WO2018229883A1 - Internal combustion engine ignition device - Google Patents

Internal combustion engine ignition device Download PDF

Info

Publication number
WO2018229883A1
WO2018229883A1 PCT/JP2017/021900 JP2017021900W WO2018229883A1 WO 2018229883 A1 WO2018229883 A1 WO 2018229883A1 JP 2017021900 W JP2017021900 W JP 2017021900W WO 2018229883 A1 WO2018229883 A1 WO 2018229883A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
primary
coil
primary coil
ignition
Prior art date
Application number
PCT/JP2017/021900
Other languages
French (fr)
Japanese (ja)
Inventor
義文 内勢
Original Assignee
日立オートモティブシステムズ阪神株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ阪神株式会社 filed Critical 日立オートモティブシステムズ阪神株式会社
Priority to PCT/JP2017/021900 priority Critical patent/WO2018229883A1/en
Priority to JP2019524611A priority patent/JP6739644B2/en
Publication of WO2018229883A1 publication Critical patent/WO2018229883A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/10Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having continuous electric sparks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations

Definitions

  • the present invention relates to an ignition device for an internal combustion engine mounted on a motor vehicle, and obtains good discharge characteristics by increasing the discharge energy generated on the secondary side of the ignition coil in a superimposed manner.
  • Direct-injection engines and high-EGR engines are adopted as internal combustion engines mounted on vehicles to improve fuel efficiency.
  • these engines are not very ignitable, so a high-energy ignition system is required.
  • a phase discharge ignition device has been proposed in which the output of another ignition coil is additionally superimposed on the secondary output of the ignition coil generated by the classic current interruption principle (for example, Patent Document 1). See).
  • a method of increasing the energy stored in the primary coil without increasing the energization time to the primary coil a method of increasing the stored energy by increasing the physique of the coil and a method of using a plurality of ignition coils can be considered.
  • a large ignition coil is used or a plurality of ignition coils are used, securing the mounting space becomes a problem.
  • excessive discharge energy is consumed, which may worsen the fuel consumption.
  • an object of the present invention is to provide an ignition device for an internal combustion engine that can maintain a stable combustion while ensuring a stable high current period by stably supplying necessary and sufficient discharge energy without deteriorating fuel consumption.
  • the invention according to claim 1 includes a main primary coil in which a forward magnetic flux is increased by energization of a main primary current, and a reverse breaking magnetic flux is generated by interrupting the main primary current;
  • An auxiliary primary coil that generates an additional magnetic flux in the same direction as the interruption magnetic flux by energizing the auxiliary primary current at an arbitrary timing after the generation of the interruption magnetic flux, one end side is connected to the spark plug, and the main primary coil and the auxiliary primary
  • a secondary coil that generates a discharge energy by the action of a magnetic flux generated in the coil, a main switch means for switching between energization and interruption of the main primary coil of the ignition coil, and a connection to the sub primary coil
  • Sub-switch means for switching between energization and cutoff, sub-primary coil energization permission switch means for permitting energization to the sub-primary coil of the ignition coil, the main switch means, Ignition control means for controlling the switch means and the
  • the invention according to claim 2 is the ignition device for an internal combustion engine according to claim 1, further comprising sub primary current detection means for detecting a sub primary current flowing in the sub primary coil of the ignition coil, wherein the ignition control is performed.
  • the means compares the preset sub primary current target value with the sub primary current detection value detected by the sub primary current detection means, and brings the sub primary current detection value closer to the sub primary current target value.
  • Sub-primary current feedback control for controlling power supplied to the sub-primary coil is performed.
  • the ignition control means performs sub primary current feedback control by PWM control of the sub switch means. It is characterized by that.
  • the ignition control means includes a sub primary current target value and a sub primary current for each predetermined unit period. The comparison with the detected value is performed, and the supply power control to the sub-primary coil in the next unit period is performed according to the comparison result.
  • the invention according to claim 5 is the ignition device for an internal combustion engine according to any one of claims 2 to 4, wherein the secondary current that detects the secondary current flowing in the secondary coil of the ignition coil is detected.
  • Current detection means, and the ignition control means compares the preset secondary current target value with the secondary current detection value detected by the secondary current detection means, and compares the secondary current detection value
  • the sub primary current target value is set and changed so as to approach the secondary current target value.
  • the secondary current target value is a secondary current target upper limit value determined in advance as an allowable upper limit of the secondary current. And a predetermined secondary current target lower limit value as a lower limit of the allowable secondary current, the secondary current target upper limit value and the secondary current target lower limit value are compared with the secondary current detection value, and the secondary current If the secondary current detection value is higher than the target upper limit value, change the setting of the sub primary current target value to lower the secondary current, and if the secondary current detection value is lower than the secondary current target lower limit value Is characterized in that the sub primary current target value is set and changed so as to increase the secondary current.
  • the invention according to claim 7 is the internal combustion engine ignition device according to claim 5 or 6, wherein the ignition coil discharges between the main primary coil of the ignition coil and the main switch means.
  • Primary coil voltage detection means for detecting a primary side voltage generated during the continuation, the ignition control means, when the primary coil voltage rises above a predetermined voltage earlier than a predetermined inclination angle, the secondary current target The setting is changed so as to increase the value.
  • the superimposed discharge control before the ignition timing and the superimposed discharge control after the ignition timing can be performed.
  • the necessary and sufficient discharge energy is superimposed from the secondary primary coil to the secondary coil to ensure a stable high current period without increasing the energization time of the main primary coil, thereby realizing suitable combustion.
  • a high fuel efficiency improvement effect can be expected by properly using the pre-ignition timing superimposed discharge control and the post-ignition timing superimposed discharge control according to the operating conditions.
  • a plurality of coils and a booster circuit are not required, an increase in the size of the ignition coil and a significant increase in cost can be suppressed.
  • FIG. 1 is a schematic configuration diagram showing a first embodiment of an ignition device for an internal combustion engine according to the present invention. It is a wave form diagram showing typically each part waveform in a combustion cycle when performing normal discharge control and superposition discharge control by the internal combustion engine ignition device concerning a 1st embodiment.
  • (A) is the wave form diagram which showed typically the sub primary coil energization signal which a control means produces
  • (B) is a waveform diagram schematically showing a sub primary coil energization signal generated by the control means when the sub primary current detection value deviates from the sub primary current target value.
  • (A) is a waveform diagram schematically showing the secondary primary current target value generated by the control means when the secondary current detection value is in the range of the secondary current target upper limit value and the secondary current target lower limit value. is there.
  • (B) is a waveform diagram schematically showing the secondary primary current target value generated by the control means when the secondary current detection value exceeds the secondary current target upper limit value.
  • (C) is a waveform diagram schematically showing the secondary primary current target value generated by the control means when the secondary current detection value falls below the secondary current target lower limit value.
  • It is a schematic block diagram which shows 2nd Embodiment of the ignition device for internal combustion engines which concerns on this invention. It is a wave form diagram showing typically each part waveform in a combustion cycle when performing maintenance and change of a secondary current target value according to a primary coil voltage in an internal combustion engine ignition device concerning a 2nd embodiment.
  • FIG. 1 shows an internal combustion engine ignition device 1 according to a first embodiment of the present invention.
  • An ignition coil unit 10 that generates a discharge spark in one ignition plug 2 provided for each cylinder of the internal combustion engine,
  • An internal combustion engine drive control device 3 having an ignition control means 31 for outputting an ignition signal Si or the like for instructing the operation timing of the ignition coil unit 10 at an appropriate timing, a DC power source 4 such as a vehicle battery, a first sub switch element 51 The second sub switch element 52 and the like.
  • the ignition control means 31 is included in the internal combustion engine drive control apparatus 3 that comprehensively controls the internal combustion engine of the automobile, but is not limited thereto. It is not something.
  • the ignition signal generated by the ignition signal generation function of the normal internal combustion engine drive control device 3 is received, and appropriate control signals are sent to the ignition coil unit 10 and the first and second sub switch elements 51, 52. Ignition control means for outputting to may be provided separately.
  • the ignition coil unit 10 includes, for example, an ignition coil 11, a main switch element 12, a bypass line 13 provided in parallel with the main switch element 12, rectifying means 14 provided on the bypass line 13, and the like in a case 15 having a required shape.
  • This unit is a unitary structure.
  • a high voltage terminal 151 and a connector 152 are provided at appropriate positions of the case 15, and the spark plug 2 is connected via the high voltage terminal 151, and the connector 152 (for example, the first connection terminal 152 a to the sixth connection terminal 152 f is connected to the case 15.
  • the DC power source 4 such as a vehicle battery
  • the first and second sub switch elements 51 and 52 and the ground point GND.
  • the ignition coil 11 includes a primary primary coil 111a (for example, 90 turns), a secondary primary coil 111b (for example, 60 turns), and a secondary coil 112 (for example, 9000 turns).
  • the ignition coil 11 causes the magnetic flux generated in the main primary coil 111a and the sub primary coil 111b to act on the secondary coil 112.
  • the main primary coil 111a and the sub primary coil 111b are arranged so as to surround the center core 1113.
  • the secondary coil 112 is arranged outside thereof.
  • main primary coil 111a One end of the main primary coil 111a is connected to the DC power supply 4 through, for example, the second connection terminal 152b, and a power supply voltage VB + (for example, 12V) is applied.
  • the other end of main primary coil 111a is connected to ground point GND via main switch element 12 and fifth connection terminal 152e.
  • the main switch element 12 is a main switch means for energizing / cutting off the main primary coil 111a, and is configured by using, for example, an IGBT (Insulated Gate Bipolar Transistor). That is, the ignition coil unit 10 has a unit structure in which an ignition coil and an igniter are sealed in the case 15.
  • the gate G which is the control terminal of the main switch element 12, is connected to the internal combustion engine drive control device 3 through, for example, the fourth connection terminal 152d, and is ON / OFF controlled by the ignition signal Si generated by the ignition control means 31.
  • the main switch element 12 when the main switch element 12 is turned on by the ignition signal Si and the main primary coil 111a is energized, the main primary current I1a flows to increase the forward magnetic flux, and the main switch element 12 is turned off.
  • the main primary current I1a is cut off, the forward magnetic flux is suddenly reduced (apparently, a breaking magnetic flux opposite to the forward magnetic flux is generated).
  • a high voltage is generated on the secondary coil 112 side, a discharge spark is generated between the discharge gaps of the spark plug 2, and a secondary current I2 flows.
  • the control for discharging the spark plug 2 by energization / cutoff control for the main primary coil 111a is hereinafter referred to as normal discharge control.
  • the secondary coil 112 has one end connected to the spark plug 2 via the high-voltage terminal 151 and the other end connected to the ground point GND via the sixth connection terminal 152f.
  • a current detection resistor 61 is provided between the sixth connection terminal 152f and the ground point GND, and a secondary current detection signal line provided between the sixth connection terminal 152f and the current detection resistor 621 is provided as a secondary.
  • the current detection signal Di2 is supplied to the internal combustion engine drive control device 3. That is, the current detection resistor 61 and the secondary current detection signal line function as secondary current detection means for detecting the secondary current I2 flowing through the secondary coil 112.
  • the sub primary coil 111b generates, for example, an additional magnetic flux in the same direction as the interrupting magnetic flux when energized in the direction from the first end 111b1 which is one end of the sub primary coil 111b to the second end 111b2 which is the other end.
  • the first end 111b1 of the sub primary coil 111b is connected to the first sub switch element 51 via, for example, the first connection terminal 152a, and the second end 111b2 of the sub primary coil 111b is connected to, for example, the third connection terminal 152c.
  • the sub primary coil 11b is energized in the first direction.
  • the Rukoto Conversely, when the first and second sub-switch elements 51 and 52 make the second end 111b2 of the sub-primary coil 111b the power supply side and the first end 111b1 the ground side, the sub-primary coil 11b is energized in the second direction. Will be.
  • the 1st direction and the 2nd direction in the sub primary coil 111b are decided by the arrangement
  • the winding direction of the sub primary coil 111b and the winding direction of the main primary coil 111b are arranged to be the same, the same direction as the energization direction to the main primary coil 111b may be energized as the first direction.
  • a forward magnetic flux is generated in the secondary primary coil 111b.
  • the winding direction of the sub primary coil 111b and the winding direction of the main primary coil 111b are reversed, the first primary coil 111b is energized with the opposite direction to the energization of the main primary coil 111b. In this case, a forward magnetic flux is generated.
  • the sub primary coil 111b configured as described above When the sub primary coil 111b configured as described above is energized in the first direction at the same timing as the normal discharge control by the main primary coil 111a described above, the same forward magnetic flux as that of the main primary coil 11a is generated. After that, if the current supply to the sub primary coil 111b is cut off at the same timing as the normal discharge control, the forward magnetic flux of the main primary coil 111a and the sub primary coil 111b rapidly decreases at the same time, so that the discharge energy given to the secondary side is increased. Can do.
  • the forward primary magnetic flux is generated by the sub primary coil 111b before the ignition timing (before the energization interruption timing to the main primary coil 111a), and the energization interruption to the sub primary coil 111b is performed simultaneously with the main primary coil 111a.
  • the discharge energy can be superimposed on the secondary coil 112 by the secondary primary coil 111b.
  • the secondary primary coil 111b is energized in the second direction at an appropriate timing after the ignition timing (after the energization cut-off timing to the main primary coil 111a), the magnetic flux in the reverse direction (high on the secondary side) is obtained. (The magnetic flux in the same direction as the magnetic field that generated the voltage) is generated, and the secondary side magnetic field can be prevented from being attenuated and the secondary side electromotive force to be lowered.
  • the secondary current I2 can be kept high until That is, if the secondary primary coil 111b generates a reverse magnetic flux after the ignition timing and causes it to act on the secondary coil 112, the secondary primary coil 111b can superimpose discharge energy on the secondary coil 112.
  • the timing of cutting off the current in the second direction for the sub-primary coil 111b is when a sufficient and sufficient time has passed to maintain the secondary current I2 at a high current necessary for suitable combustion in the cylinder. If the second direction energization to the sub primary coil 111b is continued for a longer time than that, the fuel consumption is worsened.
  • Such desirable energization / cutoff timing for the sub-primary coil 111b is not fixed, but varies depending on the structure of the internal combustion engine, the characteristics of the ignition coil, the operating conditions, and the like.
  • a setting value or setting information suitable for 1 may be stored in the ignition control means 31 of the internal combustion engine drive control device 3 in advance.
  • a bypass line 13 is provided in parallel with the main switch element 12, and rectifying means 14 (for example, the collector side of the main switch element 12) is forwardly directed from the ground point GND side of the bypass line 13 toward the ignition coil 11 side. And a diode having an anode connected to the emitter side of the main switch element 12).
  • the first and second sub switch elements 51 and 52 include a first sub switch element 51, a second sub switch element 52, a third sub switch element 53, and a fourth sub switch element 54.
  • the first sub switch element 51 functions as sub switch means for switching between energization / cutoff from the DC power source 4 to the sub primary coil 111b.
  • the first sub switch element 51 is configured using a power MOS-FET having high-speed switching characteristics, and the drain D of the first sub switch element 51 is on the DC power supply 4 side, and the source S of the first sub switch element 51 is. Is connected to the second end 111b2 side of the sub primary coil 111b, and the sub primary coil energization signal Sd from the ignition control means 31 is input to the gate G of the first sub switch element 51.
  • the first sub switch element 51 is turned ON / OFF in response to the ON / OFF of the sub primary coil energization signal Sd input from the ignition control means 31 to the first sub switch element 51, and the first of the sub primary coil 111b.
  • the power supply voltage VB + is applied or cut off from the DC power supply 4 to the end 111b1.
  • a higher voltage DC power supply may be used instead of the VB + DC power supply 4.
  • a booster circuit 7 (indicated by a two-dot chain line in FIG. 1) may be provided to increase the voltage applied to the sub primary coil 111b.
  • the second sub-switch element 52 functions as a sub-primary coil energization permission unit that switches the second end 111b2 side of the sub-primary coil 111b to the ground point GND so that the sub-primary coil 111b can be energized.
  • the second sub switch element 52 is configured by using a power MOS-FET having high-speed switching characteristics, and the drain D of the second sub switch element 52 is connected to the second end 111b2 side of the sub primary coil 111b.
  • the source S of the switch element 52 is connected to the ground point GND side, and the sub primary coil energization permission signal Sp from the ignition control means 31 is input to the gate G of the second sub switch element 52.
  • the second sub-switch element 52 is turned on / off in response to the ON / OFF of the sub-primary coil energization permission signal Sp input from the ignition control means 31 to the second sub-switch element 52, and the second primary switch 111b
  • the two ends 111b2 are connected to the ground point GND.
  • a current detection resistor 62 is provided between the second sub switch element 52 and the ground point GND, and a sub primary current detection signal line provided between the second sub switch element 52 and the current detection resistor 62 is provided.
  • the sub primary current detection signal Di1s is input to the internal combustion engine drive control device 3. That is, the current detection resistor 62 and the sub primary current detection signal line function as sub primary current detection means for detecting the sub primary current flowing through the sub primary coil 111b.
  • the first stage of FIG. 2 shows normal discharge control, and is basic control for giving discharge energy to the secondary coil 112 using only the main primary coil 111a during one combustion cycle.
  • the main switch element 12 is turned ON and the main primary current I1a flows.
  • the main primary current I1a increases until reaching the saturation current, and energy is accumulated in the main primary coil 111a.
  • the subsequent stage of FIG. 2 shows superimposed discharge control.
  • the first and second sub switch elements 51 and 52 are controlled to energize the sub primary coil 111b. This control starts and supplies the secondary side with sufficient energy necessary to maintain the induction discharge from the secondary primary coil 111b.
  • the main switch element 12 is turned ON and the main primary current I1a flows.
  • the main primary current I1a increases until reaching the saturation current, and energy is accumulated in the main primary coil 111a.
  • the ignition signal Si is turned OFF at the ignition timing (when the signal level is changed from H to L)
  • an electromotive force corresponding to the energy accumulated in the main primary coil 111a is generated on the secondary side, and the secondary current I2 is As it flows, dielectric breakdown occurs between the electrodes of the spark plug 2, and a discharge spark is generated in the cylinder (capacitive discharge).
  • the ignition control unit 31 turns on the sub primary coil energization permission signal Sp (for example, the signal level from L to H) and turns on the sub primary coil energization signal Sd.
  • the power supplied to the sub primary coil 111b is adjusted by performing PWM control that changes the duty ratio of the sub primary coil energization signal Sd.
  • the superimposed magnetic flux in the same direction also increases (indicated by shading in the superimposed current waveform in FIG. 2). Therefore, the superimposed magnetic flux generated in the secondary primary coil 111b acts on the secondary coil 112 so as to compensate for the decrease in the secondary current I2 due to the electromagnetic energy emission of the secondary coil 112, and the secondary current I2 is a high current.
  • the high current period suitable for in-cylinder combustion can be effectively extended for a long time (indicated by the hatching in the secondary current waveform in FIG. 2).
  • the ignition control means 31 turns off the sub primary coil energization permission signal Sp and the sub primary coil energization signal Sd.
  • the reverse magnetic flux caused by the secondary primary coil 111b does not act on the secondary coil 112, and thereafter, a low secondary current I2 due to only the electromagnetic energy emission of the secondary coil 112 flows, and eventually the secondary current I2 Will return to zero.
  • the energization permission period Tb1 for turning on the sub primary coil energization permission signal Sp and the energization period Tb2 for supplying power from the DC power supply 4 to the sub primary coil 111b may be the same period, or the energization permission period Tb1. However, it may be slightly longer than the energization period Tb2.
  • the ignition control means 31 performs the superimposed discharge control
  • the discharge energy applied to the secondary coil 112 is increased without increasing the ON time of the ignition signal Si, and the discharge flowing between the electrodes of the spark plug 2.
  • the period during which the current can be maintained at a high current can be extended.
  • the superimposed magnetic flux applied from the secondary primary coil 111b to the secondary coil 112 is sufficient to generate and maintain a sufficiently high current necessary for suitably maintaining in-cylinder combustion.
  • the energy required for energization can be kept low, which is effective for improving fuel efficiency.
  • the ignition control means 31 can perform PWM control of the first sub switch element 51 by the sub primary coil energization signal Sd, the sub primary coil 111b in the superimposed discharge control.
  • the ignition control means 31 stores a preset secondary primary current target value, and is obtained from the secondary primary current detection value (sub primary current detection signal Di1s) detected by the secondary primary current detection means.
  • the value of the superimposed current I1b) is compared with the sub primary current target value, and sub primary current feedback control is performed to control the power supplied to the sub primary coil so that the sub primary current detection value approaches the sub primary current target value. It is.
  • the ignition control means 31 to the first sub switch element As feedback control for bringing the actually measured value close to the target value, various known techniques can be applied. However, in the internal combustion engine ignition device 1 of the present embodiment, the ignition control means 31 to the first sub switch element.
  • the duty ratio of the sub primary coil energization signal Sd output to 51 can be changed every predetermined unit period Tu, and the next unit period is determined according to the comparison result between the sub primary current detection value and the sub primary current target value.
  • the duty ratio of the sub primary coil energization signal Sd in Tu is increased or decreased.
  • FIG. 3A shows a case where the sub primary current detection value substantially coincides with the sub primary current target value
  • FIG. 3B shows the difference between the sub primary current detection value and the sub primary current target value. The case where feedback control is performed because it is large enough to require correction is shown.
  • the sub primary current detected value is the sub primary current target value at approximately the middle of the unit period Tu. If it agrees with the above, it is determined that the target discharge energy is generated. In addition, if the sub primary current detection value has reached the sub primary current target value in the previous period of the unit period Tu, or if the sub primary current detection value has exceeded the sub primary current target value before the start of the unit period Tu, It is determined that excessive discharge energy is generated. Conversely, the sub primary current detection value finally reaches the sub primary current target value in the subsequent period of the unit period Tu, or the sub primary current detection value must not reach the sub primary current target value even after the unit period Tu has elapsed. In this case, it is determined that the necessary discharge energy is not generated.
  • the secondary primary current detection value obtained as the superimposed current I1b during that time is the first primary period Tu1. Since it coincides with the sub primary current target value near the middle of the one unit period Tu1, the sub primary coil energization signal Sd having the normal duty ratio is output also in the next second unit period Tu2. Similarly, in the second to fourth unit periods Tu2 to Tu4, the sub primary current detection value coincides with the sub primary current target value in the vicinity of the middle of each period, so that the normal duty ratio is also obtained in the next unit period.
  • the sub primary coil energization signal Sd is output.
  • the secondary primary current target value is originally set to obtain a good superimposed current I1b in order to stably generate discharge sparks in the spark plug 2, the secondary primary current target value is as shown in FIG.
  • the primary current detection value coincides with the sub primary current target value and appropriate discharge energy can be superimposed, but the ideal superimposed current I1b cannot be obtained due to the vehicle driving environment, engine load, etc. There is also. In such a case, by monitoring the actual superimposed current I1b and performing feedback control so as to obtain the ideal superimposed current I1b, excess or deficiency of energy due to the superimposed discharge can be eliminated.
  • a sub primary coil energization signal Sd having a normal duty ratio is output, and the sub primary current detection value obtained as the superimposed current I1b during that time is the first unit period Tu1. Since it coincides with the sub primary current target value slightly later in one unit period Tu1, it is determined that the superimposed current I1b is lower than the ideal current value, and the duty ratio is increased in the next second unit period Tu2.
  • the sub primary coil energization signal Sd is output.
  • a high duty ratio output and a low duty ratio output are respectively determined in advance, and when the duty ratio is increased, the high duty ratio output is applied to the sub primary coil energization signal Sd.
  • the low duty ratio output may be applied to the sub primary coil energization signal Sd, or the duty ratio according to the error value between the sub primary current target value and the sub primary current detection value may be set.
  • a pulse signal may be generated and applied to the sub primary coil energization signal Sd.
  • the sub-primary current detection value coincides with the sub-primary current target value in a slightly later period, so that the superimposed current I1b is still present. Is lower than the ideal current value, and the sub-primary coil energization signal Sd with an increased duty ratio is output even in the next third unit period Tu3.
  • the sub-primary current detection value substantially coincides with the sub-primary current target value in the vicinity of the middle.
  • the sub-primary coil energization signal Sd having a normal duty ratio is output in the next fourth unit period Tu4.
  • the sub primary current detection value slightly matches the sub primary current target value in the previous period, so the superimposed current I1b Is higher than the ideal current value, and in the next fifth unit period Tu5, the sub primary coil energization signal Sd with a reduced duty ratio is output.
  • the superimposed current I1b can be suppressed to an ideal current value.
  • the ignition control means 31 compares the sub primary current target value and the sub primary current detection value for each predetermined unit period, and applies the sub primary coil 111b in the next unit period according to the comparison result. If the supplied power control is performed, the superimposed current I1b having an ideal waveform set as the sub primary current target value can be obtained.
  • the ignition control means 31 compares the preset secondary current target value with the secondary current detection value detected by the secondary current detection means, and converts the secondary current detection value to the secondary current target value.
  • the sub primary current target value is set and changed so as to be close to each other.
  • the secondary control is possible.
  • the sub primary current target value is controlled to be changed depending on whether the actual measured value of the secondary current is within the allowable range of the target current value or exceeds the threshold value of the allowable range.
  • the secondary current target upper limit value determined in advance as an upper limit of an allowable secondary current and a secondary current target lower limit value set in advance as a lower limit of an allowable secondary current
  • the secondary current target upper limit value And the secondary current target lower limit value is compared with the secondary current detection value, and if the secondary current detection value is higher than the secondary current target upper limit value, the sub primary current target value is changed to lower the secondary current.
  • the sub primary current target value is set and changed so as to increase the secondary current. In this way, the sub primary current target value is changed so that the target secondary current I2 is obtained, and a sub primary coil energization signal Sd that brings the superimposed current I1b closer to the changed sub primary current target value is output. Will be.
  • FIG. 4A shows the case where the detected secondary current value substantially matches the secondary current target value (when it falls within the allowable range between the secondary current target upper limit value and the secondary current target lower limit value).
  • FIG. 4B shows a case where the secondary current detection value exceeds the secondary current target upper limit value and includes a situation where the sub primary current target value change condition is satisfied, and FIG. The case where the secondary current detection value falls below the secondary current target lower limit value and the situation where the sub primary current target value change condition is satisfied is shown.
  • the secondary current detection value is an allowable range between the secondary current target upper limit value and the secondary current target lower limit value. Therefore, the sub primary current target value changing condition is not satisfied, and a preset sub primary current target value is used.
  • the sub primary current target value which is the default setting, is such that the sub primary current target value increases step by step by the reference level every time the reference period Tu elapses.
  • the first reference period Tu1 is output level 1
  • the second reference period Tu2 is output level 2
  • the third reference period Tu3 is output level 3
  • the fourth reference period Tu4 is output level 4
  • the fifth reference period Tu5 is output level. 5.
  • the preset sub-primary current target value is such that the output level increases stepwise, such as output level 6 in the sixth reference period Tu6, output level 7 in the seventh reference period Tu7, and so on.
  • the output level 1 is set according to the preset sub-primary current target value.
  • the actually measured value of the secondary current I2 is a secondary value. Since the current target upper limit value has been exceeded, the secondary current I2 is reduced to fall within the allowable range, so that the output level 1 is not changed to the output level 2 in the next second reference period Tu2.
  • the measured value of the secondary current I2 still exceeds the secondary current target upper limit value, so that the secondary current I2 is further reduced to be within the allowable range.
  • the output level is kept at 1 without shifting to the output level 2.
  • the measured value of the secondary current I2 falls below the secondary current target upper limit value and falls within the allowable range, so that the output level 2 is reached in the next fourth reference period Tu4. Transition.
  • the secondary current detection value is within the allowable range between the secondary current target upper limit value and the secondary current target lower limit value. The condition is not satisfied, and the target value is raised to the output level 3 in the next fifth reference period Tu5.
  • the measured value of the secondary current I2 again exceeds the secondary current target upper limit value, so that the secondary current I2 is reduced to fall within the allowable range.
  • 6 reference period Tu6 it does not shift to output level 4 but remains at output level 3.
  • the actually measured value of the secondary current I2 falls below the upper limit value of the secondary current target and falls within the allowable range, so that the output level 4 is reached in the next seventh reference period Tu7. Transition.
  • the secondary current detection value is within the allowable range between the secondary current target upper limit value and the secondary current target lower limit value. Since the current target value changing condition is not satisfied and the output level is increased by 1 for each reference period Tu, the target value is set in the seventh reference period Tu7 to the ninth reference period Tu9 as in the case of the default primary current target value. The output level goes up step by step.
  • the output level 1 is set according to the preset sub-primary current target value.
  • the actually measured value of the secondary current I2 is a secondary value. Since the current target upper limit value has been exceeded, the secondary current I2 is reduced to fall within the allowable range, so that the output level 1 is not changed to the output level 2 in the next second reference period Tu2.
  • the measured value of the secondary current I2 falls below the secondary current target upper limit value and falls within the allowable range, so the sub primary current target value change condition is not satisfied, In the next third reference period Tu3, the target value is raised to the output level 2.
  • the target value is increased by two stages and shifted to output level 4.
  • the measured value of the secondary current I2 exceeds the secondary current target lower limit value and falls within the allowable range. Therefore, the target value is set to one step in the next fifth reference period Tu7. And shift to output level 5.
  • the secondary current detection value is within the allowable range between the secondary current target upper limit value and the secondary current target lower limit value. Since the current target value changing condition is not satisfied and the output level is increased by 1 for each reference period Tu, the output level is output in the fifth reference period Tu5 to the ninth reference period Tu9 as in the case of the default primary current target value. Goes up step by step.
  • the sub primary current target value whose setting has been changed as described above is compared with the sub primary current detection value as described above, and the sub primary current energization signal Sd is generated. That is, when the setting is changed to an output level higher than the default set primary primary current target value, the secondary primary coil energization signal Sd with an increased duty ratio is output, so that the superimposed current I1b is increased and the secondary side is increased. It is possible to increase the discharge energy applied to the gas and to ensure a high current period of the secondary current I2 and realize suitable combustion.
  • the secondary primary coil energization signal Sd with a reduced duty ratio is output, so the superimposed current I1b is kept low and the secondary current is reduced.
  • the current I2 can be kept low, and a high fuel efficiency improvement effect can be expected.
  • the secondary voltage applied to the ignition coil 11 represents the discharge state of the spark plug 2 most.
  • the secondary voltage is, for example, a voltage from the high-voltage terminal 151 to the ground point GND, and this voltage is simulated by the main primary coil 111a1 via the secondary coil 112.
  • the state of the secondary voltage can be known, so that feedback control according to the state of the secondary voltage is possible.
  • the withstand voltage between the electrodes of the spark plug 2 is higher than a predetermined voltage, so that initial ignition is performed at a high voltage higher than the predetermined voltage, but sufficient discharge to grow the initial flame. If no current is supplied, the initial flame will not grow and will misfire due to blow-off. In such a case, in order to grow the initial flame independently, it is necessary to control to increase the current value in the high current period.
  • the main primary coil 111 a and the main switch element 12 of the ignition coil unit 10 ′ (but the main primary coil rather than the bypass line 13).
  • 111a side) is provided with a primary coil voltage acquisition line 16 as primary coil voltage detection means for detecting the primary voltage of the ignition coil 11, and a primary coil voltage detection signal is sent to the ignition control means 31 via the seventh connection terminal 152g. Dv1 is supplied.
  • the detected value of the primary coil voltage input from the primary coil voltage detection signal Dv1 is that the discharge of the ignition coil 2 continues after the main switch element 12 is turned off and discharge energy is supplied to the secondary side of the coil.
  • the voltage waveform simulates the secondary voltage waveform (see, for example, the waveform of the primary coil voltage detection signal Dv1 and the waveform of the secondary voltage in FIG. 6).
  • the ignition control means 31 changes the setting so as to increase the secondary current target value when the detected value of the primary coil voltage rises above the predetermined voltage earlier than the predetermined inclination angle. For example, when the change condition for increasing the secondary current target value is not satisfied (when the voltage rises to a predetermined voltage below a predetermined inclination angle), good combustion is maintained at the default secondary current target value. Therefore, the default secondary current target value is maintained, the secondary primary current target value is changed and the secondary primary coil energization signal Sd is generated based on the secondary current target value (see the previous stage in FIG. 6). .
  • the internal combustion engine ignition device 1 ′ according to the second embodiment, it is possible to perform appropriate feedback control according to the state of the secondary voltage applied to the ignition coil 2, thereby realizing even better combustion. Along with this, a high fuel efficiency improvement effect can be expected.
  • the internal combustion engine ignition devices 1, 1 ′ according to the first and second embodiments described above all show only one cylinder, but in the case of an internal combustion engine composed of a plurality of cylinders, the first, Second sub-switch elements 51 and 52, sub-primary current detection means, secondary current detection means and the like may be provided, or all of the first and second sub-switch elements 51 and 52 corresponding to each cylinder may be provided as a single unit.
  • a general unit housed in a case may be used, and the general unit may be connected to the ignition coil units 10 and 10 'of each cylinder.
  • Ignition device for internal combustion engines 10 Ignition coil unit 11 Ignition coil 111a Main primary coil 111b Sub primary coil 112 Secondary coil 12 Main switch element 2 Spark plug 3 Internal combustion engine drive control device 31 Ignition control means 4 DC power source 51 First sub switch Element 52 Second sub switch element

Abstract

Provided is an internal combustion engine ignition device that is capable of maintaining stable combustion by ensuring a stable high current period through stable supplying of necessary and sufficient discharge energy without deteriorating fuel efficiency. An internal combustion engine ignition device 1 for causing an ignition plug 2 to discharge electricity has an ignition coil 11 formed of a main primary coil 111a that generates a forward magnetic flux when current is passed therethrough, a sub-primary coil 111b that generates a reverse superimposed magnetic flux when current is passed therethrough, and a secondary coil 112 on which the magnetic fluxes of the main primary coil 111a and the sub-primary coil 111b are applied. Thus, an excess/shortage of discharge energy is prevented and stable combustion of an internal combustion engine is efficiently maintained through a feedback control so as to bring an actually measured value of a superimposed current I1b or an actually measured value of a secondary current I2 close to a target value during superimposed discharge control for increasing the discharge energy of the secondary coil 112, by supplying power to the sub-primary coil 111b to generate a superimposed magnetic flux after current to the main primary coil 111b is cut off.

