JP2019143507A - Ignition device for internal combustion engine - Google Patents

Ignition device for internal combustion engine Download PDF

Info

Publication number
JP2019143507A
JP2019143507A JP2018026646A JP2018026646A JP2019143507A JP 2019143507 A JP2019143507 A JP 2019143507A JP 2018026646 A JP2018026646 A JP 2018026646A JP 2018026646 A JP2018026646 A JP 2018026646A JP 2019143507 A JP2019143507 A JP 2019143507A
Authority
JP
Japan
Prior art keywords
primary coil
sub
energization
coil
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018026646A
Other languages
Japanese (ja)
Inventor
光弘 小倉
Mitsuhiro Ogura
光弘 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Hanshin Ltd
Original Assignee
Hitachi Automotive Systems Hanshin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Hanshin Ltd filed Critical Hitachi Automotive Systems Hanshin Ltd
Priority to JP2018026646A priority Critical patent/JP2019143507A/en
Publication of JP2019143507A publication Critical patent/JP2019143507A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide an ignition device for an internal combustion engine capable of keeping stable combustion by securing a stable high curent period.SOLUTION: An ignition coil 11 is composed of a main primary coil 111a in which energization magnetic flux increased in a normal direction is suddenly decreased by blocking electric current after starting energization, an auxiliary primary coil 111b generating superposed magnetic flux in a direction opposite to the energization magnetic flux by the energization, and a secondary coil 112 on which primary-side magnetic flux change acts so that discharge energy is generated. By instructing operations to an auxiliary primary coil energization permission switch 51 and an auxiliary primary coil energization switch 52 for switching energization/blockage to the auxiliary primary coil 111b, by auxiliary primary coil energization control means 30, a fixed auxiliary primary current as a target flows to the auxiliary primary coil 111b, the discharge energy applied to the secondary side is kept constant, and a high current period of a stable secondary current I2 is secured, so that the stable combustion of the internal combustion engine can be kept.SELECTED DRAWING: Figure 1

Description

本発明は、自動車両に搭載される内燃機関用の点火装置に関し、点火コイルの二次側に発生させる放電エネルギを重畳的に増大させて、良好な放電特性を得るものである。   The present invention relates to an ignition device for an internal combustion engine mounted on a motor vehicle, and increases discharge energy generated on the secondary side of an ignition coil in a superimposed manner to obtain good discharge characteristics.

車両搭載の内燃機関として、燃費改善のために直噴エンジンや高EGRエンジンが採用されているが、これらのエンジンは着火性があまり良くないため、点火装置には高エネルギ型のものが必要になる。そこで、古典的な電流遮断原理により発生する点火コイル二次側出力に、さらにもう一つの点火コイルの出力を加算的に重畳する位相放電型の点火装置が提案されている(例えば、特許文献1を参照)。   Direct-injection engines and high-EGR engines are adopted as internal combustion engines mounted on vehicles to improve fuel efficiency. However, these engines are not very ignitable, so a high-energy ignition system is required. Become. In view of this, a phase discharge ignition device has been proposed in which the output of another ignition coil is additionally superimposed on the secondary output of the ignition coil generated by the classic current interruption principle (for example, Patent Document 1). See).

この特許文献1に記載の点火装置によれば、主点火コイルの一次電流を遮断することでその二次側に発生する数kVの高電圧により、点火プラグの放電間隙に絶縁破壊を起こして点火コイルの二次側から放電電流を流し始めた後に、主点火コイルと並列に接続された副点火コイルの一次電流を遮断し、その二次側に発生する数kVの直流電圧を加算的に重畳することで、比較的長い時間に亙って点火プラグに大きな放電エネルギを与えることができるため、燃料への着火性が向上し、延いては燃費も向上する。   According to the ignition device described in Patent Document 1, by interrupting the primary current of the main ignition coil, the high voltage of several kV generated on the secondary side thereof causes dielectric breakdown in the discharge gap of the spark plug, thereby igniting. After starting the discharge current from the secondary side of the coil, the primary current of the auxiliary ignition coil connected in parallel with the main ignition coil is cut off, and a DC voltage of several kV generated on the secondary side is additionally superimposed. By doing so, since a large discharge energy can be given to the spark plug for a relatively long time, the ignitability to the fuel is improved, and the fuel consumption is also improved.

特開2012−140924号公報JP 2012-140924 A

しかしながら、特許文献1に記載された点火装置のような方式では、点火プラグの放電電流は各コイルから出力される三角波電流の組み合わせであるため、高電流期間を拡大するためには、2つの点火コイルの点火位相を大きくしたうえで、2つの点火コイルに十分なエネルギを蓄積する時間を長くしなければ、高電流期間を拡大することができない。   However, in the system such as the ignition device described in Patent Document 1, since the discharge current of the spark plug is a combination of triangular wave currents output from the coils, two ignitions are used to extend the high current period. If the ignition phase of the coils is increased and the time for storing sufficient energy in the two ignition coils is not lengthened, the high current period cannot be expanded.

また、点火コイルの外部あるいは内部で電源電圧を昇圧してコイルの二次側に直接的に高電圧を印加したりすることで、一次コイルへの通電時間を長くすることなく、二次側の放電エネルギを高め、安定した燃焼を維持する方法も考えられる。しかしながら、このような方法では、電源電圧を数kVまで昇圧させる昇圧回路が必要となるため、搭載する回路の高耐圧化および高電圧での接続耐性が必要となり、相当なコストアップとなってしまう。加えて、昇圧回路の使用により点火のための消費電力も増大するため、燃費を悪化させる要因となってしまう。   Also, by boosting the power supply voltage outside or inside the ignition coil and applying a high voltage directly to the secondary side of the coil, the energization time to the primary coil can be increased without increasing the energization time of the secondary coil. A method of increasing discharge energy and maintaining stable combustion is also conceivable. However, such a method requires a booster circuit that boosts the power supply voltage to several kV, so that the withstand voltage of the circuit to be mounted and the connection tolerance at a high voltage are required, resulting in a considerable increase in cost. . In addition, the use of the booster circuit increases the power consumption for ignition, which causes a deterioration in fuel consumption.

そこで、本発明は、安定した高電流期間を確保して、安定した燃焼を維持でき、しかも、点火のための消費電力を適切化して燃費の悪化も低減できる内燃機関用点火装置の提供を目的とする。   Therefore, the present invention has an object to provide an ignition device for an internal combustion engine that can secure a stable high current period, maintain stable combustion, and also can optimize power consumption for ignition to reduce deterioration of fuel consumption. And

上記課題を解決するために、請求項1に係る内燃機関用点火装置は、通電により正方向の磁束が増加し、電流を遮断することにより正方向の磁束が減ぜられる主一次コイルと、通電により逆方向の追加磁束が生じる副一次コイルと、一端側が点火プラグと接続され、前記主一次コイルと副一次コイルの磁束が作用して放電エネルギが発生する二次コイルと、を有する点火コイルと、前記点火コイルの主一次コイルへの通電・遮断を切り替える主スイッチ手段と、前記副一次コイルへの通電・遮断を切り替える副スイッチ手段と、前記点火コイルの副一次コイルへの通電を許可する副一次コイル通電許可スイッチ手段と、前記点火コイルの副一次コイルに流れる副一次電流を検出する副一次電流検出手段と、前記主スイッチ手段を制御して主一次コイルへ通電した後に主一次コイルへの通電を遮断することによりコイル二次側に高電圧を発生させ、燃焼サイクルの所定のタイミングで点火プラグに放電火花を発生させると共に、主一次コイルへの通電を遮断した遮断タイミング以降に所定の重畳時間だけ副一次コイル通電許可スイッチ手段に副一次コイルへの通電を許可し、副スイッチ手段を制御して副一次コイルへの通電制御を行う点火制御手段と、を備え、前記点火制御手段は、予め設定された副一次電流目標値と、前記副一次電流検出手段により検出された副一次電流検出値とを比較して、副一次電流が副一次電流目標値となるように、副一次コイルへの通電・遮断を制御するようにしたことを特徴とする。   In order to solve the above problem, an ignition device for an internal combustion engine according to claim 1 includes a main primary coil in which a positive magnetic flux is increased by energization and a positive magnetic flux is reduced by interrupting the current, An ignition coil having a secondary primary coil that generates additional magnetic flux in the reverse direction, and a secondary coil that is connected to a spark plug at one end and generates magnetic discharge energy by the magnetic flux of the primary primary coil and the secondary primary coil. , Main switch means for switching energization / cutoff to the main primary coil of the ignition coil, sub switch means for switching energization / cutoff to the sub primary coil, and a sub switch for permitting energization of the ignition coil to the sub primary coil Primary coil energization permission switch means, secondary primary current detection means for detecting secondary primary current flowing in the secondary primary coil of the ignition coil, and primary switching means for controlling the primary switch means After energizing the coil, the main primary coil is de-energized to generate a high voltage on the secondary side of the coil, generating a spark at the spark plug at a predetermined timing of the combustion cycle, and energizing the main primary coil. Ignition control means for permitting the sub primary coil energization permission switch means to energize the sub primary coil for a predetermined superimposition time after the shut off timing of shutting off, and controlling the sub switch means to control energization to the sub primary coil; The ignition control means compares the preset sub-primary current target value with the sub-primary current detection value detected by the sub-primary current detection means, so that the sub-primary current is the sub-primary current target. It is characterized in that the energization / interruption of the sub-primary coil is controlled so as to be a value.

