WO2018229921A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2018229921A1
WO2018229921A1 PCT/JP2017/022069 JP2017022069W WO2018229921A1 WO 2018229921 A1 WO2018229921 A1 WO 2018229921A1 JP 2017022069 W JP2017022069 W JP 2017022069W WO 2018229921 A1 WO2018229921 A1 WO 2018229921A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
gas sensor
threshold value
output
control device
Prior art date
Application number
PCT/JP2017/022069
Other languages
English (en)
French (fr)
Inventor
和樹 渡部
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to AU2017418267A priority Critical patent/AU2017418267B2/en
Priority to EP17914092.6A priority patent/EP3640567A4/en
Priority to PCT/JP2017/022069 priority patent/WO2018229921A1/ja
Priority to CN201780091861.7A priority patent/CN110730891B/zh
Priority to US16/493,935 priority patent/US11187424B2/en
Priority to JP2019524647A priority patent/JP6704522B2/ja
Publication of WO2018229921A1 publication Critical patent/WO2018229921A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioner equipped with a gas sensor for detecting the concentration of refrigerant gas.
  • a gas sensor for detecting refrigerant leakage is provided inside the air conditioner.
  • An air conditioner equipped with this type of gas sensor has a function of diagnosing an abnormality of the gas sensor and notifying the user of the replacement time before the gas sensor cannot perform normal detection due to the effects of aging and environmental stress (for example, see Patent Document 1).
  • siloxane Si group
  • the gas sensor may not function normally due to siloxane poisoning.
  • Patent Document 1 does not discuss the deterioration of the gas sensor due to siloxane poisoning. For this reason, even if the gas sensor has reached the end of its life due to siloxane poisoning, there has been a problem that the user may continue to use it without noticing that, and refrigerant leakage may not be detected.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an air conditioner capable of issuing an alarm when a gas sensor approaches the end of its life due to siloxane poisoning. .
  • the air conditioner according to the present invention includes a housing, a gas sensor that is disposed in the housing and outputs a sensor output corresponding to the refrigerant concentration, a sensor output of the gas sensor, and a threshold value that identifies the presence or absence of refrigerant leakage.
  • a control device that detects refrigerant leakage by comparing with a threshold value and an output device that issues an alarm. The control device confirms that the sensor output of the gas sensor is zero due to siloxane poisoning.
  • a state that is equal to or higher than the second threshold set to a voltage lower than the limit voltage to be expressed and is lower than the first threshold higher than the second threshold is continued for a preset setting period, an alarm is issued from the output device. Is.
  • FIG. 1 is a front view showing an external configuration of an air conditioner according to Embodiment 1 of the present invention.
  • FIG. 2 is a front view schematically showing the internal structure of the air conditioner according to Embodiment 1 of the present invention.
  • FIG. 3 is a side view schematically showing the internal structure of the air conditioner according to Embodiment 1 of the present invention.
  • an air conditioner a floor-mounted air conditioner that is installed on the floor surface of an indoor space that is an air-conditioning target space will be described, but the present invention is not limited to this.
  • a wall-mounted or ceiling-embedded air conditioner may be used.
  • the positional relationship (for example, vertical relationship etc.) of each structural member in the following description is a thing when installing an air conditioner in the state which can be used.
  • the housing 1 of the air conditioner is provided with a suction port 2 at the lower part of the front surface and an outlet 3 at the upper part of the front surface.
  • a remote controller 10 is disposed on the front surface of the housing 1. Inside the housing 1, a heat exchanger 4, a fan 5, a gas sensor 6, a flare portion 7, a control device 8, and the like are arranged.
  • the air conditioner sucks room air from the suction port 2 by driving the fan 5, moves the sucked air to the upper part of the housing 1 through the fan 5, exchanges heat with the refrigerant in the heat exchanger 4, It comes to blow out indoors.
  • the heat exchanger 4 constitutes a refrigerant circuit together with a compressor, an outdoor heat exchanger, a decompressor (not shown), and the like, and the refrigerant circulates in the refrigerant circuit, thereby
  • the machine performs one or both of cooling and heating the indoor space.
  • the refrigerant for example, a combustible refrigerant such as R32 is used. Even if the flammable refrigerant leaks into the room, it will not ignite if the refrigerant concentration in the space is low.
  • the lower limit concentration at which the combustible refrigerant does not ignite is referred to as the ignition concentration.
  • the ignition concentration of R32 is 0.3 [kg / m 3 ] when calculated at a molecular weight of R32 of 52 and a room temperature of 25 ° C., and the volume ratio is 14.4.
  • a slightly flammable refrigerant such as R1234yf or R1234ze (E), or a strong flammable refrigerant such as R290 or R1270, or non-flammable R22 or R410A or the like may be used.
  • Nonflammable refrigerants can also be used.
  • the remote controller 10 includes a display device 10a composed of a liquid crystal panel and an input device (not shown) for inputting a set temperature.
  • Flare part 7 is a place where a contractor performs piping connection work at the place where the air conditioner is installed.
  • the flare part 7 is composed of, for example, a flare joint for connecting the indoor pipe 11a and the indoor pipe 11b connected to the heat exchanger 4 and the extension pipe 12a and the extension pipe 12b outside the housing 1. Is done.
  • the refrigerant leaks from the flare portion 7 due to a construction error or the like, the refrigerant has a greater specific gravity than air, and therefore accumulates in the stagnation portion 9 which is the lower space in the housing 1.
  • the refrigerant collected in the stagnation part 9 finally overflows from the suction port 2 into the room.
  • the gas sensor 6 is disposed in the stagnation part 9 and outputs a sensor output [V] that is a voltage corresponding to the refrigerant concentration.
  • the gas sensor 6 is composed of, for example, a SnO 2 (tin oxide) sensor as a semiconductor gas sensor. The gas sensor 6 will be described in detail again.
