WO2018230466A1 - 強磁性トンネル接合体、それを用いたスピントロニクスデバイス、及び強磁性トンネル接合体の製造方法 - Google Patents

強磁性トンネル接合体、それを用いたスピントロニクスデバイス、及び強磁性トンネル接合体の製造方法 Download PDF

Info

Publication number
WO2018230466A1
WO2018230466A1 PCT/JP2018/022057 JP2018022057W WO2018230466A1 WO 2018230466 A1 WO2018230466 A1 WO 2018230466A1 JP 2018022057 W JP2018022057 W JP 2018022057W WO 2018230466 A1 WO2018230466 A1 WO 2018230466A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
magnetic
insulating layer
tunnel junction
magnetic layer
Prior art date
Application number
PCT/JP2018/022057
Other languages
English (en)
French (fr)
Inventor
裕章 介川
イクティアル
伸哉 葛西
和博 宝野
先東 徐
Original Assignee
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構 filed Critical 国立研究開発法人物質・材料研究機構
Priority to US16/605,418 priority Critical patent/US11107976B2/en
Priority to JP2019525389A priority patent/JP6857421B2/ja
Priority to EP18816984.1A priority patent/EP3640942B1/en
Publication of WO2018230466A1 publication Critical patent/WO2018230466A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors

Definitions

  • [2] Consists of at least one element selected from the group of Co and Fe between one or both of the tunnel barrier layer and the first magnetic layer or between the tunnel barrier layer and the second magnetic layer
  • [5] The ferromagnetic tunnel junction according to any one of [1] to [4], which exhibits a tunnel magnetoresistance of 120% or more and 34000% or less at room temperature.
  • a barrier layer made of Mg—Al—O having a small lattice mismatch with CoFeB is provided, and as a result, for example, an MTJ element capable of obtaining a large TMR ratio and a manufacturing method thereof are provided.
  • a large TMR ratio means that a TMR ratio of 120% or more can be obtained at room temperature.
  • the thickness of the second insulating layer 12 is not limited when crystallizing, but a thickness of 3 nm or less is preferable in order to obtain a practical area resistance (resistance R ⁇ area A, RA value) as an MTJ element. Is more preferred.
  • the film thickness of the second insulating layer 12 is the first insulating layer.
  • the layer 11 is preferably equal to or greater than the layer thickness.
  • the total thickness of the laminated film of the first insulating layer and the second insulating layer is preferably 0.6 nm to 3 nm.
  • the lower structure of the first magnetic layer 1 and the upper structure of the second magnetic layer 2 in the MTJ film first form 101 are shown. Is newly provided.
  • the substrate 21 is provided, and the base structure layer 22 is provided thereon.
  • An MTJ film first form 101 is provided thereon.
  • the upper structural layer 23 is provided on the MTJ film first form 101.
  • the substrate 21 is desired to be flat and homogeneous.
  • a magnetic layer may be included between the electrode layer and the first magnetic layer 1, for example, a Co—Fe alloy, a Co—Fe—Tb alloy, a Mn—Ga alloy, a Mn—Ge alloy, a Mn—Ga— N, an Fe—Pt alloy, a Co—Pt alloy, or the like, or a laminated film thereof may be used.
  • a Co-based Heusler alloy represented by Co 2 YZ Y, Fe, Mn, Ti, V, Cr, etc., Z, Al, Si, Sn, Ga, Ge, etc.
  • a Ta / CoFe / Ta / Ru structure and a W / [Co / Pd] multilayer film / Ta / Ru structure.
  • a thin oxide layer such as MgO may be included, for example, a Ta / Co—Fe—B / MgO / Ta / Ru structure.
  • a new magnetic layer is formed between the first magnetic layer 1 and the first insulating layer 11 in the MTJ film third form 301.
  • the insertion layer 3 is provided.
  • the second MTJ film form 201 it is a layer made of a CoFe alloy and has the effect of promoting crystallization of the first insulating layer 11 and the second insulating layer 12.
  • FIG. 3B shows an X-ray diffraction pattern obtained by scanning in the in-plane direction of the multilayer film structure of each CoFe insertion layer thickness. Peaks originating from MgAl 2 O 4 (400) and CoFe (110) were observed. Since this peak also increases in strength by increasing the thickness of the CoFe insertion layer, it can be confirmed that there is an effect of promoting crystallization of MgAl 2 O 4 by the insertion of the CoFe layer. Note that no spinel ordered structure of the Mg—Al—O layer was observed in any of the samples whose X-ray diffraction patterns were measured. Therefore, it can be said that it has a cation irregular spinel structure having a lattice constant half that of MgAl 2 O 4 .
  • FIG. 4B shows the calculated crystal lattice volume.
  • MgAl 2 —O x has a value close to a bulk value (1/8 unit cell) converted to a value when the lattice constant of MgAl 2 O 4 is regarded as half.
  • Mg 2 Al—O x has a value close to the average value of the MgO bulk value and the MgAl 2 O 4 bulk converted value. Therefore, it is suggested that the crystal lattice volume can be continuously controlled by adjusting the Mg—Al composition. It can also be seen that in-plane lattice matching can be realized even when the Mg-rich composition originally has lattice mismatch by introducing tetragonal strain without difficulty.
  • the MTJ element of the present invention even if amorphous Co—Fe—B is used as a magnetic layer by providing an ultrathin template layer mainly composed of MgO below the Mg—Al—O layer, High TMR ratio that could not be achieved can be used at room temperature, and good bias voltage dependency can be achieved at the same time.
  • an amorphous magnetic layer can be used together with an Mg—Al—O barrier layer means that a barrier layer with good lattice matching can be incorporated into an MTJ element without limiting the type of substrate or underlying structure. It is possible. Therefore, it can be utilized for various applications using the MTJ element.
  • a head slider 120 that records and reproduces information stored in the medium disk 110 is attached to the tip of a thin-film suspension 152.
  • the head slider 120 has, for example, the magnetic head according to the embodiment mounted near the tip thereof.
  • the medium facing surface (ABS) of the head slider 120 is held with a predetermined flying height from the surface of the medium disk 110.
  • ABS medium facing surface
  • a so-called “contact traveling type” in which the slider contacts the medium disk 110 may be used.
  • the suspension 152 is connected to one end of an actuator arm 154 having a bobbin portion (not shown) for holding a drive coil.
  • a voice coil motor 130 which is a kind of linear motor, is provided at the other end of the actuator arm 154.
  • the voice coil motor 130 includes a drive coil (not shown) wound around the bobbin portion of the actuator arm 154, and a magnetic circuit (not shown) composed of a permanent magnet and a counter yoke arranged to face each other so as to sandwich the coil. ).
  • the actuator arm 154 is held by a ball bearing (not shown) provided on the spindle 140 and can be freely slid and rotated by the voice coil motor 130.
  • FIG. 12 is an enlarged perspective view of the magnetic head assembly ahead of the actuator arm 154 as viewed from the disk side. That is, the magnetic head assembly 150 includes an actuator arm 154 having a bobbin portion that holds a drive coil, for example, and a suspension 152 is connected to one end of the actuator arm 154. A head slider 120 having a magnetic head shown in FIG. 13 is attached to the tip of the suspension 152. The suspension 152 has a lead wire 158 for writing and reading signals, and the lead wire 158 and each electrode of the magnetic head incorporated in the head slider 120 are electrically connected.
  • reference numeral 156 denotes an electrode pad of the magnetic head assembly 150.
  • FIG. 13 is a configuration diagram schematically showing a cross section of the magnetic head reproducing sensor.
  • the reproduction sensor 180 is provided between the upper magnetic shield 160 and the lower magnetic shield 170.
  • the reproduction sensor 180 includes a base layer 182 made of a nonmagnetic conductive layer, a first magnetic layer 184, an intermediate layer 186 (nonmagnetic insulating layer), a second magnetic layer 188, a cap layer 190 made of a nonmagnetic conductive layer, and a lower magnetic layer.
  • the shield 170 is laminated in order from the upper magnetic shield 160 side.
  • the reproduction sensor 180 is provided between the left and right magnetic domain control films 194 made of a permanent magnet material with an insulating layer 192 interposed therebetween.
  • the MTJ film first form 101 to the fourth form 401 described above can be used for the laminated structure of the base layer 182 to the cap layer 190.
  • the underlayer 182 is the underlayer structure layer 22
  • the first magnetic layer 184 is the first magnetic layer 1
  • the intermediate layer 186 is a laminated film including the first insulating layer 11 and the second insulating layer 12
  • the second magnetic layer 188 is the second magnetic layer.
  • the upper structural layer 23 corresponds to the layer 2 and the cap layer 190, for example.
  • the layer thickness of the intermediate layer 186 is desirably 0.6 to 3 nm in total for the first insulating layer 11 and the second insulating layer 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Thin Magnetic Films (AREA)
  • Magnetic Heads (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

第1磁性層と第2磁性層との間に設けられたトンネルバリア層であって、前記トンネルバリア層は第1絶縁層と第2絶縁層の積層構造からなる配向した結晶体であって、前記第1絶縁層はMg1-xXx(0≦x≦0.15)の酸化物からなり、XはAl、Tiの群から選ばれた少なくとも1つ以上の元素から構成され、前記第2絶縁層はMg、Al、Zn、Liの群から選ばれた少なくとも2つ以上の元素から構成される合金の酸化物からなり、前記第1磁性層と前記第2磁性層がいずれも、CoとFeの群から選ばれた少なくとも1つ以上の元素とBから構成される合金からなる強磁性トンネル接合体。

Description

強磁性トンネル接合体、それを用いたスピントロニクスデバイス、及び強磁性トンネル接合体の製造方法
 本発明の実施形態は強磁性トンネル接合体、それを用いたスピントロニクスデバイス(磁気抵抗効果素子及び磁気記憶装置)、及び強磁性トンネル接合体の製造方法に関する。
 強磁性層/絶縁体層(バリア層)/強磁性層の三層構造からなる強磁性トンネル接合体(MTJ:Magnetic tunnel junction)は例えばハードディスク装置の磁気ヘッドや不揮発性ランダムアクセスメモリ(MRAM:Magneto-resistive random access memory)の情報記録セルとして用いられている。また、小型の高感度磁気センサーとしても利用される。MTJ素子は2つの強磁性層の相対磁化角度に対してバリア層を介したトンネル抵抗値が変化するトンネル磁気抵抗効果(TMR:Tunnel magneto-resistance)を示す。このような応用分野では、磁気抵抗変化比(TMR比)が高いこと、作製が容易であること、幅広い基板上に作製可能なことが望まれる。
 強磁性層としてコバルト-鉄-ホウ素(CoFeB)、バリア層として酸化マグネシウム(MgO)からなるMTJ素子が広く用いられている。その主な理由として、CoFeBは非晶質であるため、幅広い下地構造の上に直接MTJ素子構造を作製可能であること、室温において100%を超える高いTMR比が比較的容易に得られることなど、幅広い素子応用に好ましい特長を有するためである。とりわけ高いTMR比は、MgOバリア層からCoFeB層の結晶化が進行することに起因する。非晶質CoFeB層上にスパッタなどを用いて成膜したMgOは(001)配向成長した層として得られ、200~500℃程度の熱処理によって、CoFeB層がMgO層側界面から結晶化が進展し、結果として高品位な界面結晶構造が実現される。そのため、CoFeB/MgO/CoFeB構造を有するMTJ素子は、熱処理によってこの3層すべてが(001)結晶配向を持つ積層構造が実現されるためTMR比の大きな増大が観察される(非特許文献1)。この高いTMR比はMgO(001)のΔバンドを介したコヒーレントトンネル効果によってもたらされる。
 一方、MgOとCoFeBとの間には3~4%程度の格子不整合があることから、この界面にはミスフィット転位欠陥が多数導入されるという問題がある。そのため、CoFeB/MgO/CoFeB構造ではTMR比の向上には限界がある。また、強磁性層としてCoFeB以外に利用が期待される材料群とMgOとの格子不整合は一般的にさらに大きい。例えば、高スピン偏極材料であるCoFeAl、CoMnSiなどのCo基ホイスラー合金では3~6%、垂直磁化材料であるFePtやMnGaなどでは8~10%の大きな格子不整合のため、MgOをバリア層としてこれらの強磁性層を用いてコヒーレントトンネル効果を顕著に示すMTJ素子を作製することが困難である。
 このような大きな格子不整合を低減し、より高品質なMTJ素子を作製する方法としてバリア層としてMgAlを用いる方法がある(特許文献1)。MgAlは格子定数が約0.809nmのスピネル構造を安定構造として持つ。その結晶格子間隔は岩塩構造を有するMgOに比べて約4%小さいため、CoFeB、CoFe、Co基ホイスラー合金、FePt、CoPt、MnGa、MnGeなど、幅広い強磁性体と格子整合性がよい。また、スピネル構造の陽イオン位置がランダムに配置された構造(陽イオン不規則化スピネル構造)も準安定構造として得ることが可能である(特許文献2)。さらに、MgAlでは、MgとAlの比率は化学量論比である1:2である必要はなく、MgとAl比率の調整によって格子定数を連続的に変化させることができるため、強磁性層と格子整合性をより高めることができる。そのため、MgAlのより一般的な表現として(Mg1-xAl)-O(0<x<1)として記述できる。MgAlバリア層を用いた場合にもコヒーレント効果が現れ、室温において300%を超える大きなTMR比が実現されている(特許文献2)。また、MTJ素子ではバイアス電圧の印加によってTMR比が低下する問題が知られており、実用上問題となる(バイアス電圧依存性)。MgAlバリア層の導入により格子不整合が低減されると、このTMR比の低下の度合いを軽減できることも知られている(特許文献1)。さらに、MgAlOに接した極薄の強磁性層には強い垂直磁気異方性を付加することができることが知られており、この効果によってMRAMの大容量化に適した垂直磁化型MTJ素子も構成することができる(特許文献3)。
 しかし、高い室温TMR比や良好なバイアス電圧特性などを示す高性能なMTJ素子を作製するためには、結晶質のMgAlバリア層を得る必要があり、そのためには単結晶の強磁性層、例えばFe、CoFe合金、CoFeAl合金、の下地構造が必要であった。このため、利用可能な基板や下地材質は極めて限定されるという応用上の問題があった。とりわけ、非晶質CoFeB上にMgAl層を成膜すると非晶質として得られるため、MTJ素子の結晶化を実現できないことから、コヒーレントトンネル効果は得られず、CoFeB層とMgAlバリア層を用いて100%を超えるような高いTMR比は実現できないという問題があった(非特許文献2、非特許文献3)。
特許5586028号公報 特許5988019号公報 特開2017-041606号公報
D.D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki, and K. Ando, Appl. Phys. Lett., Vol. 86, p. 092502 (2005). M. Tsunoda, R. Chiba, and K. Kabara, J. Appl. Phys., Vol. 117, p. 17D703 (2015). H. Liu, Q. Ma, S. Rizwan, D. Liu, S. Wang, and X. Han, IEEETrans. Magn., Vol. 47, p. 2716 (2011).
 本発明は、このような実情に鑑み、従来の単結晶下地を用いずに、CoFeB層とMgAlバリア層を有するMTJ素子を実現することによって、高いTMR比を達成することを課題としている。また、TMR比のバイアス電圧依存性を抑制することも課題としている。
 本発明者らはMgAlをバリア層として用いたMTJ素子に関する研究を行っている過程で、CoFeB層上に非常に薄いMgOを形成した後に、MgAl膜を形成することによってMgAl層の結晶化が起こるとともに、MgO/MgAl積層膜が(001)成長した配向膜として得られることを見出した。その結果、発明者らはCoFeB/MgO/MgAl/CoFeB構造からなる積層膜が熱処理によって全層が結晶化することで高いTMR比が実現されるMTJ素子として機能することを見出した。さらに、MgO/MgAl積層バリア層は、CoFeBとの格子不整合が小さいという効果によって、バイアス電圧依存性が改善することも同時に見いだしたことで、本発明に至っている。
 [1]第1磁性層と第2磁性層との間に設けられたトンネルバリア層を有する強磁性トンネル接合体であって、前記トンネルバリア層は第1絶縁層と第2絶縁層の積層構造からなる配向した結晶体であって、前記第1絶縁層はMg1-x(0≦x≦0.15)の酸化物からなり、XはAl、Tiの群から選ばれた少なくとも1つ以上の元素から構成され、前記第2絶縁層はMg、Al、Zn、Liの群から選ばれた少なくとも2つ以上の元素から構成される合金の酸化物からなり、前記第1磁性層と前記第2磁性層がいずれも、CoとFeの群から選ばれた少なくとも1つ以上の元素とBから構成される合金からなる強磁性トンネル接合体。
 [2]トンネルバリア層と第1磁性層との間、又は前記トンネルバリア層と第2磁性層との間の一方又は両方にCoとFeの群から選ばれた少なくとも1つ以上の元素から構成される層がさらに設けられた[1]に記載の強磁性トンネル接合体。
 [3]前記第1絶縁層がMgOからなる[1]又は[2]に記載の強磁性トンネル接合体。
 [4]前記第2絶縁層がMg1-yAl(0.2≦y≦0.8)の酸化物からなる[1]乃至[3]の何れかに記載のトンネル接合体。
 [5]室温において120%以上34000%以下のトンネル磁気抵抗を示す[1]乃至[4]の何れかに記載の強磁性トンネル接合体。
 [6][1]乃至[5]の何れかに記載の強磁性トンネル接合体を備えたスピントロニクスデバイス。
 [7]前記スピントロニクスデバイスは、ハードディスク用磁気ヘッド、スピントルク書換え型MRAM(STT-MRAM)、3端子型MRAM、電圧駆動型MRAM、スピントルク発振素子、スピン共鳴トンネル素子の何れかであることを特徴とする[6]に記載のスピントロニクスデバイス。
 [8]基板(例えばSi)をスパッタ装置に導入する工程と、この基板に第1磁性層(例えば、Co-Fe-B層)を成膜する工程と、この第1磁性層に重ねて第1絶縁層(例えば、MgO膜)を成膜する工程と、この第1絶縁層に重ねて第2絶縁層(例えば、Mg-Al-O層)を成膜する工程と、この第2絶縁層に重ねて第2磁性層(例えば、Co20Fe6020層)を成膜する工程と、作製した多層膜構造を300℃から500℃の温度範囲で1分乃至60分間真空中熱処理を行なう工程とを備えることを特徴とする強磁性トンネル接合体の製造方法。
 [9] 前記基板に下地構造膜(例えば、Ta)を成膜してから、前記第1磁性層成膜工程を行うことを特徴とする[8]記載の強磁性トンネル接合体の製造方法。
 [10] 前記第1磁性層成膜工程と前記第1絶縁層成膜工程との間に、この第1磁性層に重ねて第2磁性挿入層(例えば、CoFe膜)を成膜する工程を行うことを特徴とする[8]又は[9]記載の強磁性トンネル接合体の製造方法。
 [11] 前記第2絶縁層成膜工程と前記第2磁性層成膜工程との間に、この第2絶縁層に重ねて第2磁性挿入層(例えば、CoFe膜)を成膜する工程を行うことを特徴とする[8]乃至[10]の何れかに記載の強磁性トンネル接合体の製造方法。
 [12] 前記第2磁性層と前記熱処理工程との間に、前記第2磁性層に重ねて上部構造膜(例えば、Ta)を成膜する工程を行うことを特徴とする[8]乃至[11]の何れかに記載の強磁性トンネル接合体の製造方法。
 本発明では、CoFeBと格子不整合が小さいMg-Al-Oからなるバリア層を提供し、その結果として例えば大きなTMR比が得られるMTJ素子とその作製方法を提供する。ここで大きなTMR比とは室温で120%以上のTMR比が得られるということである。またTMR比のバイアス電圧依存性が改善でき、その指標としてTMR比が半減するバイアス電圧Vhalfを用いるとVhalf=1Vを超える値を実現できる。このためMTJ素子の電気的出力を向上することが可能である。本発明のMTJ素子はハードディスク用磁気ヘッドやスピントルク書換え型MRAM(STT-MRAM)に応用できるほか、3端子型MRAM、電圧駆動型MRAM、スピントルク発振素子、スピン共鳴トンネル素子など多くのスピントロニクスデバイスに利用することができる。
図1(A)および(B)は、本発明の一実施形態に係る強磁性トンネル接合体(MTJ)素子膜の模式図断面である。 図2(A)および(B)は、本発明の一実施形態に係るMTJ素子膜の別の例の模式断面図である。 図3は、Ta/Co-Fe-B/CoFe/MgO(0.25nm)/MgAl-O(10nm)/Co-Fe-B/Taの多層膜構造において、CoFe層厚を変えた場合のX線回折パターンを示している。(A)は膜面内方向スキャン結果、(B)は膜面直方向スキャン結果である。 図4は、Ta/Co-Fe-B/CoFe/MgO(0.25nm)/Mg-Al-O(10nm)/Co-Fe-B/Taの多層膜構造において、Mg-Al-O層として、MgAl-OおよびMgAl-Oそれぞれについて、X線回折パターンから求めた(A)結晶格子間隔および(B)結晶格子体積とのCoFe挿入層厚の関係を示す図である。 図5は、CoFe膜厚0.16nm及び0.92nmとして作製したMTJ素子のTMR比とMgO層厚との関係を示すものである。(A)はMgAl-Oを用いた結果であり、(B)はMgAl-Oを用いた結果である。 図6は、ゼロ電圧の値で規格化したTMR比のバイアス電圧依存性を示す図である。(A)はMgAl-Oを用いた結果であり、(B)はMgAl-Oを用いた結果である。 図7は、MgAl-Oを用い、500℃で熱処理を行ったMTJ素子の電気抵抗及びTMR比の外部磁場依存性を測定した図である。 図8(A)は、MgO(0.7nm)/MgAl-O(1.2nm)積層バリア層を持ち、500℃で熱処理を行った素子の断面電子顕微鏡像(STEM像)を示している。図8(B)はエネルギー分散型X線分光(EDS)法による元素分析結果を示している。 図9は、MgO単一バリア層を持つMTJ素子とMgO/Mg-Al-O積層バリア層を持つMTJ素子のバイアス電圧依存性を示す図である。 図10は、Co-Fe-B/Mg-Al-O/Co-Fe-B構造のMTJ膜(300℃熱処理後)のTMR比と面積抵抗(RA)の関係を示す図である 本発明のMTJ素子が搭載される磁気記録再生装置の一例を示す概略図である。 本発明のMTJ素子が搭載される磁気ヘッドアセンブリの一例を示す概略図である。 本発明のMTJ素子が搭載される磁気ヘッド再生センサーの断面を模式的に示す構成図である。
 以下、図1及び図2を参照して、本実施形態のトンネルバリアとそれを用いたMTJ素子の実施形態について説明する。
 本実施形態のMTJ素子は、基板の上に、第1磁性層、第1絶縁層、第2絶縁層、及び第2磁性層がこの順で積層されたものである。前記第1絶縁層及び第2絶縁層は酸化物からなる。例として第1磁性層、第2磁性層はCoFeBからなり、また第1絶縁層及び第2絶縁層はそれぞれMgO及びMgAlを主体とする。
 このとき、第2絶縁層ではMgAlのMg:Al比率は、1:2である必要はなく、幅広い比率の組成が使用できる(以降、一般表記Mg-Al-Oと記載)。またMg-Al-Oの結晶構造として、スピネル構造および陽イオン不規則化スピネル構造の両方を用いることができる。またMg、Al以外のスピネル構造を形成する元素、例えばLi、Znを含む酸化物から構成されていても良い。また第1絶縁層はMgOの他、金属Mg層/MgO層の積層構造や、AlもしくはTiを少量含んだ構造でも良い。また第1磁性層と第1絶縁層との間、第2磁性層と第2絶縁層との間にCoFe合金が挿入されている構造においても効果を発揮する。
 (第1実施形態)
 図1(A)に第1実施形態の基本構造であるMTJ膜第1形態101を示している。MTJ膜第1形態101は多層膜構造であり、下から第1磁性層1、第1絶縁層11、第2絶縁層12、第2磁性層2、の順番に積層されている。第1磁性層1と第2磁性層2はいずれが磁化固定層または磁化自由層であってもよい。また磁化方向は膜面内方向でも膜面垂直方向のいずれでも良い。以下にこのMTJ膜第1形態101の構造による効果と作製法について述べる。
 第1磁性層1は例えばスパッタ法や蒸着法などの物理的気相成長法で成膜されたCo-Fe-Bからなる層である。このCo-Fe-Bはこの段階ではアモルファス構造を持つ。CoおよびFeの組成はCo1-nFe(0≦n≦1)であれば良く、CoBおよびFeBを含む組成である。Co-Fe-B中のB組成は、Co-Fe-B層が強磁性を持ちアモルファスを保つ範囲であれば良く、例えば15~25原子%程度である。この層の厚さとして例えば0.8~5nmであるが、第1磁性層1の下部層構造との兼ね合いで決定される。また、1.5nm程度以下の厚さと非常に薄くすることで、この層を垂直磁化した層として得ることもできる。
 次に第1絶縁層11は、MgOを主体とする酸化物からなる層である。酸素量としては多少の欠損、過剰であってもよく、MgO1+δ(-0.2≦δ≦0.2)の範囲であれば効果を示す。この層はMgに対して15原子%程度までのAlもしくはTiを含んでいても結晶層として得られるため利用できる。また、この第1絶縁層11はその上に形成する第2絶縁層12の結晶化を促進する効果を持ち、おおむね(001)をもって成長した結晶膜であるが、この段階ではアモルファスや多結晶体が部分的に含まれていても良い。第1絶縁層11の結晶構造を制御するために、この層の形成後に例えば100~400℃程度の範囲で真空中熱処理をすることもできる。
 次に第1絶縁層11の上に第2絶縁層12を形成する。第2絶縁層12はMg-Al-Oを主成分とする複合酸化物層である。この層は、立方晶の結晶体を持つことができる。また、スピネル構造が安定構造となる組成を含む。MgとAlの組成としてMg1-yAl(0.2≦y≦0.8)を用いることができる。ここで、yが0.2以上としたのは、第1磁性体1および第2磁性体2との格子不整合を3%程度以下に小さくできることから、Vhalfが向上するという効果が得られるためである。またyが0.8以下としたのは、Alリッチ組成になる効果によってMg-Al-Oの結晶化が難しくなるためである。また、この層の酸素量として化学量論組成から欠損や過剰があっても効果を示し、例えば一般式として、Mg1-xAl1.5-x/2+δ’(-0.2≦δ’≦0.2)の範囲で利用できる。また、スピネル構造を安定化させ、絶縁特性および素子抵抗の調整や、TMR比の向上を目的として、MgおよびAlの一部をZn、Liに置換してもよい。これは、Zn、Liを含むAl酸化物、ZnAlおよびLiAl2.5は、MgAlと同程度の格子定数のスピネル構造結晶を有する絶縁体であるためである。これらの材質の類似した特長から、MgAlとは連続的に固溶体を作ることができるため、Zn、Liを含んでいても本実施形態において効果を発揮する。また第2絶縁層12の結晶構造を制御するために、この層の形成後に例えば100~400℃の範囲で真空中熱処理をすることもできる。
 これらの第1絶縁層11および第2絶縁層12の作製は既知の種々の方法を用いることができる。例えば、酸化物からなるターゲット材からの高周波スパッタ、酸素ガスを用いた反応性蒸着や反応性スパッタ、MgやMg1-aAl(0<a≦1)合金からなる金属層の成膜後に酸化する方法(後酸化)、また、多段後酸化法、及びこれらを組み合わせた手法である。これらの手法は、平坦性を悪化させない範囲の温度において、基板加熱を行いながら行っても良い。
 第1絶縁層11の厚さとして、例えば0.05~1.2nmの範囲が好ましい。より好ましくは0.1~1.0nmである。さらに好ましくは0.2~0.8nmである。0.05nmはMgO(001)の1原子面の1/4程度の厚さに対応しており、この厚さ以上において第2絶縁層12を結晶層として得るための結晶テンプレートとして機能させることができる。第1絶縁層11膜厚の上昇に伴い結晶テンプレート効果が向上し、より低い熱処理温度で第2絶縁層12の結晶化を実現できる。一方、MgOとCo-Fe-Bとは4%程度の格子不整合があることから、第1絶縁層11膜厚をむやみに増やすことは第1磁性層1と第1絶縁層11との格子不整合の影響を大きくさせることにつながるため、Vhalfが低下するおそれがある。
 第2絶縁層12を結晶化させる上で厚さの制限はないが、MTJ素子として実用的な面積抵抗(抵抗R×面積A、RA値)とするため3nm以下の厚さが好ましく、2nm以下の厚さがさらに好ましい。また、第1磁性層1及び第2磁性層2と積層絶縁層との間の格子不整合を有効に低減し、高いVhalfを得るためには、第2絶縁層12膜厚は第1絶縁層11層厚と同等以上であることが好ましい。以上のことを踏まえると、MTJ素子の目的では第1絶縁層と第2絶縁層の積層膜の合計の厚さとして、0.6nm~3nmが好ましい。
 また、第1磁性層1と第1絶縁層11の間、第2絶縁層12と第2磁性層2の間にMg1-bAl(0≦b≦1)からなる極薄の金属膜を例えば1nm以下の厚さで挿入することで、界面結晶構造の制御や垂直磁気異方性の調整をすることもできる。
 次に第2絶縁層12の上に第2磁性層2を形成する。第2磁性層2も第1磁性層1と同様にアモルファス構造を持つCo-Fe-Bを主体とする層である。作製法も第1磁性層1とおなじ手法を用いることができる。
 上記の多層膜構造を形成後に、例えば200~500℃程度の温度範囲において、1分~60分間、真空中で熱処理を行うことによって、全体として立方晶を持つ構造に変化するとともに、おおむね(001)配向した結晶多層膜となる。第1絶縁層11と第2絶縁層12は熱処理条件の調整によって、部分的もしくは全体的に相互原子拡散を促進させることができ、一体のMg-Al-Oバリア層として得ることもできる。この効果によって格子整合が良いCo-Fe-B/Mg-Al-O/Co-Fe-B積層構造を得ることが可能になり、既知の単層MgOバリア素子と同等の高いTMR比を実現しながら、より高いVhalfを得ることができる。例えば、本発明によれば、室温において120%以上34000%以下のトンネル磁気抵抗を示す強磁性トンネル接合体が作製される。
(第2実施形態)
 第2実施形態を図1(B)にMTJ膜第2形態201として示し説明する。MTJ膜第2形態201では、MTJ膜第1形態101における第1磁性層1と第1絶縁層11の間に新たに磁性挿入層3を設けたものである。それ以外の構造、組成、製造方法はMTJ膜第1形態101と同等のものを用いることができる。この磁性挿入層3は、Co1-mFe(0<m≦1)からなる薄い挿入層である。磁性挿入層3は第1絶縁層11と第2絶縁層12の両方の結晶化を促進させる効果があり、TMR比の向上につながる。この層の膜厚は第1磁性層1よりも薄いことが好ましく、例えば0.1~1.5nmである。磁性挿入層3はスパッタ法や真空蒸着法などCo-Fe-Bと同じ手法で作製することができる。磁性挿入層3は平坦性の向上のために、100~300℃の温度において真空中熱処理してもよい。また、第2絶縁層12と第2磁性層2との間にもCoFe合金層を磁性挿入層3と同様の手法を用いて挿入してもよい。
 (第3実施形態)
 第3実施形態は、図2(A)にMTJ膜第3形態301として代表的に示すように、MTJ膜第1形態101における第1磁性層1の下部構造と第2磁性層2の上部構造を新たに設けたものである。まず基板21が設けられ、その上に下地構造層22が設けられる。その上にMTJ膜第1形態101が設けられる。また、MTJ膜第1形態101の上に、上部構造層23が設けられる。
 基板21として、平坦であり均質であることが望まれる。材料として例えば、Si、熱酸化膜付きSi(Si/SiO)、SiN、SiCなどSiベースのもの、GaAsなどの化合物半導体、MgOやMgAl、サファイアなどの酸化物結晶を用いることができる。
 下地構造層22は基板21と第1磁性層1の間に設けられ、下部側の電極層となるとともに、第1磁性層の磁気特性や結晶構造を制御するために用いられる。この下地構造層22には既知の多層構造を利用することができる。例えば電極層としてTa、TaN、Ru、Ir、Pt、W、Ti、TiN、AlTiC、Cu、CuN、Mo、Cr、Au、Ag、NiAl、NiFe、IrMn、PtMnからなる群から選択される少なくとも一つを含む層を用いることができる。また電極層と基板21との間にはMgO、MgAl、AlO、SiO、SrTiOなどの酸化物層を有していても良い。これらの酸化物層は電極層の結晶方位を制御するために用いることができる。
 電極層と第1磁性層1との間には、磁性層を含んでいてもよく、例えばCo-Fe合金、Co-Fe-Tb合金、Mn-Ga合金、Mn-Ge合金、Mn-Ga-N、Fe-Pt合金、Co-Pt合金などやこれらの積層膜を用いても良い。また、CoYZ(YとしてFe、Mn、Ti、V、Crなど、ZとしてAl、Si、Sn、Ga、Geなど)と表されるCo基ホイスラー合金を用いることもできる。また、(Co,Fe)から選ばれた少なくとも1つの元素を含む層と(Pt,Pd)から選ばれた少なくとも1つの元素を含む層とを多層積層とした構造でもよい。これら磁性体を含む層は、Ru、Ti、W、Mo、Irなどの非磁性層が挿入されていても良い。これらの各層は真空中熱処理を行うこともできる。
 下地構造層22の積層化の例として、下から、Ta(5nm)/Ru(10nm)/NiFe(5nm)/IrMn(10nm)/CoFe(2.5nm)/Ru(0.8nm)/CoFe(2nm)構造、Ta(5nm)/Ru(10nm)/Pt(3nm)/[Co(0.2nm)/Pt(0.4nm)]多層膜/Co(0.2nm)/Ru(0.8nm)/[Co(0.2nm)/Pt(0.4nm)]多層膜/CoFeB(1nm)/Ta(0.2nm)構造、MgO(7nm)/Cr(40nm)/CoFeAl(5nm)構造である。ここで()内は膜厚である。
 第2磁性層2の上には上部構造膜23が設けられる。この上部構造膜23は例えば上部電極となるとともに、強磁性トンネル接合体膜の保護膜としても機能する。例えばTa(5nm)/Ru(15nm)を用いることができる。TaはCo-Fe-Bの上に直接設けられることで、熱処理中にCo-Fe-BのBの一部を吸収する性質があり、結果としてCo-Fe-B層の結晶化を促進させる効果もある。さらに、第2磁性層2の磁気特性や結晶構造を制御するために、下地構造層22で示す磁性体を含む構造を含んでも良い。例えば、下から、Ta/CoFe/Ta/Ru構造や、W/[Co/Pd]多層膜/Ta/Ru構造である。さらに、MgOなどの薄い酸化物層を含んでも良く、例えばTa/Co-Fe-B/MgO/Ta/Ru構造である。
 (第4実施形態)
 第4実施形態は、図2(B)にMTJ膜第4形態401として代表的に示すように、MTJ膜第3形態301における第1磁性層1と第1絶縁層11の間に新たに磁性挿入層3を設けたものである。MTJ膜第2形態201で示すとおり、CoFe合金からなる層であり、第1絶縁層11及び第2絶縁層12の結晶化を促進する効果がある。
 以上は、本発明の実施形態の代表例を記述したものであり、特定の実施形態に限定されるものではなく、請求の範囲内に記載された要旨に適合する範囲内によって変形が可能であるのは当然である。
 以下、図3乃至図8を参照して、本実施形態のトンネルバリアとそれを用いたMTJ素子の実施例について説明する。
<実施例1>
 図3及び図4を用いて実施例1を以下に説明する。基板を熱酸化膜付Si基板とし、イソプロピルアルコールを用いて洗浄した後スパッタ装置へ導入した。マグネトロンスパッタを用いて室温においてTa(5nm)/Co-Fe-B(5nm)を成膜した。Taは下地構造膜であり、Co-Fe-B層は第1磁性層である。Co-Fe-B層の成膜に用いたターゲットの組成はCo20Fe6020である。次に磁性挿入層としてCoFe膜を0(挿入層なし)、0.3、0.6、0.9nmをスパッタ成膜した。用いたターゲットはCo75Fe25組成である。次に第1絶縁層としてMgO焼結ターゲットを用いてMgO(0.25nm)を高周波スパッタにより成膜した。引き続きMg-Al-O層(10nm)を2つの異なる組成のターゲットを用いて高周波スパッタにより成膜した。
 1つ目の組成はMgリッチの(Mg0.67Al0.33)-Oターゲットを用い、Mg-Al-O層中のMgとAlの実組成は、誘導結合プラズマ組成分析法を用いてMg0.72Al0.28であった。以後、便宜上この組成をMgAl-Oと呼称する。
 2つ目の組成はAlリッチの(Mg0.33Al0.67)-Oターゲットを用いており、MgとAlの実組成はMg0.39Al0.61であった。以後、便宜上この組成をMgAl-Oと呼称する。次に、Mg-Al-O層の上に第2磁性層としてCo20Fe6020(5nm)、さらにその上に上部構造膜としてTa(5nm)を成膜した。その後、作製した多層膜構造は300℃において30分真空中熱処理を行った。
 図3(A)はMgリッチMgAl-Oを用いた場合における多層膜構造の膜面直方向にスキャンして得たX線回折パターンを示している。各CoFe挿入層厚さについて別々に示す。いずれのCoFe膜厚においても42°近傍にMgAl(004)に対応するピークが観察されている。このピークの他には、基板とTa層以外のピークのみであることがわかる。このことはMgAl-O層が結晶化し、(001)成長が実現されたことを示している。MgAl(004)ピーク強度はCoFe挿入厚さが厚くなるにつれ大きくなることもわかる。したがって、CoFe層の挿入がMgAlの結晶化を促進することを示している。
 同様に、図3(B)には各CoFe挿入層厚さの多層膜構造の膜面内方向にスキャンして得たX線回折パターンを示している。MgAl(400)とCoFe(110)を起源とするピークが観察された。このピークもCoFe挿入層厚さを増やすことで強度が増すことから、CoFe層挿入によるMgAlの結晶化促進効果があることが確認できる。なおX線回折パターンを測定した試料のいずれも、Mg-Al-O層のスピネル規則構造化は観察されていない。そのため、MgAl本来の半分の格子定数をもつ陽イオン不規則スピネル構造になっているといえる。
 同様のMg-Al-O層の結晶化はMgAl-O組成においてもX線回折パターンから確認された。観測されたX線ピーク、MgAl(004)および(400)位置から、形成されたMg-Al-Oの膜面内および膜面直方向の結晶格子間隔を見積もった。
 図4(A)にMgAl-OおよびMgAl-Oそれぞれについて、結晶格子間隔のCoFe挿入層厚の関係を示す。この図から、いずれの組成においても格子間隔はCoFe膜厚にほとんど影響されないことがわかる。また、膜面内方向の格子間隔は膜面直方向の間隔よりも小さいこともわかる。面内格子間隔はいずれの組成においても0.405~0.408nmの範囲となった。この値はMgAlバルク値(0.4045nm)に近く、Co-Fe-B層と良好な面内格子整合が実現されるように膜面直方向に結晶が伸びている(正方晶歪みの導入)ことを示唆している。さらに、Mg-Al組成によって膜面直方向の格子定数は異なることがわかる。
 図4(B)には結晶格子体積を算出したものである。MgAl-Oでは、MgAlの格子定数を半分と見なした場合の値に換算したバルク値(1/8ユニットセル)に近い値を持つ。一方、MgAl-OではMgOバルク値とMgAlバルク換算値との平均値に近い値を持つことがわかる。したがって、Mg-Al組成の調整によって結晶格子体積の連続的な制御が可能であることも示唆している。本来は格子不整合があるMgリッチ組成においても、正方晶歪みが無理なく導入されることで、面内格子整合が実現されることもわかる。以上からMg-Al-O層とCo-Fe-B層の間に、極薄MgOを挿入することでMg-Al-O層が結晶化し、CoFe層挿入でさらにその結晶性が向上することが確認された。また、Mg-Alの広い組成においてCo-Fe-B層と面内格子整合状態を実現できることもわかった。
<実施例2>
 次に図5及び図6を用いて実施例2を説明する。実施例1と同等の方法を用いて熱酸化膜付Si基板上にTa(5nm)/Ru(10nm)/Ta(5nm)の下地構造膜を作製した。次に、Co20Fe6020(5nm)の第1磁性層を成膜した後に、Co75Fe25膜を磁性挿入層としてスパッタ成膜した。Co75Fe25層の膜厚は0.1~1.0nmの範囲で変化させた。次に第1絶縁層としてMgO層を0.1~0.8nmの膜厚として変化させて成膜した。引き続き、第2絶縁層としてMgAl-OもしくはMgAl-Oを1.2nmの厚さで高周波スパッタ成膜した。その後Co20Fe6020(3nm)/Ta(5nm)/Ru(5nm)を成膜した。多層膜作製後に電子線リソグラフィ、フォトリソグラフィー、イオンエッチング装置を用いて400nm×200nmサイズの楕円形状に微細加工を行い、MTJ素子構造を形成させた。また、測定用電極としてAuを用いた。その後、MTJ素子を400℃において30分真空中で熱処理を行った。次に、直流四端子法によって外部磁場およびバイアス電圧に対するMTJ素子の電気抵抗の変化を室温において測定した。上下磁性層の磁化配列が反平行時の抵抗値をRAP、平行時の抵抗値をRとして、TMR比(%)は100×(RAP-R)/Rで定義した。
 図5(A)は、MgAl-Oを用い、CoFe膜厚=0.16nm及び0.92nmと固定した場合の、TMR比とMgO層厚との関係を示すものである。この例では、最大で約200%のTMR比が得られている。これは非晶質のバリア層では実現が期待できない高い値であり、Mg-Al-O層が結晶化し、高品位な(001)配向膜が達成されたことによって、コヒーレントトンネル効果が顕著に現れたことを示している。MgO挿入層厚が増えるとともにTMR比が向上し、最終的に飽和する傾向があることがわかる。特に、CoFe層厚が厚い0.92nmを用いた場合、MgOは0.15nm程度あれば十分な効果を発揮する。また、0.05nmの薄いMgO領域においても130%程度の比較的高い値が実現されている。一方、CoFe層が薄い0.16nmの場合は、TMR比が全体的に低く、高いTMR比を得るためには比較的厚いMgO層挿入が必要であることもわかる。したがって、CoFe挿入層厚さもMg-Al-O層の結晶化に強い影響を与えていることが見て取れる。
 図5(B)は、MgAl-Oを用いた場合の結果を示している。最大で160%程度のTMR比が実現された。しかし、100%を超えるTMR比を得るためにはMgAl-O組成と比べ、より厚い0.3nm程度のMgO挿入が必要である。これはAlがより多い組成を用いたため、Mg-Al-O層の結晶化のためにより強いテンプレート効果が必要となったためであると考えられる。
 次に、ゼロバイアス電圧の値で規格化したTMR比のバイアス電圧依存性について、MgAl-O組成による結果を図6(A)に、MgAl-O組成による結果を図6(B)にそれぞれ示す。これらの図では、MgO厚を0.45nmに固定し、異なるCoFe挿入層膜厚についての結果をそれぞれ示している。また、下部層から上部層へ電子トンネルする方向である正電圧方向として定義した。これらの図から、どちらのMg-Al組成においてもほぼ同等の振る舞いが見られる。すなわち、正電圧方向において、TMR比のバイアス電圧依存性が小さいことがわかる。特にCoFe層厚が増えると依存性がより小さくなる。一方、負電圧方向ではCoFe膜厚依存性が小さい。
 規格化TMR=0.5となるバイアス電圧はVhalfを意味し、バイアス電圧依存性の簡便な指標となる。正電圧方向(Vhalf+)はいずれのMg-Al組成においてもCoFe層挿入厚0.92nmのときに約1.4Vと非常に大きい値を示す。これは正電圧方向では上部バリア界面の状態を強く反映しており、高いVhalf+はMg-Al-O層と上部Co-Fe-B層が接する界面の格子不整合欠陥の少なさに起因していると考えられる。
 負電流方向(Vhalf-)はいずれの条件においてもおおよそ0.8V程度であり、正電圧方向より小さい。CoFe挿入層とMgO層との界面に格子不整合が残存していることや過酸化などによるダメージによる影響がその可能性として考えられる。また、Vhalfは一般的に磁性層組成によっても大きな影響を受け、Co-Fe-(B)系の場合Co組成上昇とともに低下する。したがって、挿入層にCoリッチ組成のCo75Fe25を用いたこともVhalf-低下の要因といえる。
<実施例3>
 次に図7を用いて実施例3を説明する。実施例2と同等の方法を用いて熱酸化膜付Si基板上にTa(5nm)/Ru(10nm)/Ta(5nm)/Co20Fe6020(5nm)/Co75Fe25(1.0nm)/MgO(0.4nm)/Mgリッチ組成MgAl-O(1.2nm)/Co20Fe6020(3nm)/Ta(5nm)/Ru(5nm)を成膜し、微細加工を行った。その後500℃において30分真空中で熱処理を行った。素子抵抗及びTMR比の外部磁場依存性の測定結果を図7に示す。この図から分かるようにTMR比=242%が得られ、この値は400℃熱処理時の最大値(~200%)よりも高い値が得られた。これはより高い温度で熱処理を行ったことで各層の結晶化が効果的に進行したためである。
<実施例4>
 次に図8を用いて実施例4を説明する。実施例2及び3と同等の方法を用いて熱酸化膜付Si基板上にTa(5nm)/Ru(10nm)/Ta(5nm)/Co20Fe6020(5nm)/Co75Fe25(1.0nm)/MgO(0.7nm)/Alリッチ組成MgAl-O(1.2nm)/Co20Fe6020(3nm)/Ta(5nm)/Ru(5nm)を成膜した後、500℃において30分真空中で熱処理を行った。この多層膜試料のTMR比は220%であった。図8(A)には、この多層膜の断面電子顕微鏡像(STEM像)、図8(B)にはエネルギー分散型X線分光(EDS)法によるMg、Al、O、Fe、Coの各元素の組成プロファイルの結果を示している。
 断面STEM像から、上下磁性層及び積層バリア層が結晶化していることがわかる。また、これらの層すべてが(001)に成長していることがわかった。また、MgO/MgAl-O積層バリア層内に明確な境界は見られず、一体にみえることもわかる。EDS元素プロファイルからも、MgO/MgAl-O積層バリア層内でMgとAlが相互拡散し、おおむね均一なMg-Al濃度となっており、上下磁性層の間に結晶化したMg-Al-Oバリアが実現されている。Co-Fe-(B)層との界面も極めて平滑であり、面内格子不整合もほとんど見られないことから高品位な格子整合界面が実現されていることがわかる。また、比較的厚いMgO挿入層を用いたため、バリア層はMgがAlより多い組成を持つこともわかる。
 したがって、本実施形態の構造と製造方法によって高品位なMg-Al-O結晶層が達成でき、高いTMR比と高いVhalfを併せ持つMTJ素子が構成できる。このことは高い素子電圧出力を実現可能であり、様々な用途に適した高性能MTJ素子を提供できることを示している。
 以下、図9及び図10を参照して、本実施形態のMTJ素子との比較例について説明する。
<比較例1>
 次に、図9を用いて比較例1としてMgAl層を持たない、MgO単一バリアのバイアス電圧依存性を測定した結果を説明する。実施例2乃至4と同等の方法を用いて熱酸化膜付Si基板上にTa(5nm)/Ru(10nm)/Ta(5nm)/Co20Fe6020(5nm)/MgO(約1.4nm)/Co20Fe6020(3nm)/Ta(5nm)/Ru(5nm)を成膜した後、微細加工を行い、400℃において30分真空中で熱処理を行った。ゼロバイアス電圧でのTMR比は250%であった。図9にこのMTJ試料の規格化TMR比のバイアス電圧依存性を示す。比較として、MgO(0.45nm)/MgAl-O(1.2nm)およびMgO(0.45nm)/MgAl-O(1.2nm)を用いた試料も示す(いずれも0.9nmのCoFe挿入層を使用)。図9から明らかなとおり、正電圧方向においてMg-Al-Oを用いたバリアと比べMgO単一バリアのVhalfが小さいことがわかる。
<比較例2>
 次に、図10を用いて比較例2としてMg-Al-O単一バリアのTMR比を測定した結果を説明する。実施例1乃至3と同等の方法を用いて熱酸化膜付Si基板上にTa(5nm)/Ru(20nm)/Ir20Mn80(5nm)/Co75Fe25(2.5nm)/Ru(1.1nm)/Co20Fe6020(5nm)/Mg-Al-O(0.8-1.2nm)/Co20Fe6020(3nm)/Ta(5nm)/Ru(8nm)を成膜した後、300℃において30分真空中において5kOeの磁場中で熱処理を行った。Mg-Al-Oとして、MgAl-O、MgAl-Oの両方を用いた。図10は、作製したMTJ膜試料のTMR比とRAの関係を示している。いずれの組成の試料においてもRAの大小に関わらずTMR比は10~30%程度の小さい値であった。したがって、MgO挿入層を用いない場合、Mg-Al-O層の結晶化が不十分なため、コヒーレントトンネル効果が有効に働かないことを示している。
<本発明の効果>
 本発明のMTJ素子によれば、MgOを主体とする極薄のテンプレート層をMg-Al-O層の下部に設けることで、非晶質Co-Fe-Bを磁性層として用いても、従来は達成不可能だった高いTMR比を室温で利用できることができる上、良好なバイアス電圧依存性を同時に達成することが可能になる。非晶質磁性層をMg-Al-Oバリア層とともに用いることができることが意味することは、格子整合性が良いバリア層を、基板や下地構造の種類を制限することなくMTJ素子に組み込むことが可能であることである。したがって、MTJ素子を利用する様々な用途に活用できることが見込まれる。
 本発明のMTJ素子によれば、非潮解性のMg-Al-Oをバリア層に用いることで、微細素子作製時などに用いられるウェットプロセスによるダメージを最小限にすることが可能である。加えて、格子整合バリア界面が得られることから、高い信頼性をもつMTJ素子の達成も期待できる。
<本発明のMTJ膜が搭載されるデバイスの例>
 図11は、本発明のMTJ膜が搭載される磁気ヘッドを搭載可能な磁気記録再生装置の概略構成を例示する要部斜視図である。図11において、磁気記録再生装置100は、ロータリーアクチュエータを用いた形式の装置である。同図において、記録用媒体ディスク110は、スピンドル140に装着され、図示しない駆動装置制御部からの制御信号に応答する図示しないモータにより矢印Aの方向に回転する。磁気記録再生装置100は、複数の媒体ディスク110を備えたものとしてもよい。
 媒体ディスク110に格納する情報の記録再生を行うヘッドスライダー120は、薄膜状のサスペンション152の先端に取り付けられている。ここで、ヘッドスライダー120は、例えば、実施の形態にかかる磁気ヘッドをその先端付近に搭載している。
 媒体ディスク110が回転すると、ヘッドスライダー120の媒体対向面(ABS)は媒体ディスク110の表面から所定の浮上量をもって保持される。あるいはスライダが媒体ディスク110と接触するいわゆる「接触走行型」であってもよい。
 サスペンション152は、駆動コイルを保持するボビン部(図示せず)などを有するアクチュエータアーム154の一端に接続されている。アクチュエータアーム154の他端には、リニアモータの一種であるボイスコイルモータ130が設けられている。ボイスコイルモータ130は、アクチュエータアーム154のボビン部に巻き上げられた駆動コイル(図示せず)と、このコイルを挟み込むように対向して配置された永久磁石および対向ヨークからなる磁気回路(図示せず)とから構成される。
 アクチュエータアーム154は、スピンドル140に設けられたボールベアリング(図示せず)によって保持され、ボイスコイルモータ130により回転摺動が自在にできるようになっている。
 図12は、アクチュエータアーム154から先の磁気ヘッドアセンブリをディスク側から眺めた拡大斜視図である。すなわち、磁気ヘッドアッセンブリ150は、例えば駆動コイルを保持するボビン部などを有するアクチュエータアーム154を有し、アクチュエータアーム154の一端にはサスペンション152が接続されている。
 サスペンション152の先端には、図13に示す磁気ヘッドを具備するヘッドスライダー120が取り付けられている。サスペンション152は信号の書き込みおよび読み取り用のリード線158を有し、このリード線158とヘッドスライダー120に組み込まれた磁気ヘッドの各電極とが電気的に接続されている。図中156は磁気ヘッドアセンブリ150の電極パッドである。
 図13は、磁気ヘッド再生センサーの断面を模式的に示す構成図である。図13に示すように、再生センサー180は、上部磁気シールド160と下部磁気シールド170との間に設けられている。再生センサー180は、非磁性導電層からなる下地層182、第1磁性層184、中間層186(非磁性絶縁層)、第2磁性層188、非磁性導電層からなるキャップ層190を、下部磁気シールド170側から上部磁気シールド160側に順に積層して構成されている。なお、第1磁性層184、中間層186、第2磁性層188の順に積層したが、第2磁性層、中間層、第1磁性層の順に積層してもよい。再生センサー180は絶縁層192を介して永久磁石材料からなる左右の磁区制御膜194の間に設けられている。
 下地層182からキャップ層190の積層構造には、前述したMTJ膜第1形態101から第4形態401を利用できる。下地層182は下地構造層22、第1磁性層184は第1磁性層1、中間層186は第1絶縁層11と第2絶縁層12からなる積層膜、第2磁性層188は第2磁性層2、キャップ層190は上部構造層23が例えば対応する。中間層186の層厚は、第1絶縁層11と第2絶縁層12を合わせて0.6から3nmとすることが望ましい。これにより第1磁性層層184と第2磁性層188との交換結合と、中間層186の抵抗値を最適な値に調節することが可能となる。
 本発明のMTJ素子によれば、これをメモリセルとして用いた、不揮発ランダムアクセス磁気メモリMRAMに利用できる。
 また、本発明のMTJ素子は、磁気記録再生装置の磁気ヘッド、大容量な次期ロジック回路に利用できる。さらに、超小型の高感度センサーやスピントルク発振素子にも利用できる。
1 第1磁性層
2 第2磁性層
3 磁性挿入層
11 第1絶縁層
12 第2絶縁層
21 基板
22 下地構造層
23 上部構造層
101 MTJ膜第1形態
201 MTJ膜第2形態
301 MTJ膜第3形態
401 MTJ膜第4形態

Claims (12)

  1.  第1磁性層と第2磁性層との間に設けられたトンネルバリア層を有する強磁性トンネル接合体であって、
     前記トンネルバリア層は第1絶縁層と第2絶縁層の積層構造からなる配向した結晶体であって、
     前記第1絶縁層はMg1-x(0≦x≦0.15)の酸化物からなり、XはAl、Tiの群から選ばれた少なくとも1つ以上の元素から構成され、
     前記第2絶縁層はMg、Al、Zn、Liの群から選ばれた少なくとも2つ以上の元素から構成される合金の酸化物からなり、
     前記第1磁性層と前記第2磁性層がいずれも、CoとFeの群から選ばれた少なくとも1つ以上の元素とBから構成される合金からなる強磁性トンネル接合体。
  2.  前記トンネルバリア層と第1磁性層との間、又は前記トンネルバリア層と第2磁性層との間の一方又は両方にCoとFeの群から選ばれた少なくとも1つ以上の元素から構成される層がさらに設けられたことを特徴とする請求項1に記載の強磁性トンネル接合体。
  3.  前記第1絶縁層がMgOからなることを特徴とする請求項1又は2に記載の強磁性トンネル接合体。
  4.  前記第2絶縁層がMg1-yAl(0.2≦y≦0.8)の酸化物からなることを特徴とする請求項1乃至3の何れか1項に記載の強磁性トンネル接合体。
  5.  室温において120%以上34000%以下のトンネル磁気抵抗を示す請求項1乃至4の何れか1項に記載の強磁性トンネル接合体。
  6.  請求項1乃至5の何れか1項に記載の強磁性トンネル接合体を備えたスピントロニクスデバイス。
  7.  前記スピントロニクスデバイスは、ハードディスク用磁気ヘッド、スピントルク書換え型MRAM(STT-MRAM)、3端子型MRAM、電圧駆動型MRAM、スピントルク発振素子、スピン共鳴トンネル素子の何れかであることを特徴とする請求項6に記載のスピントロニクスデバイス。
  8.  基板をスパッタ装置に導入する工程と、
     この基板に第1磁性層を成膜する工程と
     この第1磁性層に重ねて第1絶縁層を成膜する工程と、
     この第1絶縁層に重ねて第2絶縁層を成膜する工程と、
     この第2絶縁層に重ねて第2磁性層を成膜する工程と、
     作製した多層膜構造を300℃から500℃の温度範囲で1分乃至60分間真空中熱処理を行なう工程と、
     を備えることを特徴とする強磁性トンネル接合体の製造方法。
  9.  前記基板に下地構造膜であるTaを成膜してから、前記第1磁性層成膜工程を行うことを特徴とする請求項8記載の強磁性トンネル接合体の製造方法。
  10.  前記第1磁性層成膜工程と前記第1絶縁層成膜工程との間に、この第1磁性層に重ねて第1磁性挿入層を成膜する工程を行うことを特徴とする請求項8又は9に記載の強磁性トンネル接合体の製造方法。
  11.  前記第2絶縁層成膜工程と前記第2磁性層成膜工程との間に、この第2絶縁層に重ねて第2磁性挿入層を成膜する工程を行うことを特徴とする請求項8乃至10に記載の強磁性トンネル接合体の製造方法。
  12.  前記第2磁性層と前記熱処理工程との間に、前記第2磁性層に重ねて上部構造膜としてTaを成膜する工程を行うことを特徴とする請求項8乃至11の何れかに記載の強磁性トンネル接合体の製造方法。
PCT/JP2018/022057 2017-06-14 2018-06-08 強磁性トンネル接合体、それを用いたスピントロニクスデバイス、及び強磁性トンネル接合体の製造方法 WO2018230466A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/605,418 US11107976B2 (en) 2017-06-14 2018-06-08 Magnetic tunnel junction, spintronics device using same, and method for manufacturing magnetic tunnel junction
JP2019525389A JP6857421B2 (ja) 2017-06-14 2018-06-08 強磁性トンネル接合体、それを用いたスピントロニクスデバイス、及び強磁性トンネル接合体の製造方法
EP18816984.1A EP3640942B1 (en) 2017-06-14 2018-06-08 Ferromagnetic tunnel junction, spintronics device using same, and method for manufacturing ferromagnetic tunnel junction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017116613 2017-06-14
JP2017-116613 2017-06-14

Publications (1)

Publication Number Publication Date
WO2018230466A1 true WO2018230466A1 (ja) 2018-12-20

Family

ID=64660206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022057 WO2018230466A1 (ja) 2017-06-14 2018-06-08 強磁性トンネル接合体、それを用いたスピントロニクスデバイス、及び強磁性トンネル接合体の製造方法

Country Status (4)

Country Link
US (1) US11107976B2 (ja)
EP (1) EP3640942B1 (ja)
JP (1) JP6857421B2 (ja)
WO (1) WO2018230466A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11585873B2 (en) 2021-07-08 2023-02-21 Tdk Corporation Magnetoresistive effect element containing two non-magnetic layers with different crystal structures
US11927649B2 (en) 2020-03-10 2024-03-12 Tdk Corporation Magnetoresistance effect element

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6962103B2 (ja) 2017-09-26 2021-11-05 Tdk株式会社 積層体、磁気抵抗効果素子、磁気ヘッド、センサ、高周波フィルタ及び発振素子
JP7035851B2 (ja) * 2018-06-28 2022-03-15 Tdk株式会社 磁気抵抗効果素子
US10937953B2 (en) * 2019-01-28 2021-03-02 Samsung Electronics Co., Ltd. Tunable tetragonal ferrimagnetic heusler compound with PMA and high TMR
WO2021199233A1 (ja) * 2020-03-31 2021-10-07 Tdk株式会社 磁気抵抗効果素子

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229614A (ja) * 2002-02-05 2003-08-15 Mitsubishi Electric Corp 磁性材料、この磁性材料を用いた磁気抵抗効果素子、およびこの磁気抵抗効果素子を用いた磁気デバイス
JP2013175615A (ja) * 2012-02-27 2013-09-05 National Institute For Materials Science 強磁性トンネル接合体とそれを用いた磁気抵抗効果素子及びスピントロニクスデバイス
JP5586028B2 (ja) 2009-04-16 2014-09-10 独立行政法人物質・材料研究機構 強磁性トンネル接合体とそれを用いた磁気抵抗効果素子並びにスピントロニクスデバイス
JP2015176933A (ja) * 2014-03-13 2015-10-05 株式会社東芝 磁気抵抗素子および磁気メモリ
JP2017041606A (ja) 2015-08-21 2017-02-23 国立研究開発法人物質・材料研究機構 垂直磁化膜構造およびその製造方法、それを用いた磁気抵抗素子およびその製造方法、ならびにこれらを用いたスピントロニクスデバイス
JP6103123B1 (ja) * 2016-09-02 2017-03-29 Tdk株式会社 磁気抵抗効果素子、磁気センサ及び磁気メモリ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3890893B2 (ja) * 2000-12-28 2007-03-07 日本電気株式会社 スピントンネル磁気抵抗効果膜及び素子及びそれを用いた磁気抵抗センサー、及び磁気装置及びその製造方法
US9040178B2 (en) * 2008-09-22 2015-05-26 Headway Technologies, Inc. TMR device with novel free layer structure
JP5597899B2 (ja) * 2012-09-21 2014-10-01 株式会社東芝 磁気抵抗素子および磁気メモリ
US8982614B2 (en) * 2013-03-22 2015-03-17 Kabushiki Kaisha Toshiba Magnetoresistive effect element and manufacturing method thereof
KR102124361B1 (ko) * 2013-11-18 2020-06-19 삼성전자주식회사 수직 자기터널접합을 포함하는 자기 기억 소자
JP6054326B2 (ja) * 2014-03-13 2016-12-27 株式会社東芝 磁気抵抗素子および磁気メモリ
JP6180972B2 (ja) * 2014-03-13 2017-08-16 株式会社東芝 磁気抵抗素子および磁気メモリ
JP6411186B2 (ja) * 2014-11-19 2018-10-24 株式会社東芝 磁気抵抗素子および磁気メモリ
US20160260890A1 (en) * 2015-03-07 2016-09-08 T3Memory, Inc. Novel perpendicular magnetoresistive elements
US9257136B1 (en) * 2015-05-05 2016-02-09 Micron Technology, Inc. Magnetic tunnel junctions

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229614A (ja) * 2002-02-05 2003-08-15 Mitsubishi Electric Corp 磁性材料、この磁性材料を用いた磁気抵抗効果素子、およびこの磁気抵抗効果素子を用いた磁気デバイス
JP5586028B2 (ja) 2009-04-16 2014-09-10 独立行政法人物質・材料研究機構 強磁性トンネル接合体とそれを用いた磁気抵抗効果素子並びにスピントロニクスデバイス
JP2013175615A (ja) * 2012-02-27 2013-09-05 National Institute For Materials Science 強磁性トンネル接合体とそれを用いた磁気抵抗効果素子及びスピントロニクスデバイス
JP5988019B2 (ja) 2012-02-27 2016-09-07 国立研究開発法人物質・材料研究機構 強磁性トンネル接合体とそれを用いた磁気抵抗効果素子及びスピントロニクスデバイス
JP2015176933A (ja) * 2014-03-13 2015-10-05 株式会社東芝 磁気抵抗素子および磁気メモリ
JP2017041606A (ja) 2015-08-21 2017-02-23 国立研究開発法人物質・材料研究機構 垂直磁化膜構造およびその製造方法、それを用いた磁気抵抗素子およびその製造方法、ならびにこれらを用いたスピントロニクスデバイス
JP6103123B1 (ja) * 2016-09-02 2017-03-29 Tdk株式会社 磁気抵抗効果素子、磁気センサ及び磁気メモリ

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
D. D. DJAYAPRAWIRAK. TSUNEKAWAM. NAGAIH. MAEHARAS. YAMAGATAN. WATANABES. YUASAY. SUZUKIK. ANDO, APPL. PHYS. LETT., vol. 86, 2005, pages 092502
H. LIUQ. MAS. RIZWAND. LIUS. WANGX. HAN, IEEE TRANS. MAGN., vol. 47, 2011, pages 2716
M. TSUNODAR. CHIBAK. KABARA, J. APPL. PHYS., vol. 117, 2015, pages 17D703
See also references of EP3640942A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11927649B2 (en) 2020-03-10 2024-03-12 Tdk Corporation Magnetoresistance effect element
US11585873B2 (en) 2021-07-08 2023-02-21 Tdk Corporation Magnetoresistive effect element containing two non-magnetic layers with different crystal structures

Also Published As

Publication number Publication date
US20200044144A1 (en) 2020-02-06
EP3640942B1 (en) 2022-09-14
JPWO2018230466A1 (ja) 2019-12-26
EP3640942A4 (en) 2021-03-03
EP3640942A1 (en) 2020-04-22
US11107976B2 (en) 2021-08-31
JP6857421B2 (ja) 2021-04-14

Similar Documents

Publication Publication Date Title
US20210234092A1 (en) Reduction of Barrier Resistance X Area (RA) Product and Protection of Perpendicular Magnetic Anisotropy (PMA) for Magnetic Device Applications
US10522742B2 (en) Spin current magnetization reversal element, magnetoresistance effect element, and magnetic memory
JP6857421B2 (ja) 強磁性トンネル接合体、それを用いたスピントロニクスデバイス、及び強磁性トンネル接合体の製造方法
EP2421063B1 (en) Ferromagnetic tunnel junction structure, and magnetoresistive effect element and spintronics device each comprising same
US10230044B2 (en) Fully compensated synthetic ferromagnet for spintronics applications
US9042057B1 (en) Methods for providing magnetic storage elements with high magneto-resistance using Heusler alloys
US7357995B2 (en) Magnetic tunnel barriers and associated magnetic tunnel junctions with high tunneling magnetoresistance
US7349187B2 (en) Tunnel barriers based on alkaline earth oxides
US7443639B2 (en) Magnetic tunnel junctions including crystalline and amorphous tunnel barrier materials
KR101242628B1 (ko) 비정질 또는 미세결정질 MgO 터널 배리어용 강자성 우선 과립 성장 촉진 시드층
US8747629B2 (en) TMR device with novel free layer
EP3347927A1 (en) Magnetic element with perpendicular magnetic anisotropy for high coercivity after high temperature annealing
KR102404434B1 (ko) 수직 자화막, 수직 자화막 구조, 자기 저항 소자, 및 수직 자기 기록 매체
JP5429480B2 (ja) 磁気抵抗素子、mram、及び磁気センサー
US11056642B2 (en) Magnetoresistance effect element
US20060012926A1 (en) Magnetic tunnel barriers and associated magnetic tunnel junctions with high tunneling magnetoresistance
JPWO2017135251A1 (ja) 強磁性トンネル接合体、これを用いた磁気抵抗効果素子及びスピントロニクスデバイス並びに強磁性トンネル接合体の製造方法
CN112349832B (zh) 磁阻效应元件以及惠斯勒合金
CN112349831A (zh) 磁阻效应元件以及惠斯勒合金
JP4061590B2 (ja) 磁性薄膜及びそれを用いた磁気抵抗効果素子並びに磁気デバイス
JP2005228998A (ja) 磁性薄膜及びそれを用いた磁気抵抗効果素子並びに磁気デバイス
JP2007221086A (ja) トンネル型磁気検出素子及びその製造方法
CN117730640A (zh) 具有改进的晶种层的隧穿磁阻(tmr)器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18816984

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525389

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018816984

Country of ref document: EP

Effective date: 20200114