また、請求項2に係る発明は、前記請求項1に係る内燃機関用点火装置において、前記点火制御手段は、前記副スイッチ手段をPWM制御することによって副一次コイルに与える電力を調整し、副一次コイルに流れる副一次電流を増減させるようにしたことを特徴とする。   According to a second aspect of the present invention, in the ignition device for an internal combustion engine according to the first aspect, the ignition control means adjusts the power supplied to the sub primary coil by performing PWM control on the sub switch means. The secondary primary current flowing through the primary coil is increased or decreased.

本発明に係る内燃機関用点火装置によれば、副一次コイルを流れる副一次電流が副一次電流目標値となるように制御して、一定の副一次電流を流すことができるので、安定した燃焼を維持するのに必要十分な一定量の放電エネルギを二次側に重畳し、二次電流の安定した高電流期間を確保できる。さらに、過剰な副一次電流となることを抑制して点火のための消費電力を適切化できるので、燃費の悪化も低減できる。   According to the ignition device for an internal combustion engine according to the present invention, it is possible to control the secondary primary current flowing through the secondary primary coil to be the secondary primary current target value so that a constant secondary primary current can flow. It is possible to superimpose a certain amount of discharge energy necessary and sufficient for maintaining the secondary side to ensure a stable high current period of the secondary current. Furthermore, since excessive power consumption for ignition can be optimized by suppressing excessive sub-primary current, deterioration of fuel consumption can also be reduced.

本発明に係る内燃機関用点火装置の実施形態を示す概略構成図である。1 is a schematic configuration diagram showing an embodiment of an internal combustion engine ignition device according to the present invention. 実施形態の内燃機関用点火装置による通常放電制御と重畳放電制御における各部波形を模式的に示した波形図である。It is the wave form diagram which showed typically each part waveform in normal discharge control and superposition discharge control by the ignition device for internal combustion engines of embodiment. 副一次コイル通電制御手段の概略構成図である。It is a schematic block diagram of a sub primary coil electricity supply control means.

次に、本発明に係る内燃機関用点火装置の実施形態を、添付図面に基づいて詳細に説明する。   Next, an embodiment of an ignition device for an internal combustion engine according to the present invention will be described in detail with reference to the accompanying drawings.

図1に示すのは、本発明の実施形態に係る内燃機関用点火装置1であり、内燃機関の気筒毎に設けられる1つの点火プラグ2に放電火花を発生させる点火コイルユニット10と、この点火コイルユニット10の動作タイミングを指示する主一次コイル点火信号Sa等を適宜なタイミングで出力する点火制御手段としての機能を備える内燃機関駆動制御装置3、車両バッテリ等の直流電源4、副一次コイル通電許可スイッチ51、副一次コイル通電スイッチ52等で構成される。   FIG. 1 shows an ignition device 1 for an internal combustion engine according to an embodiment of the present invention, an ignition coil unit 10 that generates a discharge spark in one spark plug 2 provided for each cylinder of the internal combustion engine, and the ignition An internal combustion engine drive control device 3 having a function as an ignition control means for outputting a main primary coil ignition signal Sa or the like for instructing an operation timing of the coil unit 10 at an appropriate timing, a DC power source 4 such as a vehicle battery, a sub primary coil energization It comprises a permission switch 51, a sub primary coil energization switch 52, and the like.

なお、本実施形態に示す内燃機関用点火装置1においては、点火制御手段が、自動車の内燃機関を統括的に制御する内燃機関駆動制御装置3に含まれるものとしたが、これに限定されるものではない。例えば、通常の内燃機関駆動制御装置3が有している点火信号生成機能によって生成された点火信号を受けて、適宜な制御信号を生成し、点火コイルユニット10、副一次コイル通電許可スイッチ51、副一次コイル通電スイッチ52へ制御信号を出力する点火制御手段を別途設けるようにしても構わない。   In the internal combustion engine ignition device 1 shown in the present embodiment, the ignition control means is included in the internal combustion engine drive control device 3 that comprehensively controls the internal combustion engine of the automobile, but is not limited thereto. It is not a thing. For example, the ignition signal generated by the ignition signal generation function of the normal internal combustion engine drive control device 3 is received, an appropriate control signal is generated, the ignition coil unit 10, the sub primary coil energization permission switch 51, An ignition control means for outputting a control signal to the sub primary coil energization switch 52 may be separately provided.

上記点火コイルユニット10は、例えば、点火コイル11、主スイッチ12、主スイッチ12と並列に設けるバイパス線路13、このバイパス線路13に設ける整流手段14等を所要形状のケース15に収納して一体構造としたユニットである。このケース15の適所には、高圧端子151とコネクタ152を設けてあり、高圧端子151を介して点火プラグ2を接続すると共に、コネクタ152を介して内燃機関駆動制御装置3、車両バッテリ等の直流電源4、副一次コイル通電許可スイッチ51、副一次コイル通電スイッチ52等と接続する。   The ignition coil unit 10 includes, for example, an ignition coil 11, a main switch 12, a bypass line 13 provided in parallel with the main switch 12, rectifying means 14 provided on the bypass line 13, and the like in a case 15 having a required shape and an integrated structure. It is a unit. A high voltage terminal 151 and a connector 152 are provided at appropriate positions of the case 15, and the ignition plug 2 is connected via the high voltage terminal 151, and a direct current such as the internal combustion engine drive control device 3 and the vehicle battery is connected via the connector 152. The power source 4, the sub primary coil energization permission switch 51, the sub primary coil energization switch 52, and the like are connected.

上記点火コイル11は、主一次コイル111a(例えば、90ターン)と副一次コイル111b(例えば、60ターン)に生ずる磁束を二次コイル112(例えば、9000ターン)に作用させるもので、例えば、センターコア113を取り巻くように主一次コイル111aおよび副一次コイル111bを配置し、更にその外側に二次コイル112を配置した構造である。上記主スイッチ12は、主一次コイル111aへの通電・遮断を行うための主スイッチ手段であり、例えば、IGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)を用いて構成できる。このように、点火コイルユニット10は、イグニッションコイルとイグナイタをケース15内に封止したユニット構造である。   The ignition coil 11 causes a magnetic flux generated in the main primary coil 111a (for example, 90 turns) and the sub primary coil 111b (for example, 60 turns) to act on the secondary coil 112 (for example, 9000 turns). The primary primary coil 111a and the secondary primary coil 111b are arranged so as to surround the core 113, and the secondary coil 112 is further arranged outside thereof. The main switch 12 is main switch means for energizing / cutting off the main primary coil 111a, and can be configured using, for example, an IGBT (Insulated Gate Bipolar Transistor). Thus, the ignition coil unit 10 has a unit structure in which the ignition coil and the igniter are sealed in the case 15.

