WO2018230388A1 - 有機el表示素子用封止剤 - Google Patents

有機el表示素子用封止剤 Download PDF

Info

Publication number
WO2018230388A1
WO2018230388A1 PCT/JP2018/021437 JP2018021437W WO2018230388A1 WO 2018230388 A1 WO2018230388 A1 WO 2018230388A1 JP 2018021437 W JP2018021437 W JP 2018021437W WO 2018230388 A1 WO2018230388 A1 WO 2018230388A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
polymerizable compound
boiling point
display elements
compound
Prior art date
Application number
PCT/JP2018/021437
Other languages
English (en)
French (fr)
Inventor
千鶴 金
山本 拓也
七里 徳重
勝則 西出
信烈 梁
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=64660728&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018230388(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2018530922A priority Critical patent/JP7007272B2/ja
Priority to KR1020197022901A priority patent/KR102658948B1/ko
Priority to CN201880038844.1A priority patent/CN110731127B/zh
Publication of WO2018230388A1 publication Critical patent/WO2018230388A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to an encapsulant for an organic EL display element that can be easily applied by an ink jet method, can provide an organic EL display element that is excellent in low outgassing properties and excellent in reliability.
  • organic electroluminescence (hereinafter, also referred to as “organic EL”) display element has a laminated structure in which an organic light emitting material layer is sandwiched between a pair of electrodes facing each other, and the organic light emitting material layer is formed from one electrode on the organic light emitting material layer.
  • organic EL organic electroluminescence
  • the organic EL display element performs self-emission, it has better visibility than a liquid crystal display element that requires a backlight, can be reduced in thickness, and can be driven by a DC low voltage. Has the advantage.
  • Patent Document 1 discloses a method of sealing an organic light emitting material layer and an electrode of an organic EL display element with a laminated film of a silicon nitride film and a resin film formed by a CVD method.
  • the resin film has a role of preventing pressure on the organic layer and the electrode due to internal stress of the silicon nitride film.
  • Patent Document 1 In the method of sealing with a silicon nitride film disclosed in Patent Document 1, organic light emission occurs when a silicon nitride film is formed due to unevenness on the surface of the organic EL display element, adhesion of foreign matters, generation of cracks due to internal stress, or the like. The material layer or electrode may not be completely covered. If the coating with the silicon nitride film is incomplete, moisture will enter the organic light emitting material layer through the silicon nitride film. As a method for preventing moisture from entering into the organic light emitting material layer, Patent Document 2 discloses a method of alternately depositing an inorganic material film and a resin film. Patent Document 3 and Patent Document 4 Discloses a method of forming a resin film on an inorganic material film.
  • a method for forming a resin film there is a method in which a sealing agent is applied on a substrate using an inkjet method and then the sealing agent is cured. If such a coating method by the ink jet method is used, a resin film can be uniformly formed at high speed.
  • the sealant is made to have a low viscosity in order to be suitable for application by the ink jet method, outgas is generated or the ink cannot be stably discharged from the ink jet device, resulting in insufficient sealing. There was a problem that the organic EL display element obtained in this way was inferior in reliability.
  • An object of the present invention is to provide a sealing agent for organic EL display elements that can be easily applied by an ink jet method, can provide an organic EL display element that is excellent in low outgassing properties and excellent in reliability.
  • Invention 1 is a sealing compound for organic EL display elements containing a polymerizable compound, wherein the polymerizable compound reacts with a high-boiling polymerizable compound having a boiling point of 300 ° C. or higher and the high-boiling polymerizable compound.
  • a low-boiling polymerizable compound having a reactive functional group and a boiling point of less than 300 ° C. includes a cyclic ether compound, a (meth) acrylic compound, and hydrosilylation It is at least one selected from the group consisting of reactive compounds, and the content of the low-boiling polymerizable compound in 100 parts by weight of the polymerizable compound is 1 part by weight or more and 20 parts by weight or less, and the thickness is 10 ⁇ m. It is a sealing agent for organic EL display elements whose haze of hardened
  • Invention 2 is a sealant for an organic EL display element containing a polymerizable compound, wherein the polymerizable compound reacts with a high-boiling polymerizable compound having a boiling point of 300 ° C. or higher and the high-boiling polymerizable compound.
  • the amount of outgas generation of a cured product obtained by irradiating 1000 mJ / cm 2 with 395 nm ultraviolet rays after coating with a thickness of 10 ⁇ m in advance is 20 parts by weight or less, and haze of a cured product with a thickness of 10 ⁇ m.
  • the present invention is described in detail below.
  • the sealing agent for organic EL display elements of this invention 1 and the sealing agent for organic EL display elements of this invention 2 it describes as "the sealing agent for organic EL display elements of this invention". To do.
  • the present inventors deteriorated inkjet dischargeability and discharge stability by volatilization or generated outgas. Therefore, sealing for organic EL display elements without using a polymerizable compound having a low boiling point as a polymerizable compound.
  • the preparation of the agent was studied.
  • the sealing agent for organic EL display elements produced without using a polymerizable compound having a low boiling point has a problem that the wettability is inferior. Therefore, the present inventors have studied blending a specific high-boiling polymerizable compound and a specific low-boiling polymerizable compound so that the content ratio is in a specific range.
  • an encapsulant for an organic EL display element that can be easily applied by an ink jet method, has excellent low outgassing properties, and can be used for manufacturing an organic EL display element with excellent reliability. As a result, the present invention has been completed.
  • the sealing agent for organic EL display elements of the present invention contains a polymerizable compound.
  • the polymerizable compound has a high-boiling polymerizable compound having a boiling point of 300 ° C. or higher (hereinafter also simply referred to as “high-boiling polymerizable compound”) and a reactive functional group capable of reacting with the high-boiling polymerizable compound.
  • a low-boiling point polymerizable compound having a boiling point of less than 300 ° C. hereinafter also simply referred to as “low-boiling point polymerizable compound”.
  • the sealing agent for organic EL display elements of the present invention has inkjet ejection properties, ejection stability, And it will be excellent in wet spreading property.
  • the “boiling point” means a boiling point at 1 atm.
  • what cannot measure directly with a compound with a high boiling point means the value computed by a boiling point conversion table using the boiling point under pressure reduction.
  • the high boiling point polymerizable compound has a boiling point of 300 ° C. or higher. As described above, the high boiling point polymerizable compound having a boiling point of 300 ° C. or higher and the low boiling point polymerizable compound having a boiling point of less than 300 ° C. are used in combination so as to have a content described later.
  • the encapsulant for organic EL display elements is excellent in inkjet discharge properties, discharge stability, and wet spread properties.
  • the high boiling point polymerizable compound is preferably at least one selected from the group consisting of a cyclic ether compound, a (meth) acrylic compound, and a hydrosilylation reactive compound from the viewpoint of low outgassing properties.
  • the “(meth) acryl” means acryl or methacryl.
  • the “hydrosilylation reactive compound” means a compound having a —SiH group or a compound having a carbon-carbon double bond capable of reacting with a —SiH group.
  • high-boiling polymerizable compound examples include alkenyl group-containing organopolysiloxane, 3 ′, 4′-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 1,4-butanediol diglycidyl ether.
  • Bisphenol F type epoxy resin 2-ethylhexyloxetane, bis ((3-ethyloxetane-3-yl) methyl) ether, dicyclopentenyloxyethyl acrylate, dipropylene glycol diacrylate, trimethylolpropane triacrylate, etc. .
  • alkenyl group-containing organopolysiloxane examples include vinyl-terminated polydimethylsiloxane, vinyl-terminated polymethylphenylsiloxane, and vinyl-terminated polydiphenylsiloxane.
  • these high-boiling polymerizable compounds bis ((3-ethyloxetane-3-yl) methyl) ether is preferable.
  • the alkenyl group-containing organopolysiloxane can be produced by, for example, causing an equilibrium reaction between a disiloxane containing a terminal alkenyl group and a cyclic organopolysiloxane in the presence of an alkali catalyst.
  • the cyclic organopolysiloxane may be a compound containing an alkenyl group in the side chain, such as 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane.
  • the low boiling point polymerizable compound has a boiling point of less than 300 ° C.
  • the high boiling point polymerizable compound having a boiling point of 300 ° C. or higher and the low boiling point polymerizable compound having a boiling point of less than 300 ° C. are used in combination so as to have a content described later.
  • the encapsulant for organic EL display elements is excellent in inkjet discharge properties, discharge stability, and wet spread properties.
  • the upper limit with the preferable boiling point of the said low boiling-point polymerizable compound is 290 degreeC.
  • the preferred lower limit of the boiling point of the low-boiling polymerizable compound is 150 ° C.
  • the more preferred lower limit is 200 ° C.
  • the still more preferred lower limit is 240 ° C.
  • the low-boiling polymerizable compound has a reactive functional group that can react with the high-boiling polymerizable compound.
  • the reactive functional group depends on the kind of the high-boiling polymerizable compound, and for example, a carbon-carbon double bond capable of reacting with an epoxy group, oxetanyl group, (meth) acryloyl group, —SiH group, —SiH group. And the like group.
  • the “(meth) acryloyl” means acryloyl or methacryloyl.
  • the low boiling point polymerizable compound is at least one selected from the group consisting of a cyclic ether compound, a (meth) acrylic compound, and a hydrosilylation reactive compound. is there.
  • the sealing agent for organic EL display elements obtained by the said low boiling-point polymerizable compound being at least 1 sort (s) selected from the group which consists of a cyclic ether compound, a (meth) acryl compound, and a hydrosilylation reactive compound. Is excellent in low outgassing.
  • the low boiling point polymerizable compound is at least one selected from the group consisting of a cyclic ether compound, a (meth) acrylic compound, and a hydrosilylation reactive compound.
  • a cyclic ether compound a (meth) acrylic compound
  • a hydrosilylation reactive compound a hydrosilylation reactive compound.
  • the sealing agent for organic EL display elements obtained by the said low boiling-point polymerizable compound being at least 1 sort (s) selected from the group which consists of a cyclic ether compound, a (meth) acryl compound, and a hydrosilylation reactive compound. It becomes easy to set the outgas generation amount of the cured product within the range described later.
  • low boiling point polymerizable compound examples include 1,7-octadiene diepoxide (boiling point 243 ° C.), neopentyl glycol diglycidyl ether (boiling point 273 ° C.), ethylene glycol diglycidyl ether (boiling point 269 ° C.).
  • 1,7-octadiene diepoxide 1,7-octadiene diepoxide, neopentyl glycol diglycidyl ether, ethylene glycol diglycidyl ether, isobornyl acrylate, 1,6-hexanediol diacrylate, 3-ethyl-3-hydroxymethyl oxetane, and And at least one selected from the group consisting of 3-ethyl-3-oxetanemethanol.
  • the lower limit of the content of the low boiling point polymerizable compound in 100 parts by weight of the polymerizable compound is 1 part by weight, and the upper limit is 20 parts by weight.
  • the sealing agent for organic EL display elements of the present invention is excellent in inkjet discharge properties, discharge stability, and wet spread properties.
  • the minimum with preferable content of the said low boiling-point polymerizable compound is 5 weight part, and a preferable upper limit is 10 weight part.
  • the organic EL display element sealing agent of the present invention preferably contains a polymerization initiator.
  • a polymerization initiator a photocationic polymerization initiator, a thermal cationic polymerization initiator, a photoradical polymerization initiator, or a thermal radical polymerization initiator is suitably used depending on the type of polymerizable compound used.
  • the photocationic polymerization initiator is not particularly limited as long as it generates a protonic acid or a Lewis acid by light irradiation, and may be an ionic photoacid generating type or a nonionic photoacid generating type. May be.
  • anion portion of the ionic photoacid-generating photocationic polymerization initiator examples include an anion portion of BF 4 ⁇ , PF 6 ⁇ , SbF 6 ⁇ , or (BX 4 ) ⁇ (where X is at least And a phenyl group substituted with two or more fluorine or trifluoromethyl groups).
  • examples of the ionic photoacid-generating photocationic polymerization initiator include aromatic sulfonium salts, aromatic iodonium salts, aromatic diazonium salts, aromatic ammonium salts having the above anion moiety, and (2,4-cyclohexane). And pentadien-1-yl) ((1-methylethyl) benzene) -Fe salt.
  • aromatic sulfonium salt examples include bis (4- (diphenylsulfonio) phenyl) sulfide bishexafluorophosphate, bis (4- (diphenylsulfonio) phenyl) sulfide bishexafluoroantimonate, and bis (4- ( Diphenylsulfonio) phenyl) sulfide bistetrafluoroborate, bis (4- (diphenylsulfonio) phenyl) sulfide tetrakis (pentafluorophenyl) borate, diphenyl-4- (phenylthio) phenylsulfonium hexafluorophosphate, diphenyl-4- ( Phenylthio) phenylsulfonium hexafluoroantimonate, diphenyl-4- (phenylthio) phenylsulfonium tetraflu
  • aromatic iodonium salt examples include diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, diphenyliodonium tetrafluoroborate, diphenyliodonium tetrakis (pentafluorophenyl) borate, bis (dodecylphenyl) iodonium hexafluorophosphate, bis (Dodecylphenyl) iodonium hexafluoroantimonate, bis (dodecylphenyl) iodonium tetrafluoroborate, bis (dodecylphenyl) iodonium tetrakis (pentafluorophenyl) borate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium hexa Fluorophosphate, 4-methylphenyl-4- (1-methylethy
  • aromatic diazonium salt examples include phenyldiazonium hexafluorophosphate, phenyldiazonium hexafluoroantimonate, phenyldiazonium tetrafluoroborate, and phenyldiazonium tetrakis (pentafluorophenyl) borate.
  • aromatic ammonium salt examples include 1-benzyl-2-cyanopyridinium hexafluorophosphate, 1-benzyl-2-cyanopyridinium hexafluoroantimonate, 1-benzyl-2-cyanopyridinium tetrafluoroborate, 1-benzyl -2-Cyanopyridinium tetrakis (pentafluorophenyl) borate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluorophosphate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluoroantimonate, 1- (naphthylmethyl)
  • Examples include -2-cyanopyridinium tetrafluoroborate and 1- (naphthylmethyl) -2-cyanopyridinium tetrakis (pentafluorophenyl) borate.
  • Examples of the (2,4-cyclopentadien-1-yl) ((1-methylethyl) benzene) -Fe salt include (2,4-cyclopentadien-1-yl) ((1-methylethyl) benzene.
  • nonionic photoacid-generating photocationic polymerization initiator examples include nitrobenzyl ester, sulfonic acid derivative, phosphoric acid ester, phenol sulfonic acid ester, diazonaphthoquinone, N-hydroxyimide sulfonate, and the like.
  • Examples of commercially available photocationic polymerization initiators include, for example, a photocationic polymerization initiator manufactured by Midori Chemical Co., a photocationic polymerization initiator manufactured by Union Carbide, a photocationic polymerization initiator manufactured by ADEKA, Examples thereof include a photocationic polymerization initiator manufactured by 3M, a photocationic polymerization initiator manufactured by BASF, and a photocationic polymerization initiator manufactured by Rhodia. Examples of the photocationic polymerization initiator manufactured by Midori Chemical Co., Ltd. include DTS-200. Examples of the cationic photopolymerization initiator manufactured by Union Carbide include UVI6990, UVI6974, and the like.
  • Examples of the photocation polymerization initiator manufactured by ADEKA include SP-150 and SP-170. Examples of the cationic photopolymerization initiator manufactured by 3M include FC-508, FC-512, and the like. Examples of the cationic photopolymerization initiator manufactured by BASF include IRGACURE261, IRGACURE290, and the like. Examples of the photocationic polymerization initiator manufactured by Rhodia include PI 2074.
  • the anion moiety is BF 4 ⁇ , PF 6 ⁇ , SbF 6 ⁇ , or (BX 4 ) ⁇ (where X is substituted with at least two fluorine or trifluoromethyl groups
  • a sulfonium salt, a phosphonium salt, an ammonium salt, and the like are preferable.
  • sulfonium salt examples include triphenylsulfonium tetrafluoroborate and triphenylsulfonium hexafluoroantimonate.
  • Examples of the phosphonium salt include ethyltriphenylphosphonium hexafluoroantimonate and tetrabutylphosphonium hexafluoroantimonate.
  • ammonium salt examples include dimethylphenyl (4-methoxybenzyl) ammonium hexafluorophosphate, dimethylphenyl (4-methoxybenzyl) ammonium hexafluoroantimonate, dimethylphenyl (4-methoxybenzyl) ammonium tetrakis (pentafluorophenyl).
  • thermal cationic polymerization initiators examples include thermal cationic polymerization initiators manufactured by Sanshin Chemical Industry, thermal cationic polymerization initiators manufactured by King Industries, and the like.
  • thermal cationic polymerization initiator manufactured by Sanshin Chemical Industry Co., Ltd. examples include Sun-Aid SI-60, Sun-Aid SI-80, Sun-Aid SI-B3, Sun-Aid SI-B3A, and Sun-Aid SI-B4.
  • thermal cationic polymerization initiator manufactured by King Industries examples include CXC1612 and CXC1821.
  • photo radical polymerization initiator examples include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, benzyl, thioxanthone compounds, and the like.
  • photo radical polymerization initiators examples include IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 907, IRGACURE 2959, IRGACURE OXE01, IRGACURE TPO (all manufactured by Benzoin Methyl, BASF INM, BASF In-Methyl) Examples include ethyl ether and benzoin isopropyl ether (both manufactured by Tokyo Chemical Industry Co., Ltd.).
  • thermal radical polymerization initiator what consists of an azo compound, an organic peroxide, etc. is mentioned, for example.
  • the azo compound include 2,2′-azobis (2,4-dimethylvaleronitrile), azobisisobutyronitrile, and the like.
  • the organic peroxide include benzoyl peroxide, ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, and peroxydicarbonate.
  • thermal radical polymerization initiators examples include VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001, and V-501 (all of which are FUJIFILM Wako Pure Chemical Industries, Ltd.). Manufactured) and the like.
  • the content of the polymerization initiator is preferably 0.01 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the polymerizable compound.
  • the content of the polymerization initiator is 0.01 parts by weight or more, the obtained sealing agent for organic EL display elements is more excellent in curability.
  • the content of the polymerization initiator is 10 parts by weight or less, the curing reaction of the obtained sealing agent for organic EL display elements does not become too fast, and the workability is improved, and the cured product is more uniform. It can be.
  • the minimum with more preferable content of the said polymerization initiator is 0.05 weight part, and a more preferable upper limit is 5 weight part.
  • the sealing agent for organic EL display elements of the present invention may contain a sensitizer.
  • the sensitizer has a role of further improving the polymerization initiation efficiency of the polymerization initiator and further promoting the curing reaction of the sealing agent for organic EL display elements of the present invention.
  • sensitizer examples include thioxanthone compounds, 2,2-dimethoxy-1,2-diphenylethane-1-one, benzophenone, 2,4-dichlorobenzophenone, methyl o-benzoylbenzoate, 4,4 ′ -Bis (dimethylamino) benzophenone, 4-benzoyl-4'-methyldiphenyl sulfide and the like.
  • thioxanthone compound include 2,4-diethylthioxanthone.
  • the content of the sensitizer is preferably 0.01 parts by weight and preferably 3 parts by weight with respect to 100 parts by weight of the polymerizable compound.
  • the content of the sensitizer is 0.01 parts by weight or more, the sensitizing effect is more exhibited.
  • the content of the sensitizer is 3 parts by weight or less, the absorption can be cured to a deep part without excessively increasing.
  • the minimum with more preferable content of the said sensitizer is 0.1 weight part, and a more preferable upper limit is 1 weight part.
  • the sealing agent for organic EL display elements of this invention contains a hydrosilylation reaction catalyst.
  • hydrosilylation reaction catalyst examples include (methylcyclopentadienyl) trimethylplatinum, bis (2,4-pentanedionate) platinum (II), and the like. Of these, (methylcyclopentadienyl) trimethylplatinum is preferable.
  • the content of the hydrosilylation reaction catalyst is preferably 0.0005 parts by weight and preferably 0.010 parts by weight with respect to 100 parts by weight of the polymerizable compound.
  • the content of the hydrosilylation reaction catalyst is 0.0005 parts by weight or more, the obtained sealing agent for organic EL display elements is more excellent in curability.
  • the content of the hydrosilylation reaction catalyst is 0.010 parts by weight or less, the curing reaction of the obtained sealing agent for organic EL display elements does not become too fast, and the workability becomes excellent, and the cured product is more It can be uniform.
  • the minimum with more preferable content of the said hydrosilylation reaction catalyst is 0.001 weight part, and a more preferable upper limit is 0.002 weight part.
  • the sealing agent for organic EL display elements of the present invention may contain a silane coupling agent.
  • the said silane coupling agent has a role which improves the adhesiveness of the sealing agent for organic EL display elements of this invention, a board
  • silane coupling agent examples include 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane, and the like. These silane coupling agents may be used independently and 2 or more types may be used together.
  • the content of the silane coupling agent is preferably 0.1 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the polymerizable compound. When the content of the silane coupling agent is within this range, the effect of improving the adhesiveness is suppressed while suppressing the excess silane coupling agent from bleeding out.
  • the minimum with more preferable content of the said silane coupling agent is 0.5 weight part, and a more preferable upper limit is 5 weight part.
  • the sealing agent for organic EL display elements of the present invention may further contain a surface modifier as long as the object of the present invention is not impaired.
  • a surface modifier By containing the surface modifier, the flatness of the coating film can be imparted to the organic EL display element sealant of the present invention.
  • the surface modifier include surfactants and leveling agents.
  • Examples of the surface modifier include silicone-based and fluorine-based ones.
  • Examples of commercially available surface modifiers include BYK-340, BYK-345 (both manufactured by Big Chemie Japan) and Surflon S-611 (manufactured by AGC Seimi Chemical).
  • the encapsulant for organic EL display elements of the present invention may contain a solvent for the purpose of adjusting the viscosity, but problems such as deterioration of the organic light emitting material layer and generation of outgas due to the remaining solvent. Therefore, it is preferable that the solvent is not contained or the solvent content is 0.05% by weight or less.
  • the sealing agent for organic EL display elements of this invention contains well-known various additives, such as a reinforcing agent, a softening agent, a plasticizer, a viscosity modifier, a ultraviolet absorber, antioxidant, as needed. May be.
  • Examples of the method for producing the sealing agent for organic EL display elements of the present invention include a polymerizable compound using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and a three roll. And a method of mixing a polymerization initiator and an additive such as a silane coupling agent added if necessary.
  • a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and a three roll.
  • a method of mixing a polymerization initiator and an additive such as a silane coupling agent added if necessary.
  • the sealing agent for organic EL display elements of the present invention has a preferred lower limit of viscosity at 25 ° C. of 3 mPa ⁇ s and a preferred upper limit of 20 mPa ⁇ s.
  • a preferred lower limit of the viscosity is 5 mPa ⁇ s
  • a more preferable upper limit is 15 mPa ⁇ s.
  • the said viscosity in this specification means the value measured on 100 rpm conditions using an E-type viscosity meter.
  • the minimum with the preferable surface tension in 25 degreeC is 15 mN / m, and a preferable upper limit is 35 mN / m.
  • a preferable upper limit is 35 mN / m.
  • the more preferable lower limit of the surface tension is 20 mN / m
  • the more preferable upper limit is 30 mN / m
  • the still more preferable lower limit is 22 mN / m
  • the still more preferable upper limit is 28 mN / m.
  • the surface tension means a value measured by a Wilhelmy method using a dynamic wettability tester.
  • the upper limit of the haze of a cured product having a thickness of 10 ⁇ m is 1.0%.
  • the preferable upper limit of the haze is 0.5%, and the more preferable upper limit is 0.3%.
  • the haze is preferably as low as possible and there is no particular lower limit, but it is substantially 0.01% or more.
  • the preferable lower limit of the total light transmittance of light at a wavelength of 380 to 800 nm of the cured product is 80%.
  • the obtained organic EL display element has superior optical characteristics.
  • a more preferable lower limit of the total light transmittance is 85%.
  • the said haze value can be made into a desired range by adjusting the kind and compounding quantity of the said high boiling point polymeric compound, the said low boiling point polymeric compound, a polymerization initiator, and a sensitizer. In particular, considering the compatibility between the high-boiling polymerizable compound and the low-boiling polymerizable compound, etc., it becomes easy to adjust the combination and blending amount of the high boiling point polymerizable compound and the desired range.
  • the sealing agent for organic EL display elements which was excellent in the optical characteristic rather than the composition containing a high boiling point polymeric compound and a low boiling point polymeric compound can be obtained.
  • the haze and the total light transmittance can be measured using a spectrometer such as AUTOMATIC HAZE METER MODEL TC-III DPK (manufactured by Tokyo Denshoku Co., Ltd.).
  • the cured product used for the measurement of the haze, the total light transmittance, and the moisture permeability and moisture content described below is irradiated with 1000 mJ / cm 2 of ultraviolet light having a wavelength of 395 nm using a light source such as an LED lamp. Can be obtained.
  • the encapsulant for organic EL display element of the present invention 1 preferably has an outgas generation amount of less than 1000 ppm of a cured product obtained by pre-applying a thickness of 10 ⁇ m and then irradiating with 395 nm ultraviolet rays at 1000 mJ / cm 2. .
  • the outgas generation amount is less than 1000 ppm, the obtained organic EL display element is more excellent in reliability.
  • a more preferable upper limit of the outgas generation amount is 500 ppm, and a more preferable upper limit is 100 ppm. The smaller the amount of outgas generated, the better. There is no particular lower limit, but it is substantially 5 ppm or more.
  • the outgas generation amount can be measured using a gas chromatograph mass spectrometer (for example, JMS-Q1050 (manufactured by JEOL Ltd.)).
  • the encapsulant for an organic EL display element of the present invention 2 has an outgas generation amount of less than 1000 ppm of a cured product obtained by preliminarily coating with a thickness of 10 ⁇ m and then irradiating with 395 nm ultraviolet rays at 1000 mJ / cm 2 .
  • the outgas generation amount is less than 1000 ppm, the obtained organic EL display element is excellent in reliability.
  • a preferable upper limit of the outgas generation amount is 500 ppm, and a more preferable upper limit is 100 ppm. The smaller the amount of outgas generated, the better. There is no particular lower limit, but it is substantially 5 ppm or more.
  • the sealant for an organic EL display device of the present invention has a moisture permeability of 100 g / 100 ⁇ m when the cured product is exposed to an environment of 85 ° C. and 85% RH for 24 hours in accordance with JIS Z 0208.
  • m is preferably 2 or less.
  • the moisture content of the cured product is preferably less than 0.5% when the cured product is exposed to an environment of 85 ° C. and 85% RH for 24 hours.
  • the moisture content of the cured product is less than 0.5%, the effect of preventing the deterioration of the organic light emitting material layer due to moisture in the cured product is excellent, and the obtained organic EL display element is excellent in reliability. It becomes.
  • a more preferable upper limit of the moisture content of the cured product is 0.3%.
  • the method for measuring the moisture content include a method of obtaining by a Karl Fischer method in accordance with JIS K 7251, and a method of obtaining a weight increment after water absorption in accordance with JIS K 7209-2.
  • the sealing agent for organic EL display elements of this invention is used for application
  • a method for producing an organic EL display element using the sealing agent for organic EL display elements of the present invention for example, a step of applying the sealing agent for organic EL display elements of the present invention to a substrate by an inkjet method, And a method of curing the applied sealing agent for organic EL display elements by light irradiation and / or heating.
  • the organic EL display element sealant of the present invention may be applied to the entire surface of the substrate, or on a part of the substrate. It may be applied.
  • the shape of the sealing portion of the sealing agent for organic EL display elements of the present invention formed by coating is not particularly limited as long as it is a shape that can protect the laminate having the organic light emitting material layer from the outside air. A shape that completely covers the body may be formed, a closed pattern may be formed in the peripheral portion of the laminate, or a pattern having a shape in which a partial opening is provided in the peripheral portion of the laminate. It may be formed.
  • the organic EL display sealant element of the present invention When curing the organic EL display element sealing agent of the present invention by light irradiation, the organic EL display sealant element of the present invention, 300 nm or more 400nm or less wavelength and 300 mJ / cm 2 or more 3000 mJ / cm 2 or less of It can be suitably cured by irradiating with an accumulated amount of light.
  • Examples of the light source used for the light irradiation include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, an excimer laser, a chemical lamp, a black light lamp, a microwave excitation mercury lamp, a metal halide lamp, a sodium lamp, a halogen lamp, and a xenon.
  • a lamp, an LED lamp, a fluorescent lamp, sunlight, an electron beam irradiation apparatus, etc. are mentioned.
  • These light sources may be used independently and 2 or more types may be used together. These light sources are appropriately selected according to the absorption wavelength of the photo radical polymerization initiator or the photo cationic polymerization initiator.
  • Examples of the light irradiation means to the organic EL display element sealant of the present invention include simultaneous irradiation of various light sources, sequential irradiation with a time difference, combined irradiation of simultaneous irradiation and sequential irradiation, and the like. Any irradiation means may be used.
  • the cured product obtained by the step of curing the organic EL display element sealing agent by light irradiation and / or heating may be further coated with an inorganic material film.
  • the inorganic material forming the inorganic material layer can be a conventionally known, for example, silicon nitride (SiN x), silicon oxide (SiO x), and the like.
  • the inorganic material film may be a single layer or may be a laminate of a plurality of types of layers. Moreover, you may coat
  • the method for producing the organic EL display element comprises a step of bonding a base material (hereinafter also referred to as “one base material”) coated with the organic EL display element sealing agent of the present invention and the other base material.
  • the substrate on which the sealing agent for organic EL display elements of the present invention is applied (hereinafter also referred to as “one substrate”) may be a substrate on which a laminate having an organic light emitting material layer is formed. A base material on which the laminate is not formed may be used.
  • the present invention is applied to the one substrate so that the laminate can be protected from the outside air when the other substrate is bonded. What is necessary is just to apply
  • the sealing agent portion having a closed pattern may be formed in a shape that fits in the shape.
  • the step of curing the organic EL display element sealant by light irradiation and / or heating may be performed before the step of bonding the one base material and the other base material, You may perform after the process of bonding a base material and said other base material.
  • the organic EL display of the present invention preferably has a pot life of 1 minute or longer after irradiation with light and / or heating until the curing reaction proceeds and adhesion becomes impossible. When the pot life is 1 minute or longer, higher adhesion strength can be obtained without excessive curing before the one base material and the other base material are bonded together.
  • a method of bonding the one base material and the other base material is not particularly limited, but it is preferable to bond them in a reduced-pressure atmosphere.
  • the preferable lower limit of the degree of vacuum in the reduced-pressure atmosphere is 0.01 kPa, and the preferable upper limit is 10 kPa.
  • the degree of vacuum in the reduced-pressure atmosphere is within this range, the one base material and the other base material are not spent for a long time to achieve a vacuum state due to the airtightness of the vacuum device and the ability of the vacuum pump. Bubbles in the sealing agent for organic EL display elements of the present invention when the material is bonded can be more efficiently removed.
  • an encapsulant for an organic EL display element that can be easily applied by an ink jet method, can obtain an organic EL display element that is excellent in low outgassing properties and excellent in reliability. Can do.
  • Examples 1 to 8, Comparative Examples 1 to 7 According to the blending ratios described in Tables 1 to 3, each material was stirred and mixed uniformly at a stirring speed of 3000 rpm using a homodisper type stirring mixer (Primix, “Homodisper L type”). Sealants for organic EL display elements of Examples 1 to 8 and Comparative Examples 1 to 7 were prepared. About each sealing agent for organic EL display elements obtained in Examples and Comparative Examples, measurement was performed using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., “VISCOMETER TV-22”) at 25 ° C. and 100 rpm. Tables 1 to 3 show the measured viscosity and the surface tension measured at 25 ° C.
  • each organic EL display element sealant obtained in Examples and Comparative Examples was applied in advance to a thickness of 10 ⁇ m on a glass substrate, and then UV light of 395 nm was irradiated with 1000 mJ / cm 2 using UV-LED. To obtain a cured product. 20 mg of the resulting cured product was sealed in a vial. This vial was heated at 100 ° C. for 30 minutes, and the vaporized component in the vial was measured as an outgas generation amount using a gas chromatograph mass spectrometer (“JMS-Q1050” manufactured by JEOL Ltd.). The results are shown in Tables 1-3.
  • each organic EL display element sealant obtained in Examples and Comparative Examples was applied on a glass substrate, and then UV-LED was used to irradiate 395 nm ultraviolet rays at 1000 mJ / cm 2 to obtain a thickness of 10 ⁇ m.
  • a cured product was obtained.
  • the haze and the total light transmittance of the light in wavelength 380-800 nm were measured using the spectrometer.
  • AUTOMATIC HAZE METER MODEL TC-III DPK manufactured by Tokyo Denshoku Co., Ltd.
  • each of the sealing agents for organic EL display elements obtained in the examples and comparative examples is a 30 picoliter liquid using an inkjet discharge device (“NanoPrinter500” manufactured by Microjet). With a drop amount, 1000 drops were applied at a speed of 5 m / sec on a non-alkali glass (Asahi Glass Co., Ltd., “AN100”) washed with alkali. After coating, the sample was allowed to stand at 25 ° C. for 10 minutes, and the diameter of the droplet on the alkali-free glass was measured.
  • this substrate is fixed to the substrate folder of the vacuum evaporation apparatus, and 200 mg of N, N′-di (1-naphthyl) -N, N′-diphenylbenzidine ( ⁇ -NPD) is added to the unglazed crucible.
  • 200 mg of tris (8-quinolinolato) aluminum (Alq 3 ) was put in the crucible, and the pressure in the vacuum chamber was reduced to 1 ⁇ 10 ⁇ 4 Pa. Thereafter, the crucible containing ⁇ -NPD was heated, and ⁇ -NPD was deposited on the substrate at a deposition rate of 15 s / s to form a 600 ⁇ ⁇ hole transport layer.
  • the crucible containing Alq 3 was heated to form an organic light emitting material layer having a thickness of 600 ⁇ at a deposition rate of 15 ⁇ / s.
  • the substrate on which the hole transport layer and the organic light-emitting material layer are formed is transferred to another vacuum vapor deposition apparatus.
  • 1.0 g was added.
  • the inside of the vapor deposition unit of the vacuum vapor deposition apparatus is depressurized to 2 ⁇ 10 ⁇ 4 Pa to form a lithium fluoride film with a thickness of 5 mm at a deposition rate of 0.2 kg / s, and then aluminum with a film thickness of 1000 mm at a rate of 20 kg / s. did.
  • the inside of the vapor deposition unit was returned to normal pressure with nitrogen, and the substrate on which the laminate having the organic light emitting material layer of 10 mm ⁇ 10 mm was arranged was taken out.
  • a mask having an opening of 13 mm ⁇ 13 mm is installed so as to cover the entire laminated body of the substrate on which the obtained laminated body is arranged, and inorganic by plasma CVD method.
  • a material film A was formed.
  • SiH 4 gas and nitrogen gas are used as source gases, the flow rates of each are SiH 4 gas 10 sccm, nitrogen gas 200 sccm, RF power 10 W (frequency 2.45 GHz), chamber temperature 100 ° C., chamber The test was performed under the condition that the internal pressure was 0.9 Torr.
  • the formed inorganic material film A had a thickness of about 1 ⁇ m.
  • an encapsulant for an organic EL display element that can be easily applied by an ink jet method, can obtain an organic EL display element that is excellent in low outgassing properties and excellent in reliability. Can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本発明は、インクジェット法により容易に塗布することができ、低アウトガス性に優れ、かつ、信頼性に優れる有機EL表示素子を得ることができる有機EL表示素子用封止剤を提供することを目的とする。 本発明は、重合性化合物を含有する有機EL表示素子用封止剤であって、前記重合性化合物は、沸点が300℃以上の高沸点重合性化合物と、前記高沸点重合性化合物と反応し得る反応性官能基を有し、かつ、沸点が300℃未満の低沸点重合性化合物とを含有し、前記低沸点重合性化合物は、環状エーテル化合物、(メタ)アクリル化合物、及び、ヒドロシリル化反応性化合物からなる群より選択される少なくとも1種であり、前記重合性化合物100重量部中における前記低沸点重合性化合物の含有量が1重量部以上20重量部以下であり、厚さ10μmの硬化物のヘイズが1.0%以下である有機EL表示素子用封止剤である。

Description

有機EL表示素子用封止剤
本発明は、インクジェット法により容易に塗布することができ、低アウトガス性に優れ、かつ、信頼性に優れる有機EL表示素子を得ることができる有機EL表示素子用封止剤に関する。
有機エレクトロルミネッセンス(以下、「有機EL」ともいう)表示素子は、互いに対向する一対の電極間に有機発光材料層が挟持された積層体構造を有し、この有機発光材料層に一方の電極から電子が注入されるとともに他方の電極から正孔が注入されることにより有機発光材料層内で電子と正孔とが結合して発光する。このように有機EL表示素子は自己発光を行うことから、バックライトを必要とする液晶表示素子等と比較して視認性がよく、薄型化が可能であり、しかも直流低電圧駆動が可能であるという利点を有している。
有機EL表示素子を構成する有機発光材料層や電極は、水分や酸素等により特性が劣化しやすいという問題がある。従って、実用的な有機EL表示素子を得るためには、有機発光材料層や電極を大気と遮断して長寿命化を図る必要がある。特許文献1には、有機EL表示素子の有機発光材料層と電極とを、CVD法により形成した窒化珪素膜と樹脂膜との積層膜により封止する方法が開示されている。ここで樹脂膜は、窒化珪素膜の内部応力による有機層や電極への圧迫を防止する役割を有する。
特許文献1に開示された窒化珪素膜で封止を行う方法では、有機EL表示素子の表面の凹凸や異物の付着、内部応力によるクラックの発生等により、窒化珪素膜を形成する際に有機発光材料層や電極を完全に被覆できないことがある。窒化珪素膜による被覆が不完全であると、水分が窒化珪素膜を通して有機発光材料層内に浸入してしまう。
有機発光材料層内への水分の浸入を防止するための方法として、特許文献2には、無機材料膜と樹脂膜とを交互に蒸着する方法が開示されており、特許文献3や特許文献4には、無機材料膜上に樹脂膜を形成する方法が開示されている。
樹脂膜を形成する方法として、インクジェット法を用いて基材上に封止剤を塗布した後、該封止剤を硬化させる方法がある。このようなインクジェット法による塗布方法を用いれば、高速かつ均一に樹脂膜を形成することができる。しかしながら、インクジェット法による塗布に適したものとするために封止剤を低粘度となるようにした場合、アウトガスが発生したり、インクジェット装置から安定して吐出できず、封止が不充分となって得られる有機EL表示素子が信頼性に劣るものとなったりする等の問題があった。
特開2000-223264号公報 特表2005-522891号公報 特開2001-307873号公報 特開2008-149710号公報
本発明は、インクジェット法により容易に塗布することができ、低アウトガス性に優れ、かつ、信頼性に優れる有機EL表示素子を得ることができる有機EL表示素子用封止剤を提供することを目的とする。
本発明1は、重合性化合物を含有する有機EL表示素子用封止剤であって、上記重合性化合物は、沸点が300℃以上の高沸点重合性化合物と、上記高沸点重合性化合物と反応し得る反応性官能基を有し、かつ、沸点が300℃未満の低沸点重合性化合物とを含有し、上記低沸点重合性化合物は、環状エーテル化合物、(メタ)アクリル化合物、及び、ヒドロシリル化反応性化合物からなる群より選択される少なくとも1種であり、上記重合性化合物100重量部中における上記低沸点重合性化合物の含有量が1重量部以上20重量部以下であり、厚さ10μmの硬化物のヘイズが1.0%以下である有機EL表示素子用封止剤である。
本発明2は、重合性化合物を含有する有機EL表示素子用封止剤であって、上記重合性化合物は、沸点が300℃以上の高沸点重合性化合物と、上記高沸点重合性化合物と反応し得る反応性官能基を有し、かつ、沸点が300℃未満の低沸点重合性化合物とを含有し、上記重合性化合物100重量部中における上記低沸点重合性化合物の含有量が1重量部以上20重量部以下であり、予め厚さ10μmで塗布した後に395nmの紫外線を1000mJ/cm照射して得られた硬化物のアウトガス発生量が1000ppm未満であり、厚さ10μmの硬化物のヘイズが1.0%以下である有機EL表示素子用封止剤である。
以下に本発明を詳述する。なお、本発明1の有機EL表示素子用封止剤と本発明2の有機EL表示素子用封止剤とに共通する事項については、「本発明の有機EL表示素子用封止剤」として記載する。
本発明者らは、揮発によりインクジェット吐出性や吐出安定性を悪化させたり、アウトガスを発生させたりすることから、重合性化合物として沸点の低い重合性化合物を用いずに有機EL表示素子用封止剤を作製することを検討した。しかしながら、沸点の低い重合性化合物を用いずに作製した有機EL表示素子用封止剤は、濡れ広がり性に劣るものとなるという問題があった。そこで本発明者らは、特定の高沸点重合性化合物と特定の低沸点重合性化合物とを含有割合が特定の範囲となるように配合することを検討した。その結果、インクジェット法により容易に塗布することができ、低アウトガス性に優れ、かつ、信頼性に優れる有機EL表示素子の製造に用いることができる有機EL表示素子用封止剤を得ることができることを見出し、本発明を完成させるに至った。
本発明の有機EL表示素子用封止剤は、重合性化合物を含有する。
上記重合性化合物は、沸点が300℃以上の高沸点重合性化合物(以下、単に「高沸点重合性化合物」ともいう)と、上記高沸点重合性化合物と反応し得る反応性官能基を有し、かつ、沸点が300℃未満の低沸点重合性化合物(以下、単に「低沸点重合性化合物」ともいう)とを含有する。上記高沸点重合性化合物と上記低沸点重合性化合物とを後述する含有量となるように組み合わせて用いることにより、本発明の有機EL表示素子用封止剤は、インクジェット吐出性、吐出安定性、及び、濡れ広がり性に優れるものとなる。
なお、本明細書において上記「沸点」は、1気圧下における沸点を意味する。また、沸点が高い化合物で直接的に測定できないものについては、減圧下での沸点を用いて沸点換算表により算出される値を意味する。
上記高沸点重合性化合物は、沸点が300℃以上である。上述したように、沸点が300℃以上の上記高沸点重合性化合物と、沸点が300℃未満の上記低沸点重合性化合物とを後述する含有量となるように組み合わせて用いることにより、本発明の有機EL表示素子用封止剤は、インクジェット吐出性、吐出安定性、及び、濡れ広がり性に優れるものとなる。
上記高沸点重合性化合物は、低アウトガス性の観点から、環状エーテル化合物、(メタ)アクリル化合物、及び、ヒドロシリル化反応性化合物からなる群より選択される少なくとも1種であることが好ましい。
なお、本明細書において、上記「(メタ)アクリル」とは、アクリル又はメタクリルを意味する。また、上記「ヒドロシリル化反応性化合物」とは、-SiH基を有する化合物、又は、-SiH基と反応し得る炭素-炭素二重結合を有する化合物を意味する。
上記高沸点重合性化合物としては、具体的には例えば、アルケニル基含有オルガノポリシロキサン、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、1,4-ブタンジオールジグリシジルエーテル、ビスフェノールF型エポキシ樹脂、2-エチルヘキシルオキセタン、ビス((3-エチルオキセタン-3-イル)メチル)エーテル、ジシクロペンテニルオキシエチルアクリレート、ジプロピレングリコールジアクリレート、トリメチロールプロパントリアクリレート等が挙げられる。
上記アルケニル基含有オルガノポリシロキサンとしては、例えば、ビニル末端ポリジメチルシロキサン、ビニル末端ポリメチルフェニルシロキサン、ビニル末端ポリジフェニルシロキサン等が挙げられる。
上記高沸点重合性化合物としては、なかでも、ビス((3-エチルオキセタン-3-イル)メチル)エーテルが好ましい。
上記アルケニル基含有オルガノポリシロキサンは、末端アルケニル基を含むジシロキサンと環状オルガノポリシロキサンとを、アルカリ触媒の存在下で平衡反応させること等によって製造することができる。
上記環状オルガノポリシロキサンは、2,4,6,8-テトラメチル-2,4,6,8-テトラビニルシクロテトラシロキサン等の側鎖にアルケニル基を含んだ化合物であってもよい。
上記低沸点重合性化合物は、沸点が300℃未満である。上述したように、沸点が300℃以上の上記高沸点重合性化合物と、沸点が300℃未満の上記低沸点重合性化合物とを後述する含有量となるように組み合わせて用いることにより、本発明の有機EL表示素子用封止剤は、インクジェット吐出性、吐出安定性、及び、濡れ広がり性に優れるものとなる。上記低沸点重合性化合物の沸点の好ましい上限は290℃である。
また、低アウトガス性等の観点から、上記低沸点重合性化合物の沸点の好ましい下限は150℃、より好ましい下限は200℃、更に好ましい下限は240℃である。
上記低沸点重合性化合物は、上記高沸点重合性化合物と反応し得る反応性官能基を有する。上記反応性官能基としては、上記高沸点重合性化合物の種類によるが、例えば、エポキシ基、オキセタニル基、(メタ)アクリロイル基、-SiH基、-SiH基と反応し得る炭素-炭素二重結合を含む基等が挙げられる。
なお、本明細書において上記「(メタ)アクリロイル」とは、アクリロイル又はメタクリロイルを意味する。
本発明1の有機EL表示素子用封止剤において、上記低沸点重合性化合物は、環状エーテル化合物、(メタ)アクリル化合物、及び、ヒドロシリル化反応性化合物からなる群より選択される少なくとも1種である。上記低沸点重合性化合物が、環状エーテル化合物、(メタ)アクリル化合物、及び、ヒドロシリル化反応性化合物からなる群より選択される少なくとも1種であることにより、得られる有機EL表示素子用封止剤が低アウトガス性に優れるものとなる。
本発明2の有機EL表示素子用封止剤において、上記低沸点重合性化合物は、環状エーテル化合物、(メタ)アクリル化合物、及び、ヒドロシリル化反応性化合物からなる群より選択される少なくとも1種であることが好ましい。上記低沸点重合性化合物が、環状エーテル化合物、(メタ)アクリル化合物、及び、ヒドロシリル化反応性化合物からなる群より選択される少なくとも1種であることにより、得られる有機EL表示素子用封止剤の硬化物のアウトガス発生量を後述する範囲とすることが容易となる。
上記低沸点重合性化合物としては、具体的には例えば、1,7-オクタジエンジエポキシド(沸点243℃)、ネオペンチルグリコールジグリシジルエーテル(沸点273℃)、エチレングリコールジグリシジルエーテル(沸点269℃)、イソボルニルアクリレート(沸点250℃)、1,6-ヘキサンジオールジアクリレート(沸点295℃)、3-エチル-3-ヒドロキシメチルオキセタン(沸点298℃)、3-エチル-3-オキセタンメタノール(沸点241℃)、3-アリルオキシオキセタン(沸点146℃)、1,3-ブタジエンジエポキシド(沸点153℃)、メチルハイドロジェンポリシロキサン(沸点142℃)等が挙げられる。なかでも、1,7-オクタジエンジエポキシド、ネオペンチルグリコールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、イソボルニルアクリレート、1,6-ヘキサンジオールジアクリレート、3-エチル-3-ヒドロキシメチルオキセタン、及び、3-エチル-3-オキセタンメタノールからなる群より選択される少なくとも1種が好ましい。
上記重合性化合物100重量部中における上記低沸点重合性化合物の含有量の下限は1重量部、上限は20重量部である。上記低沸点重合性化合物の含有量がこの範囲であることにより、本発明の有機EL表示素子用封止剤は、インクジェット吐出性、吐出安定性、及び、濡れ広がり性に優れるものとなる。上記低沸点重合性化合物の含有量の好ましい下限は5重量部、好ましい上限は10重量部である。
上記重合性化合物として上記環状エーテル化合物や上記(メタ)アクリル化合物を用いる場合、本発明の有機EL表示素子用封止剤は、重合開始剤を含有することが好ましい。
上記重合開始剤としては、用いる重合性化合物の種類等に応じて、光カチオン重合開始剤や、熱カチオン重合開始剤や、光ラジカル重合開始剤や、熱ラジカル重合開始剤が好適に用いられる。
上記光カチオン重合開始剤は、光照射によりプロトン酸又はルイス酸を発生するものであれば特に限定されず、イオン性光酸発生型であってもよいし、非イオン性光酸発生型であってもよい。
上記イオン性光酸発生型の光カチオン重合開始剤のアニオン部分としては、例えば、アニオン部分がBF 、PF 、SbF 、又は、(BX(但し、Xは、少なくとも2つ以上のフッ素又はトリフルオロメチル基で置換されたフェニル基を表す)等が挙げられる。
上記イオン性光酸発生型の光カチオン重合開始剤としては、例えば、上記アニオン部分を有する、芳香族スルホニウム塩、芳香族ヨードニウム塩、芳香族ジアゾニウム塩、芳香族アンモニウム塩、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe塩等が挙げられる。
上記芳香族スルホニウム塩としては、例えば、ビス(4-(ジフェニルスルホニオ)フェニル)スルフィドビスヘキサフルオロホスフェート、ビス(4-(ジフェニルスルホニオ)フェニル)スルフィドビスヘキサフルオロアンチモネート、ビス(4-(ジフェニルスルホニオ)フェニル)スルフィドビステトラフルオロボレート、ビス(4-(ジフェニルスルホニオ)フェニル)スルフィドテトラキス(ペンタフルオロフェニル)ボレート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムヘキサフルオロホスフェート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムヘキサフルオロアンチモネート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムテトラフルオロボレート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリアリールスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、ビス(4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル)スルフィドビスヘキサフルオロホスフェート、ビス(4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル)スルフィドビスヘキサフルオロアンチモネート、ビス(4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル)スルフィドビステトラフルオロボレート、ビス(4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル)スルフィドテトラキス(ペンタフルオロフェニル)ボレート、トリス(4-(4-アセチルフェニル)チオフェニル)スルホニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
上記芳香族ヨードニウム塩としては、例えば、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ビス(ドデシルフェニル)ヨードニウムヘキサフルオロホスフェート、ビス(ドデシルフェニル)ヨードニウムヘキサフルオロアンチモネート、ビス(ドデシルフェニル)ヨードニウムテトラフルオロボレート、ビス(ドデシルフェニル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムヘキサフルオロホスフェート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムヘキサフルオロアンチモネート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムテトラフルオロボレート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
上記芳香族ジアゾニウム塩としては、例えば、フェニルジアゾニウムヘキサフルオロホスフェート、フェニルジアゾニウムヘキサフルオロアンチモネート、フェニルジアゾニウムテトラフルオロボレート、フェニルジアゾニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
上記芳香族アンモニウム塩としては、例えば、1-ベンジル-2-シアノピリジニウムヘキサフルオロホスフェート、1-ベンジル-2-シアノピリジニウムヘキサフルオロアンチモネート、1-ベンジル-2-シアノピリジニウムテトラフルオロボレート、1-ベンジル-2-シアノピリジニウムテトラキス(ペンタフルオロフェニル)ボレート、1-(ナフチルメチル)-2-シアノピリジニウムヘキサフルオロホスフェート、1-(ナフチルメチル)-2-シアノピリジニウムヘキサフルオロアンチモネート、1-(ナフチルメチル)-2-シアノピリジニウムテトラフルオロボレート、1-(ナフチルメチル)-2-シアノピリジニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
上記(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe塩としては、例えば、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe(II)ヘキサフルオロホスフェート、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe(II)ヘキサフルオロアンチモネート、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe(II)テトラフルオロボレート、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe(II)テトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
上記非イオン性光酸発生型の光カチオン重合開始剤としては、例えば、ニトロベンジルエステル、スルホン酸誘導体、リン酸エステル、フェノールスルホン酸エステル、ジアゾナフトキノン、N-ヒドロキシイミドスルホネート等が挙げられる。
上記光カチオン重合開始剤のうち市販されているものとしては、例えば、みどり化学社製の光カチオン重合開始剤、ユニオンカーバイド社製の光カチオン重合開始剤、ADEKA社製の光カチオン重合開始剤、3M社製の光カチオン重合開始剤、BASF社製の光カチオン重合開始剤、ローディア社製の光カチオン重合開始剤等が挙げられる。
上記みどり化学社製の光カチオン重合開始剤としては、例えば、DTS-200等が挙げられる。
上記ユニオンカーバイド社製の光カチオン重合開始剤としては、例えば、UVI6990、UVI6974等が挙げられる。
上記ADEKA社製の光カチオン重合開始剤としては、例えば、SP-150、SP-170等が挙げられる。
上記3M社製の光カチオン重合開始剤としては、例えば、FC-508、FC-512等が挙げられる。
上記BASF社製の光カチオン重合開始剤としては、例えば、IRGACURE261、IRGACURE290等が挙げられる。
上記ローディア社製の光カチオン重合開始剤としては、例えば、PI2074等が挙げられる。
上記熱カチオン重合開始剤としては、アニオン部分がBF 、PF 、SbF 、又は、(BX(但し、Xは、少なくとも2つ以上のフッ素又はトリフルオロメチル基で置換されたフェニル基を表す)で構成される、スルホニウム塩、ホスホニウム塩、アンモニウム塩等が挙げられる。なかでも、スルホニウム塩、アンモニウム塩が好ましい。
上記スルホニウム塩としては、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムヘキサフルオロアンチモネート等が挙げられる。
上記ホスホニウム塩としては、エチルトリフェニルホスホニウムヘキサフルオロアンチモネート、テトラブチルホスホニウムヘキサフルオロアンチモネート等が挙げられる。
上記アンモニウム塩としては、例えば、ジメチルフェニル(4-メトキシベンジル)アンモニウムヘキサフルオロホスフェート、ジメチルフェニル(4-メトキシベンジル)アンモニウムヘキサフルオロアンチモネート、ジメチルフェニル(4-メトキシベンジル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジメチルフェニル(4-メチルベンジル)アンモニウムヘキサフルオロホスフェート、ジメチルフェニル(4-メチルベンジル)アンモニウムヘキサフルオロアンチモネート、ジメチルフェニル(4-メチルベンジル)アンモニウムヘキサフルオロテトラキス(ペンタフルオロフェニル)ボレート、メチルフェニルジベンジルアンモニウムヘキサフルオロホスフェート、メチルフェニルジベンジルアンモニウムヘキサフルオロアンチモネート、メチルフェニルジベンジルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、フェニルトリベンジルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジメチルフェニル(3,4-ジメチルベンジル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチル-N-ベンジルアニリニウムヘキサフルオロアンチモネート、N,N-ジエチル-N-ベンジルアニリニウムテトラフルオロボレート、N,N-ジメチル-N-ベンジルピリジニウムヘキサフルオロアンチモネート、N,N-ジエチル-N-ベンジルピリジニウムトリフルオロメタンスルホン酸等が挙げられる。
上記熱カチオン重合開始剤のうち市販されているものとしては、例えば、三新化学工業社製の熱カチオン重合開始剤、King Industries社製の熱カチオン重合開始剤等が挙げられる。
上記三新化学工業社製の熱カチオン重合開始剤としては、例えば、サンエイドSI-60、サンエイドSI-80、サンエイドSI-B3、サンエイドSI-B3A、サンエイドSI-B4等が挙げられる。
上記King Industries社製の熱カチオン重合開始剤としては、例えば、CXC1612、CXC1821等が挙げられる。
上記光ラジカル重合開始剤としては、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、ベンジル、チオキサントン系化合物等が挙げられる。
上記光ラジカル重合開始剤のうち市販されているものとしては、例えば、IRGACURE184、IRGACURE369、IRGACURE379、IRGACURE651、IRGACURE819、IRGACURE907、IRGACURE2959、IRGACURE OXE01、IRGACURE TPO(いずれもBASF社製)、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル(いずれも東京化成工業社製)等が挙げられる。
上記熱ラジカル重合開始剤としては、例えば、アゾ化合物、有機過酸化物等からなるものが挙げられる。
上記アゾ化合物としては、例えば、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、アゾビスイソブチロニトリル等が挙げられる。
上記有機過酸化物としては、例えば、過酸化ベンゾイル、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。
上記熱ラジカル重合開始剤のうち市販されているものとしては、例えば、VPE-0201、VPE-0401、VPE-0601、VPS-0501、VPS-1001、V-501(いずれも富士フイルム和光純薬社製)等が挙げられる。
上記重合開始剤の含有量は、上記重合性化合物100重量部に対して、好ましい下限が0.01重量部、好ましい上限が10重量部である。上記重合開始剤の含有量が0.01重量部以上であることにより、得られる有機EL表示素子用封止剤が硬化性により優れるものとなる。上記重合開始剤の含有量が10重量部以下であることにより、得られる有機EL表示素子用封止剤の硬化反応が速くなり過ぎず、作業性により優れるものとなり、硬化物をより均一なものとすることができる。上記重合開始剤の含有量のより好ましい下限は0.05重量部、より好ましい上限は5重量部である。
本発明の有機EL表示素子用封止剤は、増感剤を含有してもよい。上記増感剤は、上記重合開始剤の重合開始効率をより向上させて、本発明の有機EL表示素子用封止剤の硬化反応をより促進させる役割を有する。
上記増感剤としては、例えば、チオキサントン化合物や、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、ベンゾフェノン、2,4-ジクロロベンゾフェノン、o-ベンゾイル安息香酸メチル、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド等が挙げられる。
上記チオキサントン化合物としては、例えば、2,4-ジエチルチオキサントン等が挙げられる。
上記増感剤の含有量は、上記重合性化合物100重量部に対して、好ましい下限が0.01重量部、好ましい上限が3重量部である。上記増感剤の含有量が0.01重量部以上であることにより、増感効果がより発揮される。上記増感剤の含有量が3重量部以下であることにより、吸収が大きくなり過ぎずに深部まで硬化させることができる。上記増感剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は1重量部である。
上記重合性化合物として上記ヒドロシリル化反応性化合物を用いる場合、本発明の有機EL表示素子用封止剤は、ヒドロシリル化反応触媒を含有することが好ましい。
上記ヒドロシリル化反応触媒としては、例えば、(メチルシクロペンタジエニル)トリメチル白金、ビス(2,4-ペンタンジオナート)白金(II)等が挙げられる。なかでも、(メチルシクロペンタジエニル)トリメチル白金が好ましい。
上記ヒドロシリル化反応触媒の含有量は、上記重合性化合物100重量部に対して、好ましい下限が0.0005重量部、好ましい上限が0.010重量部である。上記ヒドロシリル化反応触媒の含有量が0.0005重量部以上であることにより、得られる有機EL表示素子用封止剤が硬化性により優れるものとなる。上記ヒドロシリル化反応触媒の含有量が0.010重量部以下であることにより、得られる有機EL表示素子用封止剤の硬化反応が速くなり過ぎず、作業性により優れるものとなり、硬化物をより均一なものとすることができる。上記ヒドロシリル化反応触媒の含有量のより好ましい下限は0.001重量部、より好ましい上限は0.002重量部である。
本発明の有機EL表示素子用封止剤は、シランカップリング剤を含有してもよい。上記シランカップリング剤は、本発明の有機EL表示素子用封止剤と基板等との接着性を向上させる役割を有する。
上記シランカップリング剤としては、例えば、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が挙げられる。これらのシランカップリング剤は単独で用いられてもよいし、2種以上が併用されてもよい。
上記シランカップリング剤の含有量は、上記重合性化合物100重量部に対して、好ましい下限が0.1重量部、好ましい上限が10重量部である。上記シランカップリング剤の含有量がこの範囲であることにより、余剰のシランカップリング剤がブリードアウトすることを抑制しつつ、接着性を向上させる効果により優れるものとなる。上記シランカップリング剤の含有量のより好ましい下限は0.5重量部、より好ましい上限は5重量部である。
本発明の有機EL表示素子用封止剤は、更に、本発明の目的を阻害しない範囲において、表面改質剤を含有してもよい。上記表面改質剤を含有することにより、本発明の有機EL表示素子用封止剤に塗膜の平坦性を付与することができる。
上記表面改質剤としては、例えば、界面活性剤やレベリング剤等が挙げられる。
上記表面改質剤としては、例えば、シリコーン系やフッ素系等のものが挙げられる。
上記表面改質剤のうち市販されているものとしては、例えば、BYK-340、BYK-345(いずれもビックケミー・ジャパン社製)、サーフロンS-611(AGCセイミケミカル社製)等が挙げられる。
本発明の有機EL表示素子用封止剤は、粘度調整等を目的として溶剤を含有してもよいが、残存した溶剤により、有機発光材料層が劣化したりアウトガスが発生したりする等の問題が生じるおそれがあるため、溶剤を含有しない、又は、溶剤の含有量が0.05重量%以下であることが好ましい。
また、本発明の有機EL表示素子用封止剤は、必要に応じて、補強剤、軟化剤、可塑剤、粘度調整剤、紫外線吸収剤、酸化防止剤等の公知の各種添加剤を含有してもよい。
本発明の有機EL表示素子用封止剤を製造する方法としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等の混合機を用いて、重合性化合物と、重合開始剤と、必要に応じて添加するシランカップリング剤等の添加剤とを混合する方法等が挙げられる。
本発明の有機EL表示素子用封止剤は、25℃における粘度の好ましい下限が3mPa・s、好ましい上限が20mPa・sである。上記粘度がこの範囲であることにより、インクジェット吐出性、吐出安定性、及び、濡れ広がり性により優れるものとなる。上記粘度のより好ましい下限は5mPa・s、より好ましい上限は15mPa・sである。
なお、本明細書において上記粘度は、E型粘度計を用いて、100rpmの条件で測定される値を意味する。
本発明の有機EL表示素子用封止剤は、25℃における表面張力の好ましい下限が15mN/m、好ましい上限が35mN/mである。上記表面張力がこの範囲であることにより、インクジェット吐出性、吐出安定性、及び、濡れ広がり性により優れるものとなる。上記表面張力のより好ましい下限は20mN/m、より好ましい上限は30mN/m、更に好ましい下限は22mN/m、更に好ましい上限は28mN/mである。
なお、本明細書において、上記表面張力は、動的濡れ性試験機により、Wilhelmy法によって測定される値を意味する。
本発明の有機EL表示素子用封止剤は、厚さ10μmの硬化物のヘイズの上限が1.0%である。上記ヘイズが1.0%以下であることにより、得られる有機EL表示素子が光学特性に優れるものとなる。上記ヘイズの好ましい上限は0.5%、より好ましい上限は0.3%である。上記ヘイズは低いほどよく、好ましい下限は特にないが、実質的には0.01%以上となる。
また、本発明の有機EL表示素子用封止剤は、硬化物の波長380~800nmにおける光の全光線透過率の好ましい下限が80%である。上記全光線透過率が80%以上であることにより、得られる有機EL表示素子が光学特性により優れるものとなる。上記全光線透過率のより好ましい下限は85%である。
上記ヘイズ値は、上記高沸点重合性化合物、上記低沸点重合性化合物、重合開始剤、増感剤の種類や配合量を調整することにより所望の範囲内とすることができる。特に、上記高沸点重合性化合物と上記低沸点重合性化合物との相溶性等を考慮し、その種類の組合せと配合量を調整することにより所望の範囲内とすることが容易となる。これにより、単に高沸点重合性化合物と低沸点重合性化合物を含有する組成物よりも光学特性に優れた有機EL表示素子用封止剤を得ることができる。
なお、上記ヘイズ及び上記全光線透過率は、例えば、AUTOMATIC HAZE METER MODEL TC-III DPK(東京電色社製)等の分光計を用いて測定することができる。また、上記ヘイズ及び上記全光線透過率、並びに、後述する透湿度及び含水率の測定に用いる硬化物は、例えば、LEDランプ等の光源を用いて波長395nmの紫外線を1000mJ/cm照射することにより得ることができる。
本発明1の有機EL表示素子用封止剤は、予め厚さ10μmで塗布した後に395nmの紫外線を1000mJ/cm照射して得られた硬化物のアウトガス発生量が1000ppm未満であることが好ましい。上記アウトガス発生量が1000ppm未満であることにより、得られる有機EL表示素子が信頼性により優れるものとなる。上記アウトガス発生量のより好ましい上限は500ppm、更に好ましい上限は100ppmである。
上記アウトガス発生量は少ないほどよく、好ましい下限は特にないが、実質的には5ppm以上となる。
なお、上記アウトガス発生量は、ガスクロマトグラフ質量分析計(例えば、JMS-Q1050(日本電子社製)等)を用いて測定することができる。
本発明2の有機EL表示素子用封止剤は、予め厚さ10μmで塗布した後に395nmの紫外線を1000mJ/cm照射して得られた硬化物のアウトガス発生量が1000ppm未満である。上記アウトガス発生量が1000ppm未満であることにより、得られる有機EL表示素子が信頼性に優れるものとなる。上記アウトガス発生量の好ましい上限は500ppm、より好ましい上限は100ppmである。
上記アウトガス発生量は少ないほどよく、好ましい下限は特にないが、実質的には5ppm以上となる。
本発明の有機EL表示素子用封止剤は、JIS Z 0208に準拠して、硬化物を85℃、85%RHの環境下に24時間暴露して測定した100μm厚での透湿度が100g/m以下であることが好ましい。上記透湿度が100g/m以下であることにより、硬化物中の水分による有機発光材料層の劣化を防止する効果により優れるものとなり、得られる有機EL表示素子が信頼性により優れるものとなる。
本発明の有機EL表示素子用封止剤は、硬化物を85℃、85%RHの環境下に24時間暴露したときに、硬化物の含水率が0.5%未満であることが好ましい。上記硬化物の含水率が0.5%未満であることにより、硬化物中の水分による有機発光材料層の劣化を防止する効果により優れるものとなり、得られる有機EL表示素子が信頼性により優れるものとなる。上記硬化物の含水率のより好ましい上限は0.3%である。
上記含水率の測定方法としては、例えば、JIS K 7251に準拠してカールフィッシャー法により求める方法や、JIS K 7209-2に準拠して吸水後の重量増分を求める等の方法が挙げられる。
本発明の有機EL表示素子用封止剤は、インクジェット法による塗布に用いられることが好ましい。
本発明の有機EL表示素子用封止剤を用いて有機EL表示素子を製造する方法としては、例えば、インクジェット法により、本発明の有機EL表示素子用封止剤を基材に塗布する工程と、塗布した有機EL表示素子用封止剤を光照射及び/又は加熱により硬化させる工程とを有する方法等が挙げられる。
本発明の有機EL表示素子用封止剤を基材に塗布する工程において、本発明の有機EL表示素子用封止剤は、基材の全面に塗布してもよく、基材の一部に塗布してもよい。塗布により形成される本発明の有機EL表示素子用封止剤の封止部の形状としては、有機発光材料層を有する積層体を外気から保護しうる形状であれば特に限定されず、該積層体を完全に被覆する形状であってもよいし、該積層体の周辺部に閉じたパターンを形成してもよいし、該積層体の周辺部に一部開口部を設けた形状のパターンを形成してもよい。
本発明の有機EL表示素子用封止剤を光照射により硬化させる場合、本発明の有機EL表示素子用封止剤は、300nm以上400nm以下の波長及び300mJ/cm以上3000mJ/cm以下の積算光量の光を照射することによって好適に硬化させることができる。
