WO2018232906A1 - 一种智能路灯监控方法及装置 - Google Patents

一种智能路灯监控方法及装置 Download PDF

Info

Publication number
WO2018232906A1
WO2018232906A1 PCT/CN2017/097303 CN2017097303W WO2018232906A1 WO 2018232906 A1 WO2018232906 A1 WO 2018232906A1 CN 2017097303 W CN2017097303 W CN 2017097303W WO 2018232906 A1 WO2018232906 A1 WO 2018232906A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
weather
light intensity
street
light
Prior art date
Application number
PCT/CN2017/097303
Other languages
English (en)
French (fr)
Inventor
杜光东
Original Assignee
深圳市盛路物联通讯技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市盛路物联通讯技术有限公司 filed Critical 深圳市盛路物联通讯技术有限公司
Publication of WO2018232906A1 publication Critical patent/WO2018232906A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/115Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/11Controlling the light source in response to determined parameters by determining the brightness or colour temperature of ambient light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/115Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings
    • H05B47/125Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings by using cameras
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present invention relates to the field of Internet of Things technologies, and in particular, to a smart street lamp monitoring method and apparatus.
  • Street lights have become an indispensable device in daily life, and street lights placed at fixed distances can now be seen everywhere on the road.
  • the traditional street lights are set to turn on the illumination for a specified period of time. For example, lighting from 5 pm to 5 am.
  • the popularity of street lamps has brought great convenience to people's daily lives. However, if there are no pedestrians passing by on the road, or if the vehicle passes. If the street light is still in the state of illumination, it will cause a lot of waste of electricity.
  • the present invention provides a smart street lamp monitoring method and device.
  • the present invention provides a smart street light monitoring method, the method comprising:
  • the street light that controls the first area is turned on
  • An intelligent street lamp monitoring method provided by the embodiment of the present invention firstly collects light intensity and weather information of at least one area, and if the light intensity of the first area in at least one area is lower than the first threshold, detecting whether the first area has Pedestrians and/or vehicles pass. And when there is a pedestrian and/or vehicle passing, the street light is turned on according to the weather information and the light intensity of the first area, and the light intensity of the street light is determined. It is convenient for pedestrians and/or vehicles to pass safely.
  • determining whether the first area has pedestrians and/or vehicles specifically includes:
  • the detection information sent by the detecting device of the first area is received, and according to the detection information, it is determined whether there is a pedestrian and/or a vehicle passing through the first area, wherein the detection information includes identification information indicating whether the first area has pedestrians and/or vehicles passing through.
  • the detecting device detects whether a passerby or the vehicle passes within the preset range, and transmits the detection information to the server, so that the server controls the opening or closing of the street light of the first area according to the detection information.
  • the present invention provides an intelligent street lamp monitoring device, the device comprising:
  • a data collector for acquiring light intensity and weather information of at least one area in real time
  • a processor configured to determine whether a pedestrian and/or a vehicle passes through the first area when determining that the light intensity of the first area in the at least one area is lower than the first threshold
  • the street light that controls the first area is turned on
  • An intelligent street lamp monitoring device provided by an embodiment of the present invention first collects light intensity and weather information of at least one area through a data collector. And when the processor determines that the illumination intensity of the first region in the at least one region is lower than the first threshold, determining whether the pedestrian region and/or the vehicle pass through the first region. And when there is a pedestrian and/or vehicle passing, the street light is turned on according to the weather information and the light intensity of the first area, and the light intensity of the street light is determined. It is convenient for pedestrians and/or vehicles to pass safely.
  • the device further includes:
  • a receiver configured to receive detection information sent by the detecting device of the first area
  • the processor is specifically configured to determine, according to the detection information, whether the first area has a pedestrian and/or a vehicle, wherein the detection information includes identifier information identifying whether the first area has a pedestrian and/or a vehicle passes.
  • the detecting device detects whether a passerby or the vehicle passes within the preset range, and transmits the detection information to the server, so that the server controls the opening or closing of the street light of the first area according to the detection information.
  • FIG. 1 is a structural diagram of an intelligent street lamp monitoring system according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of installing some devices on a street lamp
  • FIG. 3 is a schematic diagram of a signaling flow of an intelligent street lamp monitoring method according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of a method for monitoring a smart street lamp according to an embodiment of the present invention
  • FIG. 5 is a schematic flowchart of another smart street lamp monitoring method according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of another smart street lamp monitoring method according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of another smart street lamp monitoring method according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of another smart street lamp monitoring method according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an intelligent street lamp monitoring apparatus according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of an intelligent street lamp monitoring apparatus according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of an intelligent street lamp monitoring apparatus according to an embodiment of the present invention.
  • FIG. 1 is a structural diagram of an intelligent street lamp monitoring system according to an embodiment of the present invention.
  • the system includes: a street light 10, a server 20, an Internet of Things access gateway 30, an Internet of Things service gateway 40, and the like.
  • the street light 10 includes not only one but multiple. Also, each zone may include one or more street lights 10. Specifically, how many street lights 10 are installed in each area, and set according to actual conditions. In the embodiment of the present invention, the street lamp 10 is mainly introduced to establish a communication connection between the Internet of Things and the remote server 20.
  • Some means are mounted on one or more street lights 10 provided in the first of the at least one area.
  • at least one information collecting device 101, one processing device 102, and one wireless communication device 103 capable of remote communication are installed in the street lamp 10.
  • the light intensity and weather information of the area are collected by the information collecting device 101.
  • the processing device 102 performs signal conversion and transmits it to the server 20 remotely via the wireless communication device 103.
  • the wireless communication device 103 needs to be registered through the Internet of Things access gateway 30 first. After the registration is successful, the Internet of Things access gateway 30 transmits the authentication information corresponding to the wireless communication device 103 to the server 20 through the Internet of Things service gateway 40 for authentication.
  • the street light establishes a communication connection with the server 20 via the wireless communication device 103. Then, the data information is transmitted through the communication transmission channel "wireless communication device 103 - Internet of Things access gateway 30 - Internet of Things service gateway 40 - server 20".
  • the server 20 determines whether there is a pedestrian and/or vehicle passing through the first area when the light intensity of the first area is determined to be lower than the set threshold based on the data information remotely transmitted by the wireless communication device 103 in the street lamp 10. If there is a pedestrian and/or vehicle passing, the street light 10 is turned on. Then, the light intensity of the street light 10 of the first area is determined according to the weather information and the light intensity of the first area.
  • the first area may be any one of the at least one area.
  • the server 20 obtains the light intensity and weather information of at least one area in real time, it can be acquired not only by the information collection device 101 in the street lamp 10 but also by other media channels. For example, read the weather forecast information directly. The light intensity and weather information of at least one area are directly obtained in real time through the weather forecast information.
  • the illumination intensity and weather information of at least one area After obtaining the illumination intensity and weather information of at least one area, it is first determined whether the illumination intensity is lower than the first threshold, and if it is lower than the first threshold, it is determined whether there is a pedestrian and/or vehicle passing on the road of the first area.
  • the street lights of the first area are controlled to be turned on only when the two conditions with progressive relationships are satisfied at the same time. And, the first regional street light can be determined according to the weather information and the light intensity of the first area. The brightness of the light that is turned on. Through this method, the main reason is to avoid waste of resources caused by the opening of the street light when no one is on the road. At the same time, it can also ensure that if pedestrians and vehicles pass through the road, if the weather or light intensity is insufficient, the street light can be turned on, and the light intensity can ensure the safe passage of pedestrians and vehicles.
  • the embodiment of the present invention further provides a schematic diagram of a signaling flow of the intelligent streetlight monitoring method. Specifically, as shown in FIG. 3, the specific includes:
  • Step 1 The information collecting device installed on the street lamp collects the light intensity and weather information of at least one area in real time.
  • Step 2 The processing device converts the illumination intensity and weather information of the at least one area and transmits the information to the server through the wireless communication transmission device.
  • the server may also obtain the data information through other media channels, such as obtaining the light intensity and weather information of the at least one area by using a weather forecast.
  • step 3 the server obtains the light intensity and weather information of at least one area in real time.
  • the way in which the server obtains the light intensity and weather information of at least one area may include a plurality of types.
  • Step 4 When it is determined that the light intensity of the first area in the at least one area is lower than the first threshold, determine whether the first area has a pedestrian and/or a vehicle passing.
  • Step 5 When it is determined that there is a pedestrian and/or vehicle passing through the first area, the street light controlling the first area is turned on.
  • Step 6 and determining the brightness intensity of the street light of the first area according to the weather information and the light intensity of the first area.
  • the street light 10 of the first area is controlled to be turned on only when the two conditions having the progressive relationship are satisfied at the same time.
  • the brightness intensity of the first area street lamp 10 being turned on may also be determined according to the weather information and the light intensity of the first area.
  • the component that plays a crucial role is the server 20. Therefore, in the following, the method steps performed by the server 20 will be described in detail.
  • FIG. 4 is a schematic flowchart of a method for monitoring a smart street lamp according to an embodiment of the present invention. The method includes:
  • Step 410 Acquire light intensity and weather information of at least one area in real time.
  • obtaining light intensity and weather information of at least one area may include multiple ways.
  • the above devices may not be separately installed on each street lamp, including information collection devices, processing devices, and wireless communication devices.
  • the above devices are installed on one or more street lamps according to a preset rule. For example, each area is divided into a plurality of sub-areas, and in each sub-area, a street lamp is selected to install the above device. Or, group all the street lights in one area, and select one street light for each group to install the above devices. Then, the street light of the above device is used to collect the light intensity and weather information in real time, and send it to the server through the Internet of Things. The server receives it.
  • the server may obtain light intensity and weather information for at least one area through other media channels.
  • the most direct way is to read from the weather forecast.
  • it can be obtained directly by the weather bureau.
  • how to obtain the light intensity and weather information of each area is not limited here.
  • Step 420 When it is determined that the light intensity of the first area in the at least one area is lower than the first threshold, determine whether the first area has a pedestrian and/or a vehicle passing.
  • the necessary condition is to determine whether there are pedestrians and/or vehicles passing through the first area.
  • Step 430 when it is determined that there is a pedestrian and/or vehicle passing through the first area, the street light controlling the first area is turned on.
  • Step 440 Determine, according to the weather information and the light intensity of the first area, the brightness intensity of the street light that is turned on in the first area.
  • the effect that the simple control of the street light on may not be particularly large. For example, if the street light is turned on at any time, it is the same light intensity. If the light intensity is too strong, and sometimes it is not possible to use such light intensity for illumination, it will waste the light energy resources. And if in some cases, a stronger light intensity is required, and the intensity is always uniform at the time of setting, the effect on these special cases may not be particularly noticeable. Then, in order to adapt to various situations, the light intensity of the street light of the first area can be determined according to the weather information and the light intensity of the first area.
  • An intelligent street lamp monitoring method provided by the embodiment of the present invention firstly collects light intensity and weather information of at least one area, and if the light intensity of the first area in at least one area is lower than the first threshold, detecting whether the first area has Pedestrians and/or vehicles pass. And when there is a pedestrian and/or vehicle passing, the street light is turned on according to the weather information and the light intensity of the first area, and the light intensity of the street light is determined.
  • the main reason is to avoid waste of resources caused by the opening of the street light when no one is on the road.
  • it can also ensure that if pedestrians and vehicles pass through the road, and because the weather or light intensity is insufficient, the street lights can be turned on, and the light intensity can ensure the safe passage of pedestrians and vehicles.
  • the invention also provides a schematic flow chart of another intelligent street lamp monitoring method. Specifically, as shown in FIG. 5, the method includes: Step 510: Acquire light intensity and weather information of at least one area in real time.
  • obtaining light intensity and weather information of at least one area may include multiple ways.
  • the above devices may not be separately installed on each street lamp, including information collection devices, processing devices, and wireless communication devices.
  • the above devices are installed on one or more street lamps according to a preset rule. For example, each area is divided into a plurality of sub-areas, and in each sub-area, a street lamp is selected to install the above device. Or, group all the street lights in one area, and select one street light for each group to install the above devices. Then, the street light of the above device is used to collect the light intensity and weather information in real time, and send it to the server through the Internet of Things. The server receives it.
  • the server may obtain light intensity and weather information for at least one area through other media channels.
  • the most direct way is to read from the weather forecast.
  • it can be obtained directly by the weather bureau.
  • how to obtain the light intensity and weather information of each area is not limited here.
  • Step 520 When it is determined that the light intensity of the first area in the at least one area is lower than the first threshold, determine whether the first area has a pedestrian and/or a vehicle passing.
  • the necessary condition is to determine whether there are pedestrians and/or vehicles passing through the first area.
  • Step 530 when it is determined that there is a pedestrian and/or vehicle passing through the first area, the street light controlling the first area is turned on.
  • Step 540 Determine, according to the weather information and the light intensity of the first area, the brightness intensity of the street light that is turned on in the first area.
  • the effect that the simple control of the street light on may not be particularly large. For example, if the street light is turned on at any time, it is the same light intensity. If the light intensity is too strong, and sometimes it is not possible to use such light intensity for illumination, it will waste the light energy resources. And if in some cases, a stronger light intensity is required, and the intensity is always uniform at the time of setting, the effect on these special cases may not be particularly noticeable. Then, in order to adapt to various situations, the light intensity of the street light of the first area can be determined according to the weather information and the light intensity of the first area.
  • step 540 determining the brightness intensity of the street light that is turned on in the first area according to the weather information and the light intensity of the first area, specifically including the following steps:
  • Step 5401 When it is determined that the weather of the first area is a sunny day, according to the weather information and the light intensity of the first area, the light intensity of the street light of the first area is determined according to the first proportional coefficient.
  • the light intensity is generally strong, and there is no need to turn on the street light. Even at night, if there is enough "moonlight” and "starlight” in the sky, the intensity of the "light” on the road will generally not be weak. Then, even if the streetlight is not turned on, the passerby may walk as usual, and the vehicle can also drive safely. However, in order to be more secure, it is safe to ensure that the pedestrians are safe to walk and the vehicle is safe to drive. It is also possible to control the streetlights to be turned on when the illumination intensity is lower than the first threshold. However, the light intensity that is turned on can be slightly weaker. That is, according to the first proportional coefficient, the brightness intensity of the street light of the first area is determined. When the scale factor is 1, the light intensity of the street light is the largest, and the first scale factor is generally greater than or equal to 0 and less than or equal to 1.
  • Step 5402 When it is determined that the weather of the first area is weather other than a sunny day, according to the weather information and the light intensity of the first area, the brightness intensity of the street light of the first area is determined according to the second proportional coefficient.
  • the weather is weather other than sunny days, such as cloudy weather, rain and snow weather, hail weather, yellow sand weather, and haze weather.
  • These weather conditions can be caused; the road conditions are blurred, especially the rainy days, the yellow sand days and the haze days. If you encounter these special weather, the visibility on the road will generally not be very high. It is easy to cause traffic accidents. The safety of the pedestrians on the road and the safety of the vehicles on the road pose a greater threat. Then, in order to avoid traffic accidents as much as possible, the brightness of the street lamps can be improved to serve as an indicator light for passers-by and driver drivers in the vehicle, and at the same time, it is convenient for passers-by and vehicles to see the road ahead.
  • the second proportional coefficient is greater than or equal to the first proportional coefficient.
  • An intelligent street lamp monitoring method provided by the embodiment of the present invention firstly collects light intensity and weather information of at least one area, and if the light intensity of the first area in at least one area is lower than the first threshold, detecting whether the first area has Pedestrians and/or vehicles pass. And when there is a pedestrian and/or vehicle passing, the street light is turned on according to the weather information and the light intensity of the first area, and the light intensity of the street light is determined. Different weather conditions and different light intensities will affect the light intensity of street lamps. Through this method, the main reason is to avoid waste of resources caused by the opening of the street light when no one is on the road. At the same time, it can also ensure that if pedestrians and vehicles pass through the road, and because the weather or light intensity is insufficient, the street lights can be turned on, and the light intensity can ensure the safe passage of pedestrians and vehicles.
  • FIG. 6 is a schematic flowchart of another smart street lamp monitoring method according to an embodiment of the present invention. The method includes:
  • Step 610 Acquire light intensity and weather information of at least one area in real time.
  • obtaining light intensity and weather information of at least one area may include multiple ways.
  • the above devices may not be separately installed on each street lamp, including information collection devices, processing devices, and wireless communication devices.
  • the above devices are installed on one or more street lamps according to a preset rule. For example, divide each area into Multiple sub-areas, in each sub-area, select a street light to install the above device. Or, group all the street lights in one area, and select one street light for each group to install the above devices. Then, the street light of the above device is used to collect the light intensity and weather information in real time, and send it to the server through the Internet of Things. The server receives it.
  • the server may obtain light intensity and weather information for at least one area through other media channels.
  • the most direct way is to read from the weather forecast.
  • it can be obtained directly by the weather bureau.
  • how to obtain the light intensity and weather information of each area is not limited here.
  • Step 620 When it is determined that the light intensity of the first area in the at least one area is lower than the first threshold, determine whether the first area has a pedestrian and/or a vehicle passing.
  • the necessary condition is to determine whether there are pedestrians and/or vehicles passing through the first area.
  • Step 6201 Receive image information transmitted by the image collection device in the first region.
  • an image collection device (the image collection device number identifier is 104 in FIG. 2) may be installed on one or more street lamps in the first area, as shown in FIG. 2 .
  • the specific installation rules are similar to the rules for installing other devices above, and are not described here.
  • the street light uses the image acquisition device to acquire image information of the first region and then transmits it to the server through the wireless communication device.
  • Step 6202 determining, according to the image information, whether the first area has a pedestrian and/or a vehicle passing.
  • Step 630 when it is determined that there is a pedestrian and/or vehicle passing through the first area, the street light controlling the first area is turned on.
  • Step 640 Determine, according to the weather information and the light intensity of the first area, the brightness intensity of the street light that is turned on in the first area.
  • the effect that the simple control of the street light on may not be particularly large. For example, if the street light is turned on at any time, it is the same light intensity. If the light intensity is too strong, and sometimes it is not possible to use such light intensity for illumination, it will waste the light energy resources. And if in some cases, a stronger light intensity is required, and the intensity is always uniform at the time of setting, the effect on these special cases may not be particularly noticeable. Then, in order to adapt to various situations, the light intensity of the street light of the first area can be determined according to the weather information and the light intensity of the first area.
  • step 640 the brightness intensity of the street light that is turned on in the first area is determined according to the weather information and the light intensity of the first area, and specifically includes the following steps:
  • Step 6401 When it is determined that the weather of the first area is a sunny day, according to the weather information and the light intensity of the first area, the light intensity of the street light of the first area is determined according to the first proportional coefficient.
  • the light intensity is generally strong, no need The street light is turned on. Even at night, if there is enough "moonlight” and “starlight” in the sky, the general "light” intensity on the road will generally not be weak. Then, even if the streetlight is not turned on, the passerby may walk as usual, and the vehicle can also drive safely. However, in order to be more secure, it is safe to ensure that the pedestrians are safe to walk and the vehicle is safe to drive. It is also possible to control the streetlights to be turned on when the illumination intensity is lower than the first threshold. However, the light intensity that is turned on can be slightly weaker. That is, according to the first proportional coefficient, the brightness intensity of the street light of the first area is determined. When the scale factor is 1, the light intensity of the street light is the largest, and the first scale factor is generally greater than or equal to 0 and less than or equal to 1.
  • Step 6402 when it is determined that the weather of the first area is weather other than a sunny day, according to the weather information and the light intensity of the first area, the brightness intensity of the street light of the first area is determined according to the second proportional coefficient.
  • the weather is weather other than sunny days, such as cloudy weather, rain and snow weather, hail weather, yellow sand weather, and haze weather.
  • these weather conditions can be caused; the road conditions are blurred, especially the rainy days, the yellow sand days and the haze days. If you encounter these special weather, the visibility on the road will generally not be very high. It is easy to cause traffic accidents. The safety of the pedestrians on the road and the safety of the vehicles on the road pose a greater threat. Then, in order to avoid traffic accidents as much as possible, you can improve the brightness of the street lights, and use the lights of the passers-by and the driver of the vehicle as indicators, and at the same time, it is convenient for passers-by and vehicles to see the road ahead.
  • the second proportional coefficient is greater than or equal to the first proportional coefficient.
  • An intelligent street lamp monitoring method provided by the embodiment of the present invention firstly collects light intensity and weather information of at least one area, and if the light intensity of the first area in at least one area is lower than the first threshold, detecting whether the first area has Pedestrians and/or vehicles pass. And when there is a pedestrian and/or vehicle passing, the street light is turned on according to the weather information and the light intensity of the first area, and the light intensity of the street light is determined. Different weather conditions and different light intensities will affect the light intensity of street lamps. Through this method, the main reason is to avoid waste of resources caused by the opening of the street light when no one is on the road. At the same time, it can also ensure that if pedestrians and vehicles pass through the road, if the weather or light intensity is insufficient, the street light can be turned on, and the light intensity can ensure the safe passage of pedestrians and vehicles.
  • FIG. 7 is a schematic flowchart of another smart street lamp monitoring method according to an embodiment of the present invention. .
  • the method may further include step 650 in addition to steps 610 to 640 in the above embodiment.
  • Step 650 When it is determined that there is no pedestrian and/or vehicle passing through the first area according to the image information transmitted by the image collecting device in the first area, the street light controlling the first area is turned off.
  • the street light in order to prevent energy waste, when there is no pedestrian or vehicle passing through the first area, the street light can be controlled to be turned off. This ensures the resource conservation and utilization.
  • the image information collected by the image collecting device is used to determine whether there is a pedestrian in the first area according to the image information collected by the image collecting device installed on the street lamp.
  • the vehicle may pass the detection device (the number of the detection device in FIG. 2 is 105) installed on the street lamp to obtain.
  • the rules for installing the detecting device on the street lamp are the same as or similar to those for installing the image capturing device, and are not described here.
  • the detection device is installed on the street lamp, and the image acquisition device is installed on the street lamp, the two solutions can be understood as a parallel solution, and only one of the two devices can be installed without requiring two simultaneous installations.
  • an alternative scheme for determining whether the first area has pedestrians and/or vehicles passing through may be:
  • Step a receiving detection information sent by the detecting device of the first area
  • step b based on the detection information, it is determined whether there is a pedestrian and/or vehicle passing through the first area.
  • the detection information includes identifier information identifying whether the first area has pedestrians and/or vehicles.
  • the identification information herein does not have any complicated meaning as long as it can facilitate the identification of the server, and can determine whether the pedestrian and/or the vehicle pass through the first area according to the identification information.
  • the detection device transmits the detection information to the server through the wireless communication device only when the pedestrian or vehicle passes through the first area.
  • the detecting device herein may be a sensor such as a distance sensor. A distance sensor is used to detect whether a moving object passes within a preset range. However, in order to prevent the moving sensor from detecting any moving object, for example, detecting that a small animal passes by on the road, and the like. Therefore, the detecting device can be mounted at a certain height. Ensure that the detected moving objects are as many people or vehicles as possible.
  • the method performed by the intelligent street lamp monitoring system may further include the following method steps. In order to facilitate the use of existing resources, timely determine the traffic information of each road segment. It is convenient for vehicles to choose travel routes. As shown in FIG. 8 , FIG. 8 is a schematic flowchart diagram of another intelligent street lamp monitoring method according to an embodiment of the present invention.
  • the method in addition to the steps 610 to 650, the method may further include:
  • Step 660 Determine the road segment traffic information of the first area according to the image information transmitted by the image capturing device of the first area.
  • Step 670 Send the road segment traffic information of the first area to different in-vehicle terminals, so as to display the road segment traffic information of the first area to the user through the vehicle-mounted terminal.
  • the traffic information may include a traffic congestion condition and/or a traffic accident.
  • the image information transmitted by the image capturing device in the first area can determine the traffic condition of the first area, including whether the road in the first area is congested at the current time, or whether a traffic accident occurs or the like. And the traffic information is sent to different vehicle terminals, so that the user can plan the travel route according to the traffic information displayed by the vehicle terminal.
  • the intelligent street lamp monitoring method provided by the embodiment of the invention can not only realize energy saving of the street lamp, but also turn on the street lamp when necessary, and determine the brightness of the street lamp according to actual conditions. It is also possible to provide traffic information at the same time so that the driver's master can adjust the travel route in time according to the traffic information.
  • FIG. 9 is a schematic structural diagram of an intelligent street lamp monitoring device according to an embodiment of the present invention.
  • the device is actually the server described in the embodiment shown in FIG. 1 .
  • the apparatus includes a data collector 901 and a processor 902.
  • the data collector 901 is configured to acquire light intensity and weather information of at least one area in real time.
  • the data collector 901 acquires the light intensity and weather information of at least one area, and may include multiple ways.
  • the above devices may not be separately installed on each street lamp, including information collection devices, processing devices, and wireless communication devices.
  • the above devices are installed on one or more street lamps according to a preset rule. For example, each area is divided into a plurality of sub-areas, and in each sub-area, a street lamp is selected to install the above device. Or, group all the street lights in one area, and select one street light for each group to install the above devices. Then, the street light of the above device is used to collect the light intensity and weather information in real time, and send it to the server through the Internet of Things. The server receives it.
  • the data collector 901 can obtain the light intensity and weather information of at least one area through other media channels. The most direct way is to read from the weather forecast. Alternatively, it can be obtained directly by the weather bureau. However, how to obtain the light intensity and weather information of each area is not limited here.
  • the processor 902 is configured to determine whether the first area has a pedestrian and/or a vehicle passing when determining that the light intensity of the first area in the at least one area is lower than the first threshold.
  • the street light controlling the first area is turned on.
  • the street light when only the light intensity value of the first area is lower than the first threshold, it may be determined that the light intensity of the first area is insufficient, and if necessary, the street light needs to be turned on.
  • the necessary condition is to determine whether there are pedestrians and/or vehicles passing through the first area. When it is determined that there is a pedestrian and/or vehicle passing through the first area, the street light controlling the first area is turned on.
  • the device 903 can also be included in the device. Specifically, as shown in Figure 10.
  • the following methods may be included:
  • the receiver 903 receives image information transmitted by the image pickup device in the first region.
  • an image collection device (the image collection device number identifier is 104 in FIG. 2) may be installed on one or more street lamps in the first area, as shown in FIG. 2 .
  • the specific installation rules, ibid. The installation of other devices is similar in rules and will not be described here.
  • the street light uses the image acquisition device to acquire image information of the first region and then transmits it to the server through the wireless communication device.
  • the receiver 903 in the server is configured to receive image information transmitted by the image acquisition device in the first area.
  • the processor 902 is specifically configured to determine, according to the image information, whether the first area has a pedestrian and/or a vehicle passing.
  • the receiver 903 receives the detection information sent by the detecting device of the first area
  • the processor 902 is specifically configured to determine, according to the detection information, whether a pedestrian and/or a vehicle pass through the first area.
  • the detection information includes identifier information identifying whether the first area has pedestrians and/or vehicles.
  • the identification information herein does not have any complicated meaning as long as it can facilitate the identification of the server, and can determine whether the pedestrian and/or the vehicle pass through the first area according to the identification information.
  • the detection device transmits the detection information to the server through the wireless communication device only when the pedestrian or vehicle passes through the first area.
  • the control street light is turned on.
  • the processor 902 simply controls the effect that the street light is on. For example, if the street light is turned on at any time, it is the same light intensity. If the light intensity is too strong, and sometimes it is not possible to use such light intensity for illumination, it will waste the light energy resources. And if in some cases, a stronger light intensity is required, and the intensity is always uniform at the time of setting, the effect on these special cases may not be particularly noticeable. Then, in order to adapt to various situations, the light intensity of the street light of the first area can be determined according to the weather information and the light intensity of the first area.
  • the processor 902 controls the brightness of the street lamps to be different. Can include the following two situations:
  • the light intensity of the street light of the first area is determined according to the first proportional coefficient.
  • the light intensity is generally strong, and no street lights are needed to turn on. Even at night, if there is enough "moonlight” and "starlight” in the sky, the intensity of the "light” on the road will generally not be weak. Then, even if the streetlight is not turned on, the passerby may walk as usual, and the vehicle can also drive safely. However, in order to be more secure, it is safe to ensure that the pedestrians are safe to walk and the vehicle is safe to drive. It is also possible to control the streetlights to be turned on when the illumination intensity is lower than the first threshold. However, the light intensity that is turned on can be slightly weaker. That is, according to the first proportional coefficient, the brightness intensity of the street light of the first area is determined. When the scale factor is 1, the light intensity of the street light is the largest, and the first scale factor is generally greater than or equal to 0 and less than or equal to 1.
  • the brightness intensity of the street light of the first area is determined according to the second proportional coefficient.
  • the light intensity of the street light of the first area is determined according to the second proportional coefficient.
  • the weather is weather other than sunny days, such as cloudy weather, rain and snow weather, hail weather, yellow sand weather, and haze weather.
  • these weather conditions can be caused; the road conditions are blurred, especially the rainy days, the yellow sand days and the haze days. If you encounter these special weather, the visibility on the road will generally not be very high. It is easy to cause traffic accidents. The safety of the pedestrians on the road and the safety of the vehicles on the road pose a greater threat. Then, in order to avoid traffic accidents as much as possible, you can improve the brightness of the street lights, and use the lights of the passers-by and the driver of the vehicle as indicators, and at the same time, it is convenient for passers-by and vehicles to see the road ahead.
  • the second proportional coefficient is greater than or equal to the first proportional coefficient.
  • An intelligent street lamp monitoring apparatus first collects light intensity and weather information of at least one area, and if the light intensity of the first area in at least one area is lower than a first threshold, detecting whether the first area has Pedestrians and/or vehicles pass. And when there is a pedestrian and/or vehicle passing, the street light is turned on according to the weather information and the light intensity of the first area, and the light intensity of the street light is determined. Different weather conditions and different light intensities will affect the light intensity of street lamps. Through this method, the main reason is to avoid waste of resources caused by the opening of the street light when no one is on the road. At the same time, it can also ensure that if pedestrians and vehicles pass through the road, if the weather or light intensity is insufficient, the street light can be turned on, and the light intensity can ensure the safe passage of pedestrians and vehicles.
  • the smart street light monitoring device may further include a transmitter 904.
  • the processor 902 in the smart street lamp monitoring device is specifically configured to: determine the road segment traffic information of the first region according to the image information transmitted by the image capturing device in the first region.
  • the transmitter 904 is configured to send the road segment traffic information of the first area to different in-vehicle terminals, so as to display the road segment traffic information of the first area to the user by the vehicle-mounted terminal.
  • the traffic information may include a traffic congestion condition and/or a traffic accident.
  • the image information transmitted by the image capturing device of the first area may determine the traffic condition of the first area, including whether the first area road is congested at the current time, or a traffic accident occurs. And the traffic information is sent to different vehicle terminals, so that the user can plan the travel route according to the traffic information displayed by the vehicle terminal.
  • the intelligent street lamp monitoring method provided by the embodiment of the invention can not only realize energy saving of the street lamp, but also turn on the street lamp when necessary, and determine the brightness of the street lamp according to actual conditions. It is also possible to provide traffic information at the same time so that the driver's master can adjust the travel route in time according to the traffic information.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

本发明涉及一种智能路灯监控方法及装置。该方法包括:实时获取至少一个区域的光照强度和天气信息;当确定至少一个区域中的第一区域的光照强度低于第一阈值时,判断第一区域是否有行人和/或车辆通过;当确定第一区域有行人和/或车辆通过时,控制第一区域的路灯开启;并根据第一区域的天气信息和光照强度,确定第一区域的路灯开启的光亮强度。通过本发明提供的方法,首先采集至少一个区域的光照强度和天气信息,如果至少一个区域中的第一区域的光照强度低于第一阈值时,检测第一区域是否有行人和/或车辆通过。并且在存在行人和/或车辆通过时,根据第一区域的天气信息和光照强度,开启路灯,并确定路灯的光亮强度。

Description

一种智能路灯监控方法及装置 技术领域
本发明涉及物联网技术领域,尤其涉及一种智能路灯监控方法及装置。
背景技术
路灯已经成为日常生活中必不可少的设备,现在的马路上随处可见固定距离处安置的路灯。而传统的路灯均是被设置为规定时间段内开启照明。比如,晚上5点到凌晨5点照明。虽然,路灯普及给人们的日常生活带来了极大的方便。但是,如果路上没有行人经过,或者车辆通过。路灯依然处于照明状态的话,将会造成很多电能的浪费。
然而,在有的时候,如果天气恶劣。例如,暴雨天,大雨本来就会导致车辆前方模糊不清。即使有车灯照明,但是光亮本来就比较微弱,再加上大雨等,很容易导致车祸的发生。而且,行人在路上行走也很容易发生危险。那么,如何控制路灯在适宜时间开启照明,同时尽可能的节约能源就成为了本发明所要解决的技术问题。
发明内容
为解决上述技术问题,本发明提供了一种智能路灯监控方法及装置。
第一方面,本发明提供了一种智能路灯监控方法,该方法包括:
获取至少一个区域的光照强度和天气信息;
当确定至少一个区域中的第一区域的光照强度低于第一阈值时,判断第一区域是否有行人和/或车辆通过;
当确定第一区域有行人和/或车辆通过时,控制第一区域的路灯开启;
并根据第一区域的天气信息和光照强度,确定第一区域的路灯开启的光亮强度,其中第一区域为至少一个区域中的任一区域。
本发明实施例提供的一种智能路灯监控方法,首先采集至少一个区域的光照强度和天气信息,如果至少一个区域中的第一区域的光照强度低于第一阈值时,检测第一区域是否有行人和/或车辆通过。并且在存在行人和/或车辆通过时,根据第一区域的天气信息和光照强度,开启路灯,并确定路灯的光亮强度。方便行人和/或车辆安全通行。
进一步,确定第一区域是否有行人和/或车辆通过,具体包括:
接收第一区域的检测装置发送的检测信息,根据检测信息,判断第一区域是否有行人和/或车辆通过,其中,检测信息包括标识第一区域是否有行人和/或车辆通过的标识信息。
在上述实施中,通过检测装置检测预设范围内是否有路人或者车辆通过,并将检测信息发送至服务器,以便服务器根据检测信息,控制第一区域的路灯的开启或者关闭。
第二方面,本发明提供了一种智能路灯监控装置,该装置包括:
数据收集器,用于实时获取至少一个区域的光照强度和天气信息;
处理器,用于当确定至少一个区域中的第一区域的光照强度低于第一阈值时,判断第一区域是否有行人和/或车辆通过;
当处理器确定第一区域有行人和/或车辆通过时,控制第一区域的路灯开启;
并根据第一区域的天气信息和光照强度,确定第一区域的路灯开启的光亮强度,其中第一区域为至少一个区域中的任一区域。
本发明实施例提供的一种智能路灯监控装置,首先通过数据收集器采集至少一个区域的光照强度和天气信息。且在处理器判断至少一个区域中的第一区域的光照强度低于第一阈值时,判断第一区域是否有行人和/或车辆通过。并且在存在行人和/或车辆通过时,根据第一区域的天气信息和光照强度,开启路灯,并确定路灯的光亮强度。方便行人和/或车辆安全通行。
进一步,装置还包括:
接收器,用于接收第一区域的检测装置发送的检测信息;
处理器具体用于,根据检测信息,判断第一区域是否有行人和/或车辆通过,其中,检测信息包括标识第一区域是否有行人和/或车辆通过的标识信息。
在上述实施中,通过检测装置检测预设范围内是否有路人或者车辆通过,并将检测信息发送至服务器,以便服务器根据检测信息,控制第一区域的路灯的开启或者关闭。
附图说明
图1为本发明实施例提供的一种智能路灯监控系统架构图;
图2为在路灯上安装一些装置的结构示意图;
图3为本发明实施例提供的一种智能路灯监控方法信令流程示意图;
图4为本发明实施例提供的一种智能路灯监控方法流程示意图;
图5为本发明实施例提供的另一种智能路灯监控方法流程示意图;
图6为本发明实施例提供的另一种智能路灯监控方法流程示意图;
图7为本发明实施例提供的另一种智能路灯监控方法流程示意图;
图8为本发明实施例提供的另一种智能路灯监控方法流程示意图;
图9为本发明实施例提供的一种智能路灯监控装置结构示意图;
图10为本发明实施例提供的一种智能路灯监控装置结构示意图;
图11为本发明实施例提供的一种智能路灯监控装置结构示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、接口、技术之类的具体细节,以便透切理解本发明。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
图1为本发明实施例提供的一种智能路灯监控系统架构图。
具体如图1所示,该系统包括:路灯10,服务器20,物联网接入网关30,物联网服务网关40等。
其中,路灯10不仅仅包括一个,而是包括多个。且,每个区域都可以包括一个或者多个路灯10。具体每个区域安装多少路灯10,根据实际情况而设定。本发明实施例中,主要介绍的是路灯10通过物联网和远程服务器20之间建立通信连接。
通过在至少一个区域中的第一区域所设置的一个或多个路灯10上安装一些装置。例如,路灯10中至少安装一个信息采集装置101,一个处理装置102,和一个能够实现远程通信的无线通信装置103。具体如图2所示,通过信息采集装置101采集该区域的光照强度和天气信息。然后,处理装置102进行信号转换后,通过无线通信装置103远程传输至服务器20中。传输之前,首先需要通过物联网接入网关30对无线通信装置103进行注册。在注册成功后,物联网接入网关30会将与无线通信装置103对应的鉴权信息通过物联网服务网关40发送至服务器20中进行鉴权。鉴权成功后,路灯通过无线通信装置103与服务器20建立通信连接。然后,通过“无线通信装置103-物联网接入网关30-物联网服务网关40-服务器20”这条通信传输通道传输数据信息。服务器20根据路灯10中的无线通信装置103远程传输的数据信息,确定第一区域的光照强度低于设定的阈值时,判断第一区域是否有行人和/或车辆通过。如果存在行人和/或车辆通过时,则控制路灯10开启。然后根据第一区域的天气信息和光照强度确定第一区域的路灯10开启的光亮强度。其中,第一区域可以是至少一个区域中的任一个区域。
而服务器20实时获取至少一个区域的光照强度和天气信息时,不仅仅可以通过路灯10中的信息采集装置101采集而获取,还可以通过其他媒体途径获取。例如,直接读取天气预报信息。通过天气预报信息直接实时获取至少一个区域的光照强度和天气信息。
获取至少一个区域的光照强度和天气信息后,首先判断光照强度是否低于第一阈值,在低于第一阈值的情况下,再判断第一区域的路上是否有行人和/或车辆等通过。只有这两个具有递进关系的条件同时满足时,才会控制第一区域的路灯开启。并且,还可以根据第一区域的天气信息和光照强度,确定第一区域路灯 开启的光亮强度。通过该方法,主要是为了避免路上无人时,路灯开启而造成的资源浪费。同时,也能够保证如果路上有行人和车辆通过时,如果因为天气或者光照强度不足时,路灯能够开启,而且光亮强度能够保证行人和车辆能够安全通行。
为更加详细的介绍上述智能路灯监控系统中各部件所执行的方法步骤,本发明实施例还提供了一种智能路灯监控方法信令流程示意图。具体如图3所示,具体包括:
步骤1,路灯上安装的信息采集装置实时采集至少一个区域的光照强度和天气信息。
步骤2,处理装置将至少一个区域的光照强度和天气信息经过转换后,通过无线通信传输装置远程传输至服务器中。
当然,步骤1和步骤2都是可选的步骤。服务器也可以通过其他媒体途径获取这些数据信息,例如通过天气预报而获取上述至少一个区域的光照强度和天气信息。
步骤3,服务器实时获取至少一个区域的光照强度和天气信息。
如上,服务器获取至少一个区域的光照强度和天气信息的途径可以包括多种。
步骤4,当确定至少一个区域中的第一区域的光照强度低于第一阈值时,判断第一区域是否有行人和/或车辆通过。
步骤5,当确定第一区域有行人和/或车辆通过时,控制第一区域的路灯开启。
步骤6,并根据第一区域的天气信息和光照强度,确定第一区域的路灯开启的光亮强度。
在上述系统中,获取每一个区域的光照强度和天气信息后,首先判断光照强度是否低于第一阈值,在低于第一阈值的情况下,再判断第一区域的路上是否有行人或者车辆等通过。只有这两个具有递进关系的条件同时满足时,才会控制第一区域的路灯10开启。并且,还可以根据第一区域的天气信息和光照强度,确定第一区域路灯10开启的光亮强度。通过该方法,主要是为了避免路上无人时,路灯10开启而造成的资源浪费。同时,也能够保证如果路上有行人和车辆通过时,如果因为天气或者光照强度不足时,路灯10能够开启,而且光亮强度能够保证行人和车辆能够安全通行。
由上述系统信令流程中可以看出,在该系统中,起到至关作用的部件为服务器20。因此,在下文中,将详细介绍服务器20所执行的方法步骤。
具体如图4所示,图4为本发明实施例提供的一种智能路灯监控方法流程示意图。该方法包括:
步骤410,实时获取至少一个区域的光照强度和天气信息。
具体的,获取至少一个区域的光照强度和天气信息,可以包括多种途径。
其中一种,可以是通过在路灯上安装的信息采集装置,实时采集的光照强度和天气信息。这里需要说明的是,至少一个区域中,每一个区域都可以包括至少一个路灯。而为了节约成本,可以不在每一个路灯上都分别安装以上装置,包括信息采集装置、处理装置以及无线通信装置等。在同一个区域的所有路灯中,按照预设规则选择在一个或者多个路灯上安装以上装置。比如,将每个区域划分为多个子区域,在每个子区域中,选择一个路灯安装以上装置。或者,将一个区域中的所有路灯进行分组,每组选择一个路灯安装以上装置。然后,利用安装以上装置的路灯实时采集光照强度和天气信息,通过物联网,发送至服务器中。服务器进行接收。
另一种,服务器可以通过其他媒体途径获取至少一个区域的光照强度和天气信息。而最直接的途径就是从天气预报中读取。或者,也可以通过气象局直接获取等。而具体如何获取每一个区域的光照强度和天气信息,这里不做任何限定。
步骤420,当确定至少一个区域中的第一区域的光照强度低于第一阈值时,判断第一区域是否有行人和/或车辆通过。
具体的,只有第一区域的光照强度值低于第一阈值时,可以确定第一区域光照强度不足,在必要情况下,需要开启路灯。而必要条件,也即是判断第一区域是否有行人和/或车辆通过。
步骤430,当确定第一区域有行人和/或车辆通过时,控制第一区域的路灯开启。
步骤440,根据第一区域的天气信息和光照强度,确定第一区域的路灯开启的光亮强度。
具体的,在步骤430中,单纯的控制路灯开启可能所起到的作用还不是特别大。例如,如果路灯无论何时,只要开启就是同一种光照强度。如果光照强度太强,而很多时候根本用不到如此光照强度进行照射,会对光能资源造成浪费。而如果某些情况下,需要更强的光照强度,而在设定时总是统一的强度的话,可能对这些特殊情况所起到的作用也不是特别的明显。那么,为了适应各种不同的情况,则可以根据第一区域的天气信息和光照强度,确定第一区域的路灯开启的光亮强度。
本发明实施例提供的一种智能路灯监控方法,首先采集至少一个区域的光照强度和天气信息,如果至少一个区域中的第一区域的光照强度低于第一阈值时,检测第一区域是否有行人和/或车辆通过。并且在存在行人和/或车辆通过时,根据第一区域的天气信息和光照强度,开启路灯,并确定路灯的光亮强度。通过该方法,主要是为了避免路上无人时,路灯开启而造成的资源浪费。同时,也能够保证如果路上有行人和车辆通过,且因为天气或者光照强度不足时,路灯能够开启,而且光亮强度能够保证行人和车辆能够安全通行。
本发明还提供了另一种智能路灯监控方法流程示意图。具体如图5所示,该方法包括:步骤510,实时获取至少一个区域的光照强度和天气信息。
具体的,获取至少一个区域的光照强度和天气信息,可以包括多种途径。
其中一种,可以是通过在路灯上安装的信息采集装置,实时采集的光照强度和天气信息。这里需要说明的是,至少一个区域中,每一个区域都可以包括至少一个路灯。而为了节约成本,可以不在每一个路灯上都分别安装以上装置,包括信息采集装置、处理装置以及无线通信装置等。在同一个区域的所有路灯中,按照预设规则选择在一个或者多个路灯上安装以上装置。比如,将每个区域划分为多个子区域,在每个子区域中,选择一个路灯安装以上装置。或者,将一个区域中的所有路灯进行分组,每组选择一个路灯安装以上装置。然后,利用安装以上装置的路灯实时采集光照强度和天气信息,通过物联网,发送至服务器中。服务器进行接收。
另一种,服务器可以通过其他媒体途径获取至少一个区域的光照强度和天气信息。而最直接的途径就是从天气预报中读取。或者,也可以通过气象局直接获取等。而具体如何获取每一个区域的光照强度和天气信息,这里不做任何限定。
步骤520,当确定至少一个区域中的第一区域的光照强度低于第一阈值时,判断第一区域是否有行人和/或车辆通过。
具体的,只有第一区域的光照强度值低于第一阈值时,可以确定第一区域光照强度不足,在必要情况下,需要开启路灯。而必要条件,也即是判断第一区域是否有行人和/或车辆通过。
步骤530,当确定第一区域有行人和/或车辆通过时,控制第一区域的路灯开启。
步骤540,根据第一区域的天气信息和光照强度,确定第一区域的路灯开启的光亮强度。
具体的,在步骤530中,单纯的控制路灯开启可能所起到的作用还不是特别大。例如,如果路灯无论何时,只要开启就是同一种光照强度。如果光照强度太强,而很多时候根本用不到如此光照强度进行照射,会对光能资源造成浪费。而如果某些情况下,需要更强的光照强度,而在设定时总是统一的强度的话,可能对这些特殊情况所起到的作用也不是特别的明显。那么,为了适应各种不同的情况,则可以根据第一区域的天气信息和光照强度,确定第一区域的路灯开启的光亮强度。
而步骤540中,根据第一区域的天气信息和光照强度,确定第一区域的路灯开启的光亮强度,具体包括如下步骤:
步骤5401,当确定第一区域的天气为晴天时,根据第一区域的天气信息和光照强度,按照第一比例系数,确定第一区域的路灯开启的光亮强度。
具体的,如果是晴天,那么在白天的情况下,光照强度一般都很强,不需要对路灯进行开启。即使是夜晚,如果天上有充足的“月光”和“星光”,路上的“光照”强度一般也不会很弱。那么,路人即使在路灯不开启的情况下,可能一样可以照常行走,而车辆同样可以安全行驶。但是为了更加保险起见,保证路上行人行走安全,车辆行驶安全,还是可以在光照强度低于第一阈值时,控制路灯开启。但是,开启的光照强度可以稍微弱一些。也即是,按照第一比例系数,确定第一区域的路灯开启的光亮强度。而比例系数为1时,为路灯开启的光亮强度最大,第一比例系数一般是大于或者等于0,且小于或者等于1的数值。
步骤5402,当确定第一区域的天气为除晴天之外的天气时,根据第一区域的天气信息和光照强度,按照第二比例系数,确定第一区域的路灯开启的光亮强度。
具体的,如果天气为除晴天之外的天气,例如阴天、雨雪天气、冰雹天气、黄沙天气以及雾霾天气等等。这些天气都可能造成;路况模糊,尤其是阴雨天,黄沙天以及雾霾天等等。如果遇上这些特殊的天气,路上的可见度一般都不会很高。很容易造成交通事故。对路上行人的安全,以及路上行驶车辆的安全构成较大的威胁。那么,为了尽量避免交通事故发生,可以通过提高路灯的亮度,来为路人和车辆中的司机师傅等作为指示灯,同时方便路人和车辆等看清前方的路况。而第二比例系数大于或者等于第一比例系数。
本发明实施例提供的一种智能路灯监控方法,首先采集至少一个区域的光照强度和天气信息,如果至少一个区域中的第一区域的光照强度低于第一阈值时,检测第一区域是否有行人和/或车辆通过。并且在存在行人和/或车辆通过时,根据第一区域的天气信息和光照强度,开启路灯,并确定路灯的光亮强度。天气不同,光照强度不同,都会影响到路灯的光亮强度。通过该方法,主要是为了避免路上无人时,路灯开启而造成的资源浪费。同时,也能够保证如果路上有行人和车辆通过,且因为天气或者光照强度不足时,路灯能够开启,而且光亮强度能够保证行人和车辆能够安全通行。
本发明实施例还提供了另一种智能路灯监控方法,具体如图6所示,图6为本发明实施例提供的另一种智能路灯监控方法流程示意图。该方法包括:
步骤610,实时获取至少一个区域的光照强度和天气信息。
具体的,获取至少一个区域的光照强度和天气信息,可以包括多种途径。
其中一种,可以是通过在路灯上安装的信息采集装置,实时采集的光照强度和天气信息。这里需要说明的是,至少一个区域中,每一个区域都可以包括至少一个路灯。而为了节约成本,可以不在每一个路灯上都分别安装以上装置,包括信息采集装置、处理装置以及无线通信装置等。在同一个区域的所有路灯中,按照预设规则选择在一个或者多个路灯上安装以上装置。比如,将每个区域划分为 多个子区域,在每个子区域中,选择一个路灯安装以上装置。或者,将一个区域中的所有路灯进行分组,每组选择一个路灯安装以上装置。然后,利用安装以上装置的路灯实时采集光照强度和天气信息,通过物联网,发送至服务器中。服务器进行接收。
另一种,服务器可以通过其他媒体途径获取至少一个区域的光照强度和天气信息。而最直接的途径就是从天气预报中读取。或者,也可以通过气象局直接获取等。而具体如何获取每一个区域的光照强度和天气信息,这里不做任何限定。
步骤620,当确定至少一个区域中的第一区域的光照强度低于第一阈值时,判断第一区域是否有行人和/或车辆通过。
具体的,只有第一区域的光照强度值低于第一阈值时,可以确定第一区域光照强度不足,在必要情况下,需要开启路灯。而必要条件,也即是判断第一区域是否有行人和/或车辆通过。
在判断第一区域是否有行人和/或车辆通过时,可以通过以下步骤实现:
步骤6201,接收第一区域中的图像采集装置传输的图像信息。
具体的,在第一区域的一个或多个路灯上,还可以安装图像采集装置(图2中图像采集装置编号标识为104),具体如图2所示。而具体的安装规则,同上文安装其他装置的规则类似,这里不再赘述。
路灯利用图像采集装置采集第一区域的图像信息,然后通过无线通信装置发送至服务器中。
步骤6202,根据图像信息,确定第一区域是否有行人和/或车辆通过。
步骤630,当确定第一区域有行人和/或车辆通过时,控制第一区域的路灯开启。
步骤640,根据第一区域的天气信息和光照强度,确定第一区域的路灯开启的光亮强度。
具体的,在步骤630中,单纯的控制路灯开启可能所起到的作用还不是特别大。例如,如果路灯无论何时,只要开启就是同一种光照强度。如果光照强度太强,而很多时候根本用不到如此光照强度进行照射,会对光能资源造成浪费。而如果某些情况下,需要更强的光照强度,而在设定时总是统一的强度的话,可能对这些特殊情况所起到的作用也不是特别的明显。那么,为了适应各种不同的情况,则可以根据第一区域的天气信息和光照强度,确定第一区域的路灯开启的光亮强度。
而步骤640中,根据第一区域的天气信息和光照强度,确定第一区域的路灯开启的光亮强度,具体包括如下步骤:
步骤6401,当确定第一区域的天气为晴天时,根据第一区域的天气信息和光照强度,按照第一比例系数,确定第一区域的路灯开启的光亮强度。
具体的,如果是晴天,那么在白天的情况下,光照强度一般都很强,不需要 路灯进行开启。即使是夜晚,如果天上有充足的“月光”和“星光”,路上一般的“光照”强度一般也不会很弱。那么,路人即使在路灯不开启的情况下,可能一样可以照常行走,而车辆同样可以安全行驶。但是为了更加保险起见,保证路上行人行走安全,车辆行驶安全,还是可以在光照强度低于第一阈值时,控制路灯开启。但是,开启的光照强度可以稍微弱一些。也即是,按照第一比例系数,确定第一区域的路灯开启的光亮强度。而比例系数为1时,为路灯开启的光亮强度最大,第一比例系数一般是大于或者等于0,且小于或者等于1的数值。
步骤6402,当确定第一区域的天气为除晴天之外的天气时,根据第一区域的天气信息和光照强度,按照第二比例系数,确定第一区域的路灯开启的光亮强度。
具体的,如果天气为除晴天之外的天气,例如阴天、雨雪天气、冰雹天气、黄沙天气以及雾霾天气等等。这些天气都可能造成;路况模糊,尤其是阴雨天,黄沙天以及雾霾天等等。如果遇上这些特殊的天气,路上的可见度一般都不会很高。很容易造成交通事故。对路上行人的安全,以及路上行驶车辆的安全构成较大的威胁。那么,为了尽量避免交通事故发生,可以通过提高路灯的亮度,来为路人和车辆司机师傅等作为指示灯,同时方便路人和车辆等看清前方的路况。而第二比例系数大于或者等于第一比例系数。
本发明实施例提供的一种智能路灯监控方法,首先采集至少一个区域的光照强度和天气信息,如果至少一个区域中的第一区域的光照强度低于第一阈值时,检测第一区域是否有行人和/或车辆通过。并且在存在行人和/或车辆通过时,根据第一区域的天气信息和光照强度,开启路灯,并确定路灯的光亮强度。天气不同,光照强度不同,都会影响到路灯的光亮强度。通过该方法,主要是为了避免路上无人时,路灯开启而造成的资源浪费。同时,也能够保证如果路上有行人和车辆通过时,如果因为天气或者光照强度不足时,路灯能够开启,而且光亮强度能够保证行人和车辆能够安全通行。
优选的,为了能够进一步的节约资源,本发明实施例还提供了另一种智能路灯监控方法,具体如图7所示,图7为本发明实施例提供的另一种智能路灯监控方法流程示意图。该方法除了包括上述实施例中的步骤610至步骤640以外,还可以包括步骤650。
步骤650,当根据第一区域中的图像采集装置传输的图像信息,确定第一区域当前没有行人和/或车辆通过时,控制第一区域的路灯关闭。
具体的,为了防止能源浪费,在第一区域中没有行人和车辆通过时,则可以控制路灯关闭了。由此来保证资源的节约利用。
优选的,上述任意包含利用图像采集装置采集图像信息的实施例中,除了可以根据路灯上安装的图像采集装置采集的图像信息判断第一区域是否有行人和/ 或车辆通过以外,还可以通过安装在路灯上的检测装置(图2中检测装置的编号为105)进行检测来获取。而在路灯上安装检测装置的规则同安装图像采集装置相同或者类似,这里不再赘述。且,如果路灯上安装检测装置,和路灯上安装图像采集装置这两个方案可以理解为并列方案,两个装置中,只安装其一即可,而不需要两个同时安装。
如果在路灯上安装检测装置,那么根据图像信息,确定第一区域是否有行人和/或车辆通过的替换方案可以为:
步骤a,接收第一区域的检测装置发送的检测信息;
步骤b,根据检测信息,判断第一区域是否有行人和/或车辆通过。
其中,检测信息包括标识第一区域是否有行人和/或车辆通过的标识信息。这里的标识信息没有任何复杂的意义,只要是能够方便服务器识别,且能够根据标识信息确定第一区域是否有行人和/或车辆通过即可。而一般而言,只有第一区域有行人或车辆通过时,检测装置才会通过无线通信装置向服务器发送检测信息。而需要说明的是,这里的检测装置可以是例如距离传感器等这样的传感器。利用距离传感器来检测预设范围内是否有移动物体经过。但是,为了避免移动传感器检测任何移动物体,例如检测某个小动物从路上经过等。所以,可以将检测装置安装在一定的高度。保证检测到的移动物体尽量都是人或者车辆等。
但是,在本发明另一实施例中,为了保证路灯物联网能够得到充分利用,在上述任意实施例中,如果路灯上安装的是图像采集装置。那么,智能路灯监控系统所执行的方法中,还可以包括如下方法步骤。以用于方便利用现有资源,及时确定每个路段的交通信息。方便车辆等选择出行路线。具体如图8所示,图8为本发明实施例提供的另一种智能路灯监控方法流程示意图。
在方法步骤中,除了可以包括步骤610至650之外,该方法还可以包括:
步骤660,根据第一区域的图像采集装置传输的图像信息,确定第一区域的路段交通信息。
步骤670,将第一区域的路段交通信息发送至不同的车载终端中,以便通过车载终端将第一区域的路段交通信息显示给用户。
优选的,该交通信息可以包括交通拥堵状况和/或交通事故。
具体的,通过第一区域的图像采集装置传输的图像信息,可以确定第一区域的交通状况,包括当前时刻第一区域道路是否发生拥堵,或者是否发生交通事故等等。并且将这些交通信息发送至不同的车载终端,以便用户能够根据车载终端显示的交通信息,规划出行路线。
本发明实施例提供的一种智能路灯监控方法,不仅仅可以实现路灯节能,路灯在必要时开启,并且根据实际情况确定路灯亮度。还能够同时提供交通信息,以便司机师傅能够根据交通信息,及时调整出行路线。
本发明实施例还提供了一种智能路灯监控装置,图9为本发明实施例提供的一种智能路灯监控装置结构示意图,该装置实际就是图1所示的实施例所述的服务器。具体如图9所示,该装置包括:数据收集器901和处理器902。
数据收集器901,用于实时获取至少一个区域的光照强度和天气信息。
具体的,数据收集器901获取至少一个区域的光照强度和天气信息,可以包括多种途径。
其中一种,可以是通过在路灯上安装的信息采集装置,实时采集的光照强度和天气信息。这里需要说明的是,至少一个区域中,每一个区域都可以包括至少一个路灯。而为了节约成本,可以不在每一个路灯上都分别安装以上装置,包括信息采集装置、处理装置以及无线通信装置等。在同一个区域的所有路灯中,按照预设规则选择在一个或者多个路灯上安装以上装置。比如,将每个区域划分为多个子区域,在每个子区域中,选择一个路灯安装以上装置。或者,将一个区域中的所有路灯进行分组,每组选择一个路灯安装以上装置。然后,利用安装以上装置的路灯实时采集光照强度和天气信息,通过物联网,发送至服务器中。服务器进行接收。
另一种,数据收集器901可以通过其他媒体途径获取至少一个区域的光照强度和天气信息。而最直接的途径就是从天气预报中读取。或者,也可以通过气象局直接获取等。而具体如何获取每一个区域的光照强度和天气信息,这里不做任何限定。
处理器902,用于当确定至少一个区域中的第一区域的光照强度低于第一阈值时,判断第一区域是否有行人和/或车辆通过。
当处理器902确定第一区域有行人和/或车辆通过时,控制第一区域的路灯开启。
并根据第一区域的天气信息和光照强度,确定第一区域的路灯开启的光亮强度,其中第一区域为至少一个区域中的任一区域。
具体的,只有第一区域的光照强度值低于第一阈值时,可以确定第一区域光照强度不足,在必要情况下,需要开启路灯。而必要条件,也即是判断第一区域是否有行人和/或车辆通过。而当确定第一区域有行人和/或车辆通过时,控制第一区域的路灯开启。
优选的,该装置中还可以包括接收器903。具体如图10所示。而判断第一区域是否有行人和/或车辆通过时,则可以包括如下几种方式:
第一种方式:
接收器903接收第一区域中的图像采集装置传输的图像信息。
具体的,在第一区域的一个或多个路灯上,还可以安装图像采集装置(图2中图像采集装置编号标识为104),具体如图2所示。而具体的安装规则,同上 文安装其他装置是规则类似,这里不再赘述。
路灯利用图像采集装置采集第一区域的图像信息,然后通过无线通信装置发送至服务器中。服务器中的接收器903则用于接收第一区域中的图像采集装置传输的图像信息。
处理器902具体用于,根据图像信息,确定第一区域是否有行人和/或车辆通过。
第二种方式,接收器903接收第一区域的检测装置发送的检测信息;
处理器902具体用于,根据检测信息,判断第一区域是否有行人和/或车辆通过。
其中,检测信息包括标识第一区域是否有行人和/或车辆通过的标识信息。这里的标识信息没有任何复杂的意义,只要是能够方便服务器识别,且能够根据标识信息确定第一区域是否有行人和/或车辆通过即可。而一般而言,只有第一区域有行人或车辆通过时,检测装置才会通过无线通信装置向服务器发送检测信息。
通过上述两种方式,则可以确定判断第一区域是否有行人和/或车辆通过。并且,在第一区域的光照强度低于第一阈值,且确定第一区域是否有行人和/或车辆通过时,控制路灯开启。
但是,如果处理器902单纯的控制路灯开启可能所起到的作用还不是特别明显。例如,如果路灯无论何时,只要开启就是同一种光照强度。如果光照强度太强,而很多时候根本用不到如此光照强度进行照射,会对光能资源造成浪费。而如果某些情况下,需要更强的光照强度,而在设定时总是统一的强度的话,可能对这些特殊情况所起到的作用也不是特别的明显。那么,为了适应各种不同的情况,则可以根据第一区域的天气信息和光照强度,确定第一区域的路灯开启的光亮强度。
优选的,为了能够根据实际情况不同,处理器902控制路灯的光亮强度不同。可以包括如下两种情况:
第一种情况,当确定第一区域的天气为晴天时,根据第一区域的天气信息和光照强度,按照第一比例系数,确定第一区域的路灯开启的光亮强度。
具体的,如果是晴天,那么在白天的情况下,光照强度一般都很强,不需要路灯进行开启。即使是夜晚,如果天上有充足的“月光”和“星光”,路上的“光照”强度一般也不会很弱。那么,路人即使在路灯不开启的情况下,可能一样可以照常行走,而车辆同样可以安全行驶。但是为了更加保险起见,保证路上行人行走安全,车辆行驶安全,还是可以在光照强度低于第一阈值时,控制路灯开启。但是,开启的光照强度可以稍微弱一些。也即是,按照第一比例系数,确定第一区域的路灯开启的光亮强度。而比例系数为1时,为路灯开启的光亮强度最大,第一比例系数一般是大于或者等于0,且小于或者等于1的数值。
第二种情况,当确定第一区域的天气为除晴天之外的天气时,根据第一区域的天气信息和光照强度,按照第二比例系数,确定第一区域的路灯开启的光亮强度。
当确定第一区域的天气为除晴天之外的天气时,根据第一区域的天气信息和光照强度,按照第二比例系数,确定第一区域的路灯开启的光亮强度。
具体的,如果天气为除晴天之外的天气,例如阴天、雨雪天气、冰雹天气、黄沙天气以及雾霾天气等等。这些天气都可能造成;路况模糊,尤其是阴雨天,黄沙天以及雾霾天等等。如果遇上这些特殊的天气,路上的可见度一般都不会很高。很容易造成交通事故。对路上行人的安全,以及路上行驶车辆的安全构成较大的威胁。那么,为了尽量避免交通事故发生,可以通过提高路灯的亮度,来为路人和车辆司机师傅等作为指示灯,同时方便路人和车辆等看清前方的路况。而第二比例系数大于或者等于第一比例系数。
本发明实施例提供的一种智能路灯监控装置,首先采集至少一个区域的光照强度和天气信息,如果至少一个区域中的第一区域的光照强度低于第一阈值时,检测第一区域是否有行人和/或车辆通过。并且在存在行人和/或车辆通过时,根据第一区域的天气信息和光照强度,开启路灯,并确定路灯的光亮强度。天气不同,光照强度不同,都会影响到路灯的光亮强度。通过该方法,主要是为了避免路上无人时,路灯开启而造成的资源浪费。同时,也能够保证如果路上有行人和车辆通过时,如果因为天气或者光照强度不足时,路灯能够开启,而且光亮强度能够保证行人和车辆能够安全通行。
为了保证路灯物联网能够得到充分利用,在上述任意实施例中,如果路灯上安装的是图像采集装置。那么,智能路灯监控装置还可以包括发送器904。具体如图11所示,该智能路灯监控装置中的处理器902具体用于:根据第一区域的图像采集装置传输的图像信息,确定第一区域的路段交通信息。
发送器904用于,将第一区域的路段交通信息发送至不同的车载终端中,以便通过车载终端将第一区域的路段交通信息显示给用户。
优选的,该交通信息可以包括交通拥堵状况和/或交通事故。
具体的,通过第一区域的图像采集装置传输的图像信息,可以确定第一区域的交通状况,包括当前时刻第一区域道路是否发生拥堵,或者是发生交通事故等等。并且将这些交通信息发送至不同的车载终端,以便用户能够根据车载终端显示的交通信息,规划出行路线。
本发明实施例提供的一种智能路灯监控方法,不仅仅可以实现路灯节能,路灯在必要时开启,并且根据实际情况确定路灯亮度。还能够同时提供交通信息,以便司机师傅能够根据交通信息,及时调整出行路线。
读者应理解,在本说明书的描述中,参考术语“一个实施例”、“一些实施 例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种智能路灯监控方法,其特征在于,所述方法包括:
    实时获取至少一个区域的光照强度和天气信息;
    当确定所述至少一个区域中的第一区域的光照强度低于第一阈值时,判断所述第一区域是否有行人和/或车辆通过;
    当确定所述第一区域有行人和/或车辆通过时,控制所述第一区域的路灯开启;
    并根据所述第一区域的天气信息和所述光照强度,确定所述第一区域的路灯开启的光亮强度,其中所述第一区域为所述至少一个区域中的任一区域。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一区域的天气信息和所述光照强度,确定所述第一区域的路灯开启的光亮强度,具体包括:
    当确定所述第一区域的天气为晴天时,根据所述第一区域的天气信息和所述光照强度,按照第一比例系数,确定所述第一区域的路灯开启的光亮强度;
    或者,当确定所述第一区域的天气为除晴天之外的天气时,根据所述第一区域的天气信息和所述光照强度,按照第二比例系数,确定所述第一区域的路灯开启的光亮强度,其中所述第二比例系数大于或者等于所述第一比例系数。
  3. 根据权利要求1所述的方法,其特征在于,所述判断所述第一区域是否有行人或车辆通过,具体包括:
    接收所述第一区域中的图像采集装置传输的图像信息;
    根据所述图像信息,确定所述第一区域是否有行人和/或车辆通过。
  4. 根据权利要求3所述的方法,其特征在于,当根据所述第一区域中的图像采集装置传输的图像信息,确定所述第一区域没有行人和/或车辆通过时,控制所述第一区域的路灯关闭。
  5. 根据权利要求3或4所述的方法,其特征在于,所述接收所述第一区域中的图像采集装置传输的图像信息之后,所述方法还包括:
    根据所述第一区域的图像采集装置传输的图像信息,确定所述第一区域的路段交通信息;
    并将所述第一区域的路段交通信息发送至不同的车载终端中,以便通过所述车载终端将所述第一区域的路段交通信息显示给用户。
  6. 一种智能路灯监控装置,其特征在于,所述装置包括:
    数据收集器,用于实时获取至少一个区域的光照强度和天气信息;
    处理器,用于当确定所述至少一个区域中的第一区域的光照强度低于第一阈值时,判断所述第一区域是否有行人和/或车辆通过;
    当所述处理器确定所述第一区域有行人和/或车辆通过时,控制所述第一区域的路灯开启;
    并根据所述第一区域的天气信息和所述光照强度,确定所述第一区域的路灯开启的光亮强度,其中所述第一区域为所述至少一个区域中的任一区域。
  7. 根据权利要求6所述的装置,其特征在于,所述处理器具体用于:
    当确定所述第一区域的天气为晴天时,根据所述第一区域的天气信息和所述光照强度,按照第一比例系数,确定所述第一区域的路灯开启的光亮强度;
    或者,当确定所述第一区域的天气为除晴天之外的天气时,根据所述第一区域的天气信息和所述光照强度,按照第二比例系数,确定所述第一区域的路灯开启的光亮强度,其中所述第二比例系数大于或者等于所述第一比例系数。
  8. 根据权利要求6所述的装置,其特征在于,所述装置还包括:
    接收器,用于接收所述第一区域中的图像采集装置传输的图像信息;
    所述处理器具体用于,根据所述图像信息,确定所述第一区域是否有行人和/或车辆通过。
  9. 根据权利要求8所述的装置,其特征在于,所述处理器具体用于:
    当根据所述第一区域中的图像采集装置传输的图像信息,确定所述第一区域没有行人和/或车辆通过时,控制所述第一区域的路灯关闭。
  10. 根据权要求8或9所述的装置,其特征在于,所述处理器还用于:
    根据所述第一区域的图像采集装置传输的图像信息,确定所述第一区域的路段交通信息;
    并将所述第一区域的路段交通信息发送至不同的车载终端中,以便通过所述车载终端将所述第一区域的路段交通信息显示给用户。
PCT/CN2017/097303 2017-06-23 2017-08-14 一种智能路灯监控方法及装置 WO2018232906A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710488743.1 2017-06-23
CN201710488743.1A CN107396511A (zh) 2017-06-23 2017-06-23 一种智能路灯监控方法及装置

Publications (1)

Publication Number Publication Date
WO2018232906A1 true WO2018232906A1 (zh) 2018-12-27

Family

ID=60333122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097303 WO2018232906A1 (zh) 2017-06-23 2017-08-14 一种智能路灯监控方法及装置

Country Status (2)

Country Link
CN (1) CN107396511A (zh)
WO (1) WO2018232906A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112423455A (zh) * 2020-11-25 2021-02-26 杭州盛世传奇标识系统有限公司 一种景观牌灯光控制方法、系统、装置和存储介质
CN112584569A (zh) * 2020-12-18 2021-03-30 数字之光智慧科技集团有限公司 基于大数据的led路灯的节能控制系统及控制方法
CN113518499A (zh) * 2021-04-25 2021-10-19 浙江恒隆智慧科技集团有限公司 基于大数据的智慧灯杆管理方法及装置
CN113531464A (zh) * 2021-06-15 2021-10-22 江苏恒昌照明灯具有限公司 一种太阳能路灯的控制系统
CN114040555A (zh) * 2021-01-20 2022-02-11 深圳市耀嵘科技有限公司 基于图像传感器的路灯系统与路灯控制方法
CN115297595A (zh) * 2022-09-29 2022-11-04 成都秦川物联网科技股份有限公司 一种基于物联网的智慧城市路灯智能控制方法和系统
CN115942563A (zh) * 2023-02-28 2023-04-07 赛尔数维(北京)科技有限公司 一种智能运维云平台系统及其控制方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109027982A (zh) * 2018-06-29 2018-12-18 中国船舶重工集团公司第七〇九研究所 用于控制路灯开启和关闭的方法、装置、设备及介质
CN108990231A (zh) * 2018-06-29 2018-12-11 中国船舶重工集团公司第七〇九研究所 一种路灯控制方法、装置、设备及介质
CN108882482A (zh) * 2018-06-29 2018-11-23 中国船舶重工集团公司第七〇九研究所 一种用于监控路灯的方法、装置、设备及介质
CN111278197B (zh) * 2020-01-21 2022-06-24 浙江大华技术股份有限公司 路灯控制方法、装置、存储介质及电子装置
CN111405728A (zh) * 2020-02-27 2020-07-10 贵州智诚科技有限公司 一种公交车站灯带智能动态控制方法
CN111556608A (zh) * 2020-04-10 2020-08-18 洪阳伟业光电科技(苏州)有限公司 一种基于LoRa无线通信的照明控制方法、控制系统及终端
CN113365400B (zh) * 2021-05-31 2022-05-31 中建二局土木工程集团有限公司 基于人工智能和视频分析的多时段路灯控制系统
CN114143939A (zh) * 2021-12-07 2022-03-04 中国电信股份有限公司 路灯组件的控制方法及控制系统
CN116249248A (zh) * 2023-04-08 2023-06-09 广州柏曼光电科技有限公司 一种智慧照明控制方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102573196A (zh) * 2010-12-31 2012-07-11 富泰华工业(深圳)有限公司 含有路灯控制终端的路灯系统及其自动调节方法
US20140239808A1 (en) * 2013-02-26 2014-08-28 Cree, Inc. Glare-reactive lighting apparatus
EP2884312A1 (en) * 2013-12-13 2015-06-17 Lite-On Technology Corporation Environment detection device and environment detection method suitable for street lamp
CN105307344A (zh) * 2015-11-11 2016-02-03 苏州扬佛自动化设备有限公司 一种路灯的感应控制方法
CN105517233A (zh) * 2015-12-21 2016-04-20 重庆绿色科技开发有限公司 基于多光源组合的多色温防雾霾led智能控制方法及路灯

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103702485B (zh) * 2013-12-23 2016-01-20 北京光桥科技股份有限公司 一种智能视频感应led道路照明系统
CN104768278A (zh) * 2014-05-20 2015-07-08 马俊东 一种智能路灯控制系统
CN104302046A (zh) * 2014-09-26 2015-01-21 青岛文创科技有限公司 一种智能路灯监控系统
CN104284498A (zh) * 2014-11-05 2015-01-14 光明国际(镇江)电气有限公司 具有天气感知功能的智能路灯控制系统
CN106163054A (zh) * 2016-07-15 2016-11-23 厦门华泉智慧能源科技有限公司 一种调节灯光亮度的方法、服务器及终端控制器
CN206191489U (zh) * 2016-11-07 2017-05-24 云南耀创能源开发有限公司 多功能太阳能路灯
CN106504537A (zh) * 2016-12-29 2017-03-15 温州奕叶电子有限公司 一种交通路况检测系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102573196A (zh) * 2010-12-31 2012-07-11 富泰华工业(深圳)有限公司 含有路灯控制终端的路灯系统及其自动调节方法
US20140239808A1 (en) * 2013-02-26 2014-08-28 Cree, Inc. Glare-reactive lighting apparatus
EP2884312A1 (en) * 2013-12-13 2015-06-17 Lite-On Technology Corporation Environment detection device and environment detection method suitable for street lamp
CN105307344A (zh) * 2015-11-11 2016-02-03 苏州扬佛自动化设备有限公司 一种路灯的感应控制方法
CN105517233A (zh) * 2015-12-21 2016-04-20 重庆绿色科技开发有限公司 基于多光源组合的多色温防雾霾led智能控制方法及路灯

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112423455A (zh) * 2020-11-25 2021-02-26 杭州盛世传奇标识系统有限公司 一种景观牌灯光控制方法、系统、装置和存储介质
CN112584569A (zh) * 2020-12-18 2021-03-30 数字之光智慧科技集团有限公司 基于大数据的led路灯的节能控制系统及控制方法
CN114040555A (zh) * 2021-01-20 2022-02-11 深圳市耀嵘科技有限公司 基于图像传感器的路灯系统与路灯控制方法
CN113518499A (zh) * 2021-04-25 2021-10-19 浙江恒隆智慧科技集团有限公司 基于大数据的智慧灯杆管理方法及装置
CN113518499B (zh) * 2021-04-25 2024-06-07 浙江恒隆智慧科技集团有限公司 基于大数据的智慧灯杆管理方法及装置
CN113531464A (zh) * 2021-06-15 2021-10-22 江苏恒昌照明灯具有限公司 一种太阳能路灯的控制系统
CN115297595A (zh) * 2022-09-29 2022-11-04 成都秦川物联网科技股份有限公司 一种基于物联网的智慧城市路灯智能控制方法和系统
CN115297595B (zh) * 2022-09-29 2023-02-28 成都秦川物联网科技股份有限公司 一种基于物联网的智慧城市路灯智能控制方法和系统
US11800621B2 (en) 2022-09-29 2023-10-24 Chengdu Qinchuan Iot Technology Co., Ltd. Method and system for controlling intelligent street lamps in a smart city based on internet of things
CN115942563A (zh) * 2023-02-28 2023-04-07 赛尔数维(北京)科技有限公司 一种智能运维云平台系统及其控制方法
CN115942563B (zh) * 2023-02-28 2023-05-16 赛尔数维(北京)科技有限公司 一种智能运维云平台系统及其控制方法

Also Published As

Publication number Publication date
CN107396511A (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
WO2018232906A1 (zh) 一种智能路灯监控方法及装置
US9497393B2 (en) Systems and methods that employ object recognition
US20190096242A1 (en) Traffic light control device, method, and system
KR100881270B1 (ko) 지능형 가로등 제어 시스템 및 그 방법
CN109383362B (zh) 一种汽车前照灯控制方法和装置
CN107911912B (zh) 一种led路灯节能照明系统及方法
CN111210629B (zh) 一种基于路灯杆的智慧交通控制方法及系统
CN102421219A (zh) 一种路灯网络控制方法及其网络结构
CN108055726B (zh) 一种led路灯节能照明系统及方法
CN206805801U (zh) 危险车辆过街警示系统
US10568188B2 (en) On-demand street lighting for a connected vehicle
CN204596157U (zh) 一种基于红外传感器的智能交通灯
CN110933824A (zh) 基于交通态势感知的隧道智能照明节能控制系统与方法
CN112822827A (zh) 基于5g的智能汽车灯光控制系统及其控制方法
CN102654942B (zh) 智能交通信息提示系统
CN102413618A (zh) 一种基于环境和流量的道路照明和预警方法及其系统
CN207911103U (zh) 一种基于毫米波雷达的智能路灯控制系统
WO2018076570A1 (zh) 电子指示牌控制方法及装置
CN208477751U (zh) 一种夜间无交通信号灯交叉路口车辆自动预警系统
CN111462505A (zh) 一种智慧城市系统
CN113393682A (zh) 一种基于车联网的智慧斑马线系统
CN204316836U (zh) 一种基于无线传感器网络的智能路灯控制装置
CN207833705U (zh) 一种智能控制道路预警亮化系统
CN204087489U (zh) 一种数码显示高清电子警察抓拍装置
CN106340193A (zh) 一种交通灯点亮时间的控制装置及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17914889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/05/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17914889

Country of ref document: EP

Kind code of ref document: A1