WO2020121375A1 - Ignition device for internal combustion engine - Google Patents
Ignition device for internal combustion engine Download PDFInfo
- Publication number
- WO2020121375A1 WO2020121375A1 PCT/JP2018/045297 JP2018045297W WO2020121375A1 WO 2020121375 A1 WO2020121375 A1 WO 2020121375A1 JP 2018045297 W JP2018045297 W JP 2018045297W WO 2020121375 A1 WO2020121375 A1 WO 2020121375A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- primary coil
- superposition
- current
- ignition
- sub
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P15/00—Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P3/00—Other installations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P3/00—Other installations
- F02P3/02—Other installations having inductive energy storage, e.g. arrangements of induction coils
- F02P3/04—Layout of circuits
- F02P3/05—Layout of circuits for control of the magnitude of the current in the ignition coil
Definitions
- the present invention relates to an ignition device for an internal combustion engine mounted on a motor vehicle, and more particularly to improvement of an ignition device for an internal combustion engine that uses a plurality of primary coils to cause a discharge in an ignition plug.
- the ignition device described in Patent Document 1 causes a dielectric breakdown in the discharge gap of the ignition plug by a high voltage of several Kv generated on the secondary side by cutting off the primary current of the ignition coil, and the secondary side of the ignition coil. After the discharge current is started to flow to, another primary coil is supplied with the primary current.
- the direction of the magnetic flux generated by energizing the other primary coil is the same as the direction in which the magnetic flux decreases when the primary coil is de-energized. Therefore, the change in the magnetic flux of the primary coil due to the interruption of energization and the generated magnetic flux due to the energization of the other primary coil act on the secondary coil.
- the magnetic flux change larger than the magnetic flux change due to the usual primary current interruption acts on the secondary coil, the magnetic flux generated on the secondary side can be accelerated and the secondary current can be superimposed.
- the overlapping discharge type ignition device since a relatively large amount of discharge energy can be obtained from the spark plug, the ignitability of the fuel is improved, and the fuel consumption is also improved.
- the lap discharge type ignition device described in Patent Document 1 can adjust the superimposed energy to be given to the secondary side by changing the amount of electricity or the duration of electricity to the other primary coil, but the adjustment is automatically performed. It does not have the function to do. For example, if the current flowing through the other primary coil is adjusted by feedback control so that a desired current flows, the energization control over the other primary coil can be automatically optimized. Also, by performing feedback control so as to keep the secondary current suitable by increasing or decreasing the current flowing through the other primary coil depending on the state of the secondary current, another primary The energization control to the coil can be automatically optimized.
- the control unit can be simplified and cost reduction effects can be expected.
- a noise reduction function is required such as gradual change in the current flowing through the other primary coil, resulting in a problem that the entire control circuit becomes large.
- the present invention is an ignition device for an internal combustion engine in which an automatic control function capable of sufficiently improving the ignitability due to the spark discharge generated in the spark plug and suppressing the generation of noise can be mounted without increasing the size and cost. For the purpose of providing.
- the internal combustion engine ignition device applies the discharge energy to the secondary side of the ignition coil by controlling the energization of the ignition coil by turning on/off the ignition signal from the ignition control means.
- the ignition coil increases the amount of magnetic flux in the forward direction due to energization of a main primary current when the ignition signal is turned on, and the ignition signal is turned off.
- the primary current By cutting the primary current, the amount of magnetic flux in the forward direction decreases, and by passing the superimposed current within the discharge period after the interruption of the power supply to the main primary coil, the magnetic flux is cut in the direction opposite to the forward direction.
- a superimposing control means for controlling the energization amount by the sub-primary coil energizing means so that the superimposing current supply to the sub-primary coil is not suddenly cut off.
- the sub-primary coil energizing means is an active element that increases or decreases the amount of energization to the sub-primary coil according to an input signal.
- the superimposing control means operates the sub-primary coil energizing means at the same time when the main primary coil is de-energized to start the superimposing current supply to the sub-primary coil, An active signal for holding the superposed current at a required value is sent to the sub-primary coil energizing means for active operation.
- the superimposing control means operates the sub-primary coil energizing means at the same time when the main primary coil is de-energized to start the superimposing current supply to the sub-primary coil, It is characterized in that an active signal for increasing the superimposed current with the passage of time is sent to the sub-primary coil energizing means for active operation.
- the superposition control means includes a capacitor that short-circuits an electric charge when an ignition signal is turned on, and starts charging at the start of discharge when the ignition signal is turned off. It is characterized in that the superposition current is controlled to increase with the lapse of time by using the charge accumulation state of 1 as an index.
- the secondary current detection means for detecting a secondary current flowing on the secondary side of the ignition coil, and the detection value of the secondary current detection means satisfy a predetermined superimposition promotion condition. Based on this, a superimposition promoting unit that promotes an increase in the superimposing current by the superimposing control unit is provided.
- the superposition promoting means is a secondary current detection value detected by the secondary current detecting means, and an index for promoting an increase in the superposition current for maintaining the secondary current. Is compared with a predetermined increase promotion reference value, and the fact that the detected secondary current value does not exceed the increase promotion reference value is used as the superposition promotion condition.
- a primary coil voltage detecting means for detecting a voltage at a contact point between the main primary coil and the main primary coil energizing switch means, and a primary coil detected by the primary coil voltage detecting means.
- a superposition suppression condition determination means for determining whether or not the superposition suppression condition is satisfied depending on whether or not the voltage value has reached a primary coil voltage determination reference value determined corresponding to a discharge condition in the spark plug, and the superposition
- the control means operates the sub-primary coil energizing means at the same time when the energization of the main primary coil is cut off to start the supply of the superimposed current to the sub-primary coil, and the superposition suppressing condition determination means establishes the superposition suppressing condition.
- an active signal for suppressing the superimposed current is sent to the sub-primary coil energizing means for active operation.
- the superimposing control means controls the energization amount by the sub-primary coil energizing means so that the superimposing current supply to the sub-primary coil is not suddenly interrupted, so that the superimposing current supply is stopped.
- the noise that sometimes occurs can be suppressed.
- FIG. 1 is a schematic configuration diagram of an internal combustion engine ignition device according to a first embodiment. It is a circuit diagram which shows an example of a filter means.
- FIG. 3 is a waveform diagram showing waveforms in a main part of the internal combustion engine ignition device according to the first embodiment. It is a schematic block diagram of the internal combustion engine ignition device which concerns on 2nd Embodiment. It is a wave form diagram showing a wave form in an important section of an internal-combustion-engine ignition device concerning a 2nd embodiment. It is a schematic block diagram of the internal combustion engine ignition device which concerns on 3rd Embodiment. It is a wave form diagram showing the wave form in the important section of the internal-combustion-engine ignition device concerning a 3rd embodiment. It is a schematic block diagram of the internal combustion engine ignition device which concerns on 4th Embodiment. It is a wave form diagram showing the wave form in the important section of the internal-combustion-engine ignition device concerning a 4th embodiment.
- An ignition device 1A for an internal combustion engine shown in FIG. 1 includes an ignition coil unit 10A for generating a spark at one spark plug 2 provided for each cylinder of the internal combustion engine, and an ignition signal Si for instructing an operation timing of the ignition coil unit 10A.
- the internal combustion engine drive control device 3 as an ignition control means for outputting the above, etc. at an appropriate timing, a DC power source 4 such as a vehicle battery, and the like.
- the noise removing filter means 5 may be provided in the power supply path for safety.
- An example of the filter means 5 is an L-type filter (see FIG. 2) in which an inductor 51 is inserted in a power supply line and an electrolytic capacitor 52 is provided in a short circuit with a ground line. If the mounting space can be secured inside the ignition coil unit 10, the filter means 5 may be provided inside the ignition coil unit 10.
- the ignition coil unit 10A is a unit having an integrated structure in which the ignition coil 11, the control board, and the like are housed in a case 12 having a required shape.
- a high-voltage terminal 121 and a connector 122 are provided at appropriate places of the case 12, and the ignition plug 2 is connected via the high-voltage terminal 121, and the internal combustion engine drive control device 3, the DC power source 4, and the ground are connected via the connector 122. Connect with lines, etc.
- the ignition coil 11 efficiently causes the magnetic flux generated in the main primary coil 111a (for example, 114 turns) and the sub primary coil 111b (for example, 20 turns) to act on the secondary coil 112 (for example, 9348 turns).
- the main primary coil 111a and the sub primary coil 111b are arranged so as to surround the center core 113 formed of a highly magnetic permeable material, and the secondary coil 112 is further arranged outside thereof.
- One end of the main primary coil 111a is connected to the DC power source 4 via the connector 122, and the power source voltage VB+ (for example, 12V) is applied.
- the other end of the main primary coil 111a is connected to the collector of the ignition switch 13 using an IGBT (Insulated Gate Bipolar Transistor).
- the emitter of the ignition switch 13 is connected to the ground point GND via the connector 122.
- One end of the secondary coil 112 is connected to the ignition plug 2 via the high voltage terminal 121, and the other end is connected to the ground point GND via the fifth connection terminal 122e of the connector 122.
- a rectifying element D1 (for example, a cathode on the ground side is connected to the Diodes each having an anode connected thereto are provided on the side of the secondary coil 112 to regulate the flow direction of the secondary current I2.
- the ignition signal Si output from the internal combustion engine drive controller 3 at an appropriate timing of the discharge cycle is input to the gate of the ignition switch 13 in the ignition coil unit 10A via the connector 122. Then, when the ignition signal Si is input to the gate of the ignition switch 13 (for example, when the signal level of the ignition signal Si changes from L to H), the ignition switch 13 is turned on and the main primary coil 111a on the non-power supply side. The end is connected to the ground point GND. As a result, the main primary current I1a (hereinafter referred to as the primary current) from the power supply side to the ground side starts to flow in the main primary coil 111a, the flow rate of the primary current I1a increases, and the flow rate of the primary current I1a changes.
- the magnetic flux amount of the energized magnetic flux generated as a result is accumulated as the energy of the magnetic field. It should be noted that on the secondary side of the ignition coil 11, electric energy is accumulated due to minute capacitor components such as the secondary coil 112 and connection wiring.
- a bypass line L1 is provided in parallel with the ignition switch 13, and a rectifying element D2 (for example, a cathode on the collector side of the ignition switch 13 is provided in the forward direction from the ground point side of the bypass line L1 toward the ignition coil 11 side).
- Diodes having anodes respectively connected to the emitter side of the ignition switch 13 are provided.
- the sub primary coil 111b capable of exerting a magnetic field on the secondary coil 112 via the iron core 113 has one end connected to the DC power source 4 via the connector 122,
- the power supply voltage VB+ (for example, 12V) is applied. That is, the main primary coil 111a and the sub primary coil 111b share a power source.
- the other end of the sub primary coil 111b is connected to the collector of the superposition switch 14 as sub primary coil energizing means using an IGBT.
- the emitter of the superposition switch 14 is connected to the ground point GND via the connector 122.
- the superposition switch 14 is an active element that increases/decreases the current between the collector and the emitter in accordance with an input signal to the gate, and increases/decreases the amount of electricity supplied to the sub primary coil 111b by a gate signal from the superposition control means 15A described later.
- the superposition switch 14 energizes and cuts off the sub-primary coil 111b, and changes the energization amount to the sub-primary coil 111b, so that the superposition magnetic flux generated in the shut-off direction (the direction in which the energized magnetic flux of the main primary coil 111a is reduced). The amount of magnetic flux can be changed.
- a rectifying element D3 is provided between the sub primary coil 111b and the superposition switch 14. The rectifying element D3 is provided so as to be in the forward direction from the sub primary coil 111b toward the superposition switch 14 (for example, the cathode of the diode is connected to the superposition switch 14 side and the anode is connected to the sub primary coil 111b side).
- the flow direction of the sub-primary current I1b (hereinafter referred to as the superimposed current) is regulated, and it is possible to prevent the reverse voltage from being applied to the superimposed switch 14.
- the active operation of the superposition switch 14 is performed by a signal (gate signal) output from the superposition control means 15A that operates based on the superposition signal Sp from the internal combustion engine drive control device 3.
- the superposition control means 15A immediately operates the superposition switch 14 by receiving the superposition signal Sp (for example, the signal level changes from L to H) at the same time when the main primary coil 111a is de-energized, and the sub primary coil is operated. The supply of the superimposed current to 111b is started. Then, even if the superimposition signal Sp is stopped (for example, the signal level changes from H to L), the superimposition switch 14 supplies the sub-primary current I1b so that the supply of the superimposition current to the sub-primary coil 111b is not suddenly cut off.
- the superposition control means 15A uses the flow rate of the superposition current I1b, the superposition current detection means is provided.
- a resistor R1 is inserted in a flow path from the superposition switch 14 to the connector 122, and the voltage change is acquired by the superposition current detection signal line L2, thereby forming a superposition current detection unit.
- the first comparator 151 has an operational amplifier structure and can obtain an output Vout according to the difference between the non-inverting input (Vin(+)) and the inverting input (Vin( ⁇ )).
- the non-inverting input of the comparator 151 is connected to the superimposed current detection signal line L2, and a signal reflecting the flow rate change of the superimposed current I1b is input.
- the reference value input line L3 is connected to the inverting input of the comparator 151, and a signal serving as an index of the superposition current I1b suitable for superposition control is input.
- the output Vout of the comparator 151 is input to the base of the limiting switch 152 (for example, composed of npn type transistors), and controls the collector current of the limiting switch 152.
- the collector side of the limiting switch 152 is connected to the superimposed power supply line L4 to which the superimposed signal Sp is input, and the emitter is connected to the ground line.
- a resistor R2 is interposed between the superposed power supply line L4 and the connector 122, and the superposed power supply line L4 has a superposed power potential reduced by the resistor R2, and this superposed power potential of the limiting switch 152. Applied between collector and emitter.
- the superimposed power supply line L4 is connected to one electrode of the first capacitor C1 and the other electrode of the first capacitor C1 is connected to the ground line. That is, when the superposition signal Sp is input to the ignition coil unit 10A, the first capacitor C1 is charged by the superposition power supply supplied from the superposition power supply line L4.
- An active control signal line L5 is connected to the superimposed power supply line L4, and this active control signal line L5 is connected to the gate of the superimposed switch 14 via a resistor R3. Therefore, when the superposition signal Sp is input to the ignition coil unit 10A, a voltage according to the accumulated charge of the first capacitor C1 is applied to the active control signal line L5, and the active control signal is input to the gate of the superposition switch 14. .. That is, the superposition switch 14 can be activated by the active control signal (gate current) output from the superposition control means 15A, and the superposition current I1b corresponding to the active control signal can be controlled to flow.
- the reference value input to the reference value input line L3 of the first comparator 151 is a voltage signal generated by dividing the power supply voltage VB+ by the resistors R4a and R4b, and is input from the superimposed current detection signal line L2.
- the voltage value is made to correspond to a suitable value of the superimposed current detection value. Therefore, when the superimposed current detection value based on the superimposed current I1b flowing through the sub primary coil 111b is less than the reference value, the output of the first comparator 151 is off, but when the superimposed current detection value reaches the reference value, An output can be obtained according to the difference between the two values.
- the limiting switch 152 when the superimposed current I1b is less than the reference amount, the limiting switch 152 does not operate, and when the superimposed current I1a reaches the reference amount, the limiting switch 152 operates and the difference between the reference value and the detected superimposed current value. A collector current corresponding to the current flows. When the limiting switch 152 operates and the collector current flows, the power supply amount from the superimposing power supply line L4 to the first capacitor C1 decreases correspondingly, and the active control input from the active control signal line L5 to the gate of the superimposing switch 14 is performed. The signal also drops.
- the superposition control means 15A suppresses the active control signal (gate current) that activates the superposition switch 14 when the superposition current I1b reaches a required value (a suitable flow rate that can realize a suitable ignition state of the spark plug 2).
- a required value a suitable flow rate that can realize a suitable ignition state of the spark plug 2.
- automatic control can be performed so as to reduce the superimposed current I1b.
- the active control signal output from the superimposition control means 15A that actively controls the superimposition switch 14 is generated according to the accumulated charge of the first capacitor C1 fed from the superimposition power supply line L4. I decided. That is, when the input of the superimposition signal Sp is stopped and the superimposition control is ended, the power supply voltage of the superimposition power supply line L4 is gradually reduced by the discharge of the first capacitor C1, so that the gate current of the superimposition switch 14 is also gradually reduced. However, the superposition switch 14 does not turn off suddenly. Accordingly, when the supply of the superimposed current to the sub-primary coil 111b is stopped, the superimposed switch 14 is suddenly turned off, and the generated noise can be suppressed.
- the superimposed current sudden decrease suppressing means 16 may be provided.
- the fourth diode D4 (the anode is on the ground side and the cathode is on the power supply side) is connected to the secondary primary coil return path forming line L6 that short-circuits the VB+ power supply line and the ground line.
- the superposed current sudden decrease suppressing means 16 having a simple structure is provided.
- FIG. 3 showing waveforms of main parts in the internal combustion engine ignition device 1A.
- the superposition signal Sp is turned on at the same time as the ignition signal Si is turned off.
- the superimposition signal Sp is turned on, charges are accumulated in the first capacitor C1 by the power supply from the superimposition power supply line L4, and an active signal generated at a potential according to the charge accumulation state is superimposed from the active control signal line L5. It is input to the gate of the switch 14. That is, as the accumulated charge of the first capacitor C1 increases, the collector current of the superposition switch 14 also increases, and the flow rate of the superposition current I1b increases at a rate of increase similar to the charging characteristic of the first capacitor C1.
- the reference value is input to the inverting input of the first comparator 151 from the reference value input line L3, and the superposition current I1b input to the non-inverting input of the first comparator 151 is input. Since the detected value of is low, there is no output of the first comparator 151. After that, when the charge of the first capacitor C1 progresses and the flow rate of the superimposed current I1b increases, and the detected value of the superimposed current I1b reaches the reference value, the output Vout of the first comparator 151 causes the output Vout of the limiting switch 152 to enter the gate. And the limiting switch 152 is turned on.
- the collector current of the limiting switch 152 When the difference between the detected value of the superimposed current I1b and the reference value is small, the collector current of the limiting switch 152 is small and the voltage drop of the superimposed power supply line L4 is small. When the difference between the detected value of the superimposed current I1b and the reference value increases, the collector current of the limiting switch 152 also increases, and the amount of power supplied from the superimposed power supply line L4 to the first capacitor C1 decreases. Therefore, the first capacitor C1 suppresses the charge accumulation speed or discharges as a power source, and the active signal input from the active signal line L5 to the gate of the superposition switch 14 also becomes low. As a result, automatic control is performed to reduce the flow rate of the superimposed current I1b obtained as the collector current of the superimposed switch 14.
- the output Vout of the first comparator 151 is stopped and the limiting switch 152 is turned off.
- the power supply amount to the first capacitor C1 is restored by turning off the limiting switch 152, the first capacitor C1 is charged, and the active signal input from the active signal line L5 to the gate of the superposition switch 14 is also included. Get higher As a result, automatic control is performed to increase the flow rate of the superimposed current I1b obtained as the collector current of the superimposed switch 14.
- the superposition control means 15A can automatically perform active control of the superposition switch 14 so that the superposition current I1b is maintained at a required value. Therefore, when the internal combustion engine ignition device 1A according to the present embodiment performs the superposition control, the discharge energy applied to the secondary side is superposed by a substantially constant amount, and is a constant amount more than the secondary current I2 when the superposition control is not performed. The secondary current I2 is increased by only (see the waveform of the secondary current I2 in FIG. 3).
- the superimposition control means 15A even if the superimposition signal Sp is turned off and the superimposition control ends, the active signal is gradually reduced by discharging the first capacitor C1, so that the superimposition switch 14 is not suddenly cut off. Therefore, the noise generated when the superposition switch 14 is turned off can be suppressed. By gradually reducing the active signal in this way, the superimposed current I1b is also gradually reduced (see the waveform of the superimposed current I1b in FIG. 3).
- the superposition control means 15A can be realized as a circuit board using a discrete component having high heat resistance and noise resistance, it can be stably operated even if it is provided in the ignition coil unit 10A together with the ignition coil 11. Therefore, unlike the case where the function of the superimposition control means 15A is configured as a control device different from the ignition coil unit 10A, it is not necessary to secure a place for mounting the control device in the vehicle, which is also highly practical.
- the superposition control means 15A sends an active signal for holding the superposition current I1b to a required value to the superposition switch 14 for active operation, resulting in a substantially constant discharge on the secondary side.
- the superposition control that gives energy is described, but the present invention is not limited to this.
- the ignition device for internal combustion engine 1B of the second embodiment shown in FIG. 4 such superposition control is possible.
- the same components as those of the internal combustion engine ignition device 1A of the first embodiment described above are designated by the same reference numerals, and description thereof will be omitted.
- the superposition control means 15B in the internal combustion engine ignition device 1B of the second embodiment is provided with a reference value increase control unit 153.
- the reference value increase control unit 153 includes, for example, a second capacitor C2 that is charged by the voltage of the reference value input line L3, and a discharge switch 154 that opens and closes a short circuit that short-circuits the reference value input line L3 to ground.
- the non-inverting input Vin(+) of the first comparator 151 has a reference value (a voltage obtained by dividing the power supply voltage VB+ by resistors R4a and R4b) serving as an index for limiting the superimposed current I1b from the reference value input line L1. ) Is entered.
- the second capacitor C2 connected to the reference value input line L3 is charged/discharged according to the potential of the reference value input line L3 (see the first comparator Vin( ⁇ ) input waveform in FIG. 5).
- the ignition signal Si is input to the base of the discharge switch 154 that can be configured by an npn-type bipolar transistor or the like, the reference value input line L3 is shorted to the ground line while the ignition signal Si is on. Therefore, the second capacitor C2 is discharged, and the accumulated charge approaches zero.
- the discharge switch 154 is also turned off, so that the second capacitor C2 is charged with the potential applied to the reference value input line L3 (potential serving as the reference value).
- the charging characteristic of the second capacitor C2 By changing the reference value according to the charging characteristic of the second capacitor C2, it is possible to gradually increase the superimposed current I1b after starting the supply of the superimposed current to the sub primary coil 111b. In order to do so, the charging characteristic such that the superimposed current detection value is higher than the reference value for a while after the superimposition control is started, and the reference value gradually approaches the superimposed current detection value or changes to exceed the superimposed current detection value. It is necessary to use the second capacitor C2. By changing the reference value in this way, the first comparator 151 determines that the detection value of the superimposed current is higher than the reference value immediately after the superposition signal Sp is turned on and the superposition control is started.
- the limiting switch 152 When the switch is turned on, the limiting switch 152 is also turned on, and the amount of power supplied to the first capacitor C1 is reduced. Therefore, the charging speed of the first capacitor C1 is slowed down, the active signal serving as the base current of the superimposition switch 14 is suppressed to a low current, and the rate of increase in superimposition current immediately after the start of superimposition is reduced.
- the collector current of the limiting switch 152 decreases or the limiting switch 152 turns off, and power is supplied to the first capacitor C1. The amount recovers. Therefore, the charge storage speed of the first capacitor C1 is increased, the active signal serving as the base current of the superposition switch 14 is also increased to a high current, and the superposition current increase rate is higher than immediately after the start of superposition.
- the superimposing control means 15B can automatically perform active control of the superimposing switch 14 such that the superimposing current I1b is gradually increased. Therefore, when superimposing control is performed by the internal combustion engine ignition device 1B of the present embodiment, immediately after the superimposing control in which high discharge energy is applied from the main primary coil 111a to the secondary side is started, the superimposing current I1b is suppressed to a low level, and the secondary current I1b is reduced. The current I2 can be prevented from becoming too high. After that, when the discharge energy applied from the main primary coil 111a to the secondary side becomes low, the superimposed current I1b can be increased to prevent the secondary current I2 from decreasing (see the waveform of the secondary current I2 in FIG. 5).
- the increase promotion control is the normal time control, and the increase promotion is suppressed only when the increase promotion control is not necessary, but the invention is not limited to this. is not.
- Normal superimposition control is performed during normal times, and control that promotes an increase in the flow rate of superimposition current I1b is performed only when it is necessary to increase the flow rate to a flow rate higher than the flow rate of superimposition current I1b during normal times. good.
- the function of detecting the secondary current I2 flowing to the secondary side of the ignition coil 11 is to have a proper flow path for the secondary current I2 (for example, the cathode side of the rectifying element D1 and the ground of the connector 122). It can be configured by a resistor R5 inserted between the terminal) and a secondary current detection signal line L7 that acquires this voltage change.
- the superposition promoting means 17 is provided as a function of working the superposition switch 14 to promote the flow rate of the superposition current I1b.
- the superposition promoting means 17 can be realized by various circuit structures, but in the present embodiment, an example in which the second comparator 171 and the superposition promoting switch 172 are used is shown.
- the superimposition promoting means 17 promotes an increase in the superimposing current by the superimposition controlling means 15C based on the detection value of the secondary current detecting means satisfying a predetermined superimposing promoting condition.
- a superimposition promotion condition is used as a condition for determining whether or not to promote an increase in the superimposition current I1b in order to avoid a state where the secondary current I2 decreases and good ignitability cannot be maintained. Setting is required. For example, when the secondary current I2 is lower than a predetermined reference value during the period of performing the superposition control, if the active signal output from the superposition control means 15C is increased, the superposition switch 14 changes the superposition current I1b. The rate of increase can also be increased.
- the secondary current I2 when the secondary current I2 is lower than the predetermined reference value, an active signal is output from the superposition control means 15C by the normal superposition control, and when the secondary current I2 becomes equal to or higher than the predetermined reference value, the superposition is performed.
- the supply of the current I1b is suppressed to limit the superimposed current I1b more than in the normal state.
- the secondary current detection value (the signal voltage of the secondary current detection signal line L7) detected by the secondary current detection means is input to the non-inverting input Vin(+) of the second comparator 171, and the inverting input Vin(+ Enter the increase promotion reference value in -).
- the increase promotion reference value is a predetermined value as an index for promoting the increase of the superimposed current in order to maintain the secondary current I2 at or above the reference value, and a voltage value corresponding to the detected secondary current value is used.
- the voltage obtained by dividing the power supply voltage VB+ by the resistors R6a and R6b is used as the increase promotion reference value, and the second voltage is supplied via the increase promotion reference signal line L8 connected between the resistors R6a and R6b.
- the second comparator 171 is assumed to use an open collector type comparator, and the pull-up voltage to which the power supply voltage VB+ is input via the resistor R7 is the H level voltage of the output Vout which becomes the increase promotion condition determination signal Su. Set to.
- the increase promotion switch 172 uses, for example, a pnp-type bipolar transistor.
- the emitter of the increase promoting switch 172 is connected to the DC power supply 4 via the connector 122, and the power supply voltage VB+ is applied.
- the collector of the increase promotion switch 172 is connected to the reference value input line L3 of the superimposition control means 15C via the increase promotion power supply line L9 through which the resistor R8 is inserted.
- the increase promotion switch 172 is turned on and the collector current flows through the increase promotion power supply line L9, the reference value line L3 becomes equal to the state where the power supply line in which the resistor R8 and the resistor R4a are connected in parallel is connected. ..
- the increase promotion switch 172 when the increase promotion switch 172 is turned on and the increase promotion power supply line L9 is connected to the reference value line L3, it means that the resistor R8 and the resistor R4a are connected in parallel, and the combined resistance value and the resistance R4b of these resistors are combined.
- the potential of the reference value line L3 which is the voltage division ratio of
- the reference value supplied from the reference value line L3 to the second capacitor C2 is a relatively low value determined by the voltage division ratio of the resistors R4a and R4b. is there.
- the reference value supplied from the reference value line L3 to the second capacitor C2 is the combined resistance of the resistor R8 and the resistor R4a connected in parallel and the resistor R4b. It becomes a relatively high value determined by the partial pressure ratio of.
- the reference value becomes higher than the superimposed current detection value, or the difference between the superimposed current detection value and the reference value is reduced, so that the limiting switch 152 is turned off and the collector current is reduced. Is reduced.
- the amount of power supplied to the first capacitor C1 increases, the charge storage speed increases, and the gate current to the superposition switch 14 also increases.
- the increase of the superimposed current I1b controlled as the collector current of the superimposed switch 14 can be promoted.
- the increase promotion condition determination signal Su which is the output Vout of the second comparator 171 is input to the base of the increase promotion switch 172 from the operating state instruction line L10 through the resistor R9.
- the increase promotion condition determination signal Su from the second comparator 171 is off (the signal level is H)
- the base current of the increase promotion switch 172 does not flow, so the increase promotion switch 172 is turned off, and the increase promotion supply voltage is increased.
- Power is not supplied to the superposition control means 15C via the electric wire L9.
- the increase promoting condition determination signal Su from the second comparator 171 is turned on (the signal level is L)
- the base current of the increase promoting switch 172 flows, the increase promoting switch 172 is turned on, and the increase promoting supply is supplied. Power is supplied to the superimposition control means 15C via the electric wire L9.
- the superposition promoting means 17 thus configured, when the increase promoting condition is satisfied, the charge accumulation speed of the second capacitor C2 is increased and the reference value signal line L3 supplies the inverted input Vin(-) of the first comparator 151.
- the increase of the standard value is promoted. Since the reference value increases early, it becomes easy to exceed the superimposed signal detection value, and the output Vout of the first comparator 151 stops at an early timing.
- the limiting switch 152 is also turned off, the amount of power supplied from the superimposed power supply line L4 to the first capacitor C1 is restored, and the charge storage speed of the first capacitor C1 can be increased.
- the active signal which is the gate current for actively controlling the superposition switch 14
- the increase of the superposition current I1b is promoted. That is, since the superposed magnetic flux generated in the sub primary coil 111b increases and the magnetic flux change acting on the secondary coil 112 increases, the electromotive force on the secondary side of the ignition coil is increased and the secondary current I2 is maintained at a high value. Is possible.
- the superimposition promotion means 17 when the increase promotion condition is not satisfied, the superimposition promotion means 17 remains off and power is not supplied from the increase promotion power supply line L9 to the reference signal line L3. Therefore, the charge storage speed of the second capacitor C2 is not increased, and thus the charge storage speed of the first capacitor C1 is not increased.
- the superimposition promoting means 17 supplies power to the superimposition controlling means 15C from the increase promoting power supply line L9 to obtain the reference value. Promote the increase of.
- the superposition promotion means 17 will perform the superposition promotion control again, and the secondary promotion. It is possible to automatically increase the current I2 and keep the secondary current I2 at a high value.
- FIG. 7 showing waveforms of main parts in the internal combustion engine ignition device 1C.
- the non-inverting input Vin(+) of the first comparator 151 also remains L, so the output Vout of the first comparator 151 is also L, and the limiting switch The 152 does not operate.
- the increase promotion condition is satisfied again, so that power is supplied from the increase promotion means 17 to the superposition control means 15C via the increase promotion power supply line L9.
- the second capacitor C2 of the superimposition control means 15C is charged by the parallel power supply including the power supply supplied via the resistor R4a and the power supply supplied via the increase promoting power supply line L9, and the charge storage speed is accelerated. To be done.
- the superposition signal Sp is not input, so that the first capacitor C1 is not charged and the active signal is not output to the superposition switch 14. Therefore, after starting the discharge of the ignition plug 2, energy is not applied to the secondary side of the ignition coil in a superimposed manner, and the secondary current I2 also decreases as the forward magnetic flux in the main primary coil 111a decreases.
- the superposition signal Sp is turned on at the same time as the ignition signal Si is turned off.
- the superimposition signal Sp is turned on, power is supplied from the superimposition power supply line L4 to start charging the first capacitor C1.
- an active signal having a flow rate according to the charge charged in the first capacitor C1 is input to the gate of the superposition switch 14, the superposed current I1b starts to flow in the sub primary coil 111b, and the amount of accumulated charge in the first capacitor C1 continues thereafter. Accordingly, the flow rate of the superimposed current I1b increases.
- the secondary current I2 is so high that the increase promotion condition is no longer satisfied, and power is no longer supplied from the increase promotion means 17 to the superposition control means 15C via the increase promotion power supply line L9. Therefore, the second capacitor C2 of the superimposition control means 15C is charged only by the power source supplied via the resistor R4a, and the increasing speed of the reference value input to the inverting input of the first comparator 151 is not promoted. It does not rise easily. If the reference value is a relatively low value, the superimposed current detection value is likely to be higher, and therefore the first comparator 151 is turned on and the limiting switch 152 is easily turned on.
- the limiting switch 152 When the limiting switch 152 is turned on and the collector current flows, the amount of power supplied to the first capacitor C1 decreases, the active signal supplied to the superposition switch 14 also decreases, and the superposition current I1b flowing to the sub primary coil 111b increases. The speed will be slightly lower. As described above, when the increase promoting condition is not satisfied, the increasing rate of the superimposed current I1b flowing through the sub primary coil 111b is reduced, so that the secondary current I2 can be prevented from becoming higher than necessary.
- the increase promotion condition is satisfied again, so that power is supplied from the increase promotion means 17 to the superposition control means 15C via the increase promotion power supply line L9.
- the second capacitor C2 of the superimposition control means 15C is charged by the parallel power supply including the power supply supplied via the resistor R4a and the power supply supplied via the increase promoting power supply line L9.
- the reference value input to the inverting input of the first comparator 151 also increases in speed, so that the reference value reaches the superimposed current detection value at an early timing and the first comparison
- the output of the device 151 is turned off, and the limiting switch 152 is also turned off.
- the limiting switch 152 When the limiting switch 152 is turned off, the amount of power supplied from the superimposed power supply line L4 to the first capacitor C1 is recovered and the charge storage speed is increased, so that the increase of the superimposed current I1b flowing through the sub primary coil 111b is promoted. be able to. In this way, when the increase promotion condition is satisfied, the increase of the superimposed current I1b flowing through the sub primary coil 111b is promoted, so that the secondary current I2 can be suppressed from becoming lower than the reference value.
- the amount of change in the magnetic flux acting on the secondary coil 112 can be preferably held. Therefore, the electromotive voltage generated on the secondary side can be maintained high. That is, according to the internal combustion engine ignition device 1C of the present embodiment, in order to sufficiently and sufficiently improve the ignitability due to the spark discharge generated in the spark plug 2, the secondary current I2 is maintained at a high value, but is excessively increased. It is possible to suppress an increase in the power consumption by increasing the secondary current I2. Moreover, the superimposition promoting means 17 can be constructed at a relatively low cost and in a small size by using discrete components such as the second comparator 171 and the increase promoting switch 172.
- automatic control is performed so as to obtain a suitable combustion state according to the detection states of the superimposed current I1b and the secondary current I2.
- the information used for automatic control is not limited to the current value. For example, if the superposition control is performed using the secondary coil voltage applied to the spark plug 2, it is possible to perform appropriate ignition control according to the discharge state of the spark plug 2.
- the control for suppressing the secondary side discharge energy is effective.
- the secondary coil voltage is a high voltage ranging from several kV to several tens of kV, it is necessary to consider various problems such as leakage due to the provision of the voltage dividing resistor. It is not realistic to do.
- the voltage detection value of the main primary coil 111a that generates a voltage according to the turn ratio with the secondary coil 112 is estimated as the secondary coil voltage detection value.
- the superposition control is performed. Since the voltage generated in the main primary coil 111a (hereinafter referred to as the primary coil voltage) has a relatively low voltage value, the difficulty of monitoring is low. However, the primary coil voltage and the secondary coil voltage have different scales of voltage values and have opposite polarities. Based on this difference, the primary coil voltage can be treated as the correlation information of the secondary coil voltage.
- an internal combustion engine ignition device 1D according to a fourth embodiment will be described in detail with reference to the accompanying drawings.
- the same components as those of the internal combustion engine ignition devices 1A to 1C according to the first to third embodiments described above are designated by the same reference numerals, and description thereof will be omitted.
- the ignition coil unit 10D of the internal combustion engine ignition device 1D of the fourth embodiment in order to detect the low-voltage side voltage of the main primary coil 111a, between the main primary coil 111a and the ignition switch 13 (for example, the bypass line L1. (The same position as) and the primary coil voltage detection line L11 is branched to lead to the primary coil voltage detection means 18.
- the primary coil voltage detection means 18 the position coil voltage input from the primary coil voltage detection line L11 is stepped down by the resistor R9, and a resistor R10 for voltage detection is further inserted between the position coil voltage and the ground line. The voltage drop due to the resistor R10 is acquired by the primary coil voltage detection line L12.
- the primary coil voltage detection line L12 is connected to the superposition suppression condition determination means 19 and supplies the primary coil voltage detection value as information correlating with the secondary coil voltage.
- the primary coil voltage detection means 18 is provided with a bypass line L13 that bypasses the primary coil voltage detection line L12 and diverts the current.
- a Zener diode ZD is connected to the bypass line L13 so as to be reverse biased (cathode on the main primary coil side and anode on the ground side), and the Zener breakdown voltage may be applied to the superposition suppression condition determination means 19. It is set to an undesired regulation voltage value.
- the Zener diode ZD from breakdown and to prevent the regulated voltage from being applied to the primary coil voltage detection line L12. ..
- the superposition suppression condition determination means 19 determines whether or not the superposition control is possible based on the change in the voltage applied to the ignition plug 2. For example, the superposition suppression condition determination means 19 determines whether or not the primary coil voltage value detected by the primary coil voltage detection means 18 has reached the primary coil voltage determination reference value determined in correspondence with the discharge condition in the spark plug 2. The success or failure of the superposition suppression condition is determined by. When the superposition suppression condition determination unit 19 determines that the superposition suppression condition is satisfied, the active signal sent from the superposition control unit 15 to the superposition switch 14 is suppressed to suppress the superposition current I1b flowing through the sub-primary coil 111b, resulting in an excess.
- the superposition suppression condition determination unit 19 determines that the superposition suppression condition is not satisfied, the active signal sent from the superposition control unit 15 to the superposition switch 14 is not suppressed, and the superposition current I1b with the full capacity is supplied to the sub primary coil 111b. , Prevents blowout of spark discharge.
- the superposition suppression condition determination means 19 for determining success or failure of the superposition suppression condition uses the primary coil voltage detection value input from the primary coil voltage detection means 18 via the primary coil voltage detection line L12 as an inverted input Vin of the third comparator 191. Receive with (-). The primary coil voltage determination reference value is input to the non-inverting input Vin(+) of the third comparator 191 via the determination reference value line L14. The primary coil voltage determination reference value is generated as a constant voltage signal obtained by dividing the power supply voltage VB+ by the resistors R11a and R11b.
- the output Vout of the third comparator 191 is input to the base of the superposition suppressing switch 192 composed of, for example, an npn-type bipolar transistor.
- the emitter of the superposition suppression switch 192 is connected to the ground line, and the collector is connected to the parallel connection line L15 in which the resistor R12 is inserted.
- the other end of the parallel connection line L15 is connected to the reference value line L3 of the superposition control means 15D. That is, when the superposition suppressing switch 192 is turned on and the parallel connection line L15 is connected to the ground line, the resistors R12 and R4b are connected in parallel, and the voltage division ratio between the combined resistance value and the resistor R4a is obtained. Then, the potential of the reference value line L3 is decreased.
- the reference value supplied from the reference value line L3 to the inverting input of the first comparator 151 is the voltage division ratio of the resistors R4a and R4b. It is a relatively high value determined by.
- the reference value supplied from the reference value line L3 to the inverting input of the first comparator 151 is the resistance R12 and the resistance R4b connected in parallel. It becomes a relatively low value determined by the voltage division ratio of the combined resistance of R1 and the resistance R4a.
- the reference value becomes lower than the superposition current detection value
- the limiting switch 152 is turned on, and the collector current flows, so that the amount of power supply to the first capacitor C1 decreases.
- the charge accumulation is suppressed, and the gate current to the superposition switch 14 also decreases.
- the superimposed current I1b controlled as the collector current of the superimposed switch 14 is suppressed.
- FIG. 9 showing waveforms of main parts in the internal combustion engine ignition device 1D.
- the primary coil voltage is the reference ground potential, and is lower than the primary coil voltage determination reference value set to the value on the negative electrode side. Therefore, the superposition suppression condition is satisfied, and the superposition suppression switch 192 turns on.
- the resistor R12 is connected in parallel with the resistor R4b, and the reference value supplied from the reference value line L3 to the inverting input of the first comparator 151 is replaced with a low value.
- the output Vout of the first comparator 151 remains L and the active control signal is not output from the active control signal line L5 to the superposition switch 14.
- the primary current I1a starts to flow.
- the primary coil voltage slightly changes due to the impedance component of the main primary coil 111a itself, since it does not exceed the primary coil voltage determination reference value, the superposition suppression condition remains satisfied, but the superposition control is performed. It will not take place.
- the superposition signal Sp is turned on at the same time as the ignition signal Si is turned off.
- the superimposition signal Sp is turned on, power is supplied from the superimposition power supply line L4 to start charging the first capacitor C1.