上記光照射に用いる光源としては、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、エキシマレーザ、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ、ナトリウムランプ、ハロゲンランプ、キセノンランプ、LEDランプ、蛍光灯、太陽光、電子線照射装置等が挙げられる。これらの光源は、単独で用いられてもよく、2種以上が併用されてもよい。
これらの光源は、上記光ラジカル重合開始剤や光カチオン重合開始剤の吸収波長に合わせて適宜選択される。
本発明の有機EL表示素子用封止剤への光の照射手段としては、例えば、各種光源の同時照射、時間差をおいての逐次照射、同時照射と逐次照射との組み合わせ照射等が挙げられ、いずれの照射手段を用いてもよい。
上記有機EL表示素子用封止剤を光照射及び/又は加熱により硬化させる工程により得られる硬化物は、更に無機材料膜で被覆されていてもよい。
上記無機材料膜を構成する無機材料としては、従来公知のものを用いることができ、例えば、窒化珪素(SiN)や酸化珪素(SiO)等が挙げられる。上記無機材料膜は、1層からなるものであってもよく、複数種の層を積層したものであってもよい。また、上記無機材料膜と本発明の有機EL表示素子用封止剤からなる樹脂膜とを、交互に繰り返して上記積層体を被覆してもよい。
上記有機EL表示素子を製造する方法は、本発明の有機EL表示素子用封止剤を塗布した基材(以下、「一方の基材」ともいう)と他方の基材とを貼り合わせる工程を有していてもよい。
本発明の有機EL表示素子用封止剤を塗布する基材(以下、「一方の基材」ともいう)は、有機発光材料層を有する積層体の形成されている基材であってもよく、該積層体の形成されていない基材であってもよい。
上記一方の基材が上記積層体の形成されていない基材である場合、上記他方の基材を貼り合わせた際に、上記積層体を外気から保護できるように上記一方の基材に本発明の有機EL表示素子用封止剤を塗布すればよい。即ち、他方の基材を貼り合わせた際に上記積層体の位置となる場所に全面的に塗布するか、又は、他方の基材を貼り合わせた際に上記積層体の位置となる場所が完全に収まる形状に、閉じたパターンの封止剤部を形成してもよい。
上記有機EL表示素子用封止剤を光照射及び/又は加熱により硬化させる工程は、上記一方の基材と上記他方の基材とを貼り合わせる工程の前に行なってもよいし、上記一方の基材と上記他方の基材とを貼り合わせる工程の後に行なってもよい。
上記有機EL表示素子用封止剤を光照射及び/又は加熱により硬化させる工程を、上記一方の基材と上記他方の基材とを貼り合わせる工程の前に行なう場合、本発明の有機EL表示素子用封止剤は、光照射及び/又は加熱してから硬化反応が進行して接着ができなくなるまでの可使時間が1分以上であることが好ましい。上記可使時間が1分以上であることにより、上記一方の基材と上記他方の基材とを貼り合わせる前に硬化が進行し過ぎることなく、より高い接着強度を得ることができる。
上記一方の基材と上記他方の基材とを貼り合わせる工程において、上記一方の基材と上記他方の基材とを貼り合わせる方法は特に限定されないが、減圧雰囲気下で貼り合わせることが好ましい。
上記減圧雰囲気下の真空度の好ましい下限は0.01kPa、好ましい上限は10kPaである。上記減圧雰囲気下の真空度がこの範囲であることにより、真空装置の気密性や真空ポンプの能力から真空状態を達成するのに長時間を費やすことなく、上記一方の基材と上記他方の基材とを貼り合わせる際の本発明の有機EL表示素子用封止剤中の気泡をより効率的に除去することができる。
本発明によれば、インクジェット法により容易に塗布することができ、低アウトガス性に優れ、かつ、信頼性に優れる有機EL表示素子を得ることができる有機EL表示素子用封止剤を提供することができる。
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
(実施例1~8、比較例1~7)
表1~3に記載された配合比に従い、各材料を、ホモディスパー型撹拌混合機(プライミクス社製、「ホモディスパーL型」)を用い、撹拌速度3000rpmで均一に撹拌混合することにより、実施例1~8、比較例1~7の各有機EL表示素子用封止剤を作製した。
実施例及び比較例で得られた各有機EL表示素子用封止剤について、E型粘度計(東機産業社製、「VISCOMETER TV-22」)を用いて、25℃、100rpmの条件において測定した粘度、及び、25℃において動的濡れ性試験機(レスカ社製、「WET-6100型」)により測定した表面張力を表1~3に示した。
また、実施例及び比較例で得られた各有機EL表示素子用封止剤を予めガラス基板上に厚さ10μmで塗布した後、UV-LEDを用いて395nmの紫外線を1000mJ/cm照射して硬化物を得た。得られた硬化物をバイアル瓶中に20mg計量して封入した。このバイアル瓶を100℃で30分間加熱し、バイアル瓶中の気化成分をアウトガス発生量として、ガスクロマトグラフ質量分析計(日本電子社製、「JMS-Q1050」)を用いて測定した。結果を表1~3に示した。
更に、実施例及び比較例で得られた各有機EL表示素子用封止剤をガラス基板上に塗布した後、UV-LEDを用いて395nmの紫外線を1000mJ/cm照射し、厚さ10μmの硬化物を得た。得られた硬化物について、分光計を用いてヘイズ及び波長380~800nmにおける光の全光線透過率の測定を行った。上記分光計としては、AUTOMATIC HAZE METER MODEL TC-III DPK(東京電色社製)を用いた。
なお、表中における「セロキサイド2021P」及び2種の「アルケニル基含有オルガノポリシロキサン」については、1気圧における沸点が300℃以上であることは確認されたが、減圧下でも正確な沸点が測定できなかったため、沸点の具体的な数値は示さず「300℃以上」とした。
<評価>
実施例及び比較例で得られた各有機EL表示素子用封止剤について以下の評価を行った。結果を表1~3に示した。
(1)インクジェット塗布性
(1-1)インクジェット吐出性
実施例及び比較例で得られた各有機EL表示素子用封止剤を、インクジェット吐出装置(マイクロジェット社製、「NanoPrinter500」)を用いて、30ピコリットルの液滴量にて、アルカリ洗浄した無アルカリガラス(旭硝子社製、「AN100」)上に塗布した。吐出不良がなくきれいに吐出できた場合を「○」、80%以上吐出できたが、20%未満の吐出不良が発生した場合を「△」、20%以上の吐出不良が発生した場合を「×」としてインクジェット吐出性を評価した。
(1-2)吐出安定性
実施例及び比較例で得られた各有機EL表示素子用封止剤を、インクジェット吐出装置(マイクロジェット社製、「NanoPrinter500」)を用いて、80ピコリットルの液滴量にて、アルカリ洗浄した無アルカリガラス(旭硝子社製、「AN100」)上に、5m/秒の速度にて500μmピッチで1000滴塗布した。塗布後、25℃で10分間放置し、再度上記と同じ条件にて塗布を行い、2回目の塗布後のガラス基板上の液滴の様子を観察した。
塗布できなかった液滴の数が0個であった場合を「○」、塗布できなかった液滴の数が1個以上20個未満であった場合を「△」、塗布できなかった液滴の数が20個以上であった場合を「×」として吐出安定性を評価した。
(1-3)濡れ広がり性
実施例及び比較例で得られた各有機EL表示素子用封止剤を、インクジェット吐出装置(マイクロジェット社製、「NanoPrinter500」)を用いて、30ピコリットルの液滴量にて、アルカリ洗浄した無アルカリガラス(旭硝子社製、「AN100」)上に、5m/秒の速度にて500μmピッチで1000滴塗布した。塗布後、25℃で10分間放置し、無アルカリガラス上の液滴の直径を測定した。
液滴の直径が150μm以上であった場合を「○」、液滴の直径が50μm以上150μm未満であった場合を「△」、液滴の直径が50μm未満であった場合を「×」として濡れ広がり性を評価した。
(2)有機EL表示素子の信頼性
(2-1)有機発光材料層を有する積層体が配置された基板の作製
ガラス基板(長さ25mm、幅25mm、厚さ0.7mm)にITO電極を1000Åの厚さで成膜した基板を用意した。上記基板をアセトン、アルカリ水溶液、イオン交換水、イソプロピルアルコールにてそれぞれ15分間超音波洗浄した後、煮沸させたイソプロピルアルコールにて10分間洗浄し、更に、UV-オゾンクリーナ(日本レーザー電子社製、「NL-UV253」)にて直前処理を行った。
次に、この基板を真空蒸着装置の基板フォルダに固定し、素焼きの坩堝にN,N’-ジ(1-ナフチル)-N,N’-ジフェニルベンジジン(α-NPD)を200mg、別の素焼き坩堝にトリス(8-キノリノラト)アルミニウム(Alq)を200mg入れ、真空チャンバー内を、1×10-4Paまで減圧した。その後、α-NPDの入った坩堝を加熱し、α-NPDを蒸着速度15Å/sで基板に堆積させ、膜厚600Åの正孔輸送層を成膜した。次いで、Alqの入った坩堝を加熱し、15Å/sの蒸着速度で膜厚600Åの有機発光材料層を成膜した。その後、正孔輸送層及び有機発光材料層が形成された基板を別の真空蒸着装置に移し、この真空蒸着装置内のタングステン製抵抗加熱ボートにフッ化リチウム200mg、別のタングステン製ボートにアルミニウム線1.0gを入れた。その後、真空蒸着装置の蒸着器内を2×10-4Paまで減圧してフッ化リチウムを0.2Å/sの蒸着速度で5Å成膜した後、アルミニウムを20Å/sの速度で1000Å成膜した。窒素により蒸着器内を常圧に戻し、10mm×10mmの有機発光材料層を有する積層体が配置された基板を取り出した。
(2-2)無機材料膜Aによる被覆
得られた積層体が配置された基板の該積層体全体を覆うように、13mm×13mmの開口部を有するマスクを設置し、プラズマCVD法にて無機材料膜Aを形成した。
プラズマCVD法は、原料ガスとしてSiHガス及び窒素ガスを用い、各々の流量をSiHガス10sccm、窒素ガス200sccmとし、RFパワーを10W(周波数2.45GHz)、チャンバー内温度を100℃、チャンバー内圧力を0.9Torrとする条件で行った。
形成された無機材料膜Aの厚さは、約1μmであった。
(2-3)樹脂保護膜の形成
得られた基板に対し、実施例及び比較例で得られた各有機EL表示素子用封止剤を、インクジェット吐出装置(マイクロジェット社製、「NanoPrinter500」)を使用して基板にパターン塗布した。
その後、LEDランプを用いて波長395nmの紫外線を1000mJ/cm照射して有機EL表示素子用封止剤を硬化させて樹脂保護膜を形成した。
(2-4)無機材料膜Bによる被覆
樹脂保護膜を形成した後、該樹脂保護膜の全体を覆うように、12mm×12mmの開口部を有するマスクを設置し、プラズマCVD法にて無機材料膜Bを形成して有機EL表示素子を得た。
プラズマCVD法は、上記「(2-2)無機材料膜Aによる被覆」と同様の条件で行った。
形成された無機材料膜Bの厚さは、約1μmであった。
(2-5)有機EL表示素子の発光状態
得られた有機EL表示素子を、温度85℃、湿度85%の環境下で100時間暴露した後、3Vの電圧を印加し、有機EL表示素子の発光状態(ダークスポット及び画素周辺消光の有無)を目視で観察した。ダークスポットや周辺消光が無く均一に発光した場合を「○」、ダークスポットや周辺消光はないものの輝度に僅かな低下が認められた場合を「△」、ダークスポットや周辺消光が認められた場合を「×」として有機EL表示素子の信頼性を評価した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
本発明によれば、インクジェット法により容易に塗布することができ、低アウトガス性に優れ、かつ、信頼性に優れる有機EL表示素子を得ることができる有機EL表示素子用封止剤を提供することができる。

Claims (7)

  1. 重合性化合物を含有する有機EL表示素子用封止剤であって、
    前記重合性化合物は、沸点が300℃以上の高沸点重合性化合物と、前記高沸点重合性化合物と反応し得る反応性官能基を有し、かつ、沸点が300℃未満の低沸点重合性化合物とを含有し、
    前記低沸点重合性化合物は、環状エーテル化合物、(メタ)アクリル化合物、及び、ヒドロシリル化反応性化合物からなる群より選択される少なくとも1種であり、
    前記重合性化合物100重量部中における前記低沸点重合性化合物の含有量が1重量部以上20重量部以下であり、
    厚さ10μmの硬化物のヘイズが1.0%以下である
    ことを特徴とする有機EL表示素子用封止剤。
  2. 重合性化合物を含有する有機EL表示素子用封止剤であって、
    前記重合性化合物は、沸点が300℃以上の高沸点重合性化合物と、前記高沸点重合性化合物と反応し得る反応性官能基を有し、かつ、沸点が300℃未満の低沸点重合性化合物とを含有し、
    前記重合性化合物100重量部中における前記低沸点重合性化合物の含有量が1重量部以上20重量部以下であり、
    予め厚さ10μmで塗布した後に395nmの紫外線を1000mJ/cm照射して得られた硬化物のアウトガス発生量が1000ppm未満であり、
    厚さ10μmの硬化物のヘイズが1.0%以下である
    ことを特徴とする有機EL表示素子用封止剤。
  3. 低沸点重合性化合物は、沸点が150℃以上であることを特徴とする請求項1又は2記載の有機EL表示素子用封止剤。
  4. 低沸点重合性化合物は、1,7-オクタジエンジエポキシド、ネオペンチルグリコールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、イソボルニルアクリレート、1,6-ヘキサンジオールジアクリレート、3-エチル-3-ヒドロキシメチルオキセタン、及び、3-エチル-3-オキセタンメタノールからなる群より選択される少なくとも1種であることを特徴とする請求項1、2又は3記載の有機EL表示素子用封止剤。
  5. 25℃における粘度が3mPa・s以上20mPa・s以下であることを特徴とする請求項1、2、3又は4記載の有機EL表示素子用封止剤。
  6. 25℃における表面張力が15mN/m以上35mN/m以下であることを特徴とする請求項1、2、3、4又は5記載の有機EL表示素子用封止剤。
  7. インクジェット法による塗布に用いられることを特徴とする請求項1、2、3、4、5又は6記載の有機EL表示素子用封止剤。
PCT/JP2018/021437 2017-06-15 2018-06-05 有機el表示素子用封止剤 WO2018230388A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018530922A JP7007272B2 (ja) 2017-06-15 2018-06-05 有機el表示素子用封止剤
KR1020197022901A KR102658948B1 (ko) 2017-06-15 2018-06-05 유기 el 표시 소자용 봉지제
CN201880038844.1A CN110731127B (zh) 2017-06-15 2018-06-05 有机el显示元件用密封剂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-117789 2017-06-15
JP2017117789 2017-06-15

Publications (1)

Publication Number Publication Date
WO2018230388A1 true WO2018230388A1 (ja) 2018-12-20

Family

ID=64660728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021437 WO2018230388A1 (ja) 2017-06-15 2018-06-05 有機el表示素子用封止剤

Country Status (5)

Country Link
JP (1) JP7007272B2 (ja)
KR (1) KR102658948B1 (ja)
CN (1) CN110731127B (ja)
TW (1) TW201905024A (ja)
WO (1) WO2018230388A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230697A1 (ja) * 2018-05-31 2019-12-05 パナソニックIpマネジメント株式会社 紫外線硬化性樹脂組成物、発光装置の製造方法及び発光装置
WO2019244780A1 (ja) * 2018-06-20 2019-12-26 三井化学株式会社 表示素子用封止剤およびその硬化物
CN112310302A (zh) * 2019-07-30 2021-02-02 陕西坤同半导体科技有限公司 一种有机发光器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008059945A (ja) * 2006-08-31 2008-03-13 Nagase Chemtex Corp 電子デバイスの製造方法
JP2013228526A (ja) * 2012-04-25 2013-11-07 Jsr Corp ポジ型感放射線性組成物、表示素子用層間絶縁膜及びその形成方法
JP2014225380A (ja) * 2013-05-16 2014-12-04 積水化学工業株式会社 有機エレクトロルミネッセンス表示素子用封止剤及び有機エレクトロルミネッセンス表示素子の製造方法
WO2015068454A1 (ja) * 2013-11-07 2015-05-14 積水化学工業株式会社 有機エレクトロルミネッセンス表示素子用封止剤
JP2016040365A (ja) * 2014-02-18 2016-03-24 積水化学工業株式会社 静電塗布用硬化性樹脂組成物、樹脂保護膜、電子デバイス、及び、電子デバイスの製造方法
WO2017068936A1 (ja) * 2015-10-23 2017-04-27 東レ株式会社 ディスプレイ基板用樹脂組成物、並びに、それを用いた耐熱性樹脂フィルム、有機elディスプレイ基板及び有機elディスプレイの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3817081B2 (ja) 1999-01-29 2006-08-30 パイオニア株式会社 有機el素子の製造方法
JP2001307873A (ja) 2000-04-21 2001-11-02 Toppan Printing Co Ltd 有機エレクトロルミネッセンス表示素子およびその製造方法
US8808457B2 (en) 2002-04-15 2014-08-19 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
JP2008153211A (ja) 2006-11-22 2008-07-03 Fujifilm Corp バリア性フィルム基板およびその製造方法
KR20150091380A (ko) * 2013-02-14 2015-08-10 후지필름 가부시키가이샤 잉크젯 도포용 감광성 수지 조성물, 열 처리물 및 그 제조 방법, 수지 패턴 제조 방법, 액정 표시 장치, 유기 el 표시 장치, 터치패널 및 그 제조 방법, 및 터치패널 표시 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008059945A (ja) * 2006-08-31 2008-03-13 Nagase Chemtex Corp 電子デバイスの製造方法
JP2013228526A (ja) * 2012-04-25 2013-11-07 Jsr Corp ポジ型感放射線性組成物、表示素子用層間絶縁膜及びその形成方法
JP2014225380A (ja) * 2013-05-16 2014-12-04 積水化学工業株式会社 有機エレクトロルミネッセンス表示素子用封止剤及び有機エレクトロルミネッセンス表示素子の製造方法
WO2015068454A1 (ja) * 2013-11-07 2015-05-14 積水化学工業株式会社 有機エレクトロルミネッセンス表示素子用封止剤
JP2016040365A (ja) * 2014-02-18 2016-03-24 積水化学工業株式会社 静電塗布用硬化性樹脂組成物、樹脂保護膜、電子デバイス、及び、電子デバイスの製造方法
WO2017068936A1 (ja) * 2015-10-23 2017-04-27 東レ株式会社 ディスプレイ基板用樹脂組成物、並びに、それを用いた耐熱性樹脂フィルム、有機elディスプレイ基板及び有機elディスプレイの製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230697A1 (ja) * 2018-05-31 2019-12-05 パナソニックIpマネジメント株式会社 紫外線硬化性樹脂組成物、発光装置の製造方法及び発光装置
JP2019210449A (ja) * 2018-05-31 2019-12-12 パナソニックIpマネジメント株式会社 紫外線硬化性樹脂組成物、発光装置の製造方法及び発光装置
WO2019244780A1 (ja) * 2018-06-20 2019-12-26 三井化学株式会社 表示素子用封止剤およびその硬化物
JPWO2019244780A1 (ja) * 2018-06-20 2021-03-11 三井化学株式会社 表示素子用封止剤およびその硬化物
JP7078720B2 (ja) 2018-06-20 2022-05-31 三井化学株式会社 表示素子用封止剤およびその硬化物
CN112310302A (zh) * 2019-07-30 2021-02-02 陕西坤同半导体科技有限公司 一种有机发光器件

Also Published As

Publication number Publication date
CN110731127B (zh) 2022-08-19
KR102658948B1 (ko) 2024-04-18
CN110731127A (zh) 2020-01-24
TW201905024A (zh) 2019-02-01
JPWO2018230388A1 (ja) 2020-04-16
KR20200019110A (ko) 2020-02-21
JP7007272B2 (ja) 2022-01-24

Similar Documents

Publication Publication Date Title
JP6200591B2 (ja) インクジェット塗布用電子デバイス用封止剤及び電子デバイスの製造方法
JP2019040872A (ja) 有機el表示素子用封止剤及び有機el表示素子用封止剤の製造方法
JP6404494B2 (ja) 有機el表示素子用封止剤
JP2022027778A (ja) 有機el表示素子用封止剤
JP7007272B2 (ja) 有機el表示素子用封止剤
JP2018200891A (ja) 有機el表示素子用封止剤
JP7332470B2 (ja) 有機el表示素子用封止剤
JP7479843B2 (ja) 有機el表示素子用封止剤
KR102662808B1 (ko) 유기 el 표시 소자용 봉지제
JP2023029649A (ja) 有機el表示素子用封止剤
JP2019012698A (ja) 有機el表示素子用封止剤
WO2019188794A1 (ja) 有機el表示素子用封止剤
JP2019029355A (ja) 有機el表示素子用封止剤
WO2019188805A1 (ja) 有機el表示素子用封止剤
WO2019203123A1 (ja) 有機el表示素子用封止剤及びトップエミッション型有機el表示素子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018530922

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818366

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197022901

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18818366

Country of ref document: EP

Kind code of ref document: A1