Description

内燃機関用点火装置Ignition device for internal combustion engine
 本発明は、自動車両に搭載される内燃機関用の点火装置に関し、点火コイルの二次側に発生させる放電エネルギを重畳的に増大させて、良好な放電特性を得るものである。 The present invention relates to an ignition device for an internal combustion engine mounted on a motor vehicle, and obtains good discharge characteristics by increasing the discharge energy generated on the secondary side of the ignition coil in a superimposed manner.
 車両搭載の内燃機関として、燃費改善のために直噴エンジンや高EGRエンジンが採用されているが、これらのエンジンは着火性があまり良くないため、点火装置には高エネルギ型のものが必要になる。そこで、古典的な電流遮断原理により発生する点火コイル二次側出力に、さらにもう一つの点火コイルの出力を加算的に重畳する位相放電型の点火装置が提案されている(例えば、特許文献1を参照)。 Direct-injection engines and high-EGR engines are adopted as internal combustion engines mounted on vehicles to improve fuel efficiency. However, these engines are not very ignitable, so a high-energy ignition system is required. Become. In view of this, a phase discharge ignition device has been proposed in which the output of another ignition coil is additionally superimposed on the secondary output of the ignition coil generated by the classic current interruption principle (for example, Patent Document 1). See).
 この特許文献1に記載の点火装置によれば、主一次点火コイルの一次電流を遮断することでその二次側に発生する数kVの高電圧により、点火プラグの放電間隙に絶縁破壊を起こして点火コイルの二次側から放電電流を流し始めた後に、主点火コイルと並列に接続された副点火コイルの一次電流を遮断し、その二次側に発生する数kVの直流電圧を加算的に重畳することで、比較的長い時間に亙って点火プラグに大きな放電エネルギを与えることができるため、燃料への着火性が向上し、延いては燃費も向上する。 According to the ignition device described in Patent Document 1, by interrupting the primary current of the main primary ignition coil, a high voltage of several kV generated on the secondary side causes dielectric breakdown in the discharge gap of the spark plug. After starting the discharge current from the secondary side of the ignition coil, the primary current of the auxiliary ignition coil connected in parallel with the main ignition coil is cut off, and the DC voltage of several kV generated on the secondary side is added By superimposing, since a large discharge energy can be given to the spark plug for a relatively long time, the ignitability to the fuel is improved, and the fuel consumption is also improved.
特開2012-140924号公報JP 2012-140924 A
 しかしながら、特許文献1に記載された点火装置のような方式では、点火プラグの放電電流が各コイルから出力される三角形の電流の組み合わせで決まるため、高電流期間を長くするためには、2つの点火コイルの点火位相を大きくしたうえで、2つの点火コイルに十分なエネルギを蓄積する時間を長くして高電流期間を拡大する必要がある。このように、2つの点火コイルを用いることに加えて一次コイルへの通電時間を長くすると、コイル本体の大型化及び一次コイルへの通電制御を行うスイッチング素子の発熱が高くなるという問題が生ずる。 However, in the system such as the ignition device described in Patent Document 1, since the discharge current of the spark plug is determined by a combination of triangular currents output from the coils, in order to lengthen the high current period, In addition to increasing the ignition phase of the ignition coil, it is necessary to extend the high current period by extending the time for storing sufficient energy in the two ignition coils. Thus, if the energization time to the primary coil is increased in addition to the use of the two ignition coils, there arises a problem that the switching element for enlarging the coil body and controlling the energization control to the primary coil is increased.
 また、一次コイルへの通電時間を長くすることなく、一次コイルに蓄積するエネルギを高める方法としては、コイルの体格を大きくして蓄積エネルギを増やす方法、複数の点火コイルを用いる方法が考えられる。しかしながら、大型の点火コイルを用いたり、複数の点火コイルを用いたりすれば、搭載スペースの確保が問題となってしまう。加えて、大型の点火コイルを用いたり、複数の点火コイルを用いたりすれば、過剰な放電エネルギが消費されて、燃費を悪化させることにもなりかねない。 Also, as a method of increasing the energy stored in the primary coil without increasing the energization time to the primary coil, a method of increasing the stored energy by increasing the physique of the coil and a method of using a plurality of ignition coils can be considered. However, if a large ignition coil is used or a plurality of ignition coils are used, securing the mounting space becomes a problem. In addition, if a large ignition coil is used or a plurality of ignition coils are used, excessive discharge energy is consumed, which may worsen the fuel consumption.
 そこで、本発明は、燃費を悪化させること無く、必要十分な放電エネルギの安定供給により、安定した高電流期間を確保して安定した燃焼を維持できる内燃機関用点火装置の提供を目的とする。 Therefore, an object of the present invention is to provide an ignition device for an internal combustion engine that can maintain a stable combustion while ensuring a stable high current period by stably supplying necessary and sufficient discharge energy without deteriorating fuel consumption.
 上記課題を解決するために、請求項1に係る発明は、主一次電流の通電により順方向の磁束が増加し、主一次電流を遮断することにより逆方向の遮断磁束が生じる主一次コイルと、前記遮断磁束の発生以降の任意のタイミングで副一次電流を通電することにより遮断磁束と同方向の追加磁束を生じさせる副一次コイルと、一端側が点火プラグと接続され、前記主一次コイルと副一次コイルに生じた磁束が作用して放電エネルギが発生する二次コイルと、を有する点火コイルと、前記点火コイルの主一次コイルへの通電・遮断を切り替える主スイッチ手段と、前記副一次コイルへの通電・遮断を切り替える副スイッチ手段と、前記点火コイルの副一次コイルへの通電を許可する副一次コイル通電許可スイッチ手段と、前記主スイッチ手段、副スイッチ手段、副一次コイル通電許可スイッチ手段を制御して、燃焼サイクルの所定のタイミングで点火プラグに放電火花を発生させる点火制御手段と、を備え、前記点火制御手段は、主一次コイルへの通電を遮断した遮断タイミング以降に所定の重畳時間だけ副一次コイル通電許可スイッチ手段に副一次コイルへの通電を許可させると共に、副スイッチ手段への通電制御を行うことで、二次コイルに発生する放電エネルギを重畳的に増加させるようにしたことを特徴とする。 In order to solve the above-mentioned problem, the invention according to claim 1 includes a main primary coil in which a forward magnetic flux is increased by energization of a main primary current, and a reverse breaking magnetic flux is generated by interrupting the main primary current; An auxiliary primary coil that generates an additional magnetic flux in the same direction as the interruption magnetic flux by energizing the auxiliary primary current at an arbitrary timing after the generation of the interruption magnetic flux, one end side is connected to the spark plug, and the main primary coil and the auxiliary primary A secondary coil that generates a discharge energy by the action of a magnetic flux generated in the coil, a main switch means for switching between energization and interruption of the main primary coil of the ignition coil, and a connection to the sub primary coil Sub-switch means for switching between energization and cutoff, sub-primary coil energization permission switch means for permitting energization to the sub-primary coil of the ignition coil, the main switch means, Ignition control means for controlling the switch means and the sub primary coil energization permission switch means to generate a discharge spark in the spark plug at a predetermined timing of the combustion cycle, the ignition control means energizing the main primary coil Discharge generated in the secondary coil by allowing the sub primary coil energization permission switch means to energize the sub primary coil and controlling the energization to the sub switch means for a predetermined superimposition time after the shut-off timing of shutting off The energy is increased in a superimposed manner.
 また、請求項2に係る発明は、前記請求項1に記載の内燃機関用点火装置において、前記点火コイルの副一次コイルに流れる副一次電流を検出する副一次電流検出手段を備え、前記点火制御手段は、予め設定された副一次電流目標値と、前記副一次電流検出手段により検出された副一次電流検出値とを比較し、副一次電流検出値を副一次電流目標値へ近づけるように、副一次コイルへの供給電力を制御する副一次電流フィードバック制御を行うようにしたことを特徴とする。 The invention according to claim 2 is the ignition device for an internal combustion engine according to claim 1, further comprising sub primary current detection means for detecting a sub primary current flowing in the sub primary coil of the ignition coil, wherein the ignition control is performed. The means compares the preset sub primary current target value with the sub primary current detection value detected by the sub primary current detection means, and brings the sub primary current detection value closer to the sub primary current target value. Sub-primary current feedback control for controlling power supplied to the sub-primary coil is performed.
 また、請求項3に係る発明は、前記請求項2に記載の内燃機関用点火装置において、前記点火制御手段は、副スイッチ手段をPWM制御することで、副一次電流フィードバック制御を行うようにしたことを特徴とする。 According to a third aspect of the present invention, in the ignition device for an internal combustion engine according to the second aspect, the ignition control means performs sub primary current feedback control by PWM control of the sub switch means. It is characterized by that.
 また、請求項4に係る発明は、前記請求項2又は請求項3に記載の内燃機関用点火装置において、前記点火制御手段は、予め定めた単位期間毎に副一次電流目標値と副一次電流検出値との比較を行い、比較結果に応じて次の単位期間における副一次コイルへの供給電力制御を行うようにしたことを特徴とする。 According to a fourth aspect of the present invention, in the ignition device for an internal combustion engine according to the second or third aspect, the ignition control means includes a sub primary current target value and a sub primary current for each predetermined unit period. The comparison with the detected value is performed, and the supply power control to the sub-primary coil in the next unit period is performed according to the comparison result.
 また、請求項5に係る発明は、前記請求項2~請求項4の何れか1項に記載の内燃機関用点火装置において、前記点火コイルの二次コイルに流れる二次電流を検出する二次電流検出手段を備え、前記点火制御手段は、予め設定された二次電流目標値と、前記二次電流検出手段により検出された二次電流検出値とを比較し、二次電流検出値を二次電流目標値へ近づけるように、前記副一次電流目標値を設定変更することを特徴とする。 The invention according to claim 5 is the ignition device for an internal combustion engine according to any one of claims 2 to 4, wherein the secondary current that detects the secondary current flowing in the secondary coil of the ignition coil is detected. Current detection means, and the ignition control means compares the preset secondary current target value with the secondary current detection value detected by the secondary current detection means, and compares the secondary current detection value The sub primary current target value is set and changed so as to approach the secondary current target value.
 また、請求項6に係る発明は、前記請求項5に記載の内燃機関用点火装置において、前記二次電流目標値は、許容し得る二次電流の上限として予め定めた二次電流目標上限値と、許容し得る二次電流の下限として予め定めた二次電流目標下限値とを用い、二次電流目標上限値および二次電流目標下限値を二次電流検出値と比較し、二次電流目標上限値よりも二次電流検出値が高い場合には二次電流を下げるように前記副一次電流目標値を設定変更し、二次電流目標下限値よりも二次電流検出値が低い場合には二次電流を上げるように前記副一次電流目標値を設定変更することを特徴とする。 According to a sixth aspect of the present invention, in the internal combustion engine ignition device according to the fifth aspect, the secondary current target value is a secondary current target upper limit value determined in advance as an allowable upper limit of the secondary current. And a predetermined secondary current target lower limit value as a lower limit of the allowable secondary current, the secondary current target upper limit value and the secondary current target lower limit value are compared with the secondary current detection value, and the secondary current If the secondary current detection value is higher than the target upper limit value, change the setting of the sub primary current target value to lower the secondary current, and if the secondary current detection value is lower than the secondary current target lower limit value Is characterized in that the sub primary current target value is set and changed so as to increase the secondary current.
 また、請求項7に係る発明は、前記請求項5又は請求項6に記載の内燃機関用点火装置において、前記点火コイルの主一次コイルと主スイッチ手段との間にて、前記点火コイルの放電継続中に発生する一次側電圧を検出する一次コイル電圧検出手段を備え、前記点火制御手段は、一次コイル電圧が、所定の傾斜角度よりも早く所定電圧以上に上昇した時、前記二次電流目標値を増加させるように設定変更することを特徴とする。 The invention according to claim 7 is the internal combustion engine ignition device according to claim 5 or 6, wherein the ignition coil discharges between the main primary coil of the ignition coil and the main switch means. Primary coil voltage detection means for detecting a primary side voltage generated during the continuation, the ignition control means, when the primary coil voltage rises above a predetermined voltage earlier than a predetermined inclination angle, the secondary current target The setting is changed so as to increase the value.
 本発明に係る内燃機関用点火装置によれば、副一次コイル磁束発生状態切替手段を備えることで、点火タイミング前重畳放電制御や点火タイミング後重畳放電制御を行うことができるので、運転条件に応じた必要十分な放電エネルギを副一次コイルから二次コイルへ重畳して、主一次コイルへの通電時間を長くすることなく安定した高電流期間を確保し、好適な燃焼を実現する。しかも、点火タイミング前重畳放電制御や点火タイミング後重畳放電制御を運転条件に応じて使い分けることで、高い燃費改善効果を期待できる。加えて、複数のコイルや昇圧回路を必要としないので、点火コイルの大型化および大幅なコスト増を抑制できる。 According to the ignition device for an internal combustion engine according to the present invention, by providing the sub primary coil magnetic flux generation state switching means, the superimposed discharge control before the ignition timing and the superimposed discharge control after the ignition timing can be performed. The necessary and sufficient discharge energy is superimposed from the secondary primary coil to the secondary coil to ensure a stable high current period without increasing the energization time of the main primary coil, thereby realizing suitable combustion. Moreover, a high fuel efficiency improvement effect can be expected by properly using the pre-ignition timing superimposed discharge control and the post-ignition timing superimposed discharge control according to the operating conditions. In addition, since a plurality of coils and a booster circuit are not required, an increase in the size of the ignition coil and a significant increase in cost can be suppressed.
本発明に係る内燃機関用点火装置の第1実施形態を示す概略構成図である。1 is a schematic configuration diagram showing a first embodiment of an ignition device for an internal combustion engine according to the present invention. 第1実施形態に係る内燃機関用点火装置により通常放電制御および重畳放電制御を行うときの燃焼サイクルにおける各部波形を模式的に示した波形図である。It is a wave form diagram showing typically each part waveform in a combustion cycle when performing normal discharge control and superposition discharge control by the internal combustion engine ignition device concerning a 1st embodiment. (a)は、副一次電流検出値が副一次電流目標値と一致しているときに、制御手段が生成する副一次コイル通電信号を模式的に示した波形図である。(b)は、副一次電流検出値が副一次電流目標値とずれているときに、制御手段が生成する副一次コイル通電信号を模式的に示した波形図である。(A) is the wave form diagram which showed typically the sub primary coil energization signal which a control means produces | generates when a sub primary current detection value corresponds with a sub primary current target value. (B) is a waveform diagram schematically showing a sub primary coil energization signal generated by the control means when the sub primary current detection value deviates from the sub primary current target value. (a)は、二次電流検出値が二次電流目標上限値と二次電流目標下限値の範囲にあるときに、制御手段が生成する副一次電流目標値を模式的に示した波形図である。(b)は、二次電流検出値が二次電流目標上限値を越えたときに、制御手段が生成する副一次電流目標値を模式的に示した波形図である。(c)は、二次電流検出値が二次電流目標下限値を下回ったときに、制御手段が生成する副一次電流目標値を模式的に示した波形図である。(A) is a waveform diagram schematically showing the secondary primary current target value generated by the control means when the secondary current detection value is in the range of the secondary current target upper limit value and the secondary current target lower limit value. is there. (B) is a waveform diagram schematically showing the secondary primary current target value generated by the control means when the secondary current detection value exceeds the secondary current target upper limit value. (C) is a waveform diagram schematically showing the secondary primary current target value generated by the control means when the secondary current detection value falls below the secondary current target lower limit value. 本発明に係る内燃機関用点火装置の第2実施形態を示す概略構成図である。It is a schematic block diagram which shows 2nd Embodiment of the ignition device for internal combustion engines which concerns on this invention. 第2実施形態に係る内燃機関用点火装置において一次コイル電圧に応じた二次電流目標値の維持および変更を行うときの燃焼サイクルにおける各部波形を模式的に示した波形図である。It is a wave form diagram showing typically each part waveform in a combustion cycle when performing maintenance and change of a secondary current target value according to a primary coil voltage in an internal combustion engine ignition device concerning a 2nd embodiment.
