WO2016157541A1 - Ignition device for internal combustion engine - Google Patents

Ignition device for internal combustion engine Download PDF

Info

Publication number
WO2016157541A1
WO2016157541A1 PCT/JP2015/060681 JP2015060681W WO2016157541A1 WO 2016157541 A1 WO2016157541 A1 WO 2016157541A1 JP 2015060681 W JP2015060681 W JP 2015060681W WO 2016157541 A1 WO2016157541 A1 WO 2016157541A1
Authority
WO
WIPO (PCT)
Prior art keywords
ignition
coil
sub
primary coil
internal combustion
Prior art date
Application number
PCT/JP2015/060681
Other languages
French (fr)
Japanese (ja)
Inventor
義文 内勢
Original Assignee
日立オートモティブシステムズ阪神株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57005427&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016157541(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日立オートモティブシステムズ阪神株式会社 filed Critical 日立オートモティブシステムズ阪神株式会社
Priority to PCT/JP2015/060681 priority Critical patent/WO2016157541A1/en
Priority to JP2017509138A priority patent/JP6411636B2/en
Publication of WO2016157541A1 publication Critical patent/WO2016157541A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations

Definitions

  • the present invention relates to an ignition device for an internal combustion engine mounted on a motor vehicle, and obtains good discharge characteristics by increasing the discharge energy generated on the secondary side of the ignition coil in a superimposed manner.
  • Direct-injection engines and high-EGR engines have been adopted as internal combustion engines mounted on vehicles to improve fuel efficiency, but these engines are not very ignitable, so a high-energy ignition system is required.
  • a phase discharge ignition device has been proposed in which the output of another ignition coil is additionally superimposed on the secondary output of the ignition coil generated by the classic current interruption principle (for example, Patent Document 1). See).
  • Patent Document 1 by interrupting the primary current of the main ignition coil, the high voltage of several kV generated on the secondary side thereof causes dielectric breakdown in the discharge gap of the spark plug, thereby igniting.
  • the primary current of the auxiliary ignition coil connected in parallel with the main ignition coil is cut off, and a DC voltage of several kV generated on the secondary side is additionally superimposed.
  • the ignition phase of the two ignition coils is increased in order to lengthen the discharge time of the spark plug.
  • the time for accumulating sufficient energy in the two ignition coils also increases, so the combustion rate cannot be increased.
  • the ignition device described in Patent Document 1 can stabilize engine output by maintaining stable combustion, but cannot increase the rotational speed so that high output can be obtained at a necessary timing.
  • a method of increasing the energy accumulated in the coil without increasing the energization time to the primary coil a method of increasing the physique of the coil and increasing the number of turns of the coil, and a method of using a plurality of ignition coils are conceivable.
  • the present invention has an object to provide an ignition device for an internal combustion engine that can maintain stable combustion without increasing the energization time of the primary coil, and that can suppress the increase in size and cost of the ignition coil. To do.
  • the invention according to claim 1 is directed to a main primary coil in which a forward energizing magnetic flux is generated by energization and a reverse interrupting magnetic flux is generated by interrupting the current, and the interrupting magnetic flux is energized by energization.
  • An ignition coil having a secondary primary coil that generates additional magnetic flux in the same direction, and a secondary coil that is connected to an ignition plug at one end and generates magnetic discharge energy by the magnetic flux generated in the primary primary coil and the secondary primary coil.
  • Main switch means for switching energization / cutoff to the primary primary coil of the ignition coil, sub switch means for switching energization / cutoff to the sub primary coil of the ignition coil, and switching between the main switch means and the sub switch means
  • Ignition control means for generating discharge sparks in the spark plug at a predetermined timing of the combustion cycle by controlling the operation, and the ignition control
  • the stage is characterized in that the discharge energy generated in the secondary coil is increased in a superimposed manner by energizing the sub-primary coil for a predetermined superimposition time after the shut-off timing when the energization to the main primary coil is interrupted.
  • a single DC power source is shared for power supply to the main ignition coil and the sub ignition coil of the ignition coil. It is characterized by that.
  • a voltage generated in the sub-primary coil due to a change in magnetic flux when the energization to the main primary coil is interrupted is a power supply voltage.
  • the number of turns of the sub primary coil is set so as to be smaller.
  • the invention according to claim 5 is the internal combustion engine ignition device according to any one of claims 1 to 4, wherein the ignition control means is configured to control the auxiliary ignition coil based on a driving state of the vehicle. It is characterized in that the energization start timing is determined.
  • the invention according to claim 6 is the internal combustion engine ignition device according to any one of claims 1 to 5, wherein the ignition control means is configured to control the auxiliary ignition coil based on a driving state of the vehicle. The energization time is determined.
  • the invention according to claim 7 is the internal combustion engine ignition device according to any one of claims 1 to 6, wherein the sub-switch means is capable of high-speed switching capable of sufficiently following an input short pulse.
  • the ignition control means performs PWM control of the sub switch means with a pulse signal having a duty ratio determined based on a driving situation of the vehicle.
  • the invention according to claim 8 is the internal combustion engine ignition device according to claim 5 or claim 6, further comprising secondary current detection means for detecting a secondary current flowing on the secondary side of the ignition coil.
  • the ignition control means determines the driving situation of the vehicle based on the secondary current detected by the secondary current detection means.
  • the invention according to claim 9 is the ignition device for an internal combustion engine according to any one of claims 1 to 8, wherein a plurality of ignition coils, main switch means and sub-switches corresponding to each ignition coil are provided. A switch means is provided, and secondary coils in all ignition coils are connected in parallel to the ignition plug, and energization / cutoff to the primary primary coil and sub primary coil in all ignition coils is controlled by the ignition control means It was made to do.
  • the invention according to claim 10 is the ignition device for an internal combustion engine according to any one of claims 1 to 8, wherein a plurality of ignition coils, main switch means and sub-switches corresponding to each ignition coil are provided.
  • Each switch means is provided, and secondary coils in all ignition coils are connected in series with the spark plugs, and energization / cutoff to the primary primary coil and sub primary coil in all ignition coils is controlled by the ignition control means. It was made to do.
  • the invention according to claim 11 is the internal combustion engine ignition device according to any one of claims 1 to 10, wherein the ignition control means controls the operation of the internal combustion engine in an integrated manner. It is incorporated in the engine drive control device and is characterized in that the internal combustion engine drive control device performs ignition control of all cylinders.
  • the invention according to claim 12 is the ignition device for an internal combustion engine according to any one of claims 1 to 10, wherein the ignition control means is provided for each cylinder, and operates the internal combustion engine.
  • the ignition control of the corresponding cylinder is performed based on an ignition instruction from an internal combustion engine drive control device that performs overall control.
  • the invention according to claim 13 is the ignition device for an internal combustion engine according to any one of claims 1 to 12, wherein at least the ignition coil and a main coil provided corresponding to the ignition coil are provided.
  • the switch means and the sub switch means are housed in one case and unitized.
  • the discharge energy generated in the secondary coil is superimposed by energizing the sub-primary coil for a predetermined superimposition time after the shut-off timing when the energization to the main primary coil is interrupted. Therefore, stable combustion can be maintained.
  • the ignition coil is not significantly increased in size and the cost can be suppressed.
  • FIG. 1 is a schematic configuration diagram showing a first embodiment of an internal combustion engine ignition device according to the present invention.
  • FIG. 2 is an explanatory diagram showing a change in magnetic flux on the primary side in the ignition coil of the ignition device for an internal combustion engine according to the present invention.
  • FIG. 3 is a discharge waveform diagram in the internal combustion engine ignition device of the first embodiment.
  • FIG. 4 is a schematic configuration diagram showing a second embodiment of the internal combustion engine ignition device according to the present invention.
  • FIG. 5 is a discharge waveform diagram when the sub IGBT is operated by PWM control in the internal combustion engine ignition device of the first embodiment.
  • FIG. 6 is a schematic configuration diagram showing an ignition coil unit used in the third embodiment of the internal combustion engine ignition device according to the present invention.
  • FIG. 7 is a discharge waveform diagram in the internal combustion engine ignition device of the third embodiment.
  • FIG. 8 is a schematic configuration diagram showing an ignition coil unit used in the fourth embodiment of the ignition device for an internal combustion engine according to the present invention.
  • FIG. 9 is a discharge waveform diagram in the internal combustion engine ignition device of the fourth embodiment.
  • FIG. 10 is a schematic configuration diagram showing an ignition coil unit used in the fifth embodiment of the internal combustion engine ignition device according to the present invention.
  • FIG. 1 shows an internal combustion engine ignition device 1 according to a first embodiment of the present invention.
  • An ignition coil unit 10 that generates a discharge spark in one ignition plug 2 provided for each cylinder of the internal combustion engine, And ignition control means 3a for controlling the operation of the ignition coil unit 10.
  • the ignition control means 3a shown in the present embodiment is included in the engine control unit 3 that is an internal combustion engine control device that comprehensively controls the internal combustion engine of the automobile, and an ignition signal from the engine control unit 3 (later As will be described in detail, the operation of the ignition coil unit 10 is appropriately controlled.
  • the ignition coil unit 10 is, for example, a unit in which an ignition coil 11, a main IGBT (Insulated Gate Bipolar Transistor) 12a, and a sub-IGBT 12b are housed in a case 13 having a required shape.
  • a high voltage terminal 131 and a connector 132 are provided at appropriate positions of the case 13, and the ignition plug 2 is connected via the high voltage terminal 131 and also connected to the engine control unit 3 via the connector 132.
  • the ignition coil 11 causes a magnetic flux generated in the main primary coil 111a and the sub primary coil 111b to act on the secondary coil 112 by energization / cutoff control from the engine control unit 3, and for example, the main primary so as to surround the center core 113.
  • the coil 111a and the sub-primary coil 111b are disposed, and the secondary coil 112 is disposed outside thereof.
  • One ends of the main primary coil 111a and the sub primary coil 111b are connected to a DC power supply 4 such as a vehicle battery, and a common power supply voltage VB + is applied.
  • the other end of main primary coil 111a is connected to ground point GND through main IGBT 12a.
  • the main IGBT 12a is a semiconductor element capable of high-power high-speed switching, and functions as main switch means for switching energization / cut-off to the main primary coil 111a based on the main primary coil ignition signal Sa from the ignition control means 13. To do.
  • the other end of the sub primary coil 111b is connected to the ground point GND through the sub IGBT 12b.
  • the sub-IGBT 12b is a semiconductor element capable of high-power high-speed switching, and functions as sub-switch means for switching energization / cut-off to the sub-primary coil 111b based on the sub-primary coil superimposed signal Sb from the ignition control means 13.
  • the main primary coil 111a and the sub primary coil 111b are wound around a bobbin inserted into the outer periphery of the center core 113, and are wound so that the direction of the magnetic flux generated when the DC power supply 4 is energized is reversed. Make the turning direction or feeding position different. For example, as shown in FIG.
  • the number of turns of the sub primary coil 111b is set so that the voltage generated in the sub primary coil 111b due to the magnetic flux change when the energization to the main primary coil 111a is cut off becomes smaller than the power supply voltage (for example, + 12V). It is necessary to keep. For example, when the voltage generated in the secondary primary coil 111b when the energization to the primary primary coil 111a is cut off is larger than the voltage of the DC power supply 4, the superimposed magnetic flux is generated even if the secondary IGBT 12b is turned on. This is because the superimposed current I1b cannot flow.
  • the power supply voltage for example, + 12V
  • the counter electromotive force acts on the main primary coil 111a, so that a current in the direction opposite to the normal primary current is caused to flow.
  • a reverse voltage is applied between the emitter and the collector of the main IGBT 12a, and there is a risk that the main IGBT 12a may break down or the deterioration of the main IGBT 12a may be accelerated.
  • a bypass line 14 is provided in parallel with the main IGBT 12a, and a rectifier 15 (for example, a cathode is connected to the collector side of the main IGBT 12a in the forward direction from the ground point side of the bypass line 14 toward the ignition coil 11 side.
  • a diode having an anode connected to the emitter side of the IGBT 12a was provided.
  • the signal level of the main primary coil ignition signal Sa is changed from L to H at an appropriate timing of the discharge cycle, the main IGBT 12a is turned on, and the primary current I1a starts to flow.
  • the signal level of the main primary coil ignition signal Sa is changed from H to L, the main IGBT 12a is turned off, the primary current I1a is cut off, and the secondary coil 112 side is turned on.
  • a current I2 is supplied.
  • the ignition control means 31 performs a high current type superimposed discharge control. After starting the primary current I1a in the same manner as the normal discharge control described above, the signal level of the main primary coil ignition signal Sa is changed from H to L at the timing when the primary current energization time Ta has passed, and the main IGBT 12a is turned off.
  • the signal level of the sub primary coil superimposed signal Sb is changed from L to H, the sub IGBT 12b is turned on, and the primary current I1b is supplied.
  • a superimposed magnetic flux generated by energizing the sub primary coil 111b is added at a timing immediately after the start of discharge at which the interrupting magnetic flux generated by interrupting the energization of the main primary coil 111a is maximized, and the initial secondary current I2 Becomes a high current.
  • the signal level of the sub primary coil superimposed signal Sb is changed from H to L at the timing when the superposed current energizing time Tb determined taking into account the time necessary for discharging the spark plug 2 has elapsed, and the sub IGBT 12b is turned off.
  • the superimposed current I1b is cut off.
  • the ignition control means 31 performs long discharge type superimposed discharge control.
  • the primary current energization time Ta elapses, the main IGBT 12a is turned off, the primary current I1a is cut off, and the secondary current I2 is supplied to the secondary coil 112 side.
  • the signal level of the sub primary coil superimposed signal Sb remains L. Thereafter, the signal level of the sub primary coil superposition signal Sb is changed from L to H at the timing when the superposition start delay time ⁇ t determined in consideration of the time during which the secondary current I2 is maintained at a predetermined value or more.
  • the secondary IGBT 12b is turned on, and the primary current I1b is supplied.
  • the time until the secondary current I2 becomes higher again and the secondary current I2 becomes lower than a predetermined value (energy required for discharging the spark plug 2 is lost) can be extended.
  • the discharge period can be kept long.
  • the signal level of the sub primary coil superimposed signal Sb is changed from H to L at the timing when the superposed current energizing time Tb determined taking into account the time necessary for discharging the spark plug 2 has elapsed, and the sub IGBT 12b is turned off.
  • the superimposed current I1b is cut off.
  • the engine control unit 3 having the function of the ignition control means 31 performs the energization start timing and energization time of the sub-primary coil 111b based on the driving situation of the vehicle. Is generated, and the secondary primary coil superimposed signal Sb is generated accordingly to turn on / off the secondary IGBT 12b, thereby realizing the ignition control capable of obtaining the discharge characteristics suitable for the driving situation at that time.
  • the information used for the determination of the driving situation any information may be used as long as the information is related to the combustion of the cylinder, such as the engine speed, the secondary current value, the temperature of the ignition coil 11, and the like.
  • how to determine the energization start timing and energization time of the sub-primary coil 111b from the determination result of the operating situation belongs to know-how according to the engine characteristics, etc.
  • the energization start timing and energization time of the sub primary coil 111b are not uniquely determined.
  • the ignition control means 31 since the ignition control means 31 is provided in the engine control unit 3, it is necessary for determining energization / cutoff control of the main primary coil 111a and the sub primary coil 111b. While it is easy to grasp the driving situation, the primary primary coil ignition signal Sa and the secondary primary coil superimposed signal Sb must be supplied to the ignition coil units 10 of all the cylinders.
  • the internal combustion engine ignition device 1 ′ is provided with ignition control means 5 corresponding to the ignition coil unit 10 ′ of each cylinder, separately from the engine control unit 3, and receives an ignition signal S from the engine control unit 3.
  • the control means 5 controls the operation of the ignition coil unit 10 '.
  • the ignition control means that has received the ignition signal S 5 generates the primary primary coil ignition signal Sa and the secondary primary coil superimposed signal Sb, and the on / off control of the primary IGBT 12a and the secondary IGBT 12b is performed to realize appropriate superimposed discharge control.
  • the ignition control means 5 grasp the driving situation, there is an engine speed based on the cycle of the ignition signal S transmitted from the engine control unit 3, and therefore, the energization start timing and energization of the sub primary coil 111b.
  • the time may be controlled in association with only the engine speed, but a state unique to each cylinder may be acquired to appropriately control the energization start timing and energization time of the sub primary coil 111b.
  • the ignition coil unit 10 ′ is provided with secondary current detection means 16 for detecting the secondary current I 2, and the ignition control means 5 starts the energization start timing of the sub primary coil 111 b based on this secondary current detection signal.
  • the energization time may be determined.
  • a temperature sensor 17 is provided at an appropriate position in the case 13 of the ignition coil unit 10 ', and the ignition control means 5 is connected to the sub primary coil 111b based on the internal temperature due to heat generated from the ignition coil 11, the main IGBT 12a, and the sub IGBT 12b.
  • the energization start timing and energization time may be determined.
  • the energization start timing and energization time of the sub primary coil 111 b can be arbitrarily controlled by the sub primary coil superimposed signal Sb, the sub primary coil Since the voltage applied to 111b is determined by the power supply voltage of the DC power supply 4, there is a possibility that unnecessary discharge energy is superimposed by the sub primary coil 111b, resulting in wasteful power consumption. For example, if a power supply to the sub-primary coil 111b is separately provided and the supply voltage to the sub-primary coil 111b can be adjusted as necessary, it is necessary and sufficient discharge energy while suppressing excessive power consumption. Can be superimposed.
  • the sub-IGBT 12b can be PWM-controlled, and the power supply voltage (for example, , + 12V) is reduced to a desired real voltage, and the superimposed current I1b is arbitrarily adjusted to suppress the discharge energy applied to the secondary coil 112 by the superimposed magnetic flux.
  • FIG. 5 shows a waveform when the secondary IGBT 12b is PWM-controlled. When the superposed discharge is maximized, +12 V is supplied from the DC power supply 4 to the sub primary coil 111b by not performing the PWM control with the duty ratio of the sub primary coil superimposed signal Sb 'being 100%.
  • the sub IGBT 12b when necessary and sufficient discharge energy can be superimposed by applying a voltage of about +10 V to the sub primary coil 111b, the sub IGBT 12b may be PWM-controlled with a duty ratio of about 83%. Similarly, when necessary and sufficient discharge energy can be superimposed by applying a voltage of about +8 V to the sub primary coil 111b, the sub IGBT 12b may be PWM controlled with a duty ratio of about 67%. If necessary and sufficient discharge energy can be superimposed by applying a voltage of about +6 V, the sub-IGBT 12b may be PWM controlled with a duty ratio of about 50%.
  • a necessary and sufficient applied voltage may be calculated based on the driving situation determined from various vehicle information, and the duty ratio of the sub-primary coil superimposed signal Sb ′ may be determined.
  • the engine control unit 3 and the ignition control means 5 of the internal combustion engine ignition devices 1, 1 ′ of the first and second embodiments generate the sub-primary coil superimposed signal Sb ′ and the ignition coil units 10, 10.
  • the secondary IGBT 12b is subjected to PWM control by transmitting to ', the secondary primary coil superimposed signal Sb' including a high frequency pulse becomes a noise source, or conversely, PWM control by the secondary primary coil superimposed signal Sb 'due to noise mixing. May not work as intended.
  • FIG. 6 shows a schematic configuration of an ignition coil unit 10 ′′ used for the internal combustion engine ignition device according to the third embodiment, and includes a PWM signal generation circuit 18 in the case 13. That is, the ignition coil unit.
  • the PWM signal generation circuit 18 is added to the igniter circuit within 10 ′′.
  • an information signal for instructing a duty ratio of PWM control Is also necessary.
  • the engine control unit 3 and the ignition control means 5 provide a PWM instruction signal Sb2 for instructing the duty ratio of PWM control in addition to the sub primary coil superimposed signal Sb1 for specifying the energization start timing and energization time of the sub primary coil 111b.
  • the PWM instruction signal Sb2 may be one that transmits numerical information of the duty ratio.
  • the level is divided according to the signal potential of the transmission signal, and this level is the duty of the PWM control. Information to show the ratio.
  • the function of determining the level by filtering the PWM instruction signal Sb2 with a predetermined threshold value can be easily configured with discrete parts having high heat resistance and high noise resistance.
  • FIG. 7 is a waveform diagram when ignition control is performed by the ignition coil unit 10 ′′. If the signal potential of the PWM instruction signal Sb2 reaches the maximum value, it is determined as level 4 and the PWM signal Since the duty ratio is set to 100% and PWM control is not performed, +12 V is supplied from the DC power supply 4 to the sub primary coil 111b, and if the signal potential of the PWM instruction signal Sb2 is determined to be level 3 lower than level 4.
  • the PWM signal is generated with a duty ratio of about 83%, and the sub-IGBT 12b is PWM-controlled, and if the signal potential of the PWM instruction signal Sb2 is determined to be level 2 lower than level 3, the PWM is driven with a duty ratio of about 67%.
  • a signal is generated, and the sub-IGBT 12b is PWM-controlled. If the signal potential of the PWM instruction signal Sb2 is determined to be level 1 lower than level 2, A PWM signal is generated at a duty ratio of 50%, and the secondary IGBT 12b is PWM-controlled, and if the signal potential of the PWM instruction signal Sb2 is determined to be level 0 equal to the ground potential, the duty ratio of the PWM signal is set to 0%.
  • the PWM control of the secondary IGBT 12b is not performed.
  • the above-described level division of the PWM instruction signal Sb2 is an example, and it may be divided into a smaller number of levels and correspond to the duty ratio of the PWM signal, or may be divided into a larger number of levels and correspond to the duty ratio of the PWM signal. Also good.
  • one ignition coil 11 including the main primary coil 111a and the sub primary coil 111b is provided, and the energization timing and energization to the sub primary coil 111b are provided.
  • each ignition coil was separately made up of a high current type coil and a long discharge type coil, so when using a high current type coil, the discharge time is shortened, and when using a long discharge type coil Has a characteristic limitation that the current cannot be increased. In the past, when it was desired to change the discharge performance, it was necessary to replace the ignition coil.
  • FIG. 8 shows a schematic configuration of an ignition coil unit 20A used in the internal combustion engine ignition device according to the fourth embodiment. By using a plurality of ignition coils, a higher current and a longer discharge are shown. It can be expected.
  • the first ignition coil unit 21 includes a first ignition coil 211, a first main IGBT 212a, a first sub-IGBT 212b, a bypass line 214 provided in parallel with the first main IGBT 212a, and a first ignition coil from the ground point side of the bypass line 214.
  • Rectifying means 215 for example, a diode having a cathode connected to the collector side of the first main IGBT 212a and an anode connected to the emitter side of the first main IGBT 212a
  • the first main primary coil ignition signal Sa-1 and the first sub primary coil superimposed signal Sb-1 are supplied via the connector 232.
  • the second ignition coil unit 22 includes a second ignition coil 221, a second main IGBT 222a, a second sub-IGBT 222b, a bypass line 224 provided in parallel with the second main IGBT 222a, and a second from the ground point side of the bypass line 224.
  • Rectifying means 225 for example, a diode having a cathode connected to the collector side of the second main IGBT 222a and an anode connected to the emitter side of the second main IGBT 222a
  • the second main primary coil ignition signal Sa-2 and the second sub primary coil superimposed signal Sb-2 are supplied via the second connector 233.
  • the 1st ignition coil 211 and the 2nd ignition coil 221 are the structures similar to the ignition coil 11 mentioned above.
  • the magnetic flux generated in the first main primary coil 2111a and the first sub primary coil 2111b inserted into the outer periphery of the center core 2113 is applied to the first secondary coil 2112, and the first main coil 2111b inserted into the outer periphery of the center core 2213 is inserted.
  • Magnetic flux generated in the two main primary coils 2211a and the second sub primary coil 2211b is applied to the second secondary coil 2212.
  • the non-grounded side of the first secondary coil 2112 of the first ignition coil 211 and the non-grounded side of the second secondary coil 2212 of the second ignition coil 221 are connected in parallel to the spark plug 2.
  • the engine control unit 3 or the ignition control means 5 performs the following medium-term high current type superimposed discharge control.
  • the first main IGBT 212a and the second main IGBT 222a are turned on almost simultaneously by the first main primary coil ignition signal Sa-1 and the second main primary coil ignition signal Sa-2.
  • the level is changed from H to L, and the first main IGBT 212a is turned off. Thereby, the interruption
  • the signal level of the second main primary coil ignition signal Sa-2 is changed from H to L at the timing when the second coil primary current energization time Ta-2 set at the same time as the first coil primary current energization time Ta-1 has elapsed. To turn off the second main IGBT 222a.
  • blocking to the 2nd main primary coil 2211a acts on the 2nd secondary coil 2212, and the 2nd coil secondary current I2-2 flows. That is, when the first main primary coil 2111a and the second main primary coil 2211a are energized at the same time, the first coil secondary current I2-1 and the second ignition coil portion flowing to the first ignition coil portion 21 side are cut off. As the ignition coil unit secondary current I2, which is equal to the sum of the second coil secondary current I2-2 flowing on the 22 side, a large current flows in the initial discharge.
  • the first sub primary coil superposition signal Sb-1 At the timing when the first superposition start delay time ⁇ t-1 determined in consideration of the time during which the ignition coil unit secondary current I2 is maintained at a predetermined value or more, the first sub primary coil superposition signal Sb-1 , The first sub-IGBT 212b is turned on, and the first coil superimposed current I1b-1 is supplied. Thereby, the first coil secondary current I2-1 becomes high again. Further, the signal level of the second sub-primary coil superposition signal Sb-2 is changed from L to H at the timing when the second superposition start delay time ⁇ t-2 set at the same time as the first superposition start delay time ⁇ t-1 has elapsed. The second sub-IGBT 222b is turned on and the second coil superimposed current I1b-2 is supplied.
  • the 2nd coil secondary current I2-2 becomes high again. That is, when the first sub primary coil 2111b and the second sub primary coil 2211b are energized simultaneously, the first coil secondary current I2-1 flowing to the first ignition coil unit 21 side and the second ignition coil unit 22 side As the ignition coil unit secondary current I2, which is equal to the sum of the second coil secondary current I2-2 flowing through the large current, a large current flows again in the middle of the discharge.
  • the first coil superimposed current I1b-1 and the second coil superimposed current I1b-2 are passed while the interrupted magnetic flux generated by the current interruption to the first main primary coil 2111a and the second main primary coil 2211a is strong.
  • first superimposed current energization time Tb-1 second superimposed current energization time Tb-2) determined in consideration of the time necessary and sufficient for discharging the spark plug 2 has passed.
  • the first sub-IGBT 212b and the second sub-IGBT 222b are turned off at the same time by changing the signal levels of the first sub-primary coil superimposed signal Sb-1 and the second sub-primary coil superimposed signal Sb-2 from H to L at the same time.
  • the superimposed current I1b-1 and the second coil superimposed current I1b-2 are simultaneously cut off.
  • the engine control unit 3 or the ignition control means 5 performs the following high current + long discharge. Perform type of superimposed discharge control.
  • the first main IGBT 212a and the second main IGBT 222a are turned on almost simultaneously by the first main primary coil ignition signal Sa-1 and the second main primary coil ignition signal Sa-2.
  • the signal levels of the first main primary coil ignition signal Sa-1 and the second main primary coil ignition signal Sa-2 are changed from H to L at the same time, and the first main IGBT 212a and the second main IGBT 222a are simultaneously changed. Turn off.
  • blocking to the 1st main primary coil 2111a and the 2nd main primary coil 2211a acts on the 1st secondary coil 2112 and the 2nd secondary coil 2212, respectively, and the 1st coil secondary current I2-1 and second coil secondary current I2-2 flow. That is, when the first main primary coil 2111a and the second main primary coil 2211a are energized at the same time, the first coil secondary current I2-1 and the second ignition coil portion flowing to the first ignition coil portion 21 side are cut off. As the ignition coil unit secondary current I2, which is equal to the sum of the second coil secondary current I2-2 flowing on the 22 side, a large current flows in the initial discharge.
  • the ignition coil unit secondary current I2 becomes high again at the timing when the first superposition start delay time ⁇ t ⁇ 1 has elapsed since the energization of the first main primary coil 2111a and the second main primary coil 2211a was cut off.
  • the second superposition start delay time ⁇ t ⁇ 2 (the ignition coil unit secondary current I2 that has been increased by the first coil superposition current I1b-1 holds a predetermined value or more after the energization of the second main primary coil 2211a is cut off)
  • the signal level of the second sub-primary coil superimposed signal Sb-2 is changed from L to H at the timing when “ ⁇ t ⁇ 2> ⁇ t ⁇ 1” is satisfied.
  • the second auxiliary IGBT 222b is turned on, and the second coil superimposed current I1b-2 is supplied.
  • the ignition coil unit secondary current I2 becomes high again at the timing when the second superposition start delay time ⁇ t-2 has elapsed from the interruption of energization to the first main primary coil 2111a and the second main primary coil 2211a.
  • the signal level of the first sub primary coil superimposed signal Sb-1 is changed from H to L, the first sub IGBT 212b is turned off, and the first coil
  • the first coil secondary current I2-1 is interrupted, and then, at the timing when the second superimposed current energization time Tb-2 has elapsed, the second sub primary coil superimposed signal Sb -2 is changed from H to L, the second sub-IGBT 222b is turned off, the second coil superimposed current I1b-2 is cut off, the second coil secondary current I2-2 is cut off, and the ignition The coil unit secondary current I2 stops flowing.
  • the first coil superimposed current I1b-1 is caused to flow at the timing when the first superimposition start delay time ⁇ t-1 has elapsed since the energization of the first main primary coil 2111a and the second main primary coil 2211a is cut off, and the second superposition start delay
  • the second coil superimposed current I1b-2 is caused to flow at the timing when the time ⁇ t-2 has passed and increasing the current value of the ignition coil unit secondary current I2 by a time difference, a certain degree from the initial period to the middle period immediately after the start of discharge.
  • the discharge energy of the magnitude of can be maintained.
  • the discharge time can be further increased, but the first main primary coil 2111a and the second If the interruption magnetic flux generated by the interruption of energization to the main primary coil 2211a disappears, sufficient discharge energy cannot be maintained only by the first coil superimposed current I1b-1 and the second coil superimposed current I1b-2, and the discharge time There is also a limit to how long it can be.
  • the engine control unit 3 or The ignition control means 5 performs the following high current + long discharge type superimposed discharge control.
  • the first main IGBT 212a is turned on, the first coil primary current I1a-1 starts to flow, and then the second ignition coil operation delay time ⁇ T has passed.
  • the second primary IGBT 222a is turned on by the main primary coil ignition signal Sa-2, and the first coil primary current I1a-1 starts to flow.
  • the signal level of the first main primary coil ignition signal Sa-1 is changed from H to L at the timing when the first coil primary current energization time Ta-1 has passed after the first coil primary current I1a-1 starts to flow,
  • the first main IGBT 212a is turned off. Thereby, the interruption
  • the first sub primary coil superposition signal Sb-1 The first sub-IGBT 212b is turned on, the first coil superimposed current I1b-1 is supplied, and the first coil secondary current I2-1 is increased.
  • the ignition coil unit secondary current I2 also increases again at the timing when the first superposition start delay time ⁇ t ⁇ 1 has elapsed since the energization of the first main primary coil 2111a was cut off.
  • the signal level of the second main primary coil ignition signal Sa-2 is changed from H to L at the timing when the second coil primary current energization time Ta-2 has elapsed. Then, the second main IGBT 222a is turned off. Thereby, the interruption
  • the ignition coil unit secondary current I2 becomes high again.
  • the signal level of the first sub primary coil superimposed signal Sb-1 is changed from H to L, the first sub IGBT 212b is turned off, and the first coil
  • the first coil secondary current I2-1 is interrupted, and then, at the timing when the second superimposed current energization time Tb-2 has elapsed, the second sub primary coil superimposed signal Sb -2 is changed from H to L, the second sub-IGBT 222b is turned off, the second coil superimposed current I1b-2 is cut off, the second coil secondary current I2-2 is cut off, and the ignition The coil unit secondary current I2 stops flowing.
  • FIG. 10 shows a schematic configuration of an ignition coil unit 20B used in the internal combustion engine ignition device according to the fifth embodiment.
  • the first secondary coil 2112 and the second ignition coil of the first ignition coil unit 21 are shown.
  • the second secondary coil 2212 of the unit 22 is connected in series.
  • the ignition coil unit 20B includes a first ignition coil portion 21 and a second ignition coil portion 22 housed in a case 23, and is connected to the engine control unit 3 or the ignition control means 5 via a common connector 234.
  • the main primary coil ignition signal Sa-1 the first sub primary coil superimposed signal Sb-1, the second main primary coil ignition signal Sa-2, and the second sub primary coil superimposed signal Sb-2
  • the first main primary coil 2111a is received.
  • the first sub primary coil 2111b, the second main primary coil 2211a, and the second sub primary coil 2211b are controlled to be energized and cut off.
  • the first secondary coil 2112 of the first ignition coil 211 and the second secondary coil 2212 of the second ignition coil 221 are connected in series.
  • the discharge energy generated by the first ignition coil 221 is consumed by the resistance of the second ignition coil 221, which may impair the ignitability of the spark plug 2. Therefore, the rectifying element 25 (series connection) is connected to the ground line 24 from the series connection point where the first secondary coil 2112 of the first ignition coil 211 and the second secondary coil 2212 of the second ignition coil 221 are connected to the ground point.
  • An anode is connected to the series connection point side and a cathode is connected to the ground point side so that the forward direction is from the point toward the ground point.
  • Ignition device 10 for internal combustion engines Ignition coil unit 11 Ignition coil 111a Main primary coil 111b Sub primary coil 112 Secondary coil 113 Center core 12a Main IGBT 12b Deputy IGBT 13 Case 2 Spark plug 3 Engine control unit 31 Ignition control means 4 DC power supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

