WO2020179016A1 - Ignition device for internal combustion engine - Google Patents

Ignition device for internal combustion engine Download PDF

Info

Publication number
WO2020179016A1
WO2020179016A1 PCT/JP2019/008867 JP2019008867W WO2020179016A1 WO 2020179016 A1 WO2020179016 A1 WO 2020179016A1 JP 2019008867 W JP2019008867 W JP 2019008867W WO 2020179016 A1 WO2020179016 A1 WO 2020179016A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge stop
discharge
primary coil
ignition
internal combustion
Prior art date
Application number
PCT/JP2019/008867
Other languages
French (fr)
Japanese (ja)
Inventor
松野 正孝
Original Assignee
日立オートモティブシステムズ阪神株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ阪神株式会社 filed Critical 日立オートモティブシステムズ阪神株式会社
Priority to PCT/JP2019/008867 priority Critical patent/WO2020179016A1/en
Publication of WO2020179016A1 publication Critical patent/WO2020179016A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/05Layout of circuits for control of the magnitude of the current in the ignition coil

Definitions

  • the present invention relates to an ignition device for an internal combustion engine mounted on a motor vehicle, and more particularly to an ignition device for an internal combustion engine capable of suppressing wear of an ignition plug used in an internal combustion engine having poor ignitability.
  • an ultra-lean burn engine and a high EGR engine are used to improve fuel efficiency. Since the ignitability of these engines is not so good, performance deterioration easily occurs due to wear of the spark plug. Further, the degree of wear of the spark plug has a great influence on the combustion control of the ignition device. Therefore, unless proper measures such as frequently replacing a deteriorated spark plug are taken, fuel consumption may be deteriorated. .. As one of the causes of deterioration of the spark plug, there is a problem that the spark discharge generated between the plug electrodes is blown off and re-discharged.
  • spark discharge of spark plug the maximum discharge energy immediately after the start of discharge causes dielectric breakdown between the gaps of the spark plug, sparks are formed in the gap, and then the discharge energy gradually decreases.
  • the sparks generated in the course of this discharge are blown out by the flow of the air-fuel mixture after being expanded in the flow direction, and at the same time, a spark that connects the electrodes of the spark plug with a short path is formed.
  • re-discharge and blowout are repeated until the discharge energy by the ignition coil decreases to the extent that the spark discharge cannot be continued. The phenomenon of repeated re-strikes accelerates wear of the spark plug.
  • the ignition device for an internal combustion engine described in Patent Document 1 uses the energy input capacitor to increase the energy input to the primary side of the ignition coil and to maintain the continuous spark discharge.
  • the required energy consumption increases. Therefore, there is concern that the energy efficiency of the ignition device for an internal combustion engine may be reduced.
  • the continuous spark discharge is maintained for each ignition, the total time of applying the high voltage between the electrodes of the spark plug becomes long, and there is a risk that the wear of the spark plug electrodes themselves is accelerated.
  • an object of the present invention is to provide an ignition device for an internal combustion engine, which realizes necessary and sufficient ignitability without lowering energy efficiency and can prolong the life of a spark plug.
  • the first ignition device for an internal combustion engine is configured such that an energization magnetic flux is generated by energization and a primary coil in which the energization magnetic flux is reduced by cutting off the current, and one end side is connected to an ignition plug,
  • An ignition coil having a secondary coil in which an energizing magnetic flux generated in the primary coil acts to generate discharge energy, a switch means for switching energization/interruption to the ignition coil, and a switching operation of the switch means are controlled.
  • a discharge stop condition determination means for determining whether or not a discharge stop condition that can be regarded is satisfied, and a discharge stop instruction for outputting a discharge stop instruction signal when the discharge stop condition determination means determines that the discharge stop condition is satisfied. It is characterized by comprising means and a discharge stop means for suppressing the discharge energy given from the primary coil to the secondary coil by receiving a discharge stop instruction signal from the discharge stop instruction means and stopping the discharge of the ignition plug. And.
  • the discharge stopping means includes a short-circuit path for short-circuiting both ends of the primary coil, a resistance component contained in the short-circuit path, and a normally open short-circuit path for opening and closing the short-circuit path. It is composed of an open / close switch, and by receiving the discharge stop instruction signal, the short-circuit path open / close switch is closed to short-circuit both ends of the primary coil, and the discharge energy given from the primary coil to the secondary coil is suppressed. It may be configured.
  • the secondary coil current detection means for detecting the secondary current flowing in the secondary coil and the ignition condition in the cylinder combustion chamber due to the spark discharge generated in the spark plug are good.
  • a discharge stop reference value storage means for storing a preset discharge stop reference value as a secondary coil current value estimated that further discharge is not required is provided, and the discharge stop condition determination means is the secondary coil.
  • the discharge stop reference value storage means stores a plurality of discharge stop reference values set corresponding to an operating state of the internal combustion engine, and the discharge stop condition is set.
  • the determining means may be configured to acquire the discharge stop reference value according to the operating state of the internal combustion engine from the discharge stop reference value storage means and determine the discharge stop condition.
  • the second ignition device for an internal combustion engine includes a main primary coil in which the amount of magnetic flux in the forward direction increases due to energization of the main primary current, and the amount of magnetic flux in the forward direction decreases due to interruption of the main primary current, and the main primary coil.
  • a secondary primary coil that generates a superimposed magnetic flux in a blocking direction opposite to the forward direction by causing a superimposed current to flow in a discharge period after the energization of the main primary coil and the sub primary coil.
  • Ignition coil having a secondary coil to which discharge energy is applied by the change in magnetic flux, main switch means for switching on/off of the main primary coil, and switching on/off of the sub primary coil.
  • a spark discharge is generated in the spark plug at a predetermined timing of a combustion cycle, and the main primary coil is discharged.
  • ignition control means for switching the auxiliary switch means from off to on after energization of the coil and turning on the auxiliary primary coil to cause a superimposed current to flow in the auxiliary primary coil.
  • Discharge stop condition determining means for determining whether or not the ignition condition satisfies the discharge stop condition that can be considered to have achieved necessary and sufficient ignitability, and the discharge stop condition determining means determines whether the discharge stop condition is satisfied.
  • the discharge stop instruction signal for outputting the discharge stop instruction signal and the discharge stop instruction signal from the discharge stop instruction means are used to suppress the discharge energy given from the main primary coil to the secondary coil, thereby to It is characterized by comprising a discharge stopping means for stopping the discharge.
  • the discharge stopping means includes a short-circuit path that short-circuits both ends of the main primary coil, a resistance component included in the short-circuit path, and a normally-open short circuit that opens and closes the short-circuit path. It may be configured with a road opening/closing switch.
  • the ignition control means when receiving a discharge stop instruction signal from the discharge stop instruction means, turns off the sub switch means to turn on the superimposed current to the sub primary coil. May be cut off to eliminate the superimposed magnetic flux.
  • the secondary coil current detecting means for detecting the secondary current flowing through the secondary coil and the ignition condition in the cylinder combustion chamber due to the spark discharge generated in the ignition plug are good.
  • a discharge stop reference value storage means for storing a preset discharge stop reference value as a secondary coil current value estimated that further discharge is not required is provided, and the discharge stop condition determination means is the secondary coil.
  • the discharge stop reference value storage means stores a plurality of discharge stop reference values set corresponding to the operating state of the internal combustion engine, and the discharge stop condition is stored.
  • the determination means may acquire the discharge stop reference value according to the operating state of the internal combustion engine from the discharge stop reference value storage means to determine the discharge stop condition.
  • the ignition control means switches off the sub switch means when a predetermined superposition time has elapsed from the start of supplying the superposition current to the sub primary coil, and the sub primary means is turned off.
  • the superimposed current on the coil is cut off to eliminate the superimposed magnetic flux, and the discharge stop condition determining means determines that the discharge stop condition is satisfied when the ignition control means stops supplying the superimposed current to the secondary primary coil.
  • the discharge stop instruction means may output a discharge stop instruction signal to the discharge stop means when the discharge stop condition determination means determines that the discharge stop instruction condition is satisfied.
  • the ignition control means switches the sub-switch means to off when a predetermined superposition time elapses from the start of supplying the superimposition current to the sub-primary coil, and the sub-primary The superposed current is cut off to the coil to eliminate the superposed magnetic flux, and the discharge stop condition determination means has passed the preset grace time after the ignition control means stops the superposed current supply to the sub-primary coil.
  • the timing is determined to satisfy the discharge stop condition, and the discharge stop instruction means outputs a discharge stop instruction signal to the discharge stop instruction means when the discharge stop condition determination means determines that the discharge stop instruction condition is satisfied.
  • the discharge stop instruction means causes the discharge stop means. It does not interfere with good combustion conditions. Then, when the discharge stop condition is satisfied, the spark discharge is forcibly stopped to prevent restructuring that occurs in the spark plug, so that wear of the periphery of the spark plug electrode due to restrike can be suppressed and the life of the spark plug can be extended. It will be possible.
  • FIG. 3 is a waveform diagram showing waveforms in a main part of the internal combustion engine ignition device according to the first embodiment. It is a schematic block diagram of the ignition device for an internal combustion engine which concerns on 2nd Embodiment. It is a wave form diagram showing a wave form in an important section of an internal-combustion-engine ignition device concerning a 2nd embodiment. It is a schematic block diagram of the ignition device for an internal combustion engine which concerns on 3rd Embodiment.
  • FIG. 7A is a waveform diagram showing first discharge stop control performed by the internal combustion engine ignition device according to the first embodiment. It is a schematic block diagram of the ignition device for an internal combustion engine which concerns on 2nd Embodiment. It is a wave form diagram showing a wave form in an important section of an internal-combustion-engine ignition device concerning a 2nd embodiment. It is a schematic block diagram of the ignition device for an internal combustion engine which concerns on 3rd Embodiment.
  • FIG. 7A is a waveform diagram showing first discharge stop control performed
  • An internal combustion engine ignition device 1 shown in FIG. 1 includes an ignition coil unit 10 for generating a spark discharge in one spark plug 2 provided for each cylinder of an internal combustion engine, and an ignition signal Si for instructing an operation timing of the ignition coil unit 10. And an internal combustion engine drive control device 3 which outputs a discharge stop instruction signal Sd2 for forcibly stopping the discharge and the like, a DC power source 4 such as a vehicle battery, and the like.
  • the ignition device 1 for an internal combustion engine shown in the present embodiment various functions for controlling the ignition coil unit 10 are included in the internal combustion engine drive control device 3 that comprehensively controls the internal combustion engine of an automobile.
  • a discharge stop control device is provided separately from an ECU (corresponding to the internal combustion engine drive control device 3) that has a function of generating the ignition signal Si and outputting it at an appropriate timing as standard, and discharges the function related to the discharge stop control. It may be provided in the stop control device.
  • the ignition coil unit 10 is a unit having an integral structure in which the ignition coil 11, the control board, etc. are housed in a case 12 having a required shape.
  • a high-voltage terminal 121 and a connector 122 are provided at appropriate places of the case 12, and the spark plug 2 is connected via the high-voltage terminal 121, and the internal combustion engine drive control device 3 and the DC power source 4 are connected via the connector 122. Connecting.
  • the ignition coil 11 efficiently causes the magnetic flux generated in the primary coil 111 to act on the secondary coil 112.
  • the structure is such that the primary coil 111 is arranged so as to surround the center core 113 formed of a highly permeable magnetic material, and the secondary coil 112 is arranged outside the primary coil 111.
  • the one end of the primary coil 111 is connected to the DC power supply 4 via the connector 122, and the power supply voltage VB+ (for example, 12V) is applied.
  • the other end of the primary coil 111 is connected to the collector of the ignition switch 13 using an IGBT (Insulated Gate Bipolar Transistor).
  • the emitter of the ignition switch 13 is connected to the ground point GND via the connector 122.
  • One end of the secondary coil 112 is connected to the ignition plug 2 via the high voltage terminal 121, and the other end is connected to the internal combustion engine drive control device 3 via the connector 122.
  • the line from the secondary coil 112 to the connector 122 has a rectifying element D1 (for example, a cathode on the ground side and an anode on the connector 122 side) in the forward direction from the secondary coil 112 toward the connector 122.
  • a connected diode is provided to regulate the flow path direction of the secondary current I2.
  • the ignition signal Si output from the ignition control means 31 of the internal combustion engine drive control device 3 is input to the gate of the ignition switch 13 via the connector 122 at an appropriate timing of the discharge cycle.
  • the ignition signal Si is input to the gate of the ignition switch 13 (for example, when the signal level of the ignition signal Si changes from L to H)
  • the ignition switch 13 is turned on and the non-power supply side end of the primary coil 111.
  • the part is connected to the ground point GND.
  • the primary current I1 from the power supply side to the ground side starts to flow in the primary coil 111, the flow rate of the primary current I1 increases, and the amount of magnetic flux of the energizing magnetic flux generated according to the flow rate of the primary current I1 increases. It is stored as the energy of the magnetic field.
  • electric energy is accumulated due to minute capacitor components such as the secondary coil 112 and connection wiring.
  • a bypass line 14 is provided in parallel with the ignition switch 13, and a rectifying element D2 (for example, a cathode on the collector side of the ignition switch 13 is provided in the forward direction from the ground point side of the bypass line 14 toward the ignition coil 11 side).
  • Diodes having anodes respectively connected to the emitter side of the ignition switch 13 are provided.
  • the ignition coil unit 10 is provided with a discharge stopping means 15 for stopping the discharge of the spark plug 2.
  • the discharge stopping means 15 has a function of suppressing discharge energy applied from the primary coil 111 to the secondary coil 112 to forcibly stop the discharge of the spark plug 2, and a discharge stop instruction from the internal combustion engine drive control device 3. It operates by the signal Sd2.
  • the discharge is stopped when it can be considered that the ignition condition in the cylinder combustion chamber due to the spark discharge generated in the spark plug 2 has achieved the necessary and sufficient ignitability.
  • By forcibly stopping the discharge so that the discharge of the spark plug 2 does not continue more than necessary, it is possible to suppress wear of the spark plug 2 due to re-strike, and it is possible to prolong the life of the spark plug 2.
  • the discharge stopping means 15 includes, for example, a short-circuit path 15a that short-circuits both ends of the primary coil 111, a resistance component 15b included in the short-circuit path 15a, and a normally-open short-circuit opening/closing switch 15c that opens/closes the short-circuit path 15a.
  • the short circuit opening/closing switch 15c is not limited to the contact type switch, and a semiconductor switch element capable of high speed switching operation with low power consumption may be used.
  • the discharge energy applied from the primary coil 111 of the ignition coil 11 to the secondary coil 112 is generally considered to be divided into capacitive discharge energy that occurs for a short time immediately after the interruption of energization and induction discharge energy that continues for a relatively long time.
  • the capacitive discharge energy is a very high electromotive force that is generated when the electric charge accumulated in the secondary coil 112 is discharged at a stroke while the primary coil 111 is energized.
  • the induced discharge energy is an induced electromotive force that occurs when the energizing magnetic flux generated by energizing the primary coil 111 is sharply reduced by the interruption of energization, and the change in the magnetic flux acts on the secondary side.
  • the short-circuit opening/closing switch 15c is closed during the inductive discharge to short-circuit both ends of the primary coil 111, a current in the direction of eliminating the energized magnetic flux flows in the primary coil 111, and a high voltage in the direction of stopping the discharge is generated. It is generated in the secondary coil 112. That is, if the discharge stopping means 15 is operated during the induced discharge, the discharge energy given from the primary coil 111 to the secondary coil 112 is suppressed, so that the discharge of the spark plug 2 can be stopped.
  • the discharge stopping means 15 provided in the ignition coil 10 is operated at an appropriate timing after the start of the discharge to forcibly stop the discharge of the ignition plug 2. Therefore, the wear of the ignition plug 2 can be suppressed.
  • the internal-combustion-engine drive control device 3 uses the secondary flowing in the secondary coil 112 as information for determining whether or not the ignition condition in the cylinder combustion chamber due to the spark discharge generated in the spark plug 2 has achieved a necessary and sufficient ignitability.
  • the current I2 is used.
  • the internal combustion engine drive control device 3 is provided with a secondary coil current detection means 32 for detecting the secondary current I2.
  • the secondary coil current detection means 32 can be realized by, for example, a configuration that detects a voltage drop due to a shunt resistance inserted in a secondary current line connected to the ground point GND.
  • the voltage value corresponding to the secondary current I2 is detected by the secondary coil current detecting means 32, the voltage value may be used as it is as the secondary current detecting value for determination, or is predetermined.
  • the secondary current value may be obtained by converting the voltage value into the current value using the above equation.
  • the secondary current detection value detected by the secondary coil current detecting means 32 is supplied to the discharge stop condition determining means 33, and the discharge stop condition determining means 33 determines the success or failure of the discharge stop condition. That is, the discharge stop condition determination means determines whether or not the ignition condition in the cylinder combustion chamber due to the spark discharge generated in the spark plug 2 satisfies the discharge stop condition that can be considered to realize the necessary and sufficient ignitability. It is.
  • the discharge stop condition determined by using the secondary current detection value is that the secondary current I2 has dropped to a predetermined discharge stop reference value (secondary current detection value ⁇ discharge stop reference value). Alternatively, it is assumed that the secondary current I2 has fallen below a predetermined discharge stop reference value (secondary current detection value ⁇ discharge stop reference value).
  • the secondary current I2 gradually decreases immediately after the start of discharge due to the change in the magnetic flux in which the energizing magnetic flux of the primary coil 111 disappears. Therefore, if the secondary current I2 drops to the secondary current value when it is assumed that sufficient discharge is performed to form a flame nucleus suitable for in-cylinder combustion of the internal combustion engine, then the spark plug 2 Even if the discharge is forcibly stopped, normal combustion in the cylinder combustion chamber is not hindered.
  • the discharge stop reference value which is the reference for determining the discharge stop condition, is that the ignition condition in the cylinder combustion chamber due to the spark discharge generated in the spark plug 2 is good and no further discharge is required. It is a value preset as the secondary coil current value, and is stored in the discharge stop reference value storage means 34.
  • the discharge stop reference value is supplied from the discharge stop reference value storage means 34 to the discharge stop condition determination means 33 and is used to determine the discharge stop condition.