 次に、本発明に係る内燃機関用点火装置の実施形態を、添付図面に基づいて詳細に説明する。 Next, an embodiment of an ignition device for an internal combustion engine according to the present invention will be described in detail with reference to the accompanying drawings.
 図1に示すのは、本発明の第1実施形態に係る内燃機関用点火装置1であり、内燃機関の気筒毎に設けられる1つの点火プラグ2に放電火花を発生させる点火コイルユニット10と、この点火コイルユニット10の動作タイミングを指示する点火信号Si等を適宜なタイミングで出力する点火制御手段31を備えた内燃機関駆動制御装置3、車両バッテリ等の直流電源4、第1副スイッチ素子51、第2副スイッチ素子52等で構成される。 FIG. 1 shows an internal combustion engine ignition device 1 according to a first embodiment of the present invention. An ignition coil unit 10 that generates a discharge spark in one ignition plug 2 provided for each cylinder of the internal combustion engine, An internal combustion engine drive control device 3 having an ignition control means 31 for outputting an ignition signal Si or the like for instructing the operation timing of the ignition coil unit 10 at an appropriate timing, a DC power source 4 such as a vehicle battery, a first sub switch element 51 The second sub switch element 52 and the like.
 なお、本実施形態に示す内燃機関用点火装置1においては、点火制御手段31が、自動車の内燃機関を統括的に制御する内燃機関駆動制御装置3に含まれるものとしたが、これに限定されるものではない。例えば、通常の内燃機関駆動制御装置3が有している点火信号生成機能によって生成された点火信号を受けて、適宜な制御信号を点火コイルユニット10および第1,第2副スイッチ素子51,52へ出力する点火制御手段を別途設けるようにしても構わない。 In the internal combustion engine ignition apparatus 1 shown in the present embodiment, the ignition control means 31 is included in the internal combustion engine drive control apparatus 3 that comprehensively controls the internal combustion engine of the automobile, but is not limited thereto. It is not something. For example, the ignition signal generated by the ignition signal generation function of the normal internal combustion engine drive control device 3 is received, and appropriate control signals are sent to the ignition coil unit 10 and the first and second sub switch elements 51, 52. Ignition control means for outputting to may be provided separately.
 上記点火コイルユニット10は、例えば、点火コイル11、主スイッチ素子12、主スイッチ素子12と並列に設けるバイパス線路13、このバイパス線路13に設ける整流手段14等を所要形状のケース15に収納して一体構造としたユニットである。このケース15の適所には、高圧端子151とコネクタ152を設けてあり、高圧端子151を介して点火プラグ2を接続すると共に、コネクタ152(例えば、第1接続端子152a~第6接続端子152fを備えるコネクタ)を介して内燃機関駆動制御装置3、車両バッテリ等の直流電源4、第1,第2副スイッチ素子51,52および接地点GNDと接続する。 The ignition coil unit 10 includes, for example, an ignition coil 11, a main switch element 12, a bypass line 13 provided in parallel with the main switch element 12, rectifying means 14 provided on the bypass line 13, and the like in a case 15 having a required shape. This unit is a unitary structure. A high voltage terminal 151 and a connector 152 are provided at appropriate positions of the case 15, and the spark plug 2 is connected via the high voltage terminal 151, and the connector 152 (for example, the first connection terminal 152 a to the sixth connection terminal 152 f is connected to the case 15. Are connected to the internal combustion engine drive control device 3, the DC power source 4 such as a vehicle battery, the first and second sub switch elements 51 and 52, and the ground point GND.
 上記点火コイル11は、主一次コイル111a(例えば、90ターン)と副一次コイル111b(例えば、60ターン)と二次コイル112(例えば、9000ターン)を備える。なお、点火コイル11は、主一次コイル111aと副一次コイル111bに生ずる磁束を二次コイル112に作用させるもので、例えば、センターコア1113を取り巻くように主一次コイル111aおよび副一次コイル111bを配置し、更にその外側に二次コイル112を配置する。 The ignition coil 11 includes a primary primary coil 111a (for example, 90 turns), a secondary primary coil 111b (for example, 60 turns), and a secondary coil 112 (for example, 9000 turns). The ignition coil 11 causes the magnetic flux generated in the main primary coil 111a and the sub primary coil 111b to act on the secondary coil 112. For example, the main primary coil 111a and the sub primary coil 111b are arranged so as to surround the center core 1113. In addition, the secondary coil 112 is arranged outside thereof.
 主一次コイル111aの一方端は、例えば第2接続端子152bを介して直流電源4と接続され、電源電圧VB+(例えば、12V)が印加される。主一次コイル111aの他方端は、主スイッチ素子12および第5接続端子152eを介して接地点GNDに接続される。 One end of the main primary coil 111a is connected to the DC power supply 4 through, for example, the second connection terminal 152b, and a power supply voltage VB + (for example, 12V) is applied. The other end of main primary coil 111a is connected to ground point GND via main switch element 12 and fifth connection terminal 152e.
 上記主スイッチ素子12は、主一次コイル111aへの通電・遮断を行うための主スイッチ手段であり、例えば、IGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)を用いて構成する。すなわち、点火コイルユニット10は、イグニッションコイルとイグナイタをケース15内に封止したユニット構造である。なお、主スイッチ素子12の制御端子であるゲートGは、例えば第4接続端子152dを介して内燃機関駆動制御装置3に接続され、点火制御手段31が生成する点火信号SiによってON・OFF制御される。 The main switch element 12 is a main switch means for energizing / cutting off the main primary coil 111a, and is configured by using, for example, an IGBT (Insulated Gate Bipolar Transistor). That is, the ignition coil unit 10 has a unit structure in which an ignition coil and an igniter are sealed in the case 15. The gate G, which is the control terminal of the main switch element 12, is connected to the internal combustion engine drive control device 3 through, for example, the fourth connection terminal 152d, and is ON / OFF controlled by the ignition signal Si generated by the ignition control means 31. The
 上記のように、点火信号Siによって主スイッチ素子12がONになり、主一次コイル111aに通電されると、主一次電流I1aが流れることで順方向の磁束が増加し、主スイッチ素子12がOFFになって主一次電流I1aが遮断されると、順方向の磁束が急激に減ぜられ(見かけ上、順方向の磁束と逆向きの遮断磁束が生じ)、この磁束変化を妨げる向きの磁界を生じさせるように、二次コイル112側に高電圧が発生し、点火プラグ2の放電ギャップ間に放電火花が生じ、二次電流I2が流れる。このように、主一次コイル111aに対する通電・遮断制御によって点火プラグ2を放電させる制御を、以下では、通常放電制御という。 As described above, when the main switch element 12 is turned on by the ignition signal Si and the main primary coil 111a is energized, the main primary current I1a flows to increase the forward magnetic flux, and the main switch element 12 is turned off. When the main primary current I1a is cut off, the forward magnetic flux is suddenly reduced (apparently, a breaking magnetic flux opposite to the forward magnetic flux is generated). As a result, a high voltage is generated on the secondary coil 112 side, a discharge spark is generated between the discharge gaps of the spark plug 2, and a secondary current I2 flows. In this way, the control for discharging the spark plug 2 by energization / cutoff control for the main primary coil 111a is hereinafter referred to as normal discharge control.
 上記二次コイル112は、一方端が高圧端子151を介して点火プラグ2に接続され、他方端は第6接続端子152fを介して接地点GNDに接続される。なお、第6接続端子152fと接地点GNDとの間には電流検出抵抗61を設け、第6接続端子152fと電流検出抵抗621の間に設けた二次電流検出信号線を介して、二次電流検出信号Di2が内燃機関駆動制御装置3へ供給されるようにする。すなわち、電流検出抵抗61と二次電流検出信号線は、二次コイル112に流れる二次電流I2を検出する二次電流検出手段として機能する。 The secondary coil 112 has one end connected to the spark plug 2 via the high-voltage terminal 151 and the other end connected to the ground point GND via the sixth connection terminal 152f. Note that a current detection resistor 61 is provided between the sixth connection terminal 152f and the ground point GND, and a secondary current detection signal line provided between the sixth connection terminal 152f and the current detection resistor 621 is provided as a secondary. The current detection signal Di2 is supplied to the internal combustion engine drive control device 3. That is, the current detection resistor 61 and the secondary current detection signal line function as secondary current detection means for detecting the secondary current I2 flowing through the secondary coil 112.
 次に、第1,第2副スイッチ素子51,52によって、通電・遮断タイミングが制御される副一次コイル111bについて説明する。 Next, the sub primary coil 111b whose energization / cutoff timing is controlled by the first and second sub switch elements 51 and 52 will be described.
 副一次コイル111bは、例えば、副一次コイル111bの一方端である第1端111b1から他方端である第2端111b2へ至る向きの通電により、遮断磁束と同方向の追加磁束が生じる。そして、副一次コイル111bの第1端111b1は、例えば第1接続端子152aを介して第1副スイッチ素子51に接続され、副一次コイル111bの第2端111b2は、例えば第3接続端子152cを介して第2副スイッチ素子52に接続される。 The sub primary coil 111b generates, for example, an additional magnetic flux in the same direction as the interrupting magnetic flux when energized in the direction from the first end 111b1 which is one end of the sub primary coil 111b to the second end 111b2 which is the other end. The first end 111b1 of the sub primary coil 111b is connected to the first sub switch element 51 via, for example, the first connection terminal 152a, and the second end 111b2 of the sub primary coil 111b is connected to, for example, the third connection terminal 152c. To the second sub switch element 52.
 したがって、第1,第2副スイッチ素子51,52が、副一次コイル111bの第1端111b1を給電側に、第2端111b2を接地側にすると、副一次コイル11bは第1方向に通電されることとなる。逆に、第1,第2副スイッチ素子51,52が、副一次コイル111bの第2端111b2を給電側に、第1端111b1を接地側にすると、副一次コイル11bは第2方向に通電されることとなる。 Therefore, when the first and second sub switch elements 51 and 52 have the first end 111b1 of the sub primary coil 111b on the power supply side and the second end 111b2 on the ground side, the sub primary coil 11b is energized in the first direction. The Rukoto. Conversely, when the first and second sub-switch elements 51 and 52 make the second end 111b2 of the sub-primary coil 111b the power supply side and the first end 111b1 the ground side, the sub-primary coil 11b is energized in the second direction. Will be.
 なお、副一次コイル111bにおける第1方向および第2方向は、主一次コイル111aとの配置状態によって定まる。例えば、副一次コイル111bの巻回方向と主一次コイル111bの巻回方向が同じになるよう配置されているときは、主一次コイル111bへの通電方向と同じ方向を第1方向として通電すれば、副一次コイル111bに順方向の磁束が生じる。逆に、副一次コイル111bの巻回方向と主一次コイル111bの巻回方向が逆向きになるよう配置されているときは、主一次コイル111bへの通電と逆方向を第1方向として通電すれば、順方向の磁束が生じる。 In addition, the 1st direction and the 2nd direction in the sub primary coil 111b are decided by the arrangement | positioning state with the main primary coil 111a. For example, when the winding direction of the sub primary coil 111b and the winding direction of the main primary coil 111b are arranged to be the same, the same direction as the energization direction to the main primary coil 111b may be energized as the first direction. A forward magnetic flux is generated in the secondary primary coil 111b. On the other hand, when the winding direction of the sub primary coil 111b and the winding direction of the main primary coil 111b are reversed, the first primary coil 111b is energized with the opposite direction to the energization of the main primary coil 111b. In this case, a forward magnetic flux is generated.
 上記のように構成した副一次コイル111bに対し、前述した主一次コイル111aによる通常放電制御と同じタイミングで、第1方向へ通電を行うと、主一次コイル11aと同じ順方向の磁束が生じ、その後、通常放電制御と同じタイミングで副一次コイル111bへの通電遮断を行うと、主一次コイル111aと副一次コイル111bの順方向磁束が同時に急減するので、二次側に与える放電エネルギを高めることができる。すなわち、点火タイミングの前(主一次コイル111aへの通電遮断タイミングの前)に副一次コイル111bによって順方向磁束を発生させておき、主一次コイル111aと同時に副一次コイル111bへの通電遮断を行えば、副一次コイル111bによって放電エネルギを重畳して二次コイル112に与えることができる。 When the sub primary coil 111b configured as described above is energized in the first direction at the same timing as the normal discharge control by the main primary coil 111a described above, the same forward magnetic flux as that of the main primary coil 11a is generated. After that, if the current supply to the sub primary coil 111b is cut off at the same timing as the normal discharge control, the forward magnetic flux of the main primary coil 111a and the sub primary coil 111b rapidly decreases at the same time, so that the discharge energy given to the secondary side is increased. Can do. That is, the forward primary magnetic flux is generated by the sub primary coil 111b before the ignition timing (before the energization interruption timing to the main primary coil 111a), and the energization interruption to the sub primary coil 111b is performed simultaneously with the main primary coil 111a. For example, the discharge energy can be superimposed on the secondary coil 112 by the secondary primary coil 111b.
 また、点火タイミング以降(主一次コイル111aへの通電遮断タイミング以降)の適宜なタイミングで、副一次コイル111bに対し、第2方向への通電を行うと、逆方向の磁束(二次側に高電圧を発生させた磁界と同じ向きの磁束)が生じ、二次側の磁界が減衰して二次側起電力が低下してゆくことを抑制できるので、副一次コイル111bへの通電遮断を行うまで二次電流I2を高く維持できる。すなわち、点火タイミングの後に副一次コイル111bによって逆方向の磁束を発生させて二次コイル112に作用させれば、副一次コイル111bによって放電エネルギを重畳して二次コイル112に与えることができる。 In addition, if the secondary primary coil 111b is energized in the second direction at an appropriate timing after the ignition timing (after the energization cut-off timing to the main primary coil 111a), the magnetic flux in the reverse direction (high on the secondary side) is obtained. (The magnetic flux in the same direction as the magnetic field that generated the voltage) is generated, and the secondary side magnetic field can be prevented from being attenuated and the secondary side electromotive force to be lowered. The secondary current I2 can be kept high until That is, if the secondary primary coil 111b generates a reverse magnetic flux after the ignition timing and causes it to act on the secondary coil 112, the secondary primary coil 111b can superimpose discharge energy on the secondary coil 112.
 なお、副一次コイル111bに対する第2方向への通電を遮断するタイミングは、二次電流I2を気筒内での好適な燃焼に必要な高電流に維持するために必要十分な時間が経過したときであり、それ以上の長時間に亘って副一次コイル111bへの第2方向通電を続けると、却って燃費を悪くしてしまう。このような副一次コイル111bに対する望ましい通電・遮断のタイミングは、一定の値に定まるものではなく、内燃機関の構造や点火コイルの特性、運転状況等によって様々に変化するので、内燃機関用点火装置1に適した設定値あるいは設定情報(設定値を求める演算式や対照表など)を内燃機関駆動制御装置3の点火制御手段31に予め記憶させておけば良い。 It should be noted that the timing of cutting off the current in the second direction for the sub-primary coil 111b is when a sufficient and sufficient time has passed to maintain the secondary current I2 at a high current necessary for suitable combustion in the cylinder. If the second direction energization to the sub primary coil 111b is continued for a longer time than that, the fuel consumption is worsened. Such desirable energization / cutoff timing for the sub-primary coil 111b is not fixed, but varies depending on the structure of the internal combustion engine, the characteristics of the ignition coil, the operating conditions, and the like. A setting value or setting information suitable for 1 may be stored in the ignition control means 31 of the internal combustion engine drive control device 3 in advance.
 また、副一次コイル111bへの第2方向通電を遮断したとき、その逆起電力が主一次コイル111aに作用するため、通常の一次電流I1とは逆向きの電流を流そうとする逆方向の電圧が主スイッチ素子12のコレクタ-エミッタ間に印加されることとなり、主スイッチ素子12が故障したり、主スイッチ素子12の劣化を早めたりする危険性がある。そこで、主スイッチ素子12と並列にバイパス線路13を設けると共に、このバイパス線路13の接地点GND側から点火コイル11側に向かって順方向となる整流手段14(例えば、主スイッチ素子12のコレクタ側にカソードを、主スイッチ素子12のエミッタ側にアノードをそれぞれ接続したダイオード)を設けてある。 Further, when the second direction energization to the sub primary coil 111b is cut off, the counter electromotive force acts on the main primary coil 111a, so that the reverse direction in which the current in the direction opposite to that of the normal primary current I1 is to flow. The voltage is applied between the collector and the emitter of the main switch element 12, and there is a risk that the main switch element 12 may break down or the deterioration of the main switch element 12 may be accelerated. Therefore, a bypass line 13 is provided in parallel with the main switch element 12, and rectifying means 14 (for example, the collector side of the main switch element 12) is forwardly directed from the ground point GND side of the bypass line 13 toward the ignition coil 11 side. And a diode having an anode connected to the emitter side of the main switch element 12).