Provided is an ignition device for an internal combustion engine with which it is possible to maintain stable combustion without increasing the time of current conduction to a primary coil. An ignition coil 113 is configured from a main primary coil 111a for generating an interrupting magnetic flux by interrupting the current after current conduction has been initiated at a prescribed timing in a combustion cycle, a sub primary coil 111b for generating an additional magnetic flux in the same direction as the interrupting magnetic flux by current conduction at any desired timing from the time of the interrupting magnetic flux generation onward, and a secondary coil 112 in which electrical discharge energy is generated using the interrupting magnetic flux and the additional magnetic flux via a center core 113, a suitable electrical discharge pattern being achieved in the internal combustion engine and stable combustion in the internal combustion engine being maintained by regulating the timing at which the additional magnetic flux is generated and the time duration for which the additional magnetic flux is continued.

Description

内燃機関用点火装置Ignition device for internal combustion engine
 本発明は、自動車両に搭載される内燃機関用の点火装置に関し、点火コイルの二次側に発生させる放電エネルギーを重畳的に増大させて、良好な放電特性を得るものである。 The present invention relates to an ignition device for an internal combustion engine mounted on a motor vehicle, and obtains good discharge characteristics by increasing the discharge energy generated on the secondary side of the ignition coil in a superimposed manner.
 車両搭載の内燃機関として、燃費改善のために直噴エンジンや高EGRエンジンが採用されているが、これらのエンジンは着火性があまり良くないため、点火装置には高エネルギー型のものが必要になる。そこで、古典的な電流遮断原理により発生する点火コイル二次側出力に、さらにもう一つの点火コイルの出力を加算的に重畳する位相放電型の点火装置が提案されている(例えば、特許文献1を参照)。
 この特許文献1に記載の点火装置によれば、主点火コイルの一次電流を遮断することでその二次側に発生する数kVの高電圧により、点火プラグの放電間隙に絶縁破壊を起こして点火コイルの二次側から放電電流を流し始めた後に、主点火コイルと並列に接続された副点火コイルの一次電流を遮断し、その二次側に発生する数kVの直流電圧を加算的に重畳することで、比較的長い時間に亙って点火プラグに大きな放電エネルギーを与えることができるため、燃料への着火性が向上し、延いては燃費も向上する。
Direct-injection engines and high-EGR engines have been adopted as internal combustion engines mounted on vehicles to improve fuel efficiency, but these engines are not very ignitable, so a high-energy ignition system is required. Become. In view of this, a phase discharge ignition device has been proposed in which the output of another ignition coil is additionally superimposed on the secondary output of the ignition coil generated by the classic current interruption principle (for example, Patent Document 1). See).
According to the ignition device described in Patent Document 1, by interrupting the primary current of the main ignition coil, the high voltage of several kV generated on the secondary side thereof causes dielectric breakdown in the discharge gap of the spark plug, thereby igniting. After starting the discharge current from the secondary side of the coil, the primary current of the auxiliary ignition coil connected in parallel with the main ignition coil is cut off, and a DC voltage of several kV generated on the secondary side is additionally superimposed. By doing so, since a large discharge energy can be given to the spark plug for a relatively long time, the ignitability to the fuel is improved, and the fuel consumption is also improved.
特開2012−140924号公報JP 2012-140924 A
 しかしながら、特許文献1に記載された点火装置のような方式では、点火プラグの放電時間を長くするために、2つの点火コイルの点火位相を大きくするものであることから、点火プラグの放電時間が長いことに加えて、2つの点火コイルに十分なエネルギーを蓄積する時間も長くなるため、燃焼速度を速くすることはできない。このため、特許文献1に記載された点火装置では、安定した燃焼を維持してエンジン出力の安定化を図れる反面、必要なタイミングで高出力が得られるように回転数を上げることはできない。
 また、一次コイルへの通電時間を長くすることなく、コイルに蓄積するエネルギーを多くする方法として、コイルの体格を大きくしてコイルの巻数を増やす方法、複数の点火コイルを用いる方法が考えられる。しかしながら、大型の点火コイルを用いたり、複数の点火コイルを用いたりすれば、搭載スペースの確保が問題となる上に、相当のコストアップとなってしまう。
 また、コイルの外部または内部で電源電圧を昇圧して一次コイル低圧側から電流を流したり、コイルの二次側に直接的に高電圧を印加したりすることで、一次コイルへの通電時間を長くすることなく、二次側の放電エネルギーを高める方法も考えられる。しかしながら、これらの方法では、昇圧回路等が必要となるために、昇圧回路等の搭載スペースを確保しなければならない上に、相当のコストアップとなってしまう。
 そこで、本発明は、一次コイルへの通電時間を長くすることなく安定した燃焼を維持することができ、しかも、点火コイルの大型化およびコスト増を抑制できる内燃機関用点火装置の提供を目的とする。
However, in the system such as the ignition device described in Patent Document 1, the ignition phase of the two ignition coils is increased in order to lengthen the discharge time of the spark plug. In addition to being long, the time for accumulating sufficient energy in the two ignition coils also increases, so the combustion rate cannot be increased. For this reason, the ignition device described in Patent Document 1 can stabilize engine output by maintaining stable combustion, but cannot increase the rotational speed so that high output can be obtained at a necessary timing.
Further, as a method of increasing the energy accumulated in the coil without increasing the energization time to the primary coil, a method of increasing the physique of the coil and increasing the number of turns of the coil, and a method of using a plurality of ignition coils are conceivable. However, if a large ignition coil is used or a plurality of ignition coils are used, securing the mounting space becomes a problem, and the cost increases considerably.
In addition, by increasing the power supply voltage outside or inside the coil and supplying current from the primary coil low voltage side, or by applying a high voltage directly to the secondary side of the coil, the energization time to the primary coil can be reduced. A method of increasing the discharge energy on the secondary side without increasing the length is also conceivable. However, these methods require a booster circuit and the like, so that a space for mounting the booster circuit and the like must be secured, and the cost is considerably increased.
Therefore, the present invention has an object to provide an ignition device for an internal combustion engine that can maintain stable combustion without increasing the energization time of the primary coil, and that can suppress the increase in size and cost of the ignition coil. To do.
 上記課題を解決するために、請求項1に係る発明は、通電により正方向の通電磁束が生じ、電流を遮断することにより逆方向の遮断磁束が生じる主一次コイルと、通電により前記遮断磁束と同方向の追加磁束が生じる副一次コイルと、一端側が点火プラグと接続され、前記主一次コイルと副一次コイルに生じた磁束が作用して放電エネルギーが発生する二次コイルと、を有する点火コイルと、前記点火コイルの主一次コイルへの通電・遮断を切り替える主スイッチ手段と、前記点火コイルの副一次コイルへの通電・遮断を切り替える副スイッチ手段と、前記主スイッチ手段および副スイッチ手段の切り替え動作を制御することで、燃焼サイクルの所定のタイミングで点火プラグに放電火花を発生させる点火制御手段と、を備え、前記点火制御手段は、主一次コイルへの通電を遮断した遮断タイミング以降に所定の重畳時間だけ副一次コイルに通電することで、二次コイルに発生する放電エネルギーを重畳的に増加させるようにしたことを特徴とする。
 また、請求項2に係る発明は、前記請求項1に記載の内燃機関用点火装置において、前記点火コイルの主点火コイルおよび副点火コイルへの給電には、単一の直流電源を共用するようにしたことを特徴とする。
 また、請求項3に係る発明は、前記請求項2に記載の内燃機関用点火装置において、前記主一次コイルへの通電を遮断したときの磁束変化によって副一次コイルに発生する電圧が電源電圧よりも小さくなるように、前記副一次コイルの巻数を設定するようにしたことを特徴とする。
また、請求項4に係る発明は、前記請求項1~請求項3の何れか1項に記載の内燃機関用点火装置において、前記主点火コイルと接地点との間に接続される主スイッチ手段と並列に接続したバイパス線路に、接地点側から点火コイル側に向かって順方向となる整流手段を設けたことを特徴とする。
 また、請求項5に係る発明は、前記請求項1~請求項4の何れか1項に記載の内燃機関用点火装置において、前記点火制御手段は、車両の運転状況に基づいて副点火コイルの通電開始タイミングを決定するようにしたことを特徴とする。
 また、請求項6に係る発明は、前記請求項1~請求項5の何れか1項に記載の内燃機関用点火装置において、前記点火制御手段は、車両の運転状況に基づいて副点火コイルの通電時間を決定するようにしたことを特徴とする。
 また、請求項7に係る発明は、前記請求項1~請求項6の何れか1項に記載の内燃機関用点火装置において、前記副スイッチ手段は、入力される短パルスに十分追随できる高速スイッチング特性を備え、前記点火制御手段は、車両の運転状況に基づいて定めたデューティー比のパルス信号で前記副スイッチ手段をPWM制御することを特徴とする。
 また、請求項8に係る発明は、前記請求項5又は請求項6に記載の内燃機関用点火装置において、前記点火コイルの二次側に流れる二次電流を検出する二次電流検出手段を設け、前記点火制御手段は、前記二次電流検出手段によって検出された二次電流に基づいて、車両の運転状況を判定することを特徴とする。
 また、請求項9に係る発明は、前記請求項1~請求項8の何れか1項に記載の内燃機関用点火装置において、複数の点火コイルと、各点火コイルに対応する主スイッチ手段及び副スイッチ手段をそれぞれ備え、全ての点火コイルにおける二次コイルを点火プラグに対して並列に接続し、前記点火制御手段によって、全ての点火コイルにおける主一次コイルおよび副一次コイルへの通電・遮断を制御するようにしたことを特徴とする。
 また、請求項10に係る発明は、前記請求項1~請求項8の何れか1項に記載の内燃機関用点火装置において、複数の点火コイルと、各点火コイルに対応する主スイッチ手段及び副スイッチ手段をそれぞれ備え、全ての点火コイルにおける二次コイルを点火プラグに対して直列に接続し、前記点火制御手段によって、全ての点火コイルにおける主一次コイルおよび副一次コイルへの通電・遮断を制御するようにしたことを特徴とする。
 また、請求項11に係る発明は、前記請求項1~請求項10の何れか1項に記載の内燃機関用点火装置において、前記点火制御手段は、内燃機関の動作を統括的に制御する内燃機関駆動制御装置に組み込まれ、全ての気筒の点火制御を内燃機関駆動制御装置が行うようにしたことと特徴とする。
 また、請求項12に係る発明は、前記請求項1~請求項10の何れか1項に記載の内燃機関用点火装置において、前記点火制御手段は、気筒毎に設けられ、内燃機関の動作を統括的に制御する内燃機関駆動制御装置からの点火指示に基づいて、対応する気筒の点火制御を行うようにしたことを特徴とする。
 また、請求項13に係る発明は、前記請求項1~請求項12の何れか1項に記載の内燃機関用点火装置において、少なくとも、前記点火コイルと、該点火コイルに対応して設けられる主スイッチ手段および副スイッチ手段を1つのケースに収納して、ユニット化するようにしたことを特徴とする。
In order to solve the above-mentioned problem, the invention according to claim 1 is directed to a main primary coil in which a forward energizing magnetic flux is generated by energization and a reverse interrupting magnetic flux is generated by interrupting the current, and the interrupting magnetic flux is energized by energization. An ignition coil having a secondary primary coil that generates additional magnetic flux in the same direction, and a secondary coil that is connected to an ignition plug at one end and generates magnetic discharge energy by the magnetic flux generated in the primary primary coil and the secondary primary coil. Main switch means for switching energization / cutoff to the primary primary coil of the ignition coil, sub switch means for switching energization / cutoff to the sub primary coil of the ignition coil, and switching between the main switch means and the sub switch means Ignition control means for generating discharge sparks in the spark plug at a predetermined timing of the combustion cycle by controlling the operation, and the ignition control The stage is characterized in that the discharge energy generated in the secondary coil is increased in a superimposed manner by energizing the sub-primary coil for a predetermined superimposition time after the shut-off timing when the energization to the main primary coil is interrupted. And
According to a second aspect of the present invention, in the ignition device for an internal combustion engine according to the first aspect, a single DC power source is shared for power supply to the main ignition coil and the sub ignition coil of the ignition coil. It is characterized by that.
According to a third aspect of the present invention, in the internal combustion engine ignition device according to the second aspect, a voltage generated in the sub-primary coil due to a change in magnetic flux when the energization to the main primary coil is interrupted is a power supply voltage. The number of turns of the sub primary coil is set so as to be smaller.
According to a fourth aspect of the present invention, there is provided an internal combustion engine ignition device according to any one of the first to third aspects, wherein the main switch means is connected between the main ignition coil and a ground point. And a bypass line connected in parallel with the rectifying means that is forward in the direction from the grounding point side toward the ignition coil side.
The invention according to claim 5 is the internal combustion engine ignition device according to any one of claims 1 to 4, wherein the ignition control means is configured to control the auxiliary ignition coil based on a driving state of the vehicle. It is characterized in that the energization start timing is determined.
The invention according to claim 6 is the internal combustion engine ignition device according to any one of claims 1 to 5, wherein the ignition control means is configured to control the auxiliary ignition coil based on a driving state of the vehicle. The energization time is determined.
Further, the invention according to claim 7 is the internal combustion engine ignition device according to any one of claims 1 to 6, wherein the sub-switch means is capable of high-speed switching capable of sufficiently following an input short pulse. The ignition control means performs PWM control of the sub switch means with a pulse signal having a duty ratio determined based on a driving situation of the vehicle.
The invention according to claim 8 is the internal combustion engine ignition device according to claim 5 or claim 6, further comprising secondary current detection means for detecting a secondary current flowing on the secondary side of the ignition coil. The ignition control means determines the driving situation of the vehicle based on the secondary current detected by the secondary current detection means.
The invention according to claim 9 is the ignition device for an internal combustion engine according to any one of claims 1 to 8, wherein a plurality of ignition coils, main switch means and sub-switches corresponding to each ignition coil are provided. A switch means is provided, and secondary coils in all ignition coils are connected in parallel to the ignition plug, and energization / cutoff to the primary primary coil and sub primary coil in all ignition coils is controlled by the ignition control means It was made to do.
The invention according to claim 10 is the ignition device for an internal combustion engine according to any one of claims 1 to 8, wherein a plurality of ignition coils, main switch means and sub-switches corresponding to each ignition coil are provided. Each switch means is provided, and secondary coils in all ignition coils are connected in series with the spark plugs, and energization / cutoff to the primary primary coil and sub primary coil in all ignition coils is controlled by the ignition control means. It was made to do.
The invention according to claim 11 is the internal combustion engine ignition device according to any one of claims 1 to 10, wherein the ignition control means controls the operation of the internal combustion engine in an integrated manner. It is incorporated in the engine drive control device and is characterized in that the internal combustion engine drive control device performs ignition control of all cylinders.
The invention according to claim 12 is the ignition device for an internal combustion engine according to any one of claims 1 to 10, wherein the ignition control means is provided for each cylinder, and operates the internal combustion engine. The ignition control of the corresponding cylinder is performed based on an ignition instruction from an internal combustion engine drive control device that performs overall control.
The invention according to claim 13 is the ignition device for an internal combustion engine according to any one of claims 1 to 12, wherein at least the ignition coil and a main coil provided corresponding to the ignition coil are provided. The switch means and the sub switch means are housed in one case and unitized.
 本発明に係る内燃機関用点火装置によれば、主一次コイルへの通電を遮断した遮断タイミング以降に所定の重畳時間だけ副一次コイルに通電することで、二次コイルに発生する放電エネルギーを重畳的に増加させるので、安定した燃焼を維持できる。しかも、副一次コイルを設けることで点火コイルが著しく大型化することはなく、コストも抑制できる。 According to the ignition device for an internal combustion engine according to the present invention, the discharge energy generated in the secondary coil is superimposed by energizing the sub-primary coil for a predetermined superimposition time after the shut-off timing when the energization to the main primary coil is interrupted. Therefore, stable combustion can be maintained. In addition, by providing the secondary primary coil, the ignition coil is not significantly increased in size and the cost can be suppressed.
 図1は、本発明に係る内燃機関用点火装置の第1実施形態を示す概略構成図である。
 図2は、本発明に係る内燃機関用点火装置の点火コイルにおける一次側の磁束変化を示す説明図である。
 図3は、第1実施形態の内燃機関用点火装置における放電波形図である。
 図4は、本発明に係る内燃機関用点火装置の第2実施形態を示す概略構成図である。
 図5は、第1実施形態の内燃機関用点火装置において副IGBTをPWM制御で動作させた場合における放電波形図である。
 図6は、本発明に係る内燃機関用点火装置の第3実施形態に用いる点火コイルユニットを示す概略構成図である。
 図7は、第3実施形態の内燃機関用点火装置における放電波形図である。
 図8は、本発明に係る内燃機関用点火装置の第4実施形態に用いる点火コイルユニットを示す概略構成図である。
 図9は、第4実施形態の内燃機関用点火装置における放電波形図である。
 図10は、本発明に係る内燃機関用点火装置の第5実施形態に用いる点火コイルユニットを示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a first embodiment of an internal combustion engine ignition device according to the present invention.
FIG. 2 is an explanatory diagram showing a change in magnetic flux on the primary side in the ignition coil of the ignition device for an internal combustion engine according to the present invention.
FIG. 3 is a discharge waveform diagram in the internal combustion engine ignition device of the first embodiment.
FIG. 4 is a schematic configuration diagram showing a second embodiment of the internal combustion engine ignition device according to the present invention.
FIG. 5 is a discharge waveform diagram when the sub IGBT is operated by PWM control in the internal combustion engine ignition device of the first embodiment.
FIG. 6 is a schematic configuration diagram showing an ignition coil unit used in the third embodiment of the internal combustion engine ignition device according to the present invention.
FIG. 7 is a discharge waveform diagram in the internal combustion engine ignition device of the third embodiment.
FIG. 8 is a schematic configuration diagram showing an ignition coil unit used in the fourth embodiment of the ignition device for an internal combustion engine according to the present invention.
FIG. 9 is a discharge waveform diagram in the internal combustion engine ignition device of the fourth embodiment.
FIG. 10 is a schematic configuration diagram showing an ignition coil unit used in the fifth embodiment of the internal combustion engine ignition device according to the present invention.
 次に、本発明に係る内燃機関用点火装置の実施形態を、添付図面に基づいて詳細に説明する。
 図1に示すのは、本発明の第1実施形態に係る内燃機関用点火装置1であり、内燃機関の気筒毎に設けられる1つの点火プラグ2に放電火花を発生させる点火コイルユニット10と、この点火コイルユニット10の動作制御を行う点火制御手段3aとで構成される。
 なお、本実施形態に示す点火制御手段3aは、自動車の内燃機関を統括的に制御する内燃機関制御装置であるエンジンコントロールユニット3に含まれるものであり、エンジンコントロールユニット3からの点火信号(後に詳述する)によって点火コイルユニット10の動作が適宜に制御される。
 点火コイルユニット10は、例えば、点火コイル11、主IGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)12a、副IGBT12bを所要形状のケース13に収納して一体構造としたユニットである。このケース13の適所には、高圧端子131とコネクタ132を設けてあり、高圧端子131を介して点火プラグ2を接続すると共に、コネクタ132を介してエンジンコントロールユニット3と接続する。
 点火コイル11は、エンジンコントロールユニット3からの通電・遮断制御によって主一次コイル111aと副一次コイル111bに生ずる磁束を二次コイル112に作用させるもので、例えば、センターコア113を取り巻くように主一次コイル111aおよび副一次コイル111bを配置し、更にその外側に二次コイル112を配置する。主一次コイル111aと副一次コイル111bの一方端は、車両バッテリー等の直流電源4と接続され、共通の電源電圧VB+が印加される。
 主一次コイル111aの他方端は、主IGBT12aを介して接地点GNDに接続される。この主IGBT12aは、大電力の高速スイッチングが可能な半導体素子であり、点火制御手段13からの主一次コイル点火信号Saに基づいて、主一次コイル111aへの通電・遮断を切り替える主スイッチ手段として機能する。
 副一次コイル111bの他方端は、副IGBT12bを介して接地点GNDに接続される。この副IGBT12bは、大電力の高速スイッチングが可能な半導体素子であり、点火制御手段13からの副一次コイル重畳信号Sbに基づいて、副一次コイル111bへの通電・遮断を切り替える副スイッチ手段として機能する。
 主一次コイル111aと副一次コイル111bは、センターコア113の外周に嵌挿されるボビンに巻回されるもので、直流電源4から通電されたときに生じる磁束の向きが逆方向になるよう、巻回方向もしくは給電位置を異ならしめておく。例えば、図2に示すように、同じ側(図2においては下部)から給電する場合、主一次コイル111aの巻回方向と副一次コイル111bの巻回方向が逆向きとなるようにしておく。
 まず、主IGBT12aがオンとなって、主一次コイル111aに一次電流I1aが流れると、通電磁束が発生する(図2(a)を参照)。仮に、通電磁束の向きを正方向とすると、IGBT12aがオフとなって一次電流I1aが遮断されたとき、逆方向の遮断磁束が発生する(図2(b)を参照)。この遮断磁束が二次コイル1112に作用することで、点火プラグ2の放電ギャップに絶縁破壊を起こす放電エネルギーが発生するのである。
 さらに、主一次コイル111aへの通電を遮断した遮断タイミング以降に副IGBT12bがオンになって、副一次コイル111bに重畳電流I1bが流れると、遮断磁束と同じ向きの重畳磁束が発生する(図2(c)を参照)。すなわち、遮断磁束と重畳磁束が二次コイル112に作用することで、二次コイル112に発生する放電エネルギーを重畳的に増加させることができるのである。
 なお、主一次コイル111aへの通電を遮断したときの磁束変化によって副一次コイル111bに発生する電圧が電源電圧(例えば、+12V)よりも小さくなるように、副一次コイル111bの巻数を設定しておく必要がある。例えば、主一次コイル111aへの通電を遮断したときに副一次コイル111bに発生する電圧が、直流電源4の電圧よりも大きい場合、副IGBT12bがオンになっても、重畳磁束を発生させるような重畳電流I1bを流すことができないからである。
 また、副IGBT12bがオフになって副一次コイル111bへの通電を遮断したとき、その逆起電力が主一次コイル111aに作用するため、通常の一次電流とは逆向きの電流を流そうとする逆方向の電圧が主IGBT12aのエミッタ−コレクタ間に印加されることとなり、主IGBT12aが故障したり、主IGBT12aの劣化を早めたりする危険性がある。そこで、主IGBT12aと並列にバイパス線路14を設けると共に、このバイパス線路14の接地点側から点火コイル11側に向かって順方向となる整流手段15(例えば、主IGBT12aのコレクタ側にカソードを、主IGBT12aのエミッタ側にアノードをそれぞれ接続したダイオード)を設けた。
 次に、点火制御手段31により生成される主一次コイル点火信号Saおよび副一次コイル重畳信号Sbによる点火コイルユニット10の動作を、図3の波形図に基づいて説明する。
 遮断磁束に重畳磁束を追加するまでもなく、主一次コイル111aのみで適切な放電特性を得られている運転状況の場合、点火制御手段31はノーマル放電制御を行う。