  • the control device 8 controls the entire air conditioner.
  • the control device 8 is constituted by a microcomputer, for example, and includes a CPU, a RAM, a ROM, and the like.
  • the ROM stores a control program and a program corresponding to the flowchart of FIG.
  • sensor outputs output from the gas sensor 6 are sequentially input to the control device 8 every other minute. Based on the input, detection of the presence or absence of refrigerant leakage and detection that the gas sensor 6 is near the end of its life due to siloxane poisoning. And sensor failure detection.
  • the gas sensor 6 is near the end of its life is referred to as “life extension” in the sense that there is still a time until the gas sensor 6 reaches the end of its life.
  • the first threshold value is set to a voltage corresponding to the alarm concentration that is lower than the ignition concentration.
  • the alarm concentration is set to about 0.01% of the ignition concentration, for example.
  • the grace period of the gas sensor 6 is detected due to siloxane poisoning, and an alarm such as prompting replacement is output before the gas sensor 6 reaches the lifetime. There is in doing so.
  • FIG. 4 is a diagram showing a change in sensor output due to siloxane poisoning in the air conditioner according to Embodiment 1 of the present invention.
  • the horizontal axis represents time
  • the vertical axis represents sensor output [V].
  • FIG. 4 shows the sensor output in the normal time without refrigerant leakage.
  • the SiO 2 formation portion stuck to the surface of tin oxide is a portion that originally adsorbed oxygen, but oxygen cannot be adsorbed by changing from tin oxide to SiO 2 .
  • the resistance value of the sensor element decreases. Therefore, even if there is no refrigerant around the sensor element, a phenomenon occurs in which the sensor output [V] increases as in the case where the refrigerant exists. Such a phenomenon is called siloxane poisoning.
  • the gas sensor 6 includes a gas sensitive part having tin oxide as a sensor element and a heating part for heating the gas sensitive part.
  • the gas sensor 6 is used by heating the gas sensitive part to about 400 ° C.
  • the temperature of the gas sensitive part is about 400 ° C. and does not exceed 1000 ° C., the Si group once attached to the tin oxide surface is never separated from the tin oxide surface.
  • the sensitivity becomes zero. That is, the entire surface of tin oxide is covered with SiO 2 , oxygen cannot be adsorbed on the tin oxide surface, and there is no oxygen on the tin oxide surface. Thus, in a state where there is no oxygen on the surface of tin oxide, even if refrigerant leakage occurs, there is no state where oxygen is removed from the surface of tin oxide by reacting with the refrigerant. For this reason, when there is no oxygen on the surface of tin oxide, the resistance value of the sensor element decreases to the limit value. As a result, the sensor output continues to rise to the limit voltage. That is, the sensor output continues to output the limit voltage regardless of whether the refrigerant leaks or not, and it no longer functions as a sensor, and the sensitivity becomes zero.
  • a voltage lower than the limit voltage is set as the second threshold for determining the siloxane poisoning.
  • the limit voltage does not exceed the sensor output when refrigerant leakage occurs, and therefore, siloxane poisoning and refrigerant leakage can be distinguished by the sensor output. That is, in the case of siloxane poisoning, a sensor output lower than that at the time of refrigerant leakage continues to be output, so that it is possible to determine the life extension by detecting this. Specifically, when the sensor output that is equal to or greater than the second threshold value and less than the first threshold value continues for a preset time period, the control device 8 determines that the life is postponed. For example, the setting period may be set from one hour to several days.
  • the setting period is about several seconds to several minutes, for example, it is possible to avoid erroneously detecting the event that the hair spray is temporarily irradiated in the vicinity of the gas sensor 6 and the sensor output temporarily rises as a life extension.
  • the control device 8 stores in advance first to third threshold values for identifying each of the life delay due to siloxane poisoning, refrigerant leakage, and sensor failure, and makes a determination based on these threshold values.
  • the first threshold value and the second threshold value are as described above.
  • the third threshold value is the maximum value of the output range including variation when there is refrigerant leakage, and is also a threshold value for determining whether or not there is a sensor failure.
  • the first threshold value to the third threshold value have the following relationship. Second threshold ⁇ first threshold ⁇ third threshold.
  • the first to third threshold values can be calculated from test results or simulation results.
  • the sensor output range when there is no refrigerant leakage that is, the normal sensor output range is, for example, a range of 0.2 V to 1.0 V including variations.
  • the sensor output when the concentration detected by the gas sensor 6 reaches the alarm concentration that is, when the refrigerant leaks, is in the range of 1.5V to 4.5V including variations.
  • the limit voltage when the siloxane poisoning progresses and finally reaches the end of life is, for example, 1.5V.
  • the first threshold value is set to 1.5V
  • the second threshold value is set to 1.0V
  • the third threshold value is set to 4.5V.
  • normality, refrigerant leakage, and sensor failure may be determined using the first threshold value and the third threshold value. Specifically, it may be determined that the sensor output is normal if it is less than the first threshold, the refrigerant leaks if it is greater than or equal to the first threshold and less than the third threshold, and the sensor failure if it is greater than or equal to the third threshold.
  • the control device 8 is provided with a dip switch (not shown) so that the setting can be switched to the determination process for the siloxane environment or the determination process for the non-siloxane environment.
  • a dip switch corresponds to the switching device of the present invention.
  • the configuration may be switched by an operation on a remote controller.
  • FIG. 5 is a flowchart showing the flow of determination processing based on the sensor output of the gas sensor in the air conditioner according to Embodiment 1 of the present invention.
  • the control device 8 checks the setting of a dip switch (not shown) to check whether the installation environment of the air conditioner is a siloxane environment (step S1).
  • the control device 8 sets Flg from 0 to 1 (step S2).
  • determination processing for siloxane environment is performed thereafter.
  • Flg is a flag that is set to 0 in a non-siloxane environment and set to 1 in a siloxane environment, and is set to 0 in an initial setting.
  • the control device 8 checks whether the sensor output of the gas sensor 6 is less than the second threshold (step S3). If the sensor output of the gas sensor 6 is less than the second threshold value (YES in step S3), it is determined as normal (step S4). When the sensor output of the gas sensor 6 is equal to or higher than the second threshold value and lower than the first threshold value (NO in step S3, YES in step S5), the control device 8 subsequently checks Flg (step S6). Since Flg is set to 1 here, it is subsequently determined whether the sensor output continues for a set period (step S7). When the determination in step S7 is YES, the control device 8 determines that the siloxane poisoning has progressed and that the service life is postponed (step S8).
  • step S10 when the sensor output of the gas sensor 6 is equal to or higher than the first threshold value and lower than the third threshold value (NO in step S5, YES in step S9), the control device 8 determines that the refrigerant leaks (step S10). Further, when the sensor output of the gas sensor 6 is greater than or equal to the third threshold (NO in step S9), the control device 8 determines that a sensor failure has occurred (step S11).
  • the control device 8 When the determination is completed as described above, if the determination result is other than normal, the control device 8 outputs an alarm to the display device 10a of the remote controller 10 (step S12) and notifies the user.
  • the output of the alarm may be a display of a message indicating the contents of the determination result, or a display of a message prompting replacement of the gas sensor 6 in the case of a postponed life and a sensor failure.
  • the output method is not limited to the display on the display device 10a, but may be output from the audio output device by voice, or a display such as an LED may be turned on.
  • the control device 8 drives the fan 5 and continues the operation of the fan 5 until the gas sensor 6 is replaced (step S13). ).
  • the determination as to whether or not the gas sensor 6 has been replaced may be made as follows.
  • the gas sensor 6 has a sensor substrate (not shown), and a “normal” signal is continuously sent from the sensor substrate to the control device 8 while the gas sensor 6 is operating normally. Once an abnormality occurs, an “abnormal” signal is continuously sent from the sensor substrate to the control device 8. Therefore, the control device 8 determines that the gas sensor 6 has been replaced when a “normal” signal is sent after the “abnormal” signal.
  • step S1 when the installation environment of the air conditioner is a non-siloxane environment, the determination in step S1 is NO, and the control device 8 performs the determination in step S5 while Flg is initially set to 0. That is, the control device 8 does not make the determination using the second threshold value in step S3, and checks whether the sensor output is less than the first threshold value (step S5).
  • the control device 8 subsequently checks Flg. Since Flg is set to 0 here, the control device 8 determines that it is normal (step S4). That is, in the case of a non-siloxane environment, the control device 8 determines that the sensor output is normal if the sensor output is less than the first threshold value. If the sensor output is greater than or equal to the first threshold value, the same process as described above is performed to determine whether the refrigerant is leaking or the sensor is malfunctioning.
  • the gas sensor 6 when the sensor output of the gas sensor 6 is equal to or greater than the second threshold value and less than the first threshold value for a set period, the gas sensor 6 has a life span due to siloxane poisoning. It can be judged that it is in the state of. Therefore, before the gas sensor 6 becomes zero in sensitivity due to siloxane poisoning, an alarm can be output to prompt the user to replace the gas sensor 6. Therefore, it is possible to prevent a situation in which the gas sensor 6 reaches the end of its life without being noticed by the user, and the refrigerant leakage cannot be detected and not reported.
  • the control device 8 drives the fan 5 and continues the operation of the fan 5 until the gas sensor 6 is replaced.
  • the ignition concentration can be suppressed below, and safety can be maintained.
  • the siloxane poisoning which is an environmental stress was mainly demonstrated as a factor which causes deterioration of the gas sensor 6, there is also aged deterioration in addition.
  • the sensor output becomes 2 V, for example, in a new state at the time of shipment.
  • the phenomenon of .5V occurs. This phenomenon is opposite to the phenomenon in which the sensor output increases due to siloxane poisoning. Since both degradation due to siloxane poisoning and aging degradation act on the gas sensor 6, it is necessary to determine the life extension considering both. However, in fact, the sensor element of the gas sensor 6 is more affected by siloxane poisoning than aging deterioration. Therefore, the determination of the postponement of life is performed with sufficient accuracy by performing the determination method described above. Judgment of life extension can be made.
  • detection of refrigerant leakage in consideration of aging deterioration of the gas sensor 6 is not included in the gist of the present invention, and a conventionally known technique may be adopted.
  • the sensor output of the gas sensor 6 and the refrigerant leakage What is necessary is just to detect a refrigerant
  • the following confirmation may be performed in order to ensure the prevention of misdetection of postponed life due to temporary irradiation of hair spray or the like. That is, after it is determined that the life is postponed, the fan 5 is operated for a preset period, and after the operation, it is confirmed that the sensor output does not change from the second threshold value or more and less than the first threshold value. May be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Emergency Alarm Devices (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

空気調和機は、筐体と、筐体内に配置され、冷媒濃度に応じたセンサ出力を出力するガスセンサと、ガスセンサのセンサ出力と、冷媒漏洩の有無を識別する閾値である第1閾値とを比較して冷媒漏洩を検知する制御装置と、警報を発報する出力装置とを備える。制御装置は、ガスセンサのセンサ出力が、シロキサン被毒によってガスセンサの感度がゼロになったことを表す限界電圧より低い電圧に設定された第2閾値以上、且つ第2閾値よりも高い第1閾値未満となる状態が、予め設定された設定期間、継続する場合、警報を出力装置から発報させる。

Description

空気調和機
 この発明は、冷媒ガスの濃度を検知するガスセンサを備えた空気調和機に関するものである。
 従来より、空気調和機の内部には、冷媒漏洩を検知するガスセンサが備えられている。この種のガスセンサを備えた空気調和機では、経年劣化及び環境ストレスの影響でガスセンサが正常な検知を行えなくなる前に、ガスセンサの異常を診断し、ユーザーに交換時期を知らせる機能を備えている(例えば、特許文献1参照)。
特開2008-233065号公報
 例えば美容室等では、ヘアスプレー又はコンディショナーといったシロキサン(Si基)を含む商品が日常的に使用される。このようなシロキサンが多く存在するシロキサン環境では、シロキサン被毒によってガスセンサが正常に機能しなくなることがある。
 しかしながら、特許文献1では、シロキサン被毒に起因したガスセンサの劣化について検討されていない。このため、シロキサン被毒によってガスセンサが寿命に至っていたとしても、そのことにユーザーが気付かないまま使用が続けられ、冷媒漏洩を検知できない可能性があるという問題があった。
 この発明は、上記に示す課題を解決するためになされたもので、シロキサン被毒によってガスセンサが寿命に近づいた場合に警報を発報することが可能な空気調和機を提供することを目的とする。
 この発明に係る空気調和機は、筐体と、筐体内に配置され、冷媒濃度に応じたセンサ出力を出力するガスセンサと、ガスセンサのセンサ出力と、冷媒漏洩の有無を識別する閾値である第1閾値とを比較して冷媒漏洩を検知する制御装置と、警報を発報する出力装置とを備え、制御装置は、ガスセンサのセンサ出力が、シロキサン被毒によってガスセンサの感度がゼロになったことを表す限界電圧より低い電圧に設定された第2閾値以上、且つ第2閾値よりも高い第1閾値未満となる状態が、予め設定された設定期間、継続する場合、警報を出力装置から発報させるものである。
 本発明によれば、シロキサン被毒によってガスセンサが寿命に近づいた場合に警報を発報することが可能である。
この発明の実施の形態1に係る空気調和機の外観構成を示す正面図である。 この発明の実施の形態1に係る空気調和機の内部構造を模式的に示す正面図である。 この発明の実施の形態1に係る空気調和機の内部構造を模式的に示す側面図である。 この発明の実施の形態1に係る空気調和機における、シロキサン被毒に起因したセンサ出力の変化を示す図である。 この発明の実施の形態1に係る空気調和機における、ガスセンサのセンサ出力に基づく判断処理の流れを示すフローチャートである。
実施の形態1.
 図1は、この発明の実施の形態1に係る空気調和機の外観構成を示す正面図である。図2は、この発明の実施の形態1に係る空気調和機の内部構造を模式的に示す正面図である。図3は、この発明の実施の形態1に係る空気調和機の内部構造を模式的に示す側面図である。この実施の形態1では、空気調和機の一例として、空調対象空間となる室内空間の床面に設置される床置形の空気調和機について説明するが、本発明はこれに限られたものではなく壁掛け式又は天井埋込式の空気調和機でもよい。なお、以下の説明における各構成部材同士の位置関係(例えば、上下関係等)は、空気調和機を使用可能な状態に設置したときのものである。
 空気調和機の筐体1には、前面下部に吸込口2が設けられ、前面上部に吹出口3が設けられている。そして筐体1の前面にはリモコン10が配置されている。筐体1の内部には、熱交換器4、ファン5、ガスセンサ6、フレア部7及び制御装置8等が配置されている。空気調和機は、ファン5の駆動によって吸込口2から室内空気を吸込み、吸込んだ空気をファン5を通して筐体1の上部へ移動させ、熱交換器4で冷媒と熱交換して吹出口3から室内に吹き出すようになっている。
 空気調和機において熱交換器4は、圧縮機、室外側熱交換器及び減圧装置(何れも図示せず)等と共に冷媒回路を構成しており、冷媒回路に冷媒が循環することで、空気調和機は室内空間の冷房及び暖房の一方又はその両方を行う。
 冷媒には、例えばR32等の可燃性冷媒が用いられる。可燃性冷媒が万が一、室内に漏洩しても、空間における冷媒濃度が低ければ着火することはない。ここで、可燃性冷媒が発火しない限界下限濃度を着火濃度と称する。R32の着火濃度は、R32の分子量52、常温25℃で計算すると0.3[kg/m]であり、体積比で14.4である。なお、冷媒としては、R32の他、R1234yf、若しくはR1234ze(E)等の微燃性冷媒、又はR290若しくはR1270等の強燃性冷媒を用いてもよいし、不燃性を有するR22又はR410A等の不燃性冷媒を用いることもできる。
 リモコン10は、液晶パネルなどで構成された表示装置10aと、設定温度を入力する入力装置(図示せず)とを備えている。
 フレア部7は、空気調和機の設置場所にて施工業者が配管接続工事をする箇所である。フレア部7は、具体的には、熱交換器4に接続された室内配管11a及び室内配管11bと、筐体1外の延長配管12a及び延長配管12bとを接続するための例えばフレア継手で構成される。施工ミス等で例えばフレア部7から冷媒が漏洩した場合、冷媒は空気より比重が大きいため、筐体1内の下部空間であるよどみ部9に溜まる。よどみ部9に溜まった冷媒は、最終的に吸込口2から室内に溢れ出る。
 ガスセンサ6は、よどみ部9内に配置され、冷媒濃度に応じた電圧であるセンサ出力[V]を出力する。ガスセンサ6は、例えば半導体ガスセンサとしてSnO(酸化スズ)センサで構成される。ガスセンサ6については改めて詳述する。
 制御装置8は、空気調和機全体の制御を行うものである。制御装置8は例えばマイクロコンピュータで構成され、CPU、RAM及びROM等を備えている。ROMには制御プログラム及び後述の図5のフローチャートに対応したプログラム等が記憶されている。
 制御装置8には、ガスセンサ6から出力されたセンサ出力が例えば1分おきに順次入力され、その入力に基づいて冷媒漏洩の有無の検知と、シロキサン被毒によってガスセンサ6が寿命に近いことの検知と、センサ故障の検知とを行う。なお、以下では、「ガスセンサ6が寿命に近いこと」を、ガスセンサ6が寿命に達するまでにまだ猶予があるという意味で、「寿命猶予」と称する。
 次に、ガスセンサ6を構成する酸化スズセンサにおける冷媒漏洩の検知原理について説明する。
 センサ素子である酸化スズの表面には、通電により空気中の酸素が吸着されている。ここで、還元性ガスである冷媒ガスがセンサ素子付近に近づくと、酸化スズ表面の酸素が奪われ、つまり還元反応が起こり、センサ素子の抵抗値が下がる。これにより、センサ出力(電圧)が上がる。このように冷媒ガスがセンサ素子に近づくと電圧が上昇する現象に基づいて冷媒漏洩を検知することができる。具体的には、センサ出力が予め設定された第1閾値以上、且つ後述の第3閾値未満の場合、冷媒漏洩と検知するようにしている。ここで、第1閾値は、着火濃度よりも低い発報濃度に対応する電圧に設定される。発報濃度を着火濃度と比較してどの程度低く設定するかは、特に限定するものではないが、発報濃度は着火濃度の例えば0.01%程度に設定される。
 そして、この実施の形態1の特徴として、ガスセンサ6のセンサ出力に基づいて、シロキサン被毒によってガスセンサ6の寿命猶予を検知し、ガスセンサ6が寿命に達する前に、交換を促す等の警報を出力するようにしたことにある。
 次に、シロキサン被毒に起因した寿命猶予の判断原理について説明する。
 図4は、この発明の実施の形態1に係る空気調和機における、シロキサン被毒に起因したセンサ出力の変化を示す図である。図4において横軸は時間、縦軸はセンサ出力[V]である。図4では冷媒漏洩が無い通常時でのセンサ出力を示している。
 シロキサン環境では、シロキサンが持つSi基がセンサ素子である酸化スズと反応し、酸化スズ表面にSi+O=SiOとしてへばりつく。このように酸化スズ表面にへばりついたSiO形成部分は、本来は酸素を吸着していた部分であるが、酸化スズからSiOに変化することで酸素を吸着できなくなる。このため、センサ素子の抵抗値が下がる。よって、センサ素子の周囲に冷媒が存在していなくても、冷媒が存在している場合と同様にセンサ出力[V]が上がる現象が起こる。このような現象をシロキサン被毒という。
 なお、酸化スズ表面のSiO形成部分では、1000℃を超える熱が無いと、再度、酸化スズ表面からSi基が分離することはない。ガスセンサ6は、酸化スズをセンサ素子として有する感ガス部と感ガス部を加熱する加熱部とを備えており、感ガス部を400℃程度に加熱して使用される。このように感ガス部の温度は400℃程度であり、1000℃を超えないため、一旦、酸化スズ表面に付着したSi基が酸化スズ表面から分離することはない。よって、シロキサン環境が改善されたとしても、シロキサン被毒として残り、ガスセンサ6の状態がシロキサン被毒を受ける前の状態に復活することはない。このため、図4に示すように、シロキサン被毒が進むにつれ、通常時のセンサ出力が次第に上昇する。
 そして、シロキサン被毒が更に進んで最終的にガスセンサ6が寿命に達すると、感度がゼロになる。つまり、酸化スズの表面全体がSiOで覆われ、酸化スズ表面に酸素を吸着できず、酸化スズ表面に酸素が無い状態である。このように、酸化スズ表面に酸素が無い状態では、冷媒漏洩が生じていても、その冷媒と反応して酸化スズ表面から奪われる酸素が無い状態である。このため、酸化スズ表面に酸素が無い状態となると、センサ素子の抵抗値が限界値まで下がる。その結果、センサ出力が限界電圧に上がりっぱなしになる。つまり、冷媒漏洩が生じていても生じていなくても、センサ出力が限界電圧を出力し続けることになり、もはやセンサとして機能しておらず、感度がゼロになる。
 このように、シロキサン被毒によってガスセンサ6が寿命に達した場合、通常時のセンサ出力よりも高い限界電圧を出力し続けることになる。この実施の形態1では、ガスセンサ6が寿命に達する手前の寿命猶予を判断するため、限界電圧よりも低い電圧を、シロキサン被毒を判断するための第2閾値に設定する。
 なお、限界電圧は、冷媒漏洩が生じたときのセンサ出力以上となることはないため、センサ出力によってシロキサン被毒と冷媒漏洩とを区別できる。つまり、シロキサン被毒の場合には、冷媒漏洩時よりも低いセンサ出力を出し続けることになるため、これを検知することで寿命猶予を判断できる。具体的には、第2閾値以上、且つ第1閾値未満のセンサ出力が、予め設定された設定期間、継続する場合、制御装置8が寿命猶予と判断する。設定期間は、例えば1時間から数日に設定するとよい。設定期間を例えば数秒~数分程度とすると、例えばヘアスプレーが一時的にガスセンサ6付近で照射されてセンサ出力が一時的に上昇する事象を寿命猶予と誤検知することを避けるためである。
 以下、ガスセンサ6のセンサ出力に基づく、制御装置8における具体的な判断処理について説明する。制御装置8は、シロキサン被毒による寿命猶予、冷媒漏洩及びセンサ故障のそれぞれを識別するための第1閾値~第3閾値を予め記憶しており、これらの閾値に基づいて判断を行う。第1閾値及び第2閾値については上述した通りである。第3閾値は、冷媒漏洩が有る場合のバラツキを含めた出力範囲の最大値であり、また、センサ故障の有無を判断する閾値でもある。第1閾値~第3閾値は次の関係にある。第2閾値<第1閾値<第3閾値。
 第1閾値~第3閾値は、試験結果又はシミュレーション結果等から算出することができる。例えば、ガスセンサ6の特性として、冷媒漏洩が無い場合のセンサ出力の範囲、つまり通常時におけるセンサ出力の範囲が、バラツキも含めて例えば0.2V~1.0Vの範囲であるとする。そして、ガスセンサ6による検知濃度が発報濃度に達した場合、つまり冷媒漏洩が生じた場合のセンサ出力がバラツキも含めて例えば1.5V~4.5Vの範囲にあるとする。ここで、シロキサン被毒が進んで最終的に寿命に達した場合の限界電圧が例えば1.5Vであるとする。このような特性を有するガスセンサ6の場合、第1閾値は1.5V、第2閾値は1.0V、第3閾値は4.5Vに設定される。
 ところで、寿命猶予の判断は、空気調和機がシロキサン環境で使用される場合には必要であるが、非シロキサン環境で使用される場合には不要である。このため、空気調和機が非シロキサン環境で使用される場合には、第1閾値と第3閾値とを用いて、正常、冷媒漏れ及びセンサ故障を判断すればよい。具体的には、センサ出力が第1閾値未満であれば正常、第1閾値以上、第3閾値未満であれば冷媒漏洩、第3閾値以上であればセンサ故障と判断すればよい。そこで、この実施の形態1の空気調和機では、制御装置8にディップスイッチ(図示せず)を設け、シロキサン環境用の判断処理又は非シロキサン環境用の判断処理に設定を切り替えられる構成としている。これにより、施工業者が空気調和機の設置環境に応じてディップスイッチの設定を行うことで、設置環境に適した判断を行うことを可能としている。なお、ディップスイッチは本発明の切替装置に相当する。切替装置としては、他に例えばリモコン上の操作で設定を切り替えられる構成としてもよい。
 図5は、この発明の実施の形態1に係る空気調和機における、ガスセンサのセンサ出力に基づく判断処理の流れを示すフローチャートである。
 制御装置8は、空気調和機の設置環境がシロキサン環境にあるかどうかをディップスイッチ(図示せず)の設定を確認してチェックする(ステップS1)。ここでは、空気調和機の設置環境がシロキサン環境であるとすると(ステップS1でYES)、制御装置8はFlgを0から1にセットする(ステップS2)。これにより、これ以降、シロキサン環境用の判断処理が行われる。なお、Flgは、非シロキサン環境の場合に0、シロキサン環境の場合に1にセットされるフラグであり、初期設定では0にセットされているものとする。
 制御装置8は、続いて、ガスセンサ6のセンサ出力が第2閾値未満であるかとうかをチェックする(ステップS3)。ガスセンサ6のセンサ出力が第2閾値未満(ステップS3でYES)であれば、正常と判断する(ステップS4)。制御装置8は、ガスセンサ6のセンサ出力が第2閾値以上、且つ第1閾値未満の場合(ステップS3でNO、ステップS5でYES)、続いて、Flgをチェックする(ステップS6)。ここではFlgが1にセットされているので、続いて、そのセンサ出力が設定期間、継続しているかを判断する(ステップS7)。制御装置8は、ステップS7の判断がYESの場合、シロキサン被毒が進んでおり、寿命猶予と判断する(ステップS8)。
 また、制御装置8は、ガスセンサ6のセンサ出力が第1閾値以上、且つ第3閾値未満の場合(ステップS5でNO、ステップS9でYES)、 冷媒漏洩と判断する(ステップS10)。また、制御装置8は、ガスセンサ6のセンサ出力が第3閾値以上の場合(ステップS9でNO)、センサ故障と判断する(ステップS11)。
 以上のようにして判断が完了すると、制御装置8は、判断結果が正常以外の場合、リモコン10の表示装置10aに警報を出力して(ステップS12)、ユーザーに通知する。警報の出力は、判断結果の内容を示すメッセージの表示でもよいし、寿命猶予とセンサ故障の場合はガスセンサ6の交換を促すメッセージの表示でもよい。また、出力方法は、表示装置10aへの表示に限られたものではなく、音声出力装置から音声で出力したり、LED等の表示器を点灯したり等としてもよい。
 そして、制御装置8は、判断結果が正常以外の場合、つまり、センサ出力が第2閾値以上の場合、ファン5を駆動させ、ガスセンサ6が交換されるまでファン5の運転を継続させる(ステップS13)。なお、ガスセンサ6が交換されたかどうかの判断は、以下のようにすればよい。ガスセンサ6はセンサー基板(図示せず)を有しており、ガスセンサ6が正常に動作している間、センサー基板から制御装置8に「正常」信号が送り続けられている。そして、一度異常となると、センサー基板から制御装置8に「異常」信号が送り続けられる。このため、制御装置8は、「異常」信号の後に、「正常」信号が送られてきた場合、ガスセンサ6が交換されたと判断する。
 次に、空気調和機の設置環境が非シロキサン環境の場合には、ステップS1の判断でNOとなり、Flgが0に初期セットされたまま、制御装置8は、ステップS5の判断を行う。すなわち、制御装置8は、ステップS3の第2閾値を用いた判断は行わず、センサ出力が第1閾値未満であるかどうかをチェックする(ステップS5)。センサ出力が第1閾値未満の場合、制御装置8は続いてFlgをチェックし、ここではFlgが0にセットされているので、制御装置8は正常と判断する(ステップS4)。つまり、非シロキサン環境の場合、制御装置8は、センサ出力が第1閾値未満であれば正常と判断することになる。なお、センサ出力が第1閾値以上の場合は、上記と同様の処理を行って冷媒漏洩又はセンサ故障の判断を行うことになる。
 以上説明したように、この実施の形態1によれば、ガスセンサ6のセンサ出力が第2閾値以上、且つ第1閾値未満の状態が設定期間、継続する場合、ガスセンサ6がシロキサン被毒による寿命猶予の状態にあると判断できる。よって、ガスセンサ6がシロキサン被毒によって感度がゼロになる前に、警報を出力してユーザーにガスセンサ6の交換を促すことができる。したがって、ユーザーが気付かないままガスセンサ6が寿命に達し、冷媒漏洩を検知できずに発報されない事態を防止することができる。
 また、ガスセンサ6のセンサ出力が、第1閾値以上、且つ第3閾値未満の場合、冷媒漏洩を示す警報を表示装置10aから出力するようにしたので、冷媒漏洩をユーザーへ通知することが可能である。
 また、ガスセンサ6のセンサ出力が、第3閾値以上の場合、センサ故障を示す警報を表示装置10aから出力するようにしたので、センサ故障をユーザーへの通知することが可能である。
 また、ガスセンサ6のセンサ出力が第2閾値以上の場合、制御装置8はファン5を駆動させ、ガスセンサ6が交換されるまでファン5の運転を継続させるようにしたので、空間内の冷媒濃度を着火濃度未満に抑えることができ、安全性を保つことができる。
 なお、ここでは、ガスセンサ6の劣化を招く要因として、環境ストレスであるシロキサン被毒を中心に説明したが、その他にも経年劣化がある。ガスセンサ6が経年劣化すると、空間内の冷媒濃度が発報濃度にあるときに、出荷時の新品状態ではセンサ出力が例えば2Vとなるところ、経年劣化が生じると、センサ出力が低下して例えば1.5Vになるという現象が生じる。この現象は、シロキサン被毒によってセンサ出力が上昇する現象と逆である。ガスセンサ6にはシロキサン被毒による劣化と経年劣化との両方が作用するため、両方を考慮して寿命猶予の判断が必要となる。しかし、実際のところ、ガスセンサ6のセンサ素子は、経年劣化に比べてシロキサン被毒の影響を強く受けるため、寿命猶予の判断は、これまでに説明した判断方法で行うことで、十分な精度で寿命猶予の判断を行える。
 また、ガスセンサ6の経年劣化を考慮した冷媒漏洩の検知は、この発明の要旨からは外れており、従来公知の技術を採用すればよく、何れにしろ、ガスセンサ6のセンサ出力と、冷媒漏洩の有無を識別する閾値である第1閾値とを比較して冷媒漏洩を検知すればよい。
 また、ヘアスプレーなどの一時的な照射等に起因した寿命猶予の誤検知の防止を確実なものとするため、更に以下の確認を行うようにしてもよい。すなわち、寿命猶予であると判断した後、ファン5を予め設定された期間、運転し、その運転後も、センサ出力が第2閾値以上、且つ第1閾値未満から変わらないことを確認するようにしてもよい。
 また、上記におけるセンサ出力及び時間などの具体的数値は、一例を示したに過ぎず、それらは実使用条件等に応じて適宜設定すればよい。
 1 筐体、2 吸込口、3 吹出口、4 熱交換器、5 ファン、6 ガスセンサ、7 フレア部、8 制御装置、9 よどみ部、10 リモコン、10a 表示装置、11a 室内配管、11b 室内配管、12a 延長配管、12b 延長配管。

Claims (6)

  1.  筐体と、
     前記筐体内に配置され、冷媒濃度に応じたセンサ出力を出力するガスセンサと、
     前記ガスセンサのセンサ出力と、冷媒漏洩の有無を識別する閾値である第1閾値とを比較して冷媒漏洩を検知する制御装置と、
     警報を発報する出力装置とを備え、
     前記制御装置は、前記ガスセンサのセンサ出力が、シロキサン被毒によって前記ガスセンサの感度がゼロになったことを表す限界電圧より低い電圧に設定された第2閾値以上、且つ前記第2閾値よりも高い前記第1閾値未満となる状態が、予め設定された設定期間、継続する場合、警報を前記出力装置から発報させる空気調和機。
  2.  前記警報は、前記ガスセンサの交換を促す警報である請求項1記載の空気調和機。
  3.  前記制御装置は、前記ガスセンサのセンサ出力が、前記第1閾値以上、且つ前記第1閾値よりも高い第3閾値未満の場合、冷媒漏洩を示す警報を前記出力装置から発報させる請求項1又は請求項2記載の空気調和機。
  4.  前記制御装置は、前記ガスセンサのセンサ出力が、前記第3閾値以上の場合、センサ故障を示す警報を前記出力装置から発報させる請求項3記載の空気調和機。
  5.  前記筐体内に配置されたファンを備え、
     前記制御装置は、前記ガスセンサのセンサ出力が、前記第2閾値以上の場合、前記ファンを駆動させ、前記ガスセンサが交換されるまで前記ファンの運転を継続させる請求項1~請求項4の何れか一項に記載の空気調和機。
  6.  前記警報を発報するか否かの前記制御装置における判断処理を、シロキサン環境用の判断処理又は非シロキサン環境用の判断処理に切り替える切替装置を備え、
     前記制御装置は、前記非シロキサン環境用の判断処理に切り替えられている場合、前記ガスセンサのセンサ出力が前記第1閾値以上の場合、前記警報を前記出力装置から発報させる請求項1~請求項5の何れか一項に記載の空気調和機。
PCT/JP2017/022069 2017-06-15 2017-06-15 空気調和機 WO2018229921A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2017418267A AU2017418267B2 (en) 2017-06-15 2017-06-15 Air-conditioning apparatus
EP17914092.6A EP3640567A4 (en) 2017-06-15 2017-06-15 AIR CONDITIONING
PCT/JP2017/022069 WO2018229921A1 (ja) 2017-06-15 2017-06-15 空気調和機
CN201780091861.7A CN110730891B (zh) 2017-06-15 2017-06-15 空调机
US16/493,935 US11187424B2 (en) 2017-06-15 2017-06-15 Air-conditioning apparatus
JP2019524647A JP6704522B2 (ja) 2017-06-15 2017-06-15 空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/022069 WO2018229921A1 (ja) 2017-06-15 2017-06-15 空気調和機

Publications (1)

Publication Number Publication Date
WO2018229921A1 true WO2018229921A1 (ja) 2018-12-20

Family

ID=64660943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022069 WO2018229921A1 (ja) 2017-06-15 2017-06-15 空気調和機

Country Status (6)

Country Link
US (1) US11187424B2 (ja)
EP (1) EP3640567A4 (ja)
JP (1) JP6704522B2 (ja)
CN (1) CN110730891B (ja)
AU (1) AU2017418267B2 (ja)
WO (1) WO2018229921A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3748244A3 (en) * 2019-06-04 2021-03-31 Hitachi-Johnson Controls Air Conditioning, Inc. Air-conditioner
JPWO2021234857A1 (ja) * 2020-05-20 2021-11-25

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082242A1 (ja) * 2017-10-23 2019-05-02 三菱電機株式会社 環境監視装置
US11435102B2 (en) * 2018-05-10 2022-09-06 Mitsubishi Electric Corporation Refrigerant leakage determination device, air-conditioning apparatus, and refrigerant leakage determination method
JP6991369B2 (ja) * 2019-01-09 2022-01-12 三菱電機株式会社 空気調和装置
CN112240623B (zh) * 2020-09-30 2022-05-31 重庆海尔空调器有限公司 空调器的控制方法及空调器
US20230106462A1 (en) * 2021-10-05 2023-04-06 Carrier Corporation Frost remidiation and frost sensor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287133A (ja) * 1989-04-28 1990-11-27 Toshiba Corp 漏洩検出装置
JP2008233065A (ja) 2007-02-21 2008-10-02 Ngk Spark Plug Co Ltd ガスセンサの異常診断方法、およびガスセンサ制御装置
JP2010256049A (ja) * 2009-04-21 2010-11-11 Osaka Gas Co Ltd ガス検出装置、このガス検出装置を備えた燃焼機器及びガス警報器
JP2012229863A (ja) * 2011-04-26 2012-11-22 Hoshizaki Electric Co Ltd 製氷機の運転方法
JP2014126444A (ja) * 2012-12-26 2014-07-07 Tokyo Gas Co Ltd 半導体式ガスセンサの劣化判定方法及び判定装置
JP2014224612A (ja) * 2011-09-16 2014-12-04 パナソニック株式会社 空気調和機
JP2016145738A (ja) * 2015-02-06 2016-08-12 新コスモス電機株式会社 ガス濃度測定装置及びガス濃度測定方法
JP2017067393A (ja) * 2015-09-30 2017-04-06 ダイキン工業株式会社 冷凍装置
JP6143977B1 (ja) * 2015-08-07 2017-06-07 三菱電機株式会社 冷凍サイクル装置及び冷凍サイクルシステム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6630062B1 (en) * 2000-08-04 2003-10-07 Delphi Technologies, Inc. Poison resistant sensor
JP4157881B2 (ja) 2005-07-06 2008-10-01 株式会社日立製作所 ガス検知システム
US7645322B2 (en) * 2006-09-15 2010-01-12 Ingersoll Rand Energy Systems Corporation System and method for removing water and siloxanes from gas
US8211281B2 (en) * 2006-10-10 2012-07-03 Delphi Technologies, Inc. Catalyst anneal for durable stoichiometric shift corrected protective coating for oxygen sensors
EP1961940B1 (en) 2007-02-21 2019-04-03 NGK Spark Plug Co., Ltd. Diagnostic method and control apparatus for gas sensor
JP5128577B2 (ja) 2009-12-28 2013-01-23 大阪瓦斯株式会社 ガス検出装置及びそのガス検出装置を備えた機器
JP2014235082A (ja) * 2013-06-03 2014-12-15 矢崎エナジーシステム株式会社 ガス警報装置
CN104977316A (zh) 2014-04-03 2015-10-14 宝钢不锈钢有限公司 判别烧结矿FeO含量趋势的方法
JP2016003783A (ja) * 2014-06-13 2016-01-12 三菱電機株式会社 ヒートポンプ装置
JP6431339B2 (ja) 2014-11-07 2018-11-28 日立ジョンソンコントロールズ空調株式会社 室内機、および、それを備える空気調和機
CN104977318B (zh) * 2015-03-02 2019-03-29 深圳市卡卓无线信息技术有限公司 一氧化碳、甲醛及酒精的气体浓度检测方法及移动终端
GB2554582A (en) * 2015-06-30 2018-04-04 Mitsubishi Electric Corp Refrigerant leak detection device
JP6168113B2 (ja) * 2015-08-11 2017-07-26 ダイキン工業株式会社 空調室内機
WO2017179180A1 (ja) * 2016-04-15 2017-10-19 三菱電機株式会社 空気調和装置および伝送線路の異常検出方法
WO2017199342A1 (ja) * 2016-05-17 2017-11-23 三菱電機株式会社 冷凍サイクル装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287133A (ja) * 1989-04-28 1990-11-27 Toshiba Corp 漏洩検出装置
JP2008233065A (ja) 2007-02-21 2008-10-02 Ngk Spark Plug Co Ltd ガスセンサの異常診断方法、およびガスセンサ制御装置
JP2010256049A (ja) * 2009-04-21 2010-11-11 Osaka Gas Co Ltd ガス検出装置、このガス検出装置を備えた燃焼機器及びガス警報器
JP2012229863A (ja) * 2011-04-26 2012-11-22 Hoshizaki Electric Co Ltd 製氷機の運転方法
JP2014224612A (ja) * 2011-09-16 2014-12-04 パナソニック株式会社 空気調和機
JP2014126444A (ja) * 2012-12-26 2014-07-07 Tokyo Gas Co Ltd 半導体式ガスセンサの劣化判定方法及び判定装置
JP2016145738A (ja) * 2015-02-06 2016-08-12 新コスモス電機株式会社 ガス濃度測定装置及びガス濃度測定方法
JP6143977B1 (ja) * 2015-08-07 2017-06-07 三菱電機株式会社 冷凍サイクル装置及び冷凍サイクルシステム
JP2017067393A (ja) * 2015-09-30 2017-04-06 ダイキン工業株式会社 冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3640567A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3748244A3 (en) * 2019-06-04 2021-03-31 Hitachi-Johnson Controls Air Conditioning, Inc. Air-conditioner
JPWO2021234857A1 (ja) * 2020-05-20 2021-11-25
WO2021234857A1 (ja) * 2020-05-20 2021-11-25 ダイキン工業株式会社 冷凍サイクル装置
JP7336595B2 (ja) 2020-05-20 2023-08-31 ダイキン工業株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
CN110730891B (zh) 2021-10-01
CN110730891A (zh) 2020-01-24
EP3640567A4 (en) 2020-07-01
US11187424B2 (en) 2021-11-30
EP3640567A1 (en) 2020-04-22
JP6704522B2 (ja) 2020-06-03
JPWO2018229921A1 (ja) 2019-12-19
AU2017418267A1 (en) 2019-10-17
AU2017418267B2 (en) 2020-10-29
US20200300493A1 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
WO2018229921A1 (ja) 空気調和機
EP3832230B1 (en) Refrigeration cycle apparatus
EP3633282B1 (en) Air conditioning device
EP3998439A1 (en) Refrigeration cycle system
JP6637702B2 (ja) 空気調和システム
JP6333481B2 (ja) 冷媒漏洩検知装置
JPWO2017002215A1 (ja) 冷媒漏洩検知システム
JP6656490B2 (ja) 空気調和機
CN107560101A (zh) 一种空调电子膨胀阀的故障检测方法
JP2018173249A (ja) 冷凍装置の室内ユニット
JPWO2017002216A1 (ja) 冷媒漏洩検知装置
CN112393377A (zh) 故障判断方法及空调器
JP2016166680A (ja) 空気調和装置
JP2020118393A (ja) 空気調和機及び空気調和機の運転方法
US11976830B2 (en) Air-conditioning apparatus
JP6984660B2 (ja) 環境監視装置
JP2005282903A (ja) 空気調和機
WO2024005202A1 (ja) 空気調和装置、管理装置、およびプログラム
JPH06281301A (ja) 空気調和機
JP5640710B2 (ja) 空気調和機
JP5625656B2 (ja) 空気調和装置
EP4317835A1 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17914092

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019524647

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017418267

Country of ref document: AU

Date of ref document: 20170615

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017914092

Country of ref document: EP

Effective date: 20200115