 次に、副一次コイル111bへ第1方向の通電を行える順方向磁束発生状態と、副一次コイル111bへ第2方向の通電を行える逆方向磁束発生状態と、を相互に切り替え可能な副一次コイル磁束発生状態切替手段である第1,第2副スイッチ素子51,52の一構成例について説明する。第1,第2副スイッチ素子51,52は、第1副スイッチ素子51、第2副スイッチ素子52、第3副スイッチ素子53、第4副スイッチ素子54を備える。 Next, a sub primary coil capable of switching between a forward magnetic flux generation state in which the first primary coil 111b can be energized in the first direction and a reverse magnetic flux generation state in which the sub primary coil 111b can be energized in the second direction can be switched. A configuration example of the first and second sub switch elements 51 and 52 serving as magnetic flux generation state switching means will be described. The first and second sub switch elements 51 and 52 include a first sub switch element 51, a second sub switch element 52, a third sub switch element 53, and a fourth sub switch element 54.
 第1副スイッチ素子51は、直流電源4から副一次コイル111bへの通電・遮断を切り替える副スイッチ手段として機能する。例えば、第1副スイッチ素子51は、高速スイッチング特性を備えるパワーMOS-FETを用いて構成し、第1副スイッチ素子51のドレインDが直流電源4側に、第1副スイッチ素子51のソースSが副一次コイル111bの第2端111b2側に接続され、第1副スイッチ素子51のゲートGには点火制御手段31からの副一次コイル通電信号Sdが入力される。したがって、点火制御手段31から第1副スイッチ素子51に入力される副一次コイル通電信号SdのON/OFFに応じて第1副スイッチ素子51がON/OFFになり、副一次コイル111bの第1端111b1に直流電源4から電源電圧VB+が印加あるいは遮断されることとなる。なお、副一次コイル111bへ印加する電圧を高くするために、VB+の直流電源4を用いずに、より高圧の直流電源を用いるようにしても良い。或いは、昇圧回路7(図1中、二点鎖線で示す)を設けて、副一次コイル111bへの印加電圧を高めるようにしても良い。 The first sub switch element 51 functions as sub switch means for switching between energization / cutoff from the DC power source 4 to the sub primary coil 111b. For example, the first sub switch element 51 is configured using a power MOS-FET having high-speed switching characteristics, and the drain D of the first sub switch element 51 is on the DC power supply 4 side, and the source S of the first sub switch element 51 is. Is connected to the second end 111b2 side of the sub primary coil 111b, and the sub primary coil energization signal Sd from the ignition control means 31 is input to the gate G of the first sub switch element 51. Accordingly, the first sub switch element 51 is turned ON / OFF in response to the ON / OFF of the sub primary coil energization signal Sd input from the ignition control means 31 to the first sub switch element 51, and the first of the sub primary coil 111b. The power supply voltage VB + is applied or cut off from the DC power supply 4 to the end 111b1. In order to increase the voltage applied to the sub-primary coil 111b, a higher voltage DC power supply may be used instead of the VB + DC power supply 4. Alternatively, a booster circuit 7 (indicated by a two-dot chain line in FIG. 1) may be provided to increase the voltage applied to the sub primary coil 111b.
 第2副スイッチ素子52は、副一次コイル111bへの通電を行えるように、副一次コイル111bの第2端111b2側を接地点GNDへ切り替える副一次コイル通電許可手段として機能する。例えば、第2副スイッチ素子52は、高速スイッチング特性を備えるパワーMOS-FETを用いて構成し、第2副スイッチ素子52のドレインDが副一次コイル111bの第2端111b2側に、第2副スイッチ素子52のソースSが接地点GND側に接続され、第2副スイッチ素子52のゲートGには点火制御手段31からの副一次コイル通電許可信号Spが入力される。したがって、点火制御手段31から第2副スイッチ素子52に入力される副一次コイル通電許可信号SpのON/OFFに応じて第2副スイッチ素子52がON/OFFになり、副一次コイル111bの第2端111b2が接地点GNDに接続されることとなる。なお、第2副スイッチ素子52と接地点GNDとの間には、電流検出抵抗62を設け、第2副スイッチ素子52と電流検出抵抗62との間に設けた副一次電流検出信号線を介して、副一次電流検出信号Di1sが内燃機関駆動制御装置3へ入力される。すなわち、電流検出抵抗62と副一次電流検出信号線は、副一次コイル111bに流れる副一次電流を検出する副一次電流検出手段として機能する。 The second sub-switch element 52 functions as a sub-primary coil energization permission unit that switches the second end 111b2 side of the sub-primary coil 111b to the ground point GND so that the sub-primary coil 111b can be energized. For example, the second sub switch element 52 is configured by using a power MOS-FET having high-speed switching characteristics, and the drain D of the second sub switch element 52 is connected to the second end 111b2 side of the sub primary coil 111b. The source S of the switch element 52 is connected to the ground point GND side, and the sub primary coil energization permission signal Sp from the ignition control means 31 is input to the gate G of the second sub switch element 52. Therefore, the second sub-switch element 52 is turned on / off in response to the ON / OFF of the sub-primary coil energization permission signal Sp input from the ignition control means 31 to the second sub-switch element 52, and the second primary switch 111b The two ends 111b2 are connected to the ground point GND. A current detection resistor 62 is provided between the second sub switch element 52 and the ground point GND, and a sub primary current detection signal line provided between the second sub switch element 52 and the current detection resistor 62 is provided. Thus, the sub primary current detection signal Di1s is input to the internal combustion engine drive control device 3. That is, the current detection resistor 62 and the sub primary current detection signal line function as sub primary current detection means for detecting the sub primary current flowing through the sub primary coil 111b.
 ここで、上述した第1実施形態の内燃機関用点火装置1における点火制御手段31による制御例を、図2に基づいて説明する。 Here, a control example by the ignition control means 31 in the internal combustion engine ignition device 1 of the first embodiment will be described with reference to FIG.
 図2の前段は、通常放電制御を示すもので、1回の燃焼サイクル中に主一次コイル111aのみを使って放電エネルギを二次コイル112に与える基本的な制御である。まず、燃焼サイクル中の所定タイミングで点火信号SiがONになると、主スイッチ素子12がONとなって、主一次電流I1aが流れる。主一次コイル111aへの通電から時間経過に伴って、主一次電流I1aは飽和電流に達するまで増加してゆき、主一次コイル111aにエネルギが蓄積される。そして、点火タイミングで点火信号SiがOFFになると(信号レベルがHからLになると)、主一次コイル111aに蓄積されたエネルギに応じた起電力が二次側に生じて、二次電流I2が流れると共に点火プラグ2の電極間に絶縁破壊を起こして、気筒内に放電火花を生じさせる(容量放電)。その後も、二次コイル112に与えられた磁気エネルギの放出による放電(誘導放電)が0.5~2.5ms程度続くが、二次コイル112に生じた起電力は次第に弱まり、二次電流I2も減衰してゆく。 The first stage of FIG. 2 shows normal discharge control, and is basic control for giving discharge energy to the secondary coil 112 using only the main primary coil 111a during one combustion cycle. First, when the ignition signal Si is turned ON at a predetermined timing during the combustion cycle, the main switch element 12 is turned ON and the main primary current I1a flows. As time elapses from energization to the main primary coil 111a, the main primary current I1a increases until reaching the saturation current, and energy is accumulated in the main primary coil 111a. When the ignition signal Si is turned OFF at the ignition timing (when the signal level is changed from H to L), an electromotive force corresponding to the energy accumulated in the main primary coil 111a is generated on the secondary side, and the secondary current I2 is While flowing, dielectric breakdown occurs between the electrodes of the spark plug 2 to generate a discharge spark in the cylinder (capacitive discharge). Thereafter, the discharge (inductive discharge) due to the release of the magnetic energy applied to the secondary coil 112 continues for about 0.5 to 2.5 ms, but the electromotive force generated in the secondary coil 112 gradually weakens, and the secondary current I2 Will also decay.
 図2の後段は、重畳放電制御を示すもので、主一次コイル111aへの通電・遮断による点火タイミング以降に、第1,第2副スイッチ素子51,52を制御して副一次コイル111bへ通電開始し、副一次コイル111bから誘導放電を維持するために必要十分なエネルギを二次側に与える制御である。 The subsequent stage of FIG. 2 shows superimposed discharge control. After the ignition timing by energization / cutoff of the main primary coil 111a, the first and second sub switch elements 51 and 52 are controlled to energize the sub primary coil 111b. This control starts and supplies the secondary side with sufficient energy necessary to maintain the induction discharge from the secondary primary coil 111b.
 まず、燃焼サイクル中の所定タイミングで点火信号SiがONになると、主スイッチ素子12がONとなって、主一次電流I1aが流れる。主一次コイル111aへの通電から時間経過に伴って、主一次電流I1aは飽和電流に達するまで増加してゆき、主一次コイル111aにエネルギが蓄積される。そして、点火タイミングで点火信号SiがOFFになると(信号レベルがHからLになると)、主一次コイル111aに蓄積されたエネルギに応じた起電力が二次側に生じて、二次電流I2が流れると共に点火プラグ2の電極間に絶縁破壊が起き、気筒内に放電火花が生じる(容量放電)。 First, when the ignition signal Si is turned ON at a predetermined timing during the combustion cycle, the main switch element 12 is turned ON and the main primary current I1a flows. As time elapses from energization to the main primary coil 111a, the main primary current I1a increases until reaching the saturation current, and energy is accumulated in the main primary coil 111a. When the ignition signal Si is turned OFF at the ignition timing (when the signal level is changed from H to L), an electromotive force corresponding to the energy accumulated in the main primary coil 111a is generated on the secondary side, and the secondary current I2 is As it flows, dielectric breakdown occurs between the electrodes of the spark plug 2, and a discharge spark is generated in the cylinder (capacitive discharge).
 上記のようにして点火プラグ2に容量放電が生じ、放電電流が流れ始めた後、例えば、容量放電から誘導放電へ移行するタイミング(例えば、点火信号SiのOFFから所定の重畳放電待機時間Tpreが経過したタイミング)で、点火制御手段31が副一次コイル通電許可信号SpをON(例えば、信号レベルをLからH)にすると共に、副一次コイル通電信号SdをONにする。なお、図2に示す例では、副一次コイル通電信号Sdのデューティー比を変えるPWM制御を行うことで、副一次コイル111bへの供給電力を調整するものとした。 After the capacitive discharge is generated in the spark plug 2 and the discharge current starts to flow as described above, for example, the timing of transition from the capacitive discharge to the induction discharge (for example, the predetermined superimposed discharge standby time Tpre from the OFF of the ignition signal Si is At the elapsed timing), the ignition control unit 31 turns on the sub primary coil energization permission signal Sp (for example, the signal level from L to H) and turns on the sub primary coil energization signal Sd. In the example shown in FIG. 2, the power supplied to the sub primary coil 111b is adjusted by performing PWM control that changes the duty ratio of the sub primary coil energization signal Sd.
 そして、副一次コイル111bを流れる副一次電流(以下、重畳電流I1bという)は、飽和電流に達するまで徐々に増加してゆき、逆方向の磁束(点火タイミング後に二次コイル112に生じた磁界と同じ向きの重畳磁束)も増加してゆく(図2の重畳電流波形中、網掛けで示す)。したがって、二次コイル112の電磁エネルギ放出による二次電流I2の低下を補うように、副一次コイル111bに生じた重畳磁束が二次コイル112に作用することとなり、二次電流I2が高電流のまま保持され(図2の二次電流波形中、網掛けで示す)、気筒内燃焼に好適な高電流期間を効率良く長期化できる。 The sub primary current (hereinafter referred to as the superimposed current I1b) flowing through the sub primary coil 111b gradually increases until reaching the saturation current, and the reverse magnetic flux (the magnetic field generated in the secondary coil 112 after the ignition timing) The superimposed magnetic flux in the same direction also increases (indicated by shading in the superimposed current waveform in FIG. 2). Therefore, the superimposed magnetic flux generated in the secondary primary coil 111b acts on the secondary coil 112 so as to compensate for the decrease in the secondary current I2 due to the electromagnetic energy emission of the secondary coil 112, and the secondary current I2 is a high current. The high current period suitable for in-cylinder combustion can be effectively extended for a long time (indicated by the hatching in the secondary current waveform in FIG. 2).
 その後、好適な気筒内燃焼に必要十分な高電流の維持期間(高電流期間)が経過すると、点火制御手段31が副一次コイル通電許可信号Spおよび副一次コイル通電信号SdをOFFにする。これにより、副一次コイル111bによる逆方向の磁束が二次コイル112に作用しなくなるので、以降は二次コイル112の電磁エネルギ放出のみによる低い二次電流I2が流れることとなり、やがて二次電流I2が帰零する。なお、副一次コイル通電許可信号SpをONにする通電許可期間Tb1と、直流電源4から副一次コイル111bへの給電を行う通電期間Tb2は、同一期間にしても良いし、通電許可期間Tb1の方が通電期間Tb2よりも若干長くなるようにしても良い。 Thereafter, when a high current maintenance period (high current period) sufficient for suitable in-cylinder combustion has elapsed, the ignition control means 31 turns off the sub primary coil energization permission signal Sp and the sub primary coil energization signal Sd. As a result, the reverse magnetic flux caused by the secondary primary coil 111b does not act on the secondary coil 112, and thereafter, a low secondary current I2 due to only the electromagnetic energy emission of the secondary coil 112 flows, and eventually the secondary current I2 Will return to zero. The energization permission period Tb1 for turning on the sub primary coil energization permission signal Sp and the energization period Tb2 for supplying power from the DC power supply 4 to the sub primary coil 111b may be the same period, or the energization permission period Tb1. However, it may be slightly longer than the energization period Tb2.
 上述したように、点火制御手段31が重畳放電制御を行えば、点火信号SiのON時間を長くすることなく、二次コイル112に与える放電エネルギを増大させ、点火プラグ2の電極間を流れる放電電流を高電流に維持できる期間を長期化できる。しかも、副一次コイル111bから二次コイル112に作用させる重畳磁束は、気筒内燃焼を好適に維持するために必要十分な高電流を発生・維持できる程度で良いことから、副一次コイル111bへの通電に要するエネルギは低く抑えることができ、燃費効率の向上に有効である。 As described above, when the ignition control means 31 performs the superimposed discharge control, the discharge energy applied to the secondary coil 112 is increased without increasing the ON time of the ignition signal Si, and the discharge flowing between the electrodes of the spark plug 2. The period during which the current can be maintained at a high current can be extended. In addition, the superimposed magnetic flux applied from the secondary primary coil 111b to the secondary coil 112 is sufficient to generate and maintain a sufficiently high current necessary for suitably maintaining in-cylinder combustion. The energy required for energization can be kept low, which is effective for improving fuel efficiency.
 加えて、本実施形態の内燃機関用点火装置1においては、点火制御手段31が副一次コイル通電信号Sdによって第1副スイッチ素子51をPWM制御可能であるから、重畳放電制御において副一次コイル111bに流す重畳電流I1bを適宜に増減させることで、過不足の無い適切な放電エネルギを二次側に与えることができ、更なる燃費効率向上を期待できる。かくするために、点火制御手段31では、予め設定された副一次電流目標値を記憶しており、副一次電流検出手段により検出された副一次電流検出値(副一次電流検出信号Di1sによって得られる重畳電流I1bの値)と副一次電流目標値とを比較し、副一次電流検出値を副一次電流目標値へ近づけるように、副一次コイルへの供給電力を制御する副一次電流フィードバック制御を行うのである。 In addition, in the internal combustion engine ignition device 1 of the present embodiment, since the ignition control means 31 can perform PWM control of the first sub switch element 51 by the sub primary coil energization signal Sd, the sub primary coil 111b in the superimposed discharge control. By appropriately increasing / decreasing the superimposed current I1b flowing through the secondary battery, appropriate discharge energy without excess or deficiency can be given to the secondary side, and further improvement in fuel efficiency can be expected. In order to do this, the ignition control means 31 stores a preset secondary primary current target value, and is obtained from the secondary primary current detection value (sub primary current detection signal Di1s) detected by the secondary primary current detection means. The value of the superimposed current I1b) is compared with the sub primary current target value, and sub primary current feedback control is performed to control the power supplied to the sub primary coil so that the sub primary current detection value approaches the sub primary current target value. It is.
 なお、実測値を目標値へ近づけるフィードバック制御としては、公知既存の種々の技術を適用可能であるが、本実施形態の内燃機関用点火装置1においては、点火制御手段31から第1副スイッチ素子51へ出力する副一次コイル通電信号Sdのデューティー比を、予め定めた単位期間Tu毎に変更可能とし、副一次電流検出値と副一次電流目標値との比較結果に応じて、次の単位期間Tuにおける副一次コイル通電信号Sdのデューティー比を高めたり、低めたりするものとした。このフィードバック制御の一例を、図3に基づき説明する。図3(a)は、副一次電流検出値が副一次電流目標値とほぼ一致している場合を示し、図3(b)は、副一次電流検出値と副一次電流目標値とのズレが修正を要するほど大きかったためにフィードバック制御を行った場合を示す。 As feedback control for bringing the actually measured value close to the target value, various known techniques can be applied. However, in the internal combustion engine ignition device 1 of the present embodiment, the ignition control means 31 to the first sub switch element. The duty ratio of the sub primary coil energization signal Sd output to 51 can be changed every predetermined unit period Tu, and the next unit period is determined according to the comparison result between the sub primary current detection value and the sub primary current target value. The duty ratio of the sub primary coil energization signal Sd in Tu is increased or decreased. An example of this feedback control will be described with reference to FIG. FIG. 3A shows a case where the sub primary current detection value substantially coincides with the sub primary current target value, and FIG. 3B shows the difference between the sub primary current detection value and the sub primary current target value. The case where feedback control is performed because it is large enough to require correction is shown.
 なお、目標値と検出値との誤差比較手法についても、公知既存の様々な手法を適用できるが、本例では、単位期間Tuのほぼ中間付近で、副一次電流検出値が副一次電流目標値に一致していれば、目標通りの放電エネルギが発生しているものと判断する。また、単位期間Tuの前期間で、副一次電流検出値が副一次電流目標値に達しているか、単位期間Tuの始まる前に副一次電流検出値が副一次電流目標値を越えていれば、過剰な放電エネルギが発生しているものと判断する。逆に、単位期間Tuの後期間で、副一次電流検出値が副一次電流目標値にようやく達するか、単位期間Tuが経過しても副一次電流検出値が副一次電流目標値に達していなければ、本来必要な放電エネルギを発生できていないものと判断する。 Note that various known methods can be applied to the error comparison method between the target value and the detected value. However, in this example, the sub primary current detected value is the sub primary current target value at approximately the middle of the unit period Tu. If it agrees with the above, it is determined that the target discharge energy is generated. In addition, if the sub primary current detection value has reached the sub primary current target value in the previous period of the unit period Tu, or if the sub primary current detection value has exceeded the sub primary current target value before the start of the unit period Tu, It is determined that excessive discharge energy is generated. Conversely, the sub primary current detection value finally reaches the sub primary current target value in the subsequent period of the unit period Tu, or the sub primary current detection value must not reach the sub primary current target value even after the unit period Tu has elapsed. In this case, it is determined that the necessary discharge energy is not generated.
 図3(a)にて順に説明すると、第1単位期間Tu1においては、通常のデューティー比となる副一次コイル通電信号Sdを出力し、その間に重畳電流I1bとして得られる副一次電流検出値は第1単位期間Tu1の中間付近で副一次電流目標値と一致しているので、次の第2単位期間Tu2でも通常のデューティー比となる副一次コイル通電信号Sdを出力する。以下、第2~第4単位期間Tu2~Tu4においても同様に、各期間の中間付近で副一次電流検出値が副一次電流目標値と一致しているので、次の単位期間でも通常のデューティー比となる副一次コイル通電信号Sdを出力する。 3A, in order to output the secondary primary coil energization signal Sd having a normal duty ratio during the first unit period Tu1, the secondary primary current detection value obtained as the superimposed current I1b during that time is the first primary period Tu1. Since it coincides with the sub primary current target value near the middle of the one unit period Tu1, the sub primary coil energization signal Sd having the normal duty ratio is output also in the next second unit period Tu2. Similarly, in the second to fourth unit periods Tu2 to Tu4, the sub primary current detection value coincides with the sub primary current target value in the vicinity of the middle of each period, so that the normal duty ratio is also obtained in the next unit period. The sub primary coil energization signal Sd is output.
 副一次電流目標値は、本来、点火プラグ2に放電火花を安定的に発生させる上で良好な重畳電流I1bを得るために設定したものであるから、上述した図3(a)のように副一次電流検出値が副一次電流目標値と一致して、適切な放電エネルギを重畳できることが理想であるが、車両の走行環境やエンジン負荷などで、理想通りの重畳電流I1bを得ることができない場合もある。このような場合に、実際の重畳電流I1bをモニタリングして、理想の重畳電流I1bが得られるようにフィードバック制御を行えば、重畳放電によるエネルギの過不足を無くすことができる。 Since the secondary primary current target value is originally set to obtain a good superimposed current I1b in order to stably generate discharge sparks in the spark plug 2, the secondary primary current target value is as shown in FIG. Ideally, the primary current detection value coincides with the sub primary current target value and appropriate discharge energy can be superimposed, but the ideal superimposed current I1b cannot be obtained due to the vehicle driving environment, engine load, etc. There is also. In such a case, by monitoring the actual superimposed current I1b and performing feedback control so as to obtain the ideal superimposed current I1b, excess or deficiency of energy due to the superimposed discharge can be eliminated.
 図3(b)にて順に説明すると、第1単位期間Tu1においては、通常のデューティー比となる副一次コイル通電信号Sdを出力し、その間に重畳電流I1bとして得られる副一次電流検出値は第1単位期間Tu1のやや後期間で副一次電流目標値と一致しているので、重畳電流I1bが理想とする電流値よりも低いと判断し、次の第2単位期間Tu2ではデューティー比を高めた副一次コイル通電信号Sdを出力する。 3B, in order, in the first unit period Tu1, a sub primary coil energization signal Sd having a normal duty ratio is output, and the sub primary current detection value obtained as the superimposed current I1b during that time is the first unit period Tu1. Since it coincides with the sub primary current target value slightly later in one unit period Tu1, it is determined that the superimposed current I1b is lower than the ideal current value, and the duty ratio is increased in the next second unit period Tu2. The sub primary coil energization signal Sd is output.
 なお、デューティー比を高めたり、低めたりする場合、高デューティー比出力と低デューティー比出力をそれぞれ予め定めておき、デューティー比を高める場合には高デューティー比出力を副一次コイル通電信号Sdに適用し、デューティー比を低める場合には低デューティー比出力を副一次コイル通電信号Sdに適用するようにしても良いし、副一次電流目標値と副一次電流検出値との誤差値に応じたデューティー比のパルス信号を生成して、副一次コイル通電信号Sdに適用するようにしても良い。 When the duty ratio is increased or decreased, a high duty ratio output and a low duty ratio output are respectively determined in advance, and when the duty ratio is increased, the high duty ratio output is applied to the sub primary coil energization signal Sd. When the duty ratio is lowered, the low duty ratio output may be applied to the sub primary coil energization signal Sd, or the duty ratio according to the error value between the sub primary current target value and the sub primary current detection value may be set. A pulse signal may be generated and applied to the sub primary coil energization signal Sd.
 デューティー比を高めた副一次コイル通電信号Sdを出力している第2単位期間Tu2においても、やや後期間で副一次電流検出値が副一次電流目標値と一致しているので、未だ重畳電流I1bが理想とする電流値よりも低いと判断し、次の第3単位期間Tu3でもデューティー比を高めた副一次コイル通電信号Sdを出力する。デューティー比を高めた副一次コイル通電信号Sdを出力している第3単位期間Tu3においては、ほぼ中間付近で副一次電流検出値が副一次電流目標値と一致しているので、適切な重畳電流I1bが供給されるようになったものと判断し、次の第4単位期間Tu4は通常のデューティー比となる副一次コイル通電信号Sdを出力する。通常のデューティー比となる副一次コイル通電信号Sdを出力している第4単位期間Tu4においては、やや前期間で副一次電流検出値が副一次電流目標値と一致しているので、重畳電流I1bが理想とする電流値よりも高いと判断し、次の第5単位期間Tu5ではデューティー比を低めた副一次コイル通電信号Sdを出力する。これにより、第5単位期間Tu5では重畳電流I1bが理想とする電流値となるように抑制できるのである。 Even in the second unit period Tu2 in which the sub-primary coil energization signal Sd with an increased duty ratio is output, the sub-primary current detection value coincides with the sub-primary current target value in a slightly later period, so that the superimposed current I1b is still present. Is lower than the ideal current value, and the sub-primary coil energization signal Sd with an increased duty ratio is output even in the next third unit period Tu3. In the third unit period Tu3 in which the sub-primary coil energization signal Sd with an increased duty ratio is output, the sub-primary current detection value substantially coincides with the sub-primary current target value in the vicinity of the middle. It is determined that I1b is supplied, and the sub-primary coil energization signal Sd having a normal duty ratio is output in the next fourth unit period Tu4. In the fourth unit period Tu4 in which the sub primary coil energization signal Sd having the normal duty ratio is output, the sub primary current detection value slightly matches the sub primary current target value in the previous period, so the superimposed current I1b Is higher than the ideal current value, and in the next fifth unit period Tu5, the sub primary coil energization signal Sd with a reduced duty ratio is output. As a result, in the fifth unit period Tu5, the superimposed current I1b can be suppressed to an ideal current value.
 以上のように、点火制御手段31が、予め定めた単位期間毎に副一次電流目標値と副一次電流検出値との比較を行い、比較結果に応じて次の単位期間における副一次コイル111bへの供給電力制御を行うようにすれば、副一次電流目標値として設定した理想的波形の重畳電流I1bを得ることができる。 As described above, the ignition control means 31 compares the sub primary current target value and the sub primary current detection value for each predetermined unit period, and applies the sub primary coil 111b in the next unit period according to the comparison result. If the supplied power control is performed, the superimposed current I1b having an ideal waveform set as the sub primary current target value can be obtained.
 しかしながら、副一次電流目標値として設定した重畳電流I1bの波形で、必ずしも理想とする二次電流I2を得られるとは限らない。そこで、点火制御手段31は、予め設定された二次電流目標値と、二次電流検出手段により検出された二次電流検出値とを比較し、二次電流検出値を二次電流目標値へ近づけるように、副一次電流目標値を設定変更するものとした。 However, the ideal secondary current I2 is not always obtained with the waveform of the superimposed current I1b set as the sub primary current target value. Therefore, the ignition control means 31 compares the preset secondary current target value with the secondary current detection value detected by the secondary current detection means, and converts the secondary current detection value to the secondary current target value. The sub primary current target value is set and changed so as to be close to each other.
 なお、二次電流の実測値を二次電流の目標値へ近づけるフィードバック制御としては、公知既存の種々の技術を適用可能であるが、本実施形態の内燃機関用点火装置1においては、二次電流目標値として許容できる範囲内に二次電流実測値が収まっているか、許容範囲のしきい値を越えているかで、副一次電流目標値の変更制御を行うものとした。例えば、許容し得る二次電流の上限として予め定めた二次電流目標上限値と、許容し得る二次電流の下限として予め定めた二次電流目標下限値とを用い、二次電流目標上限値および二次電流目標下限値を二次電流検出値と比較し、二次電流目標上限値よりも二次電流検出値が高い場合には二次電流を下げるように副一次電流目標値を設定変更し、二次電流目標下限値よりも二次電流検出値が低い場合には二次電流を上げるように前記副一次電流目標値を設定変更するのである。かくすれば、目標とする二次電流I2が得られるように副一次電流目標値が変更され、この変更された副一次電流目標値へ重畳電流I1bを近づけるような副一次コイル通電信号Sdが出力されることとなる。 As feedback control for bringing the measured value of the secondary current closer to the target value of the secondary current, various known techniques can be applied. However, in the internal combustion engine ignition device 1 of the present embodiment, the secondary control is possible. The sub primary current target value is controlled to be changed depending on whether the actual measured value of the secondary current is within the allowable range of the target current value or exceeds the threshold value of the allowable range. For example, using a secondary current target upper limit value determined in advance as an upper limit of an allowable secondary current and a secondary current target lower limit value set in advance as a lower limit of an allowable secondary current, the secondary current target upper limit value And the secondary current target lower limit value is compared with the secondary current detection value, and if the secondary current detection value is higher than the secondary current target upper limit value, the sub primary current target value is changed to lower the secondary current. When the secondary current detection value is lower than the secondary current target lower limit value, the sub primary current target value is set and changed so as to increase the secondary current. In this way, the sub primary current target value is changed so that the target secondary current I2 is obtained, and a sub primary coil energization signal Sd that brings the superimposed current I1b closer to the changed sub primary current target value is output. Will be.
 このフィードバック制御の一例を、図4に基づき説明する。図4(a)は、二次電流検出値が二次電流目標値とほぼ一致している場合(二次電流目標上限値と二次電流目標下限値との間の許容範囲に収まっている場合)を示し、図4(b)は、二次電流検出値が二次電流目標上限値を超えることで副一次電流目標値変更条件が成立した状況を含む場合を示し、図4(c)は、二次電流検出値が二次電流目標下限値を下回ることで副一次電流目標値変更条件が成立した状況を含む場合を示す。 An example of this feedback control will be described with reference to FIG. FIG. 4A shows the case where the detected secondary current value substantially matches the secondary current target value (when it falls within the allowable range between the secondary current target upper limit value and the secondary current target lower limit value). FIG. 4B shows a case where the secondary current detection value exceeds the secondary current target upper limit value and includes a situation where the sub primary current target value change condition is satisfied, and FIG. The case where the secondary current detection value falls below the secondary current target lower limit value and the situation where the sub primary current target value change condition is satisfied is shown.
 図4(a)においては、第1単位期間Tu1~第7単位期間Tu7の何れにおいても、二次電流検出値は、二次電流目標上限値と二次電流目標下限値との間の許容範囲に収まっているので、副一次電流目標値変更条件は成立せず、予め設定されている副一次電流目標値が使用される。なお、デフォルト設定となる副一次電流目標値は、基準期間Tuが経過する毎に、副一次電流目標値が段階的に基準レベルだけ上がって行くものである。例えば、第1基準期間Tu1は出力レベル1、第2基準期間Tu2は出力レベル2、第3基準期間Tu3は出力レベル3、第4基準期間Tu4は出力レベル4、第5基準期間Tu5は出力レベル5、第6基準期間Tu6は出力レベル6、第7基準期間Tu7は出力レベル7といった具合に、出力レベルが段階的に上がって行くのが、予め設定されている副一次電流目標値である。 In FIG. 4A, in any of the first unit period Tu1 to the seventh unit period Tu7, the secondary current detection value is an allowable range between the secondary current target upper limit value and the secondary current target lower limit value. Therefore, the sub primary current target value changing condition is not satisfied, and a preset sub primary current target value is used. Note that the sub primary current target value, which is the default setting, is such that the sub primary current target value increases step by step by the reference level every time the reference period Tu elapses. For example, the first reference period Tu1 is output level 1, the second reference period Tu2 is output level 2, the third reference period Tu3 is output level 3, the fourth reference period Tu4 is output level 4, and the fifth reference period Tu5 is output level. 5. The preset sub-primary current target value is such that the output level increases stepwise, such as output level 6 in the sixth reference period Tu6, output level 7 in the seventh reference period Tu7, and so on.
 図4(b)では、二次電流検出値が二次電流目標上限値を超えることで副一次電流目標値変更条件が成立し、副一次電流目標値を変更する制御を行う。まず、第1基準期間Tu1においては、予め設定されている副一次電流目標値の通り出力レベル1の設定であるが、この第1基準期間Tu1の間に二次電流I2の実測値が二次電流目標上限値を超えたので、二次電流I2を低減させて許容範囲に収めるため、次の第2基準期間Tu2では出力レベル2へ移行させずに出力レベル1のままとする。出力レベル1のままである第2基準期間Tu2において、未だ二次電流I2の実測値が二次電流目標上限値を超えたままなので、二次電流I2を更に低減させて許容範囲に収めるため、次の第3基準期間Tu3でも出力レベル2へ移行させずに出力レベル1のままとする。 In FIG. 4B, when the secondary current detection value exceeds the secondary current target upper limit value, the sub primary current target value changing condition is satisfied, and control is performed to change the sub primary current target value. First, in the first reference period Tu1, the output level 1 is set according to the preset sub-primary current target value. During this first reference period Tu1, the actually measured value of the secondary current I2 is a secondary value. Since the current target upper limit value has been exceeded, the secondary current I2 is reduced to fall within the allowable range, so that the output level 1 is not changed to the output level 2 in the next second reference period Tu2. In the second reference period Tu2 that remains at the output level 1, the measured value of the secondary current I2 still exceeds the secondary current target upper limit value, so that the secondary current I2 is further reduced to be within the allowable range. In the next third reference period Tu3, the output level is kept at 1 without shifting to the output level 2.
 出力レベル1のままである第3基準期間Tu3において、二次電流I2の実測値が二次電流目標上限値より下がり、許容範囲に収まったので、次の第4基準期間Tu4では出力レベル2へ移行させる。出力レベル2にアップした第4基準期間Tu4では、二次電流検出値が二次電流目標上限値と二次電流目標下限値との間の許容範囲に収まっているので、副一次電流目標値変更条件は成立せず、次の第5基準期間Tu5では目標値を出力レベル3にアップする。出力レベル3にアップした第5基準期間Tu5では、再び二次電流I2の実測値が二次電流目標上限値を超えたので、二次電流I2を低減させて許容範囲に収めるため、次の第6基準期間Tu6では出力レベル4へ移行させずに出力レベル3のままとする。 In the third reference period Tu3 that remains at the output level 1, the measured value of the secondary current I2 falls below the secondary current target upper limit value and falls within the allowable range, so that the output level 2 is reached in the next fourth reference period Tu4. Transition. In the fourth reference period Tu4 that is increased to the output level 2, the secondary current detection value is within the allowable range between the secondary current target upper limit value and the secondary current target lower limit value. The condition is not satisfied, and the target value is raised to the output level 3 in the next fifth reference period Tu5. In the fifth reference period Tu5 that is increased to the output level 3, the measured value of the secondary current I2 again exceeds the secondary current target upper limit value, so that the secondary current I2 is reduced to fall within the allowable range. In 6 reference period Tu6, it does not shift to output level 4 but remains at output level 3.
 出力レベル3のままである第6基準期間Tu6において、二次電流I2の実測値が二次電流目標上限値より下がり、許容範囲に収まったので、次の第7基準期間Tu7では出力レベル4へ移行させる。以後の第7基準期間Tu7~第9基準期間Tu9では、いずれも二次電流検出値が二次電流目標上限値と二次電流目標下限値との間の許容範囲に収まっているので、副一次電流目標値変更条件は成立せず、基準期間Tu毎に出力レベルを1ずつ上げて行くので、デフォルト設定の副一次電流目標値と同様、第7基準期間Tu7~第9基準期間Tu9では目標値の出力レベルが段階的に上がって行く。 In the sixth reference period Tu6 that remains at the output level 3, the actually measured value of the secondary current I2 falls below the upper limit value of the secondary current target and falls within the allowable range, so that the output level 4 is reached in the next seventh reference period Tu7. Transition. In the subsequent seventh reference period Tu7 to ninth reference period Tu9, the secondary current detection value is within the allowable range between the secondary current target upper limit value and the secondary current target lower limit value. Since the current target value changing condition is not satisfied and the output level is increased by 1 for each reference period Tu, the target value is set in the seventh reference period Tu7 to the ninth reference period Tu9 as in the case of the default primary current target value. The output level goes up step by step.
 図4(c)では、二次電流検出値が二次電流目標下限値を下回ることで副一次電流目標値変更条件が成立し、副一次電流目標値を変更する制御を行う。まず、第1基準期間Tu1においては、予め設定されている副一次電流目標値の通り出力レベル1の設定であるが、この第1基準期間Tu1の間に二次電流I2の実測値が二次電流目標上限値を超えたので、二次電流I2を低減させて許容範囲に収めるため、次の第2基準期間Tu2では出力レベル2へ移行させずに出力レベル1のままとする。出力レベル1のままである第2基準期間Tu2において、二次電流I2の実測値が二次電流目標上限値より下がり、許容範囲に収まったので、副一次電流目標値変更条件は成立せず、次の第3基準期間Tu3では目標値を出力レベル2にアップする。 In FIG. 4C, when the secondary current detection value falls below the secondary current target lower limit value, the sub primary current target value changing condition is satisfied, and control is performed to change the sub primary current target value. First, in the first reference period Tu1, the output level 1 is set according to the preset sub-primary current target value. During this first reference period Tu1, the actually measured value of the secondary current I2 is a secondary value. Since the current target upper limit value has been exceeded, the secondary current I2 is reduced to fall within the allowable range, so that the output level 1 is not changed to the output level 2 in the next second reference period Tu2. In the second reference period Tu2 that remains at the output level 1, the measured value of the secondary current I2 falls below the secondary current target upper limit value and falls within the allowable range, so the sub primary current target value change condition is not satisfied, In the next third reference period Tu3, the target value is raised to the output level 2.
 出力レベル2にアップした第3基準期間Tu3では、二次電流I2の実測値が二次電流目標下限値を下回ったので、二次電流I2を増加させて許容範囲に収めるため、次の第4基準期間Tu4では目標値を2段階上げて、出力レベル4へ移行させる。出力レベル4にアップした第4基準期間Tu4において、二次電流I2の実測値が二次電流目標下限値を上回り、許容範囲に収まったので、次の第5基準期間Tu7では目標値を1段階上げて、出力レベル5へ移行させる。以後の第5基準期間Tu5~第9基準期間Tu9では、いずれも二次電流検出値が二次電流目標上限値と二次電流目標下限値との間の許容範囲に収まっているので、副一次電流目標値変更条件は成立せず、基準期間Tu毎に出力レベルを1ずつ上げて行くので、デフォルト設定の副一次電流目標値と同様、第5基準期間Tu5~第9基準期間Tu9では出力レベルが段階的に上がって行く。 In the third reference period Tu3 increased to the output level 2, the measured value of the secondary current I2 has fallen below the secondary current target lower limit value. Therefore, in order to increase the secondary current I2 to be within the allowable range, In the reference period Tu4, the target value is increased by two stages and shifted to output level 4. In the fourth reference period Tu4 increased to the output level 4, the measured value of the secondary current I2 exceeds the secondary current target lower limit value and falls within the allowable range. Therefore, the target value is set to one step in the next fifth reference period Tu7. And shift to output level 5. In the subsequent fifth reference period Tu5 to ninth reference period Tu9, the secondary current detection value is within the allowable range between the secondary current target upper limit value and the secondary current target lower limit value. Since the current target value changing condition is not satisfied and the output level is increased by 1 for each reference period Tu, the output level is output in the fifth reference period Tu5 to the ninth reference period Tu9 as in the case of the default primary current target value. Goes up step by step.
 上記のように設定変更された副一次電流目標値は、前述した通り、副一次電流検出値と対比され、副一次電流通電信号Sdの生成が行われる。すなわち、デフォルト設定の副一次電流目標値よりも高い出力レベルに設定変更された場合には、デューティー比を高めた副一次コイル通電信号Sdを出力するので、重畳電流I1bを増大させて二次側に与える放電エネルギを大きくでき、二次電流I2の高電流期間を確保して好適な燃焼を実現できる。また、デフォルト設定の副一次電流目標値よりも低い出力レベルに設定変更された場合には、デューティー比を低めた副一次コイル通電信号Sdを出力するので、重畳電流I1bが低く抑えられて二次電流I2を低く抑えることができ、高い燃費改善効果を期待できる。 The sub primary current target value whose setting has been changed as described above is compared with the sub primary current detection value as described above, and the sub primary current energization signal Sd is generated. That is, when the setting is changed to an output level higher than the default set primary primary current target value, the secondary primary coil energization signal Sd with an increased duty ratio is output, so that the superimposed current I1b is increased and the secondary side is increased. It is possible to increase the discharge energy applied to the gas and to ensure a high current period of the secondary current I2 and realize suitable combustion. Further, when the setting is changed to an output level lower than the default set primary primary current target value, the secondary primary coil energization signal Sd with a reduced duty ratio is output, so the superimposed current I1b is kept low and the secondary current is reduced. The current I2 can be kept low, and a high fuel efficiency improvement effect can be expected.
 上述した第1実施形態の内燃機関用点火装置1においては、主一次コイル111aとは別途設けた副一次コイル111bにより発生させた重畳磁束を二次コイル112に作用させて、必要十分な放電エネルギを二次側に与える重畳放電制御を行うもので、この重畳放電制御をより効率良くするために、重畳電流I1bおよび二次電流I2の実測値を用いたフィードバック制御を行う事ができる。 In the above-described internal combustion engine ignition device 1 according to the first embodiment, necessary and sufficient discharge energy is obtained by causing the superimposed magnetic flux generated by the sub primary coil 111b provided separately from the main primary coil 111a to act on the secondary coil 112. Is applied to the secondary side, and feedback control using measured values of the superimposed current I1b and the secondary current I2 can be performed in order to make the superimposed discharge control more efficient.
 しかしながら、点火プラグ2の放電制御においては、点火コイル11に印加される二次電圧が最も点火プラグ2の放電状態を表すものである。二次電圧は、例えば、高圧端子151から接地点GNDの電圧であるが、この電圧は、二次コイル112を介して主一次コイル111a1に模擬される。すなわち、主スイッチ素子12が非動作状態のとき、主一次コイル111a1の電圧を検知できれば、二次電圧の状態を知ることができるので、二次電圧の状態に応じたフィードバック制御が可能になる。例えば、超希薄燃焼の場合、点火プラグ2の電極間における絶縁耐圧が所定電圧よりも高くなるため、所定電圧よりも高い高電圧で初期着火が行われるが、初期火炎を成長させるに十分な放電電流が供給されないと、初期火炎が成長せずに吹き飛び等で失火してしまう。このようなとき、初期火炎を自立成長させるためには、高電流期間の電流値をより高めるような制御が必要となる。 However, in the discharge control of the spark plug 2, the secondary voltage applied to the ignition coil 11 represents the discharge state of the spark plug 2 most. The secondary voltage is, for example, a voltage from the high-voltage terminal 151 to the ground point GND, and this voltage is simulated by the main primary coil 111a1 via the secondary coil 112. In other words, when the voltage of the main primary coil 111a1 can be detected when the main switch element 12 is in the non-operating state, the state of the secondary voltage can be known, so that feedback control according to the state of the secondary voltage is possible. For example, in the case of ultra lean combustion, the withstand voltage between the electrodes of the spark plug 2 is higher than a predetermined voltage, so that initial ignition is performed at a high voltage higher than the predetermined voltage, but sufficient discharge to grow the initial flame. If no current is supplied, the initial flame will not grow and will misfire due to blow-off. In such a case, in order to grow the initial flame independently, it is necessary to control to increase the current value in the high current period.
 そこで、図5に示す第2実施形態の内燃機関用点火装置1′においては、点火コイルユニット10′の主一次コイル111aと主スイッチ素子12との間(ただし、バイパス線路13よりも主一次コイル111a側)に、点火コイル11の一次側電圧を検出する一次コイル電圧検出手段としての一次コイル電圧取得線路16を設け、第7接続端子152gを介して、点火制御手段31へ一次コイル電圧検出信号Dv1を供給する。この一次コイル電圧検出信号Dv1より入力される一次コイル電圧の検出値は、主スイッチ素子12がOFFになってコイル二次側に放電エネルギが供給された後、点火コイル2の放電が継続している間は、二次電圧波形を模擬した電圧波形となる(例えば、図6の一次コイル電圧検出信号Dv1の波形と二次電圧の波形を参照)。 Therefore, in the internal combustion engine ignition device 1 ′ of the second embodiment shown in FIG. 5, the main primary coil 111 a and the main switch element 12 of the ignition coil unit 10 ′ (but the main primary coil rather than the bypass line 13). 111a side) is provided with a primary coil voltage acquisition line 16 as primary coil voltage detection means for detecting the primary voltage of the ignition coil 11, and a primary coil voltage detection signal is sent to the ignition control means 31 via the seventh connection terminal 152g. Dv1 is supplied. The detected value of the primary coil voltage input from the primary coil voltage detection signal Dv1 is that the discharge of the ignition coil 2 continues after the main switch element 12 is turned off and discharge energy is supplied to the secondary side of the coil. During this time, the voltage waveform simulates the secondary voltage waveform (see, for example, the waveform of the primary coil voltage detection signal Dv1 and the waveform of the secondary voltage in FIG. 6).
 そこで、点火制御手段31は、一次コイル電圧の検出値が、所定の傾斜角度よりも早く所定電圧以上に上昇した時、二次電流目標値を増加させるように設定変更する。例えば、二次電流目標値を増加させるための変更条件が成立しなかった場合(所定の傾斜角度以下で所定電圧に上昇した場合)は、デフォルト設定の二次電流目標値で良好な燃焼を維持できるので、デフォルト設定の二次電流目標値を維持し、この二次電流目標値による副一次電流目標値の変更設定および副一次コイル通電信号Sdの生成が行われる(図6の前段を参照)。一方、二次電流目標値を増加させるための変更条件が成立した場合(所定の傾斜角度よりも早く所定電圧に上昇した場合)は、デフォルト設定の二次電流目標値では良好な燃焼を維持できないと考えられるので、デフォルト設定の二次電流目標値をより高い二次電流目標値に変更(例えば、二次電流目標上限値と二次電流目標下限値との許容範囲を変更せずに、二次電流目標上限値と二次電流目標下限値を均等に高くした二次電流目標補正上限値と二次電流目標補正下限値を設定)し、この二次電流目標補正値に基づく副一次電流目標値の変更設定制御および副一次コイル通電信号Sdの生成制御が行われる(図6の後段を参照)。 Therefore, the ignition control means 31 changes the setting so as to increase the secondary current target value when the detected value of the primary coil voltage rises above the predetermined voltage earlier than the predetermined inclination angle. For example, when the change condition for increasing the secondary current target value is not satisfied (when the voltage rises to a predetermined voltage below a predetermined inclination angle), good combustion is maintained at the default secondary current target value. Therefore, the default secondary current target value is maintained, the secondary primary current target value is changed and the secondary primary coil energization signal Sd is generated based on the secondary current target value (see the previous stage in FIG. 6). . On the other hand, when the change condition for increasing the secondary current target value is satisfied (when the voltage rises to a predetermined voltage earlier than a predetermined inclination angle), good combustion cannot be maintained with the default secondary current target value. Therefore, change the default secondary current target value to a higher secondary current target value (e.g., without changing the allowable range between the secondary current target upper limit value and the secondary current target lower limit value). Secondary current target correction upper limit value and secondary current target correction lower limit value, which are set to equally increase the secondary current target upper limit value and secondary current target lower limit value, and set the secondary primary current target based on this secondary current target correction value. Value change setting control and sub primary coil energization signal Sd generation control are performed (see the subsequent stage of FIG. 6).
 したがって、第2実施形態にかかる内燃機関用点火装置1′によれば、点火コイル2に印加される二次電圧の状態に応じた適切なフィードバック制御が可能になるので、さらに良好な燃焼を実現できると共に、高い燃費改善効果を期待できる。 Therefore, according to the internal combustion engine ignition device 1 ′ according to the second embodiment, it is possible to perform appropriate feedback control according to the state of the secondary voltage applied to the ignition coil 2, thereby realizing even better combustion. Along with this, a high fuel efficiency improvement effect can be expected.
 上述した第1,第2実施形態に係る内燃機関用点火装置1,1′は、何れも一つの気筒のみ示したが、複数の気筒で構成される内燃機関の場合、気筒毎に第1,第2副スイッチ素子51,52、副一次電流検出手段、二次電流検出手段等を設けても良いし、各気筒に対応した第1、第2副スイッチ素子51,52等の全てを単一ケースに収納した統括ユニットとし、この統括ユニットと各気筒の点火コイルユニット10,10′とを接続するようにしても良い。 The internal combustion engine ignition devices 1, 1 ′ according to the first and second embodiments described above all show only one cylinder, but in the case of an internal combustion engine composed of a plurality of cylinders, the first, Second sub-switch elements 51 and 52, sub-primary current detection means, secondary current detection means and the like may be provided, or all of the first and second sub-switch elements 51 and 52 corresponding to each cylinder may be provided as a single unit. A general unit housed in a case may be used, and the general unit may be connected to the ignition coil units 10 and 10 'of each cylinder.
 以上、本発明に係る内燃機関用点火装置のいくつかの実施形態を添付図面に基づいて説明したが、本発明は、これらの実施形態に限定されるものではなく、特許請求の範囲に記載の構成を変更しない範囲で、公知既存の等価な技術手段を転用することにより実施しても構わない。 As mentioned above, although several embodiment of the ignition device for internal combustion engines which concerns on this invention was described based on the accompanying drawing, this invention is not limited to these embodiment, As described in a claim You may implement by diverting a well-known equivalent technical means in the range which does not change a structure.
 1    内燃機関用点火装置
 10   点火コイルユニット
 11   点火コイル
 111a 主一次コイル
 111b 副一次コイル
 112  二次コイル
 12   主スイッチ素子
 2    点火プラグ
 3    内燃機関駆動制御装置
 31   点火制御手段
 4    直流電源
 51   第1副スイッチ素子
 52   第2副スイッチ素子
DESCRIPTION OF SYMBOLS 1 Ignition device for internal combustion engines 10 Ignition coil unit 11 Ignition coil 111a Main primary coil 111b Sub primary coil 112 Secondary coil 12 Main switch element 2 Spark plug 3 Internal combustion engine drive control device 31 Ignition control means 4 DC power source 51 First sub switch Element 52 Second sub switch element

Claims (7)

  1.  主一次電流の通電により順方向の磁束が増加し、主一次電流を遮断することにより逆方向の遮断磁束が生じる主一次コイルと、前記遮断磁束の発生以降の任意のタイミングで副一次電流を通電することにより遮断磁束と同方向の追加磁束を生じさせる副一次コイルと、一端側が点火プラグと接続され、前記主一次コイルと副一次コイルに生じた磁束が作用して放電エネルギが発生する二次コイルと、を有する点火コイルと、
     前記点火コイルの主一次コイルへの通電・遮断を切り替える主スイッチ手段と、
     前記副一次コイルへの通電・遮断を切り替える副スイッチ手段と、
     前記点火コイルの副一次コイルへの通電を許可する副一次コイル通電許可スイッチ手段と、
     前記主スイッチ手段、副スイッチ手段、副一次コイル通電許可スイッチ手段を制御して、燃焼サイクルの所定のタイミングで点火プラグに放電火花を発生させる点火制御手段と、
     を備え、
     前記点火制御手段は、主一次コイルへの通電を遮断した遮断タイミング以降に所定の重畳時間だけ副一次コイル通電許可スイッチ手段に副一次コイルへの通電を許可させると共に、副スイッチ手段への通電制御を行うことで、二次コイルに発生する放電エネルギを重畳的に増加させるようにしたことを特徴とする内燃機関用点火装置。
    The primary primary current increases the forward magnetic flux and the primary primary current is interrupted to generate the reverse primary magnetic flux, and the secondary primary current is energized at any time after the generation of the primary magnetic flux. And a secondary primary coil that generates an additional magnetic flux in the same direction as the interrupting magnetic flux, and a secondary end that is connected to a spark plug at one end, and the magnetic flux generated in the primary primary coil and the secondary primary coil acts to generate discharge energy. An ignition coil having a coil;
    Main switch means for switching energization / cutoff to the main primary coil of the ignition coil;
    Sub-switch means for switching energization / cut-off to the sub-primary coil;
    Sub-primary coil energization permission switch means for permitting energization to the sub-primary coil of the ignition coil;
    Ignition control means for controlling the main switch means, sub switch means, and sub primary coil energization permission switch means to generate a discharge spark in the spark plug at a predetermined timing of the combustion cycle;
    With
    The ignition control means allows the sub-primary coil energization permission switch means to energize the sub-primary coil for a predetermined superimposition time after the shut-off timing when the energization to the main primary coil is shut off, and controls the energization to the sub-switch means. An ignition device for an internal combustion engine, characterized in that the discharge energy generated in the secondary coil is increased in a superimposed manner by performing.
  2.  前記点火コイルの副一次コイルに流れる副一次電流を検出する副一次電流検出手段を備え、
     前記点火制御手段は、予め設定された副一次電流目標値と、前記副一次電流検出手段により検出された副一次電流検出値とを比較し、副一次電流検出値を副一次電流目標値へ近づけるように、副一次コイルへの供給電力を制御する副一次電流フィードバック制御を行うようにしたことを特徴とする請求項1に記載の内燃機関用点火装置。
    Sub-primary current detection means for detecting a sub-primary current flowing in the sub-primary coil of the ignition coil,
    The ignition control means compares the preset sub primary current target value with the sub primary current detection value detected by the sub primary current detection means, and brings the sub primary current detection value closer to the sub primary current target value. Thus, the ignition device for an internal combustion engine according to claim 1, wherein sub-primary current feedback control for controlling electric power supplied to the sub-primary coil is performed.
  3.  前記点火制御手段は、副スイッチ手段をPWM制御することで、副一次電流フィードバック制御を行うようにしたことを特徴とする請求項2に記載の内燃機関用点火装置。 3. The ignition device for an internal combustion engine according to claim 2, wherein the ignition control means performs sub primary current feedback control by PWM control of the sub switch means.
  4.  前記点火制御手段は、予め定めた単位期間毎に副一次電流目標値と副一次電流検出値との比較を行い、比較結果に応じて次の単位期間における副一次コイルへの供給電力制御を行うようにしたことを特徴とする請求項2又は請求項3に記載の内燃機関用点火装置。 The ignition control means compares the sub primary current target value and the sub primary current detection value for each predetermined unit period, and controls supply power to the sub primary coil in the next unit period according to the comparison result. The internal combustion engine ignition device according to claim 2 or 3, wherein the ignition device is configured as described above.
  5.  前記点火コイルの二次コイルに流れる二次電流を検出する二次電流検出手段を備え、
     前記点火制御手段は、予め設定された二次電流目標値と、前記二次電流検出手段により検出された二次電流検出値とを比較し、二次電流検出値を二次電流目標値へ近づけるように、前記副一次電流目標値を設定変更することを特徴とする請求項2~請求項4に記載の内燃機関用点火装置。
    A secondary current detecting means for detecting a secondary current flowing in the secondary coil of the ignition coil;
    The ignition control means compares the preset secondary current target value with the secondary current detection value detected by the secondary current detection means, and brings the secondary current detection value closer to the secondary current target value. The ignition device for an internal combustion engine according to claim 2, wherein the sub primary current target value is set and changed as described above.
  6.  前記二次電流目標値は、許容し得る二次電流の上限として予め定めた二次電流目標上限値と、許容し得る二次電流の下限として予め定めた二次電流目標下限値とを用い、二次電流目標上限値および二次電流目標下限値を二次電流検出値と比較し、二次電流目標上限値よりも二次電流検出値が高い場合には二次電流を下げるように前記副一次電流目標値を設定変更し、二次電流目標下限値よりも二次電流検出値が低い場合には二次電流を上げるように前記副一次電流目標値を設定変更することを特徴とする請求項5に記載の内燃機関用点火装置。 The secondary current target value uses a secondary current target upper limit value predetermined as an upper limit of an allowable secondary current and a secondary current target lower limit value predetermined as a lower limit of an allowable secondary current, The secondary current target upper limit value and the secondary current target lower limit value are compared with the secondary current detection value, and when the secondary current detection value is higher than the secondary current target upper limit value, the secondary current target upper limit value and the secondary current target lower limit value are reduced. The primary current target value is set and changed, and when the secondary current detection value is lower than the secondary current target lower limit value, the sub primary current target value is set and changed to increase the secondary current. Item 6. An ignition device for an internal combustion engine according to Item 5.
  7.  前記点火コイルの主一次コイルと主スイッチ手段との間にて、前記点火コイルの放電継続中に発生する一次側電圧を検出する一次コイル電圧検出手段を備え、
     前記点火制御手段は、一次コイル電圧が、所定の傾斜角度よりも早く所定電圧以上に上昇した時、前記二次電流目標値を増加させるように設定変更することを特徴とする請求項5又は請求項6に記載の内燃機関用点火装置。
    Between the primary primary coil of the ignition coil and the main switch means, primary coil voltage detection means for detecting a primary side voltage generated during the discharge of the ignition coil continues,
    6. The ignition control unit according to claim 5, wherein the ignition control unit changes the setting so that the secondary current target value is increased when the primary coil voltage rises above a predetermined voltage earlier than a predetermined inclination angle. Item 7. The ignition device for an internal combustion engine according to Item 6.
PCT/JP2017/021900 2017-06-14 2017-06-14 Internal combustion engine ignition device WO2018229883A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/021900 WO2018229883A1 (en) 2017-06-14 2017-06-14 Internal combustion engine ignition device
JP2019524611A JP6739644B2 (en) 2017-06-14 2017-06-14 Ignition device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/021900 WO2018229883A1 (en) 2017-06-14 2017-06-14 Internal combustion engine ignition device