主一次コイル111aの一方端である第1端111a1は、コネクタ152を介して直流電源4と接続され、電源電圧VB+(例えば、12V)が印加される。主一次コイル111aの他方端である第2端111a2は主スイッチ12のコレクタに接続され、主スイッチ12のエミッタはコネクタ152を介して接地点GNDに接続される。すなわち、内燃機関駆動制御装置3より出力される主一次コイル点火信号Saが主スイッチ12のゲートに入力されると(主一次コイル点火信号Saの信号レベルがLからHに変わると)、主スイッチ12がオンになって主点火コイル111aの第2端111a2が接地点GNDに接続され、主一次コイル111aには第1端111a1から第2端111a2に向かう主一次電流I1aが流れる。これにより、主一次コイル111aには、順方向の通電磁束が発生する。   The first end 111a1, which is one end of the main primary coil 111a, is connected to the DC power supply 4 through the connector 152, and is applied with a power supply voltage VB + (for example, 12V). The second end 111a2 which is the other end of the main primary coil 111a is connected to the collector of the main switch 12, and the emitter of the main switch 12 is connected to the ground point GND through the connector 152. That is, when the main primary coil ignition signal Sa output from the internal combustion engine drive control device 3 is input to the gate of the main switch 12 (when the signal level of the main primary coil ignition signal Sa changes from L to H), the main switch 12 is turned on, the second end 111a2 of the main ignition coil 111a is connected to the ground point GND, and the main primary current I1a from the first end 111a1 to the second end 111a2 flows through the main primary coil 111a. Thereby, a forward energization magnetic flux is generated in the main primary coil 111a.

副一次コイル111bの一方端である第1端111b1は、コネクタ152を介して副一次コイル通電スイッチ52と接続され、副一次コイル111bの他方端である第2端111b2は、コネクタ152を介して副一次コイル通電許可スイッチ52と接続される。そして、内燃機関駆動制御装置3により副一次コイル通電許可スイッチ51および副一次コイル通電スイッチ52のオン・オフが制御されて、副一次コイル111bの第1端111b1側が直流電源4に、第2端111b2側が接地点GNDにそれぞれ接続され、副一次コイル111bには第1端111b1から第2端111b2に向かう重畳電流I1bが流れる。   The first end 111b1 that is one end of the sub primary coil 111b is connected to the sub primary coil energization switch 52 via the connector 152, and the second end 111b2 that is the other end of the sub primary coil 111b is connected via the connector 152. The sub primary coil energization permission switch 52 is connected. The on / off of the sub primary coil energization permission switch 51 and the sub primary coil energization switch 52 is controlled by the internal combustion engine drive control device 3, and the first end 111b1 side of the sub primary coil 111b is connected to the DC power source 4, and the second end The 111b2 side is connected to the ground point GND, and the superimposed current I1b from the first end 111b1 to the second end 111b2 flows through the sub-primary coil 111b.

副一次コイル111bに重畳電流I1bが流れると、上記通電磁束とは逆方向の重畳磁束が発生し、この重畳磁束は、主一次コイル111aへの通電遮断時に二次側に誘起される磁界の向きと同じである。すなわち、主一次コイル111aへの通電遮断タイミング以降に、重畳電流I1bを副一次コイル111bに流すと、二次コイル112に発生する放電エネルギを重畳的に増加させることができる。なお、通電磁束と重畳磁束の向きを逆にするためには、主一次コイル111aと副一次コイル111bの巻回方向を逆にするか、主一次コイル111aへの給電方向と副一次コイル111bへの給電方向を逆にしておけば良い。   When the superimposed current I1b flows through the sub-primary coil 111b, a superimposed magnetic flux in the direction opposite to the energized magnetic flux is generated, and this superimposed magnetic flux is the direction of the magnetic field induced on the secondary side when the energization is cut off to the main primary coil 111a. Is the same. That is, when the superimposed current I1b is passed through the sub primary coil 111b after the energization interruption timing to the main primary coil 111a, the discharge energy generated in the secondary coil 112 can be increased in a superimposed manner. In order to reverse the directions of the energized magnetic flux and the superimposed magnetic flux, the winding directions of the main primary coil 111a and the sub primary coil 111b are reversed, or the feeding direction to the main primary coil 111a and the sub primary coil 111b. It is sufficient to reverse the feeding direction.

上記のように、副一次コイル111bへの通電によって重畳磁束が生じる構成にすると、副一次コイル111bへの通電が遮断されたとき、その逆起電力が主一次コイル111aに作用するため、通常の一次電流とは逆向きの電流を流そうとする逆方向の電圧が主スイッチ12のコレクタ−エミッタ間に印加されることとなり、主スイッチ12が故障したり、主スイッチ12の劣化を早めたりする危険性がある。そこで、主スイッチ12と並列にバイパス線路13を設けると共に、このバイパス線路13の接地点側から点火コイル11側に向かって順方向となる整流手段14(例えば、主スイッチ12のコレクタ側にカソードを、主スイッチ12のエミッタ側にアノードをそれぞれ接続したダイオード)を設けておく。   As described above, when the superposed magnetic flux is generated by energizing the sub primary coil 111b, the back electromotive force acts on the main primary coil 111a when the energization to the sub primary coil 111b is cut off. A reverse voltage for applying a current opposite to the primary current is applied between the collector and the emitter of the main switch 12, and the main switch 12 breaks down or the deterioration of the main switch 12 is accelerated. There is a risk. Accordingly, a bypass line 13 is provided in parallel with the main switch 12, and a rectifying means 14 (for example, a cathode is provided on the collector side of the main switch 12) that is forward from the ground point side of the bypass line 13 toward the ignition coil 11 side. In addition, a diode having an anode connected to the emitter side of the main switch 12 is provided.

上記二次コイル112がコネクタ152を介して接地点GNDに接続される間の二次電流経路には、適宜な抵抗値の電流検出用抵抗61aを介挿してあり、この電流検出用抵抗61aによる電圧変化を検知する二次側電圧検出ライン61bと電流検出用抵抗61aとによって、二次電流検出手段を構成する。二次側電圧検出ライン61bより得られる二次電流検出信号は、内燃機関駆動制御装置3へ供給され、この二次電流検出信号に基づいて内燃機関駆動制御装置3は二次コイル112に流れる二次電流を知ることができる。   A current detection resistor 61a having an appropriate resistance value is inserted in the secondary current path while the secondary coil 112 is connected to the ground point GND via the connector 152. The current detection resistor 61a The secondary side voltage detection line 61b for detecting a voltage change and the current detection resistor 61a constitute a secondary current detection means. The secondary current detection signal obtained from the secondary side voltage detection line 61b is supplied to the internal combustion engine drive control device 3, and the internal combustion engine drive control device 3 flows to the secondary coil 112 based on this secondary current detection signal. The next current can be known.

なお、上述した点火コイルユニット10とは別体として設ける副一次コイル通電許可スイッチ51および副一次コイル通電スイッチ52は、別々に設けるようにしても良いし、同一のケースに収納したユニット構造としても良い。また、耐電圧および耐ノイズ性の高い半導体デバイスを副一次コイル通電許可スイッチ51および副一次コイル通電スイッチ52として用いるなら、点火コイルユニット10のケース10内に設けるようにしても良い。   The sub primary coil energization permission switch 51 and the sub primary coil energization switch 52 provided separately from the ignition coil unit 10 described above may be provided separately or as a unit structure housed in the same case. good. Further, if a semiconductor device having a high withstand voltage and noise resistance is used as the sub primary coil energization permission switch 51 and the sub primary coil energization switch 52, the semiconductor device may be provided in the case 10 of the ignition coil unit 10.

副一次コイル通電許可スイッチ51は、高速スイッチング特性を備えるパワーMOS−FETで構成でき、副一次コイル通電許可スイッチ51のドレインが副一次コイル111bの第2端111b2側に、副一次コイル通電許可スイッチ51のソースが接地点GND側に接続され、副一次コイル通電許可スイッチ51のゲートには、内燃機関駆動制御装置3より副一次コイル通電許可信号Sb1が入力される。したがって、副一次コイル通電許可信号Sb1がオン(例えば、信号レベルがLからH)になると、副一次コイル通電許可スイッチ51がオンになり、副一次コイル111bの第2端111b2が接地点GNDに接続されることとなる。   The sub primary coil energization permission switch 51 can be composed of a power MOS-FET having high-speed switching characteristics, and the drain of the sub primary coil energization permission switch 51 is on the second end 111b2 side of the sub primary coil 111b, and the sub primary coil energization permission switch. The source of 51 is connected to the ground point GND side, and the sub primary coil energization permission signal Sb <b> 1 is input from the internal combustion engine drive control device 3 to the gate of the sub primary coil energization permission switch 51. Therefore, when the sub primary coil energization permission signal Sb1 is turned on (for example, the signal level is L to H), the sub primary coil energization permission switch 51 is turned on, and the second end 111b2 of the sub primary coil 111b is set to the ground point GND. Will be connected.

