WO2018230418A1 - プロセッサ装置とその作動方法、内視鏡システム、並びに画像表示装置とその作動方法、作動プログラム - Google Patents

プロセッサ装置とその作動方法、内視鏡システム、並びに画像表示装置とその作動方法、作動プログラム Download PDF

Info

Publication number
WO2018230418A1
WO2018230418A1 PCT/JP2018/021751 JP2018021751W WO2018230418A1 WO 2018230418 A1 WO2018230418 A1 WO 2018230418A1 JP 2018021751 W JP2018021751 W JP 2018021751W WO 2018230418 A1 WO2018230418 A1 WO 2018230418A1
Authority
WO
WIPO (PCT)
Prior art keywords
color tone
still image
image
related information
unit
Prior art date
Application number
PCT/JP2018/021751
Other languages
English (en)
French (fr)
Inventor
久保 雅裕
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019525354A priority Critical patent/JP6866481B2/ja
Priority to EP18816588.0A priority patent/EP3639724B1/en
Publication of WO2018230418A1 publication Critical patent/WO2018230418A1/ja
Priority to US16/714,296 priority patent/US10944947B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000094Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope extracting biological structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00039Operational features of endoscopes provided with input arrangements for the user
    • A61B1/00042Operational features of endoscopes provided with input arrangements for the user for mechanical operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0653Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with wavelength conversion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0684Endoscope light sources using light emitting diodes [LED]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/72Combination of two or more compensation controls
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/643Hue control means, e.g. flesh tone control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00186Optical arrangements with imaging filters

Definitions

  • the color tone change related information is wavelength variation related information related to the wavelength variation of the illumination light according to the temperature of the light source.
  • the operation method of the image display device of the present invention includes a reception step, a creation step, a correction step, and a display control step.
  • a still image embedded with a correction profile for correcting a change in color tone created according to the color tone change related information related to the color tone change of the still image or the color tone change related information is received.
  • a correction profile is created from the color tone change related information.
  • the correction step the still image is corrected using the correction profile.
  • display control step display of the corrected still image on the display unit is controlled.
  • FIG. 6 is a diagram illustrating a state in which color tone change related information is acquired only when there is an operation instruction from an operator, and when a recording instruction signal is not input, color change related information and conversion information are transmitted from the control unit to the information acquisition unit. Shows no output. It is a figure which shows a mode that the correction profile according to a color tone change relevant information and conversion information is produced.
  • It is a block diagram of the computer which comprises an image display apparatus.
  • It is a flowchart which shows the process sequence of a processor apparatus. It is a flowchart which shows the process sequence of an image display apparatus.
  • an observation window 30 located in the upper center, a pair of illumination windows 31 disposed between the observation windows 30, and the observation window 30.
  • An air / water supply nozzle 32 to which the opening is directed and a forceps outlet 33 are provided.
  • the illumination light from the light source device 13 is irradiated to the observation target through the illumination window 31.
  • the image of the observation target irradiated with the illumination light is captured from the observation window 30.
  • Air and water are jetted into the observation window 30 from the opening of the air / water supply nozzle 32, thereby washing the observation window 30.
  • the distal ends of various treatment tools inserted from the forceps port 25 are projected from the forceps outlet 33.
  • a plurality of endoscope systems 10 are installed in a medical facility such as endoscope systems 10A, 10B,.
  • Each of the endoscope systems 10A, 10B,... Is deployed, for example, one by one in a plurality of endoscopy rooms in a medical facility.
  • Shared by mirrors 11A, 11B,. That is, the endoscope 11A of the endoscope system 10A may be used by being connected to the processor device 12B and the light source device 13B of the endoscope system 10B.
  • the image storage server 36 is a server computer, and stores still images from the processor devices 12A, 12B,.
  • the image storage server 36 searches for a desired still image in response to a still image distribution request from the image display device 37, and distributes the searched still image to the image display device 37 via the network 35.
  • the image display device 37 is a desktop personal computer, and is operated by a medical doctor who orders an endoscopic examination.
  • the image display device 37 includes a display 38 and an input unit 39 such as a keyboard and a mouse.
  • the display 38 corresponds to a display unit and displays a still image from the image storage server 36.
  • the input unit 39 is operated when a still image distribution request is made.
  • image storage server 36 and image display device 37 may be installed as in the endoscope systems 10A, 10B,.
  • alphabets such as A and B for distinguishing each endoscope system and each processor device will be omitted unless particularly distinguished.
  • the endoscope 11 includes a light guide 45, an imaging element 46, an imaging control unit 47, and a signal transmission / reception unit 48.
  • the light guide 45 is formed by bundling a plurality of optical fibers and guides the illumination light from the light source device 13 toward the illumination window 31.
  • the incident end of the light guide 45 disposed in the light source connector 26 ⁇ / b> B faces the light source unit 65 of the light source device 13.
  • the emission end of the light guide 45 located at the distal end portion 19 branches into two in front of the illumination window 31 so that the illumination light is guided to the pair of illumination windows 31.
  • an irradiation lens 49 is arranged in the back of the illumination window 31, in the back of the illumination window 31, an irradiation lens 49 is arranged.
  • An exit end of the light guide 45 is disposed at a position facing the irradiation lens 49.
  • the illumination light supplied from the light source device 13 is guided to the irradiation lens 49 by the light guide 45 and irradiated from the illumination window 31 toward the observation target.
  • the irradiation lens 49 is a concave lens, and widens the divergence angle of the light emitted from the light guide 45. Thereby, illumination light can be irradiated to the wide range of observation object.
  • the image sensor 46 is, for example, a CCD (Charge Coupled Device) type.
  • a CCD Charge Coupled Device
  • On the imaging surface 46A of the imaging element 46 a plurality of photoelectric conversion elements such as photodiodes constituting pixels are arranged in a matrix.
  • the photoelectric conversion element of each pixel photoelectrically converts received light and accumulates signal charges corresponding to the amount of received light.
  • the signal charge is converted into a voltage signal by an amplifier and read out.
  • the voltage signal is subjected to noise removal, analog / digital conversion, and the like, and is input to the signal transmission / reception unit 48 as a digital imaging signal.
  • the imaging control unit 47 controls driving of the imaging element 46. Specifically, the imaging control unit 47 inputs a drive signal to the imaging element 46 in synchronization with the reference clock signal from the control unit 55 of the processor device 12 input via the signal transmission / reception unit 48.
  • the image sensor 46 sequentially outputs image signals at a predetermined frame rate, for example, 60 frames / second, based on the drive signal from the image capture controller 47.
  • the signal transmission / reception unit 48 is provided in the communication connector 26A.
  • the signal transmission / reception unit 48 transmits / receives various signals to / from the processor device 12 by, for example, an optical transmission method using infrared light.
  • various signals include a still image recording instruction signal generated by operating the release button 23, a mode switch operation signal (mode switching signal), and a zoom operation button operation.
  • a signal (zoom operation signal) and the like are also included.
  • the communication connector 26A is provided with a power reception unit that receives power transmitted from the processor device 12 by, for example, a wireless power transmission method using magnetic field resonance.
  • the signal transmission / reception unit 56 is the same as the signal transmission / reception unit 48 of the endoscope 11 and transmits / receives various signals to / from the endoscope 11 by an optical transmission method.
  • the signal transmission / reception unit 56 transmits the reference clock signal from the control unit 55 to the signal transmission / reception unit 48.
  • the signal transmission / reception unit 56 receives the imaging signal from the imaging device 46 and the recording instruction signal from the release button 23 from the signal transmission / reception unit 48, and outputs the imaging signal to the DSP 57 and the recording instruction signal to the control unit 55, respectively. To do.
  • the signal transmission / reception unit 56 also outputs a mode switching signal, a zoom operation signal, and the like to the control unit 55.
  • the DSP 57 performs known processes such as pixel interpolation, gradation conversion, gamma correction, and white balance correction on the image signal.
  • the DSP 57 outputs the processed image signal to the frame memory 58.
  • the frame memory 58 stores an imaging signal output by the DSP 57 and an imaging signal after the image processing unit 59 performs various image processing.
  • the display control unit 60 reads an image-processed imaging signal from the frame memory 58, converts it into a video signal such as a composite signal or a component signal, and outputs it to the monitor 14 as an image to be observed.
  • the image processing unit 59 performs various kinds of image processing such as color enhancement processing and structure enhancement processing on the imaging signal processed by the DSP 57 and output to the frame memory 58, thereby generating an image to be observed.
  • the image processing unit 59 generates an image every time the imaging signal in the frame memory 58 is updated.
  • the images generated by the image processing unit 59 are sequentially output as moving images to the monitor 14 through the display control unit 60.
  • the light source device 13 includes a light source unit 65 and a light source control unit 66.
  • the light source unit 65 has four different types of LEDs 70, 71, 72, 73 corresponding to the light source, as will be described in detail later with reference to FIG.
  • the light source controller 66 receives an exposure control signal from the controller 55.
  • the exposure control signals are drive current amounts IR, IG, IB, and IV (see FIG. 16) of the LEDs 70 to 73, respectively.
  • the current amounts IR to IV are values at which the light amounts of the LEDs 70 to 73 have a predetermined intensity and ratio suitable for observation of the observation target.
  • the light source controller 66 turns on the LEDs 70 to 73 by continuously giving the LEDs 70 to 73 currents IR to IV represented by the received exposure control signal.
  • PAM Pulse Amplitude Modulation
  • PWM Pulse Modulation
  • the light source unit 65 includes red, green, blue, and purple LEDs 70 to 73 and a light source optical system 74.
  • the red LED 70 is light in the red wavelength band (red light RL, see FIG. 6)
  • the green LED 71 is light in the green wavelength band (green light GL, see FIG. 7)
  • the blue LED 72 is light in the blue wavelength band (blue light).
  • the purple LED 73 emits light in the purple wavelength band (purple light VL, see FIG. 9).
  • Each LED 70 to 73 is formed by bonding a P-type semiconductor and an N-type semiconductor as is well known. When a voltage is applied, electrons and holes recombine near the PN junction near the PN junction and a current flows, and energy corresponding to the band gap is emitted as light at the time of recombination. Each of the LEDs 70 to 73 increases or decreases the amount of light emitted according to the increase or decrease of the supplied power (current amounts IR to IV in this case).
  • the wavelength of the light emitted from each LED 70 to 73 varies according to the temperature change.
  • the peak wavelength of the emitted light shifts to the long wavelength side due to temperature rise.
  • the temperature change of each LED 70-73 is brought about by increase / decrease in the electric power supplied to each LED 70-73. That is, the wavelength of light emitted from each LED 70 to 73 varies according to the power supplied to each LED 70 to 73.
  • the light source optical system 74 combines the optical paths of the red light RL, green light GL, blue light BL, and violet light VL into one optical path, and collects each color light at the incident end of the light guide 45 of the endoscope 11. Shine.
  • the light source optical system 74 includes collimating lenses 75, 76, 77, and 78 that guide each color light to the incident end of the light guide 45, and a dichroic mirror that couples the optical path of each color light transmitted through each of the collimating lenses 75 to 78. 79, 80, 81 and a condensing lens 82 for condensing each color light at the incident end of the light guide 45.
  • the collimating lenses 75 to 78 transmit each color light to make each color light substantially parallel.
  • the dichroic mirrors 79 to 81 are optical members in which a dichroic filter having a predetermined transmission characteristic is formed on a transparent glass plate.
  • the green LED 71 is disposed at a position where the optical axis thereof coincides with the optical axis of the light guide 45.
  • the red LED 70 and the green LED 71 are arranged so that their optical axes are orthogonal to each other.
  • a dichroic mirror 79 is provided at a position where the optical axes of the red LED 70 and the green LED 71 are orthogonal to each other.
  • the blue LED 72 is also arranged so as to be orthogonal to the optical axis of the green LED 71, and a dichroic mirror 80 is provided at a position where these optical axes are orthogonal.
  • the blue LED 72 and the purple LED 73 are arranged so that their optical axes are orthogonal to each other, and a dichroic mirror 81 is provided at a position where these optical axes are orthogonal.
  • the dichroic mirror 79 is disposed in a posture inclined by 45 ° with respect to the optical axis of the red LED 70 and the optical axis of the green LED 71.
  • the dichroic mirror 80 is disposed in a posture inclined by 45 ° with respect to the optical axis of the green LED 71 and the optical axis of the blue LED 72.
  • the dichroic mirror 81 is disposed in a posture inclined by 45 ° with respect to the optical axis of the blue LED 72 and the optical axis of the purple LED 73.
  • the dichroic filter of the dichroic mirror 79 has a characteristic of reflecting light in a red wavelength band of about 600 nm or more and transmitting light in blue and green wavelength bands of less than about 600 nm, for example. Therefore, the dichroic mirror 79 reflects the red light RL from the red LED 70 toward the condensing lens 82 and transmits the green light GL from the green LED 71 toward the condensing lens 82. By the action of the dichroic mirror 79, the optical paths of the green light GL and the red light RL are combined.
  • the dichroic filter of the dichroic mirror 80 has a characteristic of reflecting light in a blue wavelength band of less than about 480 nm, for example, and transmitting light in green and red wavelength bands of about 480 nm or more. For this reason, the dichroic mirror 80 transmits the green light GL transmitted through the dichroic mirror 79 and the red light RL reflected by the dichroic mirror 79 toward the condenser lens 82. The dichroic mirror 80 reflects the blue light BL from the blue LED 72 toward the condenser lens 82.
  • the dichroic filter of the dichroic mirror 81 has a characteristic of reflecting light in a purple wavelength band of, for example, less than about 430 nm and transmitting light in blue, green, and red wavelength bands higher than that. Therefore, the dichroic mirror 81 transmits the blue light BL from the blue LED 72 toward the condenser lens 82 and reflects the violet light VL from the purple LED 73 toward the condenser lens 82. By the action of the dichroic mirror 81, the optical paths of the blue light BL and the violet light VL are combined.
  • the violet light VL reflected by the dichroic mirror 81 has the characteristic that the dichroic mirror 80 reflects light in the blue wavelength band of less than about 480 nm as described above, and is reflected by the dichroic mirror 80 toward the condenser lens 82. .
  • the optical paths of all the red light RL, green light GL, blue light BL, and violet light VL are combined.
  • the red LED 70 has, for example, a wavelength component in the vicinity of 600 nm to 650 nm which is a red wavelength band, and emits red light RL having a center wavelength of 625 ⁇ 10 nm and a half width of 20 ⁇ 10 nm.
  • the green LED 71 has, for example, a wavelength component in the vicinity of 480 nm to 600 nm, which is a green wavelength band, and emits green light GL having a center wavelength of 550 ⁇ 10 nm and a half width of 100 ⁇ 10 nm.
  • the blue LED 72 has, for example, a wavelength component in the vicinity of 420 nm to 500 nm which is a blue wavelength band, and emits blue light BL having a center wavelength of 460 ⁇ 10 nm and a half width of 25 ⁇ 10 nm.
  • the purple LED 73 has, for example, a wavelength component in the vicinity of 380 nm to 420 nm which is a purple wavelength band, and emits purple light VL having a center wavelength of 405 ⁇ 10 nm and a half width of 20 ⁇ 10 nm.
  • the center wavelength indicates the center wavelength of the spectral characteristics (also referred to as emission spectrum) of each color light
  • the half-value width is a wavelength range indicating half of the peak of the spectral characteristics of each color light.
  • FIG. 10 shows the spectral characteristics of the mixed light ML of the red light RL, the green light GL, the blue light BL, and the violet light VL, whose optical paths are coupled by the light source optical system 74.
  • the mixed light ML is used as illumination light for the observation target.
  • the mixed light ML is configured not to generate a wavelength band having no light intensity component in order to maintain the same color rendering as white light emitted from a xenon lamp.
  • red, green, and blue color filters are provided on the imaging surface 46A of the imaging device 46.
  • Each of these color filters 85 to 87 is a so-called Bayer array, and the green filters 86 are arranged in a checkered pattern every other pixel, and the red filters 85 and the blue filters 87 are arranged in a square lattice pattern on the remaining pixels.
  • a pixel to which the red filter 85 is assigned is referred to as an R pixel
  • a pixel to which the blue filter 87 is assigned to a B pixel a pixel to which the blue filter 87 is assigned to a B pixel.
  • FIG. 12 shows spectral characteristics (also referred to as spectral transmission characteristics) of the color filters 85 to 87.
  • the R pixel to which the red filter 85 is assigned is sensitive to light in the wavelength band of about 580 nm to 800 nm
  • the G pixel to which the green filter 86 is assigned to light in the wavelength band of about 450 nm to 630 nm. Sensitive.
  • the B pixel to which the blue filter 87 is assigned is sensitive to light in the wavelength band of about 380 nm to 560 nm.
  • the red light RL, the green light GL, the blue light BL, and the violet light VL constituting the mixed light ML are mainly reflected from the R pixel, the reflected light corresponding to the red light RL, and the reflected light corresponding to the green light GL is mainly the G pixel, blue. Reflected light corresponding to the light BL and the purple light VL is received mainly by the B pixel.
  • the image sensor 46 performs an accumulation operation for accumulating signal charges in the pixels and a read operation for reading the accumulated signal charges within an acquisition period of an image signal of one frame.
  • Each of the LEDs 70 to 73 lights up in accordance with the timing of the accumulation operation of the image sensor 46.
  • the mixed light ML (RL + GL + BL + VL) is irradiated onto the observation object as illumination light, and the reflected light enters the image sensor 46.
  • the image sensor 46 separates the reflected light of the mixed light ML by the color filters 85 to 87.
  • the R pixel receives reflected light corresponding to the red light RL
  • the G pixel receives reflected light corresponding to the green light GL
  • the B pixel receives reflected light corresponding to the blue light BL and the violet light VL.
  • the image sensor 46 sequentially outputs an image signal for one frame according to the frame rate in accordance with the timing of reading the signal charge.
  • the LEDs 70 to 73 are all lit regardless of the normal observation mode and the special observation mode.
  • the normal observation mode in order to observe the overall property of the observation target, the ratio of the amount of green light GL having a relatively high relative visibility is set high.
  • the special observation mode since the surface blood vessels to be observed are emphasized and observed, the ratio of the light amount of the purple light VL having a high absorption rate of the surface blood vessels is set high.
  • the ratio of the light quantity of the green light GL with the high absorption rate of the middle layer blood vessel which obstructs observation of the surface layer blood vessel is set low.
  • the ratio of the light quantity of the green light GL may be set as high as that of the purple light VL so as to obtain an image in which the superficial blood vessel structure is rendered and the brightness is compatible.
  • the transmission execution unit 61 includes an image acquisition unit 90, an information acquisition unit 91, a creation unit 92, an embedding unit 93, and an output unit 94.
  • the image acquisition unit 90 reads from the frame memory 58 the image-processed imaging signal whose rewriting has been paused by the recording instruction signal. That is, the image acquisition unit 90 acquires a still image of an observation target that is captured according to an operation instruction from the operator. The image acquisition unit 90 outputs the acquired still image to the embedding unit 93.
  • the creation unit 92 creates a correction profile corresponding to the color change information and conversion information from the information acquisition unit 91.
  • the correction profile is for correcting the color tone of the still image to the reference color tone when the color tone of the still image deviates from the reference color tone.
  • the creation unit 92 outputs the created correction profile to the embedding unit 93.
  • the embedding unit 93 embeds the correction profile from the creation unit 92 in the still image from the image acquisition unit 90.
  • the embedding of the correction profile in the still image specifically refers to recording the correction profile in association with the still image as supplementary information of the still image.
  • the embedding unit 93 outputs the still image in which the correction profile is embedded to the output unit 94.
  • the output unit 94 outputs the still image in which the correction profile from the embedding unit 93 is embedded to a designated external transmission destination.
  • the external transmission destination is the image storage server 36 connected via the network 35.
  • the image storage server 36 that is a transmission destination is designated in advance by the operator via the input unit 15.
  • the control unit 55 when the recording instruction signal is input from the signal transmission / reception unit 56, the control unit 55 outputs the color tone change related information and the conversion information to the information acquisition unit 91.
  • the control unit 55 when the recording instruction signal is not input from the signal transmission / reception unit 56, the control unit 55 does not output the color tone change related information and the conversion information to the information acquisition unit 91. That is, the color change related information is acquired by the information acquisition unit 91 only when there is an operation instruction from the operator.
  • the current amounts IR to IV are represented by exposure control signals.
  • the control unit 55 obtains information about the current amounts IR to IV represented by the exposure control signal most recently output to the light source control unit 66 as color tone change related information. Output to the unit 91.
  • the conversion information is red, green, and blue conversion functions F (IR), F (IG), and F (IB, IV).
  • the red conversion function F (IR) is a matrix coefficient CR1, CR2, CR3, the green conversion function F (IG) is a matrix coefficient CG1, CG2, CG3, and the blue conversion function F (IB, IV) is a matrix coefficient CB1, CB2, CB3 is a function for obtaining each.
  • the red conversion function F (IR) is the current amount IR of the red LED 70
  • the green conversion function F (IG) is the current amount IG of the green LED 71
  • the blue conversion function F (IB, IV) is the current amount IB of the blue LED 72 and purple.
  • the current amount IV of the LED 73 is a variable.
  • the creating unit 92 creates the color tone correction matrix C1 by substituting each current amount of the color tone change related information for each conversion function of the conversion information. More specifically, red matrix coefficients CR1 to CR3 from the red conversion function F (IR), green matrix coefficients CG1 to CG3 from the green conversion function F (IG), and blue matrix from the blue conversion function F (IB, IV). The coefficients CB1 to CB3 are obtained. A 3 ⁇ 3 matrix in which these matrix coefficients CR1 to CR3, CG1 to CG3, and CB1 to CB3 are arranged is referred to as a tone correction matrix C1.
  • the tone correction matrix C1 can be embedded in a standard color profile, for example, an ICC (International Color Consortium) profile.
  • the creation unit 92 outputs the created tone correction matrix C1 to the embedding unit 93 as a correction profile.
  • Each conversion function of the conversion information is stored in advance in a storage unit (for example, ROM 134 shown in FIG. 22) of the light source device 13.
  • a storage unit for example, ROM 134 shown in FIG. 22
  • Each conversion function is transmitted from the light source device 13 to the processor device 12 when the light source device 13 is connected to the processor device 12, and is written in, for example, a ROM (not shown) of the control unit 55.
  • the wavelength variation related information is not limited to the current amounts IR to IV of the LEDs 70 to 73, but may be the peak wavelength of each color light itself, or the shift amount of the peak wavelength of each color light from the reference peak wavelength. Or it is good also considering the light quantity of each color light as wavelength fluctuation related information.
  • the computer constituting the image display device 37 includes a storage device 100, a memory 101, a CPU 102, and a communication unit 103 in addition to the display 38 and the input unit 39 described above. These are interconnected via a data bus 104.
  • the storage device 100 is a hard disk drive built in a computer constituting the image display device 37 or connected via a cable or a network, or a disk array in which a plurality of hard disk drives are connected.
  • the storage device 100 stores a control program such as an operating system, various application programs (hereinafter abbreviated as AP), and various data associated with these programs.
  • AP application programs
  • the memory 101 is a work memory for the CPU 102 to execute processing.
  • the CPU 102 centrally controls each unit of the computer by loading a program stored in the storage device 100 into the memory 101 and executing processing according to the program.
  • the communication unit 103 is a network interface that controls transmission of various types of information with the image storage server 36 and the like via the network 35.
  • the communication unit 103 transmits a still image distribution request to the image storage server 36 and receives a still image from the image storage server 36.
  • the storage device 100 of the image display device 37 stores an operation program 110 as an AP.
  • the operation program 110 is an AP for causing the computer to function as the image display device 37.
  • the CPU 102 of the image display device 37 functions as the reception unit 115, the correction unit 116, and the display control unit 117 in cooperation with the memory 101 and the like.
  • the accepting unit 115 receives a still image including a search key (endoscopy order ID (Identification ⁇ Data), patient name, patient ID, endoscopy date, operator name, etc.) input from the input unit 39.
  • a distribution request is issued to the image storage server 36.
  • the reception unit 115 has a reception function of receiving a still image transmitted from the image storage server 36 in response to a distribution request.
  • This still image is obtained by embedding a correction profile by the embedding unit 93 of the transmission execution unit 61 of the processor device 12.
  • the accepting unit 115 outputs the accepted still image to the correcting unit 116.
  • the red, green, and blue image signals of the still image AI1 after correction are AIR1, AIG1, and AIB1
  • the red, green, and blue image signals of the still image BI before correction are BIR, BIG, and BIB.
  • the above formula (1) is rewritten into the following formula (2).
  • the matrix coefficients CR1 to CR3, CG1 to CG3, and CB1 to CB3 are multiplied by the red, green, and blue image signals BIR, BIG, and BIB, respectively.
  • the correction unit 116 outputs the corrected still image AI1 to the display control unit 117.
  • the display control unit 117 has a function of displaying a plurality of still images side by side on the display 38.
  • 2 obtained by one endoscopy performed on the same patient (“ ⁇ field ⁇ m” with ID “P012345”) on the same day (“2017/06/05”).
  • two still images (ID “EN005” and “EN008”) are displayed side by side.
  • the plurality of still images displayed side by side are not limited to the example of FIG. 19, and there are also a plurality of still images obtained by combining different endoscopes 11 and light source devices 13.
  • the light source controller 66 controls the light amount of each color light.
  • the light beams RL to VL from the respective LEDs 70 to 73 are combined into an optical beam ML by being combined with an optical path by a light source optical system 74.
  • the mixed light ML is guided to the illumination window 31 by the light guide 45, and is irradiated from the illumination window 31 to the observation object as illumination light.
  • the reflected light of the mixed light ML reflected from the observation target enters the image sensor 46 from the observation window 30.
  • the image sensor 46 the reflected light is color-separated by the color filters 85 to 87.
  • image pickup signals of red, green, and blue are output from the image pickup element 46. These imaging signals are output from the signal transmitting / receiving unit 48 to the processor device 12.
  • the imaging signal is received by the signal transmission / reception unit 56 and output to the DSP 57.
  • the DSP 57 performs various processes on the image signal. Thereafter, the imaging signal is written into the frame memory 58 by the DSP 57.
  • the exposure value is calculated based on the imaging signal.
  • An exposure control signal corresponding to the exposure value is generated by the control unit 55 and transmitted to the light source control unit 66.
  • Each of the LEDs 70 to 73 is driven with current amounts IR to IV represented by exposure control signals. Thereby, the light amounts of the red light RL, the green light GL, the blue light BL, and the purple light VL constituting the mixed light ML as the illumination light by the LEDs 70 to 73 are kept constant at an intensity and a ratio suitable for observation. Can do.
  • the image signal of the frame memory 58 is read out by the image processing unit 59 and subjected to various image processing, and then output to the monitor 14 through the display control unit 60 as an image to be observed.
  • the display of the image is updated according to the frame rate of the image sensor 46.
  • the operator observes the moving image to be observed on the monitor 14.
  • the operator presses the release button 23 with the intention of recording a still image of the observation target.
  • a recording instruction signal is issued from the release button 23.
  • the recording instruction signal is transmitted from the signal transmission / reception unit 48 to the signal transmission / reception unit 56 and input from the signal transmission / reception unit 56 to the control unit 55.
  • step ST100 when a recording instruction signal is input to the control unit 55 (YES in step ST100), the control unit 55 temporarily stops rewriting of the imaging signal to the frame memory 58 by the DSP 57.
  • the image-processed imaging signal whose rewriting has been suspended is read from the frame memory 58 to the image acquisition unit 90.
  • the still image of the observation target photographed according to the operation instruction of the operator is acquired (step ST110, image acquisition step).
  • the still image is output from the image acquisition unit 90 to the embedding unit 93.
  • step ST120 the color change related information and the conversion information from the control unit 55 are acquired by the information acquisition unit 91 (step ST120).
  • the color tone change related information and the conversion information are output from the information acquisition unit 91 to the creation unit 92.
  • the correction unit 116 corrects the still image using the correction profile embedded in the still image (step ST230, correction step). This correction corrects the color tone of the still image.
  • the corrected still image is output from the correction unit 116 to the display control unit 117 and displayed on the display 38 by the display control unit 117 (step ST240, display control step). These series of processes are continuously repeated until the operation program 110 is terminated (observation of still images is terminated) (YES in step ST250).
  • the color change related information is acquired only when there is an operation instruction to record a still image, and the correction profile is also created only when there is an operation instruction.
  • the correction profile includes matrix coefficients CR1 to CR3, CG1 to CG3, and CB1 to CB3 (tone correction matrix C1) that are multiplied by the imaging signals BIR, BIG, and BIB of the respective colors. Therefore, the color tone of the entire color gamut of the still image can be corrected. Further, since the color tone correction matrix C1 can be embedded in a standard color profile such as an ICC profile, for example, the correction unit 116 of the image display device 37 can perform correction by general-purpose processing according to the standard color profile. it can. For this reason, the operation program 110 which becomes the base of the correction
  • the information acquisition unit 131 acquires imaging element spectral characteristic information and illumination light spectral characteristic information as color tone change-related information and conversion information from the control unit 135.
  • the information acquisition unit 131 outputs the acquired illumination light spectral characteristic information, imaging element spectral characteristic information, and conversion information to the creation unit 132.
  • the conversion information in this case is, for example, the shift amount from the reference of the center wavelength, peak wavelength, and half-value width of each color filter 85 to 87 in the image sensor spectral characteristic information, and the center of each color light in the illumination light spectral characteristic information. It may be a function having the shift amount from the reference of the wavelength, peak wavelength, and half width as a variable, or may be a correction amount obtained from the relative spectral sensitivity value and the relative spectral emissivity for each wavelength.
  • the matrix coefficients CR # 1 to CR # 3, CG # 1 to CG # 3, and CB # 1 to CB # 3 are also multiplied by the red, green, and blue image signals BIR, BIG, and BIB, respectively. Is done.
  • the first embodiment in which the wavelength variation related information is color tone change related information and the second embodiment in which the image sensor spectral characteristic information and the illumination light spectral characteristic information are color tone change related information are combined and executed. Also good.
  • the corrected still image AI12 is expressed by the following formula (5).
  • AI12 C1, C2, BI (5)
  • the red, green, and blue image signals of the still image AI12 after correction are AIR12, AIG12, and AIB12
  • the above equation (5) is rewritten as the following equation (6).
  • the wavelength variation related information is color tone change related information
  • the second embodiment in which the image sensor spectral characteristic information and the illumination light spectral characteristic information are color tone change related information are combined, Further, there is no concern that a change in the color tone of the image due to a change in the wavelength of the illumination light and a change in the color tone of the image due to a variation in the spectral characteristics of the color filters 85 to 87 and the spectral characteristics of the illumination light are eliminated.
  • the color tone change related information from the information acquisition unit 91 is embedded in the still image from the image acquisition unit 90 (step ST141, embedding step).
  • the still image in which the color change related information and the like are embedded is output to the image storage server 36 by the output unit 142 (step ST151, output step).
  • the color change related information may be embedded in the still image by the embedding unit 141, and the still image embedded with the color change related information may be output to the image storage server 36 by the output unit 142.
  • a creation unit 146 may be constructed in the CPU 102 of the image display device 37, and a correction profile may be created on the image display device 37 side. By doing so, it is not necessary to install a function for creating a correction profile in the processor device, so that the processor device can have a simple configuration.
  • the accepting unit of the CPU 102 of the image display device 37 may be configured to accept both a still image in which a correction profile is embedded and a still image in which color tone change related information is embedded.
  • the creation unit 146 does not operate when the still image in which the correction profile is embedded is received by the reception unit, and only when the still image in which the color change related information is embedded is received by the reception unit. 146 operates to create a correction profile.
  • the color filter is not limited to the combination of the primary colors of red, green, and blue in each of the above embodiments, and may be a combination of complementary colors of cyan, magenta, and yellow.
  • the light source is not limited to the LED of each of the above embodiments, and may be a laser diode (LD).
  • the present invention is also effective when a conventional xenon lamp or metal halide lamp is used as a light source.
  • the functions of the image acquisition unit, creation unit, embedding unit, and output unit may be assigned to the control unit.
  • the still image from the processor device 12 is accumulated in the image accumulation server 36 and the still image is distributed from the image accumulation server 36 to the image display device 37.
  • the image accumulation server 36 is eliminated,
  • the still image may be transmitted directly from the processor device 12 to the image display device 37 and stored in the storage device 100 of the image display device 37.
  • the range covered by the image storage server 36 is not limited to one medical facility, but may be a plurality of medical facilities.
  • WAN Wide Area Network
  • the computer constituting the image display device 37 is not limited to the desktop type. It may be a notebook type or a tablet type.
  • the image acquisition unit 90 for example, the image acquisition unit 90, the information acquisition units 91 and 131, the creation units 92, 132 and 146, the embedding units 93 and 141, the output units 94 and 142, the reception units 115 and 145, the correction unit 116,
  • the hardware structure of a processing unit (processing unit) that executes various processes is the following various processors.
  • processors include a CPU, a programmable logic device (PLD), a dedicated electric circuit, and the like.
  • the CPU is a general-purpose processor that executes software (program) and functions as various processing units as is well known.
  • the PLD is a processor whose circuit configuration can be changed after manufacturing, such as FPGA (Field Programmable Gate Gate Array).
  • the dedicated electric circuit is a processor having a circuit configuration designed exclusively for executing a specific process such as ASIC (Application Specific Specific Integrated Circuit).
  • One processing unit may be composed of one of these various processors, or may be composed of a combination of two or more processors of the same type or different types (for example, a combination of a plurality of FPGAs or CPUs and FPGAs). May be. Further, the plurality of processing units may be configured by one processor. As an example of configuring a plurality of processing units with one processor, first, there is a form in which one processor is configured by a combination of one or more CPUs and software, and this processor functions as a plurality of processing units. . Secondly, as represented by a system-on-chip (SoC), there is a form in which a processor that realizes the functions of the entire system including a plurality of processing units with one IC chip is used. As described above, various processing units are configured using one or more of the various processors as a hardware structure.
  • SoC system-on-chip
  • circuitry circuitry in which circuit elements such as semiconductor elements are combined.
  • an endoscope system comprising: an endoscope that irradiates an observation target with illumination light from a light source; a light source device in which the light source is incorporated; and a processor device to which the endoscope and the light source device are connected.
  • the processor device includes: An image acquisition processor for acquiring a still image of the observation object photographed according to an operation instruction of an operator; An embedded processor that embeds in the still image a correction profile for correcting the change in color tone, which is created according to the color tone change related information relating to the color tone change of the still image, or the color tone change related information;
  • An endoscope system comprising: an output processor that outputs the still image in which the color tone change related information or the correction profile is embedded to the outside.
  • a reception processor for receiving the still image embedded with a correction profile for correcting the change in color tone, which is created according to the color tone change related information related to the color tone change of the still image or the color tone change related information;
  • a creation processor that creates the correction profile from the color tone change related information when the still image received by the reception processor is embedded with the color tone change related information;
  • a correction processor for performing the correction on the still image using the correction profile;
  • An image display device comprising: a display control processor that controls display of the corrected still image on a display unit.
  • the present invention relates to a fiberscope that guides an image to be observed to an eyepiece with an image guide, and a processor device to which an ultrasonic endoscope in which an ultrasonic transducer is built in in addition to an imaging element is connected, It is also applicable to an endoscope system.
  • the present invention is not limited to the above-described embodiments, and various configurations may be adopted without departing from the gist of the present invention. Furthermore, the present invention extends to a storage medium for storing a program in addition to the program.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

無駄の少ない処理で画像の色調の変化を目立たせなくすることが可能なプロセッサ装置とその作動方法、内視鏡システム、並びに色調の変化が目立たない画像を表示することが可能な画像表示装置とその作動方法、作動プログラムを提供する。 プロセッサ装置(12)は、観察対象の静止画像を取得する画像取得部(90)と、静止画像の色調の変化に関わる色調変化関連情報に応じて作成部(92)で作成された補正プロファイルを、静止画像に埋め込む埋め込み部(93)と、補正プロファイルが埋め込まれた静止画像を外部に出力する出力部(94)とを備える。画像表示装置(37)では、補正プロファイルが埋め込まれた静止画像が受け付けられ、補正プロファイルを用いて静止画像に補正が施される。そして、補正が施された静止画像がディスプレイ(38)に表示される。

Description

プロセッサ装置とその作動方法、内視鏡システム、並びに画像表示装置とその作動方法、作動プログラム
 本発明は、プロセッサ装置とその作動方法、内視鏡システム、並びに画像表示装置とその作動方法、作動プログラムに関する。
 医療分野において、被検体(患者)の胃や大腸の表面といった観察対象を内視鏡で観察する内視鏡検査が行われている。内視鏡は、被検体内に挿入される挿入部と、挿入部の基端側に設けられ、内視鏡検査技師等のオペレータが操作する操作部とを有している。挿入部先端には、観察対象を撮像する撮像素子が配されている。操作部には、観察対象の画像(静止画像)を記録するためのレリーズボタンが配されている。
 内視鏡は、光源装置とプロセッサ装置に接続され、これら内視鏡、光源装置、およびプロセッサ装置で内視鏡システムを構成する。光源装置は、観察対象を照明する照明光を発する光源を内蔵している。光源には、半導体光源、例えば発光ダイオード(以下、LED(Light Emitting Diode)と略す)が用いられる。半導体光源には、従来光源として用いられていたキセノンランプやメタルハライドランプのような、可視光波長帯域の全体をカバーするブロードな分光特性をもつものがない。このため、半導体光源を採用した光源装置には、白色光を生成するために波長帯域が異なる複数種の半導体光源、例えば赤色、緑色、青色の3つの半導体光源が搭載される。
 内視鏡の撮像素子は、複数色、例えば赤色、緑色、青色の各色カラーフィルタを備え、各色の撮像信号を所定のフレームレートで順次プロセッサ装置に向けて出力する。プロセッサ装置は、撮像素子からの各色の撮像信号に各種処理を施す。そして、処理済みの撮像信号を観察対象の動画像として逐次モニタに出力する。オペレータはモニタで動画像を観察し、必要に応じてレリーズボタンを操作して、静止画像を記録する。
 この種の内視鏡システムでは、従来、画像の色調が変化するという問題があった。この問題の原因は2つある。1つは、LED等の半導体光源の温度に応じた照明光の波長の変動である。照明光の波長が変動すると、当然ながら照明光の色調も変化し、ひいては画像の色調が変化してしまう。
 もう1つは、各光源装置の光源、および各内視鏡の撮像素子の個体差である。具体的には、照明光の分光特性のばらつき、および撮像素子のカラーフィルタの分光特性のばらつきである。例えば、内視鏡Aはカラーフィルタの分光特性がXAであるのに対し、内視鏡Bはカラーフィルタの分光特性がXBである、等である。
 ここで、内視鏡A、Bをそれぞれ、照明光の分光特性がYである光源装置に接続した場合を考える。画像は、前者の場合、内視鏡Aのカラーフィルタの分光特性XAと光源装置の照明光の分光特性Yに応じた色調となるが、後者の場合、内視鏡Bのカラーフィルタの分光特性XBと光源装置の照明光の分光特性Yに応じた色調となる。つまり、内視鏡Aを用いた場合と内視鏡Bを用いた場合とで、画像の色調が変化してしまう。
 こうした画像の色調が変化するという問題に対して、特許文献1が提案されている。特許文献1では、照明光の波長の変動に関わる色調変化関連情報である半導体光源の駆動量(電流量)に応じて、画像の色調の変化を補正する補正プロファイルを作成し、これを撮像素子から順次出力される各色の撮像信号にリアルタイムで適用している。補正プロファイルは、具体的には各色の撮像信号のそれぞれに乗算されるマトリックス係数(特許文献1では第1マトリックス係数と表記)を含む。
 また、特許文献1には、照明光の分光特性、および撮像素子のカラーフィルタの分光特性に応じた補正プロファイル(特許文献1では第2マトリックス係数と表記)を作成し、これを各色の撮像信号にリアルタイムで適用する態様も記載されている。
特開2016-174921号公報
 照明光の波長の変動に起因する画像の色調の変化は、照明光の波長の変動自体が急激なものではないため、比較的緩やかである。このため、内視鏡検査中には認知されにくい。また、照明光の分光特性のばらつき、および撮像素子のカラーフィルタの分光特性のばらつきに起因する画像の色調の変化も、内視鏡検査中は分光特性が異なる他の内視鏡と光源装置の組み合わせの画像と見比べられることはないため、内視鏡検査中には認知されにくい。
 一方で、内視鏡検査後に静止画像を画像表示装置で観察する場合には、画像の色調の変化が認知されやすくなる。すなわち、照明光の波長の変動前後で得られた静止画像を見比べた場合、および分光特性が異なる内視鏡と光源装置の組み合わせの画像を見比べた場合である。このように、画像の色調の変化は、内視鏡検査中はさほど問題にならず、内視鏡検査後に静止画像を観察する際に問題となる。
 しかしながら、特許文献1では、画像の色調の変化がさほど問題にならない内視鏡検査中に補正プロファイルを作成して、これを各色の撮像信号にリアルタイムで適用している。したがって、特許文献1では、あまり必要性のない処理にリソースが費やされていた。
 本発明は、無駄の少ない処理で画像の色調の変化を目立たせなくすることが可能なプロセッサ装置とその作動方法、内視鏡システムを提供することを目的とする。
 また、本発明は、色調の変化が目立たない画像を表示することが可能な画像表示装置とその作動方法、作動プログラムを提供することを目的とする。
 上記課題を解決するために、本発明のプロセッサ装置は、光源からの照明光を観察対象に照射する内視鏡が接続されるプロセッサ装置であって、画像取得部と、埋め込み部と、出力部とを備える。画像取得部は、オペレータの操作指示に応じて撮影された観察対象の静止画像を取得する。埋め込み部は、色調静止画像の色調の変化に関わる色調変化関連情報、または色調変化関連情報に応じて作成された、色調の変化を補正する補正プロファイルを、静止画像に埋め込む。出力部は、色調変化関連情報、または補正プロファイルが埋め込まれた静止画像を外部に出力する。
 色調変化関連情報は、操作指示があった場合のみ取得されることが好ましい。また、補正プロファイルは、操作指示があった場合のみ作成されることが好ましい。
 色調変化関連情報は、光源の温度に応じた照明光の波長の変動に関わる波長変動関連情報であることが好ましい。
 色調変化関連情報は、照明光の分光特性情報、および観察対象を撮像する撮像素子のカラーフィルタの分光特性情報であることが好ましい。
 照明光の分光特性情報、およびカラーフィルタの分光特性情報は、予め測定されて記憶部に記憶されたものであることが好ましい。
 補正プロファイルは、観察対象を撮像する撮像素子から出力される複数色の撮像信号のそれぞれに乗算されるマトリックス係数を含むことが好ましい。
 補正プロファイルは、標準のカラープロファイルに埋め込まれていることが好ましい。
 光源は発光ダイオードであることが好ましい。
 本発明のプロセッサ装置の作動方法は、光源からの照明光を観察対象に照射する内視鏡が接続されるプロセッサ装置の作動方法であって、画像取得ステップと、埋め込みステップと、出力ステップとを備える。画像取得ステップは、オペレータの操作指示に応じて撮影された観察対象の静止画像を取得する。埋め込みステップは、静止画像の色調の変化に関わる色調変化関連情報、または色調変化関連情報に応じて作成された、色調の変化を補正する補正プロファイルを、静止画像に埋め込む。出力ステップは、色調変化関連情報、または補正プロファイルが埋め込まれた静止画像を外部に出力する。
 本発明の内視鏡システムは、光源からの照明光を観察対象に照射する内視鏡と、光源が内蔵された光源装置と、内視鏡および光源装置が接続されるプロセッサ装置とを備える。プロセッサ装置は、画像取得部と、埋め込み部と、出力部とを有する。画像取得部は、オペレータの操作指示に応じて撮影された観察対象の静止画像を取得する。埋め込み部は、静止画像の色調の変化に関わる色調変化関連情報、または色調変化関連情報に応じて作成された、色調の変化を補正する補正プロファイルを、静止画像に埋め込む。出力部は、色調変化関連情報、または補正プロファイルが埋め込まれた静止画像を外部に出力する。
 本発明の画像表示装置は、受付部と、作成部と、補正部と、表示制御部とを備える。受付部は、静止画像の色調の変化に関わる色調変化関連情報、または色調変化関連情報に応じて作成された、色調の変化を補正する補正プロファイルが埋め込まれた静止画像を受け付ける。作成部は、受付部で受け付けた静止画像が、色調変化関連情報が埋め込まれたものであった場合、色調変化関連情報から補正プロファイルを作成する。補正部は、補正プロファイルを用いて、静止画像に補正を施す。表示制御部は、補正が施された静止画像の表示部への表示を制御する。
 本発明の画像表示装置の作動方法は、受付ステップと、作成ステップと、補正ステップと、表示制御ステップとを備える。受付ステップでは、静止画像の色調の変化に関わる色調変化関連情報、または色調変化関連情報に応じて作成された、色調の変化を補正する補正プロファイルが埋め込まれた静止画像を受け付ける。作成ステップでは、受付ステップで受け付けた静止画像が、色調変化関連情報が埋め込まれたものであった場合、色調変化関連情報から補正プロファイルを作成する。補正ステップでは、補正プロファイルを用いて、静止画像に補正を施す。表示制御ステップでは、補正が施された静止画像の表示部への表示を制御する。
 本発明の画像表示装置の作動プログラムは、受付機能と、作成機能と、補正機能と、法事制御機能とをコンピュータに実行させる。受付機能は、静止画像の色調の変化に関わる色調変化関連情報、または色調変化関連情報に応じて作成された、色調の変化を補正する補正プロファイルが埋め込まれた静止画像を受け付ける。作成機能は、受付機能で受け付けた静止画像が、色調変化関連情報が埋め込まれたものであった場合、色調変化関連情報から補正プロファイルを作成する。補正機能は、補正プロファイルを用いて、静止画像に補正を施す。表示制御機能は、補正が施された静止画像の表示部への表示を制御する。
 本発明によれば、静止画像の色調の変化に関わる色調変化関連情報、または色調変化関連情報に応じて作成された、色調の変化を補正する補正プロファイルを、静止画像に埋め込んで外部に出力するので、無駄の少ない処理で画像の色調の変化を目立たせなくすることが可能なプロセッサ装置とその作動方法、内視鏡システムを提供することができる。
 また、本発明によれば、静止画像の色調の変化に関わる色調変化関連情報、または色調変化関連情報に応じて作成された、色調の変化を補正する補正プロファイルが埋め込まれた静止画像を受け付け、補正プロファイルを用いて、静止画像に補正を施し、補正が施された静止画像を表示部に表示するので、色調の変化が目立たない画像を表示することが可能な画像表示装置とその作動方法、作動プログラムを提供することができる。
内視鏡システムの外観図である。 内視鏡の先端部の正面図である。 内視鏡システム、画像蓄積サーバ、および画像表示装置を示す図である。 内視鏡システムのブロック図である。 光源ユニットを示す図である。 赤色LEDが発する赤色光の分光特性を示すグラフである。 緑色LEDが発する緑色光の分光特性を示すグラフである。 青色LEDが発する青色光の分光特性を示すグラフである。 紫色LEDが発する紫色光の分光特性を示すグラフである。 赤色光、緑色光、青色光、紫色光により構成される混合光の分光特性を示すグラフである。 カラーフィルタの配列を示す図である。 カラーフィルタの分光特性を示すグラフである。 照明光の照射タイミングおよび撮像素子の動作タイミングを示す図である。 送信実行部のブロック図である。 オペレータの操作指示があった場合のみ色調変化関連情報が取得される様子を示す図であり、記録指示信号が入力された場合に、制御部から情報取得部に色調変化関連情報および変換情報を出力する様子を示す。 オペレータの操作指示があった場合のみ色調変化関連情報が取得される様子を示す図であり、記録指示信号が入力されていない場合に、制御部から情報取得部に色調変化関連情報および変換情報を出力しない様子を示す。 色調変化関連情報および変換情報に応じた補正プロファイルを作成する様子を示す図である。 画像表示装置を構成するコンピュータのブロック図である。 画像表示装置を構成するコンピュータのCPUのブロック図である。 複数の静止画像を並べてディスプレイに表示する様子を示す図である。 プロセッサ装置の処理手順を示すフローチャートである。 画像表示装置の処理手順を示すフローチャートである。 第2実施形態の送信実行部のブロック図である。 第2実施形態の送信実行部のブロック図である。 第3実施形態の送信実行部のブロック図である。 第3実施形態の画像表示装置を構成するコンピュータのCPUのブロック図である。 第3実施形態のプロセッサ装置の処理手順を示すフローチャートである。 第3実施形態の画像表示装置の処理手順を示すフローチャートである。
 [第1実施形態]
 図1において、内視鏡システム10は、内視鏡11、プロセッサ装置12、および光源装置13を備えている。内視鏡11は、被検体内の観察対象を撮像し、プロセッサ装置12に向けて撮像信号を出力する。プロセッサ装置12は、内視鏡11からの撮像信号に基づいて観察対象の画像を生成し、生成した画像をモニタ14に出力する。光源装置13は、観察対象を照明する照明光を内視鏡11に供給する。
 プロセッサ装置12には、モニタ14の他に、キーボードやマウス等の入力部15が接続されている。入力部15は、被検体の情報を入力する際等にオペレータにより操作される。
 内視鏡11は、被検体内に挿入される挿入部16と、挿入部16の基端側に設けられ、オペレータが操作する操作部17と、操作部17の下端から延びたユニバーサルコード18とを備えている。
 挿入部16は、先端部19、湾曲部20、および可撓管部21で構成されており、この順番に先端側から連結されている。湾曲部20は、連結された複数の湾曲駒で形成され、上下左右方向に湾曲する。図1では上方向への湾曲を破線で示している。可撓管部21は、食道や腸等の曲がりくねった管道に挿入可能な可撓性を有している。
 挿入部16には、撮像素子46(図4参照)を駆動するための基準クロック信号や撮像素子46が出力する撮像信号を伝達する通信ケーブル、光源装置13から供給される照明光を照明窓31(図2参照)に導光するライトガイド45(図4参照)等が挿通されている。
 操作部17には、アングルノブ22、レリーズボタン23、送気・送水ボタン24、および鉗子口25等が設けられている。アングルノブ22は、オペレータが所望する方向に先端部19を向けるために湾曲部20を上下左右方向に湾曲させる際に回動操作される。レリーズボタン23は、観察対象の画像(静止画像)を記録する際に押圧操作される。送気・送水ボタン24は、送気・送水ノズル32(図2参照)から送気・送水を行う際に操作される。鉗子口25には、電気メス等の各種処置具が挿入される。なお、操作部17には、これらの他にも、後述する通常観察モードと特殊観察モードの2つの観察モードを切り替える際に操作されるモード切替スイッチや、対物光学系50(図4参照)のズームレンズを光軸に沿って移動させ、光学ズームを行うためのズーム操作ボタン等が設けられている。
 ユニバーサルコード18には、挿入部16から延設された通信ケーブルやライトガイド45が挿通されている。操作部17とは反対側のプロセッサ装置12および光源装置13側のユニバーサルコード18の一端には、コネクタ26が設けられている。コネクタ26は、通信用コネクタ26Aと光源用コネクタ26Bとからなる複合タイプのコネクタである。通信用コネクタ26Aはプロセッサ装置12に、光源用コネクタ26Bは光源装置13に、それぞれ着脱自在に接続される。
 図2において、観察対象と対向する先端部19の先端面には、上側中央に位置する観察窓30と、観察窓30を挟んだ位置に配された一対の照明窓31と、観察窓30に開口が向けられた送気・送水ノズル32と、鉗子出口33とが設けられている。光源装置13からの照明光は、照明窓31を介して観察対象に照射される。照明光が照射された観察対象の像は、観察窓30から取り込まれる。観察窓30には、送気・送水ノズル32の開口から空気および水が噴射され、これにより観察窓30が洗浄される。鉗子口25から挿入された各種処置具の先端は、鉗子出口33から突出される。
 図3において、内視鏡システム10は、内視鏡システム10A、10B、・・・というように、医療施設に複数台設置される。各内視鏡システム10A、10B、・・・は、例えば医療施設の複数の内視鏡検査室に1台ずつ配備される。各内視鏡システム10A、10B、・・・のプロセッサ装置12A、12B、・・・、および光源装置13A、13B、・・・は、各内視鏡システム10A、10B、・・・の内視鏡11A、11B、・・・で共用される。つまり、内視鏡システム10Aの内視鏡11Aが、内視鏡システム10Bのプロセッサ装置12Bおよび光源装置13Bに接続されて使用されることもある。
 各プロセッサ装置12A、12B、・・・は、医療施設内に敷設されたLAN(Local Area Network)等のネットワーク35に接続されている。ネットワーク35には、画像蓄積サーバ36と画像表示装置37とが接続されている。
 各プロセッサ装置12A、12B、・・・は、ネットワーク35を介して観察対象の静止画像を画像蓄積サーバ36に送信する。画像蓄積サーバ36はサーバコンピュータであり、各プロセッサ装置12A、12B、・・・からの静止画像を蓄積する。画像蓄積サーバ36は、画像表示装置37からの静止画像の配信要求に応じて所望の静止画像を検索し、検索した静止画像を、ネットワーク35を介して画像表示装置37に配信する。
 画像表示装置37はデスクトップ型のパーソナルコンピュータであり、内視鏡検査をオーダした診療科の医師が操作する。画像表示装置37は、ディスプレイ38とキーボードやマウス等の入力部39を有する。ディスプレイ38は表示部に相当し、画像蓄積サーバ36からの静止画像を表示する。入力部39は、静止画像の配信要求を行う際等に操作される。
 画像蓄積サーバ36および画像表示装置37は、図3では1台しか描かれていないが、内視鏡システム10A、10B、・・・と同様に、複数台設置されていてもよい。なお、以下では、特に区別する必要がない限り、各内視鏡システムや各プロセッサ装置を区別するためのA、Bといったアルファベットは省略する。
 図4において、内視鏡11は、ライトガイド45、撮像素子46、撮像制御部47、および信号送受信部48を備えている。ライトガイド45は、複数本の光ファイバをバンドル化してなり、光源装置13からの照明光を照明窓31に向けて導光する。光源用コネクタ26Bが光源装置13に接続された場合に、光源用コネクタ26Bに配置されたライトガイド45の入射端は、光源装置13の光源ユニット65と対向する。一方、先端部19に位置するライトガイド45の出射端は、一対の照明窓31に照明光が導光されるように、照明窓31の手前で2本に分岐している。
 照明窓31の奥には、照射レンズ49が配置されている。この照射レンズ49と対向する位置に、ライトガイド45の出射端が配置されている。光源装置13から供給された照明光は、ライトガイド45により照射レンズ49に導光されて照明窓31から観察対象に向けて照射される。照射レンズ49は凹レンズからなり、ライトガイド45から出射する光の発散角を広げる。これにより、観察対象の広い範囲に照明光を照射することができる。
 観察窓30の奥には、対物光学系50と撮像素子46が配置されている。観察対象の像は、観察窓30を通して対物光学系50に入射し、対物光学系50によって撮像素子46の撮像面46Aに結像される。
 撮像素子46は例えばCCD(Charge Coupled Device)型である。撮像素子46の撮像面46Aには、画素を構成するフォトダイオード等の複数の光電変換素子がマトリックス状に配列されている。各画素の光電変換素子は、受光した光を光電変換して、それぞれの受光量に応じた信号電荷を蓄積する。信号電荷は、アンプによって電圧信号に変換されて読み出される。電圧信号は、ノイズ除去やアナログ/デジタル変換等が施されて、デジタルの撮像信号として信号送受信部48に入力される。
 撮像制御部47は、撮像素子46の駆動を制御する。具体的には、撮像制御部47は、信号送受信部48を介して入力されるプロセッサ装置12の制御部55からの基準クロック信号に同期して、撮像素子46に対して駆動信号を入力する。撮像素子46は、撮像制御部47からの駆動信号に基づいて、所定のフレームレート、例えば60フレーム/秒で撮像信号を順次出力する。
 信号送受信部48は、通信用コネクタ26A内に設けられている。信号送受信部48は、例えば赤外光を利用した光伝送方式により、プロセッサ装置12との各種信号の送受信を行う。各種信号には、上述の基準クロック信号や撮像信号の他に、レリーズボタン23の操作により発せられる静止画像の記録指示信号、あるいはモード切替スイッチの操作信号(モード切替信号)、ズーム操作ボタンの操作信号(ズーム操作信号)等も含まれる。なお、通信用コネクタ26Aには、信号送受信部48の他に、例えば磁界共振を利用した無線電力伝送方式で、プロセッサ装置12から送電される電力を受電する受電部が設けられている。
 プロセッサ装置12は、制御部55、信号送受信部56、DSP(Digital Signal Processor)57、フレームメモリ58、画像処理部59、表示制御部60、および送信実行部61を備えている。制御部55は、CPU(Central Processing Unit)、制御プログラムや制御に必要な設定データを記憶するROM(Read Only Memory)、プログラムをロードして作業メモリとして機能するRAM(Random Access Memory)等を有し、CPUが制御プログラムを実行することにより、プロセッサ装置12の各部を制御する。
 信号送受信部56は、内視鏡11の信号送受信部48と同じものであり、光伝送方式により内視鏡11との各種信号の送受信を行う。信号送受信部56は、制御部55からの基準クロック信号を信号送受信部48に送信する。また、信号送受信部56は、撮像素子46からの撮像信号およびレリーズボタン23からの記録指示信号を信号送受信部48から受信し、撮像信号をDSP57に、記録指示信号を制御部55に、それぞれ出力する。信号送受信部56は、モード切替信号、ズーム操作信号等も制御部55に出力する。
 DSP57は、撮像信号に対して、画素補間、階調変換、ガンマ補正、ホワイトバランス補正等の周知の処理を施す。DSP57は、処理済みの撮像信号をフレームメモリ58に出力する。
 また、DSP57は、撮像信号に基づいて露出値を算出する。そして、算出した露出値を制御部55に出力する。制御部55は、露出値に応じた露出制御信号を光源装置13の光源制御部66に送信する。DSP57は、この露出値の算出および出力を、フレームレートと同じかそれよりも長い所定のサンプリング周期で行う。
 フレームメモリ58は、DSP57が出力する撮像信号や、画像処理部59が各種画像処理を施した後の撮像信号を記憶する。表示制御部60は、フレームメモリ58から画像処理済みの撮像信号を読み出して、コンポジット信号やコンポーネント信号等のビデオ信号に変換して、観察対象の画像としてモニタ14に出力する。
 画像処理部59は、DSP57で処理が施されてフレームメモリ58に出力された撮像信号に対して、色彩強調処理、構造強調処理等の各種画像処理を施し、観察対象の画像を生成する。画像処理部59は、フレームメモリ58内の撮像信号が更新される毎に、画像を生成する。この画像処理部59が生成した画像が、表示制御部60を通じてモニタ14に動画像として逐次出力される。
 送信実行部61は、ネットワーク35を介した観察対象の静止画像の外部への送信を実行する。制御部55は、信号送受信部56から記録指示信号が入力された場合、DSP57によるフレームメモリ58への撮像信号の書き換えを一時停止させる。送信実行部61は、この書き換えが一時停止された撮像信号(画像処理済み)をフレームメモリ58から読み出し、観察対象の静止画像としてネットワーク35を介して画像蓄積サーバ36に送信する。なお、撮像信号の書き換えを一時停止させる時間は、例えば1~3秒である。
 光源装置13は、光源ユニット65と光源制御部66とを備えている。光源ユニット65は、詳しくは図5で後述するが、光源に相当する異なる4種のLED70、71、72、73を有している。光源制御部66は、制御部55からの露出制御信号を受信する。露出制御信号は、具体的には各LED70~73の駆動電流量IR、IG、IB、IV(図16参照)である。この電流量IR~IVは、各LED70~73の光の光量が、観察対象の観察に適した所定の強度および割合となる値である。
 光源制御部66は、受信した露出制御信号で表される電流量IR~IVを連続的に各LED70~73に与えることで、各LED70~73を点灯させる。なお、電流量IR~IVを連続的に与えるのではなくパルス状に与え、パルスの振幅を変化させるPAM(Pulse Amplitude Modulation)制御や、パルスのデューティ比を変化させるPWM(Pulse Width Modulation)制御を行ってもよい。
 図5において、光源ユニット65は、赤色、緑色、青色、紫色の各色LED70~73と、光源光学系74とで構成される。赤色LED70は赤色の波長帯域の光(赤色光RL、図6参照)、緑色LED71は緑色の波長帯域の光(緑色光GL、図7参照)、青色LED72は青色の波長帯域の光(青色光BL、図8参照)、紫色LED73は紫色の波長帯域の光(紫色光VL、図9参照)をそれぞれ発する。
 各LED70~73は、周知のようにP型半導体とN型半導体を接合したものである。そして、電圧を掛けるとPN接合部付近においてバンドギャップを超えて電子と正孔が再結合して電流が流れ、再結合時にバンドギャップに相当するエネルギーを光として放出する。各LED70~73は、供給電力(ここでは電流量IR~IV)の増減に応じて発する光の光量が増減する。
 また、各LED70~73は、温度変化に応じて発する光の波長が変動する。例えば温度上昇によって、発する光のピーク波長が長波長側にシフトする。各LED70~73の温度変化は、各LED70~73への供給電力の増減によりもたらされる。すなわち、各LED70~73から発せられる光の波長は、各LED70~73への供給電力に応じて変動する。
 光源光学系74は、赤色光RL、緑色光GL、青色光BL、紫色光VLの各色光の光路を1つの光路に結合し、各色光を内視鏡11のライトガイド45の入射端に集光する。光源光学系74は、各色光をそれぞれライトガイド45の入射端へと導光するコリメートレンズ75、76、77、78と、各コリメートレンズ75~78を透過した各色光の光路を結合するダイクロイックミラー79、80、81と、各色光をライトガイド45の入射端に集光する集光レンズ82とで構成される。
 コリメートレンズ75~78は、各色光を透過させて各色光を略平行光化する。ダイクロイックミラー79~81は、透明なガラス板に所定の透過特性を有するダイクロイックフィルタを形成した光学部材である。
 緑色LED71は、その光軸がライトガイド45の光軸と一致する位置に配置されている。そして、赤色LED70と緑色LED71は、互いの光軸が直交するように配置されている。これら赤色LED70と緑色LED71の光軸が直交する位置に、ダイクロイックミラー79が設けられている。同様に、青色LED72も、緑色LED71の光軸と直交するように配置され、これらの光軸が直交する位置に、ダイクロイックミラー80が設けられている。さらに、青色LED72と紫色LED73は、互いの光軸が直交するように配置され、これらの光軸が直交する位置に、ダイクロイックミラー81が設けられている。
 ダイクロイックミラー79は、赤色LED70の光軸および緑色LED71の光軸に対して、それぞれ45°傾けた姿勢で配置されている。ダイクロイックミラー80は、緑色LED71の光軸および青色LED72の光軸に対して、それぞれ45°傾けた姿勢で配置されている。ダイクロイックミラー81は、青色LED72の光軸および紫色LED73の光軸に対して、それぞれ45°傾けた姿勢で配置されている。
 ダイクロイックミラー79のダイクロイックフィルタは、例えば約600nm以上の赤色の波長帯域の光を反射し、約600nm未満の青色、緑色の波長帯域の光を透過する特性を有している。このため、ダイクロイックミラー79は、赤色LED70からの赤色光RLを集光レンズ82に向けて反射し、緑色LED71からの緑色光GLを集光レンズ82に向けて透過する。このダイクロイックミラー79の作用により、緑色光GLと赤色光RLの光路が結合される。
 ダイクロイックミラー80のダイクロイックフィルタは、例えば約480nm未満の青色の波長帯域の光を反射し、約480nm以上の緑色、赤色の波長帯域の光を透過する特性を有している。このため、ダイクロイックミラー80は、ダイクロイックミラー79を透過した緑色光GL、およびダイクロイックミラー79で反射した赤色光RLを集光レンズ82に向けて透過する。また、ダイクロイックミラー80は、青色LED72からの青色光BLを集光レンズ82に向けて反射する。
 ダイクロイックミラー81のダイクロイックフィルタは、例えば約430nm未満の紫色の波長帯域の光を反射し、それ以上の青色、緑色、赤色の波長帯域の光を透過する特性を有している。このため、ダイクロイックミラー81は、青色LED72からの青色光BLを集光レンズ82に向けて透過し、紫色LED73からの紫色光VLを集光レンズ82に向けて反射する。このダイクロイックミラー81の作用により、青色光BLと紫色光VLの光路が結合される。ダイクロイックミラー81で反射した紫色光VLは、ダイクロイックミラー80が前述のように約480nm未満の青色の波長帯域の光を反射する特性を有するので、ダイクロイックミラー80で反射して集光レンズ82に向かう。これにより、赤色光RL、緑色光GL、青色光BL、および紫色光VLの全ての光の光路が結合される。
 図6に示すように、赤色LED70は、例えば赤色の波長帯域である600nm~650nm付近の波長成分を有し、中心波長625±10nm、半値幅20±10nmの赤色光RLを発光する。図7に示すように、緑色LED71は、例えば緑色の波長帯域である480nm~600nm付近の波長成分を有し、中心波長550±10nm、半値幅100±10nmの緑色光GLを発光する。
 図8に示すように、青色LED72は、例えば青色の波長帯域である420nm~500nm付近の波長成分を有し、中心波長460±10nm、半値幅25±10nmの青色光BLを発光する。図9に示すように、紫色LED73は、例えば紫色の波長帯域である380nm~420nm付近の波長成分を有し、中心波長405±10nm、半値幅20±10nmの紫色光VLを発光する。なお、中心波長は各色光の分光特性(発光スペクトルともいう)の幅の中心の波長を示し、半値幅は、各色光の分光特性のピークの半分を示す波長の範囲である。
 光源光学系74で光路が結合された赤色光RL、緑色光GL、青色光BL、紫色光VLの混合光MLの分光特性を図10に示す。この混合光MLは観察対象への照明光として利用される。混合光MLは、キセノンランプが発する白色光と同等の演色性を維持するために、光強度成分がない波長帯域が生じないよう構成されている。
 図11において、撮像素子46の撮像面46Aには、赤色、緑色、青色の各色カラーフィルタ(赤色フィルタ85、緑色フィルタ86、青色フィルタ87)が設けられている。これら各色カラーフィルタ85~87はいわゆるベイヤー配列であり、緑色フィルタ86が市松状に1画素おきに配置され、残りの画素上に、赤色フィルタ85と青色フィルタ87がそれぞれ正方格子状となるように配置されている。以下では、赤色フィルタ85が割り当てられた画素をR画素、緑色フィルタ86が割り当てられた画素をG画素、青色フィルタ87が割り当てられた画素をB画素という。
 図12は、各色カラーフィルタ85~87の分光特性(分光透過特性ともいう)を示す。これによれば、赤色フィルタ85が割り当てられたR画素は、約580nm~800nmの波長帯域の光に感応し、緑色フィルタ86が割り当てられたG画素は、約450nm~630nmの波長帯域の光に感応する。また、青色フィルタ87が割り当てられたB画素は、約380nm~560nmの波長帯域の光に感応する。混合光MLを構成する赤色光RL、緑色光GL、青色光BL、紫色光VLは、赤色光RLに対応する反射光が主としてR画素、緑色光GLに対応する反射光が主としてG画素、青色光BLおよび紫色光VLに対応する反射光が主としてB画素で、それぞれ受光される。
 図13において、撮像素子46は、1フレームの撮像信号の取得期間内で、画素に信号電荷を蓄積する蓄積動作と、蓄積した信号電荷を読み出す読出動作とを行う。各LED70~73は、撮像素子46の蓄積動作のタイミングに合わせて点灯する。これにより混合光ML(RL+GL+BL+VL)が照明光として観察対象に照射され、その反射光が撮像素子46に入射する。撮像素子46は、混合光MLの反射光を各カラーフィルタ85~87で色分離する。すなわち、赤色光RLに対応する反射光をR画素が、緑色光GLに対応する反射光をG画素が、青色光BLおよび紫色光VLに対応する反射光をB画素がそれぞれ受光する。撮像素子46は、信号電荷の読み出しのタイミングに合わせて、1フレーム分の撮像信号をフレームレートにしたがって順次出力する。
 各LED70~73は、通常観察モード、特殊観察モードの各モードに関わらず、全て点灯する。ただし、通常観察モードでは、観察対象の全体的な性状を観察するため、比視感度が比較的高い緑色光GLの光量の比率が高く設定される。これにより、通常観察モードでは、十分な光量の疑似白色光が観察対象に照射され、明るい画像を得ることができる。一方、特殊観察モードでは、観察対象の表層血管を強調して観察するため、表層血管の吸収率が高い紫色光VLの光量の比率が高く設定される。そして、表層血管の観察の邪魔になる中層血管の吸収率が高い緑色光GLの光量の比率が低く設定される。これにより、特殊観察モードでは、腫瘍等の病変に密接な関係のある表層血管構造を強調した画像を得ることができる。なお、特殊観察モードにおいて、緑色光GLの光量の比率を、紫色光VLと同等に高く設定し、表層血管構造の描出と明るさを両立した画像を得るようにしてもよい。
 図14において、送信実行部61は、画像取得部90、情報取得部91、作成部92、埋め込み部93、および出力部94を備えている。
 画像取得部90は、記録指示信号によって書き換えが一時停止された画像処理済みの撮像信号を、フレームメモリ58から読み出す。すなわち、画像取得部90は、オペレータの操作指示に応じて撮影された観察対象の静止画像を取得する。画像取得部90は、取得した静止画像を埋め込み部93に出力する。
 情報取得部91は、制御部55から色調変化関連情報および変換情報を取得する。色調変化関連情報は、静止画像の色調の変化に関わる情報である。本実施形態では、色調変化関連情報は、照明光の波長の変動に関わる波長変動関連情報である。変換情報は、色調変化関連情報を、静止画像の色調の変化を補正する補正プロファイルに変換するための情報である。情報取得部91は、取得した色調変化関連情報および変換情報を作成部92に出力する。
 作成部92は、情報取得部91からの色調変化関連情報および変換情報に応じた補正プロファイルを作成する。補正プロファイルは、静止画像の色調が基準の色調からずれていた場合に、静止画像の色調を基準の色調に補正するためのものである。作成部92は、作成した補正プロファイルを埋め込み部93に出力する。
 埋め込み部93は、作成部92からの補正プロファイルを、画像取得部90からの静止画像に埋め込む。補正プロファイルを静止画像に埋め込むとは、具体的には、補正プロファイルを、静止画像の付帯情報として、静止画像に関連付けて記録することを指す。埋め込み部93は、補正プロファイルを埋め込んだ静止画像を出力部94に出力する。
 出力部94は、埋め込み部93からの補正プロファイルが埋め込まれた静止画像を、指定された外部の送信先に出力する。外部の送信先は、具体的にはネットワーク35を介して接続された画像蓄積サーバ36である。なお、送信先である画像蓄積サーバ36は、入力部15を介してオペレータにより事前に指定される。
 図15Aに示すように、制御部55は、信号送受信部56から記録指示信号が入力された場合に、色調変化関連情報および変換情報を情報取得部91に出力する。対して、図15Bに示すように、制御部55は、信号送受信部56から記録指示信号が入力されていない場合には、色調変化関連情報および変換情報を情報取得部91に出力しない。つまり、色調変化関連情報は、オペレータの操作指示があった場合のみ情報取得部91で取得される。
 図15Bの場合、情報取得部91から作成部92に色調変化関連情報等は出力されないので、当然ながら作成部92で補正プロファイルは作成されない。つまり、補正プロファイルは、操作指示がない場合は作成されず、操作指示があった場合のみ作成される。
 図16に示すように、本実施形態における色調変化関連情報は、各LED70~73の電流量IR~IVである。前述のように、電流量IR~IVに応じて、各LED70~73から発せられる光の波長が変動するので、電流量IR~IVは、波長変動関連情報に相当する。
 電流量IR~IVは、露出制御信号で表される。制御部55は、信号送受信部56から記録指示信号が入力された場合に、直近で光源制御部66に出力した露出制御信号で表される電流量IR~IVを、色調変化関連情報として情報取得部91に出力する。
 変換情報は、赤色、緑色、青色の各変換関数F(IR)、F(IG)、F(IB、IV)である。赤色変換関数F(IR)はマトリックス係数CR1、CR2、CR3を、緑色変換関数F(IG)はマトリックス係数CG1、CG2、CG3を、青色変換関数F(IB、IV)はマトリックス係数CB1、CB2、CB3を、それぞれ求めるための関数である。赤色変換関数F(IR)は赤色LED70の電流量IRを、緑色変換関数F(IG)は緑色LED71の電流量IGを、青色変換関数F(IB、IV)は青色LED72の電流量IBおよび紫色LED73の電流量IVを、それぞれ変数とする。
 作成部92は、変換情報の各変換関数に、色調変化関連情報の各電流量を代入して計算することで、色調補正マトリックスC1を作成する。より具体的には、赤色変換関数F(IR)から赤色マトリックス係数CR1~CR3を、緑色変換関数F(IG)から緑色マトリックス係数CG1~CG3を、青色変換関数F(IB、IV)から青色マトリックス係数CB1~CB3をそれぞれ求める。そして、これらのマトリックス係数CR1~CR3、CG1~CG3、CB1~CB3を配した3×3の行列を、色調補正マトリックスC1とする。この色調補正マトリックスC1は、標準のカラープロファイル、例えばICC(International Color Consortium)プロファイルに埋め込むことができる。作成部92は、作成した色調補正マトリックスC1を補正プロファイルとして埋め込み部93に出力する。
 変換情報の各変換関数は、光源装置13の記憶部(例えば図22に示すROM134等)に予め記憶されている。各変換関数は、プロセッサ装置12に光源装置13が接続された場合に、光源装置13からプロセッサ装置12に送信され、例えば制御部55のROM(図示せず)に書き込まれる。
 なお、変換関数ではなく、各LED70~73の電流量IR~IVに応じた各マトリックス係数が登録されたデータテーブルを用いてもよい。また、波長変動関連情報としては、各LED70~73の電流量IR~IVに限らず、各色光のピーク波長そのものでもよいし、基準のピーク波長からの各色光のピーク波長のずれ量でもよい。あるいは各色光の光量を波長変動関連情報としてもよい。
 図17において、画像表示装置37を構成するコンピュータは、前述のディスプレイ38および入力部39に加えて、ストレージデバイス100、メモリ101、CPU102、および通信部103を備えている。これらはデータバス104を介して相互接続されている。
 ストレージデバイス100は、画像表示装置37を構成するコンピュータに内蔵、またはケーブルやネットワークを通じて接続されたハードディスクドライブ、もしくはハードディスクドライブを複数台連装したディスクアレイである。ストレージデバイス100には、オペレーティングシステム等の制御プログラムや、各種アプリケーションプログラム(以下、APと略す)、およびこれらのプログラムに付随する各種データ等が記憶されている。
 メモリ101は、CPU102が処理を実行するためのワークメモリである。CPU102は、ストレージデバイス100に記憶されたプログラムをメモリ101へロードして、プログラムにしたがった処理を実行することにより、コンピュータの各部を統括的に制御する。
 通信部103は、ネットワーク35を介した画像蓄積サーバ36等との各種情報の伝送制御を行うネットワークインターフェースである。通信部103は、画像蓄積サーバ36に静止画像の配信要求を送信し、画像蓄積サーバ36から静止画像を受信する。
 図18において、画像表示装置37のストレージデバイス100には、APとして作動プログラム110が記憶されている。作動プログラム110は、コンピュータを画像表示装置37として機能させるためのAPである。
 作動プログラム110が起動されると、画像表示装置37のCPU102は、メモリ101等と協働して、受付部115、補正部116、および表示制御部117として機能する。
 受付部115は、入力部39から入力される検索キー(内視鏡検査のオーダID(Identification Data)、患者氏名、患者ID、内視鏡検査年月日、オペレータ名等)を含む静止画像の配信要求を、画像蓄積サーバ36に向けて発行する。また、受付部115は、配信要求に応じて画像蓄積サーバ36から送信された静止画像を受け付ける受付機能を担う。この静止画像は、プロセッサ装置12の送信実行部61の埋め込み部93で補正プロファイルが埋め込まれたものである。受付部115は、受け付けた静止画像を補正部116に出力する。
 補正部116は、静止画像に埋め込まれた補正プロファイルを用いて、静止画像に補正を施す補正機能を担う。具体的には、補正前の静止画像をBIとした場合、下記式(1)に示すように、補正部116は、色調補正マトリックスC1と静止画像BIを乗算して補正後の静止画像AI1を算出する。
 AI1=C1・BI・・・(1)
 ここで、補正後の静止画像AI1の赤色、緑色、青色の各色の撮像信号をAIR1、AIG1、AIB1、補正前の静止画像BIの赤色、緑色、青色の各色の撮像信号をBIR、BIG、BIBとした場合、上記式(1)は、下記式(2)に書き換えられる。
Figure JPOXMLDOC01-appb-M000001
 このように、マトリックス係数CR1~CR3、CG1~CG3、CB1~CB3は、赤色、緑色、青色の各色の撮像信号BIR、BIG、BIBのそれぞれに乗算される。
 こうした補正を静止画像BIに施すことで、色調が基準の色調に補正された静止画像AI1を得ることができる。補正部116は、補正済みの静止画像AI1を表示制御部117に出力する。
 表示制御部117は、補正済みの静止画像AI1のディスプレイ38への表示を制御する表示制御機能を担う。
 図19に示すように、表示制御部117は、複数の静止画像を並べてディスプレイ38に表示する機能を有する。図19では、同一の患者(IDが「P012345」の「○野×男」)に対して同日(「2017/06/05」)に行われた1回の内視鏡検査で得られた2つの静止画像(ID「EN005」と「EN008」)を並べて表示した例を示している。なお、並べて表示する複数の静止画像は、図19の例に限らず、異なる内視鏡11および光源装置13の組み合わせで得られた複数の静止画像もある。
 次に、上記構成による作用について、図20および図21のフローチャートを参照して説明する。医療施設で内視鏡検査を行う場合には、内視鏡11をプロセッサ装置12と光源装置13に接続し、プロセッサ装置12と光源装置13の電源を投入して、内視鏡システム10を起動する。そして、内視鏡11の挿入部16を被検体内に挿入して、被検体内の観察を開始する。
 光源装置13において、各LED70~73に与える電流量IR~IVが光源制御部66から各LED70~73に設定され、これにより各LED70~73の点灯が開始される。そして、目標とする分光特性を維持すべく、光源制御部66で各色光の光量制御が行われる。
 各LED70~73による各色光RL~VLは、光源光学系74で光路を結合されて混合光MLとなる。混合光MLはライトガイド45で照明窓31に導光されて、照明窓31から照明光として観察対象に照射される。観察対象で反射した混合光MLの反射光は、観察窓30から撮像素子46に入射する。撮像素子46では、各色カラーフィルタ85~87によって反射光が色分離される。その結果、撮像素子46から赤色、緑色、青色の各色の撮像信号が出力される。これらの撮像信号は、信号送受信部48からプロセッサ装置12に出力される。
 プロセッサ装置12において、撮像信号は信号送受信部56で受信されてDSP57に出力される。DSP57では撮像信号に対して各種処理が施される。その後、撮像信号はDSP57によってフレームメモリ58に書き込まれる。
 DSP57では、撮像信号に基づいて露出値が算出される。この露出値に応じた露出制御信号が制御部55で生成され、光源制御部66に送信される。各LED70~73は、露出制御信号で表される電流量IR~IVにて駆動される。これにより、各LED70~73による、照明光としての混合光MLを構成する赤色光RL、緑色光GL、青色光BL、紫色光VLの光量を、観察に適した強度および割合に一定に保つことができる。
 フレームメモリ58の撮像信号は、画像処理部59に読み出されて各種画像処理が施された後、表示制御部60を通じてモニタ14に観察対象の画像として出力される。画像は撮像素子46のフレームレートにしたがって表示が更新される。
 オペレータは、モニタ14の観察対象の動画像を観察する。オペレータは、観察対象に腫瘍等の病変が見つかった場合、当該観察対象の静止画像の記録を意図して、レリーズボタン23を押圧操作する。これによりレリーズボタン23から記録指示信号が発せられる。記録指示信号は、信号送受信部48から信号送受信部56に送信され、信号送受信部56から制御部55に入力される。
 図20において、制御部55に記録指示信号が入力された場合(ステップST100でYES)、制御部55により、DSP57によるフレームメモリ58への撮像信号の書き換えが一時停止される。
 そして、書き換えが一時停止された画像処理済みの撮像信号が、フレームメモリ58から画像取得部90に読み出される。これによりオペレータの操作指示に応じて撮影された観察対象の静止画像が取得される(ステップST110、画像取得ステップ)。静止画像は、画像取得部90から埋め込み部93に出力される。
 ステップST110の画像取得ステップと並行に、図15Aで示したように、制御部55からの色調変化関連情報および変換情報が情報取得部91で取得される(ステップST120)。色調変化関連情報および変換情報は、情報取得部91から作成部92に出力される。
 作成部92では、図16で示したように、情報取得部91からの色調変化関連情報および変換情報に応じて、補正プロファイルが作成される(ステップST130)。補正プロファイルは、作成部92から埋め込み部93に出力される。
 埋め込み部93では、作成部92からの補正プロファイルが、画像取得部90からの静止画像に埋め込まれる(ステップST140、埋め込みステップ)。補正プロファイルが埋め込まれた静止画像は、出力部94により画像蓄積サーバ36に出力される(ステップST150、出力ステップ)。これら一連の処理は、内視鏡検査が終了されるまで(ステップST160でYES)繰り返し続けられる。
 診療科の医師は、自らがオーダした内視鏡検査の静止画像を観察すべく、画像表示装置37にて作動プログラム110を起動する。これにより図18で示したように、画像表示装置37を構成するコンピュータのCPU102が、受付部115、補正部116、および表示制御部117として機能する。
 図21において、診療科の医師は、画像表示装置37の入力部39を通じて所望の静止画像の検索キーを入力する(ステップST200でYES)。これにより受付部115から画像蓄積サーバ36に向けて静止画像の配信要求が発行される(ステップST210)。
 画像蓄積サーバ36では、受付部115からの配信要求に応じた静止画像が検索される。そして、検索された静止画像が画像表示装置37に送信される。
 画像蓄積サーバ36からの静止画像は、受付部115で受け付けられる(ステップST220、受付ステップ)。この静止画像には補正プロファイルが埋め込まれている。静止画像は、受付部115から補正部116に出力される。
 補正部116では、静止画像に埋め込まれた補正プロファイルを用いて、静止画像に補正が施される(ステップST230、補正ステップ)。この補正により静止画像の色調が補正される。補正済みの静止画像は、補正部116から表示制御部117に出力され、表示制御部117によってディスプレイ38に表示される(ステップST240、表示制御ステップ)。これら一連の処理は、作動プログラム110が終了(静止画像の観察が終了)されるまで(ステップST250でYES)繰り返し続けられる。
 以上説明したように、プロセッサ装置12は、静止画像の色調の変化に関わる色調変化関連情報に応じて作成された補正プロファイルを埋め込み部93で静止画像に埋め込み、補正プロファイルが埋め込まれた静止画像を出力部94で画像蓄積サーバ36に出力するので、画像の色調の変化がさほど問題にならない内視鏡検査中に、撮像信号がフレームレートにしたがって更新される度に補正プロファイルを作成して、これを撮像信号にリアルタイムで適用する従来の場合のように、あまり必要性のない処理にリソースが費やされることがない。したがって、無駄の少ない処理で画像の色調の変化を目立たせなくすることが可能となる。
 また、内視鏡検査中に、撮像信号がフレームレートにしたがって更新される度に補正プロファイルを作成して、これを撮像信号にリアルタイムで適用する従来の場合のように、補正が撮像信号の更新に追いつかずに補正遅れが生じたり、補正が効きすぎて色調が過度に補正されたりといった不都合が起こり得ない。
 画像表示装置37は、補正プロファイルが埋め込まれた静止画像を受付部115で受け付け、補正部116により、補正プロファイルを用いて静止画像に補正を施し、表示制御部117により、補正が施された静止画像をディスプレイ38に表示するので、色調の変化が目立たない画像を表示することが可能となる。
 図19で示したように、同一の患者に対して同日に行われた1回の内視鏡検査で得られた複数の静止画像をディスプレイ38に並べて表示した場合に、複数の静止画像が照明光の波長の変動前後で得られたもので、かつ複数の静止画像に補正が施されていなかった場合は、照明光の波長の変動に起因する画像の色調の変化が認知されるおそれがある。しかしながら、本実施形態では、波長変動関連情報に応じて作成された補正プロファイルを用いて補正が施された静止画像が表示されるので、画像の色調の変化が認知される懸念はない。
 複数の静止画像の色調が統一されるため、複数の静止画像を並べて表示して比較検討する際の効率を高めることができる。例えば、2つの静止画像のそれぞれに映る病変について、2つの静止画像の色調が統一されていない場合は、2つの静止画像で病変の色調が異なる場合があり、色調の違いを考慮しながら画像を観察する必要が生じる。一方、2つの静止画像の色調が統一されていれば、各静止画像の病変の色調の違いを考慮しながら画像を観察する必要がなくなる。
 色調変化関連情報は、静止画像を記録する操作指示があった場合のみ取得され、補正プロファイルも操作指示があった場合のみ作成されるので、より処理に無駄がなくなる。
 照明光の波長の変動に関わる波長変動関連情報を色調変化関連情報としているので、半導体光源を用いる場合には避けて通れない課題である、照明光の波長の変動に伴う画像の色調の変化を確実に補正することができる。
 式(2)で示したように、補正プロファイルは、各色の撮像信号BIR、BIG、BIBのそれぞれに乗算されるマトリックス係数CR1~CR3、CG1~CG3、CB1~CB3(色調補正マトリックスC1)を含むので、静止画像の色域全体の色調を補正することができる。また、色調補正マトリックスC1は、例えばICCプロファイルといった標準のカラープロファイルに埋め込むことが可能なので、画像表示装置37の補正部116において、標準のカラープロファイルに応じた汎用的な処理で補正を施すことができる。このため、補正部116のベースとなる作動プログラム110を比較的簡単に作成することができる。
 [第2実施形態]
 上記第1実施形態では、色調変化関連情報として波長変動関連情報を例示したが、図22および図23に示す第2実施形態では、波長変動関連情報の替わりに、撮像素子46のカラーフィルタ85~87の分光特性情報(以下、撮像素子分光特性情報という)および照明光の分光特性情報(以下、照明光分光特性情報という)を色調変化関連情報とする。
 カラーフィルタ85~87の分光特性は、図12で示した。また、照明光の分光特性は、図6~図10で示した。カラーフィルタ85~87の分光特性には、各内視鏡11A、11B、・・・間でばらつきがある。照明光の分光特性にも、各光源装置13A、13B、・・・間でばらつきがある。こうしたカラーフィルタ85~87および照明光の分光特性のばらつきによっても、画像の色調が変化する。
 そこで、図22および図23に示す第2実施形態の送信実行部130では、カラーフィルタ85~87の分光特性のばらつきを示す撮像素子分光特性情報と、照明光の分光特性のばらつきを示す照明光分光特性情報とを色調変化関連情報として取得する情報取得部131と、撮像素子分光特性情報および照明光分光特性情報に応じた補正プロファイルを作成する作成部132とを設ける。
 撮像素子分光特性情報は、具体的には、各色フィルタ85~87の中心波長、ピーク波長、および半値幅の基準からのずれ量で表すこともできるし、各色フィルタ85~87の波長毎の相対分光感度値として表すこともできる。また、照明光分光特性情報は、具体的には、各色光の中心波長、ピーク波長、および半値幅の基準からのずれ量で表すこともできるし、各色光の波長毎の相対分光放射率として表すこともできる。撮像素子分光特性情報は、内視鏡11の出荷時に、予め測定されて内視鏡11のROM133に記憶される。照明光分光特性情報も同様に、光源装置13の出荷時に、予め測定されて光源装置13のROM134に記憶される。各ROM133、134は記憶部に相当する。
 撮像素子分光特性情報および照明光分光特性情報は、内視鏡11および光源装置13が接続された場合に、各ROM133、134からプロセッサ装置の制御部135に読み出され、制御部135のROM(図示せず)に書き込まれる。これら撮像素子分光特性情報および照明光分光特性情報は、上記第1実施形態の波長変動関連情報と同じく、記録指示信号が入力された場合(オペレータの操作指示があった場合)のみ、制御部135から情報取得部131に出力される。
 情報取得部131は、制御部135からの、色調変化関連情報としての撮像素子分光特性情報および照明光分光特性情報と、変換情報とを取得する。情報取得部131は、取得した照明光分光特性情報、撮像素子分光特性情報、および変換情報を、作成部132に出力する。なお、この場合の変換情報は、例えば、撮像素子分光特性情報の各色フィルタ85~87の中心波長、ピーク波長、および半値幅の基準からのずれ量、並びに照明光分光特性情報の各色光の中心波長、ピーク波長、および半値幅の基準からのずれ量を変数とする関数としてもよいし、波長毎の相対分光感度値および相対分光放射率から求めた補正量でもよい。
 作成部132は、情報取得部131からの撮像素子分光特性情報、照明光分光特性情報、および変換情報に基づいて、赤色、緑色、青色の各色マトリックス係数CR#1、CR#2、CR#3、CG#1、CG#2、CG#3、CB#1、CB#2、CB#3をそれぞれ求め、上記第1実施形態の色調補正マトリックスC1と同じく、これらを配した3×3の行列を、色調補正マトリックスC2とする。色調補正マトリックスC2も、色調補正マトリックスC1と同じく、ICCプロファイルといった標準のカラープロファイルに埋め込むことが可能である。作成部132は、作成した色調補正マトリックスC2を補正プロファイルとして埋め込み部93に出力する。以降の処理は上記第1実施形態と同じであるため説明を省略する。
 この場合、画像表示装置37のCPU102の補正部116は、下記式(3)に示すように、色調補正マトリックスC2と静止画像BIを乗算して補正後の静止画像AI2を算出する。
 AI2=C2・BI・・・(3)
 上記第1実施形態と同じく、補正後の静止画像AI2の赤色、緑色、青色の各色の撮像信号をAIR2、AIG2、AIB2とした場合、上記式(3)は、下記式(4)に書き換えられる。
Figure JPOXMLDOC01-appb-M000002
 このように、マトリックス係数CR#1~CR#3、CG#1~CG#3、CB#1~CB#3も、赤色、緑色、青色の各色の撮像信号BIR、BIG、BIBのそれぞれに乗算される。
 こうした補正を静止画像BIに施すことで、カラーフィルタ85~87の分光特性および照明光の分光特性のばらつきに起因する色調の変化が補正された静止画像AI2を得ることができる。
 例えば内視鏡11Aと光源装置13A、内視鏡11Bと光源装置13B等、異なる内視鏡11および光源装置13の組み合わせで得られた複数の静止画像をディスプレイ38に並べて表示した場合に、複数の静止画像に補正が施されていなかった場合は、カラーフィルタ85~87の分光特性および照明光の分光特性のばらつきに起因する画像の色調の変化が認知されるおそれがある。しかしながら、本実施形態では、撮像素子分光特性情報および照明光分光特性情報に応じて作成された補正プロファイルを用いて補正が施された静止画像が表示されるので、画像の色調の変化が認知される懸念はない。
 撮像素子分光特性情報および照明光分光特性情報は、予め測定されて各ROM133、134に記憶されたものであるため、これらの情報を毎回測定する手間が省け、各ROM133、134から読み出すだけで簡単に取得することができる。
 波長変動関連情報を色調変化関連情報とする上記第1実施形態と、撮像素子分光特性情報および照明光分光特性情報を色調変化関連情報とする上記第2実施形態とを、複合して実施してもよい。この場合、補正後の静止画像AI12は、下記式(5)で表される。
 AI12=C1・C2・BI・・・(5)
 補正後の静止画像AI12の赤色、緑色、青色の各色の撮像信号をAIR12、AIG12、AIB12とした場合、上記式(5)は、下記式(6)に書き換えられる。
Figure JPOXMLDOC01-appb-M000003
 波長変動関連情報を色調変化関連情報とする上記第1実施形態と、撮像素子分光特性情報および照明光分光特性情報を色調変化関連情報とする上記第2実施形態とを、複合して実施すれば、照明光の波長の変動に起因する画像の色調の変化、並びにカラーフィルタ85~87の分光特性および照明光の分光特性のばらつきに起因する画像の色調の変化が認知される懸念がなくなる。
 [第3実施形態]
 上記各実施形態では、補正プロファイルを静止画像に埋め込んでいるが、図24~図27に示す第3実施形態では、色調変化関連情報を静止画像に埋め込む。
 図24において、第3実施形態の送信実行部140は、作成部92が設けられていない点が上記第1実施形態の送信実行部61からの主な変更点である。この場合、情報取得部91は、色調変化関連情報および変換情報を埋め込み部141に出力する。埋め込み部141は、上記第1実施形態の補正プロファイルに替えて、情報取得部91からの色調変化関連情報および変換情報を、画像取得部90からの静止画像に埋め込む。埋め込み部141は、色調変化関連情報等を埋め込んだ静止画像を出力部142に出力する。出力部142は、埋め込み部141からの色調変化関連情報等が埋め込まれた静止画像を、ネットワーク35を介して画像蓄積サーバ36に出力する。
 図25において、第3実施形態の画像表示装置37のストレージデバイス100には、作動プログラム143が記憶されている。作動プログラム143が起動されると、画像表示装置37のCPU102は、メモリ101等と協働して、上記第1実施形態の受付部115と同様の受付部145、補正部116、および表示制御部117に加えて、上記第1実施形態の作成部92と同様の作成部146として機能する。
 この場合、受付部145は、送信実行部140の埋め込み部141によって色調変化関連情報等が埋め込まれ、画像蓄積サーバ36から送信された静止画像を受け付ける。受付部145は、受け付けた静止画像を作成部146に出力する。
 作成部146は、静止画像に埋め込まれた色調変化関連情報および変換情報から補正プロファイルを作成する作成機能を担う。補正プロファイルの作成の仕方は、上記第1実施形態の作成部92と同様である。作成部146は、作成した補正プロファイルを補正部116に出力する。以降の処理は上記第1実施形態と同じであるため説明を省略する。
 第2実施形態における処理の流れを図26および図27に示す。これら図26および図27において、破線で囲んだ部分が上記第1実施形態と異なるステップである。以下、この上記第1実施形態と異なるステップを中心に説明する。
 まず、図26に示すように、送信実行部140の埋め込み部141では、情報取得部91からの色調変化関連情報等が、画像取得部90からの静止画像に埋め込まれる(ステップST141、埋め込みステップ)。色調変化関連情報等が埋め込まれた静止画像は、出力部142により画像蓄積サーバ36に出力される(ステップST151、出力ステップ)。
 続いて図27に示すように、画像蓄積サーバ36からの色調変化関連情報等が埋め込まれた静止画像は、受付部145で受け付けられる(ステップST221、受付ステップ)。静止画像は、受付部145から作成部146に出力される。作成部146では、静止画像に埋め込まれた色調変化関連情報および変換情報に応じて、補正プロファイルが作成される(ステップST131、作成ステップ)。
 以上のように、補正プロファイルの替わりに、色調変化関連情報を埋め込み部141で静止画像に埋め込み、色調変化関連情報が埋め込まれた静止画像を出力部142で画像蓄積サーバ36に出力してもよい。この場合は、画像表示装置37のCPU102に作成部146を構築し、画像表示装置37側で補正プロファイルを作成すればよい。こうすれば、補正プロファイルを作成する機能をプロセッサ装置に搭載しなくて済むので、プロセッサ装置をシンプルな構成とすることができる。
 なお、図24~図27では、上記第1実施形態の波長変動関連情報を色調変化関連情報とする場合に適用した例を説明したが、撮像素子分光特性情報および照明光分光特性情報を色調変化関連情報とする上記第2実施形態に適用してもよい。
 画像表示装置37のCPU102の受付部を、補正プロファイルが埋め込まれた静止画像と色調変化関連情報が埋め込まれた静止画像を両方受け付け可能な構成としてもよい。この場合、補正プロファイルが埋め込まれた静止画像が受付部で受け付けられた場合には作成部146は作動せず、色調変化関連情報が埋め込まれた静止画像が受付部で受け付けられた場合のみ作成部146が作動して補正プロファイルを作成する。
 上記各実施形態では、補正プロファイルとして色調補正マトリックスC1、C2を例示したが、色調補正マトリックスC1、C2に加えて、ホワイトバランス補正係数、階調変換係数、3次元ルックアップテーブル等を補正プロファイルに含めてもよい。
 カラーフィルタは、上記各実施形態の赤色、緑色、青色の原色の組み合わせに限らず、シアン、マゼンタ、イエローの補色の組み合わせでもよい。また、光源は、上記各実施形態のLEDに限らず、レーザダイオード(LD;Laser Diode)でもよい。また、従来のキセノンランプやメタルハライドランプを光源として用いた場合も、本発明は有効である。
 画像取得部、作成部、埋め込み部、および出力部の機能を、制御部に担わせてもよい。
 上記各実施形態では、プロセッサ装置12からの静止画像を画像蓄積サーバ36に蓄積させ、画像蓄積サーバ36から画像表示装置37に静止画像を配信する態様を例示したが、画像蓄積サーバ36を廃し、プロセッサ装置12から画像表示装置37に直接静止画像を送信し、画像表示装置37のストレージデバイス100に静止画像を蓄積してもよい。
 また、画像蓄積サーバ36がカバーする範囲は、1つの医療施設に限らず、複数の医療施設でもよい。この場合はネットワーク35としてWAN(Wide Area Network)を用いる。
 画像表示装置37を構成するコンピュータはデスクトップ型に限らない。ノート型でもよいし、タブレット型でもよい。
 上記各実施形態において、例えば、画像取得部90、情報取得部91、131、作成部92、132、146、埋め込み部93、141、出力部94、142、受付部115、145、補正部116、表示制御部117といった各種の処理を実行する処理部(processing unit)のハードウェア的な構造は、次に示すような各種のプロセッサ(processor)である。
 各種のプロセッサには、CPU、プログラマブルロジックデバイス(Programmable Logic Device:PLD)、専用電気回路等が含まれる。CPUは、周知のとおりソフトウエア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサである。PLDは、FPGA(Field Programmable Gate Array) 等の、製造後に回路構成を変更可能なプロセッサである。専用電気回路は、ASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである。
 1つの処理部は、これら各種のプロセッサのうちの1つで構成されてもよいし、同種または異種の2つ以上のプロセッサの組み合せ(例えば、複数のFPGAや、CPUとFPGAの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。複数の処理部を1つのプロセッサで構成する例としては、第1に、1つ以上のCPUとソフトウエアの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)等に代表されるように、複数の処理部を含むシステム全体の機能を1つのICチップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサを1つ以上用いて構成される。
 さらに、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路(circuitry)である。
 上記記載から、以下の付記項1に記載のプロセッサ装置、付記項2に記載の内視鏡システム、並びに付記項3に記載の画像表示装置を把握することができる。
 [付記項1]
 光源からの照明光を観察対象に照射する内視鏡が接続されるプロセッサ装置であって、
 オペレータの操作指示に応じて撮影された前記観察対象の静止画像を取得する画像取得プロセッサと、
 前記静止画像の色調の変化に関わる色調変化関連情報、または前記色調変化関連情報に応じて作成された、前記色調の変化を補正する補正プロファイルを、前記静止画像に埋め込む埋め込みプロセッサと、
 前記色調変化関連情報、または前記補正プロファイルが埋め込まれた前記静止画像を外部に出力する出力プロセッサとを備えるプロセッサ装置。
 [付記項2]
 光源からの照明光を観察対象に照射する内視鏡と、前記光源が内蔵された光源装置と、前記内視鏡および前記光源装置が接続されるプロセッサ装置とを備える内視鏡システムにおいて、
 前記プロセッサ装置は、
 オペレータの操作指示に応じて撮影された前記観察対象の静止画像を取得する画像取得プロセッサと、
 前記静止画像の色調の変化に関わる色調変化関連情報、または前記色調変化関連情報に応じて作成された、前記色調の変化を補正する補正プロファイルを、前記静止画像に埋め込む埋め込みプロセッサと、
 前記色調変化関連情報、または前記補正プロファイルが埋め込まれた前記静止画像を外部に出力する出力プロセッサとを有する内視鏡システム。
 [付記項3]
 静止画像の色調の変化に関わる色調変化関連情報、または前記色調変化関連情報に応じて作成された、前記色調の変化を補正する補正プロファイルが埋め込まれた前記静止画像を受け付ける受付プロセッサと、
 前記受付プロセッサで受け付けた前記静止画像が、前記色調変化関連情報が埋め込まれたものであった場合、前記色調変化関連情報から前記補正プロファイルを作成する作成プロセッサと、
 前記補正プロファイルを用いて、前記静止画像に前記補正を施す補正プロセッサと、
 前記補正が施された前記静止画像の表示部への表示を制御する表示制御プロセッサとを備える画像表示装置。
 本発明は、観察対象の像をイメージガイドで接眼部に導光するファイバスコープや、撮像素子に加えて超音波トランスデューサが先端部に内蔵された超音波内視鏡が接続されるプロセッサ装置、および内視鏡システムにも適用可能である。
 本発明は、上記各実施形態に限らず、本発明の要旨を逸脱しない限り種々の構成を採用し得ることはもちろんである。さらに、本発明は、プログラムに加えて、プログラムを記憶する記憶媒体にもおよぶ。
 10、10A、10B 内視鏡システム
 11、11A、11B 内視鏡
 12、12A、12B プロセッサ装置
 13、13A、13B 光源装置
 14 モニタ
 15 入力部
 16 挿入部
 17 操作部
 18 ユニバーサルコード
 19 先端部
 20 湾曲部
 21 可撓管部
 22 アングルノブ
 23 レリーズボタン
 24 送気・送水ボタン
 25 鉗子口
 26 コネクタ
 26A 通信用コネクタ
 26B 光源用コネクタ
 30 観察窓
 31 照明窓
 32 送気・送水ノズル
 33 鉗子出口
 35 ネットワーク
 36 画像蓄積サーバ
 37 画像表示装置
 38 ディスプレイ
 39 入力部
 45 ライトガイド
 46 撮像素子
 46A 撮像面
 47 撮像制御部
 48 信号送受信部
 49 照射レンズ
 50 対物光学系
 55、135 制御部
 56 信号送受信部
 57 DSP
 58 フレームメモリ
 59 画像処理部
 60 表示制御部
 61、130、140 送信実行部
 65 光源ユニット
 66 光源制御部
 70 赤色LED
 71 緑色LED
 72 青色LED
 73 紫色LED
 74 光源光学系
 75~78 コリメートレンズ
 79~81 ダイクロイックミラー
 82 集光レンズ
 85 赤色フィルタ
 86 緑色フィルタ
 87 青色フィルタ
 90 画像取得部
 91、131 情報取得部
 92、132、146 作成部
 93、141 埋め込み部
 94、142 出力部
 100 ストレージデバイス
 101 メモリ
 102 CPU
 103 通信部
 104 データバス
 110、143 作動プログラム
 115、145 受付部
 116 補正部
 117 表示制御部
 133、134 ROM
 RL 赤色光
 GL 緑色光
 BL 青色光
 VL 紫色光
 ML 混合光
 IR 赤色LEDの電流量
 IG 緑色LEDの電流量
 IB 青色LEDの電流量
 IV 紫色LEDの電流量
 F(IR) 赤色変換関数
 F(IG) 緑色変換関数
 F(IB、IV) 青色変換関数
 CR1~CR3、CR#1~CR#3 赤色マトリックス係数
 CG1~CG3、CG#1~CG#3 緑色マトリックス係数
 CB1~CB3、CB#1~CB#3 青色マトリックス係数
 C1、C2 色調補正マトリックス
 ST100~ST160、ST200~ST250 ステップ

Claims (14)

  1.  光源からの照明光を観察対象に照射する内視鏡が接続されるプロセッサ装置であって、
     オペレータの操作指示に応じて撮影された前記観察対象の静止画像を取得する画像取得部と、
     前記静止画像の色調の変化に関わる色調変化関連情報、または前記色調変化関連情報に応じて作成された、前記色調の変化を補正する補正プロファイルを、前記静止画像に埋め込む埋め込み部と、
     前記色調変化関連情報、または前記補正プロファイルが埋め込まれた前記静止画像を外部に出力する出力部とを備えるプロセッサ装置。
  2.  前記色調変化関連情報は、前記操作指示があった場合のみ取得される請求項1に記載のプロセッサ装置。
  3.  前記補正プロファイルは、前記操作指示があった場合のみ作成される請求項1または2に記載のプロセッサ装置。
  4.  前記色調変化関連情報は、前記光源の温度に応じた前記照明光の波長の変動に関わる波長変動関連情報である請求項1ないし3のいずれか1項に記載のプロセッサ装置。
  5.  前記色調変化関連情報は、前記照明光の分光特性情報、および前記観察対象を撮像する撮像素子のカラーフィルタの分光特性情報である請求項1ないし4のいずれか1項に記載のプロセッサ装置。
  6.  前記照明光の分光特性情報、および前記カラーフィルタの分光特性情報は、予め測定されて記憶部に記憶されたものである請求項5に記載のプロセッサ装置。
  7.  前記補正プロファイルは、前記観察対象を撮像する撮像素子から出力される複数色の撮像信号のそれぞれに乗算されるマトリックス係数を含む請求項1ないし6のいずれか1項に記載のプロセッサ装置。
  8.  前記補正プロファイルは、標準のカラープロファイルに埋め込まれている請求項1ないし7のいずれか1項に記載のプロセッサ装置。
  9.  前記光源は発光ダイオードである請求項1ないし8のいずれか1項に記載のプロセッサ装置。
  10.  光源からの照明光を観察対象に照射する内視鏡が接続されるプロセッサ装置の作動方法であって、
     オペレータの操作指示に応じて撮影された前記観察対象の静止画像を取得する画像取得ステップと、
     前記静止画像の色調の変化に関わる色調変化関連情報、または前記色調変化関連情報に応じて作成された、前記色調の変化を補正する補正プロファイルを、前記静止画像に埋め込む埋め込みステップと、
     前記色調変化関連情報、または前記補正プロファイルが埋め込まれた前記静止画像を外部に出力する出力ステップとを備えるプロセッサ装置の作動方法。
  11.  光源からの照明光を観察対象に照射する内視鏡と、前記光源が内蔵された光源装置と、前記内視鏡および前記光源装置が接続されるプロセッサ装置とを備える内視鏡システムにおいて、
     前記プロセッサ装置は、
     オペレータの操作指示に応じて撮影された前記観察対象の静止画像を取得する画像取得部と、
     前記静止画像の色調の変化に関わる色調変化関連情報、または前記色調変化関連情報に応じて作成された、前記色調の変化を補正する補正プロファイルを、前記静止画像に埋め込む埋め込み部と、
     前記色調変化関連情報、または前記補正プロファイルが埋め込まれた前記静止画像を外部に出力する出力部とを有する内視鏡システム。
  12.  静止画像の色調の変化に関わる色調変化関連情報、または前記色調変化関連情報に応じて作成された、前記色調の変化を補正する補正プロファイルが埋め込まれた前記静止画像を受け付ける受付部と、
     前記受付部で受け付けた前記静止画像が、前記色調変化関連情報が埋め込まれたものであった場合、前記色調変化関連情報から前記補正プロファイルを作成する作成部と、
     前記補正プロファイルを用いて、前記静止画像に前記補正を施す補正部と、
     前記補正が施された前記静止画像の表示部への表示を制御する表示制御部とを備える画像表示装置。
  13.  静止画像の色調の変化に関わる色調変化関連情報、または前記色調変化関連情報に応じて作成された、前記色調の変化を補正する補正プロファイルが埋め込まれた前記静止画像を受け付ける受付ステップと、
     前記受付ステップで受け付けた前記静止画像が、前記色調変化関連情報が埋め込まれたものであった場合、前記色調変化関連情報から前記補正プロファイルを作成する作成ステップと、
     前記補正プロファイルを用いて、前記静止画像に前記補正を施す補正ステップと、
     前記補正が施された前記静止画像の表示部への表示を制御する表示制御ステップとを備える画像表示装置の作動方法。
  14.  静止画像の色調の変化に関わる色調変化関連情報、または前記色調変化関連情報に応じて作成された、前記色調の変化を補正する補正プロファイルが埋め込まれた前記静止画像を受け付ける受付機能と、
     前記受付機能で受け付けた前記静止画像が、前記色調変化関連情報が埋め込まれたものであった場合、前記色調変化関連情報から前記補正プロファイルを作成する作成機能と、
     前記補正プロファイルを用いて、前記静止画像に前記補正を施す補正機能と、
     前記補正が施された前記静止画像の表示部への表示を制御する表示制御機能とを、コンピュータに実行させる画像表示装置の作動プログラム。
PCT/JP2018/021751 2017-06-14 2018-06-06 プロセッサ装置とその作動方法、内視鏡システム、並びに画像表示装置とその作動方法、作動プログラム WO2018230418A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019525354A JP6866481B2 (ja) 2017-06-14 2018-06-06 プロセッサ装置とその作動方法、内視鏡システム、並びに画像表示装置とその作動方法、作動プログラム
EP18816588.0A EP3639724B1 (en) 2017-06-14 2018-06-06 Processor device and method for operating same, endoscope system, and image display device and method and program for operating same
US16/714,296 US10944947B2 (en) 2017-06-14 2019-12-13 Processor device, method of operating processor device, endoscope system, image display device, method of operating image display device, operating program for image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-116548 2017-06-14
JP2017116548 2017-06-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/714,296 Continuation US10944947B2 (en) 2017-06-14 2019-12-13 Processor device, method of operating processor device, endoscope system, image display device, method of operating image display device, operating program for image display device

Publications (1)

Publication Number Publication Date
WO2018230418A1 true WO2018230418A1 (ja) 2018-12-20

Family

ID=64659254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021751 WO2018230418A1 (ja) 2017-06-14 2018-06-06 プロセッサ装置とその作動方法、内視鏡システム、並びに画像表示装置とその作動方法、作動プログラム

Country Status (4)

Country Link
US (1) US10944947B2 (ja)
EP (1) EP3639724B1 (ja)
JP (1) JP6866481B2 (ja)
WO (1) WO2018230418A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020178738A (ja) * 2019-04-23 2020-11-05 富士フイルム株式会社 プロセッサ装置及び内視鏡システム並びにキャリブレーション方法
WO2021065939A1 (ja) * 2019-10-04 2021-04-08 富士フイルム株式会社 内視鏡システム及びその作動方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11843756B2 (en) * 2020-09-11 2023-12-12 Verily Life Sciences Llc Image signal processing to compensate for scene changes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008113177A (ja) * 2006-10-30 2008-05-15 Pentax Corp 電子内視鏡装置
JP2015061569A (ja) * 2013-09-23 2015-04-02 富士フイルム株式会社 内視鏡システム及び内視鏡システムの作動方法
JP2015066262A (ja) * 2013-09-30 2015-04-13 富士フイルム株式会社 画像処理装置、画像処理システム、及び画像処理方法
WO2016021285A1 (ja) * 2014-08-04 2016-02-11 オリンパス株式会社 医療画像の色統合システム
JP2016067708A (ja) * 2014-09-30 2016-05-09 富士フイルム株式会社 内視鏡システム及びその作動方法
JP2016174921A (ja) 2016-04-25 2016-10-06 富士フイルム株式会社 内視鏡システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2116176B1 (en) * 2007-02-26 2011-12-28 Olympus Medical Systems Corp. Capsule endoscope
US20100073362A1 (en) * 2008-09-23 2010-03-25 Ike Ikizyan Method And System For Scene Adaptive Dynamic 3-D Color Management
JP5544219B2 (ja) * 2009-09-24 2014-07-09 富士フイルム株式会社 内視鏡システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008113177A (ja) * 2006-10-30 2008-05-15 Pentax Corp 電子内視鏡装置
JP2015061569A (ja) * 2013-09-23 2015-04-02 富士フイルム株式会社 内視鏡システム及び内視鏡システムの作動方法
JP2015066262A (ja) * 2013-09-30 2015-04-13 富士フイルム株式会社 画像処理装置、画像処理システム、及び画像処理方法
WO2016021285A1 (ja) * 2014-08-04 2016-02-11 オリンパス株式会社 医療画像の色統合システム
JP2016067708A (ja) * 2014-09-30 2016-05-09 富士フイルム株式会社 内視鏡システム及びその作動方法
JP2016174921A (ja) 2016-04-25 2016-10-06 富士フイルム株式会社 内視鏡システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3639724A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020178738A (ja) * 2019-04-23 2020-11-05 富士フイルム株式会社 プロセッサ装置及び内視鏡システム並びにキャリブレーション方法
JP7163243B2 (ja) 2019-04-23 2022-10-31 富士フイルム株式会社 プロセッサ装置及び内視鏡システム並びにプロセッサ装置の作動方法
WO2021065939A1 (ja) * 2019-10-04 2021-04-08 富士フイルム株式会社 内視鏡システム及びその作動方法
JPWO2021065939A1 (ja) * 2019-10-04 2021-04-08
JP7344976B2 (ja) 2019-10-04 2023-09-14 富士フイルム株式会社 内視鏡システム及びその作動方法

Also Published As

Publication number Publication date
JPWO2018230418A1 (ja) 2020-04-02
EP3639724B1 (en) 2023-06-21
EP3639724A1 (en) 2020-04-22
US10944947B2 (en) 2021-03-09
US20200120320A1 (en) 2020-04-16
JP6866481B2 (ja) 2021-04-28
EP3639724A4 (en) 2020-06-24

Similar Documents

Publication Publication Date Title
JP5303012B2 (ja) 内視鏡システム、内視鏡システムのプロセッサ装置及び内視鏡システムの作動方法
WO2019123796A1 (ja) 内視鏡システム
JP4554944B2 (ja) 内視鏡装置
JP6435275B2 (ja) 内視鏡装置
KR100939400B1 (ko) 생체 관측 장치
JP5283545B2 (ja) 内視鏡システムおよび内視鏡用プロセッサ装置
US10944947B2 (en) Processor device, method of operating processor device, endoscope system, image display device, method of operating image display device, operating program for image display device
WO2019087557A1 (ja) 内視鏡システム
JP2010213992A (ja) 内視鏡システム、内視鏡用プロセッサ装置、並びに内視鏡駆動方法
EP3440987B1 (en) Endoscope system with a light control unit configured to adjust a light amount ratio
JP5921984B2 (ja) 電子内視鏡装置及び照明装置
JP6891076B2 (ja) プロセッサ装置とその作動方法、および内視鏡システム
JP5570352B2 (ja) 画像撮像装置
JP7454417B2 (ja) 医療用制御装置及び医療用観察システム
JP2003159210A (ja) 蛍光診断画像表示方法および表示装置
JP6095531B2 (ja) 撮像システム
JP6630702B2 (ja) 光源装置及び内視鏡システム
JP2003159209A (ja) 蛍光診断画像表示方法および表示装置
US20230233070A1 (en) Endoscope light source device, endoscope system, and method of changing illumination light in endoscope light source device
JP5224390B2 (ja) 内視鏡装置および内視鏡装置の作動方法
JP2002045328A (ja) 蛍光診断画像表示装置
US11774772B2 (en) Medical image processing device, medical observation system, and image processing method
WO2021039870A1 (ja) 医療用画像処理装置および医療用観察システム
CN115280212A (zh) 医疗观察系统、控制装置及控制方法
JP2021132695A (ja) 医療用画像処理装置、医療用観察システムおよび画像処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18816588

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525354

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018816588

Country of ref document: EP

Effective date: 20200114