Publications (1)

Publication Number Publication Date
WO2018229883A1 true WO2018229883A1 (en) 2018-12-20

Family

ID=64659086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021900 WO2018229883A1 (en) 2017-06-14 2017-06-14 Internal combustion engine ignition device

Country Status (2)

Country Link
JP (1) JP6739644B2 (en)
WO (1) WO2018229883A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230255A1 (en) * 2019-05-14 2020-11-19 三菱電機株式会社 Ignition device
CN113950578A (en) * 2019-06-26 2022-01-18 日立安斯泰莫株式会社 Control device for internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150034059A1 (en) * 2012-03-16 2015-02-05 Delphi Technologies, Inc. Ignition system
WO2015080270A1 (en) * 2013-11-28 2015-06-04 株式会社デンソー Ignition device
JP2015113730A (en) * 2013-12-10 2015-06-22 株式会社日本自動車部品総合研究所 Ignition device
WO2016157541A1 (en) * 2015-03-30 2016-10-06 日立オートモティブシステムズ阪神株式会社 Ignition device for internal combustion engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6273988B2 (en) * 2014-04-10 2018-02-07 株式会社デンソー Ignition device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150034059A1 (en) * 2012-03-16 2015-02-05 Delphi Technologies, Inc. Ignition system
WO2015080270A1 (en) * 2013-11-28 2015-06-04 株式会社デンソー Ignition device
JP2015113730A (en) * 2013-12-10 2015-06-22 株式会社日本自動車部品総合研究所 Ignition device
WO2016157541A1 (en) * 2015-03-30 2016-10-06 日立オートモティブシステムズ阪神株式会社 Ignition device for internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230255A1 (en) * 2019-05-14 2020-11-19 三菱電機株式会社 Ignition device
JPWO2020230255A1 (en) * 2019-05-14 2021-10-14 三菱電機株式会社 Ignition system
JP7055243B2 (en) 2019-05-14 2022-04-15 三菱電機株式会社 Ignition system
CN113950578A (en) * 2019-06-26 2022-01-18 日立安斯泰莫株式会社 Control device for internal combustion engine
CN113950578B (en) * 2019-06-26 2023-06-16 日立安斯泰莫株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JPWO2018229883A1 (en) 2020-04-16
JP6739644B2 (en) 2020-08-12

Similar Documents

Publication Publication Date Title
JP6430049B2 (en) Method and apparatus for controlling a multi-spark ignition system for an internal combustion engine
WO2016157541A1 (en) Ignition device for internal combustion engine
JP6570737B2 (en) Ignition device for internal combustion engine
JP6375452B2 (en) Ignition device for internal combustion engine and ignition control method for internal combustion engine ignition device
JP6919346B2 (en) Ignition system
JP2018084209A (en) Ignition device for internal combustion engine
WO2018229883A1 (en) Internal combustion engine ignition device
JP6640372B2 (en) Ignition device for internal combustion engine
WO2019198119A1 (en) Ignition device for internal combustion engine
JP6642049B2 (en) Ignition device
JP6537662B1 (en) Igniter
JP6685444B2 (en) Ignition device for internal combustion engine
JP6381008B2 (en) Ignition device for internal combustion engine
JP2019143507A (en) Ignition device for internal combustion engine
US6684866B2 (en) Ignition system for an internal combustion engine
WO2022064645A1 (en) Ignition device for internal combustion engine
WO2019211885A1 (en) Ignition device for internal combustion engines
JP6375177B2 (en) Ignition coil for internal combustion engine
WO2016035639A1 (en) Ignition device for internal combustion engine
WO2020179016A1 (en) Ignition device for internal combustion engine
JP6214118B2 (en) Ignition device for internal combustion engine
JP2021152364A (en) System and method used for boosted non-linear ignition coil
WO2020065855A1 (en) Ignition device for internal combustion engine
WO2021064851A1 (en) Internal combustion engine ignition device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019524611

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17913972

Country of ref document: EP

Kind code of ref document: A1