なお、上記副一次コイル通電許可スイッチ51のソースと接地点GNDの間の副一次電流経路には、適宜な抵抗値の電流検出用抵抗62aを介挿してあり、この電流検出用抵抗62aによる電圧変化を検知する副一次電圧検出ライン62bと電流検出用抵抗62aとによって、副一次電流検出手段を構成する。副一次電圧検出ライン62bより得られる副一次電流検出信号は、内燃機関駆動制御装置3へ供給され、この副一次電流検出信号に基づいて内燃機関駆動制御装置3は副一次コイル111bに流れる副一次電流を知ることができる。そして、内燃機関駆動制御装置3内の副一次コイル通電制御手段30(後に詳述)は、この副一次電流の検出値を用いて、適切な副一次コイル通電信号Sb2を生成し、副一次コイル111bに発生させる重畳磁束を適切に制御することができる。   A current detection resistor 62a having an appropriate resistance value is inserted in the sub primary current path between the source of the sub primary coil energization permission switch 51 and the ground point GND, and the voltage generated by the current detection resistor 62a. The sub primary voltage detection line 62b for detecting the change and the current detection resistor 62a constitute a sub primary current detection means. The sub primary current detection signal obtained from the sub primary voltage detection line 62b is supplied to the internal combustion engine drive control device 3, and based on this sub primary current detection signal, the internal combustion engine drive control device 3 passes through the sub primary coil 111b. You can know the current. Then, the sub primary coil energization control means 30 (detailed later) in the internal combustion engine drive control device 3 generates an appropriate sub primary coil energization signal Sb2 using the detected value of the sub primary current, and the sub primary coil. The superposed magnetic flux generated in 111b can be appropriately controlled.

また、副一次コイル通電スイッチ52もパワーMOS−FETで構成でき、副一次コイル通電スイッチ52のドレインが直流電源4側に、副一次コイル通電スイッチ52のソースが副一次コイル111bの第1端111b1側に接続され、副一次コイル通電スイッチ52のゲートには、内燃機関駆動制御装置3より副一次コイル通電信号Sb2が入力される。したがって、副一次コイル通電信号Sb2がオン(例えば、信号レベルがLからH)になると、副一次コイル通電スイッチ52がオンになり、副一次コイル111bの第1端111b1に直流電源4から電源電圧VB+が印加されることとなる。なお、副一次コイルスイッチユニット5内に昇圧電源回路53(図1中、二点鎖線で示す)を設け、直流電源4からの電源電圧VB+を昇圧して副一次コイル111bへ供給できるようにしても良い。斯くすれば、副一次コイル111bに印加する電圧を高くして、副一次コイル111bに流す重畳電流I1bを大きくできるので、副一次コイル111bから二次コイル112へ、より大きなエネルギを重畳することが可能となる。   The sub primary coil energization switch 52 can also be constituted by a power MOS-FET, the drain of the sub primary coil energization switch 52 is on the DC power supply 4 side, and the source of the sub primary coil energization switch 52 is the first end 111b1 of the sub primary coil 111b. The sub primary coil energization signal Sb <b> 2 is input from the internal combustion engine drive control device 3 to the gate of the sub primary coil energization switch 52. Therefore, when the sub primary coil energization signal Sb2 is turned on (for example, the signal level is L to H), the sub primary coil energization switch 52 is turned on, and the power voltage from the DC power supply 4 is applied to the first end 111b1 of the sub primary coil 111b. VB + is applied. In addition, a boost power supply circuit 53 (indicated by a two-dot chain line in FIG. 1) is provided in the sub primary coil switch unit 5 so that the power supply voltage VB + from the DC power supply 4 can be boosted and supplied to the sub primary coil 111b. Also good. In this way, the voltage applied to the sub primary coil 111b can be increased to increase the superimposed current I1b flowing through the sub primary coil 111b, so that larger energy can be superimposed from the sub primary coil 111b to the secondary coil 112. It becomes possible.

しかして、本実施形態に係る内燃機関用点火装置1では、副一次コイル通電制御手段30が、副一次コイル通電許可スイッチ51および副一次コイル通電スイッチ52の切り替え動作を制御して、重畳磁束を発生させるタイミング、重畳磁束の大きさ、重畳磁束を消失させるタイミングを調整する。特に、副一次コイル通電制御手段30は、副一次電流検出手段により検出された副一次電流の検出値が、予め定めた副一次電流目標値となるように副一次コイル111bへの給電量を制御して、一定の副一次電流を流すことができる。   Therefore, in the internal combustion engine ignition device 1 according to the present embodiment, the sub primary coil energization control means 30 controls the switching operation of the sub primary coil energization permission switch 51 and the sub primary coil energization switch 52 to generate the superimposed magnetic flux. The timing to generate, the magnitude of the superimposed magnetic flux, and the timing to eliminate the superimposed magnetic flux are adjusted. In particular, the sub primary coil energization control means 30 controls the amount of power supplied to the sub primary coil 111b so that the detection value of the sub primary current detected by the sub primary current detection means becomes a predetermined sub primary current target value. Thus, a constant secondary primary current can flow.

これにより、本実施形態に係る内燃機関用点火装置1では、安定した燃焼を維持するのに必要十分な一定量の放電エネルギを二次側に重畳し、二次電流の安定した高電流期間を確保することが可能となる。しかも、副一次コイル通電制御手段30が副一次コイル111bへの供給電力を必要十分な一定量に制御するので、過剰な副一次電流が流れてしまうことを抑制して点火のための消費電力を適切化できる。よって、副一次コイル111bを用いた重畳放電制御を行う事で燃費が悪化することも低減できる。   Thus, in the internal combustion engine ignition device 1 according to the present embodiment, a constant amount of discharge energy necessary and sufficient to maintain stable combustion is superimposed on the secondary side, and a stable high current period of the secondary current is obtained. It can be secured. Moreover, since the sub primary coil energization control means 30 controls the power supplied to the sub primary coil 111b to a necessary and sufficient constant amount, it is possible to suppress the excessive sub primary current from flowing and reduce the power consumption for ignition. Can be appropriate. Therefore, it is possible to reduce the deterioration of fuel consumption by performing the superposed discharge control using the sub primary coil 111b.

図2に、副一次コイル通電制御手段30の概略構成の一例を示す。なお、副一次コイル通電制御手段30の構成はこれに限定されるものではない。また、副一次コイル通電制御手段30の機能は、ハードウェアロジックで実現しても、ソフトウェアによるコンピュータ制御で実現しても構わない。   In FIG. 2, an example of schematic structure of the sub primary coil electricity supply control means 30 is shown. In addition, the structure of the sub primary coil electricity supply control means 30 is not limited to this. The function of the sub primary coil energization control means 30 may be realized by hardware logic or by computer control by software.

副一次コイル通電制御手段30は、主一次コイル111aのみを用いる通常放電制御の時には稼動せず、主一次コイル111aと副一次コイル111bの両方を用いる重畳放電制御の時にのみ稼動する。例えば、重畳放電制御を行う場合に限って、主一次コイル点火信号Sa(或いは、同等の制御指示信号)が副一次コイル通電制御手段30へ入力されることで、副一次コイル通電制御手段30が動作する。   The sub primary coil energization control means 30 does not operate during the normal discharge control using only the main primary coil 111a, and operates only during the superposed discharge control using both the main primary coil 111a and the sub primary coil 111b. For example, only when superposed discharge control is performed, the primary primary coil ignition signal Sa (or an equivalent control instruction signal) is input to the secondary primary coil energization control means 30, so that the secondary primary coil energization control means 30 Operate.

主一次コイル点火信号Saは、副一次コイル通電制御手段30の副一次コイル通電タイミング決定手段31に入力され、主一次コイル111aへの通電遮断タイミングと同時あるいはそれ以降の適宜なタイミングを、副一次コイル通電許可信号出力タイミングとして副一次コイル通電許可信号生成手段32へ知らせ、この副一次コイル通電許可信号生成手段32により生成された副一次コイル通電許可信号Sb1が副一次コイル通電許可スイッチ51へ供給され、副一次コイル通電許可スイッチ51がオンとなり、副一次コイル111bへの通電が可能になる。   The main primary coil ignition signal Sa is input to the sub primary coil energization timing determination means 31 of the sub primary coil energization control means 30, and an appropriate timing at the same time as or after the energization cut-off timing to the main primary coil 111a is obtained. The sub-primary coil energization permission signal generation means 32 is notified of the coil energization permission signal output timing, and the sub-primary coil energization permission signal Sb1 generated by the sub-primary coil energization permission signal generation means 32 is supplied to the sub-primary coil energization permission switch 51. Then, the sub primary coil energization permission switch 51 is turned on, and energization to the sub primary coil 111b becomes possible.

一方、副一次コイル通電タイミング決定手段31は、副一次コイル通電許可信号Sb1が副一次コイル通電許可スイッチ51へ供給開始と同時あるいはそれ以降の適宜なタイミングを、副一次コイル通電信号出力タイミングとして副一次コイル通電シング脳生成手段33へ知らせ、この副一次コイル通電信号生成手段33により生成された副一次コイル通電信号Sb2が副一次コイル通電スイッチ52へ供給され、副一次コイル通電スイッチ51のオン・オフ制御が行われる。すなわち、副一次コイル通電スイッチ52がオンになった時だけ、直流電源4から副一次コイル111aへ通電される事となるので、副一次コイル通電スイッチ52がオン時間とオフ時間の比率(デューティー比)を制御するPWM制御によって、副一次コイル111bに供給する電力を微調整できるのである。   On the other hand, the sub primary coil energization timing determining means 31 uses the sub primary coil energization signal output timing as the sub primary coil energization signal output timing at the same time as or after the sub primary coil energization permission signal Sb1 is supplied to the sub primary coil energization permission switch 51. The primary coil energization single brain generating means 33 is notified, and the sub primary coil energization signal Sb2 generated by the sub primary coil energization signal generating means 33 is supplied to the sub primary coil energization switch 52, and the sub primary coil energization switch 51 is turned on / off. Off control is performed. That is, only when the sub primary coil energization switch 52 is turned on, the sub primary coil energization switch 52 is energized from the DC power supply 4 to the sub primary coil 111a. The power supplied to the sub-primary coil 111b can be finely adjusted by the PWM control that controls ().

上記副一次コイル通電信号生成手段33により生成する副一次コイル通電信号Sb2のデューティー比は、比較判定手段34からの調整指示信号に基づいて調整される。比較判定手段34には、副一次電流検出ライン62bからの副一次電流検出信号が入力され、実際に副一次コイル111bを流れている副一次電流の値である蓋然性の高い副一次電流検出値を得ることができる。また、比較判定手段34には、副一次電流目標値記憶手段35に記憶された副一次電流目標値が供給される。   The duty ratio of the sub primary coil energization signal Sb2 generated by the sub primary coil energization signal generation means 33 is adjusted based on the adjustment instruction signal from the comparison determination means 34. The sub primary current detection signal from the sub primary current detection line 62b is input to the comparison determination unit 34, and a highly probable sub primary current detection value that is the value of the sub primary current actually flowing through the sub primary coil 111b is obtained. Can be obtained. Further, the sub primary current target value stored in the sub primary current target value storage unit 35 is supplied to the comparison determination unit 34.

そして、比較判定手段34は、副一次電流検出値と副一次電流目標値とを比較し、副一次電流検出値が副一次電流目標値よりも低い場合には出力増加指示信号を副一次コイル通電信号生成手段33へ出力し、副一次電流検出値が副一次電流目標値よりも高い場合には出力低減指示信号を副一次コイル通電信号生成手段33へ出力する。なお、出力増加指示信号あるいは出力低減指示信号を受けた副一次コイル通電信号生成手段33は、予め定めた所定レベルだけデューティー比を増減させるような制御でも良いが、出力増加指示信号および出力低減指示信号に増加量や低減量を含ませておき、その増加量や低減量に応じたデューティー比の副一次コイル通電信号を副一次電流通電信号生成手段33が生成する制御とすれば、短時間で副一次電流検出値を副一次電流目標値にすることができる。   Then, the comparison / determination means 34 compares the sub primary current detection value with the sub primary current target value, and if the sub primary current detection value is lower than the sub primary current target value, outputs the output increase instruction signal to the sub primary coil energization. When the sub primary current detection value is higher than the sub primary current target value, an output reduction instruction signal is output to the sub primary coil energization signal generation unit 33. The sub primary coil energization signal generation means 33 that has received the output increase instruction signal or the output reduction instruction signal may be controlled to increase or decrease the duty ratio by a predetermined level, but the output increase instruction signal and the output reduction instruction If the control includes the sub primary current energization signal generating means 33 generating the sub primary coil energization signal having a duty ratio corresponding to the increase or decrease, the sub primary current energization signal generating means 33 generates a signal in a short time. The sub primary current detection value can be set to the sub primary current target value.

比較判定手段34からの出力増加指示信号を受けた副一次コイル通電信号生成手段33は、副一次コイル通電信号Sb2のデューティー比を上げることで、副一次コイル111bへ供給する電力を増やして、副一次電流を大きくするので、副一次コイル111bに生ずる重畳磁束を強め、二次側へ重畳する放電エネルギを増やせる。一方、比較判定手段34からの出力低減指示信号を受けた副一次コイル通電信号生成手段33は、副一次コイル通電信号Sb2のデューティー比を下げることで、副一次コイル111bへ供給する電力を減らして、副一次電流を小さくするので、副一次コイル111bに生ずる重畳磁束を弱め、二次側へ重畳する放電エネルギを減らせる。   The sub primary coil energization signal generating unit 33 that has received the output increase instruction signal from the comparison determination unit 34 increases the power supplied to the sub primary coil 111b by increasing the duty ratio of the sub primary coil energization signal Sb2, Since the primary current is increased, the superimposed magnetic flux generated in the sub-primary coil 111b is strengthened, and the discharge energy superimposed on the secondary side can be increased. On the other hand, the sub primary coil energization signal generation unit 33 that has received the output reduction instruction signal from the comparison determination unit 34 reduces the power supplied to the sub primary coil 111b by reducing the duty ratio of the sub primary coil energization signal Sb2. Since the sub primary current is reduced, the superimposed magnetic flux generated in the sub primary coil 111b is weakened, and the discharge energy superimposed on the secondary side can be reduced.

そして、比較判定手段34から副一次コイル通電信号生成手段33への指示は、副一次電流検出値を副一次電流目標値に近づける指示であるから、微増微減はあるものの、副一次電流検出値は副一次電流目標値にほぼ等しい一定値に保たれる。従って、副一次コイル111bに生ずる重畳磁束をほぼ一定に保つことができ、二次側へ重畳する放電エネルギもほぼ一定に保つことができる。   The instruction from the comparison determination unit 34 to the sub primary coil energization signal generation unit 33 is an instruction to bring the sub primary current detection value closer to the sub primary current target value, so that although there is a slight increase or decrease, the sub primary current detection value is It is maintained at a constant value substantially equal to the sub primary current target value. Therefore, the superimposed magnetic flux generated in the sub primary coil 111b can be kept substantially constant, and the discharge energy superimposed on the secondary side can also be kept almost constant.

なお、副一次コイル通電制御手段30の副一次コイル通電信号生成手段33が副一次コイル通電信号Sb2を出力開始するときには、副一次電流検出信号による副一次コイル電流検出値が0V(或いは基準電位)となっているため、比較判定手段34からは出力増加指示信号を受けることとなるが、この出力増加指示信号による増加量に基づいて副一次コイル通電信号を生成しても、目標とする副一次電流を副一次コイル111bに流すことができない場合もある。そこで、副一次コイル通電信号生成手段33が副一次コイル通電信号Sb2を出力開始するときに限って、目標とする副一次電流に基づいて定めたデューティー比(デフォルト設定)の副一次コイル通電信号を生成するようにしても良い。また、副一次電流目標値は、内燃機関の特性に応じて適宜に変更できれば、汎用性を高めることができるので、例えば、副一次電流目標値設定手段36(図2においては、破線で示す)を設けておき、副一次電流目標値記憶手段35に記憶させる副一次電流目標値の設定変更を簡易に行える構成としても良い。   When the sub primary coil energization signal generation means 33 of the sub primary coil energization control means 30 starts to output the sub primary coil energization signal Sb2, the sub primary coil current detection value based on the sub primary current detection signal is 0V (or reference potential). Therefore, an output increase instruction signal is received from the comparison determination means 34. Even if the sub primary coil energization signal is generated based on the increase amount by the output increase instruction signal, the target sub primary is generated. In some cases, current cannot flow through the sub-primary coil 111b. Therefore, only when the sub primary coil energization signal generation means 33 starts to output the sub primary coil energization signal Sb2, the sub primary coil energization signal having a duty ratio (default setting) determined based on the target sub primary current is generated. You may make it produce | generate. Further, if the secondary primary current target value can be appropriately changed according to the characteristics of the internal combustion engine, versatility can be improved. For example, the secondary primary current target value setting means 36 (shown by a broken line in FIG. 2). It is good also as a structure which can perform setting change of the sub primary current target value memorize | stored in the sub primary current target value memory | storage means 35 easily.

次に、内燃機関駆動制御装置3より出力される主一次コイル点火信号Sa、副一次コイル通電許可信号Sb1および副一次コイル通電信号Sb2による点火コイルユニット10、副一次コイル通電許可スイッチ51および副一次コイル通電スイッチ52の動作を、図3の波形図に基づいて説明する。   Next, the ignition coil unit 10, the sub primary coil energization permission switch 51 and the sub primary according to the main primary coil ignition signal Sa, the sub primary coil energization permission signal Sb 1 and the sub primary coil energization signal Sb 2 output from the internal combustion engine drive control device 3. The operation of the coil energization switch 52 will be described based on the waveform diagram of FIG.

重畳磁束によって二次側へ放電エネルギを追加するまでもなく、主一次コイル111aのみで適切な放電特性を得られている運転状況の場合、内燃機関駆動制御装置3は通常放電制御を行うので、内燃機関駆動制御装置3より主一次コイル点火信号Saが出力され、点火コイルユニット10に入力される。   Since it is not necessary to add discharge energy to the secondary side by the superimposed magnetic flux, and in an operating situation in which appropriate discharge characteristics are obtained only by the main primary coil 111a, the internal combustion engine drive control device 3 performs normal discharge control. The main primary coil ignition signal Sa is output from the internal combustion engine drive control device 3 and input to the ignition coil unit 10.

まず、放電サイクルの適宜なタイミングで主一次コイル点火信号Saの信号レベルをLからHに変化させて、主スイッチ12をオンにし、一次電流I1aを流し始める。主一次コイル通電期間Taが経過したタイミングで主一次コイル点火信号Saの信号レベルをHからLに変化させて、主スイッチ12をオフにし、一次電流I1aを遮断すると、二次コイル112側に二次電流I2が流れる。   First, the signal level of the main primary coil ignition signal Sa is changed from L to H at an appropriate timing of the discharge cycle, the main switch 12 is turned on, and the primary current I1a starts to flow. When the signal level of the main primary coil ignition signal Sa is changed from H to L at the timing when the main primary coil energization period Ta elapses, the main switch 12 is turned off and the primary current I1a is cut off, the secondary coil 112 side is turned on. The next current I2 flows.

一次側の電流遮断により二次側の電圧は急激に増加してゆき、二次電流I2は急激に増加する。そして、点火プラグ2への印加電圧が放電電圧に達すると、電極間のギャップに絶縁破壊が生じ、放電火花が生じると共に放電電流が流れ始め、二次電流I2は急速に減少してゆくが、ある程度下がったところで減衰が緩やかになり、二次電流I2は徐々に零へ近づいてゆく。二次電流I2の流れ始めの急激な上昇と急激な減少は、二次コイル112に蓄えられた静電容量による容量放電と考えられ、二次電流I2が緩やかになって帰零するまでは、主一次コイル111aの電流遮断によって二次コイル112に与えられた電磁誘導エネルギの放出による誘導放電と考えられる。   The secondary-side voltage increases rapidly due to the primary-side current interruption, and the secondary current I2 increases rapidly. When the voltage applied to the spark plug 2 reaches the discharge voltage, dielectric breakdown occurs in the gap between the electrodes, a discharge spark occurs and the discharge current begins to flow, and the secondary current I2 decreases rapidly. When the voltage drops to some extent, the attenuation becomes gentle, and the secondary current I2 gradually approaches zero. The sudden rise and sudden decrease at the beginning of the flow of the secondary current I2 is considered to be capacitive discharge due to the electrostatic capacity stored in the secondary coil 112, and until the secondary current I2 becomes gentle and returns to zero, This is considered to be induced discharge due to the release of electromagnetic induction energy given to the secondary coil 112 due to current interruption of the main primary coil 111a.

二次コイル112に二次電流が流れている期間、副一次コイル通電許可信号Sb1および副一次コイル通電信号Sb2の信号レベルは共にLを保持しているので、副一次コイル111bに重畳電流I1bが流れることはない。これが主一次コイル111aへの通電制御のみで行う通常放電制御である。   During the period in which the secondary current is flowing through the secondary coil 112, the signal levels of the sub primary coil energization permission signal Sb1 and the sub primary coil energization signal Sb2 are both kept at L, so that the superimposed current I1b is applied to the sub primary coil 111b. There is no flow. This is normal discharge control performed only by energization control to the main primary coil 111a.

なお、内燃機関(例えば、ガソリンエンジン)では、点火プラグ2に生じた放電火花により気筒内の燃料に点火し、気筒内の燃焼が生ずるのであるが、点火プラグ2に流れる放電電流が十分でないと、燃焼に好適な大きさの火炎核が形成されず、必要な運動エネルギを得られない可能性がある。好適な気筒内燃焼に必要な放電電流の電流値や維持時間は、内燃機関の構造、混合気の状態、エンジンの回転数等によって様々であるから、内燃機関駆動制御装置3では、当該内燃機関の運転状況に応じて、通常放電制御から重畳放電制御に切り替えることが望ましいかを判断し、好適な気筒内燃焼を実現する。   In an internal combustion engine (for example, a gasoline engine), the fuel in the cylinder is ignited by the discharge spark generated in the spark plug 2 and combustion in the cylinder occurs. However, the discharge current flowing through the spark plug 2 is not sufficient. There is a possibility that a flame nucleus having a size suitable for combustion is not formed, and the necessary kinetic energy cannot be obtained. Since the current value and the maintenance time of the discharge current necessary for suitable in-cylinder combustion vary depending on the structure of the internal combustion engine, the state of the air-fuel mixture, the engine speed, and the like, the internal combustion engine drive control device 3 uses the internal combustion engine. It is determined whether it is desirable to switch from the normal discharge control to the superposed discharge control according to the operation state, and a suitable in-cylinder combustion is realized.

例えば、主一次コイル通電期間Taだけ主一次コイル111aへの通電を行ったときに二次側に与える放電エネルギでは足りず、放電開始から比較的長時間に亘る高電流期間が必要である場合、内燃機関駆動制御装置3は、副一次コイル111bを用いた重畳放電制御を行う。なお、重畳放電制御を行うか否かの判断は、二次電流検出信号に基づく二次電流検出値により内燃機関駆動制御装置3が行い、当該内燃機関の好適な運転状態を維持するために必要な高電流の維持期間を実現するために、副一次コイル通電制御手段30を稼動させて、副一次コイル通電許可信号Sb1および副一次コイル通電信号Sb2を生成させる。   For example, when the primary primary coil 111a is energized only during the main primary coil 111a, the discharge energy given to the secondary side is insufficient, and a high current period over a relatively long time from the start of discharge is required. The internal combustion engine drive control device 3 performs superimposed discharge control using the sub primary coil 111b. Note that whether or not to perform the superimposed discharge control is determined by the internal combustion engine drive control device 3 based on the secondary current detection value based on the secondary current detection signal, and is necessary to maintain a suitable operating state of the internal combustion engine. In order to realize a high current maintaining period, the sub primary coil energization control means 30 is operated to generate the sub primary coil energization permission signal Sb1 and the sub primary coil energization signal Sb2.

重畳放電制御に際して、まず、放電サイクルの適宜なタイミングで主一次コイル点火信号Saの信号レベルをLからHに変化させて、主スイッチ12をオンにし、一次電流I1aを流し始める。主一次コイル通電期間Taが経過したタイミングで主一次コイル点火信号Saの信号レベルをHからLに変化させて、主スイッチ12をオフにし、一次電流I1aを遮断すると、二次コイル112側に高電圧が発生して点火プラグ2の絶縁ギャップ間に放電火花が生じ、二次電流I2が流れる。   In the superimposed discharge control, first, the signal level of the main primary coil ignition signal Sa is changed from L to H at an appropriate timing of the discharge cycle, the main switch 12 is turned on, and the primary current I1a starts to flow. When the signal level of the main primary coil ignition signal Sa is changed from H to L at the timing when the main primary coil energization period Ta has elapsed, the main switch 12 is turned off, and the primary current I1a is cut off. A voltage is generated, a discharge spark is generated between the insulating gaps of the spark plug 2, and a secondary current I2 flows.

この一次電流遮断タイミング以降に重畳放電を行うので、副一次コイル通電制御手段30は、例えば、主一次コイル点火信号Saをオフにするのと同時に副一次コイル通電許可信号Sb1をオンにし、副一次コイル通電許可期間Tb1が経過したタイミングで副一次コイル通電許可信号Sb1をオフにする。すなわち、副一次コイル通電許可信号Sb1がオンになることで、副一次コイルスイッチユニット5の副一次コイル通電許可スイッチ51がオンになっている期間は、副一次コイル111bの第2端111b2側が接地点GNDに接続されており、副一次コイル111bの第1端111b1側より電圧が印加されれば、いつでも副一次コイル111bに通電できる状態に保持される。   Since the superposed discharge is performed after the primary current cut-off timing, the sub primary coil energization control means 30 turns on the sub primary coil energization permission signal Sb1 at the same time as turning off the main primary coil ignition signal Sa, for example. The sub-primary coil energization permission signal Sb1 is turned off at the timing when the coil energization permission period Tb1 has elapsed. That is, when the sub primary coil energization permission signal Sb1 is turned on, the second end 111b2 side of the sub primary coil 111b is in contact with the sub primary coil energization permission switch 51 of the sub primary coil switch unit 5 while the sub primary coil energization permission switch 51 is on. If it is connected to the point GND and a voltage is applied from the first end 111b1 side of the sub primary coil 111b, the sub primary coil 111b can be energized at any time.

なお、副一次コイル通電許可期間Tb1は任意の時間に設定して構わないが、少なくとも、二次電流I2を高い電流値に維持する必要がある高電流期間よりも長い期間に設定しておく必要がある。例えば、主一次コイル通電期間Taだけ主一次コイル111aへの通電を行って主一次電流を遮断したときに、二次電流I2が流れ始めて帰零するまでの期間(容量放電期間+誘導放電期間)を副一次コイル通電許可期間Tb1に設定しておけば十分である。   The sub-primary coil energization permission period Tb1 may be set to an arbitrary time, but it is necessary to set at least a period longer than the high current period in which the secondary current I2 needs to be maintained at a high current value. There is. For example, when the main primary coil 111a is energized only during the main primary coil energization period Ta and the main primary current is cut off, the period until the secondary current I2 starts flowing and returns to zero (capacity discharge period + induction discharge period) Is set to the sub-primary coil energization permission period Tb1.

主一次コイル111aへの通電遮断により、二次コイル1112に二次電流I2が急激に流れ、点火プラグ2に放電電流が流れ始めることで二次電流I2が急激に減衰してゆき、二次電流I2の急激な減衰が終わったタイミング(例えば、副一次コイル通電待機期間Tb0が経過したタイミング)で、副一次コイル通電制御手段30は副一次コイル通電信号Sb2をオンにする。すなわち、副一次コイル通電制御手段30は、副一次コイル通電待機期間Tb0が経過したタイミングで、副一次コイルスイッチユニット5の副一次コイル通電スイッチ52をオンにすることで、副一次コイル111bの第1端111b1側を直流電源4に接続し、副一次コイル111bに重畳電流I1bを流すのである。   When the main primary coil 111a is cut off, the secondary current I2 flows suddenly through the secondary coil 1112, and the discharge current begins to flow through the spark plug 2, causing the secondary current I2 to attenuate rapidly. The sub-primary coil energization control means 30 turns on the sub-primary coil energization signal Sb2 at the timing when the rapid decay of I2 ends (for example, the timing when the sub-primary coil energization standby period Tb0 has elapsed). In other words, the sub primary coil energization control means 30 turns on the sub primary coil energization switch 52 of the sub primary coil switch unit 5 at the timing when the sub primary coil energization standby period Tb0 has elapsed, whereby the sub primary coil energization waiting time Tb0 has elapsed. The one end 111b1 side is connected to the DC power supply 4, and the superimposed current I1b is passed through the sub primary coil 111b.

なお、副一次コイル通電信号Sb2によって副一次コイル通電スイッチ52のオン・オフ制御を行う副一次コイル通電期間Tb2は、副一次コイル通電許可期間Tb1を超えない範囲で、適宜に設定すれば良い。例えば、安定した燃焼を維持するために必要とされる高電流期間から副一次コイル通電待機期間Tb0を引いた期間として副一次コイル通電期間Tb2を設定しても良いし、副一次コイル通電許可期間Tb1の終了タイミングと一致するように副一次コイル通電期間Tb2を設定しても良い。   The sub primary coil energization period Tb2 for performing on / off control of the sub primary coil energization switch 52 by the sub primary coil energization signal Sb2 may be appropriately set within a range not exceeding the sub primary coil energization permission period Tb1. For example, the sub primary coil energization period Tb2 may be set as a period obtained by subtracting the sub primary coil energization standby period Tb0 from the high current period necessary for maintaining stable combustion, or the sub primary coil energization permission period. The sub primary coil energization period Tb2 may be set so as to coincide with the end timing of Tb1.

また、内燃機関駆動制御装置3の副一次コイル通電制御手段30は、副一次コイル通電スイッチ52をPWM制御することにより、副一次コイル111bに与える電力を微調整できる。したがって、副一次コイル通電期間Tb2が経過するまで、副一次電流I1bをほぼ副一次電流目標値に保持することができる(図3の副一次電流I1bにおいて、網掛けで示す範囲を参照)。これにより、副一次コイル111bにより生じて二次コイル112に作用する重畳磁束は、副一次コイル通電期間Tb2が経過するまで、一定量に保たれる。   Further, the sub primary coil energization control means 30 of the internal combustion engine drive control device 3 can finely adjust the electric power applied to the sub primary coil 111b by PWM control of the sub primary coil energization switch 52. Therefore, the sub primary current I1b can be held substantially at the sub primary current target value until the sub primary coil energization period Tb2 elapses (see the shaded range in the sub primary current I1b in FIG. 3). Thereby, the superimposed magnetic flux generated by the sub primary coil 111b and acting on the secondary coil 112 is kept at a constant amount until the sub primary coil energization period Tb2 elapses.

上記のように、内燃機関駆動制御装置3の副一次コイル通電制御手段30によって副一次コイル111bへの通電制御を行えば、副一次コイル通電期間Tb2が経過するまで、副一次コイル111bから二次コイル112に与えられる放電エネルギ量がほぼ一定に保たれるので、二次電流I2を一定量だけ増加させることができる。すなわち、重畳放電制御における副一次コイル通電期間Tb2において、二次電流I2が減少してゆく傾きは、通常放電制御において二次電流I2が減少してゆく傾きとほぼ同じであるが、副一次コイル111bから与えられる放電エネルギ分(図3の二次電流I2において、網掛けで示す範囲)だけ高い電流値となるので、二次電流I2を必要十分な期間に亘って高電流に維持でき、安定した高電流期間を確保して、好適な燃焼を実現するのである。   As described above, if the sub primary coil energization control means 30 of the internal combustion engine drive control device 3 controls the energization of the sub primary coil 111b, the secondary primary coil 111b continues to the secondary until the sub primary coil energization period Tb2 elapses. Since the amount of discharge energy applied to the coil 112 is kept substantially constant, the secondary current I2 can be increased by a certain amount. That is, in the sub-primary coil energization period Tb2 in the superposed discharge control, the gradient in which the secondary current I2 decreases is substantially the same as the gradient in which the secondary current I2 decreases in the normal discharge control. Since the current value becomes high by the amount of discharge energy given from 111b (the range indicated by the shaded area in the secondary current I2 in FIG. 3), the secondary current I2 can be maintained at a high current for a necessary and sufficient period, and stable. This ensures a high current period and achieves suitable combustion.

以上、本発明に係る内燃機関用点火装置の実施形態を添付図面に基づいて説明したが、本発明は、この実施形態に限定されるものではなく、特許請求の範囲に記載の構成を変更しない範囲で、公知既存の等価な技術手段を転用することにより実施しても構わない。   As mentioned above, although embodiment of the ignition device for internal combustion engines which concerns on this invention was described based on the accompanying drawing, this invention is not limited to this embodiment, The structure as described in a claim is not changed. In the range, it may be carried out by diverting known equivalent technical means.

1 内燃機関用点火装置
10 点火コイルユニット
11 点火コイル
111a 主一次コイル
111b 副一次コイル
112 二次コイル
113 センターコア
12 主スイッチ
15 ケース
2 点火プラグ
3 内燃機関駆動制御装置
30 副一次コイル通電制御手段
4 直流電源
51 副一次コイル通電許可スイッチ
52 副一次コイル通電スイッチ
61a 電流検出用抵抗
61b 二次側電圧検出ライン
62a 電流検出用抵抗
62b 副一次電圧検出ライン
DESCRIPTION OF SYMBOLS 1 Ignition device for internal combustion engines 10 Ignition coil unit 11 Ignition coil 111a Main primary coil 111b Sub primary coil 112 Secondary coil 113 Center core 12 Main switch 15 Case 2 Spark plug 3 Internal combustion engine drive control device 30 Sub primary coil energization control means 4 DC power supply 51 Sub primary coil energization permission switch 52 Sub primary coil energization switch 61a Current detection resistor 61b Secondary voltage detection line 62a Current detection resistor 62b Sub primary voltage detection line

Claims (2)

通電により正方向の磁束が増加し、電流を遮断することにより正方向の磁束が減ぜられる主一次コイルと、通電により逆方向の追加磁束が生じる副一次コイルと、一端側が点火プラグと接続され、前記主一次コイルと副一次コイルの磁束が作用して放電エネルギが発生する二次コイルと、を有する点火コイルと、
前記点火コイルの主一次コイルへの通電・遮断を切り替える主スイッチ手段と、
前記副一次コイルへの通電・遮断を切り替える副スイッチ手段と、
前記点火コイルの副一次コイルへの通電を許可する副一次コイル通電許可スイッチ手段と、
前記点火コイルの副一次コイルに流れる副一次電流を検出する副一次電流検出手段と、
前記主スイッチ手段を制御して主一次コイルへ通電した後に主一次コイルへの通電を遮断することによりコイル二次側に高電圧を発生させ、燃焼サイクルの所定のタイミングで点火プラグに放電火花を発生させると共に、主一次コイルへの通電を遮断した遮断タイミング以降に所定の重畳時間だけ副一次コイル通電許可スイッチ手段に副一次コイルへの通電を許可し、副スイッチ手段を制御して副一次コイルへの通電制御を行う点火制御手段と、
を備え、
前記点火制御手段は、予め設定された副一次電流目標値と、前記副一次電流検出手段により検出された副一次電流検出値とを比較して、副一次電流が副一次電流目標値となるように、副一次コイルへの通電・遮断を制御するようにしたことを特徴とする内燃機関用点火装置。
The primary primary coil that increases the magnetic flux in the positive direction when energized and reduces the magnetic flux in the positive direction by cutting off the current, the sub-primary coil that generates additional magnetic flux in the reverse direction when energized, and one end are connected to the spark plug An ignition coil having a secondary coil in which discharge energy is generated by the action of magnetic fluxes of the main primary coil and the sub primary coil;
Main switch means for switching energization / cutoff to the main primary coil of the ignition coil;
Sub-switch means for switching energization / cut-off to the sub-primary coil;
Sub-primary coil energization permission switch means for permitting energization to the sub-primary coil of the ignition coil;
Sub-primary current detection means for detecting a sub-primary current flowing in the sub-primary coil of the ignition coil;
After the main primary coil is energized by controlling the main switch means, a high voltage is generated on the secondary side of the coil by cutting off the energization to the main primary coil, and a discharge spark is applied to the spark plug at a predetermined timing of the combustion cycle. The sub primary coil energization is permitted to the sub primary coil energization permission switch means for a predetermined superimposition time after the shutoff timing when the energization to the main primary coil is interrupted, and the sub primary coil is controlled by controlling the sub switch means. Ignition control means for performing energization control to,
With
The ignition control means compares the preset sub primary current target value with the sub primary current detection value detected by the sub primary current detection means so that the sub primary current becomes the sub primary current target value. And an internal combustion engine ignition device characterized by controlling energization / interruption to the sub-primary coil.
前記点火制御手段は、前記副スイッチ手段をPWM制御することによって副一次コイルに与える電力を調整し、副一次コイルに流れる副一次電流を増減させるようにしたことを特徴とする請求項1に記載の内燃機関用点火装置。   The said ignition control means adjusts the electric power given to a sub primary coil by carrying out PWM control of the said sub switch means, and was made to increase / decrease the sub primary current which flows into a sub primary coil. Ignition device for internal combustion engine.
JP2018026646A 2018-02-19 2018-02-19 Ignition device for internal combustion engine Pending JP2019143507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018026646A JP2019143507A (en) 2018-02-19 2018-02-19 Ignition device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018026646A JP2019143507A (en) 2018-02-19 2018-02-19 Ignition device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2019143507A true JP2019143507A (en) 2019-08-29

Family

ID=67771035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018026646A Pending JP2019143507A (en) 2018-02-19 2018-02-19 Ignition device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2019143507A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021064851A1 (en) * 2019-10-01 2021-04-08

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021064851A1 (en) * 2019-10-01 2021-04-08
WO2021064851A1 (en) * 2019-10-01 2021-04-08 日立オートモティブシステムズ阪神株式会社 Internal combustion engine ignition device

Similar Documents

Publication Publication Date Title
JP6375452B2 (en) Ignition device for internal combustion engine and ignition control method for internal combustion engine ignition device
JP6570737B2 (en) Ignition device for internal combustion engine
WO2016157541A1 (en) Ignition device for internal combustion engine
JP6919346B2 (en) Ignition system
JP2018084209A (en) Ignition device for internal combustion engine
JP2018534471A (en) Method and apparatus for controlling an ignition system
WO2019198119A1 (en) Ignition device for internal combustion engine
JP6640372B2 (en) Ignition device for internal combustion engine
JP2016125466A (en) Ignition device
KR20200020920A (en) Ignition
JP2019143507A (en) Ignition device for internal combustion engine
JP2019044663A (en) Ignition device
WO2018229883A1 (en) Internal combustion engine ignition device
JP6537662B1 (en) Igniter
JP6398601B2 (en) Ignition device for internal combustion engine
WO2020121375A1 (en) Ignition device for internal combustion engine
JP2019044661A (en) Ignition device
JP6381008B2 (en) Ignition device for internal combustion engine
JP6685444B2 (en) Ignition device for internal combustion engine
WO2022064645A1 (en) Ignition device for internal combustion engine
WO2020065855A1 (en) Ignition device for internal combustion engine
WO2019211885A1 (en) Ignition device for internal combustion engines
WO2021064851A1 (en) Internal combustion engine ignition device
JP6375177B2 (en) Ignition coil for internal combustion engine
WO2019225018A1 (en) Ignition device for internal combustion engine