 まず、放電サイクルの適宜なタイミングで主一次コイル点火信号Saの信号レベルをLからHに変化させて、主IGBT12aをオンにし、一次電流I1aを流し始める。一次電流通電時間Taが経過したタイミングで主一次コイル点火信号Saの信号レベルをHからLに変化させて、主IGBT12aをオフにし、一次電流I1aを遮断して、二次コイル112側に二次電流I2を流す。この間、副一次コイル重畳信号Sbの信号レベルはLを保持し、副IGBT12bがオフのままで、副一次コイル111bに重畳電流I1bが流れることはないので、重畳磁束が二次コイル112に作用することはない。
 放電開始の最初期に大きな放電エネルギーが必要な運転状況の場合、点火制御手段31は、高電流タイプの重畳放電制御を行う。
 上述したノーマル放電制御と同様に一次電流I1aを流し始めた後、一次電流通電時間Taが経過したタイミングで主一次コイル点火信号Saの信号レベルをHからLに変化させて、主IGBT12aをオフにすると同時に、副一次コイル重畳信号Sbの信号レベルをLからHに変化させて、副IGBT12bをオンにし、一次電流I1bを流す。これにより、主一次コイル111aへの通電遮断により生じる遮断磁束が最大となる放電開始直後のタイミングで、副一次コイル111bへの通電により生じる重畳磁束が追加されることとなり、初期の二次電流I2が高電流となる。その後、点火プラグ2の放電に必要十分な時間を勘案して定めた重畳電流通電時間Tbが経過したタイミングで副一次コイル重畳信号Sbの信号レベルをHからLに変化させて、副IGBT12bをオフにし、重畳電流I1bを遮断する。
 放電開始から比較的長時間にわたって一定以上の放電エネルギーを持続させる必要がある運転状況の場合、点火制御手段31は、長放電タイプの重畳放電制御を行う。
 上述したノーマル放電制御と同様に一次電流I1aを流し始めた後、一次電流通電時間Taが経過して主IGBT12aをオフにし、一次電流I1aを遮断して、二次コイル112側に二次電流I2を流すが、副一次コイル重畳信号Sbの信号レベルはLのままである。その後、二次電流I2が所定値以上を保持している時間を勘案して定めた重畳開始遅延時間Δtが経過したタイミングで、副一次コイル重畳信号Sbの信号レベルをLからHに変化させて、副IGBT12bをオンにし、一次電流I1bを流す。これにより、二次電流I2が再び高くなって、二次電流I2が所定値よりも低くなる(点火プラグ2の放電に必要なエネルギーが失われる)までの時間を延ばすことができ、点火プラグ2の放電期間を長く保持できる。その後、点火プラグ2の放電に必要十分な時間を勘案して定めた重畳電流通電時間Tbが経過したタイミングで副一次コイル重畳信号Sbの信号レベルをHからLに変化させて、副IGBT12bをオフにし、重畳電流I1bを遮断する。
 以上のように、本実施形態の内燃機関用点火装置1においては、点火制御手段31の機能を備えるエンジンコントロールユニット3が、車両の運転状況に基づいて副一次コイル111bの通電開始タイミングや通電時間を決定し、それに応じた副一次コイル重畳信号Sbを生成して副IGBT12bのオン・オフを切り替えることで、そのときの運転状況に好適な放電特性が得られる点火制御を実現するのである。
 運転状況の判定に用いる情報としては、エンジンの回転数、二次電流値、点火コイル11の温度などで、気筒の燃焼に関与する情報であれば、何を用いても構わない。また、運転状況の判定結果から、副一次コイル111bの通電開始タイミングや通電時間を如何様に決定するかは、エンジン特性などに応じたノウハウに属するものであり、運転状況の判定に関する情報から、副一次コイル111bの通電開始タイミングや通電時間が一意に定まるものではない。
 上述した第1実施形態の内燃機関用点火装置1では、エンジンコントロールユニット3に点火制御手段31を設けるものとしたので、主一次コイル111aおよび副一次コイル111bの通電・遮断制御の決定に必要な運転状況の把握が容易である反面、全ての気筒の各点火コイルユニット10に対して主一次コイル点火信号Saと副一次コイル重畳信号Sbを供給しなければならないため、既存のエンジンコントロールユニット3との互換性が失われるし、エンジンコントロールユニット3に付加する機能が複雑化してしまう。
 そこで、既存のエンジンコントロールユニット3との互換性を保てる第2実施形態に係る内燃機関用点火装置1′を、図4に基づいて説明する。なお、第1実施形態の内燃機関用点火装置1と同一・同機能の構成には、同一符号を付して説明を省略する。
 内燃機関用点火装置1′は、エンジンコントロールユニット3とは別に、各気筒の点火コイルユニット10′に対応した点火制御手段5を設けたもので、エンジンコントロールユニット3からの点火信号Sを受ける点火制御手段5によって点火コイルユニット10′の動作制御を行うものである。すなわち、本実施形態の内燃機関用点火装置1′では、各燃焼サイクルにおける点火タイミングと充電時間の情報を含む点火信号Sを既存のエンジンコントロールユニット3が送信すれば、これを受けた点火制御手段5によって、主一次コイル点火信号Saと副一次コイル重畳信号Sbが生成され、主IGBT12aおよび副IGBT12bのオン・オフ制御が行われ、適宜な重畳放電制御が実現される。
 なお、点火制御手段5が運転状況を把握するための情報としては、エンジンコントロールユニット3から送信される点火信号Sの周期に基づくエンジン回転数があるので、副一次コイル111bの通電開始タイミングや通電時間をエンジン回転数のみと関連づけて制御するようにしても良いが、各気筒に固有の状態を取得して、副一次コイル111bの通電開始タイミングや通電時間を適切に制御するようにしても良い。
 例えば、点火コイルユニット10′に、二次電流I2を検出する二次電流検出手段16を設けておき、この二次電流検出信号に基づいて、点火制御手段5が副一次コイル111bの通電開始タイミングや通電時間を決定するようにしても良い。また、点火コイルユニット10′のケース13内の適所に温度センサ17を設けておき、点火コイル11や主IGBT12a、副IGBT12bからの発熱による内部温度に基づいて、点火制御手段5が副一次コイル111bの通電開始タイミングや通電時間を決定するようにしても良い。
 上述した第1,第2実施形態の内燃機関用点火装置1,1′においては、副一次コイル重畳信号Sbによって副一次コイル111bの通電開始タイミングや通電時間を任意に制御できるものの、副一次コイル111bへの印加電圧は直流電源4の電源電圧によって定まっているため、副一次コイル111bによって必要以上の放電エネルギーが重畳されてしまい、無駄な電力消費となる可能性がある。
 例えば、副一次コイル111bへの供給電源を別途設けておき、必要に応じて副一次コイル111bへの供給電圧を調整可能な構成とすれば、過剰な電力消費を抑えつつ、必要十分な放電エネルギーを重畳できる。しかしながら、このような構成とするためには、出力可変型の直流電源が必要となって、車体内に電源搭載スペースを確保しなければならない上に、相当のコストアップになってしまう。
 そこで、車両搭載の直流電源4を用いて、副一次コイル111bへの通電量を調整するために、パルス幅変調(PWM:Pulse Width Modulation)制御を利用する手法が考えられる。すなわち、PWM制御によって副IGBT12bを高速スイッチングさせて、オンデューティーを適宜に調整し、副一次コイル111bに印加される実質電圧を必要十分な程度に低減させるのである。
 例えば、図1に示す内燃機関用点火装置1において、エンジンコントロールユニット3から送出される副一次コイル重畳信号Sb′をPWM信号とすれば、副IGBT12bをPWM制御することができ、電源電圧(例えば、+12V)を所望の実質電圧に低減して、重畳電流I1bを随意に調整し、重畳磁束によって二次コイル112に付加される放電エネルギーを抑制するのである。
 図5は、副IGBT12bをPWM制御した場合の波形を示す。重畳放電を最大とする場合には、副一次コイル重畳信号Sb′のデューティー比を100%としてPWM制御を行わないことで、副一次コイル111bに直流電源4から+12Vを供給する。また、副一次コイル111bに+10V程度の電圧を印加することで必要十分な放電エネルギーを重畳できる場合には、約83%のデューティー比で副IGBT12bをPWM制御すれば良い。同様に、副一次コイル111bに+8V程度の電圧を印加することで必要十分な放電エネルギーを重畳できる場合には、約67%のデューティー比で副IGBT12bをPWM制御すれば良く、副一次コイル111bに+6V程度の電圧を印加することで必要十分な放電エネルギーを重畳できる場合には、約50%のデューティー比で副IGBT12bをPWM制御すれば良い。
 この副IGBT12bに対するPWM制御についても、車両の諸情報から判断した運転状況に基づいて必要十分な印加電圧を算定し、副一次コイル重畳信号Sb′のデューティー比を決定すれば良い。
 上述したように、第1,第2実施形態の内燃機関用点火装置1,1′のエンジンコントロールユニット3や点火制御手段5が副一次コイル重畳信号Sb′を生成し、点火コイルユニット10,10′へ送信することで、副IGBT12bをPWM制御する場合、高周波パルスを含む副一次コイル重畳信号Sb′がノイズ源となってしまったり、逆にノイズ混入で副一次コイル重畳信号Sb′によるPWM制御が意図通りに働かなくなったりする可能性もある。
 図6に示すのは、第3実施形態に係る内燃機関用点火装置に用いる点火コイルユニット10″の概略構成を示すもので、ケース13内にPWM信号生成回路18を備える。すなわち、点火コイルユニット10″内のイグナイタ回路にPWM信号生成回路18を付加したものである。
 上記PWM信号生成回路18で所望のPWM信号を生成するためには、副一次コイル111bの通電開始タイミングや通電時間を特定するための情報信号に加えて、PWM制御のデューティー比を指示する情報信号も必要である。そこで、エンジンコントロールユニット3や点火制御手段5は、副一次コイル111bの通電開始タイミングや通電時間を特定する副一次コイル重畳信号Sb1に加えて、PWM制御のデューティー比を指示するPWM指示信号Sb2を送信する。
 なお、PWM指示信号Sb2としては、デューティー比の数値情報を送信するものでも構わないが、本実施形態におけるPWM指示信号Sb2では、送信信号の信号電位によってレベル分けし、このレベルがPWM制御のデューティー比を示す情報となるようにした。このように、所定のしきい値でPWM指示信号Sb2をフィルタリングしてレベルを判定する機能は、耐熱性・対ノイズ性の高いディスクリート部品で構成することが容易であるから、点火コイルユニット10″内のイグナイタ回路にディスクリート部品で構成したPWM信号生成回路18を設ければ、PWM信号生成回路18が熱暴走して誤動作したり損壊したりする危険性を低減できるので、PWM制御の信頼性を損なうことがない。
 図7に示すのは、点火コイルユニット10″にて点火制御を行う場合の波形図である。PWM指示信号Sb2の信号電位が最大値に達していれば、レベル4と判定され、PWM信号のデューティー比を100%としてPWM制御を行わないことで、副一次コイル111bに直流電源4から+12Vを供給する。また、PWM指示信号Sb2の信号電位がレベル4よりも低いレベル3と判定されれば、約83%のデューティー比でPWM信号を生成し、副IGBT12bをPWM制御する。PWM指示信号Sb2の信号電位がレベル3よりも低いレベル2と判定されれば、約67%のデューティー比でPWM信号を生成し、副IGBT12bをPWM制御する。PWM指示信号Sb2の信号電位がレベル2よりも低いレベル1と判定されれば、約50%のデューティー比でPWM信号を生成し、副IGBT12bをPWM制御する。なお、PWM指示信号Sb2の信号電位が接地電位に等しいレベル0と判定されれば、PWM信号のデューティー比を0%とし、副IGBT12bのPWM制御を行わない。
 上述したPWM指示信号Sb2のレベル分けは一例であり、より少数のレベルに分けてPWM信号のデューティー比と対応させても良いし、より多数のレベルに分けてPWM信号のデューティー比と対応させても良い。
 以上、第1~第3実施形態に係る内燃機関用点火装置では、主一次コイル111aと副一次コイル111bを備える点火コイル11を1個設けたもので、副一次コイル111bへの通電タイミングや通電時間を適宜に制御し、更に、副一次コイル111bへの印加電圧を調整することで、二次コイル112に与える放電エネルギーをコントロールし、最適の放電特性を実現するように、高電流タイプの重畳放電制御や長放電タイプの重畳放電制御が可能である。
 従来であれば、点火コイル毎に、高電流タイプのコイル、長放電タイプのコイルと作り分けていたため、高電流タイプのコイルを使う場合は放電時間が短くなり、長放電タイプのコイルを使う場合は電流を高くできないと言う特性上の制限があった。従来なら、放電性能を変えたい場合、点火コイルを取り替える必要があったのに対して、第1~第3実施形態に係る内燃機関用点火装置では、副一次コイル111bへの通電・遮断制御によって、様々なタイプの放電性能を実現できるのである。
 しかしながら、第1~第3実施形態に係る内燃機関用点火装置においても、副一次コイル111bへの通電・遮断制御によって実現できる高電流化および長放電化には限界がある。
 図8に示すのは、第4実施形態に係る内燃機関用点火装置に用いる点火コイルユニット20Aの概略構成を示すもので、複数の点火コイルを使うことで、更なる高電流化および長放電化を期せるものである。
 点火コイルユニット20Aは、第1点火コイル部21と第2点火コイル部22をケース23内に収納し、高圧端子231を介して点火プラグ2を接続すると共に、第1コネクタ232および第2コネクタ233を介してエンジンコントロールユニット3あるいは点火制御手段5と接続する。
 第1点火コイル部21は、第1点火コイル211、第1主IGBT212a、第1副IGBT212b、第1主IGBT212aと並列に設けたバイパス線路214、このバイパス線路214の接地点側から第1点火コイル211側に向かって順方向となるように設けた整流手段215(例えば、第1主IGBT212aのコレクタ側にカソードを、第1主IGBT212aのエミッタ側にアノードをそれぞれ接続したダイオード)を含み、第1コネクタ232を介して第1主一次コイル点火信号Sa−1および第1副一次コイル重畳信号Sb−1が供給される。
 また、第2点火コイル部22は、第2点火コイル221、第2主IGBT222a、第2副IGBT222b、第2主IGBT222aと並列に設けたバイパス線路224、このバイパス線路224の接地点側から第2点火コイル221側に向かって順方向となるように設けた整流手段225(例えば、第2主IGBT222aのコレクタ側にカソードを、第2主IGBT222aのエミッタ側にアノードをそれぞれ接続したダイオード)を含み、第2コネクタ233を介して第2主一次コイル点火信号Sa−2および第2副一次コイル重畳信号Sb−2が供給される。
 なお、第1点火コイル211および第2点火コイル221は、前述した点火コイル11と同様の構成である。すなわち、センターコア2113の外周に嵌挿された第1主一次コイル2111aと第1副一次コイル2111bに生ずる磁束を第1二次コイル2112に作用させ、センターコア2213の外周に嵌挿された第2主一次コイル2211aと第2副一次コイル2211bに生ずる磁束を第2二次コイル2212に作用させる。また、第1点火コイル211の第1二次コイル2112の非接地側と第2点火コイル221の第2二次コイル2212の非接地側を、点火プラグ2に対して並列に接続する。
 上記構成の点火コイルユニット20Aにおいて、様々なタイプの放電性能を実現するように放電制御を行った場合の波形図を図9に示す。
 まず、放電開始の最初期~中期に大きな放電エネルギーが必要な運転状況の場合、エンジンコントロールユニット3もしくは点火制御手段5は、以下のような中期高電流タイプの重畳放電制御を行う。
 第1主一次コイル点火信号Sa−1および第2主一次コイル点火信号Sa−2によって、第1主IGBT212aおよび第2主IGBT222aをほぼ同時にオンさせる。
 第1コイル一次電流I1a−1および第2コイル一次電流I1a−2を流し始めた後、第1コイル一次電流通電時間Ta−1が経過したタイミングで第1主一次コイル点火信号Sa−1の信号レベルをHからLに変化させて、第1主IGBT212aをオフにする。これにより、第1主一次コイル2111aへの通電遮断により生じる遮断磁束が第1二次コイル2112に作用し、第1コイル二次電流I2−1が流れる。
 また、第1コイル一次電流通電時間Ta−1と同一時間に設定した第2コイル一次電流通電時間Ta−2が経過したタイミングで第2主一次コイル点火信号Sa−2の信号レベルをHからLに変化させて、第2主IGBT222aをオフにする。これにより、第2主一次コイル2211aへの通電遮断により生じる遮断磁束が第2二次コイル2212に作用し、第2コイル二次電流I2−2が流れる。
 すなわち、第1主一次コイル2111aと第2主一次コイル2211aへの通電が同時に遮断されることで、第1点火コイル部21側に流れる第1コイル二次電流I2−1と第2点火コイル部22側に流れる第2コイル二次電流I2−2との和に等しい点火コイルユニット二次電流I2として、放電最初期に大きな電流が流れることとなる。
 その後、点火コイルユニット二次電流I2が所定値以上を保持している時間を勘案して定めた第1重畳開始遅延時間Δt−1が経過したタイミングで、第1副一次コイル重畳信号Sb−1の信号レベルをLからHに変化させて、第1副IGBT212bをオンにし、第1コイル重畳電流I1b−1を流す。これにより、第1コイル二次電流I2−1が再び高くなる。
 また、第1重畳開始遅延時間Δt−1と同一時間に設定した第2重畳開始遅延時間Δt−2が経過したタイミングで、第2副一次コイル重畳信号Sb−2の信号レベルをLからHに変化させて、第2副IGBT222bをオンにし、第2コイル重畳電流I1b−2を流す。これにより、第2コイル二次電流I2−2が再び高くなる。
 すなわち、第1副一次コイル2111bと第2副一次コイル2211bへ同時に通電開始されることで、第1点火コイル部21側に流れる第1コイル二次電流I2−1と第2点火コイル部22側に流れる第2コイル二次電流I2−2との和に等しい点火コイルユニット二次電流I2として、放電の中期に再び大きな電流が流れることとなる。しかも、第1主一次コイル2111aおよび第2主一次コイル2211aへの通電遮断により生じた遮断磁束が強いうちに第1コイル重畳電流I1b−1および第2コイル重畳電流I1b−2を流して重畳磁束を追加することで、放電の前期~中期に放電開始直後よりも高い二次電流を流すことができる。
 その後、点火プラグ2の放電に必要十分な時間を勘案して定めた重畳電流通電時間(第1重畳電流通電時間Tb−1=第2重畳電流通電時間Tb−2)が経過したタイミングで、第1副一次コイル重畳信号Sb−1および第2副一次コイル重畳信号Sb−2の信号レベルを同時にHからLに変化させて、第1副IGBT212bおよび第2副IGBT222bを同時にオフにし、第1コイル重畳電流I1b−1および第2コイル重畳電流I1b−2を同時に遮断する。
 なお、第1主一次コイル2111aおよび第2主一次コイル2211aへの通電遮断と同時に第1副一次コイル2111bおよび第2副一次コイル2211bへの通電を開始する制御を行えば、放電の最初期に最も高い二次電流を流すことができるが、中期~後期にかけて高電流を維持することはできない。
 そこで、放電開始直後の最初期から中期にかけて、ある程度の大きさの放電エネルギーを維持する必要がある運転状況の場合、エンジンコントロールユニット3もしくは点火制御手段5は、以下のような高電流+長放電タイプの重畳放電制御を行う。
 第1主一次コイル点火信号Sa−1および第2主一次コイル点火信号Sa−2によって、第1主IGBT212aおよび第2主IGBT222aをほぼ同時にオンさせる。
 第1コイル一次電流I1a−1および第2コイル一次電流I1a−2を流し始めた後、一次電流通電時間(第1コイル一次電流通電時間Ta−1=第2コイル一次電流通電時間Ta−2)が経過したタイミングで第1主一次コイル点火信号Sa−1および第2主一次コイル点火信号Sa−2の信号レベルを同時にHからLに変化させて、第1主IGBT212aおよび第2主IGBT222aを同時にオフにする。これにより、第1主一次コイル2111aおよび第2主一次コイル2211aへの通電遮断により生じる遮断磁束が、それぞれ第1二次コイル2112および第2二次コイル2212に作用し、第1コイル二次電流I2−1および第2コイル二次電流I2−2が流れる。
 すなわち、第1主一次コイル2111aと第2主一次コイル2211aへの通電が同時に遮断されることで、第1点火コイル部21側に流れる第1コイル二次電流I2−1と第2点火コイル部22側に流れる第2コイル二次電流I2−2との和に等しい点火コイルユニット二次電流I2として、放電最初期に大きな電流が流れることとなる。
 その後、点火コイルユニット二次電流I2が所定値以上を保持している時間を勘案して定めた第1重畳開始遅延時間Δt−1が経過したタイミングで、第1副一次コイル重畳信号Sb−1の信号レベルをLからHに変化させて、第1副IGBT212bをオンにし、第1コイル重畳電流I1b−1を流す。これにより、点火コイルユニット二次電流I2は、第1主一次コイル2111aおよび第2主一次コイル2211aへの通電遮断から第1重畳開始遅延時間Δt−1が経過したタイミングで再び高くなる。
 更に、第2主一次コイル2211aへの通電遮断から第2重畳開始遅延時間Δt−2(第1コイル重畳電流I1b−1によって高くなった点火コイルユニット二次電流I2が所定値以上を保持している時間を勘案して定めた時間であり、「Δt−2>Δt−1」を満たす。)が経過したタイミングで、第2副一次コイル重畳信号Sb−2の信号レベルをLからHに変化させて、第2副IGBT222bをオンにし、第2コイル重畳電流I1b−2を流す。これにより、点火コイルユニット二次電流I2は、第1主一次コイル2111aおよび第2主一次コイル2211aへの通電遮断から第2重畳開始遅延時間Δt−2が経過したタイミングで再び高くなる。
 その後、第1重畳電流通電時間Tb−1が経過したタイミングで、第1副一次コイル重畳信号Sb−1の信号レベルをHからLに変化させて、第1副IGBT212bをオフにし、第1コイル重畳電流I1b−1を遮断することで、第1コイル二次電流I2−1を遮断し、更にその後、第2重畳電流通電時間Tb−2が経過したタイミングで、第2副一次コイル重畳信号Sb−2の信号レベルをHからLに変化させて、第2副IGBT222bをオフにし、第2コイル重畳電流I1b−2を遮断することで、第2コイル二次電流I2−2を遮断し、点火コイルユニット二次電流I2が流れなくなる。
 すなわち、第1主一次コイル2111aおよび第2主一次コイル2211aへの通電遮断から第1重畳開始遅延時間Δt−1が経過したタイミングで第1コイル重畳電流I1b−1を流し、第2重畳開始遅延時間Δt−2が経過したタイミングで第2コイル重畳電流I1b−2を流すようにして、点火コイルユニット二次電流I2の電流値を時間差で高めることにより、放電開始直後の最初期から中期にかけてある程度の大きさの放電エネルギーを維持できるのである。
 なお、第1重畳電流通電時間Tb−1および第2重畳電流通電時間Tb−2の時間幅を長く設定すれば、放電時間を更に長くすることはできるものの、第1主一次コイル2111aおよび第2主一次コイル2211aへの通電遮断により生じた遮断磁束が消失すると、第1コイル重畳電流I1b−1と第2コイル重畳電流I1b−2だけで十分な放電エネルギーを維持することはできず、放電時間の長期化にも限度がある。
 そこで、放電期間中に極めて高い電流を必要としないが、放電開始直後の最初期から中期~後期にかけて、ある程度の大きさの放電エネルギーを維持する必要のある運転状況の場合、エンジンコントロールユニット3もしくは点火制御手段5は、以下のような高電流+長放電タイプの重畳放電制御を行う。
 第1主一次コイル点火信号Sa−1によって、第1主IGBT212aをオンさせ、第1コイル一次電流I1a−1を流し始め、その後、第2点火コイル動作遅延時間ΔTが経過したタイミングで、第2主一次コイル点火信号Sa−2によって、第2主IGBT222aをオンさせ、第1コイル一次電流I1a−1を流し始める。
 第1コイル一次電流I1a−1を流し始めてから、第1コイル一次電流通電時間Ta−1が経過したタイミングで第1主一次コイル点火信号Sa−1の信号レベルをHからLに変化させて、第1主IGBT212aをオフにする。これにより、第1主一次コイル2111aへの通電遮断により生じる遮断磁束が、第1二次コイル2112に作用し、第1コイル二次電流I2−1が流れる。この第1コイル二次電流I2−1に等しい電流が点火コイルユニット二次電流I2として流れる。
 その後、点火コイルユニット二次電流I2が所定値以上を保持している時間を勘案して定めた第1重畳開始遅延時間Δt−1が経過したタイミングで、第1副一次コイル重畳信号Sb−1の信号レベルをLからHに変化させて、第1副IGBT212bをオンにし、第1コイル重畳電流I1b−1を流し、第1コイル二次電流I2−1を高くする。これにより、点火コイルユニット二次電流I2も、第1主一次コイル2111aへの通電遮断から第1重畳開始遅延時間Δt−1が経過したタイミングで再び高くなる。
 一方、第2コイル一次電流I1a−2を流し始めてから、第2コイル一次電流通電時間Ta−2が経過したタイミングで第2主一次コイル点火信号Sa−2の信号レベルをHからLに変化させて、第2主IGBT222aをオフにする。これにより、第2主一次コイル2211aへの通電遮断により生じる遮断磁束が、第2二次コイル2212に作用し、第2コイル二次電流I2−2が流れる。この第2コイル二次電流I2−2が第1コイル二次電流I2−1に重畳され、点火コイルユニット二次電流I2は再び高くなる。
 その後、点火コイルユニット二次電流I2が所定値以上を保持している時間を勘案して定めた第2重畳開始遅延時間Δt−2が経過したタイミングで、第2副一次コイル重畳信号Sb−2の信号レベルをLからHに変化させて、第2副IGBT222bをオンにし、第2コイル重畳電流I1b−2を流し、第2コイル二次電流I2−2を高くする。これにより、点火コイルユニット二次電流I2は再び高くなる。
 その後、第1重畳電流通電時間Tb−1が経過したタイミングで、第1副一次コイル重畳信号Sb−1の信号レベルをHからLに変化させて、第1副IGBT212bをオフにし、第1コイル重畳電流I1b−1を遮断することで、第1コイル二次電流I2−1を遮断し、更にその後、第2重畳電流通電時間Tb−2が経過したタイミングで、第2副一次コイル重畳信号Sb−2の信号レベルをHからLに変化させて、第2副IGBT222bをオフにし、第2コイル重畳電流I1b−2を遮断することで、第2コイル二次電流I2−2を遮断し、点火コイルユニット二次電流I2が流れなくなる。
 すなわち、第1主一次コイル2111aへの通電遮断、第1副一次コイル2111bへの通電開始、第2主一次コイル2211aへの通電遮断、第2副一次コイル2211bへの通電開始に時間差を設けて、点火コイルユニット二次電流I2の電流値を時間差で高めることにより、放電開始直後の最初期から中期~後期にかけてある程度の大きさの放電エネルギーを維持した長放電を可能にするのである。
 このように、複数の点火コイルを用い、その動作タイミングを適宜に制御することで、様々な放電パターンを実現することができる。特に、高電流の配置を前期~中期へ移行させることが容易であるから、高EGR燃焼、高圧縮比燃焼、リーンバーン燃焼といった将来のエンジンに好適な放電パターンを容易に実現できる可能性が高く、実用的価値も高い。
 なお、上述したような主一次コイル点火信号と副一次コイル重畳信号によって制御する点火コイルは2つに限らず、収納スペースが許すなら、3個以上用いても構わない。点火コイルの数が増えれば、一層細やかな放電パターンの使い分けが可能となる。また、複数の点火コイルの接続方式も並列接続に限らず、直列接続としても良い。
 図10に示すのは、第5実施形態に係る内燃機関用点火装置に用いる点火コイルユニット20Bの概略構成を示すもので、第1点火コイル部21の第1二次コイル2112と第2点火コイル部22の第2二次コイル2212を直列接続したものである。
 点火コイルユニット20Bは、第1点火コイル部21と第2点火コイル部22をケース23内に収納し、共通コネクタ234を介してエンジンコントロールユニット3あるいは点火制御手段5と接続することで、第1主一次コイル点火信号Sa−1、第1副一次コイル重畳信号Sb−1、第2主一次コイル点火信号Sa−2、第2副一次コイル重畳信号Sb−2を受け、第1主一次コイル2111a、第1副一次コイル2111b、第2主一次コイル2211a、第2副一次コイル2211bへの通電・遮断を制御する。
 なお、点火コイルユニット20Bでは、第1点火コイル211の第1二次コイル2112と第2点火コイル221の第2二次コイル2212が直列に接続されていることから、第2点火コイル221の非動作時には、第1点火コイル221によって発生させた放電エネルギーが第2点火コイル221の抵抗分で消費されてしまい、点火プラグ2の着火性を阻害しかねない。そこで、第1点火コイル211の第1二次コイル2112と第2点火コイル221の第2二次コイル2212とが接続される直列接続点から接地点に至る接地線路24に整流素子25(直列接続点から接地点に向かって順方向となるように、直列接続点側にアノードを、接地点側にカソードをそれぞれ接続する)を設けてある。
 以上、本発明に係る内燃機関用点火装置の実施形態を添付図面に基づいて説明したが、本発明は、これらの実施形態に限定されるものではなく、特許請求の範囲に記載の構成を変更しない範囲で、公知既存の等価な技術手段を転用することにより実施しても構わない。
Next, an embodiment of an ignition device for an internal combustion engine according to the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows an internal combustion engine ignition device 1 according to a first embodiment of the present invention. An ignition coil unit 10 that generates a discharge spark in one ignition plug 2 provided for each cylinder of the internal combustion engine, And ignition control means 3a for controlling the operation of the ignition coil unit 10.
The ignition control means 3a shown in the present embodiment is included in the engine control unit 3 that is an internal combustion engine control device that comprehensively controls the internal combustion engine of the automobile, and an ignition signal from the engine control unit 3 (later As will be described in detail, the operation of the ignition coil unit 10 is appropriately controlled.
The ignition coil unit 10 is, for example, a unit in which an ignition coil 11, a main IGBT (Insulated Gate Bipolar Transistor) 12a, and a sub-IGBT 12b are housed in a case 13 having a required shape. A high voltage terminal 131 and a connector 132 are provided at appropriate positions of the case 13, and the ignition plug 2 is connected via the high voltage terminal 131 and also connected to the engine control unit 3 via the connector 132.
The ignition coil 11 causes a magnetic flux generated in the main primary coil 111a and the sub primary coil 111b to act on the secondary coil 112 by energization / cutoff control from the engine control unit 3, and for example, the main primary so as to surround the center core 113. The coil 111a and the sub-primary coil 111b are disposed, and the secondary coil 112 is disposed outside thereof. One ends of the main primary coil 111a and the sub primary coil 111b are connected to a DC power supply 4 such as a vehicle battery, and a common power supply voltage VB + is applied.
The other end of main primary coil 111a is connected to ground point GND through main IGBT 12a. The main IGBT 12a is a semiconductor element capable of high-power high-speed switching, and functions as main switch means for switching energization / cut-off to the main primary coil 111a based on the main primary coil ignition signal Sa from the ignition control means 13. To do.
The other end of the sub primary coil 111b is connected to the ground point GND through the sub IGBT 12b. The sub-IGBT 12b is a semiconductor element capable of high-power high-speed switching, and functions as sub-switch means for switching energization / cut-off to the sub-primary coil 111b based on the sub-primary coil superimposed signal Sb from the ignition control means 13. To do.
The main primary coil 111a and the sub primary coil 111b are wound around a bobbin inserted into the outer periphery of the center core 113, and are wound so that the direction of the magnetic flux generated when the DC power supply 4 is energized is reversed. Make the turning direction or feeding position different. For example, as shown in FIG. 2, when power is supplied from the same side (lower part in FIG. 2), the winding direction of the main primary coil 111a and the winding direction of the sub-primary coil 111b are reversed.
First, when the main IGBT 12a is turned on and the primary current I1a flows through the main primary coil 111a, a magnetic flux is generated (see FIG. 2A). Assuming that the direction of the energized magnetic flux is the positive direction, when the IGBT 12a is turned off and the primary current I1a is interrupted, a reverse interrupting magnetic flux is generated (see FIG. 2B). This breaking magnetic flux acts on the secondary coil 1112 to generate discharge energy that causes dielectric breakdown in the discharge gap of the spark plug 2.
Furthermore, when the sub-IGBT 12b is turned on after the shut-off timing at which the energization to the main primary coil 111a is cut off and the superimposed current I1b flows through the sub-primary coil 111b, a superimposed magnetic flux in the same direction as the interrupted magnetic flux is generated (FIG. 2). (See (c)). That is, when the interrupting magnetic flux and the superimposed magnetic flux act on the secondary coil 112, the discharge energy generated in the secondary coil 112 can be increased in a superimposed manner.
In addition, the number of turns of the sub primary coil 111b is set so that the voltage generated in the sub primary coil 111b due to the magnetic flux change when the energization to the main primary coil 111a is cut off becomes smaller than the power supply voltage (for example, + 12V). It is necessary to keep. For example, when the voltage generated in the secondary primary coil 111b when the energization to the primary primary coil 111a is cut off is larger than the voltage of the DC power supply 4, the superimposed magnetic flux is generated even if the secondary IGBT 12b is turned on. This is because the superimposed current I1b cannot flow.
Further, when the sub-IGBT 12b is turned off and the energization to the sub-primary coil 111b is cut off, the counter electromotive force acts on the main primary coil 111a, so that a current in the direction opposite to the normal primary current is caused to flow. A reverse voltage is applied between the emitter and the collector of the main IGBT 12a, and there is a risk that the main IGBT 12a may break down or the deterioration of the main IGBT 12a may be accelerated. Therefore, a bypass line 14 is provided in parallel with the main IGBT 12a, and a rectifier 15 (for example, a cathode is connected to the collector side of the main IGBT 12a in the forward direction from the ground point side of the bypass line 14 toward the ignition coil 11 side. A diode having an anode connected to the emitter side of the IGBT 12a was provided.
Next, the operation of the ignition coil unit 10 by the main primary coil ignition signal Sa and the sub primary coil superimposed signal Sb generated by the ignition control means 31 will be described based on the waveform diagram of FIG.
The ignition control means 31 performs normal discharge control in an operating situation in which appropriate discharge characteristics are obtained only by the main primary coil 111a without adding a superimposed magnetic flux to the interrupting magnetic flux.
First, the signal level of the main primary coil ignition signal Sa is changed from L to H at an appropriate timing of the discharge cycle, the main IGBT 12a is turned on, and the primary current I1a starts to flow. At the timing when the primary current energization time Ta has passed, the signal level of the main primary coil ignition signal Sa is changed from H to L, the main IGBT 12a is turned off, the primary current I1a is cut off, and the secondary coil 112 side is turned on. A current I2 is supplied. During this time, the signal level of the sub-primary coil superimposed signal Sb is maintained at L, the sub-IGBT 12b remains off, and the superimposed current I1b does not flow through the sub-primary coil 111b, so that the superimposed magnetic flux acts on the secondary coil 112. There is nothing.
In the case of an operating situation that requires a large amount of discharge energy at the beginning of the discharge start, the ignition control means 31 performs a high current type superimposed discharge control.
After starting the primary current I1a in the same manner as the normal discharge control described above, the signal level of the main primary coil ignition signal Sa is changed from H to L at the timing when the primary current energization time Ta has passed, and the main IGBT 12a is turned off. At the same time, the signal level of the sub primary coil superimposed signal Sb is changed from L to H, the sub IGBT 12b is turned on, and the primary current I1b is supplied. As a result, a superimposed magnetic flux generated by energizing the sub primary coil 111b is added at a timing immediately after the start of discharge at which the interrupting magnetic flux generated by interrupting the energization of the main primary coil 111a is maximized, and the initial secondary current I2 Becomes a high current. Thereafter, the signal level of the sub primary coil superimposed signal Sb is changed from H to L at the timing when the superposed current energizing time Tb determined taking into account the time necessary for discharging the spark plug 2 has elapsed, and the sub IGBT 12b is turned off. The superimposed current I1b is cut off.
In an operating situation where it is necessary to maintain a certain level or more of discharge energy for a relatively long time from the start of discharge, the ignition control means 31 performs long discharge type superimposed discharge control.
Similar to the normal discharge control described above, after the primary current I1a starts to flow, the primary current energization time Ta elapses, the main IGBT 12a is turned off, the primary current I1a is cut off, and the secondary current I2 is supplied to the secondary coil 112 side. However, the signal level of the sub primary coil superimposed signal Sb remains L. Thereafter, the signal level of the sub primary coil superposition signal Sb is changed from L to H at the timing when the superposition start delay time Δt determined in consideration of the time during which the secondary current I2 is maintained at a predetermined value or more. The secondary IGBT 12b is turned on, and the primary current I1b is supplied. As a result, the time until the secondary current I2 becomes higher again and the secondary current I2 becomes lower than a predetermined value (energy required for discharging the spark plug 2 is lost) can be extended. The discharge period can be kept long. Thereafter, the signal level of the sub primary coil superimposed signal Sb is changed from H to L at the timing when the superposed current energizing time Tb determined taking into account the time necessary for discharging the spark plug 2 has elapsed, and the sub IGBT 12b is turned off. The superimposed current I1b is cut off.
As described above, in the internal combustion engine ignition device 1 according to the present embodiment, the engine control unit 3 having the function of the ignition control means 31 performs the energization start timing and energization time of the sub-primary coil 111b based on the driving situation of the vehicle. Is generated, and the secondary primary coil superimposed signal Sb is generated accordingly to turn on / off the secondary IGBT 12b, thereby realizing the ignition control capable of obtaining the discharge characteristics suitable for the driving situation at that time.
As the information used for the determination of the driving situation, any information may be used as long as the information is related to the combustion of the cylinder, such as the engine speed, the secondary current value, the temperature of the ignition coil 11, and the like. Further, how to determine the energization start timing and energization time of the sub-primary coil 111b from the determination result of the operating situation belongs to know-how according to the engine characteristics, etc. The energization start timing and energization time of the sub primary coil 111b are not uniquely determined.
In the internal combustion engine ignition device 1 according to the first embodiment described above, since the ignition control means 31 is provided in the engine control unit 3, it is necessary for determining energization / cutoff control of the main primary coil 111a and the sub primary coil 111b. While it is easy to grasp the driving situation, the primary primary coil ignition signal Sa and the secondary primary coil superimposed signal Sb must be supplied to the ignition coil units 10 of all the cylinders. Compatibility is lost, and the function added to the engine control unit 3 becomes complicated.
An internal combustion engine ignition device 1 ′ according to the second embodiment that can maintain compatibility with the existing engine control unit 3 will be described with reference to FIG. 4. In addition, the same code | symbol is attached | subjected to the structure of the same and same function as the internal combustion engine ignition device 1 of 1st Embodiment, and description is abbreviate | omitted.
The internal combustion engine ignition device 1 ′ is provided with ignition control means 5 corresponding to the ignition coil unit 10 ′ of each cylinder, separately from the engine control unit 3, and receives an ignition signal S from the engine control unit 3. The control means 5 controls the operation of the ignition coil unit 10 '. That is, in the internal combustion engine ignition device 1 ′ of the present embodiment, if the existing engine control unit 3 transmits an ignition signal S including information on the ignition timing and charging time in each combustion cycle, the ignition control means that has received the ignition signal S 5 generates the primary primary coil ignition signal Sa and the secondary primary coil superimposed signal Sb, and the on / off control of the primary IGBT 12a and the secondary IGBT 12b is performed to realize appropriate superimposed discharge control.
As information for the ignition control means 5 to grasp the driving situation, there is an engine speed based on the cycle of the ignition signal S transmitted from the engine control unit 3, and therefore, the energization start timing and energization of the sub primary coil 111b. The time may be controlled in association with only the engine speed, but a state unique to each cylinder may be acquired to appropriately control the energization start timing and energization time of the sub primary coil 111b. .
For example, the ignition coil unit 10 ′ is provided with secondary current detection means 16 for detecting the secondary current I 2, and the ignition control means 5 starts the energization start timing of the sub primary coil 111 b based on this secondary current detection signal. Alternatively, the energization time may be determined. Further, a temperature sensor 17 is provided at an appropriate position in the case 13 of the ignition coil unit 10 ', and the ignition control means 5 is connected to the sub primary coil 111b based on the internal temperature due to heat generated from the ignition coil 11, the main IGBT 12a, and the sub IGBT 12b. The energization start timing and energization time may be determined.
In the internal combustion engine ignition devices 1, 1 ′ of the first and second embodiments described above, although the energization start timing and energization time of the sub primary coil 111 b can be arbitrarily controlled by the sub primary coil superimposed signal Sb, the sub primary coil Since the voltage applied to 111b is determined by the power supply voltage of the DC power supply 4, there is a possibility that unnecessary discharge energy is superimposed by the sub primary coil 111b, resulting in wasteful power consumption.
For example, if a power supply to the sub-primary coil 111b is separately provided and the supply voltage to the sub-primary coil 111b can be adjusted as necessary, it is necessary and sufficient discharge energy while suppressing excessive power consumption. Can be superimposed. However, in order to obtain such a configuration, a variable output type DC power source is required, and a power source mounting space must be secured in the vehicle body, and the cost is considerably increased.
Therefore, a method using pulse width modulation (PWM) control is conceivable in order to adjust the energization amount to the sub primary coil 111b using the DC power supply 4 mounted on the vehicle. That is, the sub-IGBT 12b is switched at high speed by PWM control, the on-duty is appropriately adjusted, and the substantial voltage applied to the sub-primary coil 111b is reduced to a necessary and sufficient level.
For example, in the internal combustion engine ignition device 1 shown in FIG. 1, if the sub-primary coil superimposed signal Sb ′ sent from the engine control unit 3 is a PWM signal, the sub-IGBT 12b can be PWM-controlled, and the power supply voltage (for example, , + 12V) is reduced to a desired real voltage, and the superimposed current I1b is arbitrarily adjusted to suppress the discharge energy applied to the secondary coil 112 by the superimposed magnetic flux.
FIG. 5 shows a waveform when the secondary IGBT 12b is PWM-controlled. When the superposed discharge is maximized, +12 V is supplied from the DC power supply 4 to the sub primary coil 111b by not performing the PWM control with the duty ratio of the sub primary coil superimposed signal Sb 'being 100%. Further, when necessary and sufficient discharge energy can be superimposed by applying a voltage of about +10 V to the sub primary coil 111b, the sub IGBT 12b may be PWM-controlled with a duty ratio of about 83%. Similarly, when necessary and sufficient discharge energy can be superimposed by applying a voltage of about +8 V to the sub primary coil 111b, the sub IGBT 12b may be PWM controlled with a duty ratio of about 67%. If necessary and sufficient discharge energy can be superimposed by applying a voltage of about +6 V, the sub-IGBT 12b may be PWM controlled with a duty ratio of about 50%.
Also for the PWM control for the sub-IGBT 12b, a necessary and sufficient applied voltage may be calculated based on the driving situation determined from various vehicle information, and the duty ratio of the sub-primary coil superimposed signal Sb ′ may be determined.
As described above, the engine control unit 3 and the ignition control means 5 of the internal combustion engine ignition devices 1, 1 ′ of the first and second embodiments generate the sub-primary coil superimposed signal Sb ′ and the ignition coil units 10, 10. When the secondary IGBT 12b is subjected to PWM control by transmitting to ', the secondary primary coil superimposed signal Sb' including a high frequency pulse becomes a noise source, or conversely, PWM control by the secondary primary coil superimposed signal Sb 'due to noise mixing. May not work as intended.
6 shows a schematic configuration of an ignition coil unit 10 ″ used for the internal combustion engine ignition device according to the third embodiment, and includes a PWM signal generation circuit 18 in the case 13. That is, the ignition coil unit. The PWM signal generation circuit 18 is added to the igniter circuit within 10 ″.
In order to generate a desired PWM signal by the PWM signal generation circuit 18, in addition to an information signal for specifying the energization start timing and energization time of the sub primary coil 111b, an information signal for instructing a duty ratio of PWM control Is also necessary. Therefore, the engine control unit 3 and the ignition control means 5 provide a PWM instruction signal Sb2 for instructing the duty ratio of PWM control in addition to the sub primary coil superimposed signal Sb1 for specifying the energization start timing and energization time of the sub primary coil 111b. Send.
The PWM instruction signal Sb2 may be one that transmits numerical information of the duty ratio. However, in the PWM instruction signal Sb2 in this embodiment, the level is divided according to the signal potential of the transmission signal, and this level is the duty of the PWM control. Information to show the ratio. As described above, the function of determining the level by filtering the PWM instruction signal Sb2 with a predetermined threshold value can be easily configured with discrete parts having high heat resistance and high noise resistance. If the PWM signal generation circuit 18 composed of discrete components is provided in the igniter circuit, the risk of the PWM signal generation circuit 18 malfunctioning or damaging due to thermal runaway can be reduced, so that the reliability of PWM control is improved. There is no loss.
FIG. 7 is a waveform diagram when ignition control is performed by the ignition coil unit 10 ″. If the signal potential of the PWM instruction signal Sb2 reaches the maximum value, it is determined as level 4 and the PWM signal Since the duty ratio is set to 100% and PWM control is not performed, +12 V is supplied from the DC power supply 4 to the sub primary coil 111b, and if the signal potential of the PWM instruction signal Sb2 is determined to be level 3 lower than level 4. The PWM signal is generated with a duty ratio of about 83%, and the sub-IGBT 12b is PWM-controlled, and if the signal potential of the PWM instruction signal Sb2 is determined to be level 2 lower than level 3, the PWM is driven with a duty ratio of about 67%. A signal is generated, and the sub-IGBT 12b is PWM-controlled.If the signal potential of the PWM instruction signal Sb2 is determined to be level 1 lower than level 2, A PWM signal is generated at a duty ratio of 50%, and the secondary IGBT 12b is PWM-controlled, and if the signal potential of the PWM instruction signal Sb2 is determined to be level 0 equal to the ground potential, the duty ratio of the PWM signal is set to 0%. The PWM control of the secondary IGBT 12b is not performed.
The above-described level division of the PWM instruction signal Sb2 is an example, and it may be divided into a smaller number of levels and correspond to the duty ratio of the PWM signal, or may be divided into a larger number of levels and correspond to the duty ratio of the PWM signal. Also good.
As described above, in the internal combustion engine ignition device according to the first to third embodiments, one ignition coil 11 including the main primary coil 111a and the sub primary coil 111b is provided, and the energization timing and energization to the sub primary coil 111b are provided. By controlling the time appropriately and further adjusting the voltage applied to the sub-primary coil 111b, the discharge energy applied to the secondary coil 112 is controlled, and the high current type superimposition is realized so as to realize the optimum discharge characteristics. Discharge control and long discharge type superimposed discharge control are possible.
Conventionally, each ignition coil was separately made up of a high current type coil and a long discharge type coil, so when using a high current type coil, the discharge time is shortened, and when using a long discharge type coil Has a characteristic limitation that the current cannot be increased. In the past, when it was desired to change the discharge performance, it was necessary to replace the ignition coil. In the internal combustion engine ignition device according to the first to third embodiments, the energization / cutoff control to the sub-primary coil 111b was performed. Various types of discharge performance can be realized.
However, also in the internal combustion engine ignition device according to the first to third embodiments, there is a limit to the increase in current and the length of discharge that can be realized by energization / cutoff control to the sub-primary coil 111b.
FIG. 8 shows a schematic configuration of an ignition coil unit 20A used in the internal combustion engine ignition device according to the fourth embodiment. By using a plurality of ignition coils, a higher current and a longer discharge are shown. It can be expected.
In the ignition coil unit 20A, the first ignition coil portion 21 and the second ignition coil portion 22 are housed in a case 23, and the ignition plug 2 is connected via the high voltage terminal 231, and the first connector 232 and the second connector 233 are connected. To the engine control unit 3 or the ignition control means 5.
The first ignition coil unit 21 includes a first ignition coil 211, a first main IGBT 212a, a first sub-IGBT 212b, a bypass line 214 provided in parallel with the first main IGBT 212a, and a first ignition coil from the ground point side of the bypass line 214. Rectifying means 215 (for example, a diode having a cathode connected to the collector side of the first main IGBT 212a and an anode connected to the emitter side of the first main IGBT 212a) provided so as to be in the forward direction toward the 211 side; The first main primary coil ignition signal Sa-1 and the first sub primary coil superimposed signal Sb-1 are supplied via the connector 232.
The second ignition coil unit 22 includes a second ignition coil 221, a second main IGBT 222a, a second sub-IGBT 222b, a bypass line 224 provided in parallel with the second main IGBT 222a, and a second from the ground point side of the bypass line 224. Rectifying means 225 (for example, a diode having a cathode connected to the collector side of the second main IGBT 222a and an anode connected to the emitter side of the second main IGBT 222a) provided so as to be in the forward direction toward the ignition coil 221 side, The second main primary coil ignition signal Sa-2 and the second sub primary coil superimposed signal Sb-2 are supplied via the second connector 233.
In addition, the 1st ignition coil 211 and the 2nd ignition coil 221 are the structures similar to the ignition coil 11 mentioned above. That is, the magnetic flux generated in the first main primary coil 2111a and the first sub primary coil 2111b inserted into the outer periphery of the center core 2113 is applied to the first secondary coil 2112, and the first main coil 2111b inserted into the outer periphery of the center core 2213 is inserted. Magnetic flux generated in the two main primary coils 2211a and the second sub primary coil 2211b is applied to the second secondary coil 2212. Further, the non-grounded side of the first secondary coil 2112 of the first ignition coil 211 and the non-grounded side of the second secondary coil 2212 of the second ignition coil 221 are connected in parallel to the spark plug 2.
FIG. 9 shows waveforms when the discharge control is performed so as to realize various types of discharge performance in the ignition coil unit 20A configured as described above.
First, in the case of an operation situation that requires a large amount of discharge energy from the beginning to the middle of the start of discharge, the engine control unit 3 or the ignition control means 5 performs the following medium-term high current type superimposed discharge control.
The first main IGBT 212a and the second main IGBT 222a are turned on almost simultaneously by the first main primary coil ignition signal Sa-1 and the second main primary coil ignition signal Sa-2.
After starting the first coil primary current I1a-1 and the second coil primary current I1a-2, the signal of the first main primary coil ignition signal Sa-1 at the timing when the first coil primary current energization time Ta-1 has passed. The level is changed from H to L, and the first main IGBT 212a is turned off. Thereby, the interruption | blocking magnetic flux produced by the interruption | blocking of electricity supply to the 1st main primary coil 2111a acts on the 1st secondary coil 2112, and the 1st coil secondary current I2-1 flows.
The signal level of the second main primary coil ignition signal Sa-2 is changed from H to L at the timing when the second coil primary current energization time Ta-2 set at the same time as the first coil primary current energization time Ta-1 has elapsed. To turn off the second main IGBT 222a. Thereby, the interruption | blocking magnetic flux produced by the electricity supply interruption | blocking to the 2nd main primary coil 2211a acts on the 2nd secondary coil 2212, and the 2nd coil secondary current I2-2 flows.
That is, when the first main primary coil 2111a and the second main primary coil 2211a are energized at the same time, the first coil secondary current I2-1 and the second ignition coil portion flowing to the first ignition coil portion 21 side are cut off. As the ignition coil unit secondary current I2, which is equal to the sum of the second coil secondary current I2-2 flowing on the 22 side, a large current flows in the initial discharge.
Thereafter, at the timing when the first superposition start delay time Δt-1 determined in consideration of the time during which the ignition coil unit secondary current I2 is maintained at a predetermined value or more, the first sub primary coil superposition signal Sb-1 , The first sub-IGBT 212b is turned on, and the first coil superimposed current I1b-1 is supplied. Thereby, the first coil secondary current I2-1 becomes high again.
Further, the signal level of the second sub-primary coil superposition signal Sb-2 is changed from L to H at the timing when the second superposition start delay time Δt-2 set at the same time as the first superposition start delay time Δt-1 has elapsed. The second sub-IGBT 222b is turned on and the second coil superimposed current I1b-2 is supplied. Thereby, the 2nd coil secondary current I2-2 becomes high again.
That is, when the first sub primary coil 2111b and the second sub primary coil 2211b are energized simultaneously, the first coil secondary current I2-1 flowing to the first ignition coil unit 21 side and the second ignition coil unit 22 side As the ignition coil unit secondary current I2, which is equal to the sum of the second coil secondary current I2-2 flowing through the large current, a large current flows again in the middle of the discharge. In addition, the first coil superimposed current I1b-1 and the second coil superimposed current I1b-2 are passed while the interrupted magnetic flux generated by the current interruption to the first main primary coil 2111a and the second main primary coil 2211a is strong. By adding, a secondary current higher than that immediately after the start of discharge can flow in the first to middle stages of discharge.
Thereafter, at the timing when the superimposed current energization time (first superimposed current energization time Tb-1 = second superimposed current energization time Tb-2) determined in consideration of the time necessary and sufficient for discharging the spark plug 2 has passed. The first sub-IGBT 212b and the second sub-IGBT 222b are turned off at the same time by changing the signal levels of the first sub-primary coil superimposed signal Sb-1 and the second sub-primary coil superimposed signal Sb-2 from H to L at the same time. The superimposed current I1b-1 and the second coil superimposed current I1b-2 are simultaneously cut off.
If the control for starting energization to the first sub primary coil 2111b and the second sub primary coil 2211b at the same time as the energization interruption to the first main primary coil 2111a and the second main primary coil 2211a is performed, the initial stage of discharge Although the highest secondary current can flow, the high current cannot be maintained from the middle period to the latter period.
Therefore, in an operating situation where it is necessary to maintain a certain amount of discharge energy from the initial period to the middle period immediately after the start of discharge, the engine control unit 3 or the ignition control means 5 performs the following high current + long discharge. Perform type of superimposed discharge control.
The first main IGBT 212a and the second main IGBT 222a are turned on almost simultaneously by the first main primary coil ignition signal Sa-1 and the second main primary coil ignition signal Sa-2.
After starting to flow the first coil primary current I1a-1 and the second coil primary current I1a-2, the primary current energization time (first coil primary current energization time Ta-1 = second coil primary current energization time Ta-2). The signal levels of the first main primary coil ignition signal Sa-1 and the second main primary coil ignition signal Sa-2 are changed from H to L at the same time, and the first main IGBT 212a and the second main IGBT 222a are simultaneously changed. Turn off. Thereby, the interruption | blocking magnetic flux produced by the energization interruption | blocking to the 1st main primary coil 2111a and the 2nd main primary coil 2211a acts on the 1st secondary coil 2112 and the 2nd secondary coil 2212, respectively, and the 1st coil secondary current I2-1 and second coil secondary current I2-2 flow.
That is, when the first main primary coil 2111a and the second main primary coil 2211a are energized at the same time, the first coil secondary current I2-1 and the second ignition coil portion flowing to the first ignition coil portion 21 side are cut off. As the ignition coil unit secondary current I2, which is equal to the sum of the second coil secondary current I2-2 flowing on the 22 side, a large current flows in the initial discharge.
Thereafter, at the timing when the first superposition start delay time Δt-1 determined in consideration of the time during which the ignition coil unit secondary current I2 is maintained at a predetermined value or more, the first sub primary coil superposition signal Sb-1 , The first sub-IGBT 212b is turned on, and the first coil superimposed current I1b-1 is supplied. As a result, the ignition coil unit secondary current I2 becomes high again at the timing when the first superposition start delay time Δt−1 has elapsed since the energization of the first main primary coil 2111a and the second main primary coil 2211a was cut off.
Furthermore, the second superposition start delay time Δt−2 (the ignition coil unit secondary current I2 that has been increased by the first coil superposition current I1b-1 holds a predetermined value or more after the energization of the second main primary coil 2211a is cut off) The signal level of the second sub-primary coil superimposed signal Sb-2 is changed from L to H at the timing when “Δt−2> Δt−1” is satisfied. Then, the second auxiliary IGBT 222b is turned on, and the second coil superimposed current I1b-2 is supplied. As a result, the ignition coil unit secondary current I2 becomes high again at the timing when the second superposition start delay time Δt-2 has elapsed from the interruption of energization to the first main primary coil 2111a and the second main primary coil 2211a.
Thereafter, at the timing when the first superimposed current energization time Tb-1 has elapsed, the signal level of the first sub primary coil superimposed signal Sb-1 is changed from H to L, the first sub IGBT 212b is turned off, and the first coil By interrupting the superimposed current I1b-1, the first coil secondary current I2-1 is interrupted, and then, at the timing when the second superimposed current energization time Tb-2 has elapsed, the second sub primary coil superimposed signal Sb -2 is changed from H to L, the second sub-IGBT 222b is turned off, the second coil superimposed current I1b-2 is cut off, the second coil secondary current I2-2 is cut off, and the ignition The coil unit secondary current I2 stops flowing.
In other words, the first coil superimposed current I1b-1 is caused to flow at the timing when the first superimposition start delay time Δt-1 has elapsed since the energization of the first main primary coil 2111a and the second main primary coil 2211a is cut off, and the second superposition start delay By causing the second coil superimposed current I1b-2 to flow at the timing when the time Δt-2 has passed and increasing the current value of the ignition coil unit secondary current I2 by a time difference, a certain degree from the initial period to the middle period immediately after the start of discharge. The discharge energy of the magnitude of can be maintained.
Note that if the time width of the first superimposed current energizing time Tb-1 and the second superimposed current energizing time Tb-2 is set longer, the discharge time can be further increased, but the first main primary coil 2111a and the second If the interruption magnetic flux generated by the interruption of energization to the main primary coil 2211a disappears, sufficient discharge energy cannot be maintained only by the first coil superimposed current I1b-1 and the second coil superimposed current I1b-2, and the discharge time There is also a limit to how long it can be.
Therefore, in the case of an operating situation in which a very high current is not required during the discharge period, but it is necessary to maintain a certain amount of discharge energy from the initial period immediately after the start of discharge to the intermediate period to the latter period, the engine control unit 3 or The ignition control means 5 performs the following high current + long discharge type superimposed discharge control.
In response to the first main primary coil ignition signal Sa-1, the first main IGBT 212a is turned on, the first coil primary current I1a-1 starts to flow, and then the second ignition coil operation delay time ΔT has passed. The second primary IGBT 222a is turned on by the main primary coil ignition signal Sa-2, and the first coil primary current I1a-1 starts to flow.
The signal level of the first main primary coil ignition signal Sa-1 is changed from H to L at the timing when the first coil primary current energization time Ta-1 has passed after the first coil primary current I1a-1 starts to flow, The first main IGBT 212a is turned off. Thereby, the interruption | blocking magnetic flux produced by the interruption | blocking of electricity supply to the 1st main primary coil 2111a acts on the 1st secondary coil 2112, and the 1st coil secondary current I2-1 flows. A current equal to the first coil secondary current I2-1 flows as the ignition coil unit secondary current I2.
Thereafter, at the timing when the first superposition start delay time Δt-1 determined in consideration of the time during which the ignition coil unit secondary current I2 is maintained at a predetermined value or more, the first sub primary coil superposition signal Sb-1 The first sub-IGBT 212b is turned on, the first coil superimposed current I1b-1 is supplied, and the first coil secondary current I2-1 is increased. As a result, the ignition coil unit secondary current I2 also increases again at the timing when the first superposition start delay time Δt−1 has elapsed since the energization of the first main primary coil 2111a was cut off.
On the other hand, after the second coil primary current I1a-2 starts to flow, the signal level of the second main primary coil ignition signal Sa-2 is changed from H to L at the timing when the second coil primary current energization time Ta-2 has elapsed. Then, the second main IGBT 222a is turned off. Thereby, the interruption | blocking magnetic flux which arises by the electricity supply interruption | blocking to the 2nd main primary coil 2211a acts on the 2nd secondary coil 2212, and the 2nd coil secondary current I2-2 flows. The second coil secondary current I2-2 is superimposed on the first coil secondary current I2-1, and the ignition coil unit secondary current I2 becomes high again.
Thereafter, at the timing when the second superposition start delay time Δt-2 determined in consideration of the time during which the ignition coil unit secondary current I2 is maintained at a predetermined value or more, the second sub primary coil superposition signal Sb-2 , The second sub-IGBT 222b is turned on, the second coil superimposed current I1b-2 is supplied, and the second coil secondary current I2-2 is increased. Thereby, the ignition coil unit secondary current I2 becomes high again.
Thereafter, at the timing when the first superimposed current energization time Tb-1 has elapsed, the signal level of the first sub primary coil superimposed signal Sb-1 is changed from H to L, the first sub IGBT 212b is turned off, and the first coil By interrupting the superimposed current I1b-1, the first coil secondary current I2-1 is interrupted, and then, at the timing when the second superimposed current energization time Tb-2 has elapsed, the second sub primary coil superimposed signal Sb -2 is changed from H to L, the second sub-IGBT 222b is turned off, the second coil superimposed current I1b-2 is cut off, the second coil secondary current I2-2 is cut off, and the ignition The coil unit secondary current I2 stops flowing.
That is, there is a time difference between the energization interruption to the first main primary coil 2111a, the energization start to the first sub primary coil 2111b, the energization interruption to the second main primary coil 2211a, and the energization start to the second sub primary coil 2211b. By increasing the current value of the ignition coil unit secondary current I2 with a time difference, it is possible to perform a long discharge while maintaining a certain amount of discharge energy from the initial period immediately after the start of discharge to the middle period to the latter period.
Thus, various discharge patterns can be realized by using a plurality of ignition coils and appropriately controlling the operation timing. In particular, since it is easy to shift the arrangement of high current from the previous period to the middle period, there is a high possibility that discharge patterns suitable for future engines such as high EGR combustion, high compression ratio combustion, and lean burn combustion can be easily realized. High practical value.
Note that the number of ignition coils controlled by the main primary coil ignition signal and the sub-primary coil superimposed signal as described above is not limited to two, and three or more ignition coils may be used if storage space permits. If the number of ignition coils increases, it becomes possible to selectively use more detailed discharge patterns. Further, the connection method of the plurality of ignition coils is not limited to parallel connection, and may be connected in series.
FIG. 10 shows a schematic configuration of an ignition coil unit 20B used in the internal combustion engine ignition device according to the fifth embodiment. The first secondary coil 2112 and the second ignition coil of the first ignition coil unit 21 are shown. The second secondary coil 2212 of the unit 22 is connected in series.
The ignition coil unit 20B includes a first ignition coil portion 21 and a second ignition coil portion 22 housed in a case 23, and is connected to the engine control unit 3 or the ignition control means 5 via a common connector 234. In response to the main primary coil ignition signal Sa-1, the first sub primary coil superimposed signal Sb-1, the second main primary coil ignition signal Sa-2, and the second sub primary coil superimposed signal Sb-2, the first main primary coil 2111a is received. The first sub primary coil 2111b, the second main primary coil 2211a, and the second sub primary coil 2211b are controlled to be energized and cut off.
In the ignition coil unit 20B, the first secondary coil 2112 of the first ignition coil 211 and the second secondary coil 2212 of the second ignition coil 221 are connected in series. During operation, the discharge energy generated by the first ignition coil 221 is consumed by the resistance of the second ignition coil 221, which may impair the ignitability of the spark plug 2. Therefore, the rectifying element 25 (series connection) is connected to the ground line 24 from the series connection point where the first secondary coil 2112 of the first ignition coil 211 and the second secondary coil 2212 of the second ignition coil 221 are connected to the ground point. An anode is connected to the series connection point side and a cathode is connected to the ground point side so that the forward direction is from the point toward the ground point.
As mentioned above, although embodiment of the ignition device for internal combustion engines which concerns on this invention was described based on the accompanying drawing, this invention is not limited to these embodiment, The structure as described in a claim is changed. As long as it is not, it may be carried out by diverting known equivalent technical means.
1    内燃機関用点火装置
10   点火コイルユニット
11   点火コイル
111a 主一次コイル
111b 副一次コイル
112  二次コイル
113  センターコア
12a  主IGBT
12b  副IGBT
13   ケース
2    点火プラグ
3    エンジンコントロールユニット
31   点火制御手段
4    直流電源
DESCRIPTION OF SYMBOLS 1 Ignition device 10 for internal combustion engines Ignition coil unit 11 Ignition coil 111a Main primary coil 111b Sub primary coil 112 Secondary coil 113 Center core 12a Main IGBT
12b Deputy IGBT
13 Case 2 Spark plug 3 Engine control unit 31 Ignition control means 4 DC power supply