  • the discharge stop reference value is a value set so as to be directly compared with the above-mentioned secondary coil current detection value.
  • the discharge stop condition may be determined based on only one preset discharge stop reference value regardless of the operating state of the internal combustion engine, but the optimum discharge according to the operating state during low speed operation, high speed operation, etc. By properly using the stop reference value, more appropriate discharge stop control becomes possible.
  • a plurality of discharge stop reference values set corresponding to the operating state of the internal combustion engine are stored in the discharge stop reference value storage means 34, and the discharge stop condition determining means 33 corresponds to the current operating state.
  • the discharge stop reference value to be used may be selected from the discharge stop reference value storage means 34.
  • the optimum discharge stop reference value is set for each cylinder, and the discharge stop condition is determined by the discharge stop reference value that differs from cylinder to cylinder. It may be configured to discharge.
  • the internal combustion engine drive control device 3 is provided with a discharge stop reference value setting means and stored in the discharge stop reference value storage means 34. The value may be rewritten to an appropriate discharge stop reference value.
  • the discharge stop condition determining means 33 may use the detection value of the vehicle speed sensor that is standardly installed in the vehicle as means for knowing the current driving state. Alternatively, the discharge stop condition determining means 33 may autonomously determine the operating state from the operation mode according to the control state performed by the internal combustion engine drive control device 3.
  • the discharge stop condition determination means 33 compares the secondary current detection value detected by the secondary coil current detection means 32 with the discharge stop reference value stored in the discharge stop reference value storage means 34, and, for example, the secondary When the current detection value becomes equal to or lower than the discharge stop reference value, it is determined that the discharge stop condition is satisfied. When the discharge stop condition is satisfied, the discharge stop condition determination means 33 outputs the discharge stop condition determination signal Sd1 to the discharge stop instruction means 35. The discharge stop instruction means 35 receiving the discharge stop condition determination signal Sd1 outputs the discharge stop instruction signal Sd2.
  • the discharge stop instruction signal Sd2 is input to the short-circuit path open / close switch 15c of the discharge stop means 15 via the connector 122 of the ignition coil unit 10 to close the normally open short-circuit path open / close switch 15c. That is, when the discharge stop condition determining means 33 determines that the discharge stop condition is satisfied, the discharge energy given from the primary coil 111 to the secondary coil 112 is suppressed, and the discharge of the spark plug 2 is stopped.
  • the internal combustion engine drive control device 3 may be configured such that the discharge stop condition determining means 33 is always functioning and the discharge stop control is always performed, or when the discharge stop control is required in consideration of the operation mode and the like. As long as the discharge condition determination means 33 may be activated. If the discharge stop control is configured only when it is estimated that the recharge occurs frequently due to the discharge of the spark plug 2, the discharge is stopped early in the ignition cycle in which the restrike does not occur, resulting in an incomplete combustion state. Such a problem can be effectively avoided.
  • FIG. 2 showing the waveform of the main part of the internal combustion engine ignition device 1.
  • the ignition cycle without discharge stop control will be explained.
  • the primary current I1 starts to flow.
  • the ignition signal Si is turned off and the energization of the primary coil 111 is cut off, discharge energy is given to the secondary coil 112, spark discharge occurs in the spark plug 2, and the secondary current I2 starts to flow.
  • the secondary current I2 gradually decreases, and the discharge of the spark plug 2 naturally stops.
  • the secondary voltage rises (extends the discharge path) and falls (blows out) alternately, and the restructuring is repeated.
  • the discharge stop condition determination means 33 does not operate, so that it is estimated that further discharge is not necessary. Even after the discharge, the discharge energy is continuously applied from the primary coil 111 to the secondary coil 112. Therefore, even after the spark plug 2 has obtained a sufficient discharge to form a flame nucleus suitable for good in-cylinder combustion, the spark plug 2 repeats the restoration, and the electrode of the spark plug 2 Peripheral wear may progress, shortening the life of the spark plug 2.
  • the discharge stop condition determination means 33 outputs the discharge stop condition determination signal Sd1 (for example, a short pulse signal having a predetermined time width) to the discharge stop instruction means 35.
  • the discharge stop instruction means 35 receives the discharge stop condition determination signal Sd1 from the discharge stop condition determination means 33 (for example, when the rising edge of the signal pulse is detected), the discharge stop instruction signal Sd2 is output to stop the discharge.
  • the short circuit opening/closing switch 15c of the means 15 is closed.
  • both ends of the primary coil 111 are short-circuited via the short-circuit path 15a.
  • a current in the direction of extinguishing the energized magnetic flux flows in the primary coil 111, and a high voltage in the direction of stopping the discharge is generated in the secondary coil 112.
  • the short-circuit time that can be arbitrarily set as the time width Ts of the discharge stop instruction signal Sd2 is a time necessary and sufficient for the primary current I1 flowing through the primary coil 111 to return to zero.
  • the discharge stop instruction signal Sd2 may be output for the time width of the discharge stop condition determination signal Sd1 output by the discharge stop condition determination means 33 (indicated by a broken line in the waveform of the discharge stop condition determination signal in FIG. 2).
  • the discharge stop condition determination means 33 adjusts the output time of the discharge stop condition determination signal Sd1 to output the discharge stop instruction signal Sd2 having a time width Ts suitable for the driving mode of the vehicle. It will be possible.
  • the secondary coil current detection value is used as the discharge stop condition, but the present invention is not limited to this.
  • the discharge stop condition may be established by detecting the occurrence of restrike based on the detected value of the secondary voltage V2 based on the rise/fall of the secondary voltage.
  • the secondary voltage V2 which becomes a very high voltage, may not be directly detected, but the occurrence of restoration may be detected from the voltage change of the primary coil 111 to which the voltage change of the secondary coil 112 is transferred.
  • the internal combustion engine ignition device 1' is configured to control the operation of an ignition coil unit 10' including an ignition coil 11' by an internal combustion engine drive control device 3'.
  • the same components as those of the ignition device 1 for an internal combustion engine according to the first embodiment described above are designated by the same reference numerals and description thereof will be omitted.
  • the primary side coil is divided into a main primary coil 111a and a sub primary coil 111b by an intermediate tap, and power is supplied from the DC power source 4 which is a common power source through the intermediate tap. Since the main primary coil 111a and the sub primary coil 111b have the same winding direction, the directions of the currents that flow during energization are opposite.
  • the main primary coil 111a and the sub primary coil 111b both cause magnetic flux to act on the secondary coil 112.
  • the main primary coil 111a and the secondary primary coil 111b are arranged so as to surround the center core 113, and the secondary coil 112 is further arranged outside the main primary coil 111a.
  • the non-power supply end of the main primary coil 111a is connected to the ground point GND via the main ignition switch 13'.
  • the main ignition switch 13' can be constituted by an IGBT, and functions as a main switch means for switching between energization and interruption of the main primary coil 111a based on the main primary coil ignition signal Sa from the ignition control means 31'.
  • the non-power supply end of the sub primary coil 111b is connected to the ground point GND via the sub ignition switch 16.
  • This sub ignition switch 16 can also be configured by an IGBT, and functions as a sub switch means for switching between energization and interruption of the sub primary coil 111b based on the sub primary coil superposition signal Sb from the ignition control means 31'.
  • auxiliary ignition switch 16 when the auxiliary ignition switch 16 is turned on after the interruption timing when the energization to the main primary coil 111a is interrupted and the superimposed current I1b flows through the auxiliary primary coil 111b, a superimposed magnetic flux in the same direction as the interrupted magnetic flux is generated. That is, since the superposed magnetic flux from the sub-primary coil 111b acts, the amount of change in the energized magnetic flux can be increased, and the discharge energy generated in the secondary coil 112 can be superposedly increased.
  • the internal combustion engine drive control device 3'for controlling the operation of the ignition coil unit 10' including the ignition coil 11' configured as described above will be described.
  • the discharge stop condition determination means 33 determines that the discharge stop condition is satisfied after the superimposed current I1b is passed through the sub-primary coil 111b to perform the superimposed discharge control for increasing the discharge energy applied to the secondary side
  • the discharge stop instruction means is provided.
  • the discharge stop condition determination signal Sd1 is output to 35'.
  • the discharge stop instruction means 35' Upon receiving the discharge stop condition determination signal Sd1, the discharge stop instruction means 35' outputs the discharge stop instruction signal Sd2a and the discharge stop instruction signal Sd2b.
  • the discharge stop instruction signal Sd2a is input to the short-circuit path open / close switch 15c of the discharge stop means 15 via the connector 122 of the ignition coil unit 10 to close the normally open short-circuit path open / close switch 15c. Further, the discharge stop instruction signal Sd2b is input to the ignition control means 31', and the ignition control means 31' receiving this signal stops the sub primary coil superposition signal Sb and switches the sub ignition switch 16 from ON to OFF. The superimposed current I1b is cut off. That is, when the discharge stop condition determining means 33 determines that the discharge stop condition is satisfied, the discharge energy applied to the secondary coil 112 from the main primary coil 111a and the sub primary coil 111b is suppressed, and the discharge of the ignition plug 2 is stopped. It
  • FIG. 4 showing the waveform of the main part in the internal combustion engine ignition device 1′ according to the second embodiment described above. ..
  • the ignition cycle without discharge stop control will be explained.
  • the main primary coil ignition signal Sa is turned on and the power supply to the main primary coil 111a is started, the main primary current I1a starts to flow.
  • the main primary coil ignition signal Sa is turned off and the power supply to the main primary coil 111a is cut off, discharge energy is given to the secondary coil 112, spark discharge is generated in the ignition plug 2 and the secondary current I2 is generated. Begins to flow.
  • the main primary coil ignition signal Sa is turned off, the sub primary coil ignition signal Sb is turned on almost at the same time, so that the superposed current I1b starts to flow in the sub primary coil 111b, and the superposed magnetic flux is generated to the secondary side.
  • the applied discharge energy is increased in a superimposed manner.
  • the end timing of the superimposition control that causes the superimposition current I1b to flow through the sub primary coil 111b can be set arbitrarily.
  • the superimposition control end condition is that the superimposition time determined according to the engine speed elapses, the subprimary coil superimposition signal Sb is stopped at the timing when the superimposition time elapses, and the subignition switch 16 is turned off for superimposition.
  • the current I1b may be cut off.
  • the detection of the secondary voltage or the secondary current that can know the ignition condition in the cylinder combustion chamber satisfies the superposition control termination condition that can be considered to have achieved the necessary and sufficient ignitability, thereby performing the superposition control. You may end it.
  • the secondary current I2 gradually decreases. Then, when the sub-primary current I1b is cut off at the end timing of the superposition control, the superposition amount by the sub-primary coil 111b disappears and the secondary current I2 sharply decreases. Even after that, although the induction discharge energy is supplied to the secondary side by the magnetic flux remaining in the main primary coil 111a, the secondary current I2 further decreases and the discharge of the spark plug 2 naturally stops. Even after the end timing of the superposition control, the secondary voltage rises (extends the discharge path) and decreases (blowns out) from the waveform of the secondary voltage V2, and it is presumed that restrike had occurred.
  • the discharge stop condition determination means 33 does not operate, and therefore the main primary coil 111a to the secondary coil continue to operate thereafter. Discharge energy is applied to 112. Therefore, even after the spark plug 2 has obtained a sufficient discharge to form a flame nucleus suitable for good in-cylinder combustion, the spark plug 2 repeats the restoration, and the electrode of the spark plug 2 Peripheral wear may progress, shortening the life of the spark plug 2.
  • the discharge stop condition determination means 33 outputs a discharge stop condition determination signal Sd1 (for example, a short pulse signal having a predetermined time width) to the discharge stop instruction means 35'.
  • the discharge stop instruction means 35' receives the discharge stop condition determination signal Sd1 from the discharge stop condition determination means 33 (for example, when the rising edge of the signal pulse is detected), the discharge stop instruction signal Sd2a is output to discharge.
  • the short circuit opening/closing switch 15c of the stopping means 15 is closed.
  • both ends of the main primary coil 111a are short-circuited via the short-circuit path 15a.
  • a current in the direction of extinguishing the energizing magnetic flux flows in the main primary coil 111a, and a high voltage in the direction of stopping the discharge is generated in the secondary coil 112.
  • the secondary current I2 may fall to the discharge stop reference value before the end timing of the superposition control using the sub primary coil 111b, and the discharge stop condition may be satisfied. Even in such a case, when the ignition control means 31' receives the discharge stop instruction signal Sd2b output from the discharge stop instruction means 35', the ignition control means 31' promptly stops the sub primary coil superposition signal Sb, The superimposed current I1b is cut off. That is, since the superposition control is also terminated at the timing when the discharge stop condition is satisfied, there is no problem that the superimposition current I1b continues to flow in the secondary primary coil 111b even after the discharge stop means 15 is operated.
  • the ignition control means 31' which has already stopped outputting the sub-primary coil superposition signal Sb, receives the discharge stop instruction signal Sd2b from the discharge stop instruction means 35', it need only be ignored. Further, information on whether or not the sub primary coil superposition signal Sb is output is input to the discharge stop instruction means 35', and when the discharge stop condition is satisfied, the sub primary coil superposition signal Sb is still output.
  • the discharge stop instruction signal Sd2b may be output only in the case of
  • the discharge stop condition is satisfied is determined separately from the end timing of the superposition control, and the discharge stop means 15 is activated.
  • the superimposition control ending condition is set so that the ignition condition in the cylinder combustion chamber due to the spark discharge generated in the spark plug 2 can be regarded as a state in which the necessary and sufficient ignitability is realized. It is not necessary to determine the end timing and the discharge stop timing separately, and simple and practical ignition control can be realized. Therefore, the schematic configuration of the internal combustion engine ignition device 1 ′′ according to the third embodiment will be described with reference to FIG. 5.
  • the internal combustion engine ignition device 1 ′′ includes an ignition coil unit 10 ′ including an ignition coil 11 ′.
  • the operation is controlled by the internal combustion engine drive control device 3′′.
  • the same components as those of the internal combustion engine ignition devices 1 and 1′ of the first and second embodiments described above are denoted by the same reference numerals. Is omitted.
  • the ignition control means 31′′ of the internal combustion engine drive control device 3′′ integrally controls energization/interruption of the main ignition coil 111a and the auxiliary ignition coil 111b, and includes the function of the discharge stop condition determination means 33′′.
  • the ignition control means 31′′ determines the timing at which the superimposing current I1b that has started to flow to the sub-primary coil 111b by outputting the sub-primary coil ignition signal Sb is cut off (superimposition control ending timing), and the superimposing control ends. Whether the discharge stop condition is satisfied is determined based on the timing.
  • the superposition control termination condition used by the ignition control means 31′′ may be set arbitrarily.
  • the secondary coil current detection value is input from the secondary coil current detection means 32 to the ignition control means 31′′ (in FIG. 5). , Indicated by a broken line), and the superposition stop condition may be that the secondary coil current detection value becomes equal to or lower than a predetermined superposition stop reference value.
  • the superimposition control ending condition is set such that the superimposition time Tp having a predetermined time width elapses from the start of the superposition control. That is, the internal combustion engine drive control device 3′′ according to the present embodiment determines whether the discharge stop condition is satisfied based on the superposition control end timing with the passage of the superposition time Tp, and performs the discharge stop control for operating the discharge stop means 15. ..
  • FIG. 6A is a waveform diagram showing the first discharge stop control performed by the internal combustion engine drive control device 3′′.
  • the discharge stop condition determining means of the ignition control means 31′′ is shown. 32′′ determines that the superposition control end condition is satisfied. That is, the ignition control means 31′′ outputs the discharge stop instruction signal Sd1 at the timing when the sub-primary coil superposition signal Sb is stopped. Output to 35.
  • the discharge stop instruction means 35 Upon receiving the discharge stop instruction signal Sd1, the discharge stop instruction means 35 outputs the discharge stop instruction signal Sd2 to the discharge stop means 15.
  • both ends of the main primary coil 111a are short-circuited via the short-circuit path 15a, and a current in the direction of eliminating the energized magnetic flux flows into the main primary coil 111a, and the high voltage in the direction of stopping discharge. Is generated in the secondary coil 112.
  • the discharge of the spark plug 2 is forcibly stopped, so that the repetitive re-strike is not wastefully repeated in the spark plug 2, wear of the electrodes around the spark plug 2 is suppressed, and the life of the spark plug 2 is extended. It becomes possible to plan.
  • FIG. 6B is a waveform diagram showing the second discharge stop control performed by the internal combustion engine drive controller 3′′.
  • the discharge stop condition determining means of the ignition control means 31′′ is used. 32′′ determines that the discharge stop condition is satisfied when the grace time Te of the predetermined time width elapses from the satisfaction of the superposition control termination condition. That is, the ignition control means 31′′ stops the sub-primary coil superposition signal Sb.
  • the discharge stop instruction signal Sd1 is output to the discharge stop instruction means 35.
  • the discharge stop instruction means 35 Upon receiving the discharge stop instruction signal Sd1, the discharge stop instruction means 35 outputs the discharge stop instruction signal Sd2 to the discharge stop means 15.
  • both ends of the main primary coil 111a are short-circuited via the short-circuit path 15a, and a current flowing in the main primary coil 111a flows to the main primary coil 111a to stop the discharge.
  • a high voltage in the opposite direction is generated in the secondary coil 112.
  • the grace period Te secures a slight ignition continuation period after the end of the superposition control using the sub-primary coil 111b, and the discharge stop condition that allows fine adjustment of the balance between ignition stability and restrike suppression can be set. It will be possible.
  • Ignition system for internal combustion engine 11 Ignition coil 111 Primary coil 112 Secondary coil 15 Discharge stop means 2 Spark plug 3 Internal engine drive control device 31 Ignition control means 32 Secondary coil current detection means 33 Discharge stop condition determination means 34 Discharge stop reference value storage means 35 Discharge stop Indicator means 4 DC power supply

Abstract

Provided is an ignition device which is for an internal combustion engine and with which it is possible to achieve adequate ignition properties without a reduction in energy efficiency, and to suppress wear in spark plugs. A discharge stopping means 15 is provided, which short-circuits both ends of a primary coil 111 in an ignition coil 11. Within the discharge cycle, when discharge stop conditions are met in which sufficient discharge energy is considered to have been applied from the primary coil 111 to a secondary coil 112, a drive control device 3 for an internal combustion engine outputs a discharge stop command signal Sd2 to the discharge stopping means 15, and the primary coil 111 is short circuited.

Description

内燃機関用点火装置Ignition device for internal combustion engine
 本発明は、自動車両に搭載される内燃機関用の点火装置に関し、特に、着火性が良くない内燃機関で使用する点火プラグの摩耗を抑制できる内燃機関用点火装置に関する。 The present invention relates to an ignition device for an internal combustion engine mounted on a motor vehicle, and more particularly to an ignition device for an internal combustion engine capable of suppressing wear of an ignition plug used in an internal combustion engine having poor ignitability.
 車両搭載の内燃機関として、燃費改善のために超希薄燃焼や、高EGRエンジンが採用されている。これらのエンジンは、着火性があまり良くないため、点火プラグの摩耗による性能劣化が生じやすい。そして、点火プラグの摩耗度合いは、点火装置の燃焼制御に大きな影響を与えるため、劣化した点火プラグを頻繁に交換するなど、適切な対応をとらないと、却って燃費を低下させることになりかねない。点火プラグが劣化する一因として、プラグ電極間に生じた火花放電が吹き消えて再放電するリストライクの発生が問題となっている。 As an internal combustion engine mounted on a vehicle, an ultra-lean burn engine and a high EGR engine are used to improve fuel efficiency. Since the ignitability of these engines is not so good, performance deterioration easily occurs due to wear of the spark plug. Further, the degree of wear of the spark plug has a great influence on the combustion control of the ignition device. Therefore, unless proper measures such as frequently replacing a deteriorated spark plug are taken, fuel consumption may be deteriorated. .. As one of the causes of deterioration of the spark plug, there is a problem that the spark discharge generated between the plug electrodes is blown off and re-discharged.
 点火プラグの火花放電においては、放電開始直後に最大の放電エネルギによって、点火プラグのギャップ間の絶縁破壊が発生し、ギャップ間に火花が形成されたあと、放電エネルギは徐々に低下していく。この放電の過程において発生した火花は、混合気の流れによって、流れ方向に伸長したあと吹き消され、同時に、点火プラグの電極間を短経路で結ぶような火花が形成される。その後も、点火コイルによる放電エネルギが、火花放電を継続できなくなる程度に低下するまで、再放電と吹き消えを繰り返す。このリストライクが繰り返される現象によって、点火プラグの摩耗を早めてしまうのである。また、気筒内に取り付けられた点火プラグの電極には、電極間の放電に直交する混合気の流れ(タンブル流)が生じ、この混合気の流れ方向に偏って点火プラグの磨耗が進むため、点火プラグの劣化を一層早める可能性がある。 ▽In spark discharge of spark plug, the maximum discharge energy immediately after the start of discharge causes dielectric breakdown between the gaps of the spark plug, sparks are formed in the gap, and then the discharge energy gradually decreases. The sparks generated in the course of this discharge are blown out by the flow of the air-fuel mixture after being expanded in the flow direction, and at the same time, a spark that connects the electrodes of the spark plug with a short path is formed. After that, re-discharge and blowout are repeated until the discharge energy by the ignition coil decreases to the extent that the spark discharge cannot be continued. The phenomenon of repeated re-strikes accelerates wear of the spark plug. Further, in the electrodes of the spark plug mounted in the cylinder, a flow of the air-fuel mixture (tumble flow) that is orthogonal to the discharge between the electrodes is generated, and the wear of the spark plug progresses in a biased direction of the air-fuel mixture. There is a possibility that the spark plug will deteriorate more quickly.
 このような点火プラグの劣化を防止するためには、リストライクの発生を抑えることが有効と考えられる。そこで、火花放電の吹き消えを防ぐために、エネルギ投入用コンデンサに電荷を蓄えておき、点火開始直後に、エネルギ投入用コンデンサから1次コイルへ電荷を投入し、主点火に続いて継続火花放電を継続させる内燃機関用点火装置が提案されている(例えば、特許文献1を参照)。特許文献1に記載の内燃機関用点火装置によれば、二次電流値が下がらないように制御することで、点火プラグの電極間に生じた火花放電が吹き消えることを防ぎ、リストライクによる点火プラグ電極周辺部の摩耗を抑制できる可能性がある。加えて、特許文献1に記載の内燃機関用点火装置では、点火を開始した直後に、エネルギ投入用コンデンサから1次コイルへ電荷を投入して火花放電を継続させるので、リーンバーンエンジン等の希薄混合気に対しての着火性を高められる可能性がある。 In order to prevent such deterioration of the spark plug, it is considered effective to suppress the occurrence of restrike. Therefore, in order to prevent the spark discharge from being blown off, the charge is stored in the energy input capacitor, and the charge is input from the energy input capacitor to the primary coil immediately after the ignition is started, and the continuous spark discharge is continued following the main ignition. An ignition device for an internal combustion engine that continues is proposed (for example, see Patent Document 1). According to the ignition device for an internal combustion engine described in Patent Document 1, by controlling so that the secondary current value does not decrease, it is possible to prevent the spark discharge generated between the electrodes of the spark plug from being extinguished, and ignition by restructuring. There is a possibility that abrasion around the plug electrode can be suppressed. In addition, in the internal combustion engine ignition device described in Patent Document 1, immediately after ignition is started, electric charge is injected from the energy injection capacitor to the primary coil to continue the spark discharge. It may be possible to improve the ignitability of the air-fuel mixture.
特開2015-200285号公報JP, 2015-200285, A
 しかしながら、特許文献1に記載された内燃機関用点火装置は、エネルギ投入用コンデンサを用いて、点火コイルの1次側へ投入するエネルギを増大させ、継続火花放電を保持することから、点火制御に要するエネルギ消費が増大してしまう。そのため、内燃機関用点火装置としてのエネルギ効率を低下させてしまうことが懸念される。加えて、点火毎に継続火花放電を保持することから、点火プラグの電極間に高電圧が印加されるトータル時間が長くなり、点火プラグ電極自体の摩耗を早めてしまう危険性もある。 However, the ignition device for an internal combustion engine described in Patent Document 1 uses the energy input capacitor to increase the energy input to the primary side of the ignition coil and to maintain the continuous spark discharge. The required energy consumption increases. Therefore, there is concern that the energy efficiency of the ignition device for an internal combustion engine may be reduced. In addition, since the continuous spark discharge is maintained for each ignition, the total time of applying the high voltage between the electrodes of the spark plug becomes long, and there is a risk that the wear of the spark plug electrodes themselves is accelerated.
 そこで、本発明は、エネルギ効率を落とさず必要十分な着火性を実現し、且つ、点火プラグの延命を図れる内燃機関用点火装置の提供を目的とする。 Therefore, an object of the present invention is to provide an ignition device for an internal combustion engine, which realizes necessary and sufficient ignitability without lowering energy efficiency and can prolong the life of a spark plug.
 上記課題を解決するために、第1の内燃機関用点火装置は、通電により通電磁束が生じ、電流を遮断することにより通電磁束が減ぜられる一次コイルと、一方端側が点火プラグと接続され、前記一次コイルに生じた通電磁束が作用して放電エネルギが発生する二次コイルと、を有する点火コイルと、前記点火コイルへの通電・遮断を切り替えるスイッチ手段と、前記スイッチ手段の切り替え動作を制御することで、燃焼サイクルの所定のタイミングで点火プラグに火花放電を発生させる点火制御手段と、前記点火プラグに生じた火花放電による気筒燃焼室内の点火状況が、必要十分な着火性を実現できたと看做し得る放電停止条件を満たすか否かを判定する放電停止条件判定手段と、前記放電停止条件判定手段により放電停止条件の成立が判定されたとき、放電停止指示信号を出力する放電停止指示手段と、前記放電停止指示手段から放電停止指示信号を受けることで、一次コイルから二次コイルへ与える放電エネルギを抑制し、前記点火プラグの放電を停止させる放電停止手段と、を備えることを特徴とする。 In order to solve the above problems, the first ignition device for an internal combustion engine is configured such that an energization magnetic flux is generated by energization and a primary coil in which the energization magnetic flux is reduced by cutting off the current, and one end side is connected to an ignition plug, An ignition coil having a secondary coil in which an energizing magnetic flux generated in the primary coil acts to generate discharge energy, a switch means for switching energization/interruption to the ignition coil, and a switching operation of the switch means are controlled. By doing so, the ignition control means for generating a spark discharge in the spark plug at a predetermined timing of the combustion cycle, and the ignition situation in the cylinder combustion chamber due to the spark discharge generated in the spark plug, it is possible to realize the necessary and sufficient ignitability. A discharge stop condition determination means for determining whether or not a discharge stop condition that can be regarded is satisfied, and a discharge stop instruction for outputting a discharge stop instruction signal when the discharge stop condition determination means determines that the discharge stop condition is satisfied. It is characterized by comprising means and a discharge stop means for suppressing the discharge energy given from the primary coil to the secondary coil by receiving a discharge stop instruction signal from the discharge stop instruction means and stopping the discharge of the ignition plug. And.
 また、第1の内燃機関用点火装置において、前記放電停止手段は、一次コイルの両端を短絡させる短絡路と、該短絡路に含まれる抵抗成分と、前記短絡路を開閉する常開の短絡路開閉スイッチと、で構成し、前記放電停止指示信号を受けることにより、前記短絡路開閉スイッチを閉じて一次コイルの両端を短絡させ、一次コイルから二次コイルへ与える放電エネルギを抑制するようにした構成でも良い。 Further, in the first ignition device for an internal combustion engine, the discharge stopping means includes a short-circuit path for short-circuiting both ends of the primary coil, a resistance component contained in the short-circuit path, and a normally open short-circuit path for opening and closing the short-circuit path. It is composed of an open / close switch, and by receiving the discharge stop instruction signal, the short-circuit path open / close switch is closed to short-circuit both ends of the primary coil, and the discharge energy given from the primary coil to the secondary coil is suppressed. It may be configured.
 また、第1の内燃機関用点火装置において、前記二次コイルに流れる二次電流を検出する二次コイル電流検出手段と、前記点火プラグに生じた火花放電による気筒燃焼室内の点火状況が良好で、更なる放電が必要ないと推定される二次コイル電流値として予め設定した放電停止基準値を記憶する放電停止基準値記憶手段と、を設け、前記放電停止条件判定手段は、前記二次コイル電流検出手段により検出された二次電流検出値が、前記放電停止基準値記憶手段に記憶された放電停止基準値以下となったとき、放電停止条件の成立と判定し、前記放電停止指示手段に放電停止指示信号を出力させるようにした構成でも良い。 Further, in the first ignition device for an internal combustion engine, the secondary coil current detection means for detecting the secondary current flowing in the secondary coil and the ignition condition in the cylinder combustion chamber due to the spark discharge generated in the spark plug are good. A discharge stop reference value storage means for storing a preset discharge stop reference value as a secondary coil current value estimated that further discharge is not required is provided, and the discharge stop condition determination means is the secondary coil. When the secondary current detection value detected by the current detection means is less than or equal to the discharge stop reference value stored in the discharge stop reference value storage means, it is determined that the discharge stop condition is satisfied, and the discharge stop instruction means is indicated. The configuration may be such that the discharge stop instruction signal is output.
 また、第1の内燃機関用点火装置において、前記放電停止基準値記憶手段には、内燃機関の運転状態に対応して設定された複数の放電停止基準値を記憶させておき、前記放電停止条件判定手段は、前記放電停止基準値記憶手段より内燃機関の運転状態に応じた放電停止基準値を取得して、放電停止条件を判定するようにした構成でも良い。 Further, in the first ignition device for an internal combustion engine, the discharge stop reference value storage means stores a plurality of discharge stop reference values set corresponding to an operating state of the internal combustion engine, and the discharge stop condition is set. The determining means may be configured to acquire the discharge stop reference value according to the operating state of the internal combustion engine from the discharge stop reference value storage means and determine the discharge stop condition.
 第2の内燃機関用点火装置は、主一次電流の通電により順方向の磁束量が増加し、主一次電流を遮断することにより順方向の磁束量が減少する主一次コイルと、該主一次コイルに対する通電遮断以降の放電期間内に重畳電流を流すことにより、順方向と逆の遮断方向に重畳磁束を発生させる副一次コイルと、一端側が点火プラグと接続され、前記主一次コイルと副一次コイルの磁束変化が作用して放電エネルギが与えられる二次コイルと、を有する点火コイルと、前記主一次コイルへの通電・遮断を切り替える主スイッチ手段と、前記副一次コイルへの通電・遮断を切り替える副スイッチ手段と、前記主スイッチ手段のオン・オフを切り替え、前記主一次コイルへの通電・遮断を制御することで、燃焼サイクルの所定のタイミングで点火プラグに火花放電を発生させ、前記主一次コイルに対する通電遮断以降に前記副スイッチ手段をオフからオンに切り替え、前記副一次コイルに重畳電流を流して重畳磁束を発生させる点火制御手段と、前記点火プラグに生じた火花放電による気筒燃焼室内の点火状況が、必要十分な着火性を実現できたと看做し得る放電停止条件を満たすか否かを判定する放電停止条件判定手段と、前記放電停止条件判定手段により放電停止条件の成立が判定されたとき、放電停止指示信号を出力する放電停止指示手段と、前記放電停止指示手段から放電停止指示信号を受けることで、主一次コイルから二次コイルへ与える放電エネルギを抑制し、前記点火プラグの放電を停止させる放電停止手段と、を備えることを特徴とする。 The second ignition device for an internal combustion engine includes a main primary coil in which the amount of magnetic flux in the forward direction increases due to energization of the main primary current, and the amount of magnetic flux in the forward direction decreases due to interruption of the main primary current, and the main primary coil. A secondary primary coil that generates a superimposed magnetic flux in a blocking direction opposite to the forward direction by causing a superimposed current to flow in a discharge period after the energization of the main primary coil and the sub primary coil. Ignition coil having a secondary coil to which discharge energy is applied by the change in magnetic flux, main switch means for switching on/off of the main primary coil, and switching on/off of the sub primary coil. By switching on/off of the sub switch means and the main switch means and controlling energization/interruption of the main primary coil, a spark discharge is generated in the spark plug at a predetermined timing of a combustion cycle, and the main primary coil is discharged. In the cylinder combustion chamber due to spark discharge generated in the spark plug, ignition control means for switching the auxiliary switch means from off to on after energization of the coil and turning on the auxiliary primary coil to cause a superimposed current to flow in the auxiliary primary coil. Discharge stop condition determining means for determining whether or not the ignition condition satisfies the discharge stop condition that can be considered to have achieved necessary and sufficient ignitability, and the discharge stop condition determining means determines whether the discharge stop condition is satisfied. At this time, the discharge stop instruction signal for outputting the discharge stop instruction signal and the discharge stop instruction signal from the discharge stop instruction means are used to suppress the discharge energy given from the main primary coil to the secondary coil, thereby to It is characterized by comprising a discharge stopping means for stopping the discharge.
 また、第2の内燃機関用点火装置において、前記放電停止手段は、主一次コイルの両端を短絡させる短絡路と、該短絡路に含まれる抵抗成分と、前記短絡路を開閉する常開の短絡路開閉スイッチと、で構成しても良い。 In the second ignition device for an internal combustion engine, the discharge stopping means includes a short-circuit path that short-circuits both ends of the main primary coil, a resistance component included in the short-circuit path, and a normally-open short circuit that opens and closes the short-circuit path. It may be configured with a road opening/closing switch.
 また、第2の内燃機関用点火装置において、前記点火制御手段は、前記放電停止指示手段より放電停止指示信号を受けたとき、前記副スイッチ手段をオフに切り替え、前記副一次コイルへの重畳電流を遮断して重畳磁束を消失させるようにしても良い。 Further, in the second ignition device for an internal combustion engine, the ignition control means, when receiving a discharge stop instruction signal from the discharge stop instruction means, turns off the sub switch means to turn on the superimposed current to the sub primary coil. May be cut off to eliminate the superimposed magnetic flux.
 また、第2の内燃機関用点火装置において、前記二次コイルに流れる二次電流を検出する二次コイル電流検出手段と、前記点火プラグに生じた火花放電による気筒燃焼室内の点火状況が良好で、更なる放電が必要ないと推定される二次コイル電流値として予め設定した放電停止基準値を記憶する放電停止基準値記憶手段と、を設け、前記放電停止条件判定手段は、前記二次コイル電流検出手段により検出された二次電流検出値が、前記放電停止基準値記憶手段に記憶された放電停止基準値以下となったとき、放電停止条件の成立と判定するようにしても良い。 Further, in the second internal combustion engine ignition device, the secondary coil current detecting means for detecting the secondary current flowing through the secondary coil and the ignition condition in the cylinder combustion chamber due to the spark discharge generated in the ignition plug are good. A discharge stop reference value storage means for storing a preset discharge stop reference value as a secondary coil current value estimated that further discharge is not required is provided, and the discharge stop condition determination means is the secondary coil. When the secondary current detection value detected by the current detection means becomes equal to or less than the discharge stop reference value stored in the discharge stop reference value storage means, it may be determined that the discharge stop condition is satisfied.
 また、第2の内燃機関用点火装置において、前記放電停止基準値記憶手段には、内燃機関の運転状態に対応して設定された複数の放電停止基準値を記憶させておき、前記放電停止条件判定手段は、前記放電停止基準値記憶手段より内燃機関の運転状態に応じた放電停止基準値を取得して、放電停止条件を判定するようにしても良い。 In the second ignition device for an internal combustion engine, the discharge stop reference value storage means stores a plurality of discharge stop reference values set corresponding to the operating state of the internal combustion engine, and the discharge stop condition is stored. The determination means may acquire the discharge stop reference value according to the operating state of the internal combustion engine from the discharge stop reference value storage means to determine the discharge stop condition.
 また、第2の内燃機関用点火装置において、前記点火制御手段は、副一次コイルへの重畳電流供給開始から予め定めた重畳時間が経過したとき、前記副スイッチ手段をオフに切り替え、前記副一次コイルへの重畳電流を遮断して重畳磁束を消失させ、前記放電停止条件判定手段は、前記点火制御手段が副一次コイルへの重畳電流供給を停止するタイミングを放電停止条件の成立と判定し、前記放電停止指示手段は、前記放電停止条件判定手段により放電停止指示条件の成立が判定されたとき、前記放電停止手段へ放電停止指示信号を出力するようにしても良い。 Further, in the second ignition device for an internal combustion engine, the ignition control means switches off the sub switch means when a predetermined superposition time has elapsed from the start of supplying the superposition current to the sub primary coil, and the sub primary means is turned off. The superimposed current on the coil is cut off to eliminate the superimposed magnetic flux, and the discharge stop condition determining means determines that the discharge stop condition is satisfied when the ignition control means stops supplying the superimposed current to the secondary primary coil. The discharge stop instruction means may output a discharge stop instruction signal to the discharge stop means when the discharge stop condition determination means determines that the discharge stop instruction condition is satisfied.
 また、第2の内燃機関用点火装置において、前記点火制御手段は、副一次コイルへの重畳電流供給開始から予め定めた重畳時間が経過したとき、前記副スイッチ手段をオフに切り替え、前記副一次コイルへの重畳電流を遮断して重畳磁束を消失させ、前記放電停止条件判定手段は、前記点火制御手段が副一次コイルへの重畳電流供給を停止してから、予め設定した猶予時間が経過したタイミングを放電停止条件の成立と判定し、前記放電停止指示手段は、前記放電停止条件判定手段により放電停止指示条件の成立が判定されたとき、前記放電停止手段へ放電停止指示信号を出力するようにしても良い。 Further, in the ignition device for the second internal combustion engine, the ignition control means switches the sub-switch means to off when a predetermined superposition time elapses from the start of supplying the superimposition current to the sub-primary coil, and the sub-primary The superposed current is cut off to the coil to eliminate the superposed magnetic flux, and the discharge stop condition determination means has passed the preset grace time after the ignition control means stops the superposed current supply to the sub-primary coil. The timing is determined to satisfy the discharge stop condition, and the discharge stop instruction means outputs a discharge stop instruction signal to the discharge stop instruction means when the discharge stop condition determination means determines that the discharge stop instruction condition is satisfied. You can
 上記構成の内燃機関用点火装置によれば、点火プラグに生じた火花放電による気筒燃焼室内の点火状況が、必要十分な着火性を得られたと看做せるとき、放電停止指示手段により放電停止手段を作動させるので、良好な燃焼状態を妨げることは無い。そして、放電停止条件が成立すると、火花放電を強制的に停止させて点火プラグに生ずるリストライクを防げるので、リストライクによる点火プラグ電極周辺部の摩耗を抑制し、点火プラグの寿命を延ばすことが可能となる。 According to the internal combustion engine ignition device having the above-described configuration, when the ignition state in the cylinder combustion chamber due to the spark discharge generated in the spark plug can be considered to have obtained the necessary and sufficient ignitability, the discharge stop instruction means causes the discharge stop means. It does not interfere with good combustion conditions. Then, when the discharge stop condition is satisfied, the spark discharge is forcibly stopped to prevent restructuring that occurs in the spark plug, so that wear of the periphery of the spark plug electrode due to restrike can be suppressed and the life of the spark plug can be extended. It will be possible.
第1実施形態に係る内燃機関用点火装置の概略構成図である。It is a schematic block diagram of the ignition device for an internal combustion engine which concerns on 1st Embodiment. 第1実施形態に係る内燃機関用点火装置の要部における波形を示した波形図である。FIG. 3 is a waveform diagram showing waveforms in a main part of the internal combustion engine ignition device according to the first embodiment. 第2実施形態に係る内燃機関用点火装置の概略構成図である。It is a schematic block diagram of the ignition device for an internal combustion engine which concerns on 2nd Embodiment. 第2実施形態に係る内燃機関用点火装置の要部における波形を示した波形図である。It is a wave form diagram showing a wave form in an important section of an internal-combustion-engine ignition device concerning a 2nd embodiment. 第3実施形態に係る内燃機関用点火装置の概略構成図である。It is a schematic block diagram of the ignition device for an internal combustion engine which concerns on 3rd Embodiment. (A)は、第3実施形態に係る内燃機関用点火装置が行う第1放電停止制御を示す波形図である。(B)は、第3実施形態に係る内燃機関用点火装置が行う第2放電停止制御を示す波形図である。FIG. 7A is a waveform diagram showing first discharge stop control performed by the internal combustion engine ignition device according to the third embodiment. (B) is a waveform diagram showing a second discharge stop control performed by the internal combustion engine ignition device according to the third embodiment.
 次に、第1実施形態に係る内燃機関用点火装置1を、添付図面に基づいて詳細に説明する。 Next, the ignition device 1 for an internal combustion engine according to the first embodiment will be described in detail based on the attached drawings.
 図1に示す内燃機関用点火装置1は、内燃機関の気筒毎に設けられる1つの点火プラグ2に火花放電を発生させる点火コイルユニット10、この点火コイルユニット10の動作タイミングを指示する点火信号Siや放電を強制的に停止させる放電停止指示信号Sd2等を適宜なタイミングで出力する内燃機関駆動制御装置3、車両バッテリ等の直流電源4等で構成される。 An internal combustion engine ignition device 1 shown in FIG. 1 includes an ignition coil unit 10 for generating a spark discharge in one spark plug 2 provided for each cylinder of an internal combustion engine, and an ignition signal Si for instructing an operation timing of the ignition coil unit 10. And an internal combustion engine drive control device 3 which outputs a discharge stop instruction signal Sd2 for forcibly stopping the discharge and the like, a DC power source 4 such as a vehicle battery, and the like.
 また、本実施形態に示す内燃機関用点火装置1においては、点火コイルユニット10を制御するための諸機能が、自動車の内燃機関を統括的に制御する内燃機関駆動制御装置3に含まれるものとしたが、この一体構造に限定されるものではない。例えば、点火信号Siを生成して適宜なタイミングで出力する機能を標準的に備えたECU(内燃機関駆動制御装置3に相当)とは別に放電停止制御装置を設け、放電停止制御に関する機能を放電停止制御装置に持たせても良い。 Further, in the ignition device 1 for an internal combustion engine shown in the present embodiment, various functions for controlling the ignition coil unit 10 are included in the internal combustion engine drive control device 3 that comprehensively controls the internal combustion engine of an automobile. However, it is not limited to this integral structure. For example, a discharge stop control device is provided separately from an ECU (corresponding to the internal combustion engine drive control device 3) that has a function of generating the ignition signal Si and outputting it at an appropriate timing as standard, and discharges the function related to the discharge stop control. It may be provided in the stop control device.
 点火コイルユニット10は、点火コイル11や制御基板等を所要形状のケース12に収納して一体構造としたユニットである。このケース12の適所には、高圧端子121とコネクタ122を設けてあり、高圧端子121を介して点火プラグ2を接続すると共に、コネクタ122を介して内燃機関駆動制御装置3や直流電源4等と接続する。 The ignition coil unit 10 is a unit having an integral structure in which the ignition coil 11, the control board, etc. are housed in a case 12 having a required shape. A high-voltage terminal 121 and a connector 122 are provided at appropriate places of the case 12, and the spark plug 2 is connected via the high-voltage terminal 121, and the internal combustion engine drive control device 3 and the DC power source 4 are connected via the connector 122. Connecting.
 点火コイル11は、一次コイル111に生ずる磁束を二次コイル112に効率良く作用させるものである。例えば、高透磁性材料で形成したセンターコア113を取り巻くように一次コイル111を配置し、その外側に二次コイル112を配置した構造である。 The ignition coil 11 efficiently causes the magnetic flux generated in the primary coil 111 to act on the secondary coil 112. For example, the structure is such that the primary coil 111 is arranged so as to surround the center core 113 formed of a highly permeable magnetic material, and the secondary coil 112 is arranged outside the primary coil 111.
 一次コイル111の一方端は、コネクタ122を介して直流電源4と接続され、電源電圧VB+(例えば、12V)が印加される。一次コイル111の他方端は、IGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)を用いた点火スイッチ13のコレクタに接続される。点火スイッチ13のエミッタはコネクタ122を介して接地点GNDに接続される。二次コイル112の一方端は高圧端子121を介して点火プラグ2と接続され、他方端はコネクタ122を介して内燃機関駆動制御装置3に接続される。なお、二次コイル112からコネクタ122へ至る間の線路には、二次コイル112からコネクタ122に向かって順方向となる整流素子D1(例えば、接地側にカソードを、コネクタ122側にアノードをそれぞれ接続したダイオード)を設け、二次電流I2の流路方向を規制する。 The one end of the primary coil 111 is connected to the DC power supply 4 via the connector 122, and the power supply voltage VB+ (for example, 12V) is applied. The other end of the primary coil 111 is connected to the collector of the ignition switch 13 using an IGBT (Insulated Gate Bipolar Transistor). The emitter of the ignition switch 13 is connected to the ground point GND via the connector 122. One end of the secondary coil 112 is connected to the ignition plug 2 via the high voltage terminal 121, and the other end is connected to the internal combustion engine drive control device 3 via the connector 122. The line from the secondary coil 112 to the connector 122 has a rectifying element D1 (for example, a cathode on the ground side and an anode on the connector 122 side) in the forward direction from the secondary coil 112 toward the connector 122. A connected diode) is provided to regulate the flow path direction of the secondary current I2.
 放電サイクルの適宜なタイミングで、内燃機関駆動制御装置3の点火制御手段31より出力される点火信号Siは、コネクタ122を介して点火スイッチ13のゲートに入力される。そして、点火信号Siが点火スイッチ13のゲートに入力されると(例えば、点火信号Siの信号レベルがLからHに変わると)、点火スイッチ13がオンになり、一次コイル111の非給電側端部が接地点GNDに接続される。これにより、一次コイル111には、給電側から接地側に向かう一次電流I1が流れ始め、一次電流I1の流量は増加してゆき、一次電流I1の流量に応じて発生する通電磁束の磁束量が磁界のエネルギとして蓄積される。なお、点火コイル11の二次側には、二次コイル112や接続配線等の微少なコンデンサ成分により電気エネルギが蓄積される。 The ignition signal Si output from the ignition control means 31 of the internal combustion engine drive control device 3 is input to the gate of the ignition switch 13 via the connector 122 at an appropriate timing of the discharge cycle. When the ignition signal Si is input to the gate of the ignition switch 13 (for example, when the signal level of the ignition signal Si changes from L to H), the ignition switch 13 is turned on and the non-power supply side end of the primary coil 111. The part is connected to the ground point GND. As a result, the primary current I1 from the power supply side to the ground side starts to flow in the primary coil 111, the flow rate of the primary current I1 increases, and the amount of magnetic flux of the energizing magnetic flux generated according to the flow rate of the primary current I1 increases. It is stored as the energy of the magnetic field. It should be noted that on the secondary side of the ignition coil 11, electric energy is accumulated due to minute capacitor components such as the secondary coil 112 and connection wiring.
 上記のようにエネルギが蓄積された後、一次コイル111への通電が所定の点火タイミングで遮断されると、高圧の起電力が二次コイル112に生じて点火プラグ2の放電ギャップ間に火花放電が発生し、気筒燃焼室内の混合気に着火する。このとき、一次コイル111には、通常の一次電流I1とは逆向きの電流を流そうとする逆起電力が生ずる。この逆起電力が点火スイッチ13のコレクタ-エミッタ間に印加されると、点火スイッチ13が故障したり、点火スイッチ13の劣化を早めたりする危険性がある。そこで、点火スイッチ13と並列にバイパス線路14を設けると共に、このバイパス線路14の接地点側から点火コイル11側に向かって順方向となる整流素子D2(例えば、点火スイッチ13のコレクタ側にカソードを、点火スイッチ13のエミッタ側にアノードをそれぞれ接続したダイオード)を設けた。 After the energy is accumulated as described above, when the energization of the primary coil 111 is interrupted at a predetermined ignition timing, a high-voltage electromotive force is generated in the secondary coil 112 and a spark discharge is generated in the discharge gap of the spark plug 2. Occurs, and the air-fuel mixture in the cylinder combustion chamber is ignited. At this time, a counter electromotive force is generated in the primary coil 111 in an attempt to flow a current in the opposite direction to the normal primary current I1. If this counter electromotive force is applied between the collector and the emitter of the ignition switch 13, there is a risk that the ignition switch 13 may fail or the ignition switch 13 may deteriorate faster. Therefore, a bypass line 14 is provided in parallel with the ignition switch 13, and a rectifying element D2 (for example, a cathode on the collector side of the ignition switch 13 is provided in the forward direction from the ground point side of the bypass line 14 toward the ignition coil 11 side). , Diodes having anodes respectively connected to the emitter side of the ignition switch 13 are provided.
 さらに、点火コイルユニット10には、点火プラグ2の放電を停止させる放電停止手段15を設けてある。放電停止手段15は、一次コイル111から二次コイル112へ与える放電エネルギを抑制して点火プラグ2の放電を強制的に停止させるための機能であり、内燃機関駆動制御装置3からの放電停止指示信号Sd2により動作する。なお、放電停止を行うのは、点火プラグ2に生じた火花放電による気筒燃焼室内の点火状況が、必要十分な着火性を実現できたと看做し得るときである。必要以上に点火プラグ2の放電が継続することの無いよう、強制的に放電を停止することで、リストライクによる点火プラグ2の摩耗を抑制することができ、点火プラグ2の延命を図れる。 Further, the ignition coil unit 10 is provided with a discharge stopping means 15 for stopping the discharge of the spark plug 2. The discharge stopping means 15 has a function of suppressing discharge energy applied from the primary coil 111 to the secondary coil 112 to forcibly stop the discharge of the spark plug 2, and a discharge stop instruction from the internal combustion engine drive control device 3. It operates by the signal Sd2. The discharge is stopped when it can be considered that the ignition condition in the cylinder combustion chamber due to the spark discharge generated in the spark plug 2 has achieved the necessary and sufficient ignitability. By forcibly stopping the discharge so that the discharge of the spark plug 2 does not continue more than necessary, it is possible to suppress wear of the spark plug 2 due to re-strike, and it is possible to prolong the life of the spark plug 2.
 放電停止手段15は、例えば、一次コイル111の両端を短絡させる短絡路15aと、この短絡路15aに含まれる抵抗成分15bと、短絡路15aを開閉する常開の短絡路開閉スイッチ15cと、で構成する。なお、短絡路開閉スイッチ15cとしては、接点式のスイッチに限らず、低消費電力で高速スイッチング動作が可能な半導体スイッチ素子を用いても良い。 The discharge stopping means 15 includes, for example, a short-circuit path 15a that short-circuits both ends of the primary coil 111, a resistance component 15b included in the short-circuit path 15a, and a normally-open short-circuit opening/closing switch 15c that opens/closes the short-circuit path 15a. Constitute. The short circuit opening/closing switch 15c is not limited to the contact type switch, and a semiconductor switch element capable of high speed switching operation with low power consumption may be used.
 点火コイル11の一次コイル111から二次コイル112へ与えられる放電エネルギは、一般に、通電遮断直後に短時間生ずる容量放電エネルギと、比較的長時間に亘って続く誘導放電エネルギに分けて考えられる。容量放電エネルギは、一次コイル111への通電中に二次コイル112に蓄えられた電荷が一気に放出されることで生ずる非常に高い起電力である。一方、誘導放電エネルギは、一次コイル111への通電により発生した通電磁束が通電遮断によって急激に減ぜられ、その磁束変化が二次側へ作用して生ずる誘導起電力である。したがって、誘導放電中に短絡路開閉スイッチ15cを閉じて一次コイル111の両端を短絡させれば、通電磁束を消失させる向きの電流が一次コイル111に流れて、放電が停止する向きの高電圧を二次コイル112に発生させる。すなわち、誘導放電中に放電停止手段15を動作させれば、一次コイル111から二次コイル112へ与えられる放電エネルギが抑制されるので、点火プラグ2の放電を停止させることが可能となる。 The discharge energy applied from the primary coil 111 of the ignition coil 11 to the secondary coil 112 is generally considered to be divided into capacitive discharge energy that occurs for a short time immediately after the interruption of energization and induction discharge energy that continues for a relatively long time. The capacitive discharge energy is a very high electromotive force that is generated when the electric charge accumulated in the secondary coil 112 is discharged at a stroke while the primary coil 111 is energized. On the other hand, the induced discharge energy is an induced electromotive force that occurs when the energizing magnetic flux generated by energizing the primary coil 111 is sharply reduced by the interruption of energization, and the change in the magnetic flux acts on the secondary side. Therefore, if the short-circuit opening/closing switch 15c is closed during the inductive discharge to short-circuit both ends of the primary coil 111, a current in the direction of eliminating the energized magnetic flux flows in the primary coil 111, and a high voltage in the direction of stopping the discharge is generated. It is generated in the secondary coil 112. That is, if the discharge stopping means 15 is operated during the induced discharge, the discharge energy given from the primary coil 111 to the secondary coil 112 is suppressed, so that the discharge of the spark plug 2 can be stopped.
 以上のように、本実施形態の内燃機関用点火装置1においては、点火コイル10に設けた放電停止手段15を放電開始後の適宜なタイミングで動作させることにより、点火プラグ2の放電を強制停止させ、点火プラグ2の摩耗を抑制できるのである。無論、放電停止手段15を作動させることで、内燃機関の良好な燃焼が妨げられることの無いよう、適切な放電停止タイミングを判定しなければならない。そこで、内燃機関駆動制御装置3に設けた放電停止制御の諸機能について説明する。 As described above, in the ignition device 1 for an internal combustion engine of the present embodiment, the discharge stopping means 15 provided in the ignition coil 10 is operated at an appropriate timing after the start of the discharge to forcibly stop the discharge of the ignition plug 2. Therefore, the wear of the ignition plug 2 can be suppressed. Of course, it is necessary to determine an appropriate discharge stop timing so that the good combustion of the internal combustion engine is not hindered by operating the discharge stop means 15. Therefore, various functions of the discharge stop control provided in the internal combustion engine drive control device 3 will be described.
 内燃機関駆動制御装置3は、点火プラグ2に生じた火花放電による気筒燃焼室内の点火状況が、必要十分な着火性を実現できたか否かを判定する情報として、二次コイル112に流れる二次電流I2を用いる。このため、内燃機関駆動制御装置3には、二次電流I2を検出するための二次コイル電流検出手段32を設ける。二次コイル電流検出手段32は、例えば、接地点GNDに接続される二次電流ラインに介挿したシャント抵抗による電圧降下を検出する構成で実現できる。なお、二次コイル電流検出手段32により検出されるのは、二次電流I2に応じた電圧値であるから、その電圧値をそのまま判定用の二次電流検出値として用いても良いし、所定の演算式で電圧値から電流値に換算することで二次電流値を得るようにしても良い。 The internal-combustion-engine drive control device 3 uses the secondary flowing in the secondary coil 112 as information for determining whether or not the ignition condition in the cylinder combustion chamber due to the spark discharge generated in the spark plug 2 has achieved a necessary and sufficient ignitability. The current I2 is used. For this reason, the internal combustion engine drive control device 3 is provided with a secondary coil current detection means 32 for detecting the secondary current I2. The secondary coil current detection means 32 can be realized by, for example, a configuration that detects a voltage drop due to a shunt resistance inserted in a secondary current line connected to the ground point GND. Since the voltage value corresponding to the secondary current I2 is detected by the secondary coil current detecting means 32, the voltage value may be used as it is as the secondary current detecting value for determination, or is predetermined. The secondary current value may be obtained by converting the voltage value into the current value using the above equation.
 二次コイル電流検出手段32により検出された二次電流検出値は、放電停止条件判定手段33へ供給され、この放電停止条件判定手段33によって、放電停止条件の成否が判定される。すなわち、放電停止条件判定手段は、点火プラグ2に生じた火花放電による気筒燃焼室内の点火状況が、必要十分な着火性を実現できたと看做し得る放電停止条件を満たすか否かを判定するのである。なお、二次電流検出値を用いて判定する放電停止条件は、二次電流I2が所定の放電停止基準値にまで下がったこと(二次電流検出値≦放電停止基準値)とする。あるいは、二次電流I2が所定の放電停止基準値よりも下がったこと(二次電流検出値<放電停止基準値)とする。正常な点火状態のとき、一次コイル111の通電磁束が消失する磁束変化に伴って、二次電流I2は放電開始直後から徐々に下がって行く。よって、内燃機関の気筒内燃焼に好適な火炎核が形成されるに必要十分な放電が行われたと想定されるときの二次電流値まで二次電流I2が下がれば、その後に点火プラグ2の放電を強制停止させても、気筒内燃焼室での正常燃焼を阻害することはない。 The secondary current detection value detected by the secondary coil current detecting means 32 is supplied to the discharge stop condition determining means 33, and the discharge stop condition determining means 33 determines the success or failure of the discharge stop condition. That is, the discharge stop condition determination means determines whether or not the ignition condition in the cylinder combustion chamber due to the spark discharge generated in the spark plug 2 satisfies the discharge stop condition that can be considered to realize the necessary and sufficient ignitability. It is. The discharge stop condition determined by using the secondary current detection value is that the secondary current I2 has dropped to a predetermined discharge stop reference value (secondary current detection value ≤ discharge stop reference value). Alternatively, it is assumed that the secondary current I2 has fallen below a predetermined discharge stop reference value (secondary current detection value<discharge stop reference value). In a normal ignition state, the secondary current I2 gradually decreases immediately after the start of discharge due to the change in the magnetic flux in which the energizing magnetic flux of the primary coil 111 disappears. Therefore, if the secondary current I2 drops to the secondary current value when it is assumed that sufficient discharge is performed to form a flame nucleus suitable for in-cylinder combustion of the internal combustion engine, then the spark plug 2 Even if the discharge is forcibly stopped, normal combustion in the cylinder combustion chamber is not hindered.
 上述したように、放電停止条件を判定するための基準となる放電停止基準値は、点火プラグ2に生じた火花放電による気筒燃焼室内の点火状況が良好で、更なる放電が必要ないと推定される二次コイル電流値として予め設定した値であり、放電停止基準値記憶手段34に記憶させておく。この放電停止基準値記憶手段34から放電停止条件判定手段33へ放電停止基準値が供給され、放電停止条件の判定に用いられるのである。また、放電停止基準値は、前述した二次コイル電流検出値と直接比較できるように設定した値である。 As described above, it is presumed that the discharge stop reference value, which is the reference for determining the discharge stop condition, is that the ignition condition in the cylinder combustion chamber due to the spark discharge generated in the spark plug 2 is good and no further discharge is required. It is a value preset as the secondary coil current value, and is stored in the discharge stop reference value storage means 34. The discharge stop reference value is supplied from the discharge stop reference value storage means 34 to the discharge stop condition determination means 33 and is used to determine the discharge stop condition. The discharge stop reference value is a value set so as to be directly compared with the above-mentioned secondary coil current detection value.
 なお、内燃機関の運転状態にかかわらず、予め設定した1つの放電停止基準値のみによって放電停止条件を判定しても良いが、低速運転時や高速運転時等の運転状態に応じた最適の放電停止基準値を使い分ければ、より適切な放電停止制御が可能となる。かくする場合は、内燃機関の運転状態に対応させて設定した複数の放電停止基準値を放電停止基準値記憶手段34に記憶させておき、放電停止条件判定手段33が、現在の運転状態に対応する放電停止基準値を放電停止基準値記憶手段34から選択すれば良い。 Note that the discharge stop condition may be determined based on only one preset discharge stop reference value regardless of the operating state of the internal combustion engine, but the optimum discharge according to the operating state during low speed operation, high speed operation, etc. By properly using the stop reference value, more appropriate discharge stop control becomes possible. In this case, a plurality of discharge stop reference values set corresponding to the operating state of the internal combustion engine are stored in the discharge stop reference value storage means 34, and the discharge stop condition determining means 33 corresponds to the current operating state. The discharge stop reference value to be used may be selected from the discharge stop reference value storage means 34.
 また、内燃機関は、気筒毎に燃焼特性等が微妙に異なる場合があるため、気筒毎に最適な放電停止基準値を設定しておき、気筒毎に異なる放電停止基準値で放電停止条件を判定する構成としても良い。さらに、内燃機関は、経年劣化等で燃焼特性が変化する場合もあるので、内燃機関駆動制御装置3に放電停止基準値設定手段を設けておき、放電停止基準値記憶手段34に記憶されている値を、適切な放電停止基準値に書き替えられる構成としても良い。なお、放電停止条件判定手段33が現在の運転状態を知る手段としては、車両に標準搭載されている車速センサの検出値を用いても良い。あるいは、内燃機関駆動制御装置3が行っている制御状態に応じた運転モードから、放電停止条件判定手段33が自律的に運転状態を判断する構成としても良い。 In addition, since the combustion characteristics of the internal combustion engine may differ slightly from cylinder to cylinder, the optimum discharge stop reference value is set for each cylinder, and the discharge stop condition is determined by the discharge stop reference value that differs from cylinder to cylinder. It may be configured to discharge. Further, since the combustion characteristics of the internal combustion engine may change due to deterioration over time and the like, the internal combustion engine drive control device 3 is provided with a discharge stop reference value setting means and stored in the discharge stop reference value storage means 34. The value may be rewritten to an appropriate discharge stop reference value. The discharge stop condition determining means 33 may use the detection value of the vehicle speed sensor that is standardly installed in the vehicle as means for knowing the current driving state. Alternatively, the discharge stop condition determining means 33 may autonomously determine the operating state from the operation mode according to the control state performed by the internal combustion engine drive control device 3.
 放電停止条件判定手段33は、二次コイル電流検出手段32により検出された二次電流検出値と、放電停止基準値記憶手段34に記憶された放電停止基準値とを比較し、例えば、二次電流検出値が放電停止基準値以下となったとき、放電停止条件の成立と判定する。放電停止条件が成立すると、放電停止条件判定手段33は、放電停止条件判定信号Sd1を放電停止指示手段35へ出力する。この放電停止条件判定信号Sd1を受けた放電停止指示手段35は、放電停止指示信号Sd2を出力する。この放電停止指示信号Sd2は、点火コイルユニット10のコネクタ122を介して、放電停止手段15の短絡路開閉スイッチ15cへ入力され、常開の短絡路開閉スイッチ15cを閉じさせる。すなわち、放電停止条件判定手段33が放電停止条件の成立を判定すると、一次コイル111から二次コイル112へ与えられる放電エネルギが抑制されて、点火プラグ2の放電が停止されるのである。 The discharge stop condition determination means 33 compares the secondary current detection value detected by the secondary coil current detection means 32 with the discharge stop reference value stored in the discharge stop reference value storage means 34, and, for example, the secondary When the current detection value becomes equal to or lower than the discharge stop reference value, it is determined that the discharge stop condition is satisfied. When the discharge stop condition is satisfied, the discharge stop condition determination means 33 outputs the discharge stop condition determination signal Sd1 to the discharge stop instruction means 35. The discharge stop instruction means 35 receiving the discharge stop condition determination signal Sd1 outputs the discharge stop instruction signal Sd2. The discharge stop instruction signal Sd2 is input to the short-circuit path open / close switch 15c of the discharge stop means 15 via the connector 122 of the ignition coil unit 10 to close the normally open short-circuit path open / close switch 15c. That is, when the discharge stop condition determining means 33 determines that the discharge stop condition is satisfied, the discharge energy given from the primary coil 111 to the secondary coil 112 is suppressed, and the discharge of the spark plug 2 is stopped.
 なお、内燃機関駆動制御装置3は、常に放電停止条件判定手段33を機能させておき、放電停止制御が常時行われる構成でも構わないし、運転モードなどを勘案して放電停止制御が必要な場合に限り放電条件判定手段33を能動化させても良い。点火プラグ2の放電でリストライクが頻発すると推定される場合だけ放電停止制御を行う構成とすれば、リストライクが生じていない点火サイクルで早期に放電停止させてしまい、不完全な燃焼状態となるような不具合を効果的に回避できる。 The internal combustion engine drive control device 3 may be configured such that the discharge stop condition determining means 33 is always functioning and the discharge stop control is always performed, or when the discharge stop control is required in consideration of the operation mode and the like. As long as the discharge condition determination means 33 may be activated. If the discharge stop control is configured only when it is estimated that the recharge occurs frequently due to the discharge of the spark plug 2, the discharge is stopped early in the ignition cycle in which the restrike does not occur, resulting in an incomplete combustion state. Such a problem can be effectively avoided.
 次に、内燃機関用点火装置1における要部の波形を示した図2に基づき、放電停止制御を行わない場合の動作と、放電停止制御を行う場合の動作を説明する。 Next, the operation when the discharge stop control is not performed and the operation when the discharge stop control is performed will be described based on FIG. 2 showing the waveform of the main part of the internal combustion engine ignition device 1.
 まず、放電停止制御を行わない点火サイクルについて説明する。点火信号Siがオンになって一次コイル111への通電が開始されると、一次電流I1が流れ始める。その後、点火信号Siがオフになって一次コイル111への通電が遮断されると、二次コイル112に放電エネルギが与えられ、点火プラグ2に火花放電が生じて二次電流I2が流れ始める。その後、二次電流I2が徐々に低下してゆき、点火プラグ2の放電は自然停止する。この間、二次電圧V2の波形から、二次電圧の上昇(放電経路の引き延ばし)と低下(吹き消え)が交互に生じており、リストライクが繰り返されていたと推定される。 First, the ignition cycle without discharge stop control will be explained. When the ignition signal Si is turned on and the energization of the primary coil 111 is started, the primary current I1 starts to flow. After that, when the ignition signal Si is turned off and the energization of the primary coil 111 is cut off, discharge energy is given to the secondary coil 112, spark discharge occurs in the spark plug 2, and the secondary current I2 starts to flow. After that, the secondary current I2 gradually decreases, and the discharge of the spark plug 2 naturally stops. During this period, from the waveform of the secondary voltage V2, it is estimated that the secondary voltage rises (extends the discharge path) and falls (blows out) alternately, and the restructuring is repeated.
 すなわち、放電停止制御を行わない場合、二次電流I2が放電停止基準値にまで低下しても、放電停止条件判定手段33が動作しないため、更なる放電は必要ないと推定される状態になった後にも、継続して一次コイル111から二次コイル112へ放電エネルギが与えられる。このため、良好な気筒内燃焼に好適な火炎核が形成されるのに十分な放電を点火プラグ2で得られた後にも、点火プラグ2でリストライクが繰り返されることとなり、点火プラグ2の電極周辺の摩耗が進み、点火プラグ2の寿命を縮めてしまう可能性がある。 That is, when the discharge stop control is not performed, even if the secondary current I2 is reduced to the discharge stop reference value, the discharge stop condition determination means 33 does not operate, so that it is estimated that further discharge is not necessary. Even after the discharge, the discharge energy is continuously applied from the primary coil 111 to the secondary coil 112. Therefore, even after the spark plug 2 has obtained a sufficient discharge to form a flame nucleus suitable for good in-cylinder combustion, the spark plug 2 repeats the restoration, and the electrode of the spark plug 2 Peripheral wear may progress, shortening the life of the spark plug 2.
 一方、放電停止制御を行う点火サイクルでは、点火プラグ2に火花放電が生じて、二次側に流れ始めた二次電流I2が放電停止基準値にまで下がる(あるいは、放電停止基準値よりも下がる)と、放電停止条件が成立して、放電停止条件判定手段33が動作する。すなわち、放電停止条件判定手段33が、放電停止条件判定信号Sd1(例えば、所定時間幅の短パルス信号)を放電停止指示手段35へ出力する。そして、放電停止指示手段35は、放電停止条件判定手段33からの放電停止条件判定信号Sd1を受信すると(例えば、信号パルスの立ち上がりエッヂを検出すると)、放電停止指示信号Sd2を出力し、放電停止手段15の短絡路開閉スイッチ15cを閉止させる。 On the other hand, in the ignition cycle in which the discharge stop control is performed, a spark discharge is generated in the spark plug 2 and the secondary current I2 that starts flowing to the secondary side falls to the discharge stop reference value (or falls below the discharge stop reference value. ), the discharge stop condition is satisfied, and the discharge stop condition determination means 33 operates. That is, the discharge stop condition determination means 33 outputs the discharge stop condition determination signal Sd1 (for example, a short pulse signal having a predetermined time width) to the discharge stop instruction means 35. When the discharge stop instruction means 35 receives the discharge stop condition determination signal Sd1 from the discharge stop condition determination means 33 (for example, when the rising edge of the signal pulse is detected), the discharge stop instruction signal Sd2 is output to stop the discharge. The short circuit opening/closing switch 15c of the means 15 is closed.
 すなわち、放電停止制御を行う場合、点火プラグ2に生じた火花放電による気筒燃焼室内の点火状況が良好で、更なる放電が必要ないと推定される状態になったとき、放電停止条件が成立するので、一次コイル111の両端が短絡路15aを介して短絡される。一次コイル111の両端が短絡されると、通電磁束を消失させる向きの電流が一次コイル111に流れて、放電が停止する向きの高電圧を二次コイル112に発生させる。これにより、点火プラグ2の放電が強制的に停止されるので、点火プラグ2でリストライクが繰り返されることを無くして、点火プラグ2の電極周辺の摩耗を抑制し、点火プラグ2の延命を図ることが可能となる。 That is, when the discharge stop control is performed, the discharge stop condition is satisfied when the ignition condition in the cylinder combustion chamber due to the spark discharge generated in the spark plug 2 is good and it is estimated that further discharge is not required. Therefore, both ends of the primary coil 111 are short-circuited via the short-circuit path 15a. When both ends of the primary coil 111 are short-circuited, a current in the direction of extinguishing the energized magnetic flux flows in the primary coil 111, and a high voltage in the direction of stopping the discharge is generated in the secondary coil 112. As a result, the discharge of the spark plug 2 is forcibly stopped, so that repetitive re-strikes are prevented in the spark plug 2, wear of the electrodes around the spark plug 2 is suppressed, and the life of the spark plug 2 is extended. It becomes possible.
 なお、放電停止指示信号Sd2の時間幅Tsとして任意に設定できる短絡時間は、一次コイル111を流れる一次電流I1が帰零するのに必要十分な時間としておくことが望ましい。また、放電停止条件判定手段33が出力する放電停止条件判定信号Sd1の時間幅だけ放電停止指示信号Sd2を出力する構成(図2の放電停止条件判定信号波形中、破線で示す)としても良い。かくする場合は、放電停止条件判定手段33が放電停止条件判定信号Sd1の出力時間を調整することで、車両の運転モード等に適した時間幅Tsとなる放電停止指示信号Sd2を出力させることが可能となる。 It is desirable that the short-circuit time that can be arbitrarily set as the time width Ts of the discharge stop instruction signal Sd2 is a time necessary and sufficient for the primary current I1 flowing through the primary coil 111 to return to zero. Further, the discharge stop instruction signal Sd2 may be output for the time width of the discharge stop condition determination signal Sd1 output by the discharge stop condition determination means 33 (indicated by a broken line in the waveform of the discharge stop condition determination signal in FIG. 2). In this case, the discharge stop condition determination means 33 adjusts the output time of the discharge stop condition determination signal Sd1 to output the discharge stop instruction signal Sd2 having a time width Ts suitable for the driving mode of the vehicle. It will be possible.
 上述した実施形態の内燃機関用点火装置1では、放電停止条件として、二次コイル電流検出値を用いたが、これに限定されるものではない。例えば、二次電圧V2の検出値に基づいて二次電圧の上昇・急低下からリストライクの発生を検知することで放電停止条件が成立する制御としても良い。この場合、非常に高圧となる二次電圧V2を直接検知せず、二次コイル112の電圧変化が転写される一次コイル111の電圧変化からリストライクの発生を検知するようにしても良い。 In the ignition device 1 for an internal combustion engine of the above-described embodiment, the secondary coil current detection value is used as the discharge stop condition, but the present invention is not limited to this. For example, the discharge stop condition may be established by detecting the occurrence of restrike based on the detected value of the secondary voltage V2 based on the rise/fall of the secondary voltage. In this case, the secondary voltage V2, which becomes a very high voltage, may not be directly detected, but the occurrence of restoration may be detected from the voltage change of the primary coil 111 to which the voltage change of the secondary coil 112 is transferred.
 次に、第2実施形態に係る内燃機関用点火装置1′の概略構成について、図3を参照して説明する。内燃機関用点火装置1′は、点火コイル11′を備える点火コイルユニット10′を内燃機関駆動制御装置3′により動作制御するものである。なお、前述した第1実施形態の内燃機関用点火装置1と同一の構成については、同一符号を付して説明を省略する。 Next, a schematic configuration of the internal combustion engine ignition device 1'according to the second embodiment will be described with reference to FIG. The internal combustion engine ignition device 1'is configured to control the operation of an ignition coil unit 10' including an ignition coil 11' by an internal combustion engine drive control device 3'. The same components as those of the ignition device 1 for an internal combustion engine according to the first embodiment described above are designated by the same reference numerals and description thereof will be omitted.
 点火コイル11′は、一次側のコイルを中間タップにより主一次コイル111aと副一次コイル111bに分け、共通の電源である直流電源4より中間タップを介して給電される。なお、主一次コイル111aと副一次コイル111bは巻回方向が同じであるから、通電時に流れる電流の向きは逆となる。これら主一次コイル111aと副一次コイル111bは、共に磁束を二次コイル112へ作用させるものである。例えば、センターコア113を取り巻くように主一次コイル111aおよび副一次コイル111bを配置し、更にその外側に二次コイル112を配置する。 In the ignition coil 11', the primary side coil is divided into a main primary coil 111a and a sub primary coil 111b by an intermediate tap, and power is supplied from the DC power source 4 which is a common power source through the intermediate tap. Since the main primary coil 111a and the sub primary coil 111b have the same winding direction, the directions of the currents that flow during energization are opposite. The main primary coil 111a and the sub primary coil 111b both cause magnetic flux to act on the secondary coil 112. For example, the main primary coil 111a and the secondary primary coil 111b are arranged so as to surround the center core 113, and the secondary coil 112 is further arranged outside the main primary coil 111a.
 主一次コイル111aの非給電端は、主点火スイッチ13′を介して接地点GNDに接続される。この主点火スイッチ13′はIGBTで構成でき、点火制御手段31′からの主一次コイル点火信号Saに基づいて、主一次コイル111aへの通電・遮断を切り替える主スイッチ手段として機能する。 The non-power supply end of the main primary coil 111a is connected to the ground point GND via the main ignition switch 13'. The main ignition switch 13' can be constituted by an IGBT, and functions as a main switch means for switching between energization and interruption of the main primary coil 111a based on the main primary coil ignition signal Sa from the ignition control means 31'.
 副一次コイル111bの非給電端は、副点火スイッチ16を介して接地点GNDに接続される。この副点火スイッチ16もIGBTで構成でき、点火制御手段31′からの副一次コイル重畳信号Sbに基づいて、副一次コイル111bへの通電・遮断を切り替える副スイッチ手段として機能する。 The non-power supply end of the sub primary coil 111b is connected to the ground point GND via the sub ignition switch 16. This sub ignition switch 16 can also be configured by an IGBT, and functions as a sub switch means for switching between energization and interruption of the sub primary coil 111b based on the sub primary coil superposition signal Sb from the ignition control means 31'.
 まず、主点火スイッチ13′がオンとなって、主一次コイル111aに一次電流I1aが流れると、通電磁束が発生する。主点火スイッチ13′がオフとなって一次電流I1aが遮断されたとき、通電磁束が急激に減少する。仮に、通電磁束の向きを正方向とすると、見かけ上、逆方向の遮断磁束が作用して通電磁束を消失させているに等しい。この磁束変化が二次コイル112に作用することで、点火プラグ2の放電ギャップに絶縁破壊を起こす放電エネルギが発生する。 First, when the main ignition switch 13' is turned on and the primary current I1a flows through the main primary coil 111a, an energizing magnetic flux is generated. When the main ignition switch 13'is turned off and the primary current I1a is cut off, the energizing magnetic flux sharply decreases. If the direction of the energizing magnetic flux is the positive direction, it is apparent that the blocking magnetic flux in the opposite direction acts and the energizing magnetic flux disappears. This change in magnetic flux acts on the secondary coil 112, so that discharge energy that causes dielectric breakdown is generated in the discharge gap of the spark plug 2.
 さらに、主一次コイル111aへの通電を遮断した遮断タイミング以降に副点火スイッチ16がオンになって、副一次コイル111bに重畳電流I1bが流れると、遮断磁束と同じ向きの重畳磁束が発生する。すなわち、副一次コイル111bによる重畳磁束が作用することで、通電磁束の変化量を増大させ、二次コイル112に発生する放電エネルギを重畳的に増加させることができる。 Further, when the auxiliary ignition switch 16 is turned on after the interruption timing when the energization to the main primary coil 111a is interrupted and the superimposed current I1b flows through the auxiliary primary coil 111b, a superimposed magnetic flux in the same direction as the interrupted magnetic flux is generated. That is, since the superposed magnetic flux from the sub-primary coil 111b acts, the amount of change in the energized magnetic flux can be increased, and the discharge energy generated in the secondary coil 112 can be superposedly increased.
 上記のように構成した点火コイル11′を備える点火コイルユニット10′の動作制御を行う内燃機関駆動制御装置3′について説明する。副一次コイル111bに重畳電流I1bを流して、二次側に与える放電エネルギを増大させる重畳放電制御を行った後、放電停止条件判定手段33が放電停止条件の成立を判定すると、放電停止指示手段35′へ放電停止条件判定信号Sd1を出力する。この放電停止条件判定信号Sd1を受けた放電停止指示手段35′は、放電停止指示信号Sd2aと放電停止指示信号Sd2bを出力する。 The internal combustion engine drive control device 3'for controlling the operation of the ignition coil unit 10' including the ignition coil 11' configured as described above will be described. When the discharge stop condition determination means 33 determines that the discharge stop condition is satisfied after the superimposed current I1b is passed through the sub-primary coil 111b to perform the superimposed discharge control for increasing the discharge energy applied to the secondary side, the discharge stop instruction means is provided. The discharge stop condition determination signal Sd1 is output to 35'. Upon receiving the discharge stop condition determination signal Sd1, the discharge stop instruction means 35' outputs the discharge stop instruction signal Sd2a and the discharge stop instruction signal Sd2b.
 放電停止指示信号Sd2aは、点火コイルユニット10のコネクタ122を介して、放電停止手段15の短絡路開閉スイッチ15cへ入力され、常開の短絡路開閉スイッチ15cを閉じさせる。また、放電停止指示信号Sd2bは、点火制御手段31′へ入力され、これを受けた点火制御手段31′は、副一次コイル重畳信号Sbを停止して副点火スイッチ16をオンからオフに切り替え、重畳電流I1bを遮断する。すなわち、放電停止条件判定手段33が放電停止条件の成立を判定すると、主一次コイル111aおよび副一次コイル111bから二次コイル112へ与えられる放電エネルギが抑制されて、点火プラグ2の放電が停止される。 The discharge stop instruction signal Sd2a is input to the short-circuit path open / close switch 15c of the discharge stop means 15 via the connector 122 of the ignition coil unit 10 to close the normally open short-circuit path open / close switch 15c. Further, the discharge stop instruction signal Sd2b is input to the ignition control means 31', and the ignition control means 31' receiving this signal stops the sub primary coil superposition signal Sb and switches the sub ignition switch 16 from ON to OFF. The superimposed current I1b is cut off. That is, when the discharge stop condition determining means 33 determines that the discharge stop condition is satisfied, the discharge energy applied to the secondary coil 112 from the main primary coil 111a and the sub primary coil 111b is suppressed, and the discharge of the ignition plug 2 is stopped. It
 上述した第2実施形態に係る内燃機関用点火装置1′における要部の波形を示した図4に基づき、放電停止制御を行わない場合の動作と、放電停止制御を行う場合の動作を説明する。 The operation when the discharge stop control is not performed and the operation when the discharge stop control is performed will be described based on FIG. 4 showing the waveform of the main part in the internal combustion engine ignition device 1′ according to the second embodiment described above. ..
 まず、放電停止制御を行わない点火サイクルについて説明する。主一次コイル点火信号Saがオンになって主一次コイル111aへの通電が開始されると、主一次電流I1aが流れ始める。その後、主一次コイル点火信号Saがオフになって主一次コイル111aへの通電が遮断されると、二次コイル112に放電エネルギが与えられ、点火プラグ2に火花放電が生じて二次電流I2が流れ始める。さらに、主一次コイル点火信号Saをオフにするとほぼ同時に副一次コイル点火信号Sbをオンにすることで、副一次コイル111bに重畳電流I1bが流れ始め、重畳磁束が発生することで二次側に与える放電エネルギが重畳的に高められる。 First, the ignition cycle without discharge stop control will be explained. When the main primary coil ignition signal Sa is turned on and the power supply to the main primary coil 111a is started, the main primary current I1a starts to flow. After that, when the main primary coil ignition signal Sa is turned off and the power supply to the main primary coil 111a is cut off, discharge energy is given to the secondary coil 112, spark discharge is generated in the ignition plug 2 and the secondary current I2 is generated. Begins to flow. Further, when the main primary coil ignition signal Sa is turned off, the sub primary coil ignition signal Sb is turned on almost at the same time, so that the superposed current I1b starts to flow in the sub primary coil 111b, and the superposed magnetic flux is generated to the secondary side. The applied discharge energy is increased in a superimposed manner.
 なお、副一次コイル111bに重畳電流I1bを流す重畳制御の終了タイミングは、任意に設定することができる。例えば、エンジン回転数に応じて定められた重畳時間が経過することを重畳制御終了条件とし、重畳時間が経過したタイミングで副一次コイル重畳信号Sbを停止し、副点火スイッチ16をオフにして重畳電流I1bを遮断してもよい。或いは、気筒燃焼室内の点火状況を知ることができる二次電圧や二次電流の検出値が、必要十分な着火性を実現できたと看做し得る重畳制御終了条件を満たすことで、重畳制御を終了するようにしても良い。 Note that the end timing of the superimposition control that causes the superimposition current I1b to flow through the sub primary coil 111b can be set arbitrarily. For example, the superimposition control end condition is that the superimposition time determined according to the engine speed elapses, the subprimary coil superimposition signal Sb is stopped at the timing when the superimposition time elapses, and the subignition switch 16 is turned off for superimposition. The current I1b may be cut off. Alternatively, the detection of the secondary voltage or the secondary current that can know the ignition condition in the cylinder combustion chamber satisfies the superposition control termination condition that can be considered to have achieved the necessary and sufficient ignitability, thereby performing the superposition control. You may end it.
 重畳制御が開始された後、二次電流I2は徐々に低下してゆく。そして、重畳制御の終了タイミングで副一次電流I1bが遮断されると、副一次コイル111bによる重畳分が消失して二次電流I2は急激に減少する。その後も、主一次コイル111aに残っている磁束により二次側へ誘導放電エネルギが供給されるものの、二次電流I2は更に低下して点火プラグ2の放電は自然停止する。重畳制御の終了タイミング以降も、二次電圧V2の波形から、二次電圧の上昇(放電経路の引き延ばし)と低下(吹き消え)が生じており、リストライクが起きていたと推定される。 After the superimposition control is started, the secondary current I2 gradually decreases. Then, when the sub-primary current I1b is cut off at the end timing of the superposition control, the superposition amount by the sub-primary coil 111b disappears and the secondary current I2 sharply decreases. Even after that, although the induction discharge energy is supplied to the secondary side by the magnetic flux remaining in the main primary coil 111a, the secondary current I2 further decreases and the discharge of the spark plug 2 naturally stops. Even after the end timing of the superposition control, the secondary voltage rises (extends the discharge path) and decreases (blowns out) from the waveform of the secondary voltage V2, and it is presumed that restrike had occurred.
 すなわち、放電停止制御を行わない場合、二次電流I2が放電停止基準値にまで低下しても、放電停止条件判定手段33が動作しないため、その後も継続して主一次コイル111aから二次コイル112へ放電エネルギが与えられる。このため、良好な気筒内燃焼に好適な火炎核が形成されるのに十分な放電を点火プラグ2で得られた後にも、点火プラグ2でリストライクが繰り返されることとなり、点火プラグ2の電極周辺の摩耗が進み、点火プラグ2の寿命を縮めてしまう可能性がある。 That is, when the discharge stop control is not performed, even if the secondary current I2 is reduced to the discharge stop reference value, the discharge stop condition determination means 33 does not operate, and therefore the main primary coil 111a to the secondary coil continue to operate thereafter. Discharge energy is applied to 112. Therefore, even after the spark plug 2 has obtained a sufficient discharge to form a flame nucleus suitable for good in-cylinder combustion, the spark plug 2 repeats the restoration, and the electrode of the spark plug 2 Peripheral wear may progress, shortening the life of the spark plug 2.
 一方、放電停止制御を行う点火サイクルでは、重畳制御の終了タイミングで副一次電流I1bが遮断され、副一次コイル111bによる重畳分が消失して二次電流I2が急激に減少すると、二次電流I2が放電停止基準値にまで下がる。すなわち、重畳制御の終了タイミングと同時に放電停止条件が成立して、放電停止条件判定手段33が動作する。具体的には、放電停止条件判定手段33が放電停止条件判定信号Sd1(例えば、所定時間幅の短パルス信号)を放電停止指示手段35′へ出力する。そして、放電停止指示手段35′は、放電停止条件判定手段33からの放電停止条件判定信号Sd1を受信すると(例えば、信号パルスの立ち上がりエッヂを検出すると)、放電停止指示信号Sd2aを出力し、放電停止手段15の短絡路開閉スイッチ15cを閉止させる。 On the other hand, in the ignition cycle in which the discharge stop control is performed, the secondary primary current I1b is interrupted at the timing of ending the superimposition control, the superimposed current due to the secondary primary coil 111b disappears, and the secondary current I2 rapidly decreases. Drops to the discharge stop reference value. That is, the discharge stop condition is satisfied at the same time as the end timing of the superposition control, and the discharge stop condition determination means 33 operates. Specifically, the discharge stop condition determination means 33 outputs a discharge stop condition determination signal Sd1 (for example, a short pulse signal having a predetermined time width) to the discharge stop instruction means 35'. Then, when the discharge stop instruction means 35' receives the discharge stop condition determination signal Sd1 from the discharge stop condition determination means 33 (for example, when the rising edge of the signal pulse is detected), the discharge stop instruction signal Sd2a is output to discharge. The short circuit opening/closing switch 15c of the stopping means 15 is closed.
 すなわち、放電停止制御を行う場合、点火プラグ2に生じた火花放電による気筒燃焼室内の点火状況が良好で、更なる放電が必要ないと推定される状態になったとき、放電停止条件が成立するので、主一次コイル111aの両端が短絡路15aを介して短絡される。主一次コイル111aの両端が短絡されると、通電磁束を消失させる向きの電流が主一次コイル111aに流れて、放電が停止する向きの高電圧を二次コイル112に発生させる。これにより、点火プラグ2の放電が強制的に停止されるので、点火プラグ2でリストライクが繰り返されることを無くして、点火プラグ2の電極周辺の摩耗を抑制し、点火プラグ2の延命を図ることが可能となる。 That is, when the discharge stop control is performed, the discharge stop condition is satisfied when the ignition condition in the cylinder combustion chamber due to the spark discharge generated in the spark plug 2 is good and it is estimated that further discharge is not required. Therefore, both ends of the main primary coil 111a are short-circuited via the short-circuit path 15a. When both ends of the main primary coil 111a are short-circuited, a current in the direction of extinguishing the energizing magnetic flux flows in the main primary coil 111a, and a high voltage in the direction of stopping the discharge is generated in the secondary coil 112. As a result, the discharge of the spark plug 2 is forcibly stopped, so that repetitive re-strikes are prevented in the spark plug 2, wear of the electrodes around the spark plug 2 is suppressed, and the life of the spark plug 2 is extended. It becomes possible.
 なお、副一次コイル111bを用いた重畳制御の終了タイミングとなる前に、二次電流I2が放電停止基準値まで下がり、放電停止条件が成立する可能性もある。そのような場合でも、放電停止指示手段35′から出力される放電停止指示信号Sd2bを点火制御手段31′が受けることで、点火制御手段31′が副一次コイル重畳信号Sbを速やかに停止し、重畳電流I1bを遮断する。すなわち、放電停止条件が成立したタイミングで重畳制御も終了させるので、放電停止手段15を作動させた後にも副一次コイル111bに重畳電流I1bが流れ続けるような不具合は起きない。既に副一次コイル重畳信号Sbの出力を停止している点火制御手段31′が、放電停止指示手段35′からの放電停止指示信号Sd2bを受信した場合は、これを無視するだけで良い。また、副一次コイル重畳信号Sbが出力されているか否かの情報を放電停止指示手段35′に入力しておき、放電停止条件が成立したときに、未だ副一次コイル重畳信号Sbが出力されていた場合だけ、放電停止指示信号Sd2bを出力するようにしても良い。 The secondary current I2 may fall to the discharge stop reference value before the end timing of the superposition control using the sub primary coil 111b, and the discharge stop condition may be satisfied. Even in such a case, when the ignition control means 31' receives the discharge stop instruction signal Sd2b output from the discharge stop instruction means 35', the ignition control means 31' promptly stops the sub primary coil superposition signal Sb, The superimposed current I1b is cut off. That is, since the superposition control is also terminated at the timing when the discharge stop condition is satisfied, there is no problem that the superimposition current I1b continues to flow in the secondary primary coil 111b even after the discharge stop means 15 is operated. When the ignition control means 31', which has already stopped outputting the sub-primary coil superposition signal Sb, receives the discharge stop instruction signal Sd2b from the discharge stop instruction means 35', it need only be ignored. Further, information on whether or not the sub primary coil superposition signal Sb is output is input to the discharge stop instruction means 35', and when the discharge stop condition is satisfied, the sub primary coil superposition signal Sb is still output. The discharge stop instruction signal Sd2b may be output only in the case of
 上述した第2実施形態に係る内燃機関用点火装置1′では、重畳制御の終了タイミングとは別に放電停止条件の成否を判定し、放電停止手段15を作動させるものとした。しかしながら、点火プラグ2に生じた火花放電による気筒燃焼室内の点火状況が、必要十分な着火性を実現できたと看做し得る状態になることを重畳制御の終了条件に設定すれば、重畳制御の終了タイミングと放電停止タイミングを別々に判断する必要がなく、簡素で実用的な点火制御を実現できる。そこで、第3実施形態に係る内燃機関用点火装置1″の概略構成について、図5を参照して説明する。内燃機関用点火装置1″は、点火コイル11′を備える点火コイルユニット10′を内燃機関駆動制御装置3″により動作制御するものである。なお、前述した第1,第2実施形態の内燃機関用点火装置1,1′と同一の構成については、同一符号を付して説明を省略する。 In the internal combustion engine ignition device 1'according to the second embodiment described above, whether or not the discharge stop condition is satisfied is determined separately from the end timing of the superposition control, and the discharge stop means 15 is activated. However, if the superimposition control ending condition is set so that the ignition condition in the cylinder combustion chamber due to the spark discharge generated in the spark plug 2 can be regarded as a state in which the necessary and sufficient ignitability is realized, the superimposition control termination condition is set. It is not necessary to determine the end timing and the discharge stop timing separately, and simple and practical ignition control can be realized. Therefore, the schematic configuration of the internal combustion engine ignition device 1 ″ according to the third embodiment will be described with reference to FIG. 5. The internal combustion engine ignition device 1 ″ includes an ignition coil unit 10 ′ including an ignition coil 11 ′. The operation is controlled by the internal combustion engine drive control device 3″. The same components as those of the internal combustion engine ignition devices 1 and 1′ of the first and second embodiments described above are denoted by the same reference numerals. Is omitted.
 内燃機関駆動制御装置3″の点火制御手段31″は、主点火コイル111aおよび副点火コイル111bへの通電・遮断制御を統括的に行うと共に、放電停止条件判定手段33″の機能を包含する。例えば、点火制御手段31″は、副一次コイル点火信号Sbを出力して副一次コイル111bに流し始めた重畳電流I1bを遮断するタイミング(重畳制御の終了タイミング)を判断し、この重畳制御の終了タイミングに基づいて放電停止条件の成否を判定する。 The ignition control means 31″ of the internal combustion engine drive control device 3″ integrally controls energization/interruption of the main ignition coil 111a and the auxiliary ignition coil 111b, and includes the function of the discharge stop condition determination means 33″. For example, the ignition control means 31″ determines the timing at which the superimposing current I1b that has started to flow to the sub-primary coil 111b by outputting the sub-primary coil ignition signal Sb is cut off (superimposition control ending timing), and the superimposing control ends. Whether the discharge stop condition is satisfied is determined based on the timing.
 点火制御手段31″が用いる重畳制御終了条件は、任意に設定して構わない。例えば、二次コイル電流検出手段32から二次コイル電流検出値を点火制御手段31″へ入力し(図5中、破線で示す)、二次コイル電流検出値が予め定めた重畳停止基準値以下になることを重畳停止条件としても良い。しかし、本実施形態では、重畳制御をより単純化するため、重畳制御の開始から所定時間幅の重畳時間Tpが経過することを重畳制御終了条件に設定した。すなわち、本実施形態における内燃機関駆動制御装置3″は、重畳時間Tp経過に伴う重畳制御終了タイミングに基づいて、放電停止条件の成否を判定し、放電停止手段15を動作させる放電停止制御を行う。 The superposition control termination condition used by the ignition control means 31″ may be set arbitrarily. For example, the secondary coil current detection value is input from the secondary coil current detection means 32 to the ignition control means 31″ (in FIG. 5). , Indicated by a broken line), and the superposition stop condition may be that the secondary coil current detection value becomes equal to or lower than a predetermined superposition stop reference value. However, in the present embodiment, in order to further simplify the superimposition control, the superimposition control ending condition is set such that the superimposition time Tp having a predetermined time width elapses from the start of the superposition control. That is, the internal combustion engine drive control device 3″ according to the present embodiment determines whether the discharge stop condition is satisfied based on the superposition control end timing with the passage of the superposition time Tp, and performs the discharge stop control for operating the discharge stop means 15. ..
 図6(A)に示すのは、内燃機関駆動制御装置3″が行う第1放電停止制御を示す波形図である。この第1放電停止制御では、点火制御手段31″の放電停止条件判定手段32″が重畳制御終了条件の成立を放電停止条件の成立と判定する。すなわち、点火制御手段31″は、副一次コイル重畳信号Sbを停止したタイミングで、放電停止指示信号Sd1を放電停止指示手段35へ出力する。この放電停止指示信号Sd1を受けた放電停止指示手段35から放電停止手段15へ放電停止指示信号Sd2が出力される。したがって、重畳制御の終了と同時に、主一次コイル111aの両端が短絡路15aを介して短絡され、通電磁束を消失させる向きの電流が主一次コイル111aに流れて、放電が停止する向きの高電圧が二次コイル112に発生する。これにより、点火プラグ2の放電が強制的に停止されるので、点火プラグ2で無駄にリストライクが繰り返されることを無くして、点火プラグ2の電極周辺の摩耗を抑制し、点火プラグ2の延命を図ることが可能となる。 FIG. 6A is a waveform diagram showing the first discharge stop control performed by the internal combustion engine drive control device 3″. In this first discharge stop control, the discharge stop condition determining means of the ignition control means 31″ is shown. 32″ determines that the superposition control end condition is satisfied. That is, the ignition control means 31″ outputs the discharge stop instruction signal Sd1 at the timing when the sub-primary coil superposition signal Sb is stopped. Output to 35. Upon receiving the discharge stop instruction signal Sd1, the discharge stop instruction means 35 outputs the discharge stop instruction signal Sd2 to the discharge stop means 15. Therefore, at the same time as the end of the superimposition control, both ends of the main primary coil 111a are short-circuited via the short-circuit path 15a, and a current in the direction of eliminating the energized magnetic flux flows into the main primary coil 111a, and the high voltage in the direction of stopping discharge. Is generated in the secondary coil 112. As a result, the discharge of the spark plug 2 is forcibly stopped, so that the repetitive re-strike is not wastefully repeated in the spark plug 2, wear of the electrodes around the spark plug 2 is suppressed, and the life of the spark plug 2 is extended. It becomes possible to plan.
 図6(B)に示すのは、内燃機関駆動制御装置3″が行う第2放電停止制御を示す波形図である。この第2放電停止制御では、点火制御手段31″の放電停止条件判定手段32″が重畳制御終了条件の成立から所定時間幅の猶予時間Teが経過することを放電停止条件の成立と判定する。すなわち、点火制御手段31″は、副一次コイル重畳信号Sbを停止して猶予時間Teが経過したタイミングで、放電停止指示信号Sd1を放電停止指示手段35へ出力する。この放電停止指示信号Sd1を受けた放電停止指示手段35から放電停止手段15へ放電停止指示信号Sd2が出力される。したがって、重畳制御の終了から猶予時間Teの経過時に、主一次コイル111aの両端が短絡路15aを介して短絡され、通電磁束を消失させる向きの電流が主一次コイル111aに流れて、放電が停止する向きの高電圧が二次コイル112に発生する。これにより、点火プラグ2の放電が強制的に停止されるので、点火プラグ2で無駄にリストライクが繰り返されることを無くして、点火プラグ2の電極周辺の摩耗を抑制し、点火プラグ2の延命を図ることが可能となる。なお、猶予時間Teは、副一次コイル111bを用いた重畳制御の終了以降に若干の点火継続期間を確保するもので、点火安定性とリストライク抑止のバランスを微調整できる放電停止条件の設定が可能となる。 FIG. 6B is a waveform diagram showing the second discharge stop control performed by the internal combustion engine drive controller 3″. In this second discharge stop control, the discharge stop condition determining means of the ignition control means 31″ is used. 32″ determines that the discharge stop condition is satisfied when the grace time Te of the predetermined time width elapses from the satisfaction of the superposition control termination condition. That is, the ignition control means 31″ stops the sub-primary coil superposition signal Sb. When the grace period Te has elapsed, the discharge stop instruction signal Sd1 is output to the discharge stop instruction means 35. Upon receiving the discharge stop instruction signal Sd1, the discharge stop instruction means 35 outputs the discharge stop instruction signal Sd2 to the discharge stop means 15. Therefore, when the grace time Te elapses from the end of the superposition control, both ends of the main primary coil 111a are short-circuited via the short-circuit path 15a, and a current flowing in the main primary coil 111a flows to the main primary coil 111a to stop the discharge. A high voltage in the opposite direction is generated in the secondary coil 112. As a result, the discharge of the spark plug 2 is forcibly stopped, so that the repetitive re-strike is not wastefully repeated in the spark plug 2, wear of the electrodes around the spark plug 2 is suppressed, and the life of the spark plug 2 is extended. It becomes possible to plan. The grace period Te secures a slight ignition continuation period after the end of the superposition control using the sub-primary coil 111b, and the discharge stop condition that allows fine adjustment of the balance between ignition stability and restrike suppression can be set. It will be possible.
 以上、本発明に係る内燃機関用点火装置の実施形態を添付図面に基づいて説明したが、本発明は、これらの実施形態に限定されるものではなく、特許請求の範囲に記載の構成を変更しない範囲で、公知既存の等価な技術手段を転用することにより実施しても構わない。 Although the embodiments of the ignition device for an internal combustion engine according to the present invention have been described above based on the accompanying drawings, the present invention is not limited to these embodiments, and the configuration described in the claims is changed. It may be implemented by diverting known existing equivalent technical means to the extent that it does not occur.
 1   内燃機関用点火装置(第1実施形態)
 11  点火コイル
 111 一次コイル
 112 二次コイル
 15  放電停止手段
 2   点火プラグ
 3   内燃機関駆動制御装置
 31  点火制御手段
 32  二次コイル電流検出手段
 33  放電停止条件判定手段
 34  放電停止基準値記憶手段
 35  放電停止指示手段
 4   直流電源
1 Ignition system for internal combustion engine (first embodiment)
11 Ignition coil 111 Primary coil 112 Secondary coil 15 Discharge stop means 2 Spark plug 3 Internal engine drive control device 31 Ignition control means 32 Secondary coil current detection means 33 Discharge stop condition determination means 34 Discharge stop reference value storage means 35 Discharge stop Indicator means 4 DC power supply

Claims (11)

  1.  通電により通電磁束が生じ、電流を遮断することにより通電磁束が減ぜられる一次コイルと、一方端側が点火プラグと接続され、前記一次コイルに生じた通電磁束が作用して放電エネルギが発生する二次コイルと、を有する点火コイルと、
     前記一次コイルへの通電・遮断を切り替えるスイッチ手段と、
     前記スイッチ手段の切り替え動作を制御することで、燃焼サイクルの所定のタイミングで点火プラグに火花放電を発生させる点火制御手段と、
     前記点火プラグに生じた火花放電による気筒燃焼室内の点火状況が、必要十分な着火性を実現できたと看做し得る放電停止条件を満たすか否かを判定する放電停止条件判定手段と、
     前記放電停止条件判定手段により放電停止条件の成立が判定されたとき、放電停止指示信号を出力する放電停止指示手段と、
     前記放電停止指示手段から放電停止指示信号を受けることで、一次コイルから二次コイルへ与える放電エネルギを抑制し、前記点火プラグの放電を停止させる放電停止手段と、
     を備えることを特徴とする内燃機関用点火装置。
    A primary coil in which an energizing magnetic flux is generated by energization and the energizing magnetic flux is reduced by shutting off the current, and one end side is connected to a spark plug, and the energizing magnetic flux generated in the primary coil acts to generate discharge energy. An ignition coil having a secondary coil,
    A switch means for switching the energization / interruption of the primary coil and
    By controlling the switching operation of the switch means, ignition control means for generating a spark discharge in the spark plug at a predetermined timing of a combustion cycle,
    Ignition status in the cylinder combustion chamber due to spark discharge generated in the spark plug, a discharge stop condition determining means for determining whether or not a discharge stop condition that can be regarded as having realized a necessary and sufficient ignitability is satisfied,
    Discharge stop instruction means for outputting a discharge stop instruction signal when the discharge stop condition determination means determines that the discharge stop condition is satisfied,
    By receiving a discharge stop instruction signal from the discharge stop instruction means, the discharge energy applied to the secondary coil from the primary coil is suppressed, the discharge stop means for stopping the discharge of the spark plug,
    An ignition device for an internal combustion engine, which comprises.
  2.  前記放電停止手段は、一次コイルの両端を短絡させる短絡路と、該短絡路に含まれる抵抗成分と、前記短絡路を開閉する常開の短絡路開閉スイッチと、で構成し、
     前記放電停止指示信号を受けた放電停止手段は、前記短絡路開閉スイッチを閉じて一次コイルの両端を短絡させ、一次コイルから二次コイルへ与える放電エネルギを抑制するようにしたことを特徴とする請求項1に記載の内燃機関用点火装置。
    The discharge stopping means comprises a short-circuit path that short-circuits both ends of the primary coil, a resistance component included in the short-circuit path, and a normally-open short-circuit path open/close switch that opens/closes the short-circuit path,
    The discharge stopping means that receives the discharge stop instruction signal closes the short-circuit opening/closing switch to short-circuit both ends of the primary coil, thereby suppressing discharge energy applied from the primary coil to the secondary coil. The ignition device for an internal combustion engine according to claim 1.
  3.  前記二次コイルに流れる二次電流を検出する二次コイル電流検出手段と、
     前記点火プラグに生じた火花放電による気筒燃焼室内の点火状況が良好で、更なる放電が必要ないと推定される二次コイル電流値として予め設定した放電停止基準値を記憶する放電停止基準値記憶手段と、
     を設け、
     前記放電停止条件判定手段は、前記二次コイル電流検出手段により検出された二次電流検出値が、前記放電停止基準値記憶手段に記憶された放電停止基準値以下となったとき、放電停止条件の成立と判定し、前記放電停止指示手段に放電停止指示信号を出力させるようにしたことを特徴とする請求項1または請求項2に記載の内燃機関用点火装置。
    A secondary coil current detecting means for detecting the secondary current flowing through the secondary coil, and
    Discharge stop reference value storage that stores a discharge stop reference value preset as a secondary coil current value estimated that the ignition state in the cylinder combustion chamber due to the spark discharge generated in the spark plug is good and further discharge is not required. Means and
    Is provided
    The discharge stop condition determination means is a discharge stop condition when the secondary current detection value detected by the secondary coil current detection means is equal to or less than the discharge stop reference value stored in the discharge stop reference value storage means. 3. The ignition device for an internal combustion engine according to claim 1, wherein it is determined that the discharge stop instruction signal is output to the discharge stop instruction means.
  4.  前記放電停止基準値記憶手段には、内燃機関の運転状態に対応して設定された複数の放電停止基準値を記憶させておき、
     前記放電停止条件判定手段は、前記放電停止基準値記憶手段より内燃機関の運転状態に応じた放電停止基準値を取得して、放電停止条件を判定するようにしたことを特徴とする請求項3に記載の内燃機関用点火装置。
    The discharge stop reference value storage means stores a plurality of discharge stop reference values set corresponding to the operating state of the internal combustion engine,
    4. The discharge stop condition determination means acquires the discharge stop reference value according to the operating state of the internal combustion engine from the discharge stop reference value storage means, and determines the discharge stop condition. An ignition device for an internal combustion engine according to item 1.
  5.  主一次電流の通電により順方向の磁束量が増加し、主一次電流を遮断することにより順方向の磁束量が減少する主一次コイルと、該主一次コイルに対する通電遮断以降の放電期間内に重畳電流を流すことにより、順方向と逆の遮断方向に重畳磁束を発生させる副一次コイルと、一端側が点火プラグと接続され、前記主一次コイルと副一次コイルの磁束変化が作用して放電エネルギが与えられる二次コイルと、を有する点火コイルと、
     前記主一次コイルへの通電・遮断を切り替える主スイッチ手段と、
     前記副一次コイルへの通電・遮断を切り替える副スイッチ手段と、
     前記主スイッチ手段のオン・オフを切り替え、前記主一次コイルへの通電・遮断を制御することで、燃焼サイクルの所定のタイミングで点火プラグに火花放電を発生させ、前記主一次コイルに対する通電遮断以降に前記副スイッチ手段をオフからオンに切り替え、前記副一次コイルに重畳電流を流して重畳磁束を発生させる点火制御手段と、
     前記点火プラグに生じた火花放電による気筒燃焼室内の点火状況が、必要十分な着火性を実現できたと看做し得る放電停止条件を満たすか否かを判定する放電停止条件判定手段と、
     前記放電停止条件判定手段により放電停止条件の成立が判定されたとき、放電停止指示信号を出力する放電停止指示手段と、
     前記放電停止指示手段から放電停止指示信号を受けることで、主一次コイルから二次コイルへ与える放電エネルギを抑制し、前記点火プラグの放電を停止させる放電停止手段と、
     を備えることを特徴とする内燃機関用点火装置。
    The amount of forward magnetic flux increases when the main primary current is energized, and the amount of forward magnetic flux decreases when the main primary current is cut off, and the main primary coil is superimposed within the discharge period after the main primary coil is cut off. A secondary primary coil that generates superimposed magnetic flux in the breaking direction opposite to the forward direction by passing an electric current and one end side are connected to the ignition plug, and the magnetic flux changes of the main primary coil and the secondary primary coil act to generate discharge energy. Given a secondary coil, with an ignition coil,
    The main switch means for switching the energization / shutoff of the main primary coil and
    A sub-switch means for switching the energization / interruption of the sub-primary coil and
    By switching on / off of the main switch means and controlling the energization / interruption of the main primary coil, a spark discharge is generated in the spark plug at a predetermined timing of the combustion cycle, and after the energization of the main primary coil is cut off. An ignition control means for switching the auxiliary switch means from off to on, and causing a superimposed current to flow in the auxiliary primary coil to generate a superimposed magnetic flux;
    Discharge stop condition determining means for determining whether or not the ignition condition in the cylinder combustion chamber due to the spark discharge generated in the spark plug satisfies the discharge stop condition that can be regarded as achieving the necessary and sufficient ignitability.
    Discharge stop instruction means for outputting a discharge stop instruction signal when the discharge stop condition determination means determines that the discharge stop condition is satisfied,
    By receiving a discharge stop instruction signal from the discharge stop instruction means, to suppress the discharge energy applied from the main primary coil to the secondary coil, the discharge stop means for stopping the discharge of the spark plug,
    An ignition device for an internal combustion engine, which comprises.
  6.  前記放電停止手段は、主一次コイルの両端を短絡させる短絡路と、該短絡路に含まれる抵抗成分と、前記短絡路を開閉する常開の短絡路開閉スイッチと、で構成したことを特徴とする請求項5に記載の内燃機関用点火装置。 The discharge stopping means is characterized by comprising a short-circuit path for short-circuiting both ends of the main primary coil, a resistance component contained in the short-circuit path, and a normally open short-circuit path open / close switch for opening and closing the short-circuit path. The ignition device for an internal combustion engine according to claim 5.
  7.  前記点火制御手段は、前記放電停止指示手段より放電停止指示信号を受けたとき、前記副スイッチ手段をオフに切り替え、前記副一次コイルへの重畳電流を遮断して重畳磁束を消失させるようにしたことを特徴とする請求項5又は請求項6に記載の内燃機関用点火装置。 When the ignition control means receives the discharge stop instruction signal from the discharge stop instruction means, the auxiliary switch means is switched off to cut off the superimposed current on the auxiliary primary coil so that the superimposed magnetic flux disappears. The ignition device for an internal combustion engine according to claim 5 or 6, characterized in that.
  8.  前記二次コイルに流れる二次電流を検出する二次コイル電流検出手段と、
     前記点火プラグに生じた火花放電による気筒燃焼室内の点火状況が良好で、更なる放電が必要ないと推定される二次コイル電流値として予め設定した放電停止基準値を記憶する放電停止基準値記憶手段と、
     を設け、
     前記放電停止条件判定手段は、前記二次コイル電流検出手段により検出された二次電流検出値が、前記放電停止基準値記憶手段に記憶された放電停止基準値以下となったとき、放電停止条件の成立と判定するようにしたことを特徴とする請求項5~請求項7の何れか1項に記載の内燃機関用点火装置。
    A secondary coil current detecting means for detecting the secondary current flowing through the secondary coil, and
    Discharge stop reference value storage that stores a discharge stop reference value preset as a secondary coil current value estimated that the ignition state in the cylinder combustion chamber due to the spark discharge generated in the spark plug is good and further discharge is not required. Means and
    Is provided
    The discharge stop condition determination means is a discharge stop condition when the secondary current detection value detected by the secondary coil current detection means is equal to or less than the discharge stop reference value stored in the discharge stop reference value storage means. The ignition device for an internal combustion engine according to any one of claims 5 to 7, wherein it is determined that the above condition is satisfied.
  9.  前記放電停止基準値記憶手段には、内燃機関の運転状態に対応して設定された複数の放電停止基準値を記憶させておき、
     前記放電停止条件判定手段は、前記放電停止基準値記憶手段より内燃機関の運転状態に応じた放電停止基準値を取得して、放電停止条件を判定するようにしたことを特徴とする請求項8に記載の内燃機関用点火装置。
    The discharge stop reference value storage means stores a plurality of discharge stop reference values set corresponding to the operating state of the internal combustion engine,
    9. The discharge stop condition determination means acquires the discharge stop reference value according to the operating state of the internal combustion engine from the discharge stop reference value storage means, and determines the discharge stop condition. An ignition device for an internal combustion engine according to item 1.
  10.  前記点火制御手段は、副一次コイルへの重畳電流供給開始から予め定めた重畳時間が経過したとき、前記副スイッチ手段をオフに切り替え、前記副一次コイルへの重畳電流を遮断して重畳磁束を消失させ、
     前記放電停止条件判定手段は、前記点火制御手段が副一次コイルへの重畳電流供給を停止するタイミングを放電停止条件の成立と判定し、
     前記放電停止指示手段は、前記放電停止条件判定手段により放電停止指示条件の成立が判定されたとき、前記放電停止手段へ放電停止指示信号を出力するようにしたことを特徴とする請求項5又は請求項6に記載の内燃機関用点火装置。
    The ignition control means, when a predetermined superposition time has elapsed from the start of supplying the superposition current to the sub-primary coil, turns off the sub-switch means to cut off the superposition current to the sub-primary coil to generate a superposition magnetic flux. Let it disappear
    The discharge stop condition determining means determines that the timing at which the ignition control means stops the supply of the superimposed current to the sub primary coil is a discharge stop condition being satisfied,
    7. The discharge stop instruction means outputs a discharge stop instruction signal to the discharge stop means when the discharge stop condition determination means determines that the discharge stop instruction condition is satisfied. The ignition device for an internal combustion engine according to claim 6.
  11.  前記点火制御手段は、副一次コイルへの重畳電流供給開始から予め定めた重畳時間が経過したとき、前記副スイッチ手段をオフに切り替え、前記副一次コイルへの重畳電流を遮断して重畳磁束を消失させ、
     前記放電停止条件判定手段は、前記点火制御手段が副一次コイルへの重畳電流供給を停止してから、予め設定した猶予時間が経過したタイミングを放電停止条件の成立と判定し、
     前記放電停止指示手段は、前記放電停止条件判定手段により放電停止指示条件の成立が判定されたとき、前記放電停止手段へ放電停止指示信号を出力するようにしたことを特徴とする請求項5又は請求項6に記載の内燃機関用点火装置。
    The ignition control means switches off the sub-switch means when a predetermined superimposition time elapses from the start of supplying the superimposition current to the sub-primary coil, cuts off the superimposition current to the sub-primary coil, and generates the superimposition magnetic flux. Let it disappear
    The discharge stop condition determination means, after the ignition control means stops the superimposed current supply to the sub-primary coil, determines that the timing when the preset grace time has elapsed is the discharge stop condition is satisfied,
    5. The discharge stop instruction means is characterized in that, when the discharge stop condition determination means determines that the discharge stop instruction condition is satisfied, the discharge stop instruction means outputs a discharge stop instruction signal to the discharge stop instruction means. The ignition device for an internal combustion engine according to claim 6.
PCT/JP2019/008867 2019-03-06 2019-03-06 Ignition device for internal combustion engine WO2020179016A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/008867 WO2020179016A1 (en) 2019-03-06 2019-03-06 Ignition device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/008867 WO2020179016A1 (en) 2019-03-06 2019-03-06 Ignition device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2020179016A1 true WO2020179016A1 (en) 2020-09-10

Family

ID=72338490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008867 WO2020179016A1 (en) 2019-03-06 2019-03-06 Ignition device for internal combustion engine

Country Status (1)

Country Link
WO (1) WO2020179016A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002528675A (en) * 1998-10-26 2002-09-03 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method and apparatus for regulating energy for an ignition system with a primary short circuit switch
JP2007032352A (en) * 2005-07-25 2007-02-08 Diamond Electric Mfg Co Ltd Ignition device equipped with ion current detection device
JP2015132170A (en) * 2014-01-09 2015-07-23 ダイヤモンド電機株式会社 Ignition device for internal combustion engine
WO2016157541A1 (en) * 2015-03-30 2016-10-06 日立オートモティブシステムズ阪神株式会社 Ignition device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002528675A (en) * 1998-10-26 2002-09-03 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method and apparatus for regulating energy for an ignition system with a primary short circuit switch
JP2007032352A (en) * 2005-07-25 2007-02-08 Diamond Electric Mfg Co Ltd Ignition device equipped with ion current detection device
JP2015132170A (en) * 2014-01-09 2015-07-23 ダイヤモンド電機株式会社 Ignition device for internal combustion engine
WO2016157541A1 (en) * 2015-03-30 2016-10-06 日立オートモティブシステムズ阪神株式会社 Ignition device for internal combustion engine

Similar Documents

Publication Publication Date Title
JP6330366B2 (en) Ignition device
US9086046B2 (en) Ignition apparatus for an internal combustion engine
US7644707B2 (en) Ignition device for an internal combustion engine
JP6375452B2 (en) Ignition device for internal combustion engine and ignition control method for internal combustion engine ignition device
WO2013135907A1 (en) Ignition system
JP6570737B2 (en) Ignition device for internal combustion engine
US8607770B2 (en) Ignition device for an internal combustion engine
EP3130792B1 (en) Ignition device for internal combustion engine
JP7012830B2 (en) Ignition system for internal combustion engine
KR102410965B1 (en) ignition device
WO2020121375A1 (en) Ignition device for internal combustion engine
WO2020179016A1 (en) Ignition device for internal combustion engine
JP6739644B2 (en) Ignition device for internal combustion engine
US20210388805A1 (en) Ignition device for internal combustion engine
JP7408453B2 (en) Ignition system for internal combustion engines
JP6381008B2 (en) Ignition device for internal combustion engine
WO2019211885A1 (en) Ignition device for internal combustion engines
WO2021064851A1 (en) Internal combustion engine ignition device
JP6685444B2 (en) Ignition device for internal combustion engine
WO2022064645A1 (en) Ignition device for internal combustion engine
JP6375177B2 (en) Ignition coil for internal combustion engine
WO2019225018A1 (en) Ignition device for internal combustion engine
KR101823235B1 (en) Ignition control system for internal combustion engine
JP2009293583A (en) Electronic control unit
JP2001304082A (en) Igniter for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP