be calculated separately.
  • the air volume of the air conditioner is particularly concerned, and the air conditioning air volume has a great influence on it, so the user adjusts the air conditioning air volume.
  • This parameter has a higher control weight.
  • the summation of all users is equal to 1.
  • the calculation module 530 calculates the optimal value of the operating parameter by using the following formula:
  • the OPV is an optimal value of the operating parameter of the target air conditioner
  • vi to vn are the air conditioning operating parameter preference values corresponding to the users of the number i to the number n in the control area
  • ai ⁇ an is the number i in the control area.
  • the user of number n controls the weight corresponding to the air conditioning operating parameter.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative, for example, unitary
  • the division is only for one logical function division. Actual implementation may have another division manner.
  • multiple units or components may be combined or integrated into another system, or some features may be ignored or not executed.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • An integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, can be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

一种智能空调控制方法和装置,方法包括以下步骤:步骤1,获取预设时间段使用目标空调的用户对应的用户信息;步骤2,获取每个用户在预设时间段的空调运行参数偏好值;步骤3,根据用户信息获取每个用户对目标空调的控制权重;步骤4,根据所有用户的空调运行参数偏好值和对应的控制权重,计算目标空调的运行参数最优值;步骤5,将运行参数最优值发送给目标空调的控制系统。该方法可以计算得到同一空间内,多用户共同使用空调的环境下,适合多人的最优空调运行参数,该最优空调运行参数更加满足对空调控制权重较高的用户的需求。

Description

一种智能空调控制方法和装置 技术领域
本发明涉及物联网技术领域,特别涉及一种智能空调控制方法和装置。
背景技术
随着人们生活水平的提高,空调已经广泛地进入到千家万户,成为家庭中必不可少的电器之一。在同一空间下,不同年龄、不同身体状况的人对于空调运行参数值的需求各不相同,比如对空调温度、空调湿度、风量的需求,就各不一样。以空调温度为例,因为空调只有一台,小孩子可能会觉得太冷,年轻人可能会觉得太热。市面上的智能空调,仅可以透过单一用户设置习惯调整空调的运行参数,此种做法仅能反应单一用户的最优空调运行参数,不能体现多用户环境下,适合大多数用户,尤其是适合幼儿或者身体状态较差的特殊人群的最优空调运行参数,不可避免的会降低用户的空调使用舒适度。
发明内容
为解决上述技术问题,本发明提供了一种智能空调控制方法和装置。
第一方面,本发明实施例提供了一种智能空调控制方法,包括以下步骤:
步骤1,获取预设时间段使用目标空调的用户对应的用户信息;
步骤2,获取每个用户在所述预设时间段的空调运行参数偏好值;
步骤3,根据用户信息获取每个用户对所述目标空调的控制权重;
步骤4,根据所有用户的空调运行参数偏好值和对应的控制权重,计算在多用户环境下,所述目标空调在所述预设时间段的运行参数最优值;
步骤5,将所述运行参数最优值发送给所述目标空调的控制系统,以驱动所述控制系统控制所述目标空调在所述预设时间段,按照所述运行参数最优值运行。
本发明实施例提供了一种多人环境下的智能空调控制方法。当同一空间有多个用户但是只有一台目标空调时,每个用户对目标空调的需求不一样,同时同一空调运行参数对不同用户造成的影响也会不一样,比如同样是睡眠温度20度,成年人可能会觉得稍冷,而小孩子可能会直接感冒,因此,需要控制目标空调的运行参数更加满足小孩子的需求。本发明实施例通过获取每个用户对目标空调的控制权重以及每个用户的空调运行参数偏好值,可以计算得到同一空间内,多用户共同使用空调的环境下,适合多人的最优空调运行参数,同时该最优空调运行参数更加满足对空调控制权重较高的用户的需求,不仅给智能空调增加了应用范围广泛的新控制模式,而且大幅提高了家庭中每个用户使用空调的舒适度,满足用户的空调使用需求。
进一步,所述空调运行参数包括空调温度、空调湿度、空调风量、空调运行时间、空调风扇摆头方向和空调风扇摆头角度。
上述实施例中,任何可量化成数值的空调功能,都可以根据本发明的方法,计算出在多用户环境下各个空调运行参数的最优值,因此扩大了本发明的使用范围,进一步提高了本发明的使用效果。
进一步,所述步骤S102具体为:获取家庭的格局图,根据所述目标空调的安装位置信息在所述格局图中标识所述目标空调,并标识所述目标空调的控制区域,生成对应的控制区域信息。
上述优选实施例中,通过获取所述格局图,可以在格局图中对每个空调的控制区域直接标识,所述控制区域为所述空调所在的房间范围,从而更加简单快速的获取对应的控制区域信息。
进一步,所述S103具体为:采集所述控制区域的监控视频,通过所述监控视频,识别使用所述目标空调的所有用户;
或者利用GPS和/或北斗卫星定位系统,识别处于所述控制区域的所有用户;
或者根据用户所使用的无线通讯的信号强度,识别所述控制区域的所有用户;
或者在房间的出入口设置门禁系统,通过所述门禁系统读取用户的进出房间数据,识别处于所述控制区域的所有用户;
或者通过NFC设备进行用户间的快速配对,识别处于所述控制区域的所有用户。
上述优选实施例中设置了多种方法来识别处于所述控制区域的所有用户,因此可以根据实际情况进行选择,扩大了本发明的使用范围。
第二方面,本发明提供了一种智能空调控制装置,包括第一获取模块、第二获取模块、第三获取模块、计算模块和控制模块,
所述第一获取模块用于获取预设时间段使用目标空调的用户对应的用户信息;
所述第二获取模块用于获取每个用户在所述预设时间段的空调运行参数偏好值;
所述第三获取模块用于根据用户信息获取每个用户对所述目标空调的控制权重;
所述计算模块用于根据所有用户的空调运行参数偏好值和对应的控制权重,计算在多用户环境下,所述目标空调在所述预设时间段的运行参数最优值;
所述控制模块用于将所述运行参数最优值发送给所述目标空调的控制系统,以驱动所述控制系统控制所述目标空调在所述预设时间段,按照所述运行参数最优值运行。
本发明实施例提供了一种多人环境下的智能空调控制装置。当同一空间有多个用户但是只有一台目标空调时,每个用户对目标空调的需求不一样,同时同一空调运行参数对不同用户造成的影响也会不一样,比如同样是睡眠温度20度,成年人可能会觉得稍冷,而小孩子可能会直接感冒,因此,需要控制目标空调的运行参数更加满足小孩子的需求。本发明实施例通过获取每个用户对目标空调的控制权重以及每个用户的空调运行参数偏好值,可以计算得到同一空间内,多用户共同使用空调的环境下,适合多人的最优空调运行参数,同时该最优空调运行参数更加满足对空调控制权重较高的用户的需求,不仅给智能空调增加了应用范围广泛的新控制模式,而且大幅提高了家庭中每个用户使用空调的舒适度,满足用户的空调使用需求。
进一步,所述空调运行参数包括空调温度、空调湿度、空调风量、空调运行时间、空调风扇摆头方向和空调风扇摆头角度。
上述实施例中,任何可量化成数值的空调功能,都可以根据本发明的方法,计算出在多用户环境下各个空调运行参数的最优值,因此扩大了本发明的使用范围,进一 步提高了本发明的使用效果。
进一步,所述第一生成单元具体用于获取家庭的格局图,根据所述目标空调的安装位置信息在所述格局图中标识所述目标空调,并标识所述目标空调的控制区域,生成对应的控制区域信息。
上述优选实施例中,通过获取所述格局图,可以在格局图中对每个空调的控制区域直接标识,所述控制区域为所述空调所在的房间范围,从而更加简单快速的获取对应的控制区域信息。
进一步,所述识别单元具体用于采集所述控制区域的监控视频,通过所述监控视频,识别使用所述目标空调的所有用户;以及用于利用GPS和/或北斗卫星定位系统,识别处于所述控制区域的所有用户;以及用于根据用户所使用的无线通讯的信号强度,识别所述控制区域的所有用户;以及用于通过设置在房间出入口的门禁系统读取用户的进出房间数据,识别处于所述控制区域的所有用户;以及用于通过NFC设备进行用户间的快速配对,识别处于所述控制区域的所有用户。
上述优选实施例中设置了多种方法来识别处于所述控制区域的所有用户,因此可以根据实际情况进行选择,扩大了本发明的使用范围。
本发明附加的方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明实践了解到。
附图说明
图1为本发明实施例1提供的一种智能空调控制方法的示意性流程图;
图2为本发明实施例2提供的一种智能空调控制方法中步骤1的示意性流程图;
图3为本发明实施例3提供的一种智能空调控制方法中步骤3的示意性流程图;
图4为本发明实施例4提供的一种智能空调控制装置的网络拓扑图;
图5为本发明实施例5提供的一种智能空调控制装置的结构性示意图;
图6为本发明实施例6提供的一种智能空调控制装置中第一获取模块的结构性示意图;
图7为本发明实施例7提供的一种智能空调控制装置中第二获取模块的结构性示意图;
图8为本发明实施例8提供的一种智能空调控制装置中第三获取模块的结构性示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、接口、技术之类的具体细节,以便透切理解本发明。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
图1给出了本发明实施例1提供的一种智能空调控制方法的示意性流程图,该方法的执行主体可以是智能家居的调度服务器,如图1所示,该方法包括以下步骤:
步骤1,获取预设时间段使用目标空调的用户对应的用户信息;
步骤2,获取每个用户在所述预设时间段的空调运行参数偏好值;
步骤3,根据用户信息获取每个用户对所述目标空调的控制权重;
步骤4,根据所有用户的空调运行参数偏好值和对应的控制权重,计算在多用户环境下,所述目标空调在所述预设时间段的运行参数最优值;
步骤5,将所述运行参数最优值发送给所述目标空调的控制系统,以驱动所述控制系统控制所述目标空调在所述预设时间段,按照所述运行参数最优值运行。
本发明实施例提供了一种多人环境下的智能空调控制方法。当同一空间有多个用户但是只有一台目标空调时,每个用户对目标空调的需求不一样,同时同一空调运行参数对不同用户造成的影响也会不一样,比如同样是睡眠温度20度,成年人可能会觉得稍冷,而小孩子可能会直接感冒,因此,需要控制目标空调的运行参数更加满足小孩子的需求。本发明实施例通过获取每个用户对目标空调的控制权重以及每个用户的空调运行参数偏好值,可以计算得到同一空间内,多用户共同使用空调的环境下,适合多人的最优空调运行参数,同时该最优空调运行参数更加满足对空调控制权重较高的用户的需求,不仅给智能空调增加了应用范围广泛的新控制模式,而且大幅提高了家庭中每个用户使用空调的舒适度,满足用户的空调使用需求。
具体实施例中,首先分析同样空调运行参数对哪些人群影响较大,对哪些人群影响较小,对这些人群提取共性特征,即可得到步骤1所述的用户信息。比如优选实施例中,用户信息包括用户年龄和用户身体检测数据。身体检测数据可以反应一个人的身体状况,当身体状况较差时,相同空调运行参数下其生病的可能性较高,即对其影响更大,因此需要对该用户赋予更高的控制权重,使空调运行参数更加符合这部分用户的要求。同样的,用户年龄越小,对于疾病的抵抗能力可能越差,相同空调运行参数下其生病的可能性也较高,因此需要对年龄较小的用户赋予更高的控制权重,使空调运行参数更加符合这部分用户的要求。
优选实施例中,所述空调运行参数包括空调温度、空调湿度、空调风量、空调运行时间、空调风扇摆头方向和空调风扇摆头角度等等。以下实施例均以空调温度作为本实施例的空调运行参数,详细描述本发明的步骤,在本发明的其他实施例中,其他空调运行参数,例如空调湿度、空调风量、空调运行时间、空调风扇摆头方向和/或空调风扇摆头角度等任何可量化成数值的空调功能,都可以根据本发明的方法,计算出在多用户环境下,各个空调运行参数的最优值,计算过程在此不分别进行详细说明。
同一空间下,每个人对于温度的需求不同,但空调只有一台,因此常常会出现有人觉得太冷,有人觉得太热的情况,为了解决此问题,本发明实施例透过算法,计算出在同一空间下,多用户共同的最优温度,即在多用户环境下,空调运行的最优温度值,尽可能满足多人、尤其是控制权重较高的用户的舒适性。
图2给出了本发明实施例2提供的一种智能空调控制方法中步骤1的示意性流程图,如图2所示,步骤1具体包括以下步骤:
S101,获取所述目标空调的安装位置信息;
S102,根据所述安装位置信息,生成所述目标空调的控制区域信息;
S103,识别处于所述控制区域信息对应控制区域的所有用户;
S104,获取每个用户分别对应的用户信息。
上述优选实施例中,每个目标空调都具有一个控制区域,比如安装在房间的空调,控制区域即为该房间。步骤1即要获取预设时间段该房间的所有用户的用户信息,比如有小宝宝的家庭,小宝宝晚上和父母一起睡在主卧,那么预设时间段即为晚上睡眠时间,用户信息包括小宝宝信息、父亲信息和母亲信息等等。当然,在预设时间段内,所述控制区域的用户数量可能会发生变化,因此可以在预设时间段,以预设频率重复S101~S104的步骤,即可不断对目标空调控制区域的用户信息进行修改,进一步提高本发明的使用效果。
优选实施例的步骤S101中,通过查询预设的空调安装表,获取目标空调的安装位置信息。该具体实施例中,在安装空调前,就预先建立一个空调安装表,表上记载了每个空调的安装位置信息,比如定位数据等等,然后通过查询所述空调安装表,即可获取目标空调的安装位置信息。这种方式虽然需要预先建立空调安装表,但是可以简单获取所需要的信息,适用于空调安装位置比较固定的环境,同时整体而言实现方法还是非常快速。在其他实施例中,也可以不预先建立空调安装表,而是在空调全部安装完毕后,手动输入或者通过红外线等传感器检测各个空调的安装位置信息,这种方式获取的空调安装位置信息更加实时准确,更加适用于空调安装位置经常变动的环境。
在另一优选实施例中,所述步骤S102具体为:获取家庭的格局图,根据所述目标空调的安装位置信息在所述格局图中标识所述目标空调,并标识所述目标空调的控制区域,生成对应的控制区域信息。上述优选实施例中,通过获取所述格局图,可以在格局图中对每个空调的控制区域直接标识,所述控制区域为所述空调所在的房间范围,从而更加简单快速的获取对应的控制区域信息。
在另一优选实施例中,所述S103具体为:采集所述控制区域的监控视频,通过所述监控视频,识别使用所述目标空调的所有用户。具体的,可以对所述监控视频进行人像检测,即可识别到对应控制区域的用户数量以及每个用户的特征,比如性别、身高、年龄等等,然后查询预设的第一用户信息表,即可获取不同特征对应的用户信息,即每个用户对应的用户信息。
在另一优选实施例中,每个用户均佩戴有电子穿戴设备或者其他客户端,比如智能手表、智能手机等等,该电子穿戴设备或者其他客户端中设有定位模块、无线通信模块或者身份识别模块等等,通过定位模块、无线通信模块或者身份识别模块即可识别在对应控制区域内,即使用所述目标空调的所有用户。同时电子穿戴设备或者其他客户端具有唯一的设备编码,该设备编码即为对应的用户身份码,通过查询预设的第二用户信息表,即可获取不同用户身份码对应的用户信息。
具体的,所述S103可以利用GPS和/或北斗卫星定位系统对电子穿戴设备或者其他客户端进行定位,即对用户进行定位,从而识别出处于所述控制区域的所有用户。
或者所述S103可以利用用户的电子穿戴设备或者用户所使用其他客户端无线通 讯的信号强度,比如Wi-Fi信号强度、红外信号强度、蓝牙信号强度或Zigbee节点信号强度,识别处于所述控制区域的所有用户。
WiFi定位技术通过无线接入点(包括无线路由器)组成的无线局域网络(WLAN),采用周边Wi-Fi的信号强度合成图和信号传播模型相结合的方式,对已接入的移动设备(比如电子穿戴设备或者其他客户端)进行位置定位,最高精确度大约在1米至20米之间。
蓝牙通讯是一种短距离低功耗的无线传输技术,在室内安装适当的蓝牙局域网接入点后,将网络配置成基于多用户的基础网络连接模式,并保证蓝牙局域网接入点始终是这个微网络的主设备,这样通过检测信号强度就可以获得用户的位置信息。蓝牙定位主要应用于小范围定位,例如:单层大厅。对于持有集成了蓝牙功能移动终端设备,比如电子穿戴设备或者其他客户端,只要设备的蓝牙功能开启,蓝牙室内定位系统就能够对其进行位置判断。
红外线技术室内定位是通过安装在室内的光学传感器,接收各移动设备,比如电子穿戴设备或者其他客户端发射调制的红外射线进行定位,具有相对较高的室内定位精度。
ZigBee是一种短距离、低速率的无线网络技术,它介于RFID和蓝牙之间,可以通过传感器之间的相互协调通信进行设备的位置定位,这些传感器只需要很少的能量,以接力的方式通过无线电波将数据从一个传感器传到另一个传感器,所ZigBee最显著的技术特点是它的低功耗和低成本。当然在其他实施例中,也可以通过其他无线通讯的电磁信号强度来识别处于所述控制区域的所有用户,通过其他无线通讯的电磁信号强度来识别处于所述控制区域的所有用户的方法均在本发明的保护范围以内。
或者所述S103可以在房间的出入口设置门禁系统,通过所述门禁系统读取用户的电子穿戴设备或者用户所使用其他客户端的进出房间数据,从而识别处于所述控制区域的所有用户。
或者所述103可以通过NFC设备进行用户间的快速配对,识别处于所述控制区域的所有用户。NFC,全称Near Field Communication,即近距离无线通信,是一种轻松、安全、迅速的通信的无线连接技术,其传输范围相对较小、带宽高、能耗低,通过判断用户是否可以进行NFC无线通信,即可识别处于所述控制区域的所有用户。
上述优选实施例中设置了多种方法来识别处于所述控制区域的所有用户,因此可以根据实际情况进行选择,扩大了本发明的使用范围。
在一个优选实施例中,所述步骤2具体为:获取空调操作记录表,所述空调操作记录表包括至少一个用户识别码在预设时间段对应的历史操作记录,对所述历史操作记录中空调功能设定值进行提取,获取所述至少一个用户识别码中每个用户识别码对应用户在预设时间段的空调运行参数偏好值;或者通过查询预设搜索引擎获取搜索数据,所述搜索数据包括空调使用建议和/或不同用户信息对应的养生数据,然后根据搜索数据获取在预设时间段与所述用户信息对应的空调运行参数偏好值;或者查询预设数据库,所述预设数据库中存储有不同用户信息和空调运行参数偏好值的映射关系 表,根据所述映射关系表获取在预设时间段与所述用户信息对应的空调运行参数偏好值。该优选实施例中,处于所述控制区域内的所有用户,即使用目标空调的所有用户并没有都对目标空调进行操作,比如主卧中的小宝宝虽然感受到目标空调的效果,但是小宝宝并不会对目标空调进行控制。因此所述步骤2中,对于对目标空调进行了操作的用户,可以预先采集一段时间的空调操作记录表,通过分析所述空调操作记录表,获取所述用户在预设时间段的空调运行参数偏好值。本实施例中,所述空调操作记录表包括与所述用户信息对应的用户识别码、不同用户识别码对应的操作指令和/或操作时间,所述操作指令为对空调运行参数进行调节的指令,本实施例的操作指令即是对空调温度进行设定,具体空调操作记录表如表1所示:
表1 本实施例的空调操作记录表
用户 设定温度 时间
User1 T23 18:06
User1 T21 18:12
User1 T20 19:15
User1 T22 19:38
User2 T26 18:05
User2 T27 18:10
User2 T26 19:33
User2 T25 19:44
上述表格即为某天的18:00~20:00之间,妈妈和爸爸的空调操作记录,其中User1表示妈妈,User2表示爸爸。获取一段时间的上述空调操作记录表,即可获取妈妈的空调运行参数偏好值和爸爸的空调运行参数偏好值。当然,在其他实施例中也可使用统计、机率、机器学习、资料探勘等技术采集得到。值得注意的是,在不同季节、气候、空间等条件下,用户在同一时间段的空调温度偏好值会存在一定差别。本实施例中,可以采集到妈妈在当前环境下,空调温度偏好值为24摄氏度;爸爸在前环境下,空调温度偏好值为26摄氏度。
所述步骤2中,对于没有对目标空调进行操作的用户,通过查询预设搜索引擎或者预设数据库,获取在预设时间段与所述用户信息对应的空调运行参数偏好值。比如对于小宝宝,可以获取小宝宝的年龄,然后查询预设的搜索引擎和预设数据库,得到该预设时间段对于该年龄的小宝宝最合适的空调温度,比如27摄氏度。上述实施例中,不仅获取空调运行参数偏好值的方法简单快速,而且获取的数据比较准确、完备,进一步提高了本发明的实现效果。
图3给出了本发明实施例3提供的一种智能空调控制方法中步骤3的示意性流程图,如图3所示,所述步骤3具体为:
S301,根据用户身体检测数据计算用户健康分值,根据所述用户健康分值在预设用户健康等级表中所处的区间,生成对应的用户健康等级;
S302,通过查询预设的权重对应表,获取所述用户健康等级对应的初始控制权重, 然后查询预设的系数表,根据用户年龄获取对应的修正系数,计算所述修正系数和所述初始控制权重的乘积,所述乘积即为用户的目标控制权重;所述权重对应表中,所述用户健康等级越低,控制权重越高,所述系数表中,用户年龄越小,修正系数越高。
上述优选实施例中,根据用户年龄和用户身体检测数据算出个别用户于群体间的家电控制,谁应给予较重的主导权。实际上,在同一空间,同样的空调运行参数下,受空调效果影响较大的人具有较大的控制权重,或者说需要被照顾的用户具有较大的控制权重,但又给予群体用户一定的温控弹性,符合社会群体生活法则。如前所述,本发明用户控制权重的获取方式,不限于空调温度控制,亦可使用于空调湿度、空调风量等空调运行参数控制中。同一个空间下,不同的空调功能,有不同的用户控制权重,可以分别进行计算,比如若有一个用户,对于空调的风量特别在意,空调风量对其影响特别大,因此该用户在调整空调风量这个参数上,具有较高的控制权重。在同一个空调功能下,所有用户的控制权重之和(Summation)等于1。在具体实施例中,首先根据用户的身体检测数据计算用户健康分值,采用的计算公式中,每个身体检测数据对应的计算权重不一样,越可以表明身体健康程度的身体检测数据所占的计算权重越高,且所有身体检测数据的计算权重之和为1,采用这种方式即可计算出用户健康分值,然后查询用户健康分值在预设用户健康等级表中所处的区间,生成对应的用户健康等级。通过查询预设的权重对应表,获取所述用户健康等级对应的初始控制权重,然后查询预设的系数表,根据用户年龄获取对应的修正系数,计算所述修正系数和所述初始控制权重的乘积,所述乘积即为用户的目标控制权重。比如爸爸身体检测数据较为理想,因此健康等级较高,对空调温度的控制权重为0.2;妈妈身体检测数据相对爸爸较差,因此健康等级低于爸爸,对空调温度的控制权重为0.3;小宝宝年龄较小,身体检测数据反应的健康等级中等,因此对空调温度的控制权重为0.5。
优选实施例的步骤4中,所述运行参数最优值的计算方法为:
Figure PCTCN2017098219-appb-000001
其中,OPV为目标空调的运行参数最优值,vi~vn为编号i~编号n的用户分别对应的空调运行参数偏好值,ai~an为所述控制区域内编号i~编号n的用户与所述空调运行参数对应的控制权重。本实施例中,将步骤2和步骤3的取值代入到上述公式中,计算出最优空调温度值=24*0.3+26*0.2+27*0.5=25.9度,即当有上述三个用户时,空调温度设定为25.9度可以满足全部用户的需求。
然后将所述最优空调温度值发送给所述目标空调的控制系统,以驱动所述控制系统控制所述目标空调在所述预设时间段,即在上述18:00~20:00时间段,按照上述最优空调温度值运行。
上文结合图1至图3,详细描述了本发明实施例的智能空调控制方法,下面结合 图4-8,详细描述本发明实施例的智能空调控制装置。
图4为本发明实施例4提供的一种智能空调控制装置的网络拓扑图。具体如图4所示,该系统架构至少包括:智能穿戴设备、客户端、传感节点和物联网系统,其中物联网系统包括物联网接入设备、物联网互联设备和物联网应用服务器等。物联网接入设备包括有物联网远端接入接口和物联网本地接入接口,用于通过所述物联网远端接入接口和物联网本地接入接口建立外部终端与物联网服务子系统的连接。物联网互联设备包括有分别用于与物联网接入设备、物联网应用服务器以及内部终端连接的物联网互联接口,用于通过所述物联网互联接口提供所述物联网接入设备以及所述物联网服务子系统的互联。
本申请文件将详细介绍物联网应用服务器所执行的方法流程。该实施例中,物联网应用服务器为智能家居的应用服务器。图5为本发明实施例5提供的一种智能空调控制装置的结构示意图,如图5所示,该装置包括第一获取模块500、第二获取模块510、第三获取模块520、计算模块530和控制模块540,
所述第一获取模块500用于获取预设时间段使用目标空调的用户对应的用户信息;
所述第二获取模块510用于获取每个用户在所述预设时间段的空调运行参数偏好值;
所述第三获取模块520用于根据用户信息获取每个用户对所述目标空调的控制权重;
所述计算模块530用于根据所有用户的空调运行参数偏好值和对应的控制权重,计算在多用户环境下,所述目标空调在所述预设时间段的运行参数最优值;
所述控制模块540用于将所述运行参数最优值发送给所述目标空调的控制系统,以驱动所述控制系统控制所述目标空调在所述预设时间段,按照所述运行参数最优值运行。
本发明实施例提供了一种多人环境下的智能空调控制装置。当同一空间有多个用户但是只有一台目标空调时,每个用户对目标空调的需求不一样,同时同一空调运行参数对不同用户造成的影响也会不一样,比如同样是睡眠温度20度,成年人可能会觉得稍冷,而小孩子可能会直接感冒,因此,控制模块540需要控制目标空调的运行参数更加满足小孩子的需求。本发明实施例中通过第三获取模块520获取每个用户对目标空调的控制权重以及第二获取模块510获取每个用户的空调运行参数偏好值,可以计算得到同一空间内,多用户共同使用空调的环境下,适合多人的最优空调运行参数,同时该最优空调运行参数更加满足对空调控制权重较高的用户的需求,不仅给智能空调增加了应用范围广泛的新控制模式,而且大幅提高了家庭中每个用户使用空调的舒适度,满足用户的空调使用需求。
具体实施例中,第一获取模块500首先分析同样空调运行参数对哪些人群影响较大,对哪些人群影响较小,对这些人群提取共性特征,即可得到所述的用户信息。比如优选实施例中,用户信息包括用户年龄和用户身体检测数据。身体检测数据可以反应一个人的身体状况,当身体状况较差时,相同空调运行参数下其生病的可能性较高, 即对其影响更大,因此需要对该用户赋予更高的控制权重,使空调运行参数更加符合这部分用户的要求。同样的,用户年龄越小,对于疾病的抵抗能力可能越差,相同空调运行参数下其生病的可能性也较高,因此需要对年龄较小的用户赋予更高的控制权重,使空调运行参数更加符合这部分用户的要求。
优选实施例中,所述空调运行参数包括空调温度、空调湿度、空调风量、空调运行时间、空调风扇摆头方向和空调风扇摆头角度等等。以下实施例均以空调温度作为本实施例的空调运行参数,详细描述本发明的装置,在本发明的其他实施例中,其他空调运行参数,例如空调湿度、空调风量、空调运行时间、空调风扇摆头方向和/或空调风扇摆头角度等任何可量化成数值的空调功能,都可以根据本发明的装置,计算出在多用户环境下,各个空调运行参数的最优值,计算过程在此不分别进行详细说明。
图6给出了本发明实施例6提供的一种智能空调控制装置中第一获取模块500的结构性示意图,如图6所示,所述第一获取模块500具体包括第一获取单元5001、第一生成单元5002、识别单元5003和第二获取单元5004,
所述第一获取单元5001用于获取所述目标空调的安装位置信息;
所述第一生成单元5002用于根据所述安装位置信息,生成所述目标空调的控制区域信息;
所述识别单元5003用于识别处于所述控制区域信息对应控制区域的所有用户;
所述第二获取单元5004用于获取每个用户分别对应的用户信息。
上述优选实施例中,每个目标空调都具有一个控制区域,比如安装在房间的空调,控制区域即为该房间。所述第一获取模块500即要获取预设时间段该房间的所有用户的用户信息,比如有小宝宝的家庭,小宝宝晚上和父母一起睡在主卧,那么预设时间段即为晚上睡眠时间,用户信息包括小宝宝信息、父亲信息和母亲信息等等。当然,在预设时间段内,所述控制区域的用户数量可能会发生变化,因此可以在预设时间段,以预设频率重复驱动所述第一获取模块500,即可不断对目标空调控制区域的用户信息进行修改,进一步提高本发明的使用效果。
具体实施例中,所述第一获取单元5001具体用于通过查询预设的空调安装表,获取目标空调的安装位置信息。该具体实施例中,在安装空调前,就预先建立一个空调安装表,表上记载了每个空调的安装位置信息,比如定位数据等等,然后通过查询所述空调安装表,即可获取目标空调的安装位置信息。这种方式虽然需要预先建立空调安装表,但是可以简单获取所需要的信息,适用于空调安装位置比较固定的环境,同时整体而言实现方法还是非常快速。在其他实施例中,所述第一获取单元5001具体用于通过手动输入或者通过红外线传感器检测各个空调的安装位置信息,上述实施例也可以不预先建立空调安装表,而是在空调全部安装完毕后,手动输入或者通过红外线等传感器检测各个空调的安装位置信息,这种方式获取的空调安装位置信息更加实时准确,更加适用于空调安装位置经常变动的环境。
另一优选实施例中,所述第一生成单元5002具体用于获取家庭的格局图,根据所述目标空调的安装位置信息在所述格局图中标识所述目标空调,并标识所述目标空 调的控制区域,生成对应的控制区域信息。上述优选实施例中,通过获取所述格局图,可以在格局图中对每个空调的控制区域直接标识,所述控制区域为所述空调所在的房间范围,从而更加简单快速的获取对应的控制区域信息。
另一优选实施例中,所述识别单元5003具体用于采集所述控制区域的监控视频,通过所述监控视频,识别使用所述目标空调的所有用户。具体的,所述识别单元5003可以对所述监控视频进行人像检测,即可识别到对应控制区域的用户数量以及每个用户的特征,比如性别、身高、年龄等等,然后第二获取单元5004查询预设的第一用户信息表,即可获取不同特征对应的用户信息,即每个用户对应的用户信息。
在另一具体实施例中,每个用户均佩戴有电子穿戴设备或者其他客户端,比如智能手表、智能手机等等,该电子穿戴设备或者其他客户端中设有定位模块、无线通信模块或者身份识别模块等等,通过定位模块、无线通信模块或者身份识别模块即可识别在对应控制区域内,即使用所述目标空调的所有用户。同时电子穿戴设备或者其他客户端具有唯一的设备编码,该设备编码即为对应的用户身份码,所述第二获取模块5004通过查询预设的第二用户信息表,即可获取不同用户身份码对应的用户信息。
具体的,所述识别单元5003具体用于利用GPS和/或北斗卫星定位系统,识别处于所述控制区域的所有用户。
或者所述识别单元5003具体用于根据用户所使用的无线通讯的信号强度,识别所述控制区域的所有用户。所述无线通讯的信号强度包括Wi-Fi信号强度、红外信号强度、蓝牙信号强度或Zigbee节点信号强度。WiFi定位技术通过无线接入点(包括无线路由器)组成的无线局域网络(WLAN),采用周边Wi-Fi的信号强度合成图和信号传播模型相结合的方式,对已接入的移动设备(比如电子穿戴设备或者其他客户端)进行位置定位,最高精确度大约在1米至20米之间。
蓝牙通讯是一种短距离低功耗的无线传输技术,在室内安装适当的蓝牙局域网接入点后,将网络配置成基于多用户的基础网络连接模式,并保证蓝牙局域网接入点始终是这个微网络的主设备,这样通过检测信号强度就可以获得用户的位置信息。蓝牙定位主要应用于小范围定位,例如:单层大厅。对于持有集成了蓝牙功能移动终端设备,比如电子穿戴设备或者其他客户端,只要设备的蓝牙功能开启,蓝牙室内定位系统就能够对其进行位置判断。
红外线技术室内定位是通过安装在室内的光学传感器,接收各移动设备,比如电子穿戴设备或者其他客户端发射调制的红外射线进行定位,具有相对较高的室内定位精度。
ZigBee是一种短距离、低速率的无线网络技术,它介于RFID和蓝牙之间,可以通过传感器之间的相互协调通信进行设备的位置定位,这些传感器只需要很少的能量,以接力的方式通过无线电波将数据从一个传感器传到另一个传感器,所ZigBee最显著的技术特点是它的低功耗和低成本。当然在其他实施例中,也可以通过其他无线通讯的电磁信号强度来识别处于所述控制区域的所有用户,通过其他无线通讯的电磁信号强度来识别处于所述控制区域的所有用户的方法均在本发明的保护范围以内。
或者所述识别单元5003具体用于通过设置在房间出入口的门禁系统读取用户的进出房间数据,识别处于所述控制区域的所有用户。或者所述识别单元5003用于通过NFC设备进行用户间的快速配对,识别处于所述控制区域的所有用户。NFC,全称Near Field Communication,即近距离无线通信,是一种轻松、安全、迅速的通信的无线连接技术,其传输范围相对较小、带宽高、能耗低,通过判断用户是否可以进行NFC无线通信,即可识别处于所述控制区域的所有用户。
上述优选实施例中识别单元5003可以采用多种方法来识别处于所述控制区域的所有用户,因此可以根据实际情况进行选择,扩大了本发明的使用范围。
图7给出了本发明实施例7提供的一种智能空调控制装置中第二获取模块510的结构性示意图,如图7所示,所述第二获取模块510包括第三获取单元5101和第四获取单元5102,
所述第三获取单元5101用于获取空调操作记录表,所述空调操作记录表包括至少一个用户识别码在预设时间段对应的历史操作记录,对所述历史操作记录中空调功能设定值进行提取,获取所述至少一个用户识别码中每个用户识别码对应用户在预设时间段的空调运行参数偏好值;
所述第四获取单元5102用于通过查询预设搜索引擎获取搜索数据,所述搜索数据包括空调使用建议和/或不同用户信息对应的养生数据,然后根据搜索数据获取在预设时间段与所述用户信息对应的空调运行参数偏好值;以及用于查询预设数据库,所述预设数据库中存储有不同用户信息和空调运行参数偏好值的映射关系表,根据所述映射关系表获取在预设时间段与所述用户信息对应的空调运行参数偏好值。
该优选实施例中,处于所述控制区域内的所有用户,即使用目标空调的所有用户并没有都对目标空调进行操作,比如主卧中的小宝宝虽然感受到目标空调的效果,但是小宝宝并不会对目标空调进行控制。因此对于对目标空调进行了操作的用户,所述第三获取单元5101具体用于预先采集一段时间的空调操作记录表,通过分析所述空调操作记录表,获取所述用户在预设时间段的空调运行参数偏好值。本实施例中,所述空调操作记录表包括与所述用户信息对应的用户识别码、不同用户识别码对应的操作指令和/或操作时间,所述操作指令为对空调运行参数进行调节的指令,本实施例的操作指令即是对空调温度进行设定。在其他实施例中所述第三获取单元5101也可以使用统计、机率、机器学习、资料探勘等技术采集得到预设时间段的空调运行参数偏好值。对于没有对目标空调进行操作的用户,所述第四获取单元5102具体用于通过查询预设搜索引擎或者预设数据库,获取在预设时间段与所述用户信息对应的空调运行参数偏好值。比如对于小宝宝,可以获取小宝宝的年龄,然后查询预设的搜索引擎和预设数据库,得到该预设时间段对于该年龄的小宝宝最合适的空调温度,比如27摄氏度。上述实施例中,不仅获取空调运行参数偏好值的方法简单快速,而且获取的数据比较准确、完备,进一步提高了本发明的实现效果。
图8给出了本发明实施例8提供的一种智能空调控制装置中第三获取模块520的结构性示意图,如图8所示,所述第三获取模块520包括第二生成单元5201和查询 单元5202,
所述第二生成单元5201用于根据用户身体检测数据计算用户健康分值,根据所述用户健康分值在预设用户健康等级表中所处的区间,生成对应的用户健康等级;
所述查询单元5202用于通过查询预设的权重对应表,获取所述用户健康等级对应的初始控制权重,然后查询预设的系数表,根据用户年龄获取对应的修正系数,计算所述修正系数和所述初始控制权重的乘积,所述乘积即为用户的目标控制权重;所述权重对应表中,所述用户健康等级越低,控制权重越高,所述系数表中,用户年龄越小,修正系数越高。
上述优选实施例中,根据用户年龄和用户身体检测数据算出个别用户于群体间的家电控制,谁应给予较重的主导权。实际上,在同一空间,同样的空调运行参数下,受空调效果影响较大的人具有较大的控制权重,或者说需要被照顾的用户具有较大的控制权重,但又给予群体用户一定的温控弹性,符合社会群体生活法则。如前所述,本发明用户控制权重的获取方式,不限于空调温度控制,亦可使用于空调湿度、空调风量等空调运行参数控制中。同一个空间下,不同的空调功能,有不同的用户控制权重,可以分别进行计算,比如若有一个用户,对于空调的风量特别在意,空调风量对其影响特别大,因此该用户在调整空调风量这个参数上,具有较高的控制权重。在同一个空调功能下,所有用户的控制权重加(Summation)等于1。
优选实施例中,所述计算模块530采用以下公式计算所述运行参数最优值:
Figure PCTCN2017098219-appb-000002
其中,OPV为目标空调的运行参数最优值,vi~vn为所述控制区域内编号i~编号n的用户分别对应的空调运行参数偏好值,ai~an为所述控制区域内编号i~编号n的用户与所述空调运行参数对应的控制权重。
读者应理解,在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划 分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种智能空调控制方法,其特征在于,包括以下步骤:
    步骤1,获取预设时间段使用目标空调的用户对应的用户信息;
    步骤2,获取每个用户在所述预设时间段的空调运行参数偏好值;
    步骤3,根据用户信息获取每个用户对所述目标空调的控制权重;
    步骤4,根据所有用户的空调运行参数偏好值和对应的控制权重,计算在多用户环境下,所述目标空调在所述预设时间段的运行参数最优值;
    步骤5,将所述运行参数最优值发送给所述目标空调的控制系统,以驱动所述控制系统控制所述目标空调在所述预设时间段,按照所述运行参数最优值运行。
  2. 根据权利要求1所述的智能空调控制方法,其特征在于,所述获取预设时间段使用目标空调的用户对应的用户信息,具体包括以下步骤:
    S101,获取所述目标空调的安装位置信息;
    S102,根据所述安装位置信息,生成所述目标空调的控制区域信息;
    S103,识别处于所述控制区域信息对应控制区域的所有用户;
    S104,获取每个用户分别对应的用户信息。
  3. 根据权利要求1或2所述的智能空调控制方法,其特征在于,所述获取每个用户在所述预设时间段的空调运行参数偏好值,具体为:获取空调操作记录表,所述空调操作记录表包括至少一个用户识别码在预设时间段对应的历史操作记录,对所述历史操作记录中空调功能设定值进行提取,获取所述至少一个用户识别码中每个用户识别码对应用户在预设时间段的空调运行参数偏好值;
    或者通过查询预设搜索引擎获取搜索数据,所述搜索数据包括空调使用建议和/或不同用户信息对应的养生数据,然后根据搜索数据获取在预设时间段与所述用户信息对应的空调运行参数偏好值;
    或者查询预设数据库,所述预设数据库中存储有不同用户信息和空调运行参数偏好值的映射关系表,根据所述映射关系表获取在预设时间段与所述用户信息对应的空调运行参数偏好值。
  4. 根据权利要求3所述的智能空调控制方法,其特征在于,所述用户信息包括用户年龄和用户身体检测数据,所述根据用户信息获取每个用户对所述目标空调的控制权重,具体包括:
    S301,根据用户身体检测数据计算用户健康分值,根据所述用户健康分值在预设用户健康等级表中所处的区间,生成对应的用户健康等级;
    S302,通过查询预设的权重对应表,获取所述用户健康等级对应的初始控制权重,然后查询预设的系数表,根据用户年龄获取对应的修正系数,计算所述修正系数和所述初始控制权重的乘积,所述乘积即为用户的目标控制权重;所述权重对应表中,所述用户健康等级越低,控制权重越高,所述系数表中,用户年龄越小,修正系数越高。
  5. 根据权利要求4所述的智能空调控制方法,其特征在于,所述根据所有用户的空调运行参数偏好值和对应的控制权重,计算在多用户环境下所述目标空调在所述预设时间 段的运行参数最优值,具体为:采用以下公式计算所述预设时间段的运行参数最优值:
    Figure PCTCN2017098219-appb-100001
    其中,OPV为所述预设时间段的运行参数最优值,vi~vn为编号i~编号n的用户分别对应的空调运行参数偏好值,ai~an为编号i~编号n的用户与所述空调运行参数对应的控制权重。
  6. 一种智能空调控制装置,其特征在于,包括第一获取模块、第二获取模块、第三获取模块、计算模块和控制模块,
    所述第一获取模块用于获取预设时间段使用目标空调的用户对应的用户信息;
    所述第二获取模块用于获取每个用户在所述预设时间段的空调运行参数偏好值;
    所述第三获取模块用于根据用户信息获取每个用户对所述目标空调的控制权重;
    所述计算模块用于根据所有用户的空调运行参数偏好值和对应的控制权重,计算在多用户环境下,所述目标空调在所述预设时间段的运行参数最优值;
    所述控制模块用于将所述运行参数最优值发送给所述目标空调的控制系统,以驱动所述控制系统控制所述目标空调在所述预设时间段,按照所述运行参数最优值运行。
  7. 根据权利要求6所述的智能空调控制装置,其特征在于,所述第一获取模块具体包括第一获取单元、第一生成单元、识别单元和第二获取单元,
    所述第一获取单元用于获取所述目标空调的安装位置信息;
    所述第一生成单元用于根据所述安装位置信息,生成所述目标空调的控制区域信息;
    所述识别单元用于识别处于所述控制区域信息对应控制区域的所有用户;
    所述第二获取单元用于获取每个用户分别对应的用户信息。
  8. 根据权利要求6或7所述的智能空调控制装置,其特征在于,所述第二获取模块包括第三获取单元和第四获取单元,
    所述第三获取单元用于获取空调操作记录表,所述空调操作记录表包括至少一个用户识别码在预设时间段对应的历史操作记录,对所述历史操作记录中空调功能设定值进行提取,获取所述至少一个用户识别码中每个用户识别码对应用户在预设时间段的空调运行参数偏好值;
    所述第四获取单元用于通过查询预设搜索引擎获取搜索数据,所述搜索数据包括空调使用建议和/或不同用户信息对应的养生数据,然后根据搜索数据获取在预设时间段与所述用户信息对应的空调运行参数偏好值;以及用于查询预设数据库,所述预设数据库中存储有不同用户信息和空调运行参数偏好值的映射关系表,根据所述映射关系表获取在预设时间段与所述用户信息对应的空调运行参数偏好值。
  9. 根据权利要求8所述的智能空调控制装置,其特征在于,所述用户信息包括用户年龄和用户身体检测数据,所述第三获取模块包括第二生成单元和查询单元,
    所述第二生成单元用于根据用户身体检测数据计算用户健康分值,根据所述用户健康分值在预设用户健康等级表中所处的区间,生成对应的用户健康等级;
    所述查询单元用于通过查询预设的权重对应表,获取所述用户健康等级对应的初始控制权重,然后查询预设的系数表,根据用户年龄获取对应的修正系数,计算所述修正系数和所述初始控制权重的乘积,所述乘积即为用户的目标控制权重;所述权重对应表中,所述用户健康等级越低,控制权重越高,所述系数表中,用户年龄越小,修正系数越高。
  10. 根据权利要求9所述的智能空调控制装置,其特征在于,所述计算模块具体用于采用以下公式计算所述预设时间段的运行参数最优值,
    Figure PCTCN2017098219-appb-100002
    其中,OPV为所述预设时间段的运行参数最优值,vi~vn为编号i~编号n的用户分别对应的空调运行参数偏好值,ai~an为编号i~编号n的用户与所述空调运行参数对应的控制权重。
PCT/CN2017/098219 2017-06-23 2017-08-21 一种智能空调控制方法和装置 WO2018232952A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710488652.8 2017-06-23
CN201710488652.8A CN107388478A (zh) 2017-06-23 2017-06-23 一种智能空调控制方法和装置

Publications (1)

Publication Number Publication Date
WO2018232952A1 true WO2018232952A1 (zh) 2018-12-27

Family

ID=60332092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098219 WO2018232952A1 (zh) 2017-06-23 2017-08-21 一种智能空调控制方法和装置

Country Status (2)

Country Link
CN (1) CN107388478A (zh)
WO (1) WO2018232952A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11118802B2 (en) * 2017-07-21 2021-09-14 Carrier Corporation Indoor environmental weighted preference management
CN108758962A (zh) * 2018-04-18 2018-11-06 北京合创三众能源科技股份有限公司 环境设备的控制方法、装置、电子设备及存储介质
CN108919669B (zh) * 2018-09-11 2022-04-29 深圳和而泰数据资源与云技术有限公司 一种智能家居动态决策方法、装置和服务终端
CN109458705A (zh) * 2018-11-02 2019-03-12 珠海格力电器股份有限公司 一种空调器的智能控制方法及其系统
CN110145844B (zh) * 2019-05-06 2021-07-30 重庆海尔空调器有限公司 一种空调组的控制方法、控制装置及电子设备
CN110410964B (zh) * 2019-06-27 2021-07-23 青岛海尔空调器有限总公司 空调器的控制方法及控制系统
CN112283894B (zh) * 2019-07-25 2022-09-09 广东美的制冷设备有限公司 空调器、自学习和自动控制方法、控制装置和存储介质
CN111306700A (zh) * 2020-03-10 2020-06-19 上海博泰悦臻电子设备制造有限公司 一种空调控制方法、装置及计算机存储介质
CN112229040A (zh) * 2020-10-12 2021-01-15 珠海格力电器股份有限公司 空调温度调节方法、系统、电子设备和存储介质
CN112902418B (zh) * 2021-02-07 2022-07-19 海尔(深圳)研发有限责任公司 用于空调监控的方法、装置及监控设备
CN112944607B (zh) * 2021-03-15 2021-11-30 珠海格力电器股份有限公司 空调控制方法、控制系统及空调机组
CN113137697A (zh) * 2021-04-19 2021-07-20 青岛海尔空调电子有限公司 空调器的控制方法及装置、计算机可读存储介质
CN113268658A (zh) * 2021-04-25 2021-08-17 青岛海尔空调器有限总公司 用于空调的功能推送方法、装置及空调
CN114484804B (zh) * 2022-02-09 2023-02-17 珠海格力电器股份有限公司 空调器控制方法、空调器、电子设备及存储介质
CN114440430B (zh) * 2022-02-18 2023-02-24 珠海格力电器股份有限公司 智能家居的控制方法、智能家居设备、存储介质及处理器
CN114801644A (zh) * 2022-03-14 2022-07-29 青岛海尔空调器有限总公司 用于驻车空调的控制方法及装置、驻车空调、存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004324908A (ja) * 2003-04-21 2004-11-18 Matsushita Electric Works Ltd ビル設備制御装置
CN103604191A (zh) * 2013-11-12 2014-02-26 上海交通大学 基于手机软件平台的多人参与公共空调温度调控系统
CN104990213A (zh) * 2015-06-29 2015-10-21 广东美的制冷设备有限公司 一种多人环境下协同控制空调的方法及系统
WO2016001974A1 (ja) * 2014-06-30 2016-01-07 三菱電機株式会社 空調システム
CN105371425A (zh) * 2015-10-12 2016-03-02 美的集团股份有限公司 空调器
CN106247572A (zh) * 2016-09-26 2016-12-21 珠海格力电器股份有限公司 空调的控制方法、装置、系统和空调
CN206094440U (zh) * 2016-09-26 2017-04-12 珠海格力电器股份有限公司 空调控制系统及空调
CN106642513A (zh) * 2015-10-28 2017-05-10 财团法人资讯工业策进会 智能节能环境调控系统及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004324908A (ja) * 2003-04-21 2004-11-18 Matsushita Electric Works Ltd ビル設備制御装置
CN103604191A (zh) * 2013-11-12 2014-02-26 上海交通大学 基于手机软件平台的多人参与公共空调温度调控系统
WO2016001974A1 (ja) * 2014-06-30 2016-01-07 三菱電機株式会社 空調システム
CN104990213A (zh) * 2015-06-29 2015-10-21 广东美的制冷设备有限公司 一种多人环境下协同控制空调的方法及系统
CN105371425A (zh) * 2015-10-12 2016-03-02 美的集团股份有限公司 空调器
CN106642513A (zh) * 2015-10-28 2017-05-10 财团法人资讯工业策进会 智能节能环境调控系统及方法
CN106247572A (zh) * 2016-09-26 2016-12-21 珠海格力电器股份有限公司 空调的控制方法、装置、系统和空调
CN206094440U (zh) * 2016-09-26 2017-04-12 珠海格力电器股份有限公司 空调控制系统及空调

Also Published As

Publication number Publication date
CN107388478A (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
WO2018232952A1 (zh) 一种智能空调控制方法和装置
US11236918B2 (en) Air conditioner, and operation parameter recommendation method, system, and big data server for same
CN108488987B (zh) 空气调节设备的控制方法、存储介质和设备
US20200011558A1 (en) A control for device in a predetermined space area
CN105487388B (zh) 使用用户干预信息动态改变组控制模式的方法和装置
US10563878B2 (en) Controlling temperature regulating device based on user's internal body temperature and skin temperature received from wearable devices
CN105959987B (zh) 一种提高无线传感器网络能量利用率和服务性能的数据融合算法
JP6933647B2 (ja) 電子装置及びその冷暖房制御方法
JP2019516080A (ja) 物理的位置の自律的な意味的ラベル付け
CN108240694B (zh) 用于控制空调的方法和设备
CN108458454A (zh) 空调器及其的控制方法和计算机可读存储介质
CN203336765U (zh) 空调器控制系统
EP3657088A1 (en) Air conditioning control device, air conditioning system, air conditioning control method, and program
US20130102852A1 (en) Controlling devices based on physiological measurements
Risteska Stojkoska et al. Application of wireless sensor networks for indoor temperature regulation
CN105004012A (zh) 基于体征参数的空调控制方法及装置
JP2017529509A (ja) 温度調節方法及び装置
CN105180381A (zh) 一种空调控制方法及空调控制设备
CN108375168B (zh) 一种调节空气调节设备的方法
CN112862145A (zh) 使用体形信息的居用者热舒适度推断
EP3913450A1 (en) Air conditioner
CN109883016B (zh) 一种空气舒适度调节方法和设备
CN110513835B (zh) 提高空调舒适性的控制方法、装置及空调
CN107404710B (zh) 用于计算移动通信装置在环境内的位置的方法和系统
US20160373384A1 (en) System and method for instant messaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17914284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/05/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17914284

Country of ref document: EP

Kind code of ref document: A1