Claims (13)

  1.  通電により正方向の通電磁束が生じ、電流を遮断することにより逆方向の遮断磁束が生じる主一次コイルと、通電により前記遮断磁束と同方向の追加磁束が生じる副一次コイルと、一端側が点火プラグと接続され、前記主一次コイルと副一次コイルに生じた磁束が作用して放電エネルギーが発生する二次コイルと、を有する点火コイルと、
     前記点火コイルの主一次コイルへの通電・遮断を切り替える主スイッチ手段と、
     前記点火コイルの副一次コイルへの通電・遮断を切り替える副スイッチ手段と、
     前記主スイッチ手段および副スイッチ手段の切り替え動作を制御することで、燃焼サイクルの所定のタイミングで点火プラグに放電火花を発生させる点火制御手段と、
     を備え、
     前記点火制御手段は、主一次コイルへの通電を遮断した遮断タイミング以降に所定の重畳時間だけ副一次コイルに通電することで、二次コイルに発生する放電エネルギーを重畳的に増加させるようにしたことを特徴とする内燃機関用点火装置。
    A primary primary coil that generates an energized magnetic flux in the forward direction when energized and a reverse interrupted magnetic flux when the current is interrupted, a sub-primary coil that generates an additional magnetic flux in the same direction as the interrupted magnetic flux when energized, and an ignition plug on one end side An ignition coil having a secondary coil that is connected to the main primary coil and the secondary primary coil to generate discharge energy by the magnetic flux generated in the primary primary coil and the secondary primary coil,
    Main switch means for switching energization / cutoff to the main primary coil of the ignition coil;
    Sub-switch means for switching energization / cut-off to the sub-primary coil of the ignition coil;
    Ignition control means for controlling the switching operation of the main switch means and the sub switch means to generate a discharge spark in the spark plug at a predetermined timing of the combustion cycle;
    With
    The ignition control means increases the discharge energy generated in the secondary coil in a superimposed manner by energizing the sub-primary coil for a predetermined superimposition time after the shut-off timing when the energization to the main primary coil is shut off. An internal combustion engine ignition device.
  2.  前記点火コイルの主点火コイルおよび副点火コイルへの給電には、単一の直流電源を共用するようにしたことを特徴とする請求項1に記載の内燃機関用点火装置。 2. The ignition device for an internal combustion engine according to claim 1, wherein a single direct current power source is shared for power supply to the main ignition coil and the sub ignition coil of the ignition coil.
  3.  前記主一次コイルへの通電を遮断したときの磁束変化によって副一次コイルに発生する電圧が電源電圧よりも小さくなるように、前記副一次コイルの巻数を設定するようにしたことを特徴とする請求項2に記載の内燃機関用点火装置。 The number of turns of the sub primary coil is set so that a voltage generated in the sub primary coil due to a change in magnetic flux when the energization to the main primary coil is cut off becomes smaller than a power supply voltage. Item 3. The ignition device for an internal combustion engine according to Item 2.
  4.  前記主点火コイルと接地点との間に接続される主スイッチ手段と並列に接続したバイパス線路に、接地点側から点火コイル側に向かって順方向となる整流手段を設けたことを特徴とする請求項1~請求項3の何れか1項に記載の内燃機関用点火装置。 The bypass line connected in parallel with the main switch means connected between the main ignition coil and the ground point is provided with a rectifying means that is forward from the ground point side toward the ignition coil side. The ignition device for an internal combustion engine according to any one of claims 1 to 3.
  5.  前記点火制御手段は、車両の運転状況に基づいて副点火コイルの通電開始タイミングを決定するようにしたことを特徴とする請求項1~請求項4の何れか1項に記載の内燃機関用点火装置。 The internal combustion engine ignition according to any one of claims 1 to 4, wherein the ignition control means determines the energization start timing of the auxiliary ignition coil based on a driving situation of the vehicle. apparatus.
  6.  前記点火制御手段は、車両の運転状況に基づいて副点火コイルの通電時間を決定するようにしたことを特徴とする請求項1~請求項5の何れか1項に記載の内燃機関用点火装置。 6. The ignition device for an internal combustion engine according to claim 1, wherein the ignition control means determines the energization time of the auxiliary ignition coil based on a driving situation of the vehicle. .
  7.  前記副スイッチ手段は、入力される短パルスに十分追随できる高速スイッチング特性を備え、
     前記点火制御手段は、車両の運転状況に基づいて定めたデューティー比のパルス信号で前記副スイッチ手段をPWM制御することを特徴とする請求項1~請求項6の何れか1項に記載の内燃機関用点火装置。
    The sub-switch means has a high-speed switching characteristic that can sufficiently follow an input short pulse,
    The internal combustion engine according to any one of claims 1 to 6, wherein the ignition control means performs PWM control of the sub switch means with a pulse signal having a duty ratio determined based on a driving situation of the vehicle. Engine ignition device.
  8.  前記点火コイルの二次側に流れる二次電流を検出する二次電流検出手段を設け、
     前記点火制御手段は、前記二次電流検出手段によって検出された二次電流に基づいて、車両の運転状況を判定することを特徴とする請求項5又は請求項6に記載の内燃機関用点火装置。
    Providing a secondary current detecting means for detecting a secondary current flowing on the secondary side of the ignition coil;
    The ignition device for an internal combustion engine according to claim 5 or 6, wherein the ignition control means determines a driving state of the vehicle based on the secondary current detected by the secondary current detection means. .
  9.  複数の点火コイルと、各点火コイルに対応する主スイッチ手段及び副スイッチ手段をそれぞれ備え、
     全ての点火コイルにおける二次コイルを点火プラグに対して並列に接続し、
     前記点火制御手段によって、全ての点火コイルにおける主一次コイルおよび副一次コイルへの通電・遮断を制御するようにしたことを特徴とする請求項1~請求項8の何れか1項に記載の内燃機関用点火装置。
    A plurality of ignition coils, and main switch means and sub switch means corresponding to each ignition coil,
    Connect the secondary coil in all ignition coils in parallel to the spark plug,
    The internal combustion engine according to any one of claims 1 to 8, wherein the ignition control means controls energization / cutoff of the main primary coil and the sub primary coil in all ignition coils. Engine ignition device.
  10.  複数の点火コイルと、各点火コイルに対応する主スイッチ手段及び副スイッチ手段をそれぞれ備え、
     全ての点火コイルにおける二次コイルを点火プラグに対して直列に接続し、
     前記点火制御手段によって、全ての点火コイルにおける主一次コイルおよび副一次コイルへの通電・遮断を制御するようにしたことを特徴とする請求項1~請求項8の何れか1項に記載の内燃機関用点火装置。
    A plurality of ignition coils, and main switch means and sub switch means corresponding to each ignition coil,
    Connect the secondary coil in all ignition coils in series with the spark plug,
    The internal combustion engine according to any one of claims 1 to 8, wherein the ignition control means controls energization / cutoff of the main primary coil and the sub primary coil in all ignition coils. Engine ignition device.
  11.  前記点火制御手段は、内燃機関の動作を統括的に制御する内燃機関駆動制御装置に組み込まれ、全ての気筒の点火制御を内燃機関駆動制御装置が行うようにしたことと特徴とする請求項1~請求項10の何れか1項に記載の内燃機関用点火装置。 2. The ignition control means is incorporated in an internal combustion engine drive control device that comprehensively controls the operation of the internal combustion engine, and the internal combustion engine drive control device performs ignition control of all cylinders. The ignition device for an internal combustion engine according to any one of claims 10 to 10.
  12.  前記点火制御手段は、気筒毎に設けられ、内燃機関の動作を統括的に制御する内燃機関駆動制御装置からの点火指示に基づいて、対応する気筒の点火制御を行うようにしたことを特徴とする請求項1~請求項10の何れか1項に記載の内燃機関用点火装置。 The ignition control means is provided for each cylinder, and performs ignition control of the corresponding cylinder based on an ignition instruction from an internal combustion engine drive control device that comprehensively controls the operation of the internal combustion engine. The internal combustion engine ignition device according to any one of claims 1 to 10.
  13.  少なくとも、前記点火コイルと、該点火コイルに対応して設けられる主スイッチ手段および副スイッチ手段を1つのケースに収納して、ユニット化するようにしたことを特徴とする請求項1~請求項12の何れか1項に記載の内燃機関用点火装置。 13. The unit according to claim 1, wherein at least the ignition coil and main switch means and sub switch means provided corresponding to the ignition coil are housed in a single case. The ignition device for internal combustion engines of any one of these.
PCT/JP2015/060681 2015-03-30 2015-03-30 Ignition device for internal combustion engine WO2016157541A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/060681 WO2016157541A1 (en) 2015-03-30 2015-03-30 Ignition device for internal combustion engine
JP2017509138A JP6411636B2 (en) 2015-03-30 2015-03-30 Ignition device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060681 WO2016157541A1 (en) 2015-03-30 2015-03-30 Ignition device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2016157541A1 true WO2016157541A1 (en) 2016-10-06

Family

ID=57005427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060681 WO2016157541A1 (en) 2015-03-30 2015-03-30 Ignition device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP6411636B2 (en)
WO (1) WO2016157541A1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018083719A1 (en) * 2016-11-01 2018-05-11 日立オートモティブシステムズ阪神株式会社 Internal combustion engine ignition device
JP2018084209A (en) * 2016-11-25 2018-05-31 日立オートモティブシステムズ阪神株式会社 Ignition device for internal combustion engine
WO2018229883A1 (en) * 2017-06-14 2018-12-20 日立オートモティブシステムズ阪神株式会社 Internal combustion engine ignition device
WO2019044691A1 (en) * 2017-08-31 2019-03-07 株式会社デンソー Ignition device
WO2019044689A1 (en) * 2017-08-31 2019-03-07 株式会社デンソー Ignition system
WO2019044690A1 (en) * 2017-08-31 2019-03-07 株式会社デンソー Ignition device
JP2019082177A (en) * 2018-12-20 2019-05-30 株式会社デンソー Ignition device for internal combustion engine
JP2019203490A (en) * 2018-05-25 2019-11-28 株式会社デンソー Ignition device of internal combustion engine
JP2019203489A (en) * 2018-05-25 2019-11-28 株式会社デンソー Ignition control device of internal combustion engine
WO2020065855A1 (en) * 2018-09-27 2020-04-02 日立オートモティブシステムズ阪神株式会社 Ignition device for internal combustion engine
US10629368B2 (en) 2018-04-06 2020-04-21 Mitsubishi Electric Corporation Ignition apparatus
WO2020121515A1 (en) * 2018-12-14 2020-06-18 三菱電機株式会社 Ignition device
WO2020121375A1 (en) * 2018-12-10 2020-06-18 日立オートモティブシステムズ阪神株式会社 Ignition device for internal combustion engine
WO2020179016A1 (en) * 2019-03-06 2020-09-10 日立オートモティブシステムズ阪神株式会社 Ignition device for internal combustion engine
JP2020183735A (en) * 2019-05-09 2020-11-12 三菱電機株式会社 Ignition device
US10859057B2 (en) 2017-04-20 2020-12-08 Denso Corporation Internal combustion engine ignition system
JPWO2020262098A1 (en) * 2019-06-26 2020-12-30
US11125201B2 (en) 2018-06-19 2021-09-21 Denso Corporation Ignition control system for internal combustion engine
JP2021156171A (en) * 2020-03-25 2021-10-07 日立Astemo阪神株式会社 Ignition device for internal combustion engine
US20210383965A1 (en) * 2018-12-07 2021-12-09 Mitsubishi Electric Corporation Ignition system
WO2022018986A1 (en) * 2020-07-20 2022-01-27 日立Astemo株式会社 Electronic control device
CN114041011A (en) * 2019-04-09 2022-02-11 株式会社电装 Ignition control device
US11378052B2 (en) * 2017-11-27 2022-07-05 Hitachi Astemo, Ltd. Ignition device for internal combustion engine and control device for internal combustion engine
JP7142745B1 (en) 2021-04-21 2022-09-27 三菱電機株式会社 Ignition device for internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251762A (en) * 1985-08-29 1987-03-06 Nippon Soken Inc Ignition device
JP2000240546A (en) * 1999-02-19 2000-09-05 Toyota Motor Corp Ignition control device for internal combustion engine
JP2012167665A (en) * 2011-01-24 2012-09-06 Diamond Electric Mfg Co Ltd Internal combustion engine ignition system
WO2014168243A1 (en) * 2013-04-11 2014-10-16 株式会社デンソー Ignition device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910644Y1 (en) * 1970-04-17 1974-03-14
JPS52132928U (en) * 1976-03-03 1977-10-08
JPS60118377U (en) * 1984-01-18 1985-08-10 阪神エレクトリツク株式会社 Internal combustion engine ignition system
US5886476A (en) * 1997-06-27 1999-03-23 General Motors Corporation Method and apparatus for producing electrical discharges
EP2141352A1 (en) * 2008-07-02 2010-01-06 Delphi Technologies, Inc. Ignition system
JP2013096383A (en) * 2011-11-04 2013-05-20 Denso Corp Ignition device of internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251762A (en) * 1985-08-29 1987-03-06 Nippon Soken Inc Ignition device
JP2000240546A (en) * 1999-02-19 2000-09-05 Toyota Motor Corp Ignition control device for internal combustion engine
JP2012167665A (en) * 2011-01-24 2012-09-06 Diamond Electric Mfg Co Ltd Internal combustion engine ignition system
WO2014168243A1 (en) * 2013-04-11 2014-10-16 株式会社デンソー Ignition device

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018083719A1 (en) * 2016-11-01 2019-07-18 日立オートモティブシステムズ阪神株式会社 Ignition device for internal combustion engine
WO2018083719A1 (en) * 2016-11-01 2018-05-11 日立オートモティブシステムズ阪神株式会社 Internal combustion engine ignition device
JP2018084209A (en) * 2016-11-25 2018-05-31 日立オートモティブシステムズ阪神株式会社 Ignition device for internal combustion engine
US10859057B2 (en) 2017-04-20 2020-12-08 Denso Corporation Internal combustion engine ignition system
WO2018229883A1 (en) * 2017-06-14 2018-12-20 日立オートモティブシステムズ阪神株式会社 Internal combustion engine ignition device
JPWO2018229883A1 (en) * 2017-06-14 2020-04-16 日立オートモティブシステムズ阪神株式会社 Ignition device for internal combustion engine
WO2019044689A1 (en) * 2017-08-31 2019-03-07 株式会社デンソー Ignition system
JP2019044662A (en) * 2017-08-31 2019-03-22 株式会社デンソー Ignition device
JP2019044661A (en) * 2017-08-31 2019-03-22 株式会社デンソー Ignition device
JP2019044663A (en) * 2017-08-31 2019-03-22 株式会社デンソー Ignition device
KR102410965B1 (en) 2017-08-31 2022-06-22 가부시키가이샤 덴소 ignition device
WO2019044690A1 (en) * 2017-08-31 2019-03-07 株式会社デンソー Ignition device
CN111051686B (en) * 2017-08-31 2021-12-24 株式会社电装 Ignition device
US10883468B2 (en) 2017-08-31 2021-01-05 Denso Corporation Ignition system
KR20200020920A (en) * 2017-08-31 2020-02-26 가부시키가이샤 덴소 Ignition
WO2019044691A1 (en) * 2017-08-31 2019-03-07 株式会社デンソー Ignition device
CN111051686A (en) * 2017-08-31 2020-04-21 株式会社电装 Ignition device
US11378052B2 (en) * 2017-11-27 2022-07-05 Hitachi Astemo, Ltd. Ignition device for internal combustion engine and control device for internal combustion engine
US10629368B2 (en) 2018-04-06 2020-04-21 Mitsubishi Electric Corporation Ignition apparatus
CN112189091B (en) * 2018-05-25 2022-06-07 株式会社电装 Ignition control device for internal combustion engine
WO2019225725A1 (en) * 2018-05-25 2019-11-28 株式会社デンソー Ignition device of internal combustion engine
JP2019203490A (en) * 2018-05-25 2019-11-28 株式会社デンソー Ignition device of internal combustion engine
JP7087676B2 (en) 2018-05-25 2022-06-21 株式会社デンソー Internal combustion engine ignition control device
JP2019203489A (en) * 2018-05-25 2019-11-28 株式会社デンソー Ignition control device of internal combustion engine
CN112189090B (en) * 2018-05-25 2022-04-15 株式会社电装 Ignition device for internal combustion engine
JP7040289B2 (en) 2018-05-25 2022-03-23 株式会社デンソー Internal combustion engine ignition system
US11215157B2 (en) 2018-05-25 2022-01-04 Denso Corporation Ignition control device for internal combustion engine
WO2019225724A1 (en) * 2018-05-25 2019-11-28 株式会社デンソー Ignition control device of internal combustion engine
CN112189090A (en) * 2018-05-25 2021-01-05 株式会社电装 Ignition device for internal combustion engine
CN112189091A (en) * 2018-05-25 2021-01-05 株式会社电装 Ignition control device for internal combustion engine
US11067051B2 (en) 2018-05-25 2021-07-20 Denso Corporation Ignition device of internal combustion engine
US11125201B2 (en) 2018-06-19 2021-09-21 Denso Corporation Ignition control system for internal combustion engine
JPWO2020065855A1 (en) * 2018-09-27 2021-08-30 日立Astemo阪神株式会社 Ignition system for internal combustion engine
JP7150039B2 (en) 2018-09-27 2022-10-07 日立Astemo阪神株式会社 Ignition device for internal combustion engine
WO2020065855A1 (en) * 2018-09-27 2020-04-02 日立オートモティブシステムズ阪神株式会社 Ignition device for internal combustion engine
US20210383965A1 (en) * 2018-12-07 2021-12-09 Mitsubishi Electric Corporation Ignition system
WO2020121375A1 (en) * 2018-12-10 2020-06-18 日立オートモティブシステムズ阪神株式会社 Ignition device for internal combustion engine
JP6992198B2 (en) 2018-12-10 2022-01-13 日立Astemo阪神株式会社 Ignition system for internal combustion engine
JPWO2020121375A1 (en) * 2018-12-10 2021-09-02 日立Astemo阪神株式会社 Ignition system for internal combustion engine
US11417459B2 (en) 2018-12-14 2022-08-16 Mitsubishi Electric Corporation Ignition system
JPWO2020121515A1 (en) * 2018-12-14 2021-09-27 三菱電機株式会社 Ignition system
JP7112512B2 (en) 2018-12-14 2022-08-03 三菱電機株式会社 ignition device
WO2020121515A1 (en) * 2018-12-14 2020-06-18 三菱電機株式会社 Ignition device
JP2019082177A (en) * 2018-12-20 2019-05-30 株式会社デンソー Ignition device for internal combustion engine
WO2020179016A1 (en) * 2019-03-06 2020-09-10 日立オートモティブシステムズ阪神株式会社 Ignition device for internal combustion engine
CN114041011A (en) * 2019-04-09 2022-02-11 株式会社电装 Ignition control device
CN114041011B (en) * 2019-04-09 2023-02-17 株式会社电装 Ignition control device
JP2020183735A (en) * 2019-05-09 2020-11-12 三菱電機株式会社 Ignition device
US10992113B2 (en) 2019-05-09 2021-04-27 Mitsubishi Electric Corporation Ignition apparatus
JPWO2020262098A1 (en) * 2019-06-26 2020-12-30
WO2020262098A1 (en) * 2019-06-26 2020-12-30 日立オートモティブシステムズ株式会社 Control device for internal combustion engine
JP7497489B2 (en) 2019-06-26 2024-06-10 日立Astemo株式会社 Control device for internal combustion engine
CN113950578A (en) * 2019-06-26 2022-01-18 日立安斯泰莫株式会社 Control device for internal combustion engine
US20220316436A1 (en) * 2019-06-26 2022-10-06 Hitachi Astemo, Ltd. Control Device for Internal Combustion Engine
JP7270040B2 (en) 2019-06-26 2023-05-09 日立Astemo株式会社 Control device for internal combustion engine
CN113950578B (en) * 2019-06-26 2023-06-16 日立安斯泰莫株式会社 Control device for internal combustion engine
JP2021156171A (en) * 2020-03-25 2021-10-07 日立Astemo阪神株式会社 Ignition device for internal combustion engine
JP7408453B2 (en) 2020-03-25 2024-01-05 日立Astemo阪神株式会社 Ignition system for internal combustion engines
WO2022018986A1 (en) * 2020-07-20 2022-01-27 日立Astemo株式会社 Electronic control device
JP7330383B2 (en) 2020-07-20 2023-08-21 日立Astemo株式会社 electronic controller
JPWO2022018986A1 (en) * 2020-07-20 2022-01-27
US11591997B2 (en) 2021-04-21 2023-02-28 Mitsubishi Electric Corporation Internal-combustion-engine ignition apparatus
JP2022166373A (en) * 2021-04-21 2022-11-02 三菱電機株式会社 Ignition device of internal combustion engine
JP7142745B1 (en) 2021-04-21 2022-09-27 三菱電機株式会社 Ignition device for internal combustion engine

Also Published As

Publication number Publication date
JP6411636B2 (en) 2018-10-24
JPWO2016157541A1 (en) 2017-10-19

Similar Documents

Publication Publication Date Title
JP6411636B2 (en) Ignition device for internal combustion engine
JP6430049B2 (en) Method and apparatus for controlling a multi-spark ignition system for an internal combustion engine
JP6570737B2 (en) Ignition device for internal combustion engine
JP6375452B2 (en) Ignition device for internal combustion engine and ignition control method for internal combustion engine ignition device
US9371814B2 (en) Ignition device for an internal combustion engine and method for operating an ignition device for an internal combustion engine
JP6919346B2 (en) Ignition system
US11408389B2 (en) Ignition apparatus for internal combustion engine
WO2017006487A1 (en) Ignition coil for ignition device for internal combustion engine
KR20180129853A (en) Method and apparatus for controlling an ignition system
JP6820080B2 (en) Methods and equipment to control the ignition system
JP2018084209A (en) Ignition device for internal combustion engine
JP6640372B2 (en) Ignition device for internal combustion engine
JP6642049B2 (en) Ignition device
JP6536155B2 (en) Ignition system for internal combustion engine
JP6537662B1 (en) Igniter
JP6398601B2 (en) Ignition device for internal combustion engine
WO2018229883A1 (en) Internal combustion engine ignition device
JP6381008B2 (en) Ignition device for internal combustion engine
WO2022064645A1 (en) Ignition device for internal combustion engine
JP2019143507A (en) Ignition device for internal combustion engine
JP6685444B2 (en) Ignition device for internal combustion engine
JP6464634B2 (en) Ignition device for internal combustion engine
WO2020065855A1 (en) Ignition device for internal combustion engine
JP2021152364A (en) System and method used for boosted non-linear ignition coil
JP2015212528A (en) Ignition system for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887686

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509138

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: "NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - 14.03.2018 (EPO FORM 1205A)"

122 Ep: pct application non-entry in european phase

Ref document number: 15887686

Country of ref document: EP

Kind code of ref document: A1