WO2018230680A1 - ドローン連携装置、車両管理装置、ドローン連携方法、およびプログラム - Google Patents

ドローン連携装置、車両管理装置、ドローン連携方法、およびプログラム Download PDF

Info

Publication number
WO2018230680A1
WO2018230680A1 PCT/JP2018/022831 JP2018022831W WO2018230680A1 WO 2018230680 A1 WO2018230680 A1 WO 2018230680A1 JP 2018022831 W JP2018022831 W JP 2018022831W WO 2018230680 A1 WO2018230680 A1 WO 2018230680A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
vehicle
autonomous driving
driving vehicle
unit
Prior art date
Application number
PCT/JP2018/022831
Other languages
English (en)
French (fr)
Inventor
アンドリ ピディン
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201880038533.5A priority Critical patent/CN110770811A/zh
Priority to US16/621,069 priority patent/US11341857B2/en
Publication of WO2018230680A1 publication Critical patent/WO2018230680A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/18Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G61/00Use of pick-up or transfer devices or of manipulators for stacking or de-stacking articles not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/04Control of altitude or depth
    • G05D1/06Rate of change of altitude or depth
    • G05D1/0607Rate of change of altitude or depth specially adapted for aircraft
    • G05D1/0653Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing
    • G05D1/0676Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing specially adapted for landing
    • G05D1/0684Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing specially adapted for landing on a moving platform, e.g. aircraft carrier
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/008Registering or indicating the working of vehicles communicating information to a remotely located station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/20Monitoring the location of vehicles belonging to a group, e.g. fleet of vehicles, countable or determined number of vehicles
    • G08G1/205Indicating the location of the monitored vehicles as destination, e.g. accidents, stolen, rental
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0034Assembly of a flight plan
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • G08G5/0082Surveillance aids for monitoring traffic from a ground station
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/60UAVs specially adapted for particular uses or applications for transporting passengers; for transporting goods other than weapons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/60UAVs specially adapted for particular uses or applications for transporting passengers; for transporting goods other than weapons
    • B64U2101/64UAVs specially adapted for particular uses or applications for transporting passengers; for transporting goods other than weapons for parcel delivery or retrieval
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/37Charging when not in flight
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle

Definitions

  • Patent Document 2 Japanese Patent Document 2
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a drone cooperation apparatus, a vehicle management apparatus, a drone cooperation method, and a program that can support cooperation between a vehicle and a drone. One of them.
  • One aspect of the present invention includes an acquisition unit that acquires an action plan from an automatic driving vehicle, and a section in which a drone is mounted on the automatic driving vehicle based on the action plan acquired by the acquisition unit.
  • a drone cooperation apparatus comprising: a determination unit that determines a flight plan of the drone.
  • the determination unit determines the flight plan of the drone while holding the delivery.
  • the determination unit determines a timing at which the drone approaches the autonomous driving vehicle based on the action plan, and approaches the autonomous driving vehicle at the determined timing. The drone is instructed to do so.
  • the determination unit instructs the drone to approach the autonomous driving vehicle at a timing when the traveling speed of the autonomous driving vehicle is equal to or lower than a predetermined speed. .
  • the determination unit does not have a timing at which the traveling speed of the autonomous driving vehicle falls below a predetermined value within a predetermined range including a point where the drone approaches the autonomous driving vehicle. In this case, the automatic driving vehicle is requested to change the action plan.
  • the determination unit gives an incentive to the vehicle of the autonomous driving vehicle that has changed the action plan in accordance with the action plan change request.
  • an automatic driving vehicle on which the drone is to be mounted is determined based on the starting point and the destination of the drone, and the drone mounting in a predetermined section with respect to the determined automatic driving vehicle
  • a companion management unit for requesting is further provided.
  • a delivery request is received from the autonomous driving vehicle, a drone for delivering a delivery to the autonomous driving vehicle is determined based on the accepted delivery content, and the determined drone
  • a delivery management unit that requests delivery to the autonomous driving vehicle is further provided.
  • One aspect of the present invention is a situation acquisition unit that acquires an action plan from an autonomous driving vehicle, and a drone that can be mounted on the autonomous driving vehicle based on the action plan acquired by the situation acquisition unit.
  • a use permission unit that determines a route section of the autonomous driving vehicle and permits the drone to be mounted on the autonomous driving vehicle, and vehicle information of the autonomous driving vehicle is externalized while the autonomous driving vehicle operates the route section. It is a vehicle management apparatus provided with the communication part which transmits.
  • an external vehicle operation request is received, information for identifying a plurality of autonomous driving vehicles is output based on the received vehicle operation request, and the situation acquisition unit is The status of the autonomous driving vehicle is acquired based on information for identifying the autonomous driving vehicle.
  • a usage state detection unit that detects whether or not the autonomous driving vehicle and the drone are in the accompanying state, and the automatic driving vehicle from the start to the end of the accompanying state
  • a record deriving unit for deriving a use record based on at least one of the travel distance and the travel time is provided.
  • the communication unit includes a result deriving unit that causes the autonomous driving vehicle to externally transmit the use record and receives the use record that has been externally transmitted.
  • the acquisition unit acquires the attribute information of the drone from the character driving vehicle, and the derivation unit derives the usage record based on the mass of the drone. To do.
  • the attribute information includes mass information of the drone.
  • the attribute information includes manufacturing information of the drone. *
  • an action plan is acquired from an autonomous driving vehicle, and the flight plan of the drone including a section in which the drone is mounted on the autonomous driving vehicle is acquired based on the acquired action plan.
  • the drone cooperation method to be determined.
  • a computer acquires an action plan from an automatic driving vehicle, and includes a section in which a drone is mounted on the automatic driving vehicle based on the acquired action plan. It is a program that determines the flight plan.
  • the cooperation between the vehicle and the drone can be supported by the business operator that manages the vehicle and the third business operator other than the business operator that manages the drone.
  • FIG. 1 is a configuration diagram of a drone cooperation system 1.
  • FIG. 1 is a configuration diagram of a vehicle 100.
  • FIG. It is a figure for demonstrating the process of an automatic driving
  • 2 is a functional configuration diagram of a drone 200.
  • FIG. 3 is a functional configuration diagram of a drone cooperation apparatus 300.
  • FIG. It is a figure which shows an example of the vehicle information. It is a figure which shows an example of the drone information 322. It is a figure which shows an example of the accompanying management information 324. It is a figure which shows an example of the delivery management information 325.
  • It is explanatory drawing which shows the example which drone 200A accompanies the vehicle 100A.
  • 5 is a flowchart illustrating an example of processing operation in a determination unit 334. It is a sequence diagram which shows an example of the processing operation according to the accompanying request. It is a sequence diagram which shows an example of the processing operation according to a delivery request
  • the vehicle in this system is, for example, an autonomous driving vehicle that basically does not require a driving operation.
  • the vehicle may be a vehicle having four or more wheels, for example, and may be a motorcycle or other vehicles.
  • FIG. 1 is a configuration diagram of the drone cooperation system 1.
  • the drone cooperation system 1 includes one or more vehicles 100, one or more drones 200, and a drone cooperation apparatus 300. These components can communicate with each other via the network NW.
  • the network NW includes the Internet, a WAN (Wide Area Network), a LAN (Local Area Network), a public line, a provider device, a dedicated line, a wireless base station, and the like.
  • a support mechanism 101 that supports the drone 200 is attached to the upper portion of the vehicle 100.
  • the support mechanism 101 connects the vehicle 100 and the drone 200.
  • the support mechanism 101 may be connected to the drone 200 using an instrument having a coupling structure, or may be connected to the drone 200 using an electromagnet.
  • the support mechanism 101 may include a charging facility and supply power to the connected drone 200 in a contact or non-contact manner.
  • the power that the support mechanism 101 supplies to the drone 200 may be a predetermined fixed power amount, the maximum power storage amount of the drone 200, or may be changed according to the power that can be supplied by the vehicle 100. Good.
  • FIG. 2 is a configuration diagram of the vehicle 100.
  • the vehicle 100 includes, for example, an external environment monitoring unit 110, a communication device 120, a navigation device 130, a recommended lane determining device 140, an automatic driving control unit 150, a driving force output device 160, a brake device 162, and a steering device. 164 and a cooperation unit 170.
  • the external environment monitoring unit 110 includes, for example, a camera, a radar, a LIDAR (Light Detection and Ranging), and an object recognition device that performs sensor fusion processing based on these outputs.
  • the outside world monitoring unit 110 estimates the types of objects (particularly, vehicles, pedestrians, and bicycles) existing around the vehicle 100 and outputs the information to the automatic driving control unit 150 together with the position and speed information.
  • the communication device 120 is a wireless communication module for connecting to a network NW or directly communicating with other vehicles or pedestrian terminal devices, for example.
  • the communication device 120 performs wireless communication based on Wi-Fi, DSRC (Dedicated Short Range Communication), Bluetooth (registered trademark), and other communication standards.
  • a plurality of communication devices 120 may be prepared depending on the application.
  • the navigation device 130 includes, for example, a human machine interface (HMI) 132, a global navigation satellite system (GNSS) receiver 134, and a navigation control device 136.
  • the HMI 132 includes, for example, a touch panel display device, a speaker, a microphone, and the like.
  • the GNSS receiver 134 measures the position of the own apparatus (the position of the vehicle 100) based on radio waves coming from a GNSS satellite (for example, a GPS satellite).
  • the navigation control device 136 includes, for example, a CPU (Central Processing Unit) and various storage devices, and controls the entire navigation device 130. Map information (navigation map) is stored in the storage device.
  • the navigation map is a map that expresses roads by nodes and links.
  • the navigation control device 136 determines a route from the position of the vehicle 100 measured by the GNSS receiver 134 to the destination specified using the HMI 132 with reference to the navigation map.
  • the navigation control device 136 may transmit the position and destination of the vehicle 100 to a navigation server (not shown) using the communication device 120 and acquire a route returned from the navigation server.
  • the destination may be specified by the user using the HMI 132.
  • the route may include information on a stop point and a target arrival time for getting on or off the user.
  • the navigation control device 136 outputs the route information determined by any of the above methods to the recommended lane determination device 140.
  • the recommended lane determining device 140 includes, for example, an MPU (Micro Processing Unit) and various storage devices.
  • the storage device stores high-precision map information that is more detailed than the navigation map.
  • the high-accuracy map information includes, for example, information such as road width and gradient for each lane, curvature, and signal position.
  • the recommended lane determining device 140 determines a recommended lane preferable for traveling along the route input from the navigation device 130, and outputs the recommended lane to the automatic driving control unit 150.
  • the automatic operation control unit 150 includes one or more processors such as a CPU and an MPU and various storage devices.
  • the automatic driving control unit 150 travels in the recommended lane determined by the recommended lane determining device 140, and the vehicle 100 is controlled so as to avoid contact with an object whose position and speed are input from the external monitoring unit 110. Let it run automatically.
  • the automatic operation control unit 150 determines various events and sequentially executes them. Events include constant speed driving events that drive in the same lane at a constant speed, follow-up driving events that follow the preceding vehicle, deceleration driving events, lane change events, merging events, branching events, emergency stop events, passing through the toll gate There are toll booth events for switching to automatic driving and handover events for switching to manual driving. Further, during execution of these events, actions for avoidance may be planned based on the surrounding situation of the vehicle 100 (the presence of surrounding vehicles and pedestrians, lane narrowing due to road construction, etc.).
  • the automatic operation control unit 150 generates a target track on which the vehicle 100 will travel in the future.
  • the target trajectory includes, for example, a velocity element.
  • the target track is expressed as a sequence of points (track points) that the host vehicle M should reach.
  • the trajectory point is a point where the host vehicle M should reach for each predetermined travel distance.
  • the target speed and target acceleration for each predetermined sampling time are the target trajectory. Generated as part of.
  • the track point may be a position to which the host vehicle M should arrive at the sampling time for each predetermined sampling time. In this case, information on the target speed and target acceleration is expressed by the interval between the trajectory points.
  • FIG. 3 is a diagram for explaining a process of automatic driving.
  • a route is determined by the navigation device 130. This route is, for example, a rough route with no lane distinction.
  • the recommended lane determining device 140 determines a recommended lane that is easy to travel along the route.
  • the automatic operation control unit 150 generates a trajectory point for traveling along the recommended lane as much as possible while avoiding obstacles, and the trajectory point (and accompanying speed profile) is generated.
  • a part or all of the driving force output device 160, the brake device 162, and the steering device 164 are controlled so as to travel along the vehicle.
  • Such division of roles is merely an example, and for example, the automatic operation control unit 150 may perform processing in an integrated manner.
  • the driving force output device 160 outputs a driving force (torque) for driving the vehicle to the driving wheels.
  • the driving force output device 160 includes, for example, a combination of an internal combustion engine, an electric motor, a transmission, and the like, and a power ECU that controls them.
  • the power ECU controls the above-described configuration in accordance with information input from the automatic operation control unit 150 or information input from a driving operator (not shown).
  • the brake device 162 includes, for example, a brake caliper, a cylinder that transmits hydraulic pressure to the brake caliper, an electric motor that generates hydraulic pressure in the cylinder, and a brake ECU.
  • the brake ECU controls the electric motor according to the information input from the automatic driving control unit 150 or the information input from the driving operator so that the brake torque corresponding to the braking operation is output to each wheel.
  • the brake device 162 may include, as a backup, a mechanism that transmits the hydraulic pressure generated by operating the brake pedal included in the driving operator to the cylinder via the master cylinder.
  • the brake device 162 is not limited to the configuration described above, and is an electronically controlled hydraulic brake device that controls the actuator according to information input from the automatic operation control unit 150 and transmits the hydraulic pressure of the master cylinder to the cylinder. Also good.
  • the steering device 164 includes, for example, a steering ECU and an electric motor.
  • the electric motor changes the direction of the steered wheels by applying a force to a rack and pinion mechanism.
  • the steering ECU drives the electric motor according to the information input from the automatic driving control unit 150 or the information input from the driving operator, and changes the direction of the steered wheels.
  • the cooperation unit 170 includes an input / output unit 171, a storage unit 172, a data management unit 173, and a cooperation management unit 174.
  • the input / output unit 171 includes an input unit such as a mouse, a keyboard, a touch panel, a microphone, a sensor, and a camera, and an output unit such as a display and a speaker.
  • the storage unit 172 is realized by an HDD (Hard Disk Drive), a flash memory, a RAM (Random Access Memory), a ROM (Read Only Memory), or the like.
  • the data management unit 173 and the cooperation management unit 174 are realized, for example, when a processor such as a CPU executes a program (software) stored in the storage unit 172.
  • a processor such as a CPU executes a program (software) stored in the storage unit 172.
  • One or both of these functional units are realized by hardware such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), and GPU (Graphics Processing Unit). It may be realized by cooperation of software and hardware.
  • the data management unit 173 transmits the position information of the vehicle 100 measured by the GNSS receiver 134 and the action plan of the vehicle 100 to the drone cooperation device 300 using the communication device 120 at a predetermined timing.
  • the action plan includes, for example, a route determined by the navigation device 130, an event executed by the automatic driving control unit 150, and the like.
  • the cooperation management unit 174 performs various processes based on information received from the drone cooperation device 300 using the communication device 120, information input from the input / output unit 171, and the like. For example, the cooperation management unit 174 performs processing for displaying a predetermined screen on the input / output unit 171, processing for specifying the type and timing of information to be transmitted to the drone cooperation device 300 to the data management unit 173, and the like. In addition, the cooperation management unit 174 transmits information (for example, accompanying conditions and delivery conditions described later) to the drone cooperation apparatus 300 using the communication apparatus 120, which indicates contents associated with the drone 200.
  • information for example, accompanying conditions and delivery conditions described later
  • the drone 200 is an unmanned aerial vehicle and flies by remote operation or automatic operation.
  • the drone 200 stands by at a drone station, a distribution center, or the like provided at various places, and when a flight start instruction is received from the drone cooperation apparatus 300, the drone 200 flies according to a designated flight plan. Thereafter, the drone 200 returns to a nearby drone station or distribution center.
  • FIG. 4 is a functional configuration diagram of the drone 200.
  • the drone 200 includes, for example, a communication device 210, a camera 220, a GNSS receiver 230, a sensor 240, a motor 250, a holding mechanism 260, a charging device 270, a control unit 280, and a storage unit 290. .
  • the communication device 210 is a communication interface for connecting to the network NW or directly communicating with the pick-up management device 400, for example.
  • the communication device 210 may include, for example, a NIC (Network Interface Card), or may perform wireless communication based on Wi-Fi, DSRC (Dedicated Short Range Communications), Bluetooth (registered trademark), or other communication standards. Good.
  • a plurality of communication devices 210 may be prepared according to applications.
  • the camera 220 is a digital camera using a solid-state imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • a solid-state imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • One or a plurality of cameras 220 are attached to any part of the drone 200.
  • the GNSS receiver 230 measures its own position (the position of the drone 200) based on radio waves coming from a GNSS satellite (for example, a GPS satellite).
  • the sensor 240 is, for example, a magnetic sensor, a triaxial gyro sensor, a triaxial acceleration sensor, or the like.
  • the motor 250 includes a plurality of motors, and a propeller is attached to each motor.
  • the holding mechanism 260 includes, for example, an arm, a hook, a storage case, and the like, and fixes a delivery item or the like to the drone 200 so as to be removable.
  • the charging device 270 includes a rechargeable battery and supplies power to various parts of the drone 200.
  • the charging device 270 includes a connection unit for charging the rechargeable battery.
  • the control unit 280 is realized, for example, when a processor such as a CPU executes a program (software) stored in the storage unit 290.
  • a processor such as a CPU executes a program (software) stored in the storage unit 290.
  • One or both of these functional units may be realized by hardware such as LSI, ASIC, FPGA, GPU, or may be realized by cooperation of software and hardware.
  • the control unit 280 controls the motor 250 according to the flight plan, or controls the holding mechanism 260 so as to remove the delivery when approaching the vehicle 100.
  • the control unit 280 transmits information indicating contents linked with the vehicle 100 (for example, accompanying conditions and delivery conditions described later) to the drone cooperation apparatus 300 using the communication apparatus 210.
  • the control unit 280 may analyze the image captured by the camera 220 to acquire the vehicle type, color, number, and the like of the vehicle that is the approach target, specify the approach target, and based on the image captured by the camera 220. Thus, the distance and relative positional relationship with the approaching vehicle may be derived. In addition, the control unit 280 may identify the vehicle that is the approach target by communicating with the vehicle 100 using the communication device 210, and may derive the distance and relative positional relationship with the vehicle.
  • Flight plan includes flight path, altitude, speed and flight mode. Flight modes include ascending, straight flying, descending, hovering, parallel running and the like. Parallel running is to follow and fly in accordance with the movement of the target moving body.
  • the control unit 280 may fly according to the flight plan created by the drone cooperation device 300, and creates a flight plan based on conditions such as a departure place, a destination, and an arrival time designated by the drone cooperation device 300. Also good.
  • the control unit 280 transmits information indicating the position of the drone 200 measured by the GNSS receiver 230 and the latest flight plan to the drone cooperation apparatus 300 using the communication apparatus 210 at a predetermined timing.
  • the storage unit 290 stores a control program in the control unit 280 and various data (for example, a flight plan) used for processing of the control unit 280. Further, the storage unit 290 has an image buffer area for storing an image taken by the camera 220.
  • FIG. 5 is a functional configuration diagram of the drone cooperation apparatus 300.
  • the drone cooperation apparatus 300 includes, for example, a communication apparatus 310, a storage unit 320, and a control unit 330.
  • the communication device 310 is, for example, a NIC for connecting to the network NW.
  • the communication device 310 communicates with the vehicle 100 and the drone 200 via the network NW.
  • the storage unit 320 is realized by an HDD, flash memory, RAM, ROM, or the like.
  • the control unit 330 includes, for example, an acquisition unit 331, a accompanying management unit 332, a delivery management unit 333, and a determination unit 334. Part or all of these configurations are realized, for example, when a processor such as a CPU executes a program (software) stored in the storage unit 320. Some or all of these functional units may be realized by hardware such as LSI, ASIC, FPGA, GPU, or may be realized by cooperation of software and hardware.
  • the acquisition unit 331 acquires various types of information from the vehicle 100 and the drone 200 using the communication device 310 and stores them in the storage unit 320. For example, the acquisition unit 331 receives position information indicating the position of the vehicle 100 and an action plan from the vehicle 100 using the communication device 310 and stores them in the vehicle information 321 of the storage unit 320. In addition, the acquisition unit 331 receives position information indicating the position of the drone 200 and a flight plan from the drone 200 using the communication device 310, and stores them in the drone information 322 of the storage unit 320. Note that since the drone cooperation apparatus 300 creates a flight plan, the drone 200 may receive changed information from the drone 200 when a part of the flight plan is changed by the drone 200.
  • the acquisition unit 331 may receive the attribute information of the drone 200 from the drone 200.
  • the attribute information is, for example, mass information related to the mass of the drone 200 or manufacturing information of the drone 200 (for example, a manufacturer, a manufacturing model number, or a serial number for identifying an individual).
  • Vehicle information 321 is information including position information, action plans, and the like updated in the vehicle 100.
  • FIG. 6 is a diagram illustrating an example of the vehicle information 321. As illustrated in FIG. 6, the vehicle information 321 is information in which an action plan and position information are associated with date and time, and is stored in a table prepared for each vehicle 100, for example. The vehicle 100 periodically transmits vehicle information 321 to the drone cooperation device 300.
  • the drone information 322 is information including position information updated in the drone 200, a flight plan, and the like.
  • FIG. 7 is a diagram illustrating an example of the drone information 322. As illustrated in FIG. 7, the drone information 322 is information in which the flight plan and the position information are associated with each other on the date and time, and is stored in a table prepared for each drone 200, for example.
  • the map data 323 includes map information representing roads by nodes and links, information representing the position and height of structures such as buildings, overpasses, traffic lights and electric wires.
  • the accompanying management unit 332 determines the vehicle 100 on which the drone 200 is to be mounted based on the departure point and the destination of the drone 200 and requests the determined vehicle 100 to mount the drone 200 in a predetermined section.
  • the movement of the drone 200 mounted on the vehicle 100 while moving from the departure point to the destination is referred to as accompanying the vehicle 100.
  • the accompanying management unit 332 refers to the map data 323 and determines a vehicle that travels on the optimum route among the plurality of vehicles 100 as a vehicle on which the drone 200 is mounted.
  • the optimal route is a route from the starting point of the drone 200 to a destination including at least a section where the drone 200 is mounted on the vehicle 100, and a route when it is assumed that the drone 200 accompanies each vehicle 100 that is a companion candidate. Among them, the route is optimized.
  • the accompanying vehicle 100 is a vehicle 100 that is capable of guiding the drone 200 from the departure location toward the destination by carrying the drone 200 and moving together.
  • the accompanying management unit 332 refers to the vehicle information 321 and acquires a vehicle whose action plan includes traveling within a predetermined range including the departure point or destination of the drone 200 as the accompanying vehicle 100. May be.
  • the accompanying management unit 332 determines, from among the flight paths that accompany each of the accompanying vehicle 100, a flight path that satisfies the conditions to be optimized as an optimal path.
  • the conditions for optimization can be set arbitrarily. For example, the accompanying management unit 332 sets the route that has the earliest travel time from the departure point of the drone 200 to the destination, the route that has the shortest travel distance, and the vehicle 100 that accompanies it. The route with the smallest number is determined as the optimum route.
  • the accompanying management unit 332 stores the accompanying content including the optimum route in the accompanying management information 324 of the storage unit 320. Further, when the accompanying management unit 332 receives information indicating the accompanying state from the vehicle 100 or the drone 200 using the communication device 310, the accompanying management unit 332 updates the accompanying management information 324.
  • FIG. 8 is a diagram illustrating an example of the accompanying management information 324.
  • the accompanying management information 324 is information in which the drone ID is associated with the departure place, the destination, the time condition, the optimum route, the vehicle ID, and the accompanying situation.
  • the drone ID is unique information for identifying each drone 200 and is information indicating the drone 200 that requests to accompany the vehicle 100.
  • the departure place and the destination are the departure place and the destination of the drone 200 requesting the bank.
  • the time condition is a time condition requested by the drone 200, and includes, for example, the time of departure from the departure place and the time of arrival at the destination.
  • the optimum route is the optimum route determined by the accompanying management unit 332.
  • the vehicle ID is unique information for identifying each vehicle 100 and is information indicating a vehicle determined by the accompanying management unit 332 as the vehicle 100 to accompany the drone 200.
  • the accompanying status is information indicating the accompanying status of the drone 200 and includes, for example, moving to the vehicle, during the accompanying, completion of the accompanying, arrival at the destination, and the like.
  • the delivery management unit 333 receives a delivery request from the vehicle 100, determines a drone 200 to deliver a delivery to the vehicle 100 based on the received delivery content, and requests the determined drone 200 to deliver to the vehicle 100.
  • the delivery management unit 333 is a type of drone that can hold a designated delivery item among a plurality of drones 200, and reciprocates to the vehicle 100 that requested the delivery under a designated time condition. Is selected from the drones 200 registered in the drone management information 326 based on the reservation status before and after.
  • the delivery management unit 333 stores the delivery contents including the drone to be delivered in the delivery management information 325 of the storage unit 320.
  • the delivery management unit 333 updates the delivery management information 325 when receiving information indicating the delivery status from the vehicle 100 or the drone 200 using the communication device 310 or when the determination unit 334 determines the flight route.
  • Delivery management information 325 is information indicating the contents of delivery.
  • FIG. 9 is a diagram illustrating an example of the delivery management information 325.
  • the delivery management information 325 is information in which a delivery item, a time condition, a drone ID, a delivery status, and a delivery route are associated with a vehicle ID.
  • the vehicle ID is information indicating the vehicle 100 that requests delivery.
  • the delivery item is information indicating the name, number, etc. of the delivery item requested from the vehicle 100.
  • the time condition is a time condition requested by the vehicle 100 and includes, for example, a time zone in which delivery is desired.
  • the drone ID is information indicating a drone determined by the delivery management unit 333 as the drone 200 that delivers the delivery to the vehicle 100.
  • the delivery status is information indicating the delivery status of the drone 200, and includes, for example, during preparation for delivery, during delivery, completion of delivery, and the like.
  • the delivery route is a flight route included in the flight plan determined by the determination unit 334.
  • the drone management information 326 is information on the prepared drone 200.
  • the drone management information 326 communicates with the drone ID, the drone station where the drone 200 is waiting, the current position of the drone 200, the current state of the drone, and the drone 200. This is information in which addresses necessary for the association are associated.
  • the drone management information 326 includes both information related to the drone 200 requesting the bank and information related to the drone 200 undertaking delivery.
  • the current state of the drone includes the accompanying situation and delivery status.
  • the determination unit 334 refers to the map data 323 and determines the flight plan of the drone 200 including the section in which the drone 200 is mounted on the vehicle 100 based on the action plan acquired by the acquisition unit 331.
  • the determination unit 334 may determine a flight plan including a plurality of sections mounted on different vehicles 100.
  • the determining unit 334 refers to the map data 323 and the action plan of the vehicle 100 and mounts the drone 200 on all the vehicles 100 that are accompanying candidates. Create a flight plan from the departure point to the destination including the section.
  • the determination unit 334 determines a flight plan including the flight route determined as the optimum route by the accompanying management unit 332 among the created flight plans as the flight plan of the drone 200.
  • the determination unit 334 refers to the map data 323 and the action plan of the vehicle 100 and holds the delivery to the vehicle 100 that requested delivery from the departure point.
  • a flight plan from the starting point to the destination including the section on which the drone 200 is mounted in the state is created.
  • the determination unit 334 determines a position at which the drone 200 merges with the vehicle 100 (hereinafter referred to as a merge point) based on the action plan of the vehicle 100, the departure place and the destination of the drone 200, and the like.
  • the determination unit 334 creates a flight plan for the drone 200 based on the determined merge point.
  • the determining unit 334 determines a timing (hereinafter referred to as an approach timing) when the drone 200 approaches the vehicle 100 based on an action plan of the vehicle 100 or the like.
  • the determination unit 334 creates a flight plan for controlling the drone 200 so as to approach the vehicle 100 at the determined approach timing.
  • the determination unit 334 may correct a part of the already created flight plan based on the determined joining point and approach timing.
  • the determining unit 334 refers to the storage unit 320 and derives the future moving distance and moving time between the approaching vehicle 100 and the drone 200 (hereinafter referred to as the approaching vehicle 100J and the approaching drone 200J), and approaches A point where the vehicle 100J and the approaching drone 200J can join is determined as a joining point, and a flight plan is created so as to approach the approaching vehicle 100J at the determined joining point.
  • the determination unit 334 may determine the point at which the approaching vehicle 100J and the approaching drone 200J join the earliest as a joining point. If the environment is not easy to join in consideration of road conditions, the decision unit 334 may easily join the environment. It is good also as a confluence point.
  • the determination unit 334 refers to the storage unit 320, and sets a timing that satisfies a condition suitable for approach (hereinafter referred to as an access condition) within a predetermined range including the junction point (hereinafter referred to as an access area). Decide on timing.
  • the approach area includes a range within a predetermined distance from the junction point, a range within a predetermined movement time from the junction point, and the like.
  • the approach condition includes, for example, that the traveling speed of the vehicle 100 is equal to or lower than a predetermined speed, that the event of the vehicle 100 is a predetermined event (for example, a deceleration event, a stop event, etc.), and that the other vehicle is stopped or decelerated.
  • the location is included.
  • the place where the vehicle stops or decelerates includes, for example, a place where there is a traffic light that turns red when it arrives, a toll gate, a curve, and the like.
  • the determination unit 334 requests the approaching vehicle 100J to decelerate when there is no timing satisfying the approach condition within a predetermined range including the junction point. For example, the determination unit 334 transmits information requesting the approaching vehicle 100J to decelerate within a predetermined range including the junction point using the communication device 310.
  • the determination unit 334 notifies the occupant of the approaching vehicle 100J that the incentive is granted when the request for deceleration is accepted, and grants the incentive to the occupant of the approaching vehicle 100J that has decelerated according to the deceleration request. May be.
  • the determination unit 334 stores information on the assigned incentive in the incentive information 327 of the storage unit 320.
  • the incentive information 327 is information for managing incentives held by the user.
  • the incentive information 327 is information in which information indicating an incentive, a given date, an expiration date, and the like are associated with the user ID.
  • the information indicating the incentive includes the number of points, the type of incentive, and the like.
  • FIG. 10 is an explanatory diagram illustrating an example in which the drone 200A accompanies the vehicle 100A.
  • the drone 200A is scheduled to move from the departure point S to the destination G.
  • the shortest route is a straight line connecting the departure point S and the destination G.
  • the drone 200A or the administrator who manages the drone 200A Request to accompany vehicle 100.
  • the drone cooperation apparatus 300 creates a flight plan of the drone A based on the action plans of the plurality of vehicles 100A, 100B, 100C that are candidates for traveling around the departure point S and the destination G. For example, based on the action plan of the vehicle 100A, the determination unit 334 of the drone cooperation apparatus 300 determines the point that can join the drone 200A that departs from the departure point S on the route of the vehicle 100A as the joining point P1, and the vehicle 100A The point closest to the destination G is determined as the branch point P2.
  • the determination unit 334 creates a flight plan that flies from the departure point S to the junction point P1, accompanies the vehicle 100A from the junction point P1 to the branch point P2, and flies from the branch point P2 to the destination G.
  • the determination unit 334 determines a route including the action plan of the vehicle 100A among the vehicles 100A, 100B, and 100C as the optimum route.
  • the drone 200A flies according to the flight plan determined as the optimum route and flies to the junction P1 with the vehicle 100A.
  • the drone 200A that merges with the vehicle 100A at the merge point P1 runs in parallel with the vehicle 100A until the approach timing is reached.
  • the drone 200A approaches the vehicle 100A and is connected to the vehicle 100A by the support mechanism 101.
  • drone 200A may charge charging device 270 with power supplied from vehicle 100A.
  • the connection state using the support mechanism 101 is released, and the drone 200A flies to the destination G.
  • FIG. 11 is an explanatory diagram illustrating an example in which the drone 200B delivers to the vehicle 100D.
  • the vehicle 100D requests delivery to the drone cooperation device 300 at the point P3.
  • the drone cooperation apparatus 300 selects the drone 200B from the plurality of drones 200.
  • a delivery requested by a staff member is attached to the drone 200B.
  • the determination unit 334 of the drone cooperation apparatus 300 flies from the distribution center P4 to the junction point P5 with the vehicle 100D as the flight plan of the drone 200B, and accompanies the vehicle 100D from the junction point P5 to the branch point P6 to deliver the delivery.
  • the route returning from the branch point P6 to the delivery center P4 is determined.
  • the determination unit 334 determines the point that can join the drone 200B that has left the distribution center P4 on the route of the vehicle 100D as the junction point P5, and is sufficient for delivery of the delivery.
  • a point where a predetermined time can be secured is determined as the branch point P6.
  • the drone 200B flies according to the flight plan and flies from the distribution center P4 to the junction P5.
  • the drone 200B that merges with the vehicle 100D at the merge point P5 runs in parallel with the vehicle 100D until the approach timing is reached.
  • the drone 200B approaches the vehicle 100D and is connected to the vehicle 100D by the support mechanism 101.
  • drone 200B may charge charging device 270 with electric power supplied from vehicle 100D.
  • vehicle 100D completes receipt of delivery and charging, vehicle 100D releases the connection state by support mechanism 101.
  • the drone 200B flies from the branch point P6 toward the distribution center P4.
  • the drone 200B may accompany another vehicle 100 during the movement from the distribution center P4 to the junction point P5 and from the branch point P6 to the distribution center P4.
  • FIG. 12 is an explanatory diagram showing a state in which the drone 200 approaches the vehicle 100.
  • the predetermined range including the junction point is the approach area, and the approach timing is set to the timing satisfying the approach condition in the approach area.
  • the vehicle 100 (t1) is traveling at a constant speed traveling event, and the speed per hour is 60 km.
  • drone 200 (t1) is flying slightly behind vehicle 100 (t1).
  • the approach timing is set at time t2 when the deceleration event is executed. Thereafter, at time t2, vehicle 100 (t2) decelerates to 30 km / h by executing a deceleration event, and at time t3, vehicle 100 (t3) travels at a constant speed of 30 km / h.
  • drone 200 (t2) is connected to vehicle 100 (t2) in close proximity, and at time t3, drone 200 (t3) moves while mounted on vehicle 100 (t3).
  • FIG. 14 is a flowchart illustrating an example of a processing operation in the determination unit 334.
  • the determination unit 334 refers to the vehicle information 321 and the drone information 322, determines a confluence point, creates a flight plan of the drone 200 based on the determined confluence point, and uses the communication device 310 to determine the drone 200. Transmit (step S101).
  • the determination unit 334 determines whether or not the latest joining point needs to be corrected (step S102).