- an active signal having a flow rate according to the charge charged in the first capacitor C1 is input to the gate of the superposition switch 14, the superposed current I1b starts to flow in the sub primary coil 111b, and the amount of accumulated charge in the first capacitor C1 continues thereafter. Accordingly, the flow rate of the superimposed current I1b increases.
- the secondary current I2 is so high that the superposition suppression condition is no longer satisfied, and the resistance R12 of the parallel connection line L15 is not connected in parallel to the resistance R4b of the superposition control means 15D. Therefore, a high voltage corresponding to the voltage division ratio of the resistors R4a and R4b is supplied to the reference value line L3 as a reference value.
- the reference value becomes high, the first comparator 151 is hard to be turned on, the collector current does not flow through the limiting switch 52, and the amount of power supply to the first capacitor C1 is not reduced.
- the superposition suppression condition is satisfied again, so that the resistance R12 of the parallel connection line L15 is connected in parallel to the resistance R4b of the superposition control means 15D from the increase promoting means 17. Done. Therefore, a reference value of a relatively low value is supplied to the reference value line L3, the first comparator 151 easily turns on, the limiting switch 52 turns on, and the first capacitor C1 is turned on. Reduce the power supply.
- the active signal supplied to the superposition switch 14 is also suppressed, so that the superposition current I1b flowing through the sub primary coil 111b is also suppressed.
- the superposition suppression control can suppress the heat generation of the sub-primary coil 111b, and has an advantage that the control elements such as the ignition switch 13 and the superposition switch 14 can be protected from deterioration and damage due to heat.
- the primary coil voltage detection means 18 and the superposition suppression condition determination means 19 can be constructed relatively inexpensively and small in size with discrete parts having high heat resistance and noise resistance.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Ignition Installations For Internal Combustion Engines (AREA)
Abstract
Provided is an ignition device for an internal combustion engine with which it is possible to build in an automatic control function for improving the ignition performance of an ignition plug, without an increase in size or cost. An ignition device 1 for an internal combustion engine, which employs a superimposed magnetic flux generated by means of energization of an auxiliary primary coil 111b to increase a change in magnetic flux after energization of a main ignition coil 111a has been shut off, thereby increasing a discharge energy applied to a secondary coil 112, is provided with: a superimposition switch 14 capable of controlling the amount of flow of a superimposed current I1b; and a superimposition control means 15 for instructing the superimposition switch 14 in such a way as to achieve an amount of flow of the superimposed current I1b suitable for improving the ignition performance.
Description
本発明は、自動車両に搭載される内燃機関用の点火装置に関し、特に、複数の一次コイルを使用して点火プラグに放電を起こす内燃機関用点火装置の改良に関する。
The present invention relates to an ignition device for an internal combustion engine mounted on a motor vehicle, and more particularly to improvement of an ignition device for an internal combustion engine that uses a plurality of primary coils to cause a discharge in an ignition plug.
車両搭載の内燃機関として、燃費改善のために直噴エンジンや高EGRエンジンが採用されているが、これらのエンジンは着火性があまり良くないため、点火装置には高エネルギー型のものが必要になる。そこで、古典的な電流遮断原理により点火コイル一次側から点火コイル二次側に放電エネルギーを与えることに加え、もう一つの一次コイルに通電して二次側へ与えるエネルギーを重畳的に高める重ね放電型点火装置を、本件発明者は提案している。(例えば、特許文献1を参照)。
As internal combustion engines installed in vehicles, direct injection engines and high EGR engines are used to improve fuel efficiency, but these engines do not have very good ignitability, so a high energy type ignition device is required. Become. Therefore, in addition to applying discharge energy from the ignition coil primary side to the ignition coil secondary side based on the classical current cutoff principle, overlapping discharge that increases the energy applied to the secondary side by energizing another primary coil is superimposed. The present inventor has proposed a type ignition device. (For example, refer to Patent Document 1).
特許文献1に記載の点火装置は、点火コイルの一次電流を遮断することで二次側に発生する数Kvの高圧電圧により、点火プラグの放電間隙に絶縁破壊を起こし、点火コイルの二次側に放電電流を流し始めた後に、もう一つの一次コイルに一次電流を流す。もう一つの一次コイルへの通電で生じる磁束の向きは、一次コイルの通電遮断で磁束が減少する向きと同じである。このため、通電遮断による一次コイルの磁束変化と、もう一つの一次コイルへの通電による発生磁束が、二次コイルに作用することとなる。すなわち、二次コイルには、通常の一次電流遮断による磁束変化よりも大きな磁束変化が作用するので、二次側に発生する磁束を加速させ、二次電流を重畳できる。事実、重ね放電型の点火装置によると、点火プラグに比較的大きな放電エネルギーを得ることができるため、燃料への着火性が向上し、ひいては燃費も向上する。
The ignition device described in Patent Document 1 causes a dielectric breakdown in the discharge gap of the ignition plug by a high voltage of several Kv generated on the secondary side by cutting off the primary current of the ignition coil, and the secondary side of the ignition coil. After the discharge current is started to flow to, another primary coil is supplied with the primary current. The direction of the magnetic flux generated by energizing the other primary coil is the same as the direction in which the magnetic flux decreases when the primary coil is de-energized. Therefore, the change in the magnetic flux of the primary coil due to the interruption of energization and the generated magnetic flux due to the energization of the other primary coil act on the secondary coil. That is, since the magnetic flux change larger than the magnetic flux change due to the usual primary current interruption acts on the secondary coil, the magnetic flux generated on the secondary side can be accelerated and the secondary current can be superimposed. In fact, according to the overlapping discharge type ignition device, since a relatively large amount of discharge energy can be obtained from the spark plug, the ignitability of the fuel is improved, and the fuel consumption is also improved.
しかし、特許文献1に記載された重ね放電型点火装置は、もう一つの一次コイルへの通電量や通電時間を変えることで、二次側へ与える重畳エネルギーを調整できるものの、その調整を自動的に行う機能を備えていない。例えば、もう一つの一次コイルに流れる電流をフィードバック制御により希望の電流が流れるように調整すれば、もう一つの一次コイルへの通電制御を自動的に最適化できる。また、二次電流の状態によって、もう一つの一次コイルに流れる電流を増加させたり、逆に減少させたりして、二次電流を好適に保つ様にフィードバック制御を行うことでも、もう一つの一次コイルへの通電制御を自動的に最適化できる。
However, the lap discharge type ignition device described in Patent Document 1 can adjust the superimposed energy to be given to the secondary side by changing the amount of electricity or the duration of electricity to the other primary coil, but the adjustment is automatically performed. It does not have the function to do. For example, if the current flowing through the other primary coil is adjusted by feedback control so that a desired current flows, the energization control over the other primary coil can be automatically optimized. Also, by performing feedback control so as to keep the secondary current suitable by increasing or decreasing the current flowing through the other primary coil depending on the state of the secondary current, another primary The energization control to the coil can be automatically optimized.
しかしながら、このような自動制御の機能を内燃機関用点火装置へ実装する場合、制御ユニットが大型化したり、装置自体が高コスト化したりという問題が生じる。制御ユニットが大型化してしまうと、狭小な車両内での搭載場所を別途確保する必要が生じてしまうので、車体の設計から見直さなければならない場合もある。また、制御ユニットが高コストになってしまうと、それだけ車両価格を上げなければならず、市場競争力を担保できない可能性もある。
However, when such an automatic control function is implemented in an internal combustion engine ignition device, there arise problems that the control unit becomes large and the device itself becomes expensive. If the control unit becomes large, it becomes necessary to separately secure a mounting place in a narrow vehicle, and therefore it may be necessary to review the design of the vehicle body. Further, if the cost of the control unit becomes high, the vehicle price must be raised accordingly, and there is a possibility that the market competitiveness cannot be secured.
一方、もう一つの一次コイルに流れる電流を半導体スイッチ素子のスイッチング動作でON/OFF制御してやれば、制御部を簡素化でき、コスト抑制の効果も期待できる。しかしながら、高電圧対応の半導体スイッチ素子で高速にスイッチング動作を行うと、スイッチOFF時に2つの一次コイルに流れる電流が急激に変化する事で、大きなノイズを発生させてしまう。このため、もう一つの一次コイルに流れる電流の変化を緩やかにするなど、ノイズ低減機能が必要となり、結果として制御回路全体が大きくなってしまうという問題が生ずる。
On the other hand, if the ON/OFF control of the current flowing through the other primary coil is performed by the switching operation of the semiconductor switch element, the control unit can be simplified and cost reduction effects can be expected. However, when a high-voltage semiconductor switching element performs a high-speed switching operation, a large amount of noise is generated because the currents flowing through the two primary coils change abruptly when the switch is turned off. For this reason, a noise reduction function is required such as gradual change in the current flowing through the other primary coil, resulting in a problem that the entire control circuit becomes large.
そこで、本発明は、点火プラグに発生した火花放電による着火性を必要十分に向上させ、ノイズの発生も抑制できる自動制御機能を、大型化・高コスト化させずに搭載できる内燃機関用点火装置の提供を目的とする。
Therefore, the present invention is an ignition device for an internal combustion engine in which an automatic control function capable of sufficiently improving the ignitability due to the spark discharge generated in the spark plug and suppressing the generation of noise can be mounted without increasing the size and cost. For the purpose of providing.
上記課題を解決するために、内燃機関用点火装置は、点火制御手段からの点火信号のオン・オフによって点火コイルへの通電制御を行うことで、点火コイルの二次側に放電エネルギーを与えて点火プラグに火花放電を起こさせる内燃機関用点火装置において、前記点火コイルは、点火信号がオンで行われる主一次電流の通電により順方向の磁束量が増加し、点火信号がオフになって主一次電流を遮断することにより順方向の磁束量が減少する主一次コイルと、該主一次コイルに対する通電遮断以降の放電期間内に重畳電流を流すことにより、順方向と逆の遮断方向に磁束を発生させる副一次コイルと、一端側が点火プラグと接続され、前記主一次コイルと副一次コイルの磁束変化が作用して放電エネルギーが与えられる二次コイルと、を有し、前記副一次コイルへの通電・遮断を行うと共に、副一次コイルへの通電量を変えることで、遮断方向の磁束量を変化させる副一次コイル通電手段と、前記主一次コイルへの通電遮断以降に前記副一次コイル通電手段を動作させ、前記副一次コイルへの重畳電流供給が急激に遮断されないよう前記副一次コイル通電手段による通電量を制御する重畳制御手段と、を備えることを特徴とする。
In order to solve the above-mentioned problems, the internal combustion engine ignition device applies the discharge energy to the secondary side of the ignition coil by controlling the energization of the ignition coil by turning on/off the ignition signal from the ignition control means. In an ignition device for an internal combustion engine that causes a spark discharge in a spark plug, the ignition coil increases the amount of magnetic flux in the forward direction due to energization of a main primary current when the ignition signal is turned on, and the ignition signal is turned off. By cutting the primary current, the amount of magnetic flux in the forward direction decreases, and by passing the superimposed current within the discharge period after the interruption of the power supply to the main primary coil, the magnetic flux is cut in the direction opposite to the forward direction. A secondary primary coil to be generated, and a secondary coil whose one end side is connected to an ignition plug and a magnetic flux change of the primary primary coil and the secondary primary coil acts to give discharge energy, and to the secondary primary coil A sub-primary coil energizing means for changing the amount of magnetic flux in the interruption direction by performing energization/interruption and changing the energization amount to the sub-primary coil, and the sub-primary coil energization means after energization interruption to the main primary coil. And a superimposing control means for controlling the energization amount by the sub-primary coil energizing means so that the superimposing current supply to the sub-primary coil is not suddenly cut off.
また、上記の内燃機関用点火装置において、前記副一次コイル通電手段は、入力信号に応じて副一次コイルへの通電量を増減させる能動素子であることを特徴とする。
Further, in the above ignition device for an internal combustion engine, the sub-primary coil energizing means is an active element that increases or decreases the amount of energization to the sub-primary coil according to an input signal.
また、上記の内燃機関用点火装置において、前記重畳制御手段は、前記主一次コイルへの通電遮断と同時に前記副一次コイル通電手段を動作させて前記副一次コイルへの重畳電流供給を開始させ、重畳電流を所要値に保持する能動信号を前記副一次コイル通電手段へ送って能動動作させることを特徴とする。
Further, in the above ignition device for an internal combustion engine, the superimposing control means operates the sub-primary coil energizing means at the same time when the main primary coil is de-energized to start the superimposing current supply to the sub-primary coil, An active signal for holding the superposed current at a required value is sent to the sub-primary coil energizing means for active operation.
また、上記の内燃機関用点火装置において、前記重畳制御手段は、前記主一次コイルへの通電遮断と同時に前記副一次コイル通電手段を動作させて前記副一次コイルへの重畳電流供給を開始させ、時間経過に伴って重畳電流を増加させる能動信号を前記副一次コイル通電手段へ送って能動動作させることを特徴とする。
Further, in the above ignition device for an internal combustion engine, the superimposing control means operates the sub-primary coil energizing means at the same time when the main primary coil is de-energized to start the superimposing current supply to the sub-primary coil, It is characterized in that an active signal for increasing the superimposed current with the passage of time is sent to the sub-primary coil energizing means for active operation.
また、上記の内燃機関用点火装置において、前記重畳制御手段は、点火信号のオンで電荷をショートし、点火信号がオフとなった放電開始と共に充電を開始するコンデンサを備え、充電開始後におけるコンデンサの電荷蓄積状態を指標として、時間経過に伴う重畳電流の増加制御を行うことを特徴とする。
Further, in the above ignition device for an internal combustion engine, the superposition control means includes a capacitor that short-circuits an electric charge when an ignition signal is turned on, and starts charging at the start of discharge when the ignition signal is turned off. It is characterized in that the superposition current is controlled to increase with the lapse of time by using the charge accumulation state of 1 as an index.
また、上記の内燃機関用点火装置において、前記点火コイルの二次側に流れる二次電流を検出する二次電流検出手段と、前記二次電流検出手段の検出値が所定の重畳促進条件を満たすことに基づいて、前記重畳制御手段による重畳電流の増加を促進させる重畳促進手段と、を備えることを特徴とする。
Further, in the internal combustion engine ignition device, the secondary current detection means for detecting a secondary current flowing on the secondary side of the ignition coil, and the detection value of the secondary current detection means satisfy a predetermined superimposition promotion condition. Based on this, a superimposition promoting unit that promotes an increase in the superimposing current by the superimposing control unit is provided.
また、上記の内燃機関用点火装置において、前記重畳促進手段は、前記二次電流検出手段により検出された二次電流検出値と、二次電流を維持するために重畳電流の増加を促進する指標として予め定めた増加促進基準値とを対比し、検出された二次電流値が増加促進基準値を越えないことを重畳促進条件として用いることを特徴とする。
Further, in the above ignition device for an internal combustion engine, the superposition promoting means is a secondary current detection value detected by the secondary current detecting means, and an index for promoting an increase in the superposition current for maintaining the secondary current. Is compared with a predetermined increase promotion reference value, and the fact that the detected secondary current value does not exceed the increase promotion reference value is used as the superposition promotion condition.
また、上記の内燃機関用点火装置において、前記主一次コイルと前記主一次コイル通電スイッチ手段との接点の電圧を検出する一次コイル電圧検出手段と、前記一次コイル電圧検出手段により検出された一次コイル電圧値が、前記点火プラグ内の放電状況に対応させて定めた一次コイル電圧判定基準値に達したか否かで重畳抑制条件の成否を判定する重畳抑制条件判定手段と、を備え、前記重畳制御手段は、前記主一次コイルへの通電遮断と同時に前記副一次コイル通電手段を動作させて前記副一次コイルへの重畳電流供給を開始させ、前記重畳抑制条件判定手段により重畳抑制条件の成立が判定されたときには、前記重畳電流を抑制する能動信号を前記副一次コイル通電手段へ送って能動動作させることを特徴とする。
In the ignition device for an internal combustion engine, a primary coil voltage detecting means for detecting a voltage at a contact point between the main primary coil and the main primary coil energizing switch means, and a primary coil detected by the primary coil voltage detecting means. A superposition suppression condition determination means for determining whether or not the superposition suppression condition is satisfied depending on whether or not the voltage value has reached a primary coil voltage determination reference value determined corresponding to a discharge condition in the spark plug, and the superposition The control means operates the sub-primary coil energizing means at the same time when the energization of the main primary coil is cut off to start the supply of the superimposed current to the sub-primary coil, and the superposition suppressing condition determination means establishes the superposition suppressing condition. When the determination is made, an active signal for suppressing the superimposed current is sent to the sub-primary coil energizing means for active operation.
上記構成の内燃機関用点火装置によれば、重畳制御手段によって、副一次コイルへの重畳電流供給が急激に遮断されないよう副一次コイル通電手段による通電量を制御するので、重畳電流供給を停止するときに発生するノイズを抑制できる。
According to the internal combustion engine ignition device having the above-described configuration, the superimposing control means controls the energization amount by the sub-primary coil energizing means so that the superimposing current supply to the sub-primary coil is not suddenly interrupted, so that the superimposing current supply is stopped. The noise that sometimes occurs can be suppressed.
次に、第1実施形態に係る内燃機関用点火装置1Aを、添付図面に基づいて詳細に説明する。
Next, the internal combustion engine ignition device 1A according to the first embodiment will be described in detail with reference to the accompanying drawings.
図1に示す内燃機関用点火装置1Aは、内燃機関の気筒毎に設けられる1つの点火プラグ2に放電火花を発生させる点火コイルユニット10A、この点火コイルユニット10Aの動作タイミングを指示する点火信号Si等を適宜なタイミングで出力する点火制御手段としての内燃機関駆動制御装置3、車両バッテリ等の直流電源4等で構成される。なお、点火コイルユニット10は高いノイズ抑制効果を発揮できるが、安全のため、電源経路にノイズ除去用のフィルタ手段5を設けても良い。フィルタ手段5の一例は、電源ラインにインダクタ51を介挿し、接地線との短絡路に電解コンデンサ52を設けたL型フィルタ(図2を参照)である。点火コイルユニット10の内部に搭載スペースを確保できれば、フィルタ手段5を点火コイルユニット10内に設けても構わない。
An ignition device 1A for an internal combustion engine shown in FIG. 1 includes an ignition coil unit 10A for generating a spark at one spark plug 2 provided for each cylinder of the internal combustion engine, and an ignition signal Si for instructing an operation timing of the ignition coil unit 10A. The internal combustion engine drive control device 3 as an ignition control means for outputting the above, etc. at an appropriate timing, a DC power source 4 such as a vehicle battery, and the like. Although the ignition coil unit 10 can exhibit a high noise suppressing effect, the noise removing filter means 5 may be provided in the power supply path for safety. An example of the filter means 5 is an L-type filter (see FIG. 2) in which an inductor 51 is inserted in a power supply line and an electrolytic capacitor 52 is provided in a short circuit with a ground line. If the mounting space can be secured inside the ignition coil unit 10, the filter means 5 may be provided inside the ignition coil unit 10.
点火コイルユニット10Aは、点火コイル11や制御基板等を所要形状のケース12に収納して一体構造としたユニットである。このケース12の適所には、高圧端子121とコネクタ122を設けてあり、高圧端子121を介して点火プラグ2を接続すると共に、コネクタ122を介して内燃機関駆動制御装置3や直流電源4、接地ライン等と接続する。
The ignition coil unit 10A is a unit having an integrated structure in which the ignition coil 11, the control board, and the like are housed in a case 12 having a required shape. A high-voltage terminal 121 and a connector 122 are provided at appropriate places of the case 12, and the ignition plug 2 is connected via the high-voltage terminal 121, and the internal combustion engine drive control device 3, the DC power source 4, and the ground are connected via the connector 122. Connect with lines, etc.
点火コイル11は、主一次コイル111a(例えば、114ターン)と副一次コイル111b(例えば、20ターン)に生ずる磁束を二次コイル112(例えば、9348ターン)に効率良く作用させるものである。例えば、高透磁性材料で形成したセンターコア113を取り巻くように主一次コイル111aおよび副一次コイル111bを配置し、更にその外側に二次コイル112を配置した構造である。
The ignition coil 11 efficiently causes the magnetic flux generated in the main primary coil 111a (for example, 114 turns) and the sub primary coil 111b (for example, 20 turns) to act on the secondary coil 112 (for example, 9348 turns). For example, the main primary coil 111a and the sub primary coil 111b are arranged so as to surround the center core 113 formed of a highly magnetic permeable material, and the secondary coil 112 is further arranged outside thereof.
主一次コイル111aの一方端は、コネクタ122を介して直流電源4と接続され、電源電圧VB+(例えば、12V)が印加される。主一次コイル111aの他方端は、IGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)を用いた点火スイッチ13のコレクタに接続される。点火スイッチ13のエミッタはコネクタ122を介して接地点GNDに接続される。二次コイル112の一方端は高圧端子121を介して点火プラグ2と接続され、他方端はコネクタ122の第5接続端子122eを介して接地点GNDに接続される。なお、二次コイル112からコネクタ122の接地点接続端子へ至る間の線路には、二次コイル112から接地点GNDに向かって順方向となる整流素子D1(例えば、接地側にカソードを、二次コイル112側にアノードをそれぞれ接続したダイオード)を設け、二次電流I2の流路方向を規制する。
One end of the main primary coil 111a is connected to the DC power source 4 via the connector 122, and the power source voltage VB+ (for example, 12V) is applied. The other end of the main primary coil 111a is connected to the collector of the ignition switch 13 using an IGBT (Insulated Gate Bipolar Transistor). The emitter of the ignition switch 13 is connected to the ground point GND via the connector 122. One end of the secondary coil 112 is connected to the ignition plug 2 via the high voltage terminal 121, and the other end is connected to the ground point GND via the fifth connection terminal 122e of the connector 122. A rectifying element D1 (for example, a cathode on the ground side is connected to the Diodes each having an anode connected thereto are provided on the side of the secondary coil 112 to regulate the flow direction of the secondary current I2.
放電サイクルの適宜なタイミングで内燃機関駆動制御装置3より出力される点火信号Siは、コネクタ122を介して、点火コイルユニット10A内の点火スイッチ13のゲートに入力される。そして、点火信号Siが点火スイッチ13のゲートに入力されると(例えば、点火信号Siの信号レベルがLからHに変わると)、点火スイッチ13がオンになり、主一次コイル111aの非給電側端部が接地点GNDに接続される。これにより、主一次コイル111aには、給電側から接地側に向かう主一次電流I1a(以下、一次電流という)が流れ始め、一次電流I1aの流量は増加してゆき、一次電流I1aの流量に応じて発生する通電磁束の磁束量が磁界のエネルギーとして蓄積される。なお、点火コイル11の二次側には、二次コイル112や接続配線等の微少なコンデンサ成分により電気エネルギーが蓄積される。
The ignition signal Si output from the internal combustion engine drive controller 3 at an appropriate timing of the discharge cycle is input to the gate of the ignition switch 13 in the ignition coil unit 10A via the connector 122. Then, when the ignition signal Si is input to the gate of the ignition switch 13 (for example, when the signal level of the ignition signal Si changes from L to H), the ignition switch 13 is turned on and the main primary coil 111a on the non-power supply side. The end is connected to the ground point GND. As a result, the main primary current I1a (hereinafter referred to as the primary current) from the power supply side to the ground side starts to flow in the main primary coil 111a, the flow rate of the primary current I1a increases, and the flow rate of the primary current I1a changes. The magnetic flux amount of the energized magnetic flux generated as a result is accumulated as the energy of the magnetic field. It should be noted that on the secondary side of the ignition coil 11, electric energy is accumulated due to minute capacitor components such as the secondary coil 112 and connection wiring.
上記のようにエネルギーが蓄積された後、主一次コイル111aへの通電が所定の点火タイミングで遮断されると、高圧の起電力が二次コイル112に生じて点火プラグ2の放電ギャップ間に火花放電が発生し、気筒燃焼室内の混合気に着火する。このとき、主一次コイル111aには、通常の一次電流I1aとは逆向きの電流を流そうとする逆起電力が生ずる。この逆起電力が点火スイッチ13のコレクタ-エミッタ間に印加されると、点火スイッチ13が故障したり、点火スイッチ13の劣化を早めたりする危険性がある。そこで、点火スイッチ13と並列にバイパス線路L1を設けると共に、このバイパス線路L1の接地点側から点火コイル11側に向かって順方向となる整流素子D2(例えば、点火スイッチ13のコレクタ側にカソードを、点火スイッチ13のエミッタ側にアノードをそれぞれ接続したダイオード)を設けた。
After the energy is accumulated as described above, when the power supply to the main primary coil 111a is cut off at a predetermined ignition timing, a high-voltage electromotive force is generated in the secondary coil 112 and a spark is generated between the discharge gaps of the spark plug 2. Electric discharge occurs and ignites the mixture in the cylinder combustion chamber. At this time, a counter electromotive force is generated in the main primary coil 111a to flow a current in a direction opposite to the normal primary current I1a. If this counter electromotive force is applied between the collector and the emitter of the ignition switch 13, there is a risk that the ignition switch 13 will malfunction or the deterioration of the ignition switch 13 will be accelerated. Therefore, a bypass line L1 is provided in parallel with the ignition switch 13, and a rectifying element D2 (for example, a cathode on the collector side of the ignition switch 13 is provided in the forward direction from the ground point side of the bypass line L1 toward the ignition coil 11 side). , Diodes having anodes respectively connected to the emitter side of the ignition switch 13 are provided.
一方、主一次コイル111aと同様に、鉄心113を介して二次コイル112に磁界を作用させることが可能な副一次コイル111bは、その一方端がコネクタ122を介して直流電源4と接続され、電源電圧VB+(例えば、12V)が印加される。すなわち、主一次コイル111aと副一次コイル111bは電源を共有する。副一次コイル111bの他方端は、IGBTを用いた副一次コイル通電手段としての重畳スイッチ14のコレクタに接続される。重畳スイッチ14のエミッタはコネクタ122を介して接地点GNDに接続される。重畳スイッチ14は、ゲートへの入力信号に応じてコレクタ-エミッタ間の電流を増減させる能動素子であり、後述する重畳制御手段15Aからのゲート信号によって副一次コイル111bへの通電量を増減させる。
On the other hand, similarly to the main primary coil 111a, the sub primary coil 111b capable of exerting a magnetic field on the secondary coil 112 via the iron core 113 has one end connected to the DC power source 4 via the connector 122, The power supply voltage VB+ (for example, 12V) is applied. That is, the main primary coil 111a and the sub primary coil 111b share a power source. The other end of the sub primary coil 111b is connected to the collector of the superposition switch 14 as sub primary coil energizing means using an IGBT. The emitter of the superposition switch 14 is connected to the ground point GND via the connector 122. The superposition switch 14 is an active element that increases/decreases the current between the collector and the emitter in accordance with an input signal to the gate, and increases/decreases the amount of electricity supplied to the sub primary coil 111b by a gate signal from the superposition control means 15A described later.
重畳スイッチ14は、副一次コイル111bへの通電・遮断を行うと共に、副一次コイル111bへの通電量を変えることで、遮断方向(主一次コイル111aの通電磁束を減じる方向)に生じる重畳磁束の磁束量を変化させることができる。なお、副一次コイル111bと重畳スイッチ14との間には、整流素子D3を設ける。整流素子D3は、副一次コイル111bから重畳スイッチ14に向かって順方向となる(例えば、ダイオードのカソードを重畳スイッチ14側に、アノードを副一次コイル111b側にそれぞれ接続する)ように設ける。これにより、副一次電流I1b(以下、重畳電流という)の流路方向が規制され、重畳スイッチ14へ逆向きの電圧が印加されることを阻止できる。
The superposition switch 14 energizes and cuts off the sub-primary coil 111b, and changes the energization amount to the sub-primary coil 111b, so that the superposition magnetic flux generated in the shut-off direction (the direction in which the energized magnetic flux of the main primary coil 111a is reduced). The amount of magnetic flux can be changed. A rectifying element D3 is provided between the sub primary coil 111b and the superposition switch 14. The rectifying element D3 is provided so as to be in the forward direction from the sub primary coil 111b toward the superposition switch 14 (for example, the cathode of the diode is connected to the superposition switch 14 side and the anode is connected to the sub primary coil 111b side). As a result, the flow direction of the sub-primary current I1b (hereinafter referred to as the superimposed current) is regulated, and it is possible to prevent the reverse voltage from being applied to the superimposed switch 14.
重畳スイッチ14の能動動作は、内燃機関駆動制御装置3からの重畳信号Spに基づいて動作する重畳制御手段15Aから出力される信号(ゲート信号)によって行わせる。重畳制御手段15Aは、主一次コイル111aへの通電遮断と同時に重畳信号Spを受ける(例えば、信号レベルがLからHに変化する)ことで、即座に重畳スイッチ14を動作させて、副一次コイル111bへの重畳電流供給を開始させる。その後、重畳信号Spが停止(例えば、信号レベルがHからLに変化)しても、副一次コイル111bへの重畳電流供給が急激に遮断されないように、重畳スイッチ14による副一次電流I1bの通電量を制御して、ノイズの発生を抑制する。なお、重畳制御手段15Aでは、重畳電流I1bの流量を利用するため、重畳電流検出手段を設ける。例えば、重畳スイッチ14からコネクタ122へ至る間の流路に抵抗R1を介挿し、この電圧変化を重畳電流検出信号線L2によって取得することで、重畳電流検出手段を構成する。
The active operation of the superposition switch 14 is performed by a signal (gate signal) output from the superposition control means 15A that operates based on the superposition signal Sp from the internal combustion engine drive control device 3. The superposition control means 15A immediately operates the superposition switch 14 by receiving the superposition signal Sp (for example, the signal level changes from L to H) at the same time when the main primary coil 111a is de-energized, and the sub primary coil is operated. The supply of the superimposed current to 111b is started. Then, even if the superimposition signal Sp is stopped (for example, the signal level changes from H to L), the superimposition switch 14 supplies the sub-primary current I1b so that the supply of the superimposition current to the sub-primary coil 111b is not suddenly cut off. The amount is controlled to suppress the generation of noise. Since the superposition control means 15A uses the flow rate of the superposition current I1b, the superposition current detection means is provided. For example, a resistor R1 is inserted in a flow path from the superposition switch 14 to the connector 122, and the voltage change is acquired by the superposition current detection signal line L2, thereby forming a superposition current detection unit.
次に、重畳制御手段15Aの回路について説明する。第1比較器151はオペアンプ構造で、非反転入力(Vin(+))と反転入力(Vin(-))の差分に応じた出力Voutを得ることができる。比較器151の非反転入力には、重畳電流検出信号線L2が接続され、重畳電流I1bの流量変化を反映した信号が入力される。比較器151の反転入力には、基準値入力線L3が接続され、重畳制御に好適な重畳電流I1bの指標となる信号が入力される。
Next, the circuit of the superposition control means 15A will be described. The first comparator 151 has an operational amplifier structure and can obtain an output Vout according to the difference between the non-inverting input (Vin(+)) and the inverting input (Vin(−)). The non-inverting input of the comparator 151 is connected to the superimposed current detection signal line L2, and a signal reflecting the flow rate change of the superimposed current I1b is input. The reference value input line L3 is connected to the inverting input of the comparator 151, and a signal serving as an index of the superposition current I1b suitable for superposition control is input.
比較器151の出力Voutは、制限用スイッチ152(例えば、npn型トランジスタで構成)のベースに入力され、制限用スイッチ152のコレクタ電流を制御する。制限用スイッチ152のコレクタ側は、重畳信号Spが入力される重畳電源供給線L4に接続され、エミッタは接地線に接続される。重畳電源供給線L4とコネクタ122との間には、抵抗R2が介挿されており、重畳電源供給線L4は抵抗R2により減圧された重畳電源電位となり、この重畳電源電位が制限用スイッチ152のコレクタ-エミッタ間に印加される。
The output Vout of the comparator 151 is input to the base of the limiting switch 152 (for example, composed of npn type transistors), and controls the collector current of the limiting switch 152. The collector side of the limiting switch 152 is connected to the superimposed power supply line L4 to which the superimposed signal Sp is input, and the emitter is connected to the ground line. A resistor R2 is interposed between the superposed power supply line L4 and the connector 122, and the superposed power supply line L4 has a superposed power potential reduced by the resistor R2, and this superposed power potential of the limiting switch 152. Applied between collector and emitter.
重畳電源供給線L4は、第1コンデンサC1の一方の電極に接続され、第1コンデンサC1の他方の電極は接地線に接続される。すなわち、重畳信号Spが点火コイルユニット10Aに入力されると、重畳電源供給線L4から供給される重畳電源により第1コンデンサC1が充電される。重畳電源供給線L4には能動制御信号線L5が接続され、この能動制御信号線L5は抵抗R3を介して重畳スイッチ14のゲートに接続される。よって、重畳信号Spが点火コイルユニット10Aに入力されると、第1コンデンサC1の蓄積電荷に応じた電圧が能動制御信号線L5に印加され、能動制御信号が重畳スイッチ14のゲートに入力される。すなわち、重畳制御手段15Aの出力である能動制御信号(ゲート電流)により重畳スイッチ14を能動動作させ、能動制御信号に応じた重畳電流I1bを流すように制御できる。
The superimposed power supply line L4 is connected to one electrode of the first capacitor C1 and the other electrode of the first capacitor C1 is connected to the ground line. That is, when the superposition signal Sp is input to the ignition coil unit 10A, the first capacitor C1 is charged by the superposition power supply supplied from the superposition power supply line L4. An active control signal line L5 is connected to the superimposed power supply line L4, and this active control signal line L5 is connected to the gate of the superimposed switch 14 via a resistor R3. Therefore, when the superposition signal Sp is input to the ignition coil unit 10A, a voltage according to the accumulated charge of the first capacitor C1 is applied to the active control signal line L5, and the active control signal is input to the gate of the superposition switch 14. .. That is, the superposition switch 14 can be activated by the active control signal (gate current) output from the superposition control means 15A, and the superposition current I1b corresponding to the active control signal can be controlled to flow.
一方、第1比較器151の基準値入力線L3に入力する基準値は、電源電圧VB+を抵抗R4aと抵抗R4bで分圧して生成した電圧信号であり、重畳電流検出信号線L2から入力される重畳電流検出値の好適な値に対応させた電圧値とする。よって、副一次コイル111bに流れる重畳電流I1bに基づく重畳電流検出値が基準値に満たないときは、第1比較器151の出力はオフであるが、重畳電流検出値が基準値に達すると、両値の差異に応じた出力を得ることができる。すなわち、重畳電流I1bが基準量に満たないときは制限用スイッチ152が動作せず、重畳電流I1aが基準量に達すると制限用スイッチ152が動作して、基準値と重畳電流検出値との差異に応じたコレクタ電流が流れる。制限用スイッチ152が動作してコレクタ電流が流れると、それだけ重畳電源供給線L4から第1コンデンサC1への給電量が低くなり、能動制御信号線L5から重畳スイッチ14のゲートに入力される能動制御信号も低下する。したがって、重畳制御手段15Aは、重畳電流I1bが所要値(点火プラグ2の好適な点火状態を実現できる好適な流量)に達すると、重畳スイッチ14を能動動作させる能動制御信号(ゲート電流)を抑制し、重畳電流I1bを低下させるように自動制御できる。
On the other hand, the reference value input to the reference value input line L3 of the first comparator 151 is a voltage signal generated by dividing the power supply voltage VB+ by the resistors R4a and R4b, and is input from the superimposed current detection signal line L2. The voltage value is made to correspond to a suitable value of the superimposed current detection value. Therefore, when the superimposed current detection value based on the superimposed current I1b flowing through the sub primary coil 111b is less than the reference value, the output of the first comparator 151 is off, but when the superimposed current detection value reaches the reference value, An output can be obtained according to the difference between the two values. That is, when the superimposed current I1b is less than the reference amount, the limiting switch 152 does not operate, and when the superimposed current I1a reaches the reference amount, the limiting switch 152 operates and the difference between the reference value and the detected superimposed current value. A collector current corresponding to the current flows. When the limiting switch 152 operates and the collector current flows, the power supply amount from the superimposing power supply line L4 to the first capacitor C1 decreases correspondingly, and the active control input from the active control signal line L5 to the gate of the superimposing switch 14 is performed. The signal also drops. Therefore, the superposition control means 15A suppresses the active control signal (gate current) that activates the superposition switch 14 when the superposition current I1b reaches a required value (a suitable flow rate that can realize a suitable ignition state of the spark plug 2). However, automatic control can be performed so as to reduce the superimposed current I1b.
本実施形態における点火コイルユニット10Aでは、重畳スイッチ14を能動制御する重畳制御手段15Aが出力する能動制御信号を、重畳電源供給線L4から給電される第1コンデンサC1の蓄積電荷に応じて生成するものとした。すなわち、重畳信号Spの入力が停止されて重畳制御を終了するときには、第1コンデンサC1の放電によって重畳電源供給線L4の電源電圧を徐々に低下させるので、重畳スイッチ14のゲート電流も徐々に低下し、重畳スイッチ14は急激にオフとならない。これにより、副一次コイル111bへの重畳電流供給を停止するとき、重畳スイッチ14が急激にオフとなって発生するノイズを抑制できる。更なる重畳電流I1bの急減抑制を図るために、重畳電流急減抑制手段16を設けても良い。本実施形態における点火コイルユニット10Aでは、VB+の電源線と接地線とを短絡する副一次コイル用還流路形成線L6に第4ダイオードD4(アノードが接地側、カソードが電源側となる方き)を設けた簡易な構成の重畳電流急減抑制手段16とした。
In the ignition coil unit 10A in the present embodiment, the active control signal output from the superimposition control means 15A that actively controls the superimposition switch 14 is generated according to the accumulated charge of the first capacitor C1 fed from the superimposition power supply line L4. I decided. That is, when the input of the superimposition signal Sp is stopped and the superimposition control is ended, the power supply voltage of the superimposition power supply line L4 is gradually reduced by the discharge of the first capacitor C1, so that the gate current of the superimposition switch 14 is also gradually reduced. However, the superposition switch 14 does not turn off suddenly. Accordingly, when the supply of the superimposed current to the sub-primary coil 111b is stopped, the superimposed switch 14 is suddenly turned off, and the generated noise can be suppressed. In order to further suppress the sudden decrease of the superimposed current I1b, the superimposed current sudden decrease suppressing means 16 may be provided. In the ignition coil unit 10A in the present embodiment, the fourth diode D4 (the anode is on the ground side and the cathode is on the power supply side) is connected to the secondary primary coil return path forming line L6 that short-circuits the VB+ power supply line and the ground line. The superposed current sudden decrease suppressing means 16 having a simple structure is provided.
次に、内燃機関用点火装置1Aにおける要部の波形を示した図3に基づき、重畳制御を行わない場合の回路動作と、重畳制御を行う場合の回路動作を説明する。
Next, the circuit operation when the superposition control is not performed and the circuit operation when the superposition control is performed will be described based on FIG. 3 showing waveforms of main parts in the internal combustion engine ignition device 1A.
まず、重畳制御を行わない点火サイクルについて説明する。点火信号Siがオンになって点火スイッチ13が動作し、主一次コイル111aへの通電が開始されると、一次電流I1aが流れ始める。その後、点火信号Siがオフになって主一次コイル111aへの通電が遮断されると、二次コイル112に放電エネルギーが与えられ、点火プラグ2に火花放電が生じて二次電流I2が流れ始める。しかしながら、点火信号Siがオフになった後の点火サイクル内で重畳信号Spがオンになることは無いので、重畳制御手段15Aは動作せず、重畳スイッチ14もオフのままであり、副一次コイル111bからコイル二次側へ放電エネルギーが重畳されることはない。
First, I will explain the ignition cycle without superposition control. When the ignition signal Si is turned on and the ignition switch 13 is operated to start energizing the main primary coil 111a, the primary current I1a starts to flow. After that, when the ignition signal Si is turned off and the power supply to the main primary coil 111a is cut off, discharge energy is given to the secondary coil 112, spark discharge occurs in the ignition plug 2 and the secondary current I2 starts to flow. .. However, since the superposition signal Sp is not turned on within the ignition cycle after the ignition signal Si is turned off, the superposition control means 15A does not operate, the superposition switch 14 is also kept off, and the sub-primary coil No discharge energy is superposed on the coil secondary side from 111b.
一方、重畳制御を行う点火サイクルでは、点火信号Siのオフと同時に重畳信号Spをオンにする。重畳信号Spがオンになると、重畳電源供給線L4からの電源供給により第1コンデンサC1に電荷が蓄積され、その電荷蓄積状態に応じた電位で生成される能動信号が能動制御信号線L5から重畳スイッチ14のゲートに入力される。すなわち、第1コンデンサC1の蓄積電荷が増えるに従って重畳スイッチ14のコレクタ電流も増加してゆき、重畳電流I1bの流量は第1コンデンサC1の充電特性に類似した上昇率で増えて行く。
On the other hand, in the ignition cycle for performing the superposition control, the superposition signal Sp is turned on at the same time as the ignition signal Si is turned off. When the superimposition signal Sp is turned on, charges are accumulated in the first capacitor C1 by the power supply from the superimposition power supply line L4, and an active signal generated at a potential according to the charge accumulation state is superimposed from the active control signal line L5. It is input to the gate of the switch 14. That is, as the accumulated charge of the first capacitor C1 increases, the collector current of the superposition switch 14 also increases, and the flow rate of the superposition current I1b increases at a rate of increase similar to the charging characteristic of the first capacitor C1.
重畳信号Spがオンになったとき、第1比較器151の反転入力には基準値入力線L3から基準値が入力されており、第1比較器151の非反転入力に入力される重畳電流I1bの検出値は低いため、第1比較器151の出力はない。その後、第1コンデンサC1の充電が進んで重畳電流I1bの流量が増えてゆき、重畳電流I1bの検出値が基準値に達すると、第1比較器151の出力Voutが制限用スイッチ152のゲート入力となり、制限用スイッチ152がオンとなる。重畳電流I1bの検出値と基準値との差が小さい場合には、制限用スイッチ152のコレクタ電流は小さく、重畳電源供給線L4の電圧低下は小さい。重畳電流I1bの検出値と基準値との差が大きくなると、制限用スイッチ152のコレクタ電流も大きくなり、重畳電源供給線L4から第1コンデンサC1への給電量が低下する。このため、第1コンデンサC1は、電荷蓄積の速度が抑制されたり、電源として放電したりすることとなり、能動信号線L5から重畳スイッチ14のゲートに入力される能動信号も低くなる。結果として、重畳スイッチ14のコレクタ電流として得られる重畳電流I1bの流量を下げる自動制御が行われる。
When the superposition signal Sp is turned on, the reference value is input to the inverting input of the first comparator 151 from the reference value input line L3, and the superposition current I1b input to the non-inverting input of the first comparator 151 is input. Since the detected value of is low, there is no output of the first comparator 151. After that, when the charge of the first capacitor C1 progresses and the flow rate of the superimposed current I1b increases, and the detected value of the superimposed current I1b reaches the reference value, the output Vout of the first comparator 151 causes the output Vout of the limiting switch 152 to enter the gate. And the limiting switch 152 is turned on. When the difference between the detected value of the superimposed current I1b and the reference value is small, the collector current of the limiting switch 152 is small and the voltage drop of the superimposed power supply line L4 is small. When the difference between the detected value of the superimposed current I1b and the reference value increases, the collector current of the limiting switch 152 also increases, and the amount of power supplied from the superimposed power supply line L4 to the first capacitor C1 decreases. Therefore, the first capacitor C1 suppresses the charge accumulation speed or discharges as a power source, and the active signal input from the active signal line L5 to the gate of the superposition switch 14 also becomes low. As a result, automatic control is performed to reduce the flow rate of the superimposed current I1b obtained as the collector current of the superimposed switch 14.
その後、重畳電流I1bの低下によって重畳電流I1bの検出値が基準値より下がると、第1比較器151の出力Voutが停止し、制限用スイッチ152がオフとなる。制限用スイッチ152がオフになることで、第1コンデンサC1への給電量が回復すると、第1コンデンサC1の充電が行われ、能動信号線L5から重畳スイッチ14のゲートに入力される能動信号も高くなる。結果として、重畳スイッチ14のコレクタ電流として得られる重畳電流I1bの流量を上げる自動制御が行われる。
After that, when the detected value of the superimposed current I1b falls below the reference value due to the decrease of the superimposed current I1b, the output Vout of the first comparator 151 is stopped and the limiting switch 152 is turned off. When the power supply amount to the first capacitor C1 is restored by turning off the limiting switch 152, the first capacitor C1 is charged, and the active signal input from the active signal line L5 to the gate of the superposition switch 14 is also included. Get higher As a result, automatic control is performed to increase the flow rate of the superimposed current I1b obtained as the collector current of the superimposed switch 14.
このように、重畳制御手段15Aは、重畳電流I1bが所要値に保たれるような重畳スイッチ14の能動制御を自動で行える。よって、本実施形態の内燃機関用点火装置1Aで重畳制御を行った場合、二次側に与える放電エネルギーがほぼ一定量だけ重畳され、重畳制御を行わない場合の二次電流I2よりも一定量だけ増加させた二次電流I2となる(図3の二次電流I2の波形を参照)。
In this way, the superposition control means 15A can automatically perform active control of the superposition switch 14 so that the superposition current I1b is maintained at a required value. Therefore, when the internal combustion engine ignition device 1A according to the present embodiment performs the superposition control, the discharge energy applied to the secondary side is superposed by a substantially constant amount, and is a constant amount more than the secondary current I2 when the superposition control is not performed. The secondary current I2 is increased by only (see the waveform of the secondary current I2 in FIG. 3).
また、重畳制御手段15Aでは、重畳信号Spがオフになって重畳制御が終わっても、第1コンデンサC1の放電によって能動信号を徐々に低減させるので、重畳スイッチ14が急激に遮断されることはなく、重畳スイッチ14のオフによって発生するノイズを抑制できる。このように能動信号を徐々に低減させることで、重畳電流I1bも徐々に低減することとなる(図3の重畳電流I1bの波形を参照)。
Further, in the superimposition control means 15A, even if the superimposition signal Sp is turned off and the superimposition control ends, the active signal is gradually reduced by discharging the first capacitor C1, so that the superimposition switch 14 is not suddenly cut off. Therefore, the noise generated when the superposition switch 14 is turned off can be suppressed. By gradually reducing the active signal in this way, the superimposed current I1b is also gradually reduced (see the waveform of the superimposed current I1b in FIG. 3).
加えて、重畳制御手段15Aは、耐熱性および耐ノイズ性の高いディスクリート部品を用いた回路基板として実現できるので、点火コイル11と共に点火コイルユニット10A内に設けても安定動作する。よって、重畳制御手段15Aの機能を点火コイルユニット10Aとは別の制御装置として構成した場合のように、車両内に制御装置の搭載場所を確保する必要がないので、実用的価値も高い。
In addition, since the superposition control means 15A can be realized as a circuit board using a discrete component having high heat resistance and noise resistance, it can be stably operated even if it is provided in the ignition coil unit 10A together with the ignition coil 11. Therefore, unlike the case where the function of the superimposition control means 15A is configured as a control device different from the ignition coil unit 10A, it is not necessary to secure a place for mounting the control device in the vehicle, which is also highly practical.
上述した第1実施形態の内燃機関用点火装置1Aでは、重畳制御手段15Aが重畳電流I1bを所要値に保持する能動信号を重畳スイッチ14へ送って能動動作させ、二次側にほぼ一定の放電エネルギーを与える重畳制御としたが、これに限定されない。例えば、時間経過に伴って重畳電流I1bを増加させる能動信号を重畳スイッチ14へ送って能動動作させ、時間経過に伴って二次側に与える放電エネルギーを増加させる重畳制御とすることもできる。図4に示す第2実施形態の内燃機関用点火装置1Bでは、このような重畳制御が可能である。なお、上述した第1実施形態の内燃機関用点火装置1Aと同一の構成には、同一符号を付して、説明を省略する。
In the internal combustion engine ignition device 1A of the first embodiment described above, the superposition control means 15A sends an active signal for holding the superposition current I1b to a required value to the superposition switch 14 for active operation, resulting in a substantially constant discharge on the secondary side. The superposition control that gives energy is described, but the present invention is not limited to this. For example, it is also possible to perform superposition control in which an active signal for increasing the superposition current I1b with time elapses is sent to the superposition switch 14 to be activated, and discharge energy given to the secondary side with time elapses. In the ignition device for internal combustion engine 1B of the second embodiment shown in FIG. 4, such superposition control is possible. The same components as those of the internal combustion engine ignition device 1A of the first embodiment described above are designated by the same reference numerals, and description thereof will be omitted.
第2実施形態の内燃機関用点火装置1Bにおける重畳制御手段15Bには、基準値増加制御部153を設けてある。基準値増加制御部153は、例えば、基準値入力線L3の電圧で充電される第2コンデンサC2と、基準値入力線L3を接地に短絡させる短絡路の開閉を行う放電用スイッチ154とで構成する。通常、第1比較器151の非反転入力Vin(+)には、基準値入力線L1から重畳電流I1bを制限する指標となる基準値(電源電圧VB+を抵抗R4aと抵抗R4bで分圧した電圧)が入力される。この基準値入力線L3に接続された第2コンデンサC2は、基準値入力線L3の電位に応じて充放電することとなる(図5の第1比較器Vin(-)入力波形を参照)。一方、npn型のバイポーラトランジスタ等で構成できる放電用スイッチ154のベースには、点火信号Siが入力されるので、点火信号Siがオンになっている間、基準値入力線L3は接地線に短絡されるため、第2コンデンサC2は放電して蓄積電荷がゼロに近づく。点火信号Siがオフになると、放電用スイッチ154もオフになるので、基準値入力線L3に印加される電位(基準値となる電位)で第2コンデンサC2が充電されて行く。
The superposition control means 15B in the internal combustion engine ignition device 1B of the second embodiment is provided with a reference value increase control unit 153. The reference value increase control unit 153 includes, for example, a second capacitor C2 that is charged by the voltage of the reference value input line L3, and a discharge switch 154 that opens and closes a short circuit that short-circuits the reference value input line L3 to ground. To do. Normally, the non-inverting input Vin(+) of the first comparator 151 has a reference value (a voltage obtained by dividing the power supply voltage VB+ by resistors R4a and R4b) serving as an index for limiting the superimposed current I1b from the reference value input line L1. ) Is entered. The second capacitor C2 connected to the reference value input line L3 is charged/discharged according to the potential of the reference value input line L3 (see the first comparator Vin(−) input waveform in FIG. 5). On the other hand, since the ignition signal Si is input to the base of the discharge switch 154 that can be configured by an npn-type bipolar transistor or the like, the reference value input line L3 is shorted to the ground line while the ignition signal Si is on. Therefore, the second capacitor C2 is discharged, and the accumulated charge approaches zero. When the ignition signal Si is turned off, the discharge switch 154 is also turned off, so that the second capacitor C2 is charged with the potential applied to the reference value input line L3 (potential serving as the reference value).
すなわち、点火信号Siがオンになることで第2コンデンサC2の蓄積電荷がゼロになると、基準値入力線L3の電位はゼロとなり、時間経過に伴って第2コンデンサC2に電荷が蓄積されて行くと基準値入力線L3の電位は上がる。なお、第2コンデンサC2の充放電特性により、必ずしも点火信号Siがオンの間に全電荷を放出してゼロ電位になるわけではないし、第2コンデンサC2が基準値(抵抗R4aと抵抗R4bの分圧比に応じた電圧)に達する定常状態まで充電する必要はなく、時間経過に対する電荷蓄積の直線性が良い範囲で使うことが望ましい。
That is, when the electric charge accumulated in the second capacitor C2 becomes zero due to the ignition signal Si being turned on, the potential of the reference value input line L3 becomes zero, and the electric charge is accumulated in the second capacitor C2 with the passage of time. And the potential of the reference value input line L3 rises. It should be noted that due to the charging/discharging characteristics of the second capacitor C2, not all the electric charge is discharged to zero potential while the ignition signal Si is on, and the second capacitor C2 is not equal to the reference value (resistor R4a and resistor R4b). It is not necessary to charge the battery to a steady state where it reaches a voltage according to the pressure ratio), and it is desirable to use it in a range where the linearity of charge accumulation with respect to the passage of time is good.
第2コンデンサC2の充電特性に応じて基準値を変化させれば、副一次コイル111bへの重畳電流供給を開始した後、徐々に重畳電流I1bを増加させて行くことができる。かくするためには、重畳制御の開始からしばらく重畳電流検出値の方が基準値よりも高く、次第に基準値が重畳電流検出値に近づく、もしくは重畳電流検出値を超える変化となるような充電特性の第2コンデンサC2を用いる必要がある。このように基準値を変化させれば、重畳信号Spがオンとなって重畳制御が開始された直後には、重畳電流検出値の方が基準値よりも高いことで、第1比較器151がオンとなって制限用スイッチ152もオンとなり、第1コンデンサC1への給電量が下がる。したがって、第1コンデンサC1の充電速度が遅くなり、重畳スイッチ14のベース電流となる能動信号も低電流に抑えられ、それだけ重畳開始直後の重畳電流増加率が低くなる。その後、基準値が増加して重畳電流検出値に近づくか重畳電流検出値を越えると、制限用スイッチ152のコレクタ電流が小さくなるか、制限用スイッチ152がオフとなり、第1コンデンサC1への給電量が回復する。したがって、第1コンデンサC1の電荷蓄積速度は上がり、重畳スイッチ14のベース電流となる能動信号も高電流に増加し、重畳開始直後よりも重畳電流増加率が上がる。
By changing the reference value according to the charging characteristic of the second capacitor C2, it is possible to gradually increase the superimposed current I1b after starting the supply of the superimposed current to the sub primary coil 111b. In order to do so, the charging characteristic such that the superimposed current detection value is higher than the reference value for a while after the superimposition control is started, and the reference value gradually approaches the superimposed current detection value or changes to exceed the superimposed current detection value. It is necessary to use the second capacitor C2. By changing the reference value in this way, the first comparator 151 determines that the detection value of the superimposed current is higher than the reference value immediately after the superposition signal Sp is turned on and the superposition control is started. When the switch is turned on, the limiting switch 152 is also turned on, and the amount of power supplied to the first capacitor C1 is reduced. Therefore, the charging speed of the first capacitor C1 is slowed down, the active signal serving as the base current of the superimposition switch 14 is suppressed to a low current, and the rate of increase in superimposition current immediately after the start of superimposition is reduced. After that, when the reference value increases and approaches the superimposed current detection value or exceeds the superimposed current detection value, the collector current of the limiting switch 152 decreases or the limiting switch 152 turns off, and power is supplied to the first capacitor C1. The amount recovers. Therefore, the charge storage speed of the first capacitor C1 is increased, the active signal serving as the base current of the superposition switch 14 is also increased to a high current, and the superposition current increase rate is higher than immediately after the start of superposition.
このように、重畳制御手段15Bは、重畳電流I1bを徐々に増やしてゆくような重畳スイッチ14の能動制御を自動で行える。よって、本実施形態の内燃機関用点火装置1Bで重畳制御を行った場合、主一次コイル111aから二次側へ高い放電エネルギーが与えられる重畳制御開始直後は、重畳電流I1bを低く抑え、二次電流I2が高くなり過ぎないようにできる。その後、主一次コイル111aから二次側へ与える放電エネルギーが低くなると、重畳電流I1bを増やして、二次電流I2が低くなることを抑制できる(図5の二次電流I2の波形を参照)。
In this way, the superimposing control means 15B can automatically perform active control of the superimposing switch 14 such that the superimposing current I1b is gradually increased. Therefore, when superimposing control is performed by the internal combustion engine ignition device 1B of the present embodiment, immediately after the superimposing control in which high discharge energy is applied from the main primary coil 111a to the secondary side is started, the superimposing current I1b is suppressed to a low level, and the secondary current I1b is reduced. The current I2 can be prevented from becoming too high. After that, when the discharge energy applied from the main primary coil 111a to the secondary side becomes low, the superimposed current I1b can be increased to prevent the secondary current I2 from decreasing (see the waveform of the secondary current I2 in FIG. 5).
上述した第1,第2実施形態の内燃機関用点火装置1A,1Bでは、重畳電流I1bの検出状態に応じて好適な燃焼状態を得られるように自動制御を行うものとしたが、自動制御に用いる情報は特に限定されない。例えば、二次電流I2の検出状態に応じて重畳制御を行う事もできる。そこで、二次電流I2の検出状態に基づいて重畳制御を行う第3実施形態の内燃機関用点火装置1Cを、添付図面に基づいて詳細に説明する。上述した第1,第2実施形態の内燃機関用点火装置1A,1Bと同一の構成には、同一符号を付して、説明を省略する。
In the internal combustion engine ignition devices 1A and 1B according to the first and second embodiments described above, automatic control is performed so as to obtain a suitable combustion state according to the detection state of the superimposed current I1b. The information used is not particularly limited. For example, the superposition control can be performed according to the detection state of the secondary current I2. Therefore, an internal combustion engine ignition device 1C of the third embodiment that performs superposition control based on the detected state of the secondary current I2 will be described in detail with reference to the accompanying drawings. The same components as those of the internal combustion engine ignition devices 1A and 1B according to the first and second embodiments described above are designated by the same reference numerals, and description thereof will be omitted.
第3実施形態の内燃機関用点火装置1Cでは、点火プラグ2に発生した火花放電による着火性を必要十分に向上させるため、二次電流I2を高く保つ制御を自動で行う構成を設けたものである。かくするためには、指標となる二次電流I2を検出する機能と、重畳スイッチ14に働きかけて重畳電流I1bの流量増加を促進させる機能が必要である。なお、本実施形態の内燃機関得用点火装置1Cでは、増加促進制御を通常時の制御とし、増加促進制御が不要の時に限って増加促進を抑制するものとしたが、これに限定されるものではない。通常時は通常の重畳制御を行い、通常時における重畳電流I1bの流量よりも高い流量に増加させる必要が生じたときに限って、重畳電流I1bの流量増加を促進させる制御を行うようにしても良い。
In the internal combustion engine ignition device 1C of the third embodiment, in order to sufficiently and sufficiently improve the ignitability due to the spark discharge generated in the spark plug 2, a configuration for automatically maintaining the secondary current I2 high is provided. is there. In order to do so, it is necessary to have a function of detecting the secondary current I2 as an index and a function of acting on the superposition switch 14 to promote an increase in the flow rate of the superposition current I1b. In addition, in the internal combustion engine profitable ignition device 1C of the present embodiment, the increase promotion control is the normal time control, and the increase promotion is suppressed only when the increase promotion control is not necessary, but the invention is not limited to this. is not. Normal superimposition control is performed during normal times, and control that promotes an increase in the flow rate of superimposition current I1b is performed only when it is necessary to increase the flow rate to a flow rate higher than the flow rate of superimposition current I1b during normal times. good.
先ず、点火コイル11の二次側に流れる二次電流I2を検出する機能(二次電流検出手段)は、二次電流I2の流路適所(例えば、整流素子D1のカソード側とコネクタ122の接地端子との間)に介挿した抵抗R5と、この電圧変化を取得する二次電流検出信号線L7とで構成できる。一方、重畳スイッチ14に働きかけて重畳電流I1bの流量を促進させる機能としては、重畳促進手段17を設けた。重畳促進手段17は、種々の回路構造で実現できるが、本実施形態では、第2比較器171と重畳促進用スイッチ172を用いて構成した例を示す。
First, the function of detecting the secondary current I2 flowing to the secondary side of the ignition coil 11 (secondary current detection means) is to have a proper flow path for the secondary current I2 (for example, the cathode side of the rectifying element D1 and the ground of the connector 122). It can be configured by a resistor R5 inserted between the terminal) and a secondary current detection signal line L7 that acquires this voltage change. On the other hand, the superposition promoting means 17 is provided as a function of working the superposition switch 14 to promote the flow rate of the superposition current I1b. The superposition promoting means 17 can be realized by various circuit structures, but in the present embodiment, an example in which the second comparator 171 and the superposition promoting switch 172 are used is shown.
重畳促進手段17は、二次電流検出手段の検出値が所定の重畳促進条件を満たすことに基づいて、重畳制御手段15Cによる重畳電流の増加を促進させるものである。かかる制御を行う場合、二次電流I2が低下して良好な着火性を維持できなくなる状態を回避するために重畳電流I1bの増加を促進させるか否かを判断するための条件として、重畳促進条件の設定が必要である。例えば、重畳制御を行っている期間中、二次電流I2が所定の基準値よりも低い場合に、重畳制御手段15Cから出力される能動信号を上げてやれば、重畳スイッチ14により重畳電流I1bの増加率も高められる。本実施形態では、二次電流I2が所定の基準値よりも低い場合には、通常の重畳制御によって重畳制御手段15Cから能動信号を出力し、二次電流I2が所定の基準値以上になると重畳電流I1bの供給を抑制して、通常時よりも重畳電流I1bを制限するものとした。
The superimposition promoting means 17 promotes an increase in the superimposing current by the superimposition controlling means 15C based on the detection value of the secondary current detecting means satisfying a predetermined superimposing promoting condition. When such control is performed, a superimposition promotion condition is used as a condition for determining whether or not to promote an increase in the superimposition current I1b in order to avoid a state where the secondary current I2 decreases and good ignitability cannot be maintained. Setting is required. For example, when the secondary current I2 is lower than a predetermined reference value during the period of performing the superposition control, if the active signal output from the superposition control means 15C is increased, the superposition switch 14 changes the superposition current I1b. The rate of increase can also be increased. In the present embodiment, when the secondary current I2 is lower than the predetermined reference value, an active signal is output from the superposition control means 15C by the normal superposition control, and when the secondary current I2 becomes equal to or higher than the predetermined reference value, the superposition is performed. The supply of the current I1b is suppressed to limit the superimposed current I1b more than in the normal state.
そこで、第2比較器171の非反転入力Vin(+)に二次電流検出手段により検出された二次電流検出値(二次電流検出信号線L7の信号電圧)を入力し、反転入力Vin(-)に増加促進基準値を入力する。増加促進基準値は、二次電流I2を基準値以上に維持するために重畳電流の増加を促進する指標として予め定めた値であり、二次電流検出値に対応した電圧値を用いる。本実施形態では、電源電圧VB+を抵抗R6aと抵抗R6bで分圧した電圧を増加促進基準値として用い、抵抗R6aと抵抗R6bの間に接続された増加促進基準信号線L8を介して、第2比較器171の反転入力Vin(-)に入力する。かくすれば、二次電流検出値と増加促進基準値との比較結果を、第2比較器171の出力Voutとして得ることができる。なお、第2比較器171は、オープンコレクタ方式のコンパレータを用いるものとし、電源電圧VB+が抵抗R7を介して入力されるプルアップ電圧を、増加促進条件判定信号Suとなる出力VoutのHレベル電圧に設定する。
Therefore, the secondary current detection value (the signal voltage of the secondary current detection signal line L7) detected by the secondary current detection means is input to the non-inverting input Vin(+) of the second comparator 171, and the inverting input Vin(+ Enter the increase promotion reference value in -). The increase promotion reference value is a predetermined value as an index for promoting the increase of the superimposed current in order to maintain the secondary current I2 at or above the reference value, and a voltage value corresponding to the detected secondary current value is used. In the present embodiment, the voltage obtained by dividing the power supply voltage VB+ by the resistors R6a and R6b is used as the increase promotion reference value, and the second voltage is supplied via the increase promotion reference signal line L8 connected between the resistors R6a and R6b. It is input to the inverting input Vin(-) of the comparator 171. In this way, the comparison result between the secondary current detection value and the increase promotion reference value can be obtained as the output Vout of the second comparator 171. The second comparator 171 is assumed to use an open collector type comparator, and the pull-up voltage to which the power supply voltage VB+ is input via the resistor R7 is the H level voltage of the output Vout which becomes the increase promotion condition determination signal Su. Set to.
増加促進用スイッチ172は、例えば、pnp型のバイポーラトランジスタを用いる。増加促進用スイッチ172のエミッタはコネクタ122を介して直流電源4と接続し、電源電圧VB+が印加される。増加促進用スイッチ172のコレクタは、抵抗R8を介挿した増加促進用給電線L9を介して重畳制御手段15Cの基準値入力線L3に接続される。増加促進用スイッチ172がオンになってコレクタ電流が増加促進用給電線L9に流れると、基準値線L3には、抵抗R8と抵抗R4aが並列接続された給電線が接続された状態に等しくなる。すなわち、増加促進用スイッチ172がオンになって増加促進用給電線L9が基準値線L3に接続されると、抵抗R8と抵抗R4aが並列接続されたこととなり、これらの合成抵抗値と抵抗R4bとの分圧比である基準値線L3の電位は高くなる。
The increase promotion switch 172 uses, for example, a pnp-type bipolar transistor. The emitter of the increase promoting switch 172 is connected to the DC power supply 4 via the connector 122, and the power supply voltage VB+ is applied. The collector of the increase promotion switch 172 is connected to the reference value input line L3 of the superimposition control means 15C via the increase promotion power supply line L9 through which the resistor R8 is inserted. When the increase promotion switch 172 is turned on and the collector current flows through the increase promotion power supply line L9, the reference value line L3 becomes equal to the state where the power supply line in which the resistor R8 and the resistor R4a are connected in parallel is connected. .. That is, when the increase promotion switch 172 is turned on and the increase promotion power supply line L9 is connected to the reference value line L3, it means that the resistor R8 and the resistor R4a are connected in parallel, and the combined resistance value and the resistance R4b of these resistors are combined. The potential of the reference value line L3 which is the voltage division ratio of
増加促進手段17によって増加促進条件の成立が判定されていな通常時に、基準値線L3から第2コンデンサC2に供給される基準値は、抵抗R4aと抵抗R4bの分圧比によって定まる比較的低い値である。しかし、増加促進手段17によって増加促進条件の成立が判定されると、基準値線L3から第2コンデンサC2に供給される基準値は、並列接続された抵抗R8と抵抗R4aの合成抵抗と抵抗R4bとの分圧比によって定まる比較的高い値になる。よって、増加促進条件が成立すると、重畳電流検出値よりも基準値の方が高くなったり、重畳電流検出値と基準値との差異が縮まるので、制限用スイッチ152がオフになったり、コレクタ電流が低減される。これにより、第1コンデンサC1への給電量が増えて電荷蓄積速度が増し、重畳スイッチ14へのゲート電流も増加する。その結果、重畳スイッチ14のコレクタ電流として制御される重畳電流I1bの増加を促進できるのである。
At the normal time when the increase promotion means 17 has not determined that the increase promotion condition is satisfied, the reference value supplied from the reference value line L3 to the second capacitor C2 is a relatively low value determined by the voltage division ratio of the resistors R4a and R4b. is there. However, when the increase promotion means 17 determines that the increase promotion condition is satisfied, the reference value supplied from the reference value line L3 to the second capacitor C2 is the combined resistance of the resistor R8 and the resistor R4a connected in parallel and the resistor R4b. It becomes a relatively high value determined by the partial pressure ratio of. Therefore, when the increase promotion condition is satisfied, the reference value becomes higher than the superimposed current detection value, or the difference between the superimposed current detection value and the reference value is reduced, so that the limiting switch 152 is turned off and the collector current is reduced. Is reduced. As a result, the amount of power supplied to the first capacitor C1 increases, the charge storage speed increases, and the gate current to the superposition switch 14 also increases. As a result, the increase of the superimposed current I1b controlled as the collector current of the superimposed switch 14 can be promoted.
増加促進用スイッチ172のベースには、第2比較器171の出力Voutである増加促進条件判定信号Suが抵抗R9を介挿した動作状態指示線L10から入力される。第2比較器171からの増加促進条件判定信号Suがオフ(信号レベルがH)のとき、増加促進用スイッチ172のベース電流が流れないため、増加促進用スイッチ172はオフとなり、増加促進用給電線L9を介して重畳制御手段15Cに電源供給されない。一方、第2比較器171からの増加促進条件判定信号Suがオン(信号レベルがL)になると、増加促進用スイッチ172のベース電流が流れ、増加促進用スイッチ172がオンとなり、増加促進用給電線L9を介して重畳制御手段15Cに電源供給される。
The increase promotion condition determination signal Su, which is the output Vout of the second comparator 171, is input to the base of the increase promotion switch 172 from the operating state instruction line L10 through the resistor R9. When the increase promotion condition determination signal Su from the second comparator 171 is off (the signal level is H), the base current of the increase promotion switch 172 does not flow, so the increase promotion switch 172 is turned off, and the increase promotion supply voltage is increased. Power is not supplied to the superposition control means 15C via the electric wire L9. On the other hand, when the increase promoting condition determination signal Su from the second comparator 171 is turned on (the signal level is L), the base current of the increase promoting switch 172 flows, the increase promoting switch 172 is turned on, and the increase promoting supply is supplied. Power is supplied to the superimposition control means 15C via the electric wire L9.
かく構成した重畳促進手段17においては、増加促進条件が成立した場合、第2コンデンサC2の電荷蓄積速度が速められ、基準値信号線L3から第1比較器151の反転入力Vin(-)に供給される基準値の増加が促進される。基準値が早期に増加して行くことで、重畳信号検出値を超え易くなるため、早いタイミングで第1比較器151の出力Voutが停止する。第1比較器151の出力Voutが停止すると、制限用スイッチ152もオフとなり、重畳電源供給線L4から第1コンデンサC1への給電量が回復し、第1コンデンサC1の電荷蓄積速度を速められる。これにより、重畳スイッチ14を能動制御するためのゲート電流である能動信号も高まり、重畳電流I1bの増加が促進される。すなわち、副一次コイル111bに生ずる重畳磁束が増加して、二次コイル112に作用する磁束変化が大きくなるので、点火コイル二次側の起電力を高め、二次電流I2を高い値に保つことが可能となる。
In the superposition promoting means 17 thus configured, when the increase promoting condition is satisfied, the charge accumulation speed of the second capacitor C2 is increased and the reference value signal line L3 supplies the inverted input Vin(-) of the first comparator 151. The increase of the standard value is promoted. Since the reference value increases early, it becomes easy to exceed the superimposed signal detection value, and the output Vout of the first comparator 151 stops at an early timing. When the output Vout of the first comparator 151 is stopped, the limiting switch 152 is also turned off, the amount of power supplied from the superimposed power supply line L4 to the first capacitor C1 is restored, and the charge storage speed of the first capacitor C1 can be increased. As a result, the active signal, which is the gate current for actively controlling the superposition switch 14, is also increased, and the increase of the superposition current I1b is promoted. That is, since the superposed magnetic flux generated in the sub primary coil 111b increases and the magnetic flux change acting on the secondary coil 112 increases, the electromotive force on the secondary side of the ignition coil is increased and the secondary current I2 is maintained at a high value. Is possible.
一方、増加促進条件が不成立のときには、重畳促進手段17はオフのままで増加促進用給電線L9から基準信号線L3へ電源供給されない。よって、第2コンデンサC2の電荷蓄積速度が速められることはなく、ひいては第1コンデンサC1の電荷蓄積速度を上げることもない。その後、増加促進制御を行わないことで二次電流I2が低くなり、増加促進条件を満たすようになると、重畳促進手段17によって増加促進用給電線L9から重畳制御手段15Cへ電源供給し、基準値の増加を促進する。すなわち、重畳促進手段17による重畳促進制御を行わないで二次電流I2が低下しても、再び増加促進条件が成立すれば、重畳促進手段17が再び重畳促進制御を行うようになり、二次電流I2を自動的に増加させ、二次電流I2を高い値に保つことが可能となる。
On the other hand, when the increase promotion condition is not satisfied, the superimposition promotion means 17 remains off and power is not supplied from the increase promotion power supply line L9 to the reference signal line L3. Therefore, the charge storage speed of the second capacitor C2 is not increased, and thus the charge storage speed of the first capacitor C1 is not increased. After that, when the secondary current I2 becomes low by not performing the increase promotion control and the increase promotion condition is satisfied, the superimposition promoting means 17 supplies power to the superimposition controlling means 15C from the increase promoting power supply line L9 to obtain the reference value. Promote the increase of. That is, even if the secondary current I2 decreases without performing the superposition promotion control by the superposition promotion means 17, if the increase promotion condition is satisfied again, the superposition promotion means 17 will perform the superposition promotion control again, and the secondary promotion. It is possible to automatically increase the current I2 and keep the secondary current I2 at a high value.
次に、内燃機関用点火装置1Cにおける要部の波形を示した図7に基づき、重畳制御を行わない場合の回路動作と、重畳制御を行う場合の回路動作を説明する。
Next, the circuit operation when the superposition control is not performed and the circuit operation when the superposition control is performed will be described based on FIG. 7 showing waveforms of main parts in the internal combustion engine ignition device 1C.
まず、重畳制御を行わない点火サイクルについて説明する。点火信号Siがオンになる前、増加促進条件が成立しているので、重畳増加手段17から増加促進用給電線L9を介して電源供給されており、第2コンデンサC2は電荷が蓄積された定常状態になっている。点火信号Siがオンになって点火スイッチ13が動作し、主一次コイル111aへの通電が開始されると、一次電流I1aが流れ始める。点火信号Siがオンになることで放電用スイッチ154がオンになり、第2コンデンサC2の電荷がショートされて、第1比較器151の非反転入力Vin(+)の入力電位はLに落ちる。しかし、このときに重畳電流I1bは流れていないので、第1比較器151の非反転入力Vin(+)もLのままであるから、第1比較器151の出力VoutもLで、制限用スイッチ152が動作することはない。
First, I will explain the ignition cycle without superposition control. Since the increase promotion condition is satisfied before the ignition signal Si is turned on, power is supplied from the superposition increasing means 17 through the increase promotion power supply line L9, and the second capacitor C2 is in a steady state in which electric charge is accumulated. It is in a state. When the ignition signal Si is turned on and the ignition switch 13 is operated to start energizing the main primary coil 111a, the primary current I1a starts to flow. When the ignition signal Si is turned on, the discharge switch 154 is turned on, the electric charge of the second capacitor C2 is short-circuited, and the input potential of the non-inverting input Vin(+) of the first comparator 151 falls to L. However, since the superimposed current I1b does not flow at this time, the non-inverting input Vin(+) of the first comparator 151 also remains L, so the output Vout of the first comparator 151 is also L, and the limiting switch The 152 does not operate.
その後、点火信号Siがオフになって主一次コイル111aへの通電が遮断されると、二次コイル112に放電エネルギーが与えられ、点火プラグ2に火花放電が生じて二次電流I2が流れ始める。点火信号Siがオフになることで放電用スイッチ154がオフになり、第2コンデンサC2の充電が開始される。このとき、放電開始直後の容量放電によって高い二次電流I2が流れ、増加促進基準値を超えると増加促進条件が成立しなくなり、増加促進手段17から増加促進用給電線L9を介して重畳制御手段15Cへ電源供給されなくなる。したがって、重畳制御手段15Cの第2コンデンサC2は、抵抗R4aを介して供給される電源のみで充電されることとなる。
After that, when the ignition signal Si is turned off and the power supply to the main primary coil 111a is cut off, discharge energy is given to the secondary coil 112, spark discharge occurs in the ignition plug 2 and the secondary current I2 starts to flow. .. When the ignition signal Si is turned off, the discharging switch 154 is turned off and the charging of the second capacitor C2 is started. At this time, a high secondary current I2 flows due to capacitive discharge immediately after the start of discharge, and when the increase promotion reference value is exceeded, the increase promotion condition is no longer satisfied, and the superposition control means is provided from the increase promotion means 17 via the increase promotion power supply line L9. Power is not supplied to 15C. Therefore, the second capacitor C2 of the superposition control means 15C is charged only by the power source supplied via the resistor R4a.
二次電流I2が減少して増加促進基準値を下回ると、再び増加促進条件が成立するので、増加促進手段17から増加促進用給電線L9を介して重畳制御手段15Cへ電源供給されるようになる。したがって、重畳制御手段15Cの第2コンデンサC2は、抵抗R4aを介して供給される電源と、増加促進用給電線L9を介して供給される電源からなる並列電源により充電され、電荷蓄積速度が促進される。しかしながら、重畳制御を行わない場合、重畳信号Spが入力されないので、第1コンデンサC1が充電されることは無く、重畳スイッチ14への能動信号出力も行われることはない。よって、点火プラグ2の放電開始後に、点火コイル二次側へ重畳的にエネルギーが与えられることは無く、主一次コイル111aにおける順方向の磁束減少に伴って二次電流I2も減少して行く。
When the secondary current I2 decreases and falls below the increase promotion reference value, the increase promotion condition is satisfied again, so that power is supplied from the increase promotion means 17 to the superposition control means 15C via the increase promotion power supply line L9. Become. Therefore, the second capacitor C2 of the superimposition control means 15C is charged by the parallel power supply including the power supply supplied via the resistor R4a and the power supply supplied via the increase promoting power supply line L9, and the charge storage speed is accelerated. To be done. However, when the superposition control is not performed, the superposition signal Sp is not input, so that the first capacitor C1 is not charged and the active signal is not output to the superposition switch 14. Therefore, after starting the discharge of the ignition plug 2, energy is not applied to the secondary side of the ignition coil in a superimposed manner, and the secondary current I2 also decreases as the forward magnetic flux in the main primary coil 111a decreases.
一方、重畳制御を行う点火サイクルでは、点火信号Siのオフと同時に重畳信号Spをオンにする。重畳信号Spがオンになると、重畳電源供給線L4より電源供給されて第1コンデンサC1の充電が開始される。第1コンデンサC1の充電電荷に応じた流量の能動信号が重畳スイッチ14のゲートへ入力されると、副一次コイル111bに重畳電流I1bが流れるようになり、その後も第1コンデンサC1の蓄積電荷量に応じて重畳電流I1bの流量が増えて行く。
On the other hand, in the ignition cycle for performing the superposition control, the superposition signal Sp is turned on at the same time as the ignition signal Si is turned off. When the superimposition signal Sp is turned on, power is supplied from the superimposition power supply line L4 to start charging the first capacitor C1. When an active signal having a flow rate according to the charge charged in the first capacitor C1 is input to the gate of the superposition switch 14, the superposed current I1b starts to flow in the sub primary coil 111b, and the amount of accumulated charge in the first capacitor C1 continues thereafter. Accordingly, the flow rate of the superimposed current I1b increases.
放電開始直後は、二次電流I2が非常に高いため、増加促進条件が成立しなくなり、増加促進手段17から増加促進用給電線L9を介して重畳制御手段15Cへ電源供給されなくなる。したがって、重畳制御手段15Cの第2コンデンサC2は抵抗R4aを介して供給される電源のみで充電され、第1比較器151の反転入力に入力される基準値の増加速度は促進されないため、基準値がなかなか上がらない。基準値が比較的低い値であれば、重畳電流検出値の方が高くなり易いので、第1比較器151がオンとなって制限用スイッチ152がオンとなり易い。制限用スイッチ152がオンになってコレクタ電流が流れると、それだけ第1コンデンサC1への給電量が低下し、重畳スイッチ14へ供給する能動信号も低く、副一次コイル111bに流す重畳電流I1bの増加速度は若干低いものとなる。このように、増加促進条件が成立しなくなったときには、副一次コイル111bに流す重畳電流I1bの増加速度を低減させるので、二次電流I2が必要以上に高くなることを抑制できる。
Immediately after the start of discharge, the secondary current I2 is so high that the increase promotion condition is no longer satisfied, and power is no longer supplied from the increase promotion means 17 to the superposition control means 15C via the increase promotion power supply line L9. Therefore, the second capacitor C2 of the superimposition control means 15C is charged only by the power source supplied via the resistor R4a, and the increasing speed of the reference value input to the inverting input of the first comparator 151 is not promoted. It does not rise easily. If the reference value is a relatively low value, the superimposed current detection value is likely to be higher, and therefore the first comparator 151 is turned on and the limiting switch 152 is easily turned on. When the limiting switch 152 is turned on and the collector current flows, the amount of power supplied to the first capacitor C1 decreases, the active signal supplied to the superposition switch 14 also decreases, and the superposition current I1b flowing to the sub primary coil 111b increases. The speed will be slightly lower. As described above, when the increase promoting condition is not satisfied, the increasing rate of the superimposed current I1b flowing through the sub primary coil 111b is reduced, so that the secondary current I2 can be prevented from becoming higher than necessary.
二次電流I2が減少して増加促進基準値を下回ると、再び増加促進条件が成立するので、増加促進手段17から増加促進用給電線L9を介して重畳制御手段15Cへ電源供給されるようになる。したがって、重畳制御手段15Cの第2コンデンサC2は、抵抗R4aを介して供給される電源と、増加促進用給電線L9を介して供給される電源からなる並列電源により充電されてゆくこととなる。第2コンデンサC2の電荷蓄積速度が速まると、第1比較器151の反転入力に入力される基準値の増加速度も速くなるため、早いタイミングで基準値が重畳電流検出値に達し、第1比較器151の出力がオフとなり、制限用スイッチ152もオフとなる。制限用スイッチ152がオフになると、重畳電源供給線L4より第1コンデンサC1に供給される給電量が回復して電荷蓄積速度が速まるので、副一次コイル111bに流す重畳電流I1bの増加を促進することができる。このように、増加促進条件が成立したときには、副一次コイル111bに流す重畳電流I1bの増加を促進させるので、二次電流I2が基準値よりも低くなることを抑制できる。
When the secondary current I2 decreases and falls below the increase promotion reference value, the increase promotion condition is satisfied again, so that power is supplied from the increase promotion means 17 to the superposition control means 15C via the increase promotion power supply line L9. Become. Therefore, the second capacitor C2 of the superimposition control means 15C is charged by the parallel power supply including the power supply supplied via the resistor R4a and the power supply supplied via the increase promoting power supply line L9. As the charge storage speed of the second capacitor C2 increases, the reference value input to the inverting input of the first comparator 151 also increases in speed, so that the reference value reaches the superimposed current detection value at an early timing and the first comparison The output of the device 151 is turned off, and the limiting switch 152 is also turned off. When the limiting switch 152 is turned off, the amount of power supplied from the superimposed power supply line L4 to the first capacitor C1 is recovered and the charge storage speed is increased, so that the increase of the superimposed current I1b flowing through the sub primary coil 111b is promoted. be able to. In this way, when the increase promotion condition is satisfied, the increase of the superimposed current I1b flowing through the sub primary coil 111b is promoted, so that the secondary current I2 can be suppressed from becoming lower than the reference value.
上記のような重畳促進手段17を用い、重畳電流I1bの増加を促進させたり、通常の増加状態へ戻したりする制御を行うと、二次コイル112に作用する磁束の変化量を好適に保持できるので、二次側に発生する起電圧を高いまま維持することができる。すなわち、本実施形態の内燃機関用点火装置1Cによれば、点火プラグ2に発生した火花放電による着火性を必要十分に向上させるために、二次電流I2を高い値に保ちつつも、過度に二次電流I2を上昇させて、電力消費を高めてしまうことを抑制できる。しかも、重畳促進手段17は、第2比較器171や増加促進用スイッチ172といったディスクリート部品で比較的安価かつ小型に構成できる。
When the control for promoting the increase of the superimposed current I1b or returning it to the normal increasing state by using the superposition promoting means 17 as described above, the amount of change in the magnetic flux acting on the secondary coil 112 can be preferably held. Therefore, the electromotive voltage generated on the secondary side can be maintained high. That is, according to the internal combustion engine ignition device 1C of the present embodiment, in order to sufficiently and sufficiently improve the ignitability due to the spark discharge generated in the spark plug 2, the secondary current I2 is maintained at a high value, but is excessively increased. It is possible to suppress an increase in the power consumption by increasing the secondary current I2. Moreover, the superimposition promoting means 17 can be constructed at a relatively low cost and in a small size by using discrete components such as the second comparator 171 and the increase promoting switch 172.
上述した第1~第3実施形態の内燃機関用点火装置1A~1Cでは、重畳電流I1bや二次電流I2の検出状態に応じて好適な燃焼状態を得られるように自動制御を行うものとしたが、自動制御に用いる情報は電流値に限定されない。例えば、点火プラグ2に印加される二次コイル電圧を用いて重畳制御を行えば、点火プラグ2の放電状況に応じた適切な点火制御が可能である。
In the internal combustion engine ignition devices 1A to 1C of the first to third embodiments described above, automatic control is performed so as to obtain a suitable combustion state according to the detection states of the superimposed current I1b and the secondary current I2. However, the information used for automatic control is not limited to the current value. For example, if the superposition control is performed using the secondary coil voltage applied to the spark plug 2, it is possible to perform appropriate ignition control according to the discharge state of the spark plug 2.
そもそも、直噴エンジンや高EGRエンジンでの着火性を向上させるためには、高電流期間を長くするだけでは十分とは言えず、点火プラグ2の放電電流によって大きな火炎を形成することも重要である。通常のエンジンでは、シリンダ内に生じるタンブル流の流速が3~5〔m/s〕程度なのに対して、超希薄リーン燃焼(A/F=29)やEGR=35%で燃焼させようとするエンジンでは、シリンダ内に生じるタンブル流の流速が20〔m/s〕程度に増大する。このように流速が増大したシリンダ内で、点火プラグ2に発生した火花放電はタンブル流に流されて膨らみ、放電経路が伸びる。点火プラグ2に発生した火花放電の放電経路が伸びると、それだけ大きな火炎核が形成されて火炎伝搬も良好となり、着火性を向上させることができる。
In the first place, in order to improve the ignitability in a direct injection engine or a high EGR engine, it is not enough to lengthen the high current period, and it is also important to form a large flame by the discharge current of the spark plug 2. is there. In a normal engine, the flow velocity of the tumble flow generated in the cylinder is about 3 to 5 [m/s], while an engine that attempts to burn with ultra lean lean combustion (A/F=29) or EGR=35% Then, the flow velocity of the tumble flow generated in the cylinder increases to about 20 [m/s]. In the cylinder in which the flow velocity has increased in this way, the spark discharge generated in the spark plug 2 is swept by the tumble flow and swells, and the discharge path extends. When the discharge path of the spark discharge generated in the spark plug 2 is extended, a larger flame nucleus is formed, the flame propagation is improved, and the ignitability can be improved.
しかしながら、点火プラグ2に発生した火花放電の放電経路が伸びても、十分な放電電流が流れないと、その放電経路を維持できず、点火プラグの電極間を短経路で結ぶ新たな放電経路が生じるリストライク(放電吹き消え)を起こしてしまい、十分な大きさの火炎核を形成できない。よって、直噴エンジンや高EGRエンジンでの着火性を向上させるためには、点火プラグ2に発生した火花放電のリストライクを防止することも重要である。このような理由から、二次コイル電圧が所定の基準値以上の(或いは、より高い)ときは、二次側への放電エネルギーを高くし、二次コイル電圧が基準値に満たない(或いは、基準値以下の)ときは、二次側の放電エネルギーを抑制する制御が有効である。
However, even if the discharge path of the spark discharge generated in the spark plug 2 extends, the discharge path cannot be maintained unless a sufficient discharge current flows, and a new discharge path connecting the electrodes of the spark plug with a short path is formed. It causes a restructuring (discharging of discharge) that occurs, and a flame kernel of a sufficient size cannot be formed. Therefore, in order to improve the ignitability of the direct injection engine or the high EGR engine, it is important to prevent the retriggering of the spark discharge generated in the spark plug 2. For this reason, when the secondary coil voltage is equal to or higher than the predetermined reference value (or higher), the discharge energy to the secondary side is increased and the secondary coil voltage does not reach the reference value (or When it is less than the reference value), the control for suppressing the secondary side discharge energy is effective.
しかしながら、二次コイル電圧は数kV~数十kVに及ぶ高電圧であるために、分圧抵抗を設けることに依るリークの発生といった諸問題に配慮が必要であり、二次コイル電圧の監視を行うことは現実的ではない。
However, since the secondary coil voltage is a high voltage ranging from several kV to several tens of kV, it is necessary to consider various problems such as leakage due to the provision of the voltage dividing resistor. It is not realistic to do.
そこで、第4実施形態に係る内燃機関用点火装置1Dでは、二次コイル112との巻数比に応じた電圧が発生する主一次コイル111aの電圧検出値を二次コイル電圧検出値と推定して重畳制御を行うものとした。主一次コイル111aに発生している電圧(以下、一次コイル電圧という)であれば、比較的低い電圧値であることから、監視のための難易度が低い。ただし、一次コイル電圧と二次コイル電圧は、電圧値のスケールが異なると共に、互いに逆極性となる。この相違点を踏まえておけば、一次コイル電圧を二次コイル電圧の相関情報として扱うことができる。
Therefore, in the internal combustion engine ignition device 1D according to the fourth embodiment, the voltage detection value of the main primary coil 111a that generates a voltage according to the turn ratio with the secondary coil 112 is estimated as the secondary coil voltage detection value. The superposition control is performed. Since the voltage generated in the main primary coil 111a (hereinafter referred to as the primary coil voltage) has a relatively low voltage value, the difficulty of monitoring is low. However, the primary coil voltage and the secondary coil voltage have different scales of voltage values and have opposite polarities. Based on this difference, the primary coil voltage can be treated as the correlation information of the secondary coil voltage.
以下、第4実施形態の内燃機関用点火装置1Dを、添付図面に基づいて詳細に説明する。上述した第1~第3実施形態の内燃機関用点火装置1A~1Cと同一の構成には、同一符号を付して、説明を省略する。
Hereinafter, an internal combustion engine ignition device 1D according to a fourth embodiment will be described in detail with reference to the accompanying drawings. The same components as those of the internal combustion engine ignition devices 1A to 1C according to the first to third embodiments described above are designated by the same reference numerals, and description thereof will be omitted.
第4実施形態の内燃機関用点火装置1Dの点火コイルユニット10Dにおいては、主一次コイル111aの低圧側電圧を検出するために、主一次コイル111aと点火スイッチ13との間(例えば、バイパス線路L1と同位置)から分岐させて一次コイル電圧検出ラインL11を引き出し、一次コイル電圧検出手段18へ導く。一次コイル電圧検出手段18では、一次コイル電圧検出ラインL11より入力された位置コイル電圧を抵抗R9により降圧し、さらに接地線との間に電圧検出用の抵抗R10を介挿する。抵抗R10による電圧降下を一次コイル電圧検出ラインL12で取得する。
In the ignition coil unit 10D of the internal combustion engine ignition device 1D of the fourth embodiment, in order to detect the low-voltage side voltage of the main primary coil 111a, between the main primary coil 111a and the ignition switch 13 (for example, the bypass line L1. (The same position as) and the primary coil voltage detection line L11 is branched to lead to the primary coil voltage detection means 18. In the primary coil voltage detection means 18, the position coil voltage input from the primary coil voltage detection line L11 is stepped down by the resistor R9, and a resistor R10 for voltage detection is further inserted between the position coil voltage and the ground line. The voltage drop due to the resistor R10 is acquired by the primary coil voltage detection line L12.
この一次コイル電圧検出ラインL12は、重畳抑制条件判定手段19に接続され、二次コイル電圧と相関する情報として一次コイル電圧検出値を供給する。一次コイル電圧検出手段18には、一次コイル電圧検出ラインL12を避けて電流を迂回させるバイパス線路L13を設けてある。このバイパス線路L13には、ツェナーダイオードZDを逆バイアス(カソードを主一次コイル側、アノードを接地側)になるよう接続し、そのツェナー降伏電圧は、重畳抑制条件判定手段19に印加されることが望ましくない規制電圧値に設定してある。かくすれば、一次コイル電圧が異常に高くなってバイパス線路13で規制電圧値に達した場合、ツェナーダイオードZDがツェナー降伏して、一次コイル電圧検出ラインL12に規制電圧が印加されることを防げる。
The primary coil voltage detection line L12 is connected to the superposition suppression condition determination means 19 and supplies the primary coil voltage detection value as information correlating with the secondary coil voltage. The primary coil voltage detection means 18 is provided with a bypass line L13 that bypasses the primary coil voltage detection line L12 and diverts the current. A Zener diode ZD is connected to the bypass line L13 so as to be reverse biased (cathode on the main primary coil side and anode on the ground side), and the Zener breakdown voltage may be applied to the superposition suppression condition determination means 19. It is set to an undesired regulation voltage value. Thus, when the primary coil voltage becomes abnormally high and reaches the regulated voltage value on the bypass line 13, it is possible to prevent the Zener diode ZD from breakdown and to prevent the regulated voltage from being applied to the primary coil voltage detection line L12. ..
点火コイルユニット10Dでは、一次コイル電圧検出値に基づいて二次コイル電圧を推定することにより、点火プラグ2への印加電圧の変化に基づく重畳制御の可否を重畳抑制条件判定手段19によって判断する。例えば、重畳抑制条件判定手段19は、一次コイル電圧検出手段18により検出された一次コイル電圧値が点火プラグ2内の放電状況に対応させて定めた一次コイル電圧判定基準値に達したか否かで重畳抑制条件の成否を判定する。重畳抑制条件判定手段19により重畳抑制条件の成立が判定されたときには、重畳制御手段15から重畳スイッチ14へ送る能動信号を抑制することで、副一次コイル111bに流す重畳電流I1bを抑え、過剰な放電エネルギーを二次側へ与えられることを防ぐ。一方、重畳抑制条件判定手段19により重畳抑制条件の不成立が判定されたときには、重畳制御手段15から重畳スイッチ14へ送る能動信号を抑制せず、能力一杯の重畳電流I1bを副一次コイル111bに流し、火花放電の吹き消えを防止する。
In the ignition coil unit 10D, by estimating the secondary coil voltage based on the detected primary coil voltage, the superposition suppression condition determination means 19 determines whether or not the superposition control is possible based on the change in the voltage applied to the ignition plug 2. For example, the superposition suppression condition determination means 19 determines whether or not the primary coil voltage value detected by the primary coil voltage detection means 18 has reached the primary coil voltage determination reference value determined in correspondence with the discharge condition in the spark plug 2. The success or failure of the superposition suppression condition is determined by. When the superposition suppression condition determination unit 19 determines that the superposition suppression condition is satisfied, the active signal sent from the superposition control unit 15 to the superposition switch 14 is suppressed to suppress the superposition current I1b flowing through the sub-primary coil 111b, resulting in an excess. Prevents discharge energy from being given to the secondary side. On the other hand, when the superposition suppression condition determination unit 19 determines that the superposition suppression condition is not satisfied, the active signal sent from the superposition control unit 15 to the superposition switch 14 is not suppressed, and the superposition current I1b with the full capacity is supplied to the sub primary coil 111b. , Prevents blowout of spark discharge.
重畳抑制条件の成否を判定する重畳抑制条件判定手段19は、一次コイル電圧検出手段18から一次コイル電圧検出ラインL12を介して入力される一次コイル電圧検出値を第3比較器191の反転入力Vin(-)にて受ける。第3比較器191の非反転入力Vin(+)には、判定基準値線L14を介して一次コイル電圧判定基準値が入力される。一次コイル電圧判定基準値は、電源電圧VB+を抵抗R11aと抵抗R11bで分圧した一定の電圧信号として生成する。
The superposition suppression condition determination means 19 for determining success or failure of the superposition suppression condition uses the primary coil voltage detection value input from the primary coil voltage detection means 18 via the primary coil voltage detection line L12 as an inverted input Vin of the third comparator 191. Receive with (-). The primary coil voltage determination reference value is input to the non-inverting input Vin(+) of the third comparator 191 via the determination reference value line L14. The primary coil voltage determination reference value is generated as a constant voltage signal obtained by dividing the power supply voltage VB+ by the resistors R11a and R11b.
第3比較器191の出力Voutは、例えばnpn型のバイポーラトランジスタにて構成した重畳抑制用スイッチ192のベースに入力される。重畳抑制用スイッチ192のエミッタは接地線に接続され、コレクタは抵抗R12が介挿された並列接続線L15に接続される。並列接続線L15の他端は重畳制御手段15Dの基準値線L3に接続される。すなわち、重畳抑制用スイッチ192がオンになって並列接続線L15が接地線に接続されると、抵抗R12と抵抗R4bが並列接続されたこととなり、これらの合成抵抗値と抵抗R4aとの分圧比である基準値線L3の電位は低下する。
The output Vout of the third comparator 191 is input to the base of the superposition suppressing switch 192 composed of, for example, an npn-type bipolar transistor. The emitter of the superposition suppression switch 192 is connected to the ground line, and the collector is connected to the parallel connection line L15 in which the resistor R12 is inserted. The other end of the parallel connection line L15 is connected to the reference value line L3 of the superposition control means 15D. That is, when the superposition suppressing switch 192 is turned on and the parallel connection line L15 is connected to the ground line, the resistors R12 and R4b are connected in parallel, and the voltage division ratio between the combined resistance value and the resistor R4a is obtained. Then, the potential of the reference value line L3 is decreased.
重畳抑制条件判定手段19によって重畳抑制条件の成立が判定されていな通常時は、基準値線L3から第1比較器151の反転入力に供給される基準値は、抵抗R4aと抵抗R4bの分圧比によって定まる比較的高い値である。しかし、重畳抑制条件判定手段19によって重畳抑制条件の成立が判定されると、基準値線L3から第1比較器151の反転入力に供給される基準値は、並列接続された抵抗R12と抵抗R4bの合成抵抗と抵抗R4aとの分圧比によって定まる比較的低い値になる。よって、重畳抑制条件が成立すると、重畳電流検出値よりも基準値の方が低くなり、制限用スイッチ152がオンになってコレクタ電流が流れるため、第1コンデンサC1への給電量が低下して電荷蓄積が抑制され、重畳スイッチ14へのゲート電流も低下する。その結果、重畳スイッチ14のコレクタ電流として制御される重畳電流I1bが抑えられるのである。
In a normal state where the superposition suppression condition determination means 19 has not determined that the superposition suppression condition is satisfied, the reference value supplied from the reference value line L3 to the inverting input of the first comparator 151 is the voltage division ratio of the resistors R4a and R4b. It is a relatively high value determined by. However, when the superposition suppression condition determination unit 19 determines that the superposition suppression condition is satisfied, the reference value supplied from the reference value line L3 to the inverting input of the first comparator 151 is the resistance R12 and the resistance R4b connected in parallel. It becomes a relatively low value determined by the voltage division ratio of the combined resistance of R1 and the resistance R4a. Therefore, when the superposition suppression condition is satisfied, the reference value becomes lower than the superposition current detection value, the limiting switch 152 is turned on, and the collector current flows, so that the amount of power supply to the first capacitor C1 decreases. The charge accumulation is suppressed, and the gate current to the superposition switch 14 also decreases. As a result, the superimposed current I1b controlled as the collector current of the superimposed switch 14 is suppressed.
次に、内燃機関用点火装置1Dにおける要部の波形を示した図9に基づき、重畳抑制制御を行わない場合の回路動作と、重畳抑制制御を行う場合の回路動作を説明する。
Next, the circuit operation when the superposition suppression control is not performed and the circuit operation when the superposition suppression control is performed will be described based on FIG. 9 showing waveforms of main parts in the internal combustion engine ignition device 1D.
まず、重畳制御を行わない点火サイクルについて説明する。点火信号Siがオンになる前、一次コイル電圧は基準となる接地電位なので、負極側の値に設定した一次コイル電圧判定基準値よりも低いことから、重畳抑制条件が成立し、重畳抑制用スイッチ192がオンになる。これにより、抵抗R12が抵抗R4bと並行に接続され、基準値線L3から第1比較器151の反転入力へ供給される基準値が低い値に差し替えられる。しかしながら、重畳制御は行われていないので、第1比較器151の出力VoutはLのままであり、能動制御信号線L5から重畳スイッチ14へ能動制御信号が出力されることもない。点火信号Siがオンになって点火スイッチ13が動作し、主一次コイル111aへの通電が開始されると、一次電流I1aが流れ始める。このとき、主一次コイル111a自らのインピーダンス成分によって一次コイル電圧に若干の変化は生じるものの、一次コイル電圧判定基準値を上回ることはないから、重畳抑制条件は成立したままであるが、重畳制御が行われることはない。
First, I will explain the ignition cycle without superposition control. Before the ignition signal Si is turned on, the primary coil voltage is the reference ground potential, and is lower than the primary coil voltage determination reference value set to the value on the negative electrode side. Therefore, the superposition suppression condition is satisfied, and the superposition suppression switch 192 turns on. As a result, the resistor R12 is connected in parallel with the resistor R4b, and the reference value supplied from the reference value line L3 to the inverting input of the first comparator 151 is replaced with a low value. However, since the superposition control is not performed, the output Vout of the first comparator 151 remains L and the active control signal is not output from the active control signal line L5 to the superposition switch 14. When the ignition signal Si is turned on and the ignition switch 13 is operated to start energizing the main primary coil 111a, the primary current I1a starts to flow. At this time, although the primary coil voltage slightly changes due to the impedance component of the main primary coil 111a itself, since it does not exceed the primary coil voltage determination reference value, the superposition suppression condition remains satisfied, but the superposition control is performed. It will not take place.
その後、点火信号Siがオフになって主一次コイル111aへの通電が遮断されると、二次コイル112に放電エネルギーが与えられ、点火プラグ2に火花放電が生じて二次電流I2が流れ始める。このとき、放電開始直後の容量放電によって高い二次電流I2が流れ、一次コイル電圧判定基準値を負極側で超えると重畳抑制条件が不成立となるため、第3比較器191がオフになって重畳抑制用スイッチ192もオフになる。よって、基準値線L3には抵抗R4aと抵抗R4bの分圧比に応じた高い電圧が基準値として供給されるようになる。しかしながら、重畳制御は行われていないので、第1比較器151の出力VoutはLのままであり、能動制御信号線L5から重畳スイッチ14へ能動制御信号が出力されることもない。
After that, when the ignition signal Si is turned off and the power supply to the main primary coil 111a is cut off, discharge energy is given to the secondary coil 112, spark discharge occurs in the ignition plug 2 and the secondary current I2 starts to flow. .. At this time, a high secondary current I2 flows due to capacitive discharge immediately after the start of discharge, and when the primary coil voltage determination reference value exceeds the negative side, the superimposition suppression condition is not satisfied, so the third comparator 191 turns off and superimposes. The suppression switch 192 is also turned off. Therefore, a high voltage corresponding to the voltage division ratio of the resistors R4a and R4b is supplied to the reference value line L3 as a reference value. However, since the superposition control is not performed, the output Vout of the first comparator 151 remains L and the active control signal is not output from the active control signal line L5 to the superposition switch 14.
一方、重畳制御を行う点火サイクルでは、点火信号Siのオフと同時に重畳信号Spをオンにする。重畳信号Spがオンになると、重畳電源供給線L4より電源供給されて第1コンデンサC1の充電が開始される。第1コンデンサC1の充電電荷に応じた流量の能動信号が重畳スイッチ14のゲートへ入力されると、副一次コイル111bに重畳電流I1bが流れるようになり、その後も第1コンデンサC1の蓄積電荷量に応じて重畳電流I1bの流量が増えて行く。
On the other hand, in the ignition cycle for performing the superposition control, the superposition signal Sp is turned on at the same time as the ignition signal Si is turned off. When the superimposition signal Sp is turned on, power is supplied from the superimposition power supply line L4 to start charging the first capacitor C1. When an active signal having a flow rate according to the charge charged in the first capacitor C1 is input to the gate of the superposition switch 14, the superposed current I1b starts to flow in the sub primary coil 111b, and the amount of accumulated charge in the first capacitor C1 continues thereafter. Accordingly, the flow rate of the superimposed current I1b increases.
放電開始直後は、二次電流I2が非常に高いため、重畳抑制条件が成立しなくなり、並列接続線L15の抵抗R12が重畳制御手段15Dの抵抗R4bに並列接続されなくなる。したがって、基準値線L3には抵抗R4aと抵抗R4bの分圧比に応じた高い電圧が基準値として供給されるようになる。基準値が高くなると、第1比較器151がオンになり難く、制限用スイッチ52にコレクタ電流も流れず、第1コンデンサC1への給電量が減ぜられることもない。結果として、第1コンデンサC1の蓄積電荷量に応じた能動信号が重畳スイッチ14へ供給され、能力一杯の重畳電流I1bを副一次コイル111bに流すことができ、二次側へ与える放電エネルギーが抑制されることはない。
Immediately after the start of discharge, the secondary current I2 is so high that the superposition suppression condition is no longer satisfied, and the resistance R12 of the parallel connection line L15 is not connected in parallel to the resistance R4b of the superposition control means 15D. Therefore, a high voltage corresponding to the voltage division ratio of the resistors R4a and R4b is supplied to the reference value line L3 as a reference value. When the reference value becomes high, the first comparator 151 is hard to be turned on, the collector current does not flow through the limiting switch 52, and the amount of power supply to the first capacitor C1 is not reduced. As a result, an active signal corresponding to the amount of charge stored in the first capacitor C1 is supplied to the superimposing switch 14, and the superimposing current I1b having the maximum capacity can be passed to the sub-primary coil 111b, and the discharge energy applied to the secondary side is suppressed. It will not be done.
二次電流I2が減少して一次コイル電圧判定基準値を下回ると、再び重畳抑制条件が成立するので、増加促進手段17から並列接続線L15の抵抗R12が重畳制御手段15Dの抵抗R4bに並列接続され。したがって、基準値線L3には比較的低い値の基準値が供給されるようになり、第1比較器151がオンになり易く、制限用スイッチ52がオンとなって、第1コンデンサC1への給電量を減ずる。第1コンデンサC1の電荷蓄積が抑制されると、重畳スイッチ14へ供給される能動信号も抑制されるので、副一次コイル111bに流す重畳電流I1bも抑制されることとなる。すなわち、二次コイル電圧を推定できる一次コイル電圧が一次コイル電圧基準値に満たないときは、シリンダ内の流動が少なく、点火プラグ2の電極間に生じた火花が伸びない状態と考えられるので、過剰な放電エネルギーを二次側へ与えることを防止できる。
When the secondary current I2 decreases and falls below the primary coil voltage determination reference value, the superposition suppression condition is satisfied again, so that the resistance R12 of the parallel connection line L15 is connected in parallel to the resistance R4b of the superposition control means 15D from the increase promoting means 17. Done. Therefore, a reference value of a relatively low value is supplied to the reference value line L3, the first comparator 151 easily turns on, the limiting switch 52 turns on, and the first capacitor C1 is turned on. Reduce the power supply. When the charge accumulation in the first capacitor C1 is suppressed, the active signal supplied to the superposition switch 14 is also suppressed, so that the superposition current I1b flowing through the sub primary coil 111b is also suppressed. That is, when the primary coil voltage with which the secondary coil voltage can be estimated does not reach the primary coil voltage reference value, it is considered that the flow in the cylinder is small and the spark generated between the electrodes of the spark plug 2 does not extend. It is possible to prevent excessive discharge energy from being applied to the secondary side.
図9に示す重畳制御1のように、頻繁に一次コイル電圧判定基準値を超えてしまうときは、重畳抑制条件が成立する期間が短いので、重畳制御のために多くの重畳電流I1bを流すこととなる。一方、図9に示す重畳制御2のように、一次コイル電圧判定基準値を超えることが少ない場合は、重畳抑制条件が成立する期間が長いので、重畳制御のための重畳電流I1bを抑制することができる。このように、副一次コイル111bへ過剰な重畳電流I1bを流さない重畳抑制制御を行うと、重畳制御による過剰なエネルギー消費を抑制できる。また、重畳抑制制御によって副一次コイル111bの発熱を抑えることができ、点火スイッチ13、重畳スイッチ14といった制御素子を熱による劣化・損傷から守れるという利点もある。しかも、一次コイル電圧検出手段18や重畳抑制条件判定手段19は、耐熱性・耐ノイズ性の高いディスクリート部品で比較的安価かつ小型に構成できる。
When the primary coil voltage determination reference value is frequently exceeded as in the superposition control 1 shown in FIG. 9, the period for which the superposition suppression condition is satisfied is short, so a large amount of the superposition current I1b is passed for the superposition control. Becomes On the other hand, as in the superposition control 2 shown in FIG. 9, when the primary coil voltage determination reference value rarely exceeds, the superposition suppression condition is satisfied for a long period of time, so the superposition current I1b for the superposition control is suppressed. You can In this way, by performing the superposition suppressing control that does not cause the excessive superposition current I1b to flow to the sub primary coil 111b, it is possible to suppress the excessive energy consumption due to the superposition control. Further, the superposition suppression control can suppress the heat generation of the sub-primary coil 111b, and has an advantage that the control elements such as the ignition switch 13 and the superposition switch 14 can be protected from deterioration and damage due to heat. Moreover, the primary coil voltage detection means 18 and the superposition suppression condition determination means 19 can be constructed relatively inexpensively and small in size with discrete parts having high heat resistance and noise resistance.
以上、本発明に係る内燃機関用点火装置の実施形態を添付図面に基づいて説明したが、本発明は、これらの実施形態のみに限定されるものではなく、特許請求の範囲に記載の構成を変更しない範囲で、公知既存の等価な技術手段を転用することにより実施しても構わない。
The embodiments of the internal combustion engine ignition device according to the present invention have been described above with reference to the accompanying drawings. However, the present invention is not limited to these embodiments, and has the configuration described in the claims. It may be carried out by diverting known existing equivalent technical means within a range where it is not changed.
1A 内燃機関用点火装置(第1実施形態)
10A 点火コイルユニット
11 点火コイル
111a 主一次コイル
111b 副一次コイル
112 二次コイル
13 点火スイッチ
14 重畳スイッチ
15 重畳制御手段
2 点火プラグ
3 内燃機関駆動制御装置
4 直流電源 1A Internal combustion engine ignition device (first embodiment)
10AIgnition coil unit 11 Ignition coil 111a Main primary coil 111b Sub primary coil 112 Secondary coil 13 Ignition switch 14 Superimposition switch 15 Superimposition control means 2 Ignition plug 3 Internal combustion engine drive control device 4 DC power supply
10A 点火コイルユニット
11 点火コイル
111a 主一次コイル
111b 副一次コイル
112 二次コイル
13 点火スイッチ
14 重畳スイッチ
15 重畳制御手段
2 点火プラグ
3 内燃機関駆動制御装置
4 直流電源 1A Internal combustion engine ignition device (first embodiment)
10A
Claims (8)
- 点火制御手段からの点火信号のオン・オフによって点火コイルへの通電制御を行うことで、点火コイルの二次側に放電エネルギーを与えて点火プラグに火花放電を起こさせる内燃機関用点火装置において、
前記点火コイルは、点火信号がオンで行われる主一次電流の通電により順方向の磁束量が増加し、点火信号がオフになって主一次電流を遮断することにより順方向の磁束量が減少する主一次コイルと、該主一次コイルに対する通電遮断以降の放電期間内に重畳電流を流すことにより、順方向と逆の遮断方向に磁束を発生させる副一次コイルと、一端側が点火プラグと接続され、前記主一次コイルと副一次コイルの磁束変化が作用して放電エネルギーが与えられる二次コイルと、を有し、
前記副一次コイルへの通電・遮断を行うと共に、副一次コイルへの通電量を変えることで、遮断方向の磁束量を変化させる副一次コイル通電手段と、
前記主一次コイルへの通電遮断以降に前記副一次コイル通電手段を動作させ、前記副一次コイルへの重畳電流供給が急激に遮断されないよう前記副一次コイル通電手段による通電量を制御する重畳制御手段と、
を備えることを特徴とする内燃機関用点火装置。 By controlling the energization of the ignition coil by turning on/off the ignition signal from the ignition control means, in the ignition device for an internal combustion engine, which gives discharge energy to the secondary side of the ignition coil to cause a spark discharge in the ignition plug,
In the ignition coil, the amount of magnetic flux in the forward direction is increased by energizing the main primary current when the ignition signal is turned on, and the amount of magnetic flux in the forward direction is decreased by turning off the ignition signal and shutting off the main primary current. A main primary coil, a sub-primary coil that generates a magnetic flux in a blocking direction opposite to the forward direction by flowing a superimposed current within a discharge period after the interruption of energization to the main primary coil, and one end side is connected to an ignition plug, A secondary coil to which the main primary coil and the change in magnetic flux of the sub primary coil act to give discharge energy,
A sub-primary coil energizing unit that changes the amount of magnetic flux in the interruption direction by performing energization/interruption to the sub-primary coil and changing the amount of energization to the sub-primary coil,
Superposition control means for operating the sub-primary coil energizing means after the main primary coil is de-energized to control the energization amount by the sub-primary coil energizing means so that the supply of superposed current to the sub-primary coil is not suddenly cut off. When,
An ignition device for an internal combustion engine, comprising: - 前記副一次コイル通電手段は、入力信号に応じて副一次コイルへの通電量を増減させる能動素子であることを特徴とする請求項1に記載の内燃機関用点火装置。 The ignition device for an internal combustion engine according to claim 1, wherein the sub-primary coil energizing means is an active element that increases or decreases the amount of energization to the sub-primary coil according to an input signal.
- 前記重畳制御手段は、前記主一次コイルへの通電遮断と同時に前記副一次コイル通電手段を動作させて前記副一次コイルへの重畳電流供給を開始させ、重畳電流を所要値に保持する能動信号を前記副一次コイル通電手段へ送って能動動作させることを特徴とする請求項2に記載の内燃機関用点火装置。 The superposition control means activates the sub-primary coil energization means at the same time when the main primary coil is de-energized to start the supply of the superposition current to the sub-primary coil, and outputs an active signal for holding the superposition current to a required value. The ignition device for an internal combustion engine according to claim 2, wherein the ignition device is sent to the sub-primary coil energizing means to be actively operated.
- 前記重畳制御手段は、前記主一次コイルへの通電遮断と同時に前記副一次コイル通電手段を動作させて前記副一次コイルへの重畳電流供給を開始させ、時間経過に伴って重畳電流を増加させる能動信号を前記副一次コイル通電手段へ送って能動動作させることを特徴とする請求項2に記載の内燃機関用点火装置。 The superposition control means activates the sub-primary coil energization means at the same time when the main primary coil is de-energized to start the supply of the superposition current to the sub-primary coil and to increase the superposition current over time. The ignition device for an internal combustion engine according to claim 2, wherein a signal is sent to the sub-primary coil energizing means for active operation.
- 前記重畳制御手段は、点火信号のオンで電荷をショートし、点火信号がオフとなった放電開始と共に充電を開始するコンデンサを備え、充電開始後におけるコンデンサの電荷蓄積状態を指標として、時間経過に伴う重畳電流の増加制御を行うことを特徴とする請求項4に記載の内燃機関用点火装置。 The superposition control means includes a capacitor that short-circuits the electric charge when the ignition signal is turned on, and starts charging when the ignition signal is turned off, and the charge accumulation state of the capacitor after the start of charging is used as an index. The ignition device for an internal combustion engine according to claim 4, wherein an increase control of the superposed current is performed.
- 前記点火コイルの二次側に流れる二次電流を検出する二次電流検出手段と、
前記二次電流検出手段の検出値が所定の重畳促進条件を満たすことに基づいて、前記重畳制御手段による重畳電流の増加を促進させる重畳促進手段と、
を備えることを特徴とする請求項4又は請求項5に記載の内燃機関用点火装置。 Secondary current detection means for detecting a secondary current flowing on the secondary side of the ignition coil,
A superimposition promoting unit that promotes an increase in the superimposition current by the superimposition control unit based on that the detection value of the secondary current detection unit satisfies a predetermined superposition promotion condition,
The ignition device for an internal combustion engine according to claim 4 or 5, further comprising: - 前記重畳促進手段は、前記二次電流検出手段により検出された二次電流検出値と、二次電流を維持するために重畳電流の増加を促進する指標として予め定めた増加促進基準値とを対比し、検出された二次電流値が増加促進基準値を越えないことを重畳促進条件として用いることを特徴とする請求項6に記載の内燃機関用点火装置。 The superposition promoting means compares the secondary current detection value detected by the secondary current detecting means with a predetermined increase promotion reference value as an index for promoting an increase in the superposition current for maintaining the secondary current. The ignition device for an internal combustion engine according to claim 6, wherein the detected secondary current value does not exceed an increase promotion reference value is used as a superposition promotion condition.
- 前記主一次コイルと前記主一次コイル通電スイッチ手段との接点の電圧を検出する一次コイル電圧検出手段と、
前記一次コイル電圧検出手段により検出された一次コイル電圧値が、前記点火プラグ内の放電状況に対応させて定めた一次コイル電圧判定基準値に達したか否かで重畳抑制条件の成否を判定する重畳抑制条件判定手段と、
を備え、
前記重畳制御手段は、前記主一次コイルへの通電遮断と同時に前記副一次コイル通電手段を動作させて前記副一次コイルへの重畳電流供給を開始させ、前記重畳抑制条件判定手段により重畳抑制条件の成立が判定されたときには、前記重畳電流を抑制する能動信号を前記副一次コイル通電手段へ送って能動動作させることを特徴とする請求項2に記載の内燃機関用点火装置。 A primary coil voltage detecting means for detecting a voltage at a contact point between the main primary coil and the main primary coil energizing switch means,
Whether the primary coil voltage value detected by the primary coil voltage detection means has reached a primary coil voltage determination reference value determined in correspondence with the discharge condition in the spark plug determines whether or not the superposition suppression condition is satisfied. Superimposition suppression condition determining means,
Equipped with
The superposition control means operates the sub-primary coil energization means at the same time when the main primary coil is de-energized to start the superposition current supply to the sub-primary coil, and the superposition suppression condition determination means determines the superposition suppression condition. The ignition device for an internal combustion engine according to claim 2, wherein when it is determined that the condition is satisfied, an active signal that suppresses the superimposed current is sent to the sub-primary coil energizing means to be actively operated.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/045297 WO2020121375A1 (en) | 2018-12-10 | 2018-12-10 | Ignition device for internal combustion engine |
JP2020558812A JP6992198B2 (en) | 2018-12-10 | 2018-12-10 | Ignition system for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/045297 WO2020121375A1 (en) | 2018-12-10 | 2018-12-10 | Ignition device for internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020121375A1 true WO2020121375A1 (en) | 2020-06-18 |
Family
ID=71076835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/045297 WO2020121375A1 (en) | 2018-12-10 | 2018-12-10 | Ignition device for internal combustion engine |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6992198B2 (en) |
WO (1) | WO2020121375A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022269976A1 (en) * | 2021-06-21 | 2022-12-29 | 日立Astemo株式会社 | Internal combustion engine control device |
CN115735059A (en) * | 2020-07-20 | 2023-03-03 | 日立安斯泰莫株式会社 | Electronic control device |
WO2024042848A1 (en) * | 2022-08-25 | 2024-02-29 | 日立Astemo阪神株式会社 | Combustion state detection device for internal combustion engine |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015113730A (en) * | 2013-12-10 | 2015-06-22 | 株式会社日本自動車部品総合研究所 | Ignition device |
WO2016157541A1 (en) * | 2015-03-30 | 2016-10-06 | 日立オートモティブシステムズ阪神株式会社 | Ignition device for internal combustion engine |
WO2017060935A1 (en) * | 2015-10-06 | 2017-04-13 | 日立オートモティブシステムズ阪神株式会社 | Internal combustion engine ignition device and ignition control method for internal combustion engine ignition device |
-
2018
- 2018-12-10 WO PCT/JP2018/045297 patent/WO2020121375A1/en active Application Filing
- 2018-12-10 JP JP2020558812A patent/JP6992198B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015113730A (en) * | 2013-12-10 | 2015-06-22 | 株式会社日本自動車部品総合研究所 | Ignition device |
WO2016157541A1 (en) * | 2015-03-30 | 2016-10-06 | 日立オートモティブシステムズ阪神株式会社 | Ignition device for internal combustion engine |
WO2017060935A1 (en) * | 2015-10-06 | 2017-04-13 | 日立オートモティブシステムズ阪神株式会社 | Internal combustion engine ignition device and ignition control method for internal combustion engine ignition device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115735059A (en) * | 2020-07-20 | 2023-03-03 | 日立安斯泰莫株式会社 | Electronic control device |
WO2022269976A1 (en) * | 2021-06-21 | 2022-12-29 | 日立Astemo株式会社 | Internal combustion engine control device |
WO2024042848A1 (en) * | 2022-08-25 | 2024-02-29 | 日立Astemo阪神株式会社 | Combustion state detection device for internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020121375A1 (en) | 2021-09-02 |
JP6992198B2 (en) | 2022-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6375452B2 (en) | Ignition device for internal combustion engine and ignition control method for internal combustion engine ignition device | |
WO2020121375A1 (en) | Ignition device for internal combustion engine | |
US10844825B2 (en) | Method and apparatus to control an ignition system | |
JP6041085B2 (en) | Ignition device for overlap discharge type internal combustion engine | |
JP2018084209A (en) | Ignition device for internal combustion engine | |
JP2018534471A (en) | Method and apparatus for controlling an ignition system | |
CN108350851B (en) | Method and device for controlling an ignition system | |
JP7012830B2 (en) | Ignition system for internal combustion engine | |
JP6847258B2 (en) | Ignition system for internal combustion engine and control device for internal combustion engine | |
WO2018083719A1 (en) | Internal combustion engine ignition device | |
CA3063356C (en) | Ignition device for gtaw welding equipment | |
JP3059084B2 (en) | Internal combustion engine ignition control device | |
JP6739644B2 (en) | Ignition device for internal combustion engine | |
JPH05164028A (en) | Overlapped discharge type ignition device for internal combustion engine | |
JP2017133459A (en) | Ignition device | |
JP4816319B2 (en) | Capacitor discharge engine ignition system | |
WO2020065855A1 (en) | Ignition device for internal combustion engine | |
WO2013077011A1 (en) | Overlapping discharge-type ignition device for internal combustion engine | |
WO2019211885A1 (en) | Ignition device for internal combustion engines | |
WO2021064851A1 (en) | Internal combustion engine ignition device | |
JP6685444B2 (en) | Ignition device for internal combustion engine | |
JP2015122937A (en) | Driving device of synchronous rectification apparatus | |
JP2019143507A (en) | Ignition device for internal combustion engine | |
WO2020179016A1 (en) | Ignition device for internal combustion engine | |
JP7408453B2 (en) | Ignition system for internal combustion engines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18943273 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020558812 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18943273 Country of ref document: EP Kind code of ref document: A1 |