  • it is necessary to correct the merge point for example, when the drone 200 arrives at the merge point earlier due to a decrease in the moving speed of the vehicle 100 due to a traffic jam or a stop, or the vehicle 100 is accelerated. The case where the vehicle 100 arrives at a confluence
  • the determination unit 334 refers to the vehicle information 321 and the drone information 322, corrects the merge point, and the flight of the drone 200 based on the corrected merge point.
  • a plan is created and transmitted to the drone 200 using the communication device 310 (step S103).
  • the determination unit 334 determines whether an action plan for the vehicle 100 on the road in the approach area has been acquired (step S104). When the action plan of the vehicle 100 on the road in the approach area has not been acquired, the determination unit 334 returns to the process of step S102.
  • the determination unit 334 determines the position of the vehicle 100 on the road in the approaching area based on the acquired action plan of the vehicle 100. Then, it is determined whether or not there is a timing satisfying the approach condition (step S105). For example, the determination unit 334 determines whether there is a timing for executing a deceleration event or a stop event. When it is determined that there is a timing that satisfies the approach condition, the determination unit 334 determines the approach timing at a timing that satisfies the approach condition, creates a flight plan that instructs to approach the vehicle 100 in accordance with the approach timing, and performs communication. It transmits to the drone 200 using the apparatus 310 (step S106).
  • the determination unit 334 transmits a request for requesting deceleration or stop to the vehicle 100 using the communication device 310 (step S107).
  • the determination unit 334 determines the approach timing as the approach timing based on the action plan received from the vehicle 100, and sets the approach timing.
  • a flight plan for instructing to approach the vehicle 100 is created and transmitted to the drone 200 using the communication device 310 (step S109).
  • the determination part 334 gives a predetermined
  • step S108 when the notification of accepting the stop with deceleration is not received from the vehicle 100, the determination unit 334 refers to the vehicle information 321 and the drone information 322, corrects the merging point, and based on the corrected merging point.
  • the flight plan of the drone 200 is created and transmitted to the drone 200 using the communication device 310 (step S111). For example, the determination unit 334 sets a point in the traveling direction by a predetermined distance from the joining point in the route of the vehicle 100 as the corrected joining point.
  • the predetermined incentive is derived, for example, based on the following calculation basis.
  • the predetermined incentive is generated by, for example, a request transmitted by the determination unit 334, an increased time (or fuel cost) until arrival at the destination caused by deceleration, stoppage, route change, etc., or power supply during traveling It is derived based on the running resistance, energy increase, and the like.
  • the predetermined incentive is derived based on the distance and time that the vehicle 100 has moved by transporting the drone 200, the number of transported vehicles, and the value of the transported material transported by the drone 200 (risk passed to the vehicle 100). May be.
  • FIG. 14 is a sequence diagram illustrating an example of a processing operation according to the accompanying request.
  • the vehicle 100 acquires position information indicating the position of the vehicle 100 and an action plan (step S1), and periodically transmits them to the drone cooperation device 300 using the communication device 120 (step S2).
  • the drone 200 also acquires position information indicating the position of the drone 200 and a flight plan (step S3), and periodically transmits them to the drone cooperation apparatus 300 using the communication device 210 (step S4).
  • the drone 200 transmits a request for requesting the bank to the drone cooperation device 300 using the communication device 210 (step S5).
  • the drone cooperation apparatus 300 determines the vehicle 100 to accompany the drone 200 based on the flight route of the drone 200 (step S6), and transmits a request to request the accompaniment of the drone 200 to the determined vehicle 100 (step S6).
  • step S7 For example, when the vehicle 100 accepts the accompanying consent from the occupant using the input / output unit 171 (step S8), the vehicle 100 transmits the consent information to the drone cooperation device 300 using the communication device 120 (step S9).
  • the drone cooperation apparatus 300 creates the flight plan of the drone 200, and transmits to the drone 200 using the communication apparatus 310 with a flight start instruction (step S10).
  • the drone cooperation apparatus 300 determines the approach timing (step S11). Drone cooperation apparatus 300 transmits the determined approach timing to vehicle 100 using communication apparatus 310 (step S12). Moreover, the drone cooperation apparatus 300 creates or corrects a flight plan based on the approach timing, and transmits it to the drone 200 using the communication apparatus 310 (step S11).
  • FIG. 15 is a sequence diagram illustrating an example of a processing operation in response to a delivery request.
  • the vehicle 100 transmits a request for delivery to the drone cooperation device 300 using the communication device 120 (step S21).
  • the drone cooperation apparatus 300 determines the drone 200 that delivers the delivery to the vehicle 100 based on the received request (step S22).
  • the drone cooperation apparatus 300 creates a flight plan of the drone 200, and transmits it to the drone 200 determined using the communication apparatus 310 together with the flight start instruction (step S23).
  • the vehicle 100 acquires position information indicating the position of the vehicle 100 and an action plan (step S24), and periodically transmits them to the drone cooperation apparatus 300 using the communication device 120 (step S25).
  • the drone 200 also acquires position information indicating the position of the drone 200 and a flight plan (step S26), and periodically transmits them to the drone cooperation apparatus 300 using the communication device 210 (step S27).
  • the drone cooperation apparatus 300 determines the approach timing (step S28). Drone cooperation apparatus 300 transmits the determined approach timing to vehicle 100 using communication apparatus 310 (step S29). Moreover, the drone cooperation apparatus 300 creates or corrects a flight plan based on the approach timing, and transmits the flight plan to the drone 200 using the communication apparatus 310 (step S30).
  • the acquisition unit 331 that acquires the action plan from the vehicle 100 and the section of the drone 200 including the section in which the drone 200 is mounted on the vehicle 100 based on the action plan acquired by the acquisition unit 331.
  • the determination unit 334 that determines the flight plan and the drone 200 can be temporarily mounted on the vehicle 100, and cooperation between the vehicle 100 and the drone 200 can be supported.
  • the drone 200 When the drone 200 approaches the vehicle 100 at the timing when the vehicle 100 decelerates or stops, the drone 200 and the vehicle 100 can be brought close to each other smoothly.
  • the drone 200 can be brought close to the vehicle 100 smoothly by requesting the vehicle 100 to decelerate or stop.
  • providing an incentive makes it easier to provide a service linked to the drone 200.
  • the flight distance of the drone can be shortened and power can be supplied from the vehicle 100. Thereby, the moving distance of drone 200 can be extended significantly.
  • the occupant of the vehicle 100 can receive the product without stopping at the store, improving convenience and reducing time loss due to shopping. In addition, it is possible to purchase a product even in a place where there is no store nearby.
  • the administrator of the vehicle 100 and a third operator (hereinafter referred to as a management agent) different from the administrator of the drone 200 use the drone cooperation device 300 and the vehicle management device 510.
  • a management agent a third operator
  • An example of comprehensively managing the vehicle 100 and the drone 200 will be described.
  • the management agent manages one or more vehicles 100 using the vehicle management device 510.
  • the vehicle 100 may be owned by a management agent, or may be a vehicle in which the owner of the vehicle 100 permits the drone 200 to accompany, and entrusts the management agent with procedures related to the agent.
  • FIG. 16 is a functional configuration diagram of the vehicle management device 510.
  • the vehicle management device 510 includes, for example, a communication unit 520, an authentication unit 530, and a vehicle management unit 550.
  • the communication unit 520 is a wireless communication device.
  • the communication unit 520 communicates with the drone cooperation apparatus 300 via the network NW.
  • the authentication unit 530 performs processing for authenticating that the drone 200 may accompany the vehicle 100 in accordance with an instruction from the drone cooperation apparatus 300.
  • the vehicle management unit 550 manages from the time when the assigned vehicle 100 starts to accompany the drone 200 to the end when the drone 200 accompanies the management agent.
  • the communication unit 520 Based on the use request transmitted by the drone cooperation apparatus 300 (that is, requesting the accompaniment of the drone 200), the communication unit 520 causes the vehicle management unit 550 to authenticate the vehicle 100 suitable for the accreditation, and the authentication is performed. Information for specifying the vehicle 100 is transmitted to the drone cooperation device 300. The authentication process of the vehicle 100 suitable for the accompanying by the vehicle management unit 550 will be described later.
  • the vehicle management unit 550 includes, for example, a usage status detection unit 552, a usage permission unit 554, and an authentication unit 556.
  • the usage status detection unit 552 detects the usage status of the drone 200 authenticated by the authentication unit 530.
  • the usage status is, for example, a status accompanying the vehicle 100 or a status where power is supplied by the vehicle 100.
  • the usage status detection unit 552 acquires an action plan from the vehicle 100 and detects whether or not the vehicle 100 may be a subject to be accompanied by the drone 200 authenticated by the authentication unit 530.
  • the usage status detection unit 552 is an example of a “situation acquisition unit” and a “result derivation unit”.
  • the usage status detection unit 552 determines the usage status of the drone 200 authenticated by the vehicle 100 and / or the authentication unit 530.
  • the usage situation is, for example, a situation in which the vehicle 100 and the drone 200 have started to accompany, a situation in which the vehicle 100 and the drone 200 have been accompanied, or a situation in which the accompaniment has ended.
  • the usage status is such that the vehicle 100 can accept the drone 200, the vehicle 100 cannot accept the drone 200, the vehicle 100 can accept the drone 200 but cannot supply power. There may be 100 situations.
  • the usage state detecting unit 552 makes the accompanying state (accepting the drone 200 in which the vehicle 100 is authenticated by the authenticating unit 530).
  • the usage status detection unit 552 outputs information identifying the drone 200 authenticated by the one or more vehicles 100 and / or the one or more authentication units 530 that can be in the accompanying status to the usage permission unit 554.
  • the information for identifying the drone 200 authenticated by the authentication unit 530 includes information on the route section and the desire for power supply.
  • the use state detection unit 552 refers to information related to the route of the drone 200 and information related to the status provided from the drone cooperation apparatus 300, and selects the vehicle 100 suitable for accompanying the drone 200.
  • the usage status detecting unit 552 determines that the vehicle 100 traveling in a section suitable for accompanying the drone 200 is allocated, and the vehicle 100 waiting in the parking space, etc. You may be dispatched to.
  • the use state detecting unit 552 instructs the vehicle 100 that can accept the change of route to travel the route suitable for the accompanying drone 200 and to update the route. Good.
  • the use permission unit 554 determines the pairing candidate (the drone 200 authenticated by the authentication unit 530 and the authentication unit) from the information identifying the vehicle 100 output by the usage state detection unit 552 and the drone 200 authenticated by the authentication unit 530. A candidate for a combination of the vehicles 100 that accepts the accompaniment of the drone 200 authenticated by 530. After determining a route section in which the vehicle 100 can mount the drone 200, pairing is generated.
  • the use permission unit 554 permits the drone 200 authenticated by the authentication unit 530 to accompany the vehicle 100.
  • the authentication unit 556 selects the vehicle 100 that may be paired with the drone 200 authenticated by the authentication unit 530 and authenticates the vehicle 100 as a vehicle accompanying the drone 200.
  • the usage status detection unit 552 detects the usage results of the vehicle 100 and the drone 200 accompanying the vehicle.
  • the usage record is, for example, a record that is a basis for calculating a predetermined incentive.
  • the usage status detection unit 552 may transmit and acquire the accompanying management information 324 and incentive information 327 acquired by the vehicle 100 from the vehicle 100 and use them for detection of usage results.
  • the vehicle management device 510 gives a predetermined incentive to the vehicle 100 based on the usage record detected by the usage status detection unit 552.
  • the granted incentive may be output to the navigation device 130 of the vehicle 100 at the given timing, or may be notified to the owner of the vehicle 100 by e-mail or the like.
  • the vehicle management device 510 may replace some functions of the vehicle 100. For example, when the communication standards of the vehicle 100 and the drone 200 are different and the two cannot communicate directly, the vehicle management device 510 substitutes for some functions of the vehicle 100. Specifically, the vehicle management device 510 receives a vehicle operation request (for example, a deceleration request at the time of joining) of the drone 200 via the drone cooperation device 300, and causes the vehicle 100 to operate in response to the vehicle operation request. Send the requested signal.
  • a vehicle operation request for example, a deceleration request at the time of joining
  • FIG. 17 is a sequence diagram illustrating an example of a processing operation for managing the vehicle 100 and the drone 200 by the third operator.
  • the vehicle 100 transmits vehicle information 321 to be transmitted periodically to the drone cooperation apparatus 300 (step S200).
  • the drone cooperation apparatus 300 performs user authentication processing (step S201).
  • the drone cooperation apparatus 300 transmits a use request to the vehicle management apparatus 510 (step S202).
  • the vehicle management device 510 transmits vehicle identification information to the drone cooperation device 300. (Step S203).
  • the drone cooperation apparatus 300 determines an action plan of the drone 200 and transmits it to the drone 200 (step S204).
  • the drone 200 starts operation according to the action plan (step S205).
  • the drone cooperation apparatus 300 transmits and shares information regarding the route and status of the drone 200 to the vehicle management apparatus 510 (step S206).
  • the vehicle management device 510 transmits a route update instruction to the vehicle 100 and starts measuring the number of incoming vehicles (step S207).
  • the vehicle 100 and the drone 200 notify their own position information and moving speed (step S208).
  • the vehicle 100 confirms boarding / operation of the drone 200 (step S209), and confirms that the drone 200 has boarded the vehicle 100 (step S210).
  • the vehicle management apparatus 510 starts measuring the power supply performance from the vehicle management apparatus 510 to the drone 200 (step S211), and the drone cooperation apparatus 300 starts measuring the power reception / power supply performance of the drone 200 (step S211). S212).
  • Vehicle management device 510 shares route / status information to drone cooperation device 300 (step S213).
  • the drone cooperation apparatus 300 transmits the instruction to the drone 200.
  • the drone cooperation apparatus 300 determines the drop-off point of the drone 200, and transmits the determined drop-off point to the drone 200 (step S214).
  • the drone 200 gets off the vehicle 100 and notifies the drone cooperation device 300 that it has got off (step S215).
  • the drone cooperation apparatus 300 and the vehicle management apparatus 510 share the accompaniment results of the vehicle 100 and the drone 200 and settle them (step S216).
  • the vehicle management device 510 gives an incentive to the vehicle 100 (step S217).
  • Information about the incentive given by the vehicle management device 510 is output to the navigation device 130 of the vehicle 100 (step S218). This is the end of the processing of this sequence diagram.
  • the accompaniment results shared in step S216 include, for example, the actual position information of the start and end points of the accompaniment and the distance traveled between them, the start and end times, the actual amount of power received and supplied during the accompaniment period, and the vehicle This includes the results of article removal and operation.
  • the vehicle management apparatus 510 or the drone cooperation apparatus 300 refers to the reference table indicating the amount of money (not shown) based on the above information and the mass information or the size and operation cost of the drone 200 itself, the category information indicating the transported object, and the like. Perform settlement for operations during the accompanying period.
  • all or part of the configuration of the drone cooperation apparatus 300 may be mounted on the vehicle 100.
  • the drone cooperation apparatus 300 may transmit the position of the drone 200, the flight status (on time, a delay, etc.), the scheduled time of arrival at the vehicle 100, and the like to the vehicle 100 using the communication device 310. Thereby, the passenger
  • FIG. 1 A block diagram illustrating an exemplary computing environment in accordance with the present disclosure.
  • the drone cooperation apparatus 300 may transmit to the drone 200 using the communication apparatus 310, the position of the vehicle 100, the running state (on time, the delay, etc.), the scheduled time of arrival at the merge position, and the like. Thereby, the drone 200 can adjust the flight speed or change a part of the flight path.
  • the drone cooperation apparatus 300 monitors the position of the drone 200 using the drone information 322, and notifies the administrator of the drone 200 of error information when moving to a place other than the flight plan, May be output. Thereby, the crime prevention measures of drone 200 can be prepared.
  • the drone 200 when the drone 200 is running in parallel with the vehicle 100 and the vehicle 100 takes a long time to move at an intersection or the like, the drone 200 may move along a shortcut flight path.
  • the drone 200 may supply power to the vehicle 100.
  • the incentive information 327 acquired by the vehicle 100 may include the amount of power supplied by the drone 200.
  • DESCRIPTION OF SYMBOLS 1 ... Drone cooperation system 100 ... Vehicle, 110 ... Outside world monitoring unit, 120 ... Communication device, 130 ... Navigation device, 140 ... Recommended lane determination device, 150 ... Automatic driving control unit, 160 ... Driving force output device, 162 ... Brake Device, 164 ... steering device, 170 ... cooperation unit, 171 ... input / output unit, 172 ... storage unit, 173 ... data management unit, 174 ... cooperation management unit, 200 ... drone, 210 ... communication device, 220 ... camera, 230 ... GNSS receiver, 240 ... sensor, 250 ... motor, 260 ... holding mechanism, 270 ... charging device, 280 ... control unit, 290 ... storage unit, 300 ...
  • drone cooperation device 310 ... communication device, 320 ... storage unit, 321 ... Vehicle information, 322 ... Drone information, 323 ... Map data, 324 ... Accompanying management information, 325 Delivery management information, 326 ... Drone management information, 327 ... Incentive information, 330 ... Control part, 331 ... Acquisition part, 332 ... Accompanying management part, 333 ... Delivery management part, 334 ... Determination part, 400 ... Pickup management apparatus, 500 ... Vehicle management unit, 510 ... vehicle management device, 520 ... communication unit, 530 ... authentication unit, 550 ... vehicle management unit, 552 ... usage status detection unit, 554 ... usage permission unit, 556 ... authentication unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Traffic Control Systems (AREA)

Abstract

自動運転車両から行動計画を取得する取得部と、前記取得部により取得された行動計画に基づいて、ドローンを前記自動運転車両に搭載する区間を含めて前記ドローンの飛行計画を決定する決定部とを備えるドローン連携装置である。

Description

ドローン連携装置、車両管理装置、ドローン連携方法、およびプログラム
 本発明の様態は、ドローン連携装置、車両管理装置、ドローン連携方法、およびプログラムに関する。
 本願は、2017年6月16日に、日本に出願された特願2017-119026号に基づき優先権を主張し、その内容をここに援用する。
 近年、ドローンを用いたビジネス展開の広がりに期待が高まってきている。例えば、ドローンを用いて、上空から映像を撮影したり、物資を運搬したりすることにより、様々なサービスを提供することができる(特許文献1参照)。
 一方、車両の自動運転について研究が進められてきている(特許文献2参照)。
特開2017-052389号公報 特開2017-61168号公報
 しかしながら、車両もドローンも移動体であるため、両者の連携を図ることが難しい場合があった。
 本発明は、このような事情を考慮してなされたものであり、車両とドローンとの連携を支援することができるドローン連携装置、車両管理装置、ドローン連携方法、およびプログラムを提供することを目的の一つとする。
 この発明に係るドローン連携装置、車両管理装置、ドローン連携方法、およびプログラムは、以下の構成を採用した。
 (1):本発明の一態様は、自動運転車両から行動計画を取得する取得部と、前記取得部により取得された行動計画に基づいて、ドローンを前記自動運転車両に搭載する区間を含めて前記ドローンの飛行計画を決定する決定部とを備えるドローン連携装置である。
 (2):上記(1)の様態において、前記決定部は、配達物を保持した状態での前記ドローンの飛行計画を決定するものである。
 (3):上記(1)の様態において、前記決定部は、前記行動計画に基づいて、前記ドローンが前記自動運転車両と接近するタイミングを決定し、決定したタイミングで前記自動運転車両に接近するよう前記ドローンに指示するものである。
 (4):上記(1)の様態において、前記決定部は、前記自動運転車両の走行速度が所定の速度以下となるタイミングで、前記自動運転車両に接近するよう前記ドローンに指示するものである。
 (5):上記(1)の様態において、前記決定部は、前記ドローンが前記自動運転車両に接近する点を含む所定範囲内に、前記自動運転車両の走行速度が所定以下となるタイミングがない場合、前記自動運転車両に対して行動計画の変更を依頼するものである。
 (6):上記(1)の様態において、前記決定部は、行動計画の変更依頼に従って前記行動計画を変更した自動運転車両の車両に対してインセンティブを付与するものである。
 (7):上記(1)の様態において、前記ドローンの出発地および目的地に基づいて前記ドローンを搭載させる自動運転車両を決定し、決定した自動運転車両に対して所定区間における前記ドローンの搭載を依頼する同行管理部をさらに備えるものである。
 (8):上記(1)の様態において、前記自動運転車両から配達依頼を受け付け、受け付けた配達内容に基づいて前記自動運転車両に配達物を届けるドローンを決定し、決定したドローンに対して前記自動運転車両への配達を依頼する配達管理部をさらに備えるものである。
 (9):本発明の一態様は、自動運転車両から行動計画を取得する状況取得部と、前記状況取得部により取得された行動計画に基づいて、ドローンを前記自動運転車両に搭載可能な前記自動運転車両の経路区間を決定し、前記自動運転車両へのドローンの搭載を許可する利用許可部と、前記自動運転車両が前記経路区間の運行を行う間、前記自動運転車両の車両情報を外部送信する通信部とを備える車両管理装置である。
 (10):上記(9)の様態において、外部からの車両運行リクエストを受信し、受信した前記車両運行リクエストに基づいて、複数の自動運転車両を識別する情報を出力し、前記状況取得部は、前記自動運転車両を識別する情報に基づいて前記自動運転車両の状況を取得するものである。
 (11):上記(9)の様態において、前記自動運転車両と前記ドローンが同行状況であるか否かを検知する利用状況検知部と、前記同行状況の開始から終了までの前記自動運転車両の移動距離または移動時間の少なくとも一方に基づいて、利用実績を導出する実績導出部を備えるものである。
 (12):上記(9)の様態において、前記通信部は、前記自動運転車両に前記利用実績を外部送信させ、前記外部送信させた前記利用実績を受信する実績導出部を備えるものである。
 (13):上記(9)の様態において、前記取得部は、前記ドローンの属性情報を前記字度運転車両から取得し、前記導出部は、前記ドローンの質量に基づいて、前記利用実績を導出するものである。
 (14):前記属性情報は、前記ドローンの質量情報を含むものである。
 (15):前記属性情報は、前記ドローンの製造情報を含むものである。 
 (16):本発明の一態様は、自動運転車両から行動計画を取得し、前記取得された行動計画に基づいて、ドローンを前記自動運転車両に搭載する区間を含めて前記ドローンの飛行計画を決定するドローン連携方法である。
 (17):本発明の一態様は、コンピュータに、自動運転車両から行動計画を取得させ、前記取得された行動計画に基づいて、ドローンを前記自動運転車両に搭載する区間を含めて前記ドローンの飛行計画を決定させるプログラムである。
 (1)~(17)に記載の発明によれば、車両とドローンとの連携を支援することができる。
 (9)~(15)に記載の発明によれば、車両を管理する事業者、ドローンを管理する事業者以外の第3の事業者によって、車両およびドローンの連携を支援することができる。
ドローン連携システム1の構成図である。 車両100の構成図である。 自動運転の処理過程について説明するための図である。 ドローン200の機能構成図である。 ドローン連携装置300の機能構成図である。 車両情報321の一例を示す図である。 ドローン情報322の一例を示す図である。 同行管理情報324の一例を示す図である。 配達管理情報325の一例を示す図である。 車両100Aにドローン200Aが同行する例を示す説明図である。 ドローン200Bが車両100Dに配達する例を示す説明図である。 合流ポイント、接近エリア、および接近タイミングについて説明するための図である。 決定部334における処理動作の一例を示すフローチャートである。 同行要求に応じた処理動作の一例を示すシーケンス図である。 配達要求に応じた処理動作の一例を示すシーケンス図である。 車両管理装置510の機能構成図である。 第3の事業者による車両100およびドローン200を管理する処理動作の一例を示すシーケンス図である。
 以下、図面を参照し、本発明のドローン連携装置、車両管理装置、ドローン連携方法、およびプログラムの実施形態について説明する。本システムにおける車両は、例えば、基本的には運転操作を必要としない自動運転車両である。車両は、例えば、四輪以上の車輪を有する車両であってもよく、自動二輪車その他の車両であっても構わない。
<第1の実施形態>
 図1は、ドローン連携システム1の構成図である。ドローン連携システム1は、一以上の車両100と、一以上のドローン200と、ドローン連携装置300とを備える。これらの構成要素は、ネットワークNWを介して互いに通信可能である。ネットワークNWは、インターネット、WAN(Wide Area Network)、LAN(Local Area Network)、公衆回線、プロバイダ装置、専用回線、無線基地局などを含む。
 [車両]
 車両100の上部には、例えば、ドローン200を支持する支持機構101が取り付けられている。支持機構101は、車両100とドローン200とを接続する。支持機構101は、連結する構造を有する器具を用いてドローン200と接続されてもよく、電磁石を用いてドローン200と接続されてもよい。また、支持機構101は、充電設備を備え、接続されたドローン200に、接触あるいは非接触で電力を供給してもよい。支持機構101がドローン200に供給する電力は、所定の固定電力量であってもよいし、ドローン200の最大蓄電量であってもよいし、車両100の供給可能電力に応じて変更されてもよい。
 図2は、車両100の構成図である。車両100は、例えば、外界監視ユニット110と、通信装置120と、ナビゲーション装置130と、推奨車線決定装置140と、自動運転制御ユニット150と、駆動力出力装置160と、ブレーキ装置162と、ステアリング装置164と、連携ユニット170とを備える。
 外界監視ユニット110は、例えば、カメラやレーダ、LIDAR(Light Detection and Ranging)、これらの出力に基づいてセンサフュージョン処理を行う物体認識装置などを含む。外界監視ユニット110は、車両100の周辺に存在する物体の種類(特に、車両、歩行者、および自転車)を推定し、その位置や速度の情報と共に自動運転制御ユニット150に出力する。
 通信装置120は、例えば、ネットワークNWに接続したり、他車両や歩行者の端末装置などと直接的に通信したりするための無線通信モジュールである。通信装置120は、Wi-Fi、DSRC(Dedicated Short Range Communications)、Bluetooth(登録商標)、その他の通信規格に基づいて無線通信を行う。通信装置120として、用途に応じた複数のものが用意されてもよい。
 ナビゲーション装置130は、例えば、HMI(Human machine Interface)132と、GNSS(Global Navigation Satellite System)受信機134と、ナビ制御装置136とを備える。HMI132は、例えば、タッチパネル式ディスプレイ装置やスピーカ、マイクなどを含む。GNSS受信機134は、GNSS衛星(例えばGPS衛星)から到来する電波に基づいて自機の位置(車両100の位置)を測位する。ナビ制御装置136は、例えば、CPU(Central Processing Unit)や各種記憶装置を備え、ナビゲーション装置130全体を制御する。記憶装置には、地図情報(ナビ地図)が格納されている。
ナビ地図は、ノードとリンクで道路を表現した地図である。
 ナビ制御装置136は、GNSS受信機134によって測位された車両100の位置から、HMI132を用いて指定された目的地までの経路を、ナビ地図を参照して決定する。また、ナビ制御装置136は、車両100の位置と目的地とを、通信装置120を用いてナビゲーションサーバ(不図示)に送信し、ナビゲーションサーバから返信された経路を取得してもよい。目的地は、HMI132を用いて利用者により指定されてもよい。経路には、利用者を乗車または降車させるために停止する地点および到達目標時刻の情報が含まれてよい。ナビ制御装置136は、上記いずれかの方法で決定した経路の情報を推奨車線決定装置140に出力する。
 推奨車線決定装置140は、例えば、MPU(Micro Processing Unit)と各種記憶装置を備える。記憶装置には、ナビ地図よりも詳細な高精度地図情報が格納されている。高精度地図情報には、例えば、車線ごとの道路幅や勾配、曲率、信号の位置などの情報が含まれている。推奨車線決定装置140は、ナビゲーション装置130から入力された経路に沿って走行するために好ましい推奨車線を決定し、自動運転制御ユニット150に出力する。
 自動運転制御ユニット150は、CPUやMPUなどの一以上のプロセッサと各種記憶装置を備える。自動運転制御ユニット150は、推奨車線決定装置140により決定された推奨車線を走行することを原則として、外界監視ユニット110から位置や速度が入力された物体との接触を避けるように、車両100を自動的に走行させる。自動運転制御ユニット150は、例えば、各種イベントを決定し、順次実行する。イベントには、一定速度で同じ走行車線を走行する定速走行イベント、前走車両に追従する追従走行イベント、減速走行イベント、車線変更イベント、合流イベント、分岐イベント、緊急停止イベント、料金所を通過するための料金所イベント、自動運転を終了して手動運転に切り替えるためのハンドオーバイベントなどがある。また、これらのイベントの実行中に、車両100の周辺状況(周辺車両や歩行者の存在、道路工事による車線狭窄など)に基づいて、回避のための行動が計画される場合もある。
 自動運転制御ユニット150は、車両100が将来走行する目標軌道を生成する。目標軌道は、例えば、速度要素を含んでいる。例えば、目標軌道は、自車両Mの到達すべき地点(軌道点)を順に並べたものとして表現される。軌道点は、所定の走行距離ごとの自車両Mの到達すべき地点であり、それとは別に、所定のサンプリング時間(例えば0コンマ数[sec]程度)ごとの目標速度および目標加速度が、目標軌道の一部として生成される。また、軌道点は、所定のサンプリング時間ごとの、そのサンプリング時刻における自車両Mの到達すべき位置であってもよい。この場合、目標速度や目標加速度の情報は軌道点の間隔で表現される。
 図3は、自動運転の処理過程について説明するための図である。まず、上図に示すように、ナビゲーション装置130によって経路が決定される。この経路は、例えば車線の区別が付けられていない大まかな経路である。次に、中図に示すように、推奨車線決定装置140が、経路に沿って走行しやすい推奨車線を決定する。そして、下図に示すように、自動運転制御ユニット150が、障害物の回避などを行いながら、なるべく推奨車線に沿って走行するための軌道点を生成し、軌道点(および付随する速度プロファイル)に沿って走行するように、駆動力出力装置160、ブレーキ装置162、ステアリング装置164のうち一部または全部を制御する。なお、このような役割分担はあくまで一例であり、例えば自動運転制御ユニット150が一元的に処理を行ってもよい。
 駆動力出力装置160は、車両が走行するための走行駆動力(トルク)を駆動輪に出力する。駆動力出力装置160は、例えば、内燃機関、電動機、および変速機などの組み合わせと、これらを制御するパワーECUとを備える。パワーECUは、自動運転制御ユニット150から入力される情報、或いは不図示の運転操作子から入力される情報に従って、上記の構成を制御する。
 ブレーキ装置162は、例えば、ブレーキキャリパーと、ブレーキキャリパーに油圧を伝達するシリンダと、シリンダに油圧を発生させる電動モータと、ブレーキECUとを備える。ブレーキECUは、自動運転制御ユニット150から入力される情報、或いは運転操作子から入力される情報に従って電動モータを制御し、制動操作に応じたブレーキトルクが各車輪に出力されるようにする。ブレーキ装置162は、運転操作子に含まれるブレーキペダルの操作によって発生させた油圧を、マスターシリンダを介してシリンダに伝達する機構をバックアップとして備えてよい。なお、ブレーキ装置162は、上記説明した構成に限らず、自動運転制御ユニット150から入力される情報に従ってアクチュエータを制御して、マスターシリンダの油圧をシリンダに伝達する電子制御式油圧ブレーキ装置であってもよい。
 ステアリング装置164は、例えば、ステアリングECUと、電動モータとを備える。電動モータは、例えば、ラックアンドピニオン機構に力を作用させて転舵輪の向きを変更する。ステアリングECUは、自動運転制御ユニット150から入力される情報、或いは運転操作子から入力される情報に従って、電動モータを駆動し、転舵輪の向きを変更させる。
 連携ユニット170は、入出力部171と、記憶部172と、データ管理部173と、連携管理部174とを備える。
 入出力部171は、例えば、マウス、キーボード、タッチパネル、マイク、センサー、カメラ等の入力部と、例えば、ディスプレイ、スピーカ等の出力部とを含む。記憶部172は、HDD(Hard Disk Drive)やフラッシュメモリ、RAM(Random Access Memory)、ROM(Read Only Memory)などにより実現される。
 データ管理部173、および連携管理部174は、例えば、CPUなどのプロセッサが記憶部172に格納されたプログラム(ソフトウェア)を実行することで実現される。また、これらの機能部のうち一方または双方は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)などのハードウェアによって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。
 データ管理部173は、所定のタイミングで、通信装置120を用いてドローン連携装置300に対し、GNSS受信機134により測位された車両100の位置情報や、車両100の行動計画を送信する。行動計画には、例えば、ナビゲーション装置130により決定された経路や、自動運転制御ユニット150により実行されるイベント等が含まれる。
 連携管理部174は、通信装置120を用いてドローン連携装置300から受信した情報や、入出力部171から入力された情報等に基づいて、各種処理を行う。例えば、連携管理部174は、所定の画面を入出力部171に表示させる処理や、データ管理部173に対してドローン連携装置300に送信する情報の種類やタイミングを指定する処理等を行う。また、連携管理部174は、ドローン200と連携した内容を示す情報(例えば、後で説明する同行状況や配達状況等)を、通信装置120を用いてドローン連携装置300に送信する。
 [ドローン]
 ドローン200は、無人航空機であって、遠隔操作または自動操作により、飛行する。ドローン200は、例えば、各所に設けられたドローンステーションや配送センター等で待機しており、ドローン連携装置300から飛行開始指示を受け付けると、指定された飛行計画に従って飛行する。その後、ドローン200は、近くのドローンステーションや配送センターに戻る。
 図4は、ドローン200の機能構成図である。ドローン200は、例えば、通信装置210と、カメラ220と、GNSS受信機230と、センサー240と、モータ250と、保持機構260と、充電装置270と、制御部280と、記憶部290とを備える。
 通信装置210は、例えば、ネットワークNWに接続したり、送迎管理装置400と直接的に通信したりするための通信インターフェースである。通信装置210は、例えば、NIC(Network Interface Card)を含んでもよいし、Wi-Fi、DSRC(Dedicated Short Range Communications)、Bluetooth(登録商標)、その他の通信規格に基づいて無線通信を行ってもよい。通信装置210として、用途に応じた複数のものが用意されてもよい。
 カメラ220は、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の固体撮像素子を利用したデジタルカメラである。カメラ220は、ドローン200の任意の箇所に一つまたは複数が取り付けられる。GNSS受信機230は、GNSS衛星(例えばGPS衛星)から到来する電波に基づいて自機の位置(ドローン200の位置)を測位する。センサー240は、例えば、磁気センサー、三軸ジャイロセンサー、三軸加速度センサー等である。
 モータ250は、複数のモータを含み、各モータには、プロペラが取り付けられている。保持機構260は、例えば、アームやフック、収納ケース等を含み、配達物等を取り外し可能にドローン200に固定する。充電装置270は、充電池を含み、ドローン200の各所に電力を供給する。また、充電装置270は、充電池を充電するための接続部を備える。
 制御部280は、例えば、CPUなどのプロセッサが記憶部290に格納されたプログラム(ソフトウェア)を実行することで実現される。また、これらの機能部のうち一方または双方は、LSIやASIC、FPGA、GPUなどのハードウェアによって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。例えば、制御部280は、飛行計画に従ってモータ250を制御したり、車両100に接近した場合に配達物を取り外すように保持機構260を制御したりする。また、制御部280は、車両100と連携した内容を示す情報(例えば、後で説明する同行状況や配達状況等)を、通信装置210を用いてドローン連携装置300に送信する。
 制御部280は、カメラ220により撮影された画像を解析して接近対象である車両の車種や色、ナンバー等を取得し、接近対象を特定してもよく、カメラ220により撮影された画像に基づいて接近対象である車両との距離や相対的な位置関係を導出してもよい。
また、制御部280は、通信装置210を用いて車両100と通信することにより、接近対象である車両を特定し、車両との距離や相対的な位置関係を導出してもよい。
 飛行計画には、飛行経路、高度、速度、および飛行モード等が含まれる。飛行モードには、上昇、直線飛行、下降、ホバリング、並走等が含まれる。並走とは、対象となる移動体の動きに合わせて追従して飛行することである。制御部280は、ドローン連携装置300により作成された飛行計画に従って飛行してもよく、ドローン連携装置300により指定された出発地や目的地、到着時刻等の条件に基づいて飛行計画を作成してもよい。制御部280は、所定のタイミングにおいて、GNSS受信機230により測位されたドローン200の位置を示す情報や最新の飛行計画を、通信装置210を用いてドローン連携装置300に送信する。
 記憶部290には、制御部280における制御プログラムや、制御部280の処理に用いられる様々なデータ(例えば、飛行計画等)が記憶される。また、記憶部290には、カメラ220により撮影された画像を記憶するための画像バッファ領域が確保されている。
 [ドローン連携装置]
 次に、図5~9を参照して、ドローン連携装置300について説明する。図5は、ドローン連携装置300の機能構成図である。ドローン連携装置300は、例えば、通信装置310と、記憶部320と、制御部330とを備える。通信装置310は、例えば、ネットワークNWに接続するためのNICである。通信装置310は、ネットワークNWを介して、車両100、およびドローン200と通信する。記憶部320は、HDDやフラッシュメモリ、RAM、ROMなどにより実現される。
 制御部330は、例えば、取得部331と、同行管理部332と、配達管理部333と、決定部334とを含む。これら構成の一部または全部は、例えば、CPUなどのプロセッサが記憶部320に格納されたプログラム(ソフトウェア)を実行することで実現される。また、これらの機能部のうち一部または全部は、LSIやASIC、FPGA、GPUなどのハードウェアによって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。
 取得部331は、通信装置310を用いて車両100およびドローン200から各種情報を取得し、記憶部320に格納する。例えば、取得部331は、通信装置310を用いて車両100から、車両100の位置を示す位置情報と、行動計画とを受信し、記憶部320の車両情報321に格納する。また、取得部331は、通信装置310を用いてドローン200から、ドローン200の位置を示す位置情報と、飛行計画とを受信し、記憶部320のドローン情報322に格納する。なお、ドローン連携装置300は、飛行計画を作成しているため、ドローン200により飛行計画の一部が変更された場合に変更された情報をドローン200から受信するものでもよい。また、取得部331は、ドローン200からドローン200の属性情報を受信してもよい。属性情報とは、例えば、ドローン200の質量に関する質量情報や、ドローン200の製造情報(例えば、製造メーカや、製造型番号や、個体を識別するシリアル番号)である。
 車両情報321は、車両100において更新される位置情報や行動計画等を含む情報である。図6は、車両情報321の一例を示す図である。図6に示す通り、車両情報321は、日時に、行動計画と、位置情報とを対応付けた情報であって、例えば、車両100ごとに用意されたテーブルに格納される。車両100は、定期的に車両情報321をドローン連携装置300に送信する。
 ドローン情報322は、ドローン200において更新される位置情報や飛行計画等を含む情報である。図7は、ドローン情報322の一例を示す図である。図7に示す通り、ドローン情報322は、日時に、飛行計画と、位置情報とを対応付けた情報であって、例えば、ドローン200ごとに用意されたテーブルに格納される。
 地図データ323は、ノードとリンクで道路を表現した地図情報や、建物や陸橋、信号機や電線等の構造物の位置や高さ等を表す情報等を含む。
 同行管理部332は、ドローン200の出発地および目的地に基づいて、ドローン200を搭載させる車両100を決定し、決定した車両100に対して所定区間におけるドローン200の搭載を依頼する。以下、出発地から目的地に移動する途中において、ドローン200が車両100に搭載されて移動することを、車両100に同行するという。同行管理部332は、例えば、地図データ323を参照して、複数の車両100のうち、最適経路を走行する車両を、ドローン200を搭載させる車両に決定する。最適経路とは、少なくとも一部にドローン200を車両100に搭載する区間を含むドローン200の出発地から目的地までの経路であって、同行候補である各車両100に同行すると仮定した場合の経路のうち、最適化された経路である。同行候補である車両100とは、ドローン200を搭載して共に移動することにより、ドローン200を出発地の方から目的地の方へと導くことが可能な車両100である。例えば、同行管理部332は、車両情報321を参照して、ドローン200の出発地あるいは目的地を含む所定範囲内を走行することが行動計画に含まれる車両を、同行候補である車両100として取得してもよい。
 同行管理部332は、同行候補である車両100それぞれと同行する飛行経路の中から、最適化する条件を満たす飛行経路を、最適経路に決定する。最適化する条件は任意に設定可能であり、例えば、同行管理部332は、ドローン200の出発地から目的地までの移動時間が最も早い経路や、移動距離が最も短い経路、同行する車両100の数が最も少ない経路等を最適経路に決定する。同行管理部332は、最適経路を含む同行内容を、記憶部320の同行管理情報324に格納する。また、同行管理部332は、通信装置310を用いて車両100あるいはドローン200から同行状況を示す情報を受信した場合、同行管理情報324を更新する。
 同行管理情報324は、同行内容を示す情報である。図8は、同行管理情報324の一例を示す図である。図8に示す通り、同行管理情報324は、ドローンIDに、出発地、目的地、時間条件、最適経路、車両ID、および同行状況を対応付けた情報である。ドローンIDは、各ドローン200を識別するための固有の情報であって、車両100との同行を要求するドローン200を示す情報である。出発地と目的地は、同行を要求するドローン200の出発地と目的地である。時間条件は、ドローン200が要求する時間条件であって、例えば、出発地を出発する時刻や、目的地に到着する時刻等を含む。最適経路は、同行管理部332により決定された最適経路である。車両IDは、各車両100を識別するための固有情報であって、同行管理部332によりドローン200を同行させる車両100として決定された車両を示す情報である。同行状況は、ドローン200の同行状況を示す情報であって、例えば、車両へ移動中、同行中、同行完了、および目的地到着等を含む。
 配達管理部333は、車両100から配達依頼を受け付け、受け付けた配達内容に基づいて車両100に配達物を届けるドローン200を決定し、決定したドローン200に対して車両100への配達を依頼する。配達管理部333は、例えば、複数のドローン200のうち、指定された配達物を保持可能な種類のドローンであって、指定された時間条件のもと、配達を依頼した車両100まで往復することが可能なドローンを、前後の予約状況に基づいてドローン管理情報326に登録されているドローン200の中から選択する。配達管理部333は、配達させるドローンを含む配達内容を、記憶部320の配達管理情報325に格納する。また、配達管理部333は、通信装置310を用いて車両100あるいはドローン200から配達状況を示す情報を受信した場合、決定部334により飛行経路が決定した場合、配達管理情報325を更新する。
 配達管理情報325は、配達内容を示す情報である。図9は、配達管理情報325の一例を示す図である。図9に示す通り、配達管理情報325は、車両IDに、配達物、時間条件、ドローンID、配達状況、および配達経路を対応付けた情報である。車両IDは、配達を要求する車両100を示す情報である。配達物は、車両100から要求された配達物の名称や個数等を示す情報である。時間条件は、車両100が要求する時間条件であって、例えば配達を希望する時間帯等を含む。ドローンIDは、配達管理部333により、車両100に配達物を届けるドローン200として決定されたドローンを示す情報である。配達状況は、ドローン200の配達状況を示す情報であって、例えば、配達準備中、配達中、配達完了等を含む。配達経路は、決定部334により決定された飛行計画に含まれる飛行経路である。
 ドローン管理情報326は、用意されているドローン200に関する情報であって、例えば、ドローンIDに、ドローン200が待機しているドローンステーション、ドローン200の現在位置、ドローンの現状、ドローン200と通信するために必要なアドレス等を対応付けた情報である。ドローン管理情報326には、同行を依頼するドローン200に関する情報と、配達を請け負うドローン200に関する情報の両方が含まれる。ドローンの現状には、同行状況や配達状況等が含まれる。
 決定部334は、地図データ323を参照し、取得部331により取得された行動計画等に基づいて、ドローン200を車両100に搭載する区間を含めたドローン200の飛行計画を決定する。なお、決定部334は、異なる車両100に搭載される区間を複数区間含む飛行計画を決定してもよい。
 例えば、同行管理部332により飛行計画の作成が指示された場合、決定部334は、地図データ323と車両100の行動計画とを参照し、全ての同行候補である車両100にドローン200を搭載する区間を含めた出発地から目的地までの飛行計画を作成する。決定部334は、作成された飛行計画のうち、同行管理部332によって最適経路に決定された飛行経路を含む飛行計画を、ドローン200の飛行計画に決定する。
 配達管理部333により飛行計画の作成が指示された場合、決定部334は、地図データ323と車両100の行動計画とを参照し、出発地から配達を依頼した車両100に、配達物を保持した状態でのドローン200を搭載する区間を含めた出発地から目的地までの飛行計画を作成する。
 例えば、決定部334は、車両100の行動計画やドローン200の出発地および目的地等に基づいて、ドローン200が車両100と合流する位置(以下、合流ポイントと記す)を決定する。決定部334は、決定した合流ポイントに基づいて、ドローン200の飛行計画を作成する。
 決定部334は、車両100の行動計画等に基づいて、ドローン200が車両100に接近するタイミング(以下、接近タイミングと記す)を決定する。決定部334は、決定した接近タイミングにおいて車両100に接近するようドローン200を制御する飛行計画を作成する。決定部334は、決定した合流ポイントや接近タイミングに基づいて、既に作成されている飛行計画の一部を修正してもよい。
 例えば、決定部334は、記憶部320を参照し、接近させる車両100とドローン200(以下、接近車両100Jと接近ドローン200Jと記す)との将来の移動距離や移動時間とを導出して、接近車両100Jと接近ドローン200Jとが合流可能な地点を、合流ポイントに決定し、決定した合流ポイントで接近車両100Jに接近するような飛行計画を作成する。なお、決定部334は、接近車両100Jと接近ドローン200Jとが最も早く合流する地点を合流ポイントに決定してもよく、道路状況を考慮して、合流しやすい環境でなければ、合流しやすい環境になった地点を合流ポイントとしてもよい。
 また、決定部334は、記憶部320を参照し、合流ポイントを含む所定範囲(以下、接近エリアと記す)内において、接近に適した条件(以下、接近条件と記す)を満たすタイミングを、接近タイミングに決定する。接近エリア内には、合流ポイントから所定距離内の範囲や、合流ポイントから所定の移動時間内の範囲等が含まれる。接近条件には、例えば、車両100の走行速度が所定の速度以下となること、車両100のイベントが所定のイベント(例えば、減速イベントや停止イベント等)であること、その他車両が停止あるいは減速する場所であること等が含まれる。車両が停止あるいは減速する場所には、例えば、到着するタイミングで赤信号となる信号機がある場所、料金所、カーブ等が含まれる。
 また、決定部334は、合流ポイントを含む所定範囲内において、接近条件を満たすタイミングがない場合、接近車両100Jに対して減速を依頼する。例えば、決定部334は、通信装置310を用いて接近車両100Jに対して、合流ポイントを含む所定範囲内において減速するよう依頼する情報を送信する。ここで、決定部334は、接近車両100Jの乗員に対して減速依頼を承諾した場合にインセンティブを付与することを通知し、減速依頼に従って減速した接近車両100Jの乗員に対して、インセンティブを付与してもよい。決定部334は、付与したインセンティブに関する情報を、記憶部320のインセンティブ情報327に格納する。インセンティブ情報327は、利用者が保持するインセンティブを管理する情報であって、例えば、利用者IDに、インセンティブを示す情報、付与日時、および有効期限等を対応付けた情報である。インセンティブを示す情報には、ポイント数やインセンティブの種類等が含まれる。
 ここで、図10,11を参照して、飛行計画の作成例について説明する。初めに、図10を参照して、ドローン200Aが同行を要求し、車両100Aに同行する例について説明する。図10は、車両100Aにドローン200Aが同行する例を示す説明図である。
 ドローン200Aは、出発地Sから目的地Gまで移動する予定である。最短経路は、出発地Sから目的地Gを結ぶ直線である。しかしながら、出発地Sから目的地Gまでの距離がドローン200Aの飛行可能距離を超える程の長距離である場合、ドローン200A、あるいはドローン200Aを管理する管理者は、ドローン連携装置300に対して、車両100への同行を依頼する。
 そして、ドローン連携装置300は、出発地Sや目的地Gの周辺を走行する同行候補である複数の車両100A,100B,100Cの行動計画に基づいて、ドローンAの飛行計画を作成する。例えば、ドローン連携装置300の決定部334は、車両100Aの行動計画に基づいて、車両100Aの経路において出発地Sを出発したドローン200Aと最も早く合流できるポイントを合流地点P1に決定し、車両100Aの経路において目的地Gと最も近いポイントを分岐地点P2に決定する。そして、決定部334は、出発地Sから合流地点P1まで飛行し、合流地点P1から分岐地点P2まで車両100Aに同行し、分岐地点P2から目的地Gまで飛行する飛行計画を作成する。決定部334は、車両100A,100B,100Cのうち、車両100Aの行動計画を含む経路を最適経路に決定する。
 ドローン200Aは、最適経路に決定された飛行計画に従って飛行し、車両100Aとの合流地点P1まで飛行する。合流地点P1において車両100Aと合流したドローン200Aは、接近タイミングに到達するまで車両100Aと並走する。接近タイミングとなった場合、ドローン200Aは、車両100Aに接近して、支持機構101により車両100Aと接続される。接続されている間、ドローン200Aは、車両100Aから供給される電力を、充電装置270に充電してもよい。車両100Aが分岐地点P2まで移動すると、支持機構101を用いた接続状態が解除され、ドローン200Aは、目的地Gまで飛行する。
 次に、図11を参照して、車両100Dが配達を要求する例について説明する。図11は、ドローン200Bが車両100Dに配達する例を示す説明図である。車両100Dは、地点P3において、ドローン連携装置300に対して、配達を要求する。ドローン連携装置300は、複数のドローン200の中からドローン200Bを選択する。ドローン200Bには、係員により、依頼された配達物が取り付けられる。ドローン連携装置300の決定部334は、ドローン200Bの飛行計画として、配送センターP4から車両100Dとの合流地点P5まで飛行し、合流地点P5から分岐地点P6まで車両100Dに同行して配達物を届け、分岐地点P6から配送センターP4に戻ってくる経路を決定する。
 例えば、決定部334は、車両100Dの行動計画に基づいて、車両100Dの経路において配送センターP4を出発したドローン200Bと最も早く合流できるポイントを合流地点P5に決定し、配達物の受け渡しに十分な時間として予め決められた時間を確保可能な地点を分岐地点P6に決定する。
 ドローン200Bは、飛行計画に従って飛行し、配送センターP4から合流地点P5まで飛行する。合流地点P5において車両100Dと合流したドローン200Bは、接近タイミングに到達するまで車両100Dと並走する。接近タイミングとなった場合、ドローン200Bは、車両100Dに接近して、支持機構101により車両100Dと接続される。接続されている間、ドローン200Bは、車両100Dから供給される電力を、充電装置270に充電してもよい。車両100Dは、配達物の受け取りや充電が完了すると、支持機構101による接続状態を解除する。そして、ドローン200Bは、分岐地点P6から配送センターP4に向かって飛行する。なお、ドローン200Bは、配送センターP4から合流地点P5までと、分岐地点P6から配送センターP4までの移動において、他の車両100に同行してもよい。
 ここで、図12を参照して、合流ポイント、接近エリア、および接近タイミングについて説明する。図12は、車両100にドローン200が接近する状態を示す説明図である。図12に示す通り、合流ポイントを含む所定範囲が接近エリアであり、接近エリア内において接近条件を満たすタイミングに接近タイミングが設定される。
 時刻t1において、車両100(t1)は、定速走行イベントで走行しており、時速は60kmである。また、時刻t1において、ドローン200(t1)は、車両100(t1)の少し後方を飛行している。接近タイミングは、減速イベントが実行される時刻t2に設定されている。その後、時刻t2において、車両100(t2)は、減速イベントの実行により時速30kmまで減速し、時刻t3において、車両100(t3)は、時速30kmで定速走行する。時刻t2において、ドローン200(t2)は、車両100(t2)に接近して接続され、時刻t3において、ドローン200(t3)は、車両100(t3)に搭載された状態で、移動する。
 [フローチャート]
 次に、図13を参照して、決定部334における処理動作の一例について説明する。図14は、決定部334における処理動作の一例を示すフローチャートである。
 まず、決定部334は、車両情報321およびドローン情報322を参照して、合流ポイントを決定し、決定した合流ポイントに基づいてドローン200の飛行計画を作成し、通信装置310を用いてドローン200に送信する(ステップS101)。次いで、決定部334は、最新の合流ポイントを修正する必要があるか否かを判定する(ステップS102)。合流ポイントを修正する必要がある場合には、例えば、渋滞や停車等により車両100の移動速度が落ちたこと等によりドローン200の方が合流ポイントに早く到着してしまう場合や、車両100が加速したこと等により車両100の方が合流ポイントに早く到着してしまう場合等が含まれる。
 最新の合流ポイントを修正する必要があると判定した場合、決定部334は、車両情報321およびドローン情報322を参照して、合流ポイントを修正し、修正後の合流ポイントに基づいてドローン200の飛行計画を作成し、通信装置310を用いてドローン200に送信する(ステップS103)。次いで、決定部334は、接近エリア内の道路における車両100の行動計画を取得したか否かを判定する(ステップS104)。接近エリア内の道路における車両100の行動計画を取得していない場合、決定部334は、ステップS102の処理に戻る。
 一方、接近エリア内の道路における車両100の行動計画を取得したと判定した場合、決定部334は、取得した車両100の行動計画に基づいて、車両100の経路のうち接近エリア内の道路上において、接近条件を満たすタイミングがあるか否かを判定する(ステップS105)。例えば、決定部334は、減速イベントあるいは停止イベントを実行するタイミングがあるか否かを判定する。接近条件を満たすタイミングがあると判定した場合、決定部334は、接近条件を満たすタイミングに接近タイミングに決定して、接近タイミングに合わせて車両100に接近するよう指示する飛行計画を作成し、通信装置310を用いてドローン200に送信する(ステップS106)。
 ステップS105において、接近条件を満たすタイミングがないと判定した場合、決定部334は、通信装置310を用いて車両100に対して、減速あるいは停止を依頼するリクエストを送信する(ステップS107)。減速あるいは停止を承諾する通知を車両100から受信した場合(ステップS108)、決定部334は、車両100から受信した行動計画に基づいて、減速あるいは停止するタイミングに接近タイミングに決定し、接近タイミングに合わせて車両100に接近するよう指示する飛行計画を作成し、通信装置310を用いてドローン200に送信する(ステップS109)。そして、決定部334は、車両100の乗員(または車両)に対して、所定のインセンティブを付与する(ステップS110)。
 ステップS108において、減速ありは停止を承諾する通知を車両100から受信しない場合、決定部334は、車両情報321およびドローン情報322を参照して、合流ポイントを修正し、修正後の合流ポイントに基づいてドローン200の飛行計画を作成し、通信装置310を用いてドローン200に送信する(ステップS111)。例えば、決定部334は、車両100の経路において合流ポイントよりも所定距離だけ進行方向にあるポイントを、修正後の合流ポイントとする。
 なお、上記のフローチャートの処理では、減速あるいは停止を依頼するリクエストを送信するものとしたが、これに代えて減速あるいは停止とは異なる行動計画の変更に関するリクエストが送信されてもよい。また、所定のインセンティブは、例えば、以下の算定根拠によって導出される。所定のインセンティブは、例えば決定部334によって送信されたリクエストによって、減速や停止、経路変更等により生じた目的地に到着するまでに増加した時間(または燃料代)、または走行中の給電により生じた走行抵抗やエネルギーの増加等に基づいて導出される。また、所定のインセンティブは、車両100がドローン200を運搬して移動した距離や時間、運搬台数、ドローン200が運搬している運搬物の価値(車両100に転嫁されたリスク)に基づいて導出されてもよい。
 [シーケンス図]
 次に、図14,15を参照して、ドローン連携システム1における処理動作の一例について説明する。図14は、同行要求に応じた処理動作の一例を示すシーケンス図である。
 車両100は、車両100の位置を示す位置情報と、行動計画とを取得し(ステップS1)、定期的に、通信装置120を用いてドローン連携装置300に送信する(ステップS2)。また、ドローン200も、ドローン200の位置を示す位置情報と、飛行計画とを取得し(ステップS3)、定期的に、通信装置210を用いてドローン連携装置300に送信する(ステップS4)。
 次いで、ドローン200が、通信装置210を用いてドローン連携装置300に対して、同行を要求するリクエストを送信する(ステップS5)。ドローン連携装置300は、ドローン200の飛行経路に基づいて、ドローン200を同行させる車両100を決定し(ステップS6)、決定した車両100に対してドローン200の同行を依頼するリクエストを送信する(ステップS7)。車両100は、例えば、入出力部171を用いて乗員から同行の承諾を受け付けた場合(ステップS8)、通信装置120を用いてドローン連携装置300に対し、承諾情報を送信する(ステップS9)。そして、ドローン連携装置300は、ドローン200の飛行計画を作成し、飛行開始指示とともに、通信装置310を用いてドローン200に送信する(ステップS10)。
 次いで、ドローン連携装置300は、接近タイミングを決定する(ステップS11)。
ドローン連携装置300は、決定した接近タイミングを、通信装置310を用いて車両100に送信する(ステップS12)。また、ドローン連携装置300は、接近タイミングに基づいて飛行計画を作成あるいは修正し、通信装置310を用いてドローン200に送信する(ステップS11)。
 図15は、配達要求に応じた処理動作の一例を示すシーケンス図である。車両100は、通信装置120を用いてドローン連携装置300に対して、配達を要求するリクエストを送信する(ステップS21)。ドローン連携装置300は、受信したリクエストに基づいて、車両100に配達物を届けるドローン200を決定する(ステップS22)。ドローン連携装置300は、ドローン200の飛行計画を作成し、飛行開始指示とともに、通信装置310を用いて決定したドローン200に送信する(ステップS23)。
 車両100は、車両100の位置を示す位置情報と、行動計画とを取得し(ステップS24)、定期的に、通信装置120を用いてドローン連携装置300に送信する(ステップS25)。また、ドローン200も、ドローン200の位置を示す位置情報と、飛行計画とを取得し(ステップS26)、定期的に、通信装置210を用いてドローン連携装置300に送信する(ステップS27)。
 次いで、ドローン連携装置300は、接近タイミングを決定する(ステップS28)。ドローン連携装置300は、決定した接近タイミングを、通信装置310を用いて車両100に送信する(ステップS29)。また、ドローン連携装置300は、接近タイミングに基づいて飛行計画を作成あるいは修正し、通信装置310を用いてドローン200に送信する(ステップS30)。
 以上説明した実施形態によれば、車両100から行動計画を取得する取得部331と、取得部331により取得された行動計画に基づいて、ドローン200を車両100に搭載する区間を含めてドローン200の飛行計画を決定する決定部334と、ドローン200を車両100に一時的に搭載させることができ、車両100とドローン200との連携を支援することができる。
 車両100が減速あるいは停止したタイミングでドローン200が車両100に接近することにより、ドローン200と車両100とスムーズに接近させることができる。
 車両100が減速あるいは停止するタイミングが取れない場合であっても、車両100に対して減速あるいは停止を依頼することにより、スムーズにドローン200を車両100に接近させることができる。また、インセンティブを付与することにより、ドローン200と連携したサービスを提供しやすくなる。
 車両100にドローン200を同行させることにより、ドローンの飛行距離を短縮し、また、車両100から電力の供給を受けることができる。これにより、ドローン200の移動距離を大幅に伸ばすことができる。
 ドローン200に配達物を配達させることにより、車両100の乗員は、店舗に立ち寄らずとも商品を受け取れ、利便性が向上するとともに、買い物による時間のロスを低減させることができる。また、近くに店舗がない場所であっても、商品を購入することができる。
<第2の実施形態>
 以下、第2の実施形態について説明する。なお、第2の実施形態においては、車両100の管理者、およびドローン200の管理者とは異なる第3の事業者(以下、管理代行者)が、ドローン連携装置300および車両管理装置510を用いて、車両100およびドローン200を包括的に管理する例を用いて説明する。
 管理代行者は、車両管理装置510を用いて1以上の車両100を管理する。車両100は、管理代行者の所有物であってもよいし、車両100のオーナーがドローン200の同行を許可し、管理代行者に同行に関する手続きを委託した車両であってもよい。
 図16は、車両管理装置510の機能構成図である。車両管理装置510は、例えば、通信部520と、認証部530と、車両管理部550とを備える。
 通信部520は、無線通信装置である。通信部520は、ネットワークNWを介してドローン連携装置300と通信する。認証部530は、ドローン連携装置300の指示により、ドローン200に車両100との同行をさせてもよいと認証する処理を行う。車両管理部550は、管理代行者によって、ドローン200を同行させるとアサインした車両100が、ドローン200の同行を開始してから終了するまでを管理する。
 通信部520は、ドローン連携装置300により送信される利用要求(すなわち、ドローン200の同行を要請すること)に基づいて、同行に適した車両100を車両管理部550によって認証させ、その認証された車両100を特定するための情報をドローン連携装置300に送信する。車両管理部550による同行に適した車両100の認証処理については後述する。
 車両管理部550は、例えば、利用状況検知部552と、利用許可部554と、認証部556とを備える。利用状況検知部552は、認証部530により認証されたドローン200の利用状況を検知する。利用状況とは、例えば、車両100に同行している状態や、車両100により給電されている状況である。
 また、利用状況検知部552は、車両100から行動計画を取得し、認証部530により認証されたドローン200の同行対象としてよい車両100である否かを検知する。利用状況検知部552は、「状況取得部」、「実績導出部」の一例である。
 利用状況検知部552は、車両100および/または認証部530により認証されたドローン200の利用状況を判定する。利用状況とは、例えば、車両100およびドローン200が同行を開始した、同行状況である、同行を終了した、等の状況である。また、利用状況は、車両100がドローン200の同行を受け入れ可能である、車両100がドローン200の同行を受け入れ可能でない、車両100がドローン200の同行を受け入れ可能であるが給電できない、等の車両100の状況であってもよい。また、利用状況検知部552は、車両100と認証部530により認証されたドローン200とが同行状況でない場合に、同行状況にすること(車両100が認証部530により認証されたドローン200を受け入れること)が可能か否かを判定する。利用状況検知部552は、同行状況にすることができる1以上の車両100および/または1以上の認証部530により認証されたドローン200を識別する情報を利用許可部554に出力する。認証部530により認証されたドローン200を識別する情報には、経路区間や給電の希望に関する情報が含まれる。
 また、利用状況検知部552は、ドローン連携装置300から提供されるドローン200の経路に関する情報やステータスに関する情報を参照して、ドローン200の同行に適した車両100を選択する。利用状況検知部552は、ドローン200の同行に適した車両100がない場合には、ドローン200の同行に適した区間を走行する車両100を配車すると決定し、駐車スペースで待機中の車両100等に配車させてもよい。利用状況検知部552は、ドローン200の同行に適した車両100がない場合に、経路の変更を容認できる車両100に、ドローン200の同行に適した経路を走行枢要、経路更新を指示してもよい。
 利用許可部554は、利用状況検知部552により出力された車両100および認証部530により認証されたドローン200を識別する情報から、ペアリング候補(認証部530により認証されたドローン200と、認証部530により認証されたドローン200の同行を受け入れる車両100の組み合わせの候補)を生成する。車両100がドローン200を搭載可能な経路区間を決定した上で、ペアリングを生成する。
 利用許可部554は、例えば、認証部556による認証が成功した場合に、認証部530により認証されたドローン200が車両100と同行状態となることを許可する。認証部556は、認証部530により認証されたドローン200とペアリングしてもよい車両100を選択して、その車両100をドローン200と同行する車両として認証する。
 また、利用状況検知部552は、車両100およびドローン200の同行の利用実績を検知する。利用実績とは、例えば、所定のインセンティブの算定根拠となる実績である。利用状況検知部552は、車両100により取得された同行管理情報324、およびインセンティブ情報327を、車両100から送信させ取得して利用実績の検知に用いてもよい。
 車両管理装置510は、利用状況検知部552により検知された利用実績に基づいて、車両100に所定のインセンティブを付与する。付与されたインセンティブは、付与されたタイミングで車両100のナビゲーション装置130等に出力されてもよいし、車両100のオーナーにメール等で通知されてもよい。
 なお、車両管理装置510は、車両100の一部の機能を代替してもよい。
例えば、車両100とドローン200との通信規格が異なり、両者が直接通信できない場合等に車両管理装置510は、車両100の一部の機能を代替する。具体的には、車両管理装置510は、ドローン連携装置300を介してドローン200の車両運行リクエスト(例えば、合流時の減速依頼)を受信し、車両運行リクエストに応答する運行をするよう車両100に依頼する信号を送信する。
 図17は、第3の事業者による車両100およびドローン200を管理する処理動作の一例を示すシーケンス図である。
 まず、車両100は定期的に送信する車両情報321をドローン連携装置300に送信する(ステップS200)。次に、ドローン連携装置300は、ユーザ認証処理を行う(ステップS201)。次に、ドローン連携装置300は、利用要求を車両管理装置510に送信する(ステップS202)。次に、車両管理装置510は、車両特定情報をドローン連携装置300に送信する。(ステップS203)。
 次に、ドローン連携装置300は、ドローン200の行動計画を決定してドローン200に送信する(ステップS204)。ドローン200は、行動計画に沿って運航を開始する(ステップS205)。ドローン連携装置300は、車両管理装置510に、ドローン200の経路やステータスに関する情報を送信し、共有する(ステップS206)。車両管理装置510は、経路更新指示を車両100に送信し、迎車実績の計測を開始する(ステップS207)。
 合流ポイントにおいて、車両100およびドローン200は、自らの位置情報や移動速度を通知し合う(ステップS208)。次に、車両100は、ドローン200の乗車・操作を確認し(ステップS209)、ドローン200は車両100に乗車したことを確認する(ステップS210)。次に、車両管理装置510は、車両管理装置510からドローン200への給電実績の計測を開始し(ステップS211)、ドローン連携装置300は、ドローン200の受電・給電実績の計測を開始する(ステップS212)。
 車両管理装置510は、経路・ステータス情報をドローン連携装置300に共有する(ステップS213)。ドローン連携装置300は、経路更新が必要である場合にはその指示をドローン200に送信する。また、ドローン連携装置300は、ドローン200の降車地点を決定し、決定した降車地点をドローン200に送信する(ステップS214)。
 降車地点で、ドローン200は車両100から降車し、ドローン連携装置300に降車したことを通知する(ステップS215)。ドローン連携装置300および車両管理装置510は、車両100およびドローン200の同行実績を共有し、精算する(ステップS216)。次に、車両管理装置510は、車両100にインセンティブ付与する(ステップS217)。車両100のナビゲーション装置130には車両管理装置510によって付与されたインセンティブについての情報が出力される(ステップS218)。以上、本シーケンス図の処理を終了する。
 なお、ステップS216において共有される同行実績には、例えば、実際の同行開始および終了地点の位置情報とその間の走行距離や、開始・終了時刻および同行期間中の受給電量の実績および車両上での物品の脱着や操作等の実績などが含まれる。車両管理装置510またはドローン連携装置300は、これらの情報と、ドローン200自身の質量情報あるいは大きさや運行コスト、搬送物を示すカテゴリ情報等に基づいて、図示しない金額を示す基準テーブルを参照して同行期間中の動作に対する精算を実行する。
 以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。
 例えば、ドローン連携装置300の全部または一部の構成は、車両100に搭載されていてもよい。
 また、ドローン連携装置300は、ドローン200の位置や飛行状況(時間通りや遅延気味等)や車両100に到着する予定時刻等を、通信装置310を用いて車両100に送信してもよい。これにより、車両100の乗員は、ドローン200の状態を知ることができる。
 また、ドローン連携装置300は、車両100の位置や走行状態(時間通りや遅延気味等)や合流位置に到着する予定時刻等を、通信装置310を用いてドローン200に送信してもよい。これにより、ドローン200は、飛行速度を調整したり、飛行経路の一部を変更したりすることができる。
 また、ドローン連携装置300は、ドローン情報322を用いてドローン200の位置を監視し、飛行計画以外の場所へ移動した場合、エラー情報をドローン200の管理者に通知したり、ドローン200から報知音を出力させたりしてもよい。これにより、ドローン200の防犯対策を用意することができる。
 また、ドローン200は、車両100と並走している際に、交差点等で車両100の移動に時間がかかる場合、ショートカットした飛行経路を移動してもよい。
 また、ドローン200は、車両100に給電してもよい。その場合、車両100が取得するインセンティブ情報327には、ドローン200による給電量が含まれてもよい。
 1…ドローン連携システム、100…車両、110…外界監視ユニット、120…通信装置、130…ナビゲーション装置、140…推奨車線決定装置、150…自動運転制御ユニット、160…駆動力出力装置、162…ブレーキ装置、164…ステアリング装置、170…連携ユニット、171…入出力部、172…記憶部、173…データ管理部、174…連携管理部、200…ドローン、210…通信装置、220…カメラ、230…GNSS受信機、240…センサー、250…モータ、260…保持機構、270…充電装置、280…制御部、290…記憶部、300…ドローン連携装置、310…通信装置、320…記憶部、321…車両情報、322…ドローン情報、323…地図データ、324…同行管理情報、325…配達管理情報、326…ドローン管理情報、327…インセンティブ情報、330…制御部、331…取得部、332…同行管理部、333…配達管理部、334…決定部、400…送迎管理装置、500…車両管理部、510…車両管理装置、520…通信部、530…認証部、550…車両管理部、552…利用状況検知部、554…利用許可部、556…認証部

Claims (17)

  1.  自動運転車両から行動計画を取得する取得部と、
     前記取得部により取得された行動計画に基づいて、ドローンを前記自動運転車両に搭載する区間を含めて前記ドローンの飛行計画を決定する決定部と、
     を備えるドローン連携装置。
  2.  前記決定部は、配達物を保持した状態での前記ドローンの飛行計画を決定する、
     請求項1に記載のドローン連携装置。
  3.  前記決定部は、前記行動計画に基づいて、前記ドローンが前記自動運転車両と接近するタイミングを決定し、決定したタイミングで前記自動運転車両に接近するよう前記ドローンに指示する、
     請求項1に記載のドローン連携装置。
  4.  前記決定部は、
     前記自動運転車両の走行速度が所定の速度以下となるタイミングで、前記自動運転車両に接近するよう前記ドローンに指示する、
     請求項1に記載のドローン連携装置。
  5.  前記決定部は、
     前記ドローンが前記自動運転車両に接近する点を含む所定範囲内に、前記自動運転車両の走行速度が所定の速度以下となるタイミングがない場合、前記自動運転車両に対して行動計画の変更を依頼する
     請求項1に記載のドローン連携装置。
  6.  前記決定部は、
     行動計画の変更を要求するリクエストに従って前記行動計画を変更した自動運転車両の車両に対してインセンティブを付与する
     請求項1に記載のドローン連携装置。
  7.  前記ドローンの出発地および目的地に基づいて前記ドローンを搭載させる自動運転車両を決定し、決定した自動運転車両に対して所定区間における前記ドローンの搭載を依頼する同行管理部をさらに備える、
     請求項1に記載のドローン連携装置。
  8.  前記自動運転車両から配達依頼を受け付け、受け付けた配達内容に基づいて前記自動運転車両に配達物を届けるドローンを決定し、決定したドローンに対して前記自動運転車両への配達を依頼する配達管理部をさらに備える、
     請求項1に記載のドローン連携装置。
  9.  自動運転車両から行動計画を取得する状況取得部と、
     前記状況取得部により取得された行動計画に基づいて、ドローンを前記自動運転車両に搭載可能な前記自動運転車両の経路区間を決定し、前記自動運転車両へのドローンの搭載を許可する利用許可部と、
     前記自動運転車両が前記経路区間の運行を行う間、前記自動運転車両の車両情報を外部送信する通信部と、
     を備える、車両管理装置。
  10.  前記通信部は、
     外部からの車両運行リクエストを受信し、受信した前記車両運行リクエストに基づいて、複数の自動運転車両を識別する情報を出力し、
     前記状況取得部は、
     前記自動運転車両を識別する情報に基づいて前記自動運転車両の状況を取得する、
     請求項9に記載の車両管理装置。
  11.  前記自動運転車両と前記ドローンが同行状況であるか否かを検知する利用状況検知部と、
     前記同行状況の開始から終了までの前記自動運転車両の移動距離または移動時間の少なくとも一方に基づいて、利用実績を導出する実績導出部を備える、
     請求項9に記載の車両管理装置。
  12.  前記通信部は、
     前記自動運転車両に前記利用実績を外部送信させ、前記外部送信させた前記利用実績を受信する、
     請求項11に記載の車両管理装置。
  13.  前記状況取得部は、
     前記ドローンの属性情報を前記自動運転車両から取得し、
     前記実績導出部は、
     前記ドローンの質量に基づいて、前記利用実績を導出する、
     請求項11に記載の車両管理装置。
  14.  前記属性情報は、
     前記ドローンの質量情報を含む、
     請求項13に記載の車両管理装置。
  15.  前記属性情報は、
     前記ドローンの製造情報を含む、
     請求項13に記載の車両管理装置。
  16.  自動運転車両から行動計画を取得し、
     前記取得された行動計画に基づいて、ドローンを前記自動運転車両に搭載する区間を含めて前記ドローンの飛行計画を決定する、
     ドローン連携方法。
  17.  コンピュータに、
     自動運転車両から行動計画を取得させ、
     前記取得された行動計画に基づいて、ドローンを前記自動運転車両に搭載する区間を含めて前記ドローンの飛行計画を決定させる、
     プログラム。
     
PCT/JP2018/022831 2017-06-16 2018-06-15 ドローン連携装置、車両管理装置、ドローン連携方法、およびプログラム WO2018230680A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880038533.5A CN110770811A (zh) 2017-06-16 2018-06-15 无人机协同装置、车辆管理装置、无人机协同方法及程序
US16/621,069 US11341857B2 (en) 2017-06-16 2018-06-15 Drone coordination device, vehicle management device, drone coordination method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017119026 2017-06-16
JP2017-119026 2017-06-16

Publications (1)

Publication Number Publication Date
WO2018230680A1 true WO2018230680A1 (ja) 2018-12-20

Family

ID=64659777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022831 WO2018230680A1 (ja) 2017-06-16 2018-06-15 ドローン連携装置、車両管理装置、ドローン連携方法、およびプログラム

Country Status (3)

Country Link
US (1) US11341857B2 (ja)
CN (1) CN110770811A (ja)
WO (1) WO2018230680A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020152212A (ja) * 2019-03-19 2020-09-24 株式会社Subaru 移動システム
JP2021038083A (ja) * 2019-09-05 2021-03-11 キヤノン株式会社 ドローン移動システム、およびそれを用いた配送システム
JPWO2021059458A1 (ja) * 2019-09-26 2021-10-07 楽天グループ株式会社 制御装置、移動体、システム、及び、方法
US11490056B2 (en) 2020-01-15 2022-11-01 Toyota Jidosha Kabushiki Kaisha Drone system and method of capturing image of vehicle by drone
CN116430788A (zh) * 2023-06-14 2023-07-14 山东坤羽网络科技有限公司 一种基于无线通讯的远程无人机控制系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020014160A1 (en) * 2018-07-09 2020-01-16 eConnect, Inc. Coordinated labor activities using drones
JP7380168B2 (ja) * 2019-12-13 2023-11-15 トヨタ自動車株式会社 自律走行ユニット、情報処理方法及びプログラム
CN111338380B (zh) * 2020-03-25 2023-03-14 河南华北水电工程监理有限公司 一种无人机工程监控方法
CN112015203B (zh) * 2020-09-07 2024-04-02 深圳大漠大智控技术有限公司 一种无人机集群轨迹跟踪方法及系统
JP2022066043A (ja) * 2020-10-16 2022-04-28 トヨタ自動車株式会社 情報処理装置、情報処理システム、プログラム、及び車両

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016194844A (ja) * 2015-04-01 2016-11-17 ライトブレインラボ合同会社 車両運転支援システム
US20170039510A1 (en) * 2014-04-11 2017-02-09 Deutsche Post Ag Method for delivering a shipment by an unmanned transport device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013496A (en) 1974-11-22 1977-03-22 Owens-Illinois, Inc. Method for producing shrunken pilfer-proof neck labels on containers
US8798922B2 (en) * 2012-11-16 2014-08-05 The Boeing Company Determination of flight path for unmanned aircraft in event of in-flight contingency
CN103914076B (zh) 2014-03-28 2017-02-15 浙江吉利控股集团有限公司 一种基于无人机的货物传送系统和方法
US9501061B2 (en) * 2015-02-24 2016-11-22 Qualcomm Incorporated Near-flight testing maneuvers for autonomous aircraft
JP6602614B2 (ja) 2015-09-09 2019-11-06 公立大学法人会津大学 ドローンおよびドローン群
JP2017061168A (ja) 2015-09-23 2017-03-30 トヨタテクニカルディベロップメント株式会社 車両の自動運転装置
US9841757B2 (en) * 2015-12-03 2017-12-12 At&T Intellectual Property I, L.P. Drone piggybacking on vehicles
US10553122B1 (en) * 2016-03-22 2020-02-04 Amazon Technologies, Inc. Unmanned aerial vehicle data collection for routing
US10043398B2 (en) * 2016-03-25 2018-08-07 International Business Machines Corporation Drone coordination
CN106656310B (zh) 2017-01-10 2020-09-04 贝耐特光学科技(昆山)有限公司 一种无人机任务执行方法及系统
CN106828264A (zh) 2017-01-17 2017-06-13 斑马信息科技有限公司 无人机车辆系统及其管理方法
CN106843279A (zh) 2017-01-17 2017-06-13 斑马信息科技有限公司 无人机车辆系统及其管理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170039510A1 (en) * 2014-04-11 2017-02-09 Deutsche Post Ag Method for delivering a shipment by an unmanned transport device
JP2016194844A (ja) * 2015-04-01 2016-11-17 ライトブレインラボ合同会社 車両運転支援システム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020152212A (ja) * 2019-03-19 2020-09-24 株式会社Subaru 移動システム
JP7284604B2 (ja) 2019-03-19 2023-05-31 株式会社Subaru 移動システム
JP2021038083A (ja) * 2019-09-05 2021-03-11 キヤノン株式会社 ドローン移動システム、およびそれを用いた配送システム
JP7451112B2 (ja) 2019-09-05 2024-03-18 キヤノン株式会社 ドローン移動システム、およびそれを用いた配送システム
JPWO2021059458A1 (ja) * 2019-09-26 2021-10-07 楽天グループ株式会社 制御装置、移動体、システム、及び、方法
US11490056B2 (en) 2020-01-15 2022-11-01 Toyota Jidosha Kabushiki Kaisha Drone system and method of capturing image of vehicle by drone
CN116430788A (zh) * 2023-06-14 2023-07-14 山东坤羽网络科技有限公司 一种基于无线通讯的远程无人机控制系统
CN116430788B (zh) * 2023-06-14 2023-08-22 山东坤羽网络科技有限公司 一种基于无线通讯的远程无人机控制系统

Also Published As

Publication number Publication date
US11341857B2 (en) 2022-05-24
CN110770811A (zh) 2020-02-07
US20200202722A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
WO2018230680A1 (ja) ドローン連携装置、車両管理装置、ドローン連携方法、およびプログラム
JP7176974B2 (ja) 迎車管理装置、迎車制御方法、およびプログラム
US9805605B2 (en) Using autonomous vehicles in a taxi service
JP2018205829A (ja) ライドシェア管理装置、ライドシェア管理方法、およびプログラム
CN109890676B (zh) 车辆控制系统、车辆控制方法及存储介质
US20200175558A1 (en) Ridesharing management device, ridesharing management method, and program
WO2018230533A1 (ja) 配車サービス提供装置、配車サービス提供方法、およびプログラム
JP2018077649A (ja) 遠隔運転制御装置、車両制御システム、遠隔運転制御方法、および遠隔運転制御プログラム
JP7192606B2 (ja) 情報処理装置、情報処理方法、及び情報処理プログラム
CN111051170A (zh) 识别自主车辆的未分配的乘客
US20190228664A1 (en) Vehicle calling system
JP2018185693A (ja) ライドシェア管理装置、ライドシェア管理方法、およびプログラム
JP6870548B2 (ja) ドライバレス輸送システム
JP7096183B2 (ja) 車両制御システム、車両制御方法、およびプログラム
CN111791882B (zh) 管理装置
US20190258270A1 (en) Traveling control system for autonomous traveling vehicles, server apparatus, and autonomous traveling vehicle
JP7032294B2 (ja) 車両制御装置、車両制御方法、およびプログラム
JP7019041B2 (ja) 乗降車地点決定方法及び乗降車地点決定装置
JP6460420B2 (ja) 情報表示装置、情報表示方法、および情報表示プログラム
WO2019163186A1 (ja) 車両制御システム、車両制御装置、および車両制御方法
JP2018077086A (ja) 情報表示装置、情報表示方法、および情報表示プログラム
JP2022030594A (ja) 管理装置、管理システム、管理方法、およびプログラム
JP6916852B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP2019073279A (ja) 車両制御システム、車両制御方法、および車両制御プログラム
US11487286B2 (en) Mobile object system that provides a commodity or service

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18818557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP