WO2021064851A1 - Internal combustion engine ignition device - Google Patents

Internal combustion engine ignition device Download PDF

Info

Publication number
WO2021064851A1
WO2021064851A1 PCT/JP2019/038694 JP2019038694W WO2021064851A1 WO 2021064851 A1 WO2021064851 A1 WO 2021064851A1 JP 2019038694 W JP2019038694 W JP 2019038694W WO 2021064851 A1 WO2021064851 A1 WO 2021064851A1
Authority
WO
WIPO (PCT)
Prior art keywords
superimposition
primary coil
heat generation
ignition
sub
Prior art date
Application number
PCT/JP2019/038694
Other languages
French (fr)
Japanese (ja)
Inventor
藤山 幸雄
Original Assignee
日立オートモティブシステムズ阪神株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ阪神株式会社 filed Critical 日立オートモティブシステムズ阪神株式会社
Priority to JP2021550802A priority Critical patent/JPWO2021064851A1/ja
Priority to PCT/JP2019/038694 priority patent/WO2021064851A1/en
Publication of WO2021064851A1 publication Critical patent/WO2021064851A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/055Layout of circuits with protective means to prevent damage to the circuit, e.g. semiconductor devices or the ignition coil

Definitions

  • the present invention relates to an ignition device for an internal combustion engine mounted on an automatic vehicle, and more particularly to an improvement of an ignition device for an internal combustion engine that causes a spark discharge in a spark plug by using a plurality of primary coils.
  • Direct-injection engines and high-EGR engines are used as vehicle-mounted internal combustion engines to improve fuel efficiency, but these engines do not have very good ignitability, so high-energy ignition devices are required. Become. Therefore, in addition to giving discharge energy from the primary side of the ignition coil to the secondary side of the ignition coil according to the classical current cutoff principle, a layered discharge that energizes another primary coil and superimposes the energy given to the secondary side.
  • a type ignition device has been proposed. (See, for example, Patent Document 1).
  • the ignition device described in Patent Document 1 causes insulation failure in the discharge gap of the ignition plug due to a high voltage of several kV generated on the secondary side by interrupting the primary current of the ignition coil, and causes insulation failure on the secondary side of the ignition coil.
  • the secondary primary coil After starting to flow the discharge current to the other primary coil (hereinafter referred to as the secondary primary coil), the primary current is passed through the other primary coil.
  • the direction of the magnetic flux generated by energizing the secondary primary coil is the same as the direction in which the magnetic flux decreases when the primary coil is de-energized. Therefore, the change in the magnetic flux of the primary coil due to the interruption of energization and the magnetic flux generated by the energization of the secondary primary coil act on the secondary coil.
  • the magnetic flux generated on the secondary side can be accelerated and the secondary current can be superimposed.
  • a relatively large amount of discharge energy can be obtained from the spark plug, so that the ignitability of the fuel is improved, and thus the fuel consumption is also improved.
  • the overlapping discharge type ignition device described in Patent Document 1 uses an active element in order to change the energization amount and energization time of the sub-primary coil, if the active element does not operate normally, the sub-primary coil is used. It is not possible to properly control the energization of the coil. For example, if the active element used to control the energization of the secondary primary coil cannot operate normally due to heat generation, appropriate overlapping discharge cannot be realized and sufficient discharge energy cannot be given to the secondary side, or conversely, due to overcurrent. There is a risk of accelerating the wear of the spark plug.
  • an object of the present invention is to provide an ignition device for an internal combustion engine that can stably perform superimposed discharge using a secondary primary coil.
  • the ignition device for an internal combustion engine applies discharge energy to the secondary side of the ignition coil by controlling the energization of the ignition coil by turning on / off the ignition signal from the ignition control means.
  • the ignition coil has an increase in the amount of magnetic flux in the forward direction due to energization of a main primary current performed when the ignition signal is on, and the ignition signal is turned off. By interrupting the main primary current, the amount of magnetic flux in the forward direction is reduced, and by passing a superposed current through the discharge period after the main primary coil is de-energized, the reverse of the forward direction is achieved.
  • It has a secondary primary coil that generates magnetic flux in the breaking direction, and a secondary coil whose one end side is connected to the ignition plug and the magnetic flux changes of the main primary coil and the secondary primary coil act to give discharge energy.
  • It is composed of an active element that increases or decreases the amount of electricity applied to the sub-primary coil according to the input active signal, energizes and shuts off the sub-primary coil, and changes the amount of electricity applied to the sub-primary coil. Then, the sub-primary coil energizing means for changing the amount of magnetic flux in the breaking direction, and the superimposition control means for actively operating by sending the active signal to the sub-primary coil energizing means after the energization of the main primary coil is cut off.
  • the sub-primary coil energizing means is based on an abnormal state detecting means for detecting an abnormal state in which the sub-primary coil energizing means may not operate normally due to heat generation and the abnormal state detecting means for detecting the abnormal state. It is characterized in that it is provided with a heat generation suppressing means for suppressing the heat generation of the above.
  • the abnormal state detecting means determines the abnormal state when the collector-emitter voltage Vce of the active element constituting the sub-primary coil energizing means reaches a predetermined regulation threshold value. You may.
  • the heat generation suppressing means may suppress heat generation of the secondary primary coil energizing means by shutting off the energization of the sub primary coil.
  • the heat generation suppressing means may stop the active signal output from the superposition control means and cut off the energization of the sub-primary coil by the sub-primary coil energizing means.
  • the heat generation suppressing means changes the active signal output from the superposition control means and operates the active element constituting the sub-primary coil energizing means in the saturation region, thereby causing the sub-primary coil.
  • the heat generation of the energizing means may be suppressed.
  • the superimposition control means includes a capacitor that starts charging after the energization of the main primary coil is cut off, and the active signal generated by using the charge accumulation state of the capacitor as an index after the start of charging is used.
  • the increase of the superposed current with the passage of time is controlled.
  • the superimposing control means By reducing the amount of charge accumulated in the capacitor to be provided and changing the active signal, the heat generation of the sub-primary coil energizing means may be suppressed.
  • the heat generation suppressing means operates to energize the secondary primary coil. Since the heat generation of the means is suppressed, the superimposed discharge using the secondary primary coil can be stably performed.
  • the ignition device 1 for an internal combustion engine shown in FIG. 1 includes one spark plug 2 provided for each cylinder of the internal combustion engine, and an ignition coil unit 10 provided with a function of generating discharge sparks in the ignition plug 2 in an integrated manner. .. Further, the function as an ignition control means for outputting an ignition signal Si or the like indicating the operation timing of the ignition coil unit 10 at an appropriate timing is an internal combustion engine drive control device 3 (for example, an ECU installed as standard in a vehicle). Is responsible. A DC power source 4 such as a vehicle battery is used as the power supply to the ignition coil unit 10. When the internal combustion engine has multiple cylinders, the internal combustion engine drive control device 3 may collectively perform ignition control for the ignition coil unit 10 for each cylinder, or ignition control means corresponding to each cylinder are individually provided. You may do so.
  • the ignition coil unit 10 is a unit in which the ignition coil 11 and the control board are housed in a case 12 having a required shape to form an integrated structure.
  • a high-voltage terminal 121 and a connector 122 are provided at appropriate positions in the case 12, and the spark plug 2 is connected via the high-voltage terminal 121, and the internal combustion engine drive control device 3, the DC power supply 4, and the ground are connected via the connector 122. Connect with a line, etc.
  • the ignition coil 11 efficiently causes the magnetic flux generated in the main primary coil 111a (for example, 114 turns) and the secondary primary coil 111b (for example, 20 turns) to act on the secondary coil 112 (for example, 9348 turns).
  • the structure is such that the main primary coil 111a and the secondary primary coil 111b are arranged so as to surround the center core 113 formed of a highly permeable magnetic material, and the secondary coil 112 is further arranged outside the main primary coil 111a and the secondary primary coil 111b.
  • One end of the main primary coil 111a is connected to the DC power supply 4 via the connector 122, and a power supply voltage VB + (for example, 14V) is applied.
  • the other end of the main primary coil 111a is connected to a collector of an ignition switch 13 using an IGBT (Insulated Gate Bipolar Transistor).
  • the emitter of the ignition switch 13 is connected to the grounding point GND via the connector 122.
  • One end of the secondary coil 112 is connected to the spark plug 2 via the high voltage terminal 121, and the other end is connected to the grounding point GND via the connector 122.
  • the line from the secondary coil 112 to the grounding point connection terminal of the connector 122 has a rectifying element (for example, a cathode on the grounding side) that is in the forward direction from the secondary coil 112 toward the grounding point GND.
  • a diode (a diode having an anode connected to each) is provided on the coil 112 side to regulate the flow path direction of the secondary current I2.
  • the ignition signal Si output from the internal combustion engine drive control device 3 at an appropriate timing of the discharge cycle is supplied to the ignition coil unit 10 via the connector 122 and input to the gate of the ignition switch 13. Then, when the ignition signal Si is input to the gate of the ignition switch 13 (for example, when the signal level of the ignition signal Si changes from L to H), the ignition switch 13 is turned on and the non-feeding side of the main primary coil 111a is turned on. The end is connected to the grounding point GND.
  • the main primary coil current (hereinafter referred to as the primary current I1a) from the feeding side to the ground side begins to flow in the main primary coil 111a, and the flow rate of the primary current I1a increases to the flow rate of the primary current I1a.
  • the amount of magnetic flux of the energizing magnetic flux generated accordingly is stored as the energy of the magnetic field.
  • electrical energy is stored by a minute capacitor component such as the secondary coil 112 and the connection wiring.
  • the energization of the main primary coil 111a is cut off at a predetermined ignition timing (for example, when the signal level of the ignition signal Si changes from H to L), a high-voltage electromotive force is generated. Is generated in the secondary coil 112 to generate a spark discharge between the discharge gaps of the spark plug 2, the secondary current I2 flows in the forward direction of the rectifying element 14, and the air-fuel mixture in the cylinder combustion chamber is ignited.
  • the secondary primary coil 111b that causes a magnetic field to act on the secondary coil 112 via the center core 113 has one end connected to the DC power supply 4 via the connector 122, and the power supply voltage VB +. (For example, 14V) is applied.
  • the main primary coil 111a and the secondary primary coil 111b may not share the power supply but may use different power supplies.
  • the secondary primary coil 111b generates magnetic flux in a direction opposite to the direction of the magnetic flux generated when the main primary coil 111a is energized (hereinafter referred to as the forward direction) (hereinafter referred to as the breaking direction).
  • the forward magnetic flux is sharply reduced by cutting off the energization of the main primary coil 111a, and if the secondary primary coil 111b generates the magnetic flux in the breaking direction, the amount of change in the magnetic flux acting on the secondary coil 112 is increased. It is possible to increase the discharge energy given to the secondary side.
  • the superimposition function unit 15 includes a function of controlling energization of the sub-primary coil 111b and the sub-primary coil 111b.
  • the superimposition control unit 15 includes, for example, a superimposition switch 151 as a secondary primary coil energizing means using an IGBT, a superimposition control means 152, a superimposition signal forming means 153, an abnormal state detecting means 154, and a heat generation suppressing means 155. Only when stable ignition control cannot be performed with only the main primary coil 111a, such as when high EGR combustion is required, the superimposition control unit 15 is used to perform the superimposition operation, and if there is no particular need for the superimposition operation, the superimposition control unit 15 Does not need to work.
  • the internal combustion engine drive control device 3 determines whether or not the superimposition operation is necessary, and when the superimposition operation is necessary, the superimposition operation is executed by outputting the superimposition signal Sp from the internal combustion engine drive control device 3 to the ignition coil unit 10. Will be done.
  • the other end (non-feeding side end) of the secondary primary coil 111b is connected to the collector of the superimposition switch 151 composed of the IGBT.
  • the emitter of the superimposition switch 151 is connected to the grounding point GND via the connector 122.
  • the superimposition switch 151 is an active element that increases or decreases the current between the collector and the emitter according to the active signal input to the gate, and goes to the sub-primary coil 111b according to the active signal output from the superimposition control means 152 described later. Controls the energization / shutoff and increase / decrease of the amount of energization.
  • the superimposition signal Sp which is a reference for causing the superimposition switch 151 to perform active operation, is a signal output after the ignition timing by the ignition signal Si (after the primary current is cut off of the main primary coil 111a), and is output from the internal combustion engine drive control device 3. It is supplied to the superimposing function unit 15 in the ignition coil 11.
  • the superimposition signal Sp is formed into an appropriate signal by the superimposition signal forming means 153 and supplied to the superimposition control means 152, and based on this, the superimposition control means 152 generates an active signal and outputs it to the superimposition switch 151.
  • the method of generating an active signal in the superimposition control means 152 is not particularly limited, but as will be described later, if the charge accumulation state of the capacitor is used as an index, a comparison using discrete components having high heat resistance and noise resistance is used. An active signal generation function can be realized with a simple structure.
  • the superimposition function unit 15 is provided with an abnormal state detecting means 154 for detecting an abnormal state of the superimposition switch 151 and a heat generation suppressing means 155 for suppressing heat generation of the superimposition switch 151.
  • the abnormal state detected by the abnormal state detecting means 154 is a state in which normal operation cannot be performed due to temperature rise due to heat generation of the element itself, but there is a high possibility that normal operation will be restored by temperature decrease. Therefore, the abnormal state may be detected by the abnormal state detecting means 154 by detecting the element temperature of the superimposition switch 151 and determining the abnormal state when the detected temperature reaches a predetermined regulated temperature. However, if a highly reliable temperature sensor with withstand voltage characteristics, noise resistance characteristics, etc. is used, the cost will increase.
  • the abnormal state detecting means 154 is configured to detect the occurrence of the abnormal state, the abnormal state is inexpensive and highly reliable.
  • the detection means 154 can be configured.
  • the heat generation suppressing means 155 Based on the abnormal state detecting means 154 detecting the abnormal state, the heat generation suppressing means 155 performs an operation of suppressing the heat generation of the superimposition switch 151.
  • the heat generation suppression operation a method of reducing the supply voltage from the DC power supply 4 to the secondary primary coil 111b may be used, but adding a step-down structure increases the cost, and heat generation from the step-down resistor or the like may become a problem. There is also sex. Therefore, the heat generation suppressing means 155 may stop the active signal from the superimposition control means 152 to the superimposition switch 151 to cut off the secondary primary current (hereinafter referred to as superimposition current I1b) and suppress the heat generation of the superimposition switch 151. ..
  • the superimposition switch 151 may be operated in the saturation region by changing the active signal from the superimposition control means 152, and the collector-emitter voltage Vce may be brought close to 0 [V] to suppress the heat generation of the superimposition switch 151. ..
  • the superimposition switch 151 when an abnormality of the superimposition switch 151 is suspected, the superimposition switch 151 can be promoted to return to normal by the cooperation of the abnormal state detecting means 154 and the heat generation suppressing means 155. Therefore, the superimposition using the secondary primary coil 111b is used. The reliability of operation can be improved. Therefore, according to the ignition device 1 for an internal combustion engine including the superimposition function unit 15, the superimposition discharge using the secondary primary coil 111b can be stably performed.
  • FIG. 2 shows a superimposing function unit 15A of the first configuration example.
  • the superimposition signal forming means 153 operates by receiving the operating power supply Vcc, and outputs the superimposition instruction signal Sp'synchronized with the superimposition signal Sp to the superimposition control means 152a via the superimposition instruction signal line 153L1.
  • the superimposition instruction signal Sp' is input to the non-inverting input (Vin (+)) of the comparator U1 via the non-inverting input signal line 152L1.
  • a superimposition index capacitor C1 is connected between the non-inverting input signal line 152L1 and the ground line, and a voltage signal corresponding to the accumulated charge of the superimposition index capacitor C1 charged by the superimposition instruction signal Sp'is a voltage signal of the comparator U1. It is input to Vin (+).
  • the superimposition reference signal is input to the inverting input (Vin (-)) of the comparator U1 via the inverting input signal line 152L2.
  • the comparator U1 outputs an output Vout corresponding to the difference between the non-inverting input and the inverting input as an active signal.
  • the output active signal is input to the gate of the superimposition switch 151 via the active signal line 152L3. That is, since the superimposition switch 151 flows an on-current (collector current) corresponding to the active signal from the superimposition control means 152a, the superimposition current I1b flowing through the sub-primary coil 111b can be controlled. Since the capacitor C2 and the resistor R1 are provided in the line connecting the active signal line 152L3 and the inverting input signal line 152L2 to compensate for the phase, it is possible to suppress a sudden change in the output Vout of the comparator U1.
  • a capacitor C3 is provided on the inverting input signal line 152L2, and a signal having the same potential as the emitter of the superimposition switch 151 is input as a reference signal on the anti-ground side of the capacitor C3 via the reference signal introduction line 152L4.
  • the reference signal introduction line 152L4 is connected between the emitter of the superimposition switch 151 and the resistor R3, and when the superimposition switch 151 is off, the reference signal becomes substantially the ground potential (for convenience, 0 [V]). That is, when the superimposition switch 151 is off and the superimposition operation is not performed, the capacitor C3 is not charged and the inverting input of the comparator U1 is 0 [V].
  • the superimposition instruction signal Sp' is not output from the superimposition signal forming means 153 and the superimposition index capacitor C1 is not charged. It is 0 [V]. Therefore, when the superimposition signal Sp is off and the superimposition operation is not performed, the output Vout of the comparator U1 is maintained at 0 [V] and the superimposition switch 151 is not turned on. Not flowing.
  • the internal combustion engine drive control device 3 When the superimposition operation is performed after the ignition timing (the timing at which the ignition signal Si changes from ON to OFF) that cuts off the primary current I1a flowing through the main primary coil 111a, the internal combustion engine drive control device 3 superimposes the signal Sp on the ignition coil unit 10. Turn on. As a result, the superimposition instruction signal Sp'is output from the superimposition signal forming means 153, the superimposition index capacitor C1 is charged, and the voltage signal corresponding to the charge charge is Vin (+) of the comparator U1 via the non-inverting input signal line 152L1. ) Is entered.
  • the superimposition switch 151 is still off, so the input of Vin (-) of the comparator U1 is maintained at 0 [V], depending on the difference between Vin (+) and Vin (-).
  • the active signal is input to the gate of the superimposition switch 151 via the active signal line 152L3.
  • the superimposition switch 151 When the accumulated charge of the superimposition index capacitor C1 increases due to the start of the superimposition operation, the signal potential of the active signal output from the comparator U1 rises, and when the gate input of the superimposition switch 151 reaches the on voltage, the superimposition switch 151 turns on. Become. When the superimposition switch 151 is off, the collector-emitter voltage Vce is a value close to the power supply voltage of the DC power supply 4, but when the superimposition switch 151 is turned on, the Vce decreases according to the collector current flowing.
  • the signal potential of the reference signal introduction line 152L4 connected to the emitter side of the superimposition switch 151 rises from the resistor R3, the capacitor C3 is charged, and the inverting input signal is charged according to the charge charge of the capacitor C3.
  • the signal potential of line 152L2 rises. Therefore, the input value of Vin (-) of the comparator U1 rises, the slope of the increase of the output Vout of the comparator U1 becomes gentle, and the signal level is sufficient to flow the superposed current I1b presumed to be suitable. You will be able to maintain an active signal.
  • the superimposition signal Sp is turned off, and the superimposition instruction signal Sp'from the superimposition signal forming means 153 is also turned off.
  • the capacitor C3 is discharged, and Vin (+) and Vin ( ⁇ ) of the comparator U1 return to 0 [V]. Therefore, the active signal from the comparator U1 to the superimposition switch 151 is also turned off, and the superimposition current I1b does not flow through the secondary primary coil 111b.
  • the abnormal state detecting means 154a for detecting the abnormal state of the superimposing switch 151 controlled by the active signal from the superimposing control means 152a monitors the collector-emitter voltage Vce of the superimposing switch 151.
  • the abnormality state detecting means 154a stores in advance an abnormality determination threshold value as a regulation threshold value for determining whether or not there is an abnormality. If the normal superimposition operation is performed, the Vce detection value of the superimposition switch 151 does not reach the abnormality determination threshold value, but an abnormality such as a load state change between the plug electrodes of the spark plug 2 or a voltage fluctuation of the DC power supply 4 If there is, the Vce detection value rises and reaches the abnormality determination threshold value.
  • the abnormal state detecting means 154a detects that the Vce detection value of the superimposition switch 151 reaches the abnormality determination threshold value as the occurrence of the abnormal state, and notifies the heat generation suppressing means 155a that the abnormal state has been detected.
  • the heat generation suppressing means 155a is connected to the superimposition instruction signal line 153L1 via the heat generation suppression signal line 155L1, and the superimposition instruction signal line 153L1 can be short-circuited to the ground line.
  • the superimposition instruction signal line 153L1 is short-circuited to the ground line, the signal potential of the non-inverting input signal line 152L1 drops to the ground potential even if the superimposition instruction signal Sp'is on, so that an active signal is output from the comparator U1.
  • the superimposition switch 151 is turned off.
  • the heat generation suppressing means 155a notified by the abnormal state detecting means 154a that an abnormal state has occurred cuts off the active signal to the superimposition switch 151 by short-circuiting the heat generation suppression signal line 155L1 to the ground line, and superimposes the signal. It suppresses the heat generation of the switch 151 itself.
  • the heat generation suppressing means 155a may short-circuit the active signal line 152L3 to the ground line to cut off the active signal.
  • the first ignition control shown on the left side shows the case where the heat generation of the superimposition switch 151 is not detected during the superimposition operation
  • the second ignition control shown on the right side shows the case where the heat generation of the superimposition switch 151 is detected during the superimposition operation. Indicates the case.
  • the ignition signal Si is turned on and off to energize and shut off the main primary coil 111a, spark discharge occurs in the spark plug 2 to which a high voltage is applied, and the secondary current I2 flows through the secondary coil 112.
  • the superimposition signal Sp is turned on at the same time as the ignition timing when the ignition signal Si is turned off, and the superimposition operation is started.
  • the start timing of the superimposition operation may be after the ignition timing at which the spark plug 2 causes a spark discharge, and the superimposition operation may be started with a slight grace period from the ignition timing.
  • the superimposition signal Sp When the superimposition signal Sp is turned on, an active signal is input from the superimposition control means 152a to the gate of the superimposition switch 151, the superimposition switch 151 is turned on, and the superimposition current I1b starts to flow in the secondary primary coil 111b.
  • the superimposition operation When the superimposition operation is started, discharge energy is given to the secondary side from the secondary primary coil 111b through which the superimposition current I1b is passed, so that the reduced secondary current I2 increases and the spark discharge in the spark plug 2 Can be suitably sustained.
  • This abnormality determination threshold value is waveform information that can specify the regulation value for determination based on the elapsed time after the start of the superposition operation. While the superimposition switch 151 is operating due to the start of the superimposition operation, the point cloud data of the Vce regulation value or the continuous characteristic curve that changes with the passage of time from the start of the operation of the superimposition switch 151 is set as the abnormality determination threshold value.
  • the timing at which the abnormal state detection means 154a starts comparing the abnormality determination threshold value with the Vce detection value may be the superimposition start timing T0 when the superimposition signal Sp is turned on, but in this configuration example, the superimposition switch 151 is used.
  • the energization start timing T1 was set when the operation started and the Vce detection value began to decrease. In this way, it is possible to reduce the possibility that erroneous detection will occur due to the difference in the delay time from the on-timing of the superimposed signal Sp to the start of the superimposed current I1b.
  • the abnormality determination threshold value from T2, which is the period during which the superimposition switch 151 is not operating, to T1 (or T0) of the next ignition cycle may not be set, but for example, the power supply voltage applied to the collector of the superimposition switch 151. Set to a regulated high voltage value that is appropriately higher than that. In this way, the abnormal state detecting means 154a can detect a dangerous state in which an abnormally high voltage is applied to the superimposing switch 151 even during the period when the superimposing operation is not performed.
  • the abnormal state detecting means 154a detects an abnormal state in which a dangerous high voltage is applied to the superimposition switch 151, an effective heat generating suppressing effect cannot be obtained even if the heat generation suppressing means 155a operates, so that the abnormality is detected.
  • the history may be transmitted to the internal combustion engine drive control device 3 or the like.
  • the maximum length of the superimposition switch 151 is taken into consideration. It is desirable to set the basic waveform for abnormality determination according to the operating time. In this case, when the superimposition switch 151 is turned off in an operation time shorter than the maximum operation time (for example, the time from T1 to T2 in FIG. 3), the Vce detection value exceeds the abnormality determination threshold value, which is an abnormality. The abnormality determination condition is satisfied by the state detecting means 154a.
  • the abnormal state detecting means 154a does not determine the Vce rise at the end of the superimposition operation as an abnormal state so that the heat generation suppressing means 155a does not uselessly perform the heat dissipation suppressing operation after the superimposing operation is completed. ..
  • the abnormal state detecting means 154a and the heat generating suppressing means 155a are disabled until the next superimposing operation is started. You can leave it.
  • the superimposition signal Sp is turned off after the specified superimposition time elapses without the Vce detection value reaching the abnormality determination threshold value, the active signal from the superimposition control means 152a is stopped, the superimposition switch 151 is turned off, and the sub The superimposed current I1b does not flow through the primary coil 111b. That is, the superimposition operation of applying the discharge energy from the secondary primary coil 111b to the secondary side is completed. When the superimposition operation is completed, the discharge energy given to the secondary side from the secondary primary coil 111b disappears, so that the secondary current I2 returns to the normal value and further decreases with the passage of time.
  • the Vce detection value input to the abnormal state detecting means 154a does not decrease in a normal manner as the superimposition current I1b increases, and the Vce detection value becomes abnormal before the specified superimposition time elapses.
  • a heat generation suppression operation such as the second ignition control is performed.
  • the collector-emitter voltage Vce of the superimposition switch 151 rises. Further, when a vehicle battery is used as the DC power supply 4, the collector-emitter voltage Vce of the superimposition switch 151 rises when the voltage rises due to fluctuations in the battery voltage. When the collector-emitter voltage Vce rises due to such a factor, heat is generated by the internal resistance of the superimposition switch 151, and there is a risk that the superimposition switch 151 cannot operate normally.
  • the Vce detection value input to the abnormal state detection means 154a does not decrease in a normal manner and starts to increase in the middle, the Vce detection value reaches the abnormality determination threshold value.
  • the abnormal state detecting means 154a detects this as the occurrence of an abnormal state, and the heat generation suppressing means 155a short-circuits the heat generation suppressing signal line 155L1 to the ground line. This is the execution timing of the heat generation suppression operation, the active signal to the superposition switch 151 is cut off, and the superimposition switch 151 is turned off, so that the heat generation of the superimposition switch 151 itself is suppressed.
  • the necessary and sufficient discharge energy may not be given to the secondary side by the superimposition operation, but the superimposition switch 151 recovers by natural heat dissipation. Then, there is a high possibility that proper superposition operation can be performed in the next ignition cycle. That is, the internal combustion engine ignition device 1 that quickly determines the heat generation of the superposition switch 151 and performs the heat generation suppression operation can stably perform the superimposition discharge using the secondary primary coil 111b.
  • FIG. 4 shows a superimposition function unit 15B of a second configuration example in which heat generation is suppressed by operating the superimposition switch 151 in a saturation region.
  • the same configuration as that of the superimposition function unit 15A is designated by the same reference numerals and the description thereof will be omitted.
  • the heat generation suppression means 155b can raise the potential of the heat generation suppression signal line 155L1 connected to the superposition instruction signal line 153L1 to a heat generation suppression potential appropriately higher than the on voltage of the superposition instruction signal Sp'.
  • the potential of the heat generation suppression signal line 155L1 rises to the heat generation suppression potential by the heat generation suppression means 155b, the superimposition index capacitor C1 is charged to the heat generation suppression potential, the input potential of Vin (+) of the comparator U1 increases, and the input potential of Vin (+) of the comparator U1 increases.
  • the potential of the active signal which is the output Vout, also increases.
  • the collector current becomes saturated without further increase.
  • the collector-emitter voltage Vce is lowered and the resistance of the drift layer portion is significantly lowered, so that the heat generation of the superimposition switch 151 is suppressed.
  • the heat generation suppressing means 155b executes the heat generation suppressing operation for raising the superimposition instruction signal line 153L1 to the heat generation suppressing potential, the heat generation of the superimposing switch 151 can be suppressed.
  • the heat generation suppression operation by the heat generation suppression means 155b needs to be completed in synchronization with the end timing of the superposition operation. Therefore, for example, the heat generation suppressing means 155b can detect the on / off of the superimposing signal Sp via the superimposing signal detection line 155L2, and the heat generation suppressing means 155b that detects the timing when the superimposing signal Sp is turned off voluntarily.
  • the voltage application to the heat generation suppression signal line 155L1 may be terminated. In this way, the heat generation suppression operation can be ended in synchronization with the end timing of the superimposition operation.
  • the first ignition control shown on the left side shows the case where the heat generation of the superimposition switch 151 is not detected during the superimposition operation
  • the second ignition control shown on the right side detects the heat generation of the superimposition switch 151 during the superimposition operation. Indicates the case where it is done.
  • the heat generation of the superimposition switch 151 is not detected (the Vce detection value does not reach the abnormality determination threshold value), so that the subprimary coil is the same as the superimposition operation by the superimposition function unit 15A of the first configuration example described above.
  • a superposition operation is performed in which the discharge energy given to the secondary side is increased by energizing the 111b.
  • the Vce detection value input to the abnormal state detection means 154a does not decrease in a normal manner as the superimposition current I1b increases, and the Vce detection value becomes higher before the specified superimposition time elapses.
  • the threshold value for abnormality determination is reached, and this is the execution timing of the heat generation suppression operation. That is, when the Vce detection value reaches the abnormality determination threshold value, the abnormal state detecting means 154a detects this as the occurrence of an abnormal state, and the heat generation suppressing means 155b transmits the potential of the superposed instruction signal line 153L1 via the heat generation suppressing signal line 155L1. To the heat generation suppression potential.
  • the superimposition switch 151 operates in the saturation region, and the Vce detection value becomes low (ideally, it becomes 0 [V]).
  • the superimposition switch 151 operates in the saturation region, the superimposition current I1b increases, and the secondary current I2 of the secondary coil 112 also increases.
  • the superimposition signal Sp is turned off after the specified superimposition time has elapsed, the heat generation suppression operation by the heat generation suppression means 155b is also terminated, the active signal from the superposition control means 152a is turned off, the superimposition switch 151 is also turned off, and the secondary primary The superimposed current I1b does not flow through the coil 111b.
  • the discharge energy given to the secondary side from the secondary primary coil 111b disappears, so that the secondary current I2 returns to the normal value and decreases with the passage of time.
  • the heat generation suppression operation by the heat generation suppression means 155b When the heat generation suppression operation by the heat generation suppression means 155b is performed, the superimposition switch 151 is operated in the saturation region and the superimposition current I1b is increased, so that the power consumption is increased. Therefore, the heat generation suppression operation by the heat generation suppression means 155b is not performed until the end timing of the superposition operation, and the heat generation suppression operation is terminated when the heat generation suppression holding time, which is highly probable that the superposition switch 151 has returned to the normal operation state, has elapsed. You may let it. If the end timing of the superimposition operation is reached before the heat generation suppression holding time elapses, the heat generation suppression operation may be ended in accordance with the end timing of the superimposition operation.
  • the potential of the superimposition instruction signal line 153L1 returns to the potential of the superimposition instruction signal Sp', so that the potential of the active signal decreases accordingly, and the sub The superimposed current I1b flowing through the primary coil 111b can be reduced, and power consumption can be suppressed.
  • the superimposition current I1b is suddenly increased by stopping the superimposition switch 151 or operating the superimposition switch 151 in the saturated basin.
  • the heat generation suppression operation was performed to increase or decrease the amount.
  • the superimposing function unit 15C of the third configuration example shown in FIG. 6 suppresses heat generation by gradually increasing or decreasing the superimposing current I1b.
  • the same configurations as those of the superimposing function units 15A and 15B are designated by the same reference numerals, and the description thereof will be omitted.
  • the superimposition index capacitor C1 of the superimposition control means 152a is a capacitor that starts charging when the superimposition signal Sp is turned on after the energization of the main primary coil 111a is cut off. Then, the potential corresponding to the accumulated charge of the superimposition index capacitor C1 becomes the non-inverting input of the comparator U1, so that the active signal which is the output Vout of the comparator U1 has an ascending curve corresponding to the accumulated charge of the superimposition index capacitor C1.
  • the superimposition switch 151 that operates by receiving an active signal that changes in such an ascending curve at the gate increases the collector current according to the ascending curve of the active signal.
  • the heat generation suppressing means 155c reduces the potential of the superimposing instruction signal line 153L1 via the heat generation suppressing signal line 155L1 to be sufficiently lower than the potential of the superimposing instruction signal Sp'. Performs heat generation suppression operation to lower the potential.
  • the superimposition index capacitor C1 is discharged, and the active signal, which is the output Vout of the comparator U1, draws a downward curve according to the discharge of the superimposition index capacitor C1.
  • the superimposition switch 151 which operates by receiving an active signal that changes in such a downward curve at the gate, causes the collector current to decrease according to the downward curve of the active signal. That is, since the superposed current I1b is reduced by the heat generation suppressing operation by the heat generation suppressing means 155c, the heat generation of the superimposing switch 151 can be suppressed.
  • the potential of the superposition instruction signal line 153L1 may be lowered to the reduction potential at once in a very short time to shorten the discharge time of the superposition index capacitor C1, or the reduction potential may be gradually reduced.
  • the discharge time of the superimposition index capacitor C1 may be lengthened by lowering to.
  • the heat generation suppression operation performed by the heat generation suppression means 155c may be continued until the end timing of the superposition operation when the superimposition signal Sp is turned off, or the heat generation suppression operation release condition which can be regarded as suppressing the heat generation of the superposition switch 151. May be terminated when is satisfied.
  • the heat generation suppression operation release condition is that a predetermined time width period (heat generation suppression operation execution period) that can be regarded as suppressing the heat generation of the superposition switch 151 has elapsed from the start of the superposition suppression operation.
  • a predetermined time width period heat generation suppression operation execution period
  • the heat generation suppression operation execution period elapses from the start of the heat generation suppression operation, if the superposition operation is continuing (superimposition signal Sp is on), the potential of the superimposition instruction signal line 153L1 is again the superimposition instruction signal Sp ′. Since the potential returns to the above potential, charging of the superimposition index capacitor C1 can be started again.
  • FIG. 7 An example of the superimposition operation by the ignition device 1 for an internal combustion engine including the superimposition function unit 15C configured as described above will be described with reference to FIG. 7. Also in FIG. 7, the first ignition control shown on the left side shows the case where the heat generation of the superimposition switch 151 is not detected during the superimposition operation, and the second ignition control shown on the right side detects the heat generation of the superimposition switch 151 during the superimposition operation. Indicates the case where it is done.
  • the heat generation of the superimposition switch 151 is not detected (the Vce detection value does not reach the abnormality determination threshold value), so that it is the same as the superimposition operation by the superimposition function units 15A and 15B of the first and second configuration examples described above.
  • a superposition operation is performed to increase the discharge energy given to the secondary side by energizing the secondary primary coil 111b.
  • the Vce detection value input to the abnormal state detecting means 154c does not decrease in a normal manner as the superimposition current I1b increases, and the Vce detection value becomes higher before the specified superimposition time elapses.
  • the heat generation suppression operation execution timing is reached.
  • the abnormal state detecting means 154c detects this as the occurrence of an abnormal state, and the heat generation suppressing means 155c reduces the potential of the superposed instruction signal line 153L1 via the heat generation suppressing signal line 155L1. Lower to potential.
  • the discharge of the superimposition index capacitor C1 starts, the accumulated charge of the superimposition index capacitor C1 decreases until the heat generation suppression execution period elapses, and the signal potential of the output Vout of the comparator U1 also decreases.
  • the collector current also goes down.
  • the heat generation of the superimposition switch 151 is suppressed, but the discharge energy given to the secondary side also decreases as the superimposition current I1b decreases, and the secondary current I2 also decreases.
  • the heat generation suppression execution period elapses before the superimposition time elapses (before the superimposition signal Sp is turned off)
  • the charge accumulation state of the superimposition indicating capacitor C1 is again after the heat generation suppression operation by the heat suppression means 155c is completed.
  • the operation control of the superimposition switch 151 is executed using the above as an index.
  • the abnormal state detecting means 154c temporarily resets the abnormal state detecting operation for the superimposition switch 151 at the timing T2'when the Vce detection value reaches the abnormality determination threshold value and detects the abnormal state.
  • the abnormality determination threshold value that the abnormality state detecting means 154c compares with the Vce detection value returns to the same regulated high voltage value as when the superimposition switch 151 is not operating.
  • the abnormal state detecting means 154c again sets the abnormality determination basic waveform as the abnormality determination threshold value. Start the judgment.
  • the Vce detection value does not reach the abnormality determination threshold value, so that it is in an abnormal state. There is no abnormal state detection by the detection means 154c, and the superimposition operation is continued. If the superimposition switch 151 has not yet returned to the normal operation, the Vce detection value reaches the abnormality determination threshold value again, and the abnormality state detection means 154c detects the occurrence of the abnormality state, so that heat is generated again. There is a possibility that the heat generation suppressing operation by the suppressing means 155c is executed.
  • the superimposition signal Sp is turned off after the specified superimposition time elapses
  • the active signal from the superimposition control means 152a is turned off
  • the superimposition switch 151 is also turned off, and the superimposition current I1b does not flow in the secondary primary coil 111b.
  • the discharge energy given to the secondary side from the secondary primary coil 111b disappears, so that the secondary current I2 returns to the normal value and decreases with the passage of time.
  • Ignition system for internal combustion engine 10 Ignition coil unit 11 Ignition coil 111a Main primary coil 111b Secondary primary coil 112 Secondary coil 13 Ignition switch 15 Superimposition function unit 151 Superimposition switch 152 Superimposition control means 154 Abnormal state detection means 155 Heat generation suppression means 2 Ignition Plug 3 Internal engine drive controller 4 DC power supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

Provided is an internal combustion engine ignition device that allows superposition discharge using a sub-primary coil to be performed in a stable manner. In the present invention, an ignition coil unit 10 of an internal combustion engine ignition system 1 comprises: a principal primary coil 111a that is controlled by an ignition signal Si; and an ignition coil 11 in which a sub-primary coil 111b controlled by a superposition signal Sp is provided to the primary side. If an abnormal state detecting means 154 detects an abnormal state where there is a risk that a superposition switch 151 for passing/blocking current to the sub-primary coil 111b cannot operate normally due to heat generation, a heat generation suppressing means 155 suppresses heat generation of the superposition switch 151.

Description

内燃機関用点火装置Ignition system for internal combustion engine
 本発明は、自動車両に搭載される内燃機関用の点火装置に関し、特に、複数の一次コイルを使用して点火プラグに火花放電を起こす内燃機関用点火装置の改良に関する。 The present invention relates to an ignition device for an internal combustion engine mounted on an automatic vehicle, and more particularly to an improvement of an ignition device for an internal combustion engine that causes a spark discharge in a spark plug by using a plurality of primary coils.
 車両搭載の内燃機関として、燃費改善のために直噴エンジンや高EGRエンジンが採用されているが、これらのエンジンは着火性があまり良くないため、点火装置には高エネルギー型のものが必要になる。そこで、古典的な電流遮断原理により点火コイル一次側から点火コイル二次側に放電エネルギーを与えることに加え、もう一つの一次コイルに通電して二次側へ与えるエネルギーを重畳的に高める重ね放電型点火装置が提案されている。(例えば、特許文献1を参照)。 Direct-injection engines and high-EGR engines are used as vehicle-mounted internal combustion engines to improve fuel efficiency, but these engines do not have very good ignitability, so high-energy ignition devices are required. Become. Therefore, in addition to giving discharge energy from the primary side of the ignition coil to the secondary side of the ignition coil according to the classical current cutoff principle, a layered discharge that energizes another primary coil and superimposes the energy given to the secondary side. A type ignition device has been proposed. (See, for example, Patent Document 1).
 特許文献1に記載の点火装置は、点火コイルの一次電流を遮断することで二次側に発生する数kVの高電圧により、点火プラグの放電間隙に絶縁破壊を起こし、点火コイルの二次側に放電電流を流し始めた後に、もう一つの一次コイル(以下、副一次コイルという)に一次電流を流す。副一次コイルへの通電で生じる磁束の向きは、一次コイルの通電遮断で磁束が減少する向きと同じである。このため、通電遮断による一次コイルの磁束変化と、副一次コイルへの通電による発生磁束が、二次コイルに作用することとなる。すなわち、二次コイルには、通常の一次電流遮断による磁束変化よりも大きな磁束変化が作用するので、二次側に発生する磁束を加速させ、二次電流を重畳できる。事実、重ね放電型の点火装置によると、点火プラグに比較的大きな放電エネルギーを得ることができるため、燃料への着火性が向上し、ひいては燃費も向上する。 The ignition device described in Patent Document 1 causes insulation failure in the discharge gap of the ignition plug due to a high voltage of several kV generated on the secondary side by interrupting the primary current of the ignition coil, and causes insulation failure on the secondary side of the ignition coil. After starting to flow the discharge current to the other primary coil (hereinafter referred to as the secondary primary coil), the primary current is passed through the other primary coil. The direction of the magnetic flux generated by energizing the secondary primary coil is the same as the direction in which the magnetic flux decreases when the primary coil is de-energized. Therefore, the change in the magnetic flux of the primary coil due to the interruption of energization and the magnetic flux generated by the energization of the secondary primary coil act on the secondary coil. That is, since a magnetic flux change larger than the magnetic flux change due to the normal primary current cutoff acts on the secondary coil, the magnetic flux generated on the secondary side can be accelerated and the secondary current can be superimposed. In fact, according to the layered discharge type ignition device, a relatively large amount of discharge energy can be obtained from the spark plug, so that the ignitability of the fuel is improved, and thus the fuel consumption is also improved.
 しかしながら、特許文献1に記載された重ね放電型の点火装置は、副一次コイルへの通電量や通電時間を変えるために能動素子を用いることから、能動素子が正常に動作しないと、副一次コイルへの通電制御を適切に行うことができない。例えば、副一次コイルへの通電制御に用いる能動素子が発熱により正常動作できない場合、適切な重ね放電を実現できず、二次側へ十分な放電エネルギーを与えられなかったり、逆に、過電流により点火プラグの損耗を早めてしまったりする危険性がある。 However, since the overlapping discharge type ignition device described in Patent Document 1 uses an active element in order to change the energization amount and energization time of the sub-primary coil, if the active element does not operate normally, the sub-primary coil is used. It is not possible to properly control the energization of the coil. For example, if the active element used to control the energization of the secondary primary coil cannot operate normally due to heat generation, appropriate overlapping discharge cannot be realized and sufficient discharge energy cannot be given to the secondary side, or conversely, due to overcurrent. There is a risk of accelerating the wear of the spark plug.
 このように、副一次コイルへの通電制御に用いる能動素子が発熱により正常動作できないときには、そのまま不安定な重畳動作を継続させないで安全性を確保することが望ましいが、特許文献1に記載の点火装置には、そのような機能が設けられていない。 As described above, when the active element used for controlling the energization of the secondary primary coil cannot operate normally due to heat generation, it is desirable to ensure safety without continuing the unstable superimposition operation as it is, but the ignition described in Patent Document 1 is described. The device is not provided with such a function.
 そこで、本発明は、副一次コイルを用いた重畳放電を安定して行える内燃機関用点火装置の提供を目的とする。 Therefore, an object of the present invention is to provide an ignition device for an internal combustion engine that can stably perform superimposed discharge using a secondary primary coil.
 上記課題を解決するために、内燃機関用点火装置は、点火制御手段からの点火信号のオン・オフによって点火コイルへの通電制御を行うことで、点火コイルの二次側に放電エネルギーを与えて点火プラグに火花放電を起こさせる内燃機関用点火装置において、前記点火コイルは、前記点火信号がオンで行われる主一次電流の通電により前記順方向の磁束量が増加し、前記点火信号がオフになって前記主一次電流を遮断することにより順方向の磁束量が減少する主一次コイルと、該主一次コイルに対する通電遮断以降の放電期間内に重畳電流を流すことにより、前記順方向と逆の遮断方向に磁束を発生させる副一次コイルと、一端側が前記点火プラグと接続され、前記主一次コイルと前記副一次コイルの磁束変化が作用して放電エネルギーが与えられる二次コイルと、を有し、入力される能動信号に応じて前記副一次コイルへの通電量を増減させる能動素子で構成し、前記副一次コイルへの通電・遮断を行うと共に、前記副一次コイルへの通電量を変えることで、前記遮断方向の磁束量を変化させる副一次コイル通電手段と、前記主一次コイルへの通電遮断以降に、前記能動信号を前記副一次コイル通電手段へ送って能動動作させる重畳制御手段と、前記副一次コイル通電手段が発熱により正常動作できない危険性がある異常状態を検出する異常状態検出手段と、前記異常状態検出手段が前記異常状態を検出することに基づいて、前記副一次コイル通電手段の発熱を抑える発熱抑制手段と、を備えることを特徴とする。 In order to solve the above problems, the ignition device for an internal combustion engine applies discharge energy to the secondary side of the ignition coil by controlling the energization of the ignition coil by turning on / off the ignition signal from the ignition control means. In an ignition device for an internal combustion engine that causes a spark discharge in an ignition plug, the ignition coil has an increase in the amount of magnetic flux in the forward direction due to energization of a main primary current performed when the ignition signal is on, and the ignition signal is turned off. By interrupting the main primary current, the amount of magnetic flux in the forward direction is reduced, and by passing a superposed current through the discharge period after the main primary coil is de-energized, the reverse of the forward direction is achieved. It has a secondary primary coil that generates magnetic flux in the breaking direction, and a secondary coil whose one end side is connected to the ignition plug and the magnetic flux changes of the main primary coil and the secondary primary coil act to give discharge energy. , It is composed of an active element that increases or decreases the amount of electricity applied to the sub-primary coil according to the input active signal, energizes and shuts off the sub-primary coil, and changes the amount of electricity applied to the sub-primary coil. Then, the sub-primary coil energizing means for changing the amount of magnetic flux in the breaking direction, and the superimposition control means for actively operating by sending the active signal to the sub-primary coil energizing means after the energization of the main primary coil is cut off. The sub-primary coil energizing means is based on an abnormal state detecting means for detecting an abnormal state in which the sub-primary coil energizing means may not operate normally due to heat generation and the abnormal state detecting means for detecting the abnormal state. It is characterized in that it is provided with a heat generation suppressing means for suppressing the heat generation of the above.
 また、上記構成において、前記異常状態検出手段は、前記副一次コイル通電手段を構成する能動素子のコレクタ-エミッタ間電圧Vceが、予め定めた規制閾値に達することで前記異常状態を判定するようにしてもよい。 Further, in the above configuration, the abnormal state detecting means determines the abnormal state when the collector-emitter voltage Vce of the active element constituting the sub-primary coil energizing means reaches a predetermined regulation threshold value. You may.
 また、上記構成において、前記発熱抑制手段は、前記副一次コイルへの通電を遮断することで、前記副一次コイル通電手段の発熱を抑えるようにしてもよい。 Further, in the above configuration, the heat generation suppressing means may suppress heat generation of the secondary primary coil energizing means by shutting off the energization of the sub primary coil.
 また、上記構成において、前記発熱抑制手段は、前記重畳制御手段より出力される能動信号を停止させ、前記副一次コイル通電手段による前記副一次コイルへの通電を遮断するようにしてもよい。 Further, in the above configuration, the heat generation suppressing means may stop the active signal output from the superposition control means and cut off the energization of the sub-primary coil by the sub-primary coil energizing means.
 また、上記構成において、前記発熱抑制手段は、前記重畳制御手段より出力される能動信号を変化させ、前記副一次コイル通電手段を構成する能動素子を飽和領域で動作させることにより、前記副一次コイル通電手段の発熱を抑えるようにしてもよい。 Further, in the above configuration, the heat generation suppressing means changes the active signal output from the superposition control means and operates the active element constituting the sub-primary coil energizing means in the saturation region, thereby causing the sub-primary coil. The heat generation of the energizing means may be suppressed.
 また、上記構成において、前記重畳制御手段は、前記主一次コイルへの通電遮断以降に充電を開始するコンデンサを備え、充電開始後における前記コンデンサの電荷蓄積状態を指標として生成した前記能動信号を前記副一次コイル通電手段へ出力することで、時間経過に伴う重畳電流の増加制御を行うものとし、前記発熱抑制手段は、前記異常状態検出手段が前記異常状態を検出したとき、前記重畳制御手段が備える前記コンデンサの電荷蓄積量を低下させて能動信号を変化させることにより、前記副一次コイル通電手段の発熱を抑えるようにしてもよい。 Further, in the above configuration, the superimposition control means includes a capacitor that starts charging after the energization of the main primary coil is cut off, and the active signal generated by using the charge accumulation state of the capacitor as an index after the start of charging is used. By outputting to the sub-primary coil energizing means, the increase of the superposed current with the passage of time is controlled. In the heat generation suppressing means, when the abnormal state detecting means detects the abnormal state, the superimposing control means By reducing the amount of charge accumulated in the capacitor to be provided and changing the active signal, the heat generation of the sub-primary coil energizing means may be suppressed.
 上記構成の内燃機関用点火装置によれば、副一次コイル通電手段が発熱により正常動作できない危険性がある異常状態を異常状態検出手段が検出すると、発熱抑制手段が動作して、副一次コイル通電手段の発熱を抑えるので、副一次コイルを用いた重畳放電を安定して行える。 According to the ignition device for an internal combustion engine having the above configuration, when the abnormal state detecting means detects an abnormal state in which the secondary primary coil energizing means may not operate normally due to heat generation, the heat generation suppressing means operates to energize the secondary primary coil. Since the heat generation of the means is suppressed, the superimposed discharge using the secondary primary coil can be stably performed.
本実施形態に係る内燃機関用点火装置の概略構成図である。It is a schematic block diagram of the ignition device for an internal combustion engine which concerns on this embodiment. 重畳機能部の第1構成例を示す概略構成図である。It is a schematic block diagram which shows the 1st structural example of the superimposition function part. 第1構成例の重畳機能部を備える内燃機関用点火装置の要部における波形を示した波形図である。It is a waveform diagram which showed the waveform in the main part of the ignition device for an internal combustion engine provided with the superimposing function part of the 1st configuration example. 重畳機能部の第2構成例を示す概略構成図である。It is a schematic block diagram which shows the 2nd structural example of the superimposing function part. 第2構成例の重畳機能部を備える内燃機関用点火装置の要部における波形を示した波形図である。It is a waveform diagram which showed the waveform in the main part of the ignition device for an internal combustion engine provided with the superimposing function part of the 2nd configuration example. 重畳機能部の第3構成例を示す概略構成図である。It is a schematic block diagram which shows the 3rd structural example of the superimposition function part. 第3構成例の重畳機能部を備える内燃機関用点火装置の要部における波形を示した波形図である。It is a waveform diagram which showed the waveform in the main part of the ignition device for an internal combustion engine provided with the superimposing function part of the 3rd configuration example.
 次に、本実施形態に係る内燃機関用点火装置1を、添付図面に基づいて詳細に説明する。 Next, the ignition device 1 for an internal combustion engine according to the present embodiment will be described in detail based on the attached drawings.
 図1に示す内燃機関用点火装置1は、内燃機関の気筒毎に設けられる1つの点火プラグ2と、この点火プラグ2に放電火花を発生させる機能を集約状に設けた点火コイルユニット10を備える。また、点火コイルユニット10の動作タイミングを指示する点火信号Si等を適宜なタイミングで出力する点火制御手段としての機能は、内燃機関駆動制御装置3(例えば、車両に標準搭載されているECU等)が担う。点火コイルユニット10への供給電源には、車両バッテリ等の直流電源4を用いる。なお、内燃機関が多気筒の場合は、気筒毎の点火コイルユニット10に対する点火制御を内燃機関駆動制御装置3が統括的に行っても良いし、各気筒に対応した点火制御手段を個別に設けるようにしても良い。 The ignition device 1 for an internal combustion engine shown in FIG. 1 includes one spark plug 2 provided for each cylinder of the internal combustion engine, and an ignition coil unit 10 provided with a function of generating discharge sparks in the ignition plug 2 in an integrated manner. .. Further, the function as an ignition control means for outputting an ignition signal Si or the like indicating the operation timing of the ignition coil unit 10 at an appropriate timing is an internal combustion engine drive control device 3 (for example, an ECU installed as standard in a vehicle). Is responsible. A DC power source 4 such as a vehicle battery is used as the power supply to the ignition coil unit 10. When the internal combustion engine has multiple cylinders, the internal combustion engine drive control device 3 may collectively perform ignition control for the ignition coil unit 10 for each cylinder, or ignition control means corresponding to each cylinder are individually provided. You may do so.
 点火コイルユニット10は、点火コイル11や制御基板等を所要形状のケース12に収納して一体構造としたユニットである。このケース12の適所には、高圧端子121とコネクタ122を設けてあり、高圧端子121を介して点火プラグ2を接続すると共に、コネクタ122を介して内燃機関駆動制御装置3や直流電源4、接地ライン等と接続する。 The ignition coil unit 10 is a unit in which the ignition coil 11 and the control board are housed in a case 12 having a required shape to form an integrated structure. A high-voltage terminal 121 and a connector 122 are provided at appropriate positions in the case 12, and the spark plug 2 is connected via the high-voltage terminal 121, and the internal combustion engine drive control device 3, the DC power supply 4, and the ground are connected via the connector 122. Connect with a line, etc.
 点火コイル11は、主一次コイル111a(例えば、114ターン)と副一次コイル111b(例えば、20ターン)に生ずる磁束を二次コイル112(例えば、9348ターン)に効率良く作用させるものである。例えば、高透磁性材料で形成したセンターコア113を取り巻くように主一次コイル111aおよび副一次コイル111bを配置し、更にその外側に二次コイル112を配置した構造である。 The ignition coil 11 efficiently causes the magnetic flux generated in the main primary coil 111a (for example, 114 turns) and the secondary primary coil 111b (for example, 20 turns) to act on the secondary coil 112 (for example, 9348 turns). For example, the structure is such that the main primary coil 111a and the secondary primary coil 111b are arranged so as to surround the center core 113 formed of a highly permeable magnetic material, and the secondary coil 112 is further arranged outside the main primary coil 111a and the secondary primary coil 111b.
 主一次コイル111aの一方端は、コネクタ122を介して直流電源4と接続され、電源電圧VB+(例えば、14V)が印加される。主一次コイル111aの他方端は、IGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)を用いた点火スイッチ13のコレクタに接続される。点火スイッチ13のエミッタはコネクタ122を介して接地点GNDに接続される。二次コイル112の一方端は高圧端子121を介して点火プラグ2と接続され、他方端はコネクタ122を介して接地点GNDに接続される。なお、二次コイル112からコネクタ122の接地点接続端子へ至る間の線路には、二次コイル112から接地点GNDに向かって順方向となる整流素子(例えば、接地側にカソードを、二次コイル112側にアノードをそれぞれ接続したダイオード)を設け、二次電流I2の流路方向を規制する。 One end of the main primary coil 111a is connected to the DC power supply 4 via the connector 122, and a power supply voltage VB + (for example, 14V) is applied. The other end of the main primary coil 111a is connected to a collector of an ignition switch 13 using an IGBT (Insulated Gate Bipolar Transistor). The emitter of the ignition switch 13 is connected to the grounding point GND via the connector 122. One end of the secondary coil 112 is connected to the spark plug 2 via the high voltage terminal 121, and the other end is connected to the grounding point GND via the connector 122. The line from the secondary coil 112 to the grounding point connection terminal of the connector 122 has a rectifying element (for example, a cathode on the grounding side) that is in the forward direction from the secondary coil 112 toward the grounding point GND. A diode (a diode having an anode connected to each) is provided on the coil 112 side to regulate the flow path direction of the secondary current I2.
 放電サイクルの適宜なタイミングで内燃機関駆動制御装置3より出力される点火信号Siは、コネクタ122を介して点火コイルユニット10に供給され、点火スイッチ13のゲートに入力される。そして、点火信号Siが点火スイッチ13のゲートに入力されると(例えば、点火信号Siの信号レベルがLからHに変わると)、点火スイッチ13がオンになり、主一次コイル111aの非給電側端部が接地点GNDに接続される。これにより、主一次コイル111aには、給電側から接地側に向かう主一次コイル電流(以下、一次電流I1aという)が流れ始め、一次電流I1aの流量は増加してゆき、一次電流I1aの流量に応じて発生する通電磁束の磁束量が磁界のエネルギーとして蓄積される。なお、点火コイル11の二次側には、二次コイル112や接続配線等の微少なコンデンサ成分により電気エネルギーが蓄積される。 The ignition signal Si output from the internal combustion engine drive control device 3 at an appropriate timing of the discharge cycle is supplied to the ignition coil unit 10 via the connector 122 and input to the gate of the ignition switch 13. Then, when the ignition signal Si is input to the gate of the ignition switch 13 (for example, when the signal level of the ignition signal Si changes from L to H), the ignition switch 13 is turned on and the non-feeding side of the main primary coil 111a is turned on. The end is connected to the grounding point GND. As a result, the main primary coil current (hereinafter referred to as the primary current I1a) from the feeding side to the ground side begins to flow in the main primary coil 111a, and the flow rate of the primary current I1a increases to the flow rate of the primary current I1a. The amount of magnetic flux of the energizing magnetic flux generated accordingly is stored as the energy of the magnetic field. On the secondary side of the ignition coil 11, electrical energy is stored by a minute capacitor component such as the secondary coil 112 and the connection wiring.
 上記のようにエネルギーが蓄積された後、主一次コイル111aへの通電が所定の点火タイミングで遮断されると(例えば、点火信号Siの信号レベルがHからLに変わると)、高圧の起電力が二次コイル112に生じて点火プラグ2の放電ギャップ間に火花放電が発生し、二次電流I2が整流素子14の順方向となる向きに流れ、気筒燃焼室内の混合気に着火する。 After the energy is stored as described above, when the energization of the main primary coil 111a is cut off at a predetermined ignition timing (for example, when the signal level of the ignition signal Si changes from H to L), a high-voltage electromotive force is generated. Is generated in the secondary coil 112 to generate a spark discharge between the discharge gaps of the spark plug 2, the secondary current I2 flows in the forward direction of the rectifying element 14, and the air-fuel mixture in the cylinder combustion chamber is ignited.
 一方、主一次コイル111aと同様に、センターコア113を介して二次コイル112に磁界を作用させる副一次コイル111bは、その一方端がコネクタ122を介して直流電源4と接続され、電源電圧VB+(例えば、14V)が印加される。なお、主一次コイル111aと副一次コイル111bで電源を共有せず、別々の電源を用いるようにしても良い。この副一次コイル111bは、主一次コイル111aへの通電時に生じる磁束の向き(以下、順方向という)とは逆の向き(以下、遮断方向という)に磁束を発生させる。すなわち、主一次コイル111aへの通電遮断によって順方向磁束が急激に減ぜられると共に、副一次コイル111bによって遮断方向の磁束を生じさせれば、二次コイル112に作用する磁束の変化量を増大させ、二次側に与える放電エネルギーを高めることができる。 On the other hand, similarly to the main primary coil 111a, the secondary primary coil 111b that causes a magnetic field to act on the secondary coil 112 via the center core 113 has one end connected to the DC power supply 4 via the connector 122, and the power supply voltage VB +. (For example, 14V) is applied. The main primary coil 111a and the secondary primary coil 111b may not share the power supply but may use different power supplies. The secondary primary coil 111b generates magnetic flux in a direction opposite to the direction of the magnetic flux generated when the main primary coil 111a is energized (hereinafter referred to as the forward direction) (hereinafter referred to as the breaking direction). That is, the forward magnetic flux is sharply reduced by cutting off the energization of the main primary coil 111a, and if the secondary primary coil 111b generates the magnetic flux in the breaking direction, the amount of change in the magnetic flux acting on the secondary coil 112 is increased. It is possible to increase the discharge energy given to the secondary side.
 副一次コイル111bと、副一次コイル111bへの通電制御を行う機能を含めて重畳機能部15とする。重畳制御部15は、例えば、IGBTを用いた副一次コイル通電手段としての重畳スイッチ151、重畳制御手段152、重畳信号成形手段153、異常状態検出手段154、発熱抑制手段155を備える。高EGR燃焼必要時など、主一次コイル111aのみでは安定した点火制御を行えない場合に限って、重畳制御部15を用いた重畳動作を行い、特に重畳動作の必要が無ければ、重畳制御部15を動作させる必要はない。重畳動作の要否は内燃機関駆動制御装置3が判断し、重畳動作が必要な場合には、内燃機関駆動制御装置3から点火コイルユニット10へ重畳信号Spを出力することで、重畳動作が実行される。 The superimposition function unit 15 includes a function of controlling energization of the sub-primary coil 111b and the sub-primary coil 111b. The superimposition control unit 15 includes, for example, a superimposition switch 151 as a secondary primary coil energizing means using an IGBT, a superimposition control means 152, a superimposition signal forming means 153, an abnormal state detecting means 154, and a heat generation suppressing means 155. Only when stable ignition control cannot be performed with only the main primary coil 111a, such as when high EGR combustion is required, the superimposition control unit 15 is used to perform the superimposition operation, and if there is no particular need for the superimposition operation, the superimposition control unit 15 Does not need to work. The internal combustion engine drive control device 3 determines whether or not the superimposition operation is necessary, and when the superimposition operation is necessary, the superimposition operation is executed by outputting the superimposition signal Sp from the internal combustion engine drive control device 3 to the ignition coil unit 10. Will be done.
 副一次コイル111bの他方端(非給電側端)は、IGBTで構成した重畳スイッチ151のコレクタに接続される。重畳スイッチ151のエミッタはコネクタ122を介して接地点GNDに接続される。重畳スイッチ151は、ゲートへ入力される能動信号に応じてコレクタ-エミッタ間の電流を増減させる能動素子であり、後述する重畳制御手段152から出力される能動信号に応じて、副一次コイル111bへの通電・遮断および通電量の増減を制御する。 The other end (non-feeding side end) of the secondary primary coil 111b is connected to the collector of the superimposition switch 151 composed of the IGBT. The emitter of the superimposition switch 151 is connected to the grounding point GND via the connector 122. The superimposition switch 151 is an active element that increases or decreases the current between the collector and the emitter according to the active signal input to the gate, and goes to the sub-primary coil 111b according to the active signal output from the superimposition control means 152 described later. Controls the energization / shutoff and increase / decrease of the amount of energization.
 重畳スイッチ151に能動動作を行わせる基準となる重畳信号Spは、点火信号Siによる点火タイミング以降(主一次コイル111aの一次電流遮断時以降)に出力される信号で、内燃機関駆動制御装置3から点火コイル11内の重畳機能部15へ供給される。重畳信号Spは、重畳信号成形手段153にて適宜な信号に成形されて重畳制御手段152へ供給され、これに基づいて重畳制御手段152が能動信号を生成して重畳スイッチ151へ出力する。なお、副一次コイル111bへの通電量は、重畳動作開始から時間経過に伴って徐々に増やして行くと、消費電力を抑えつつ、二次側の高電流期間を長くすることができ、効率良い安定した点火能力を実現できる。重畳制御手段152における能動信号の生成手法は特に限定されるものではないが、後述するように、コンデンサの電荷蓄積状態を指標とすれば、耐熱性および耐ノイズ性の高いディスクリート部品を用いた比較的簡単な構造で能動信号の生成機能を実現できる。 The superimposition signal Sp, which is a reference for causing the superimposition switch 151 to perform active operation, is a signal output after the ignition timing by the ignition signal Si (after the primary current is cut off of the main primary coil 111a), and is output from the internal combustion engine drive control device 3. It is supplied to the superimposing function unit 15 in the ignition coil 11. The superimposition signal Sp is formed into an appropriate signal by the superimposition signal forming means 153 and supplied to the superimposition control means 152, and based on this, the superimposition control means 152 generates an active signal and outputs it to the superimposition switch 151. If the amount of electricity supplied to the secondary primary coil 111b is gradually increased with the passage of time from the start of the superimposition operation, it is possible to extend the high current period on the secondary side while suppressing power consumption, which is efficient. Stable ignition capacity can be realized. The method of generating an active signal in the superimposition control means 152 is not particularly limited, but as will be described later, if the charge accumulation state of the capacitor is used as an index, a comparison using discrete components having high heat resistance and noise resistance is used. An active signal generation function can be realized with a simple structure.
 上述したように、重畳制御手段152によって適正な能動信号を生成して重畳スイッチ151のゲートへ入力させれば、副一次コイル111bへの適切な通電制御を行うことで、好適な重畳制御を実現できる。しかしながら、能動素子である重畳スイッチ151が発熱により正常動作できない場合、重畳制御手段152が生成した能動信号に基づく適切な重畳制御が実現されないおそれがある。そこで、重畳機能部15には、重畳スイッチ151の異常状態を検出する異常状態検出手段154と、重畳スイッチ151の発熱を抑える発熱抑制手段155を設けた。 As described above, if an appropriate active signal is generated by the superimposition control means 152 and input to the gate of the superimposition switch 151, appropriate superimposition control is realized by performing appropriate energization control to the sub-primary coil 111b. it can. However, if the superimposition switch 151, which is an active element, cannot operate normally due to heat generation, there is a possibility that appropriate superimposition control based on the active signal generated by the superimposition control means 152 may not be realized. Therefore, the superimposition function unit 15 is provided with an abnormal state detecting means 154 for detecting an abnormal state of the superimposition switch 151 and a heat generation suppressing means 155 for suppressing heat generation of the superimposition switch 151.
 異常状態検出手段154により検出する異常状態とは、素子自体の発熱による昇温で正常動作できない状態であるが、降温により正常動作が回復される可能性の高い状態である。よって、異常状態検出手段154による異常状態の検出は、重畳スイッチ151の素子温度を検出し、検出された温度が予め定めた規制温度に達することで異常状態を判定するようにしても良い。しかしながら、耐電圧特性・耐ノイズ特性等で信頼性の高い温度センサを用いると、コストが高くなってしまう。そこで、重畳スイッチ151のコレクタ-エミッタ間電圧Vceが予め定めた規制閾値に達することで、異常状態検出手段154が異常状態の発生を検出するように構成すれば、廉価で信頼性の高い異常状態検出手段154を構成できる。 The abnormal state detected by the abnormal state detecting means 154 is a state in which normal operation cannot be performed due to temperature rise due to heat generation of the element itself, but there is a high possibility that normal operation will be restored by temperature decrease. Therefore, the abnormal state may be detected by the abnormal state detecting means 154 by detecting the element temperature of the superimposition switch 151 and determining the abnormal state when the detected temperature reaches a predetermined regulated temperature. However, if a highly reliable temperature sensor with withstand voltage characteristics, noise resistance characteristics, etc. is used, the cost will increase. Therefore, if the collector-emitter voltage Vce of the superimposition switch 151 reaches a predetermined regulation threshold value and the abnormal state detecting means 154 is configured to detect the occurrence of the abnormal state, the abnormal state is inexpensive and highly reliable. The detection means 154 can be configured.
 異常状態検出手段154が異常状態を検出することに基づいて、発熱抑制手段155は重畳スイッチ151の発熱を抑える動作を行う。発熱抑制動作としては、直流電源4から副一次コイル111bへの供給電圧を低減させる方法でもよいが、降圧構造を付加することでコストアップになるし、降圧抵抗等からの発熱が問題となる可能性もある。そこで、発熱抑制手段155は、重畳制御手段152から重畳スイッチ151への能動信号を停止させて副一次電流(以下、重畳電流I1bという)を遮断し、重畳スイッチ151の発熱を抑制しても良い。或いは、重畳制御手段152からの能動信号を変化させて重畳スイッチ151を飽和領域で動作させ、コレクタ-エミッタ間電圧Vceを0〔V〕に近づけることで重畳スイッチ151の発熱を抑制しても良い。 Based on the abnormal state detecting means 154 detecting the abnormal state, the heat generation suppressing means 155 performs an operation of suppressing the heat generation of the superimposition switch 151. As the heat generation suppression operation, a method of reducing the supply voltage from the DC power supply 4 to the secondary primary coil 111b may be used, but adding a step-down structure increases the cost, and heat generation from the step-down resistor or the like may become a problem. There is also sex. Therefore, the heat generation suppressing means 155 may stop the active signal from the superimposition control means 152 to the superimposition switch 151 to cut off the secondary primary current (hereinafter referred to as superimposition current I1b) and suppress the heat generation of the superimposition switch 151. .. Alternatively, the superimposition switch 151 may be operated in the saturation region by changing the active signal from the superimposition control means 152, and the collector-emitter voltage Vce may be brought close to 0 [V] to suppress the heat generation of the superimposition switch 151. ..
 上述したように、重畳スイッチ151の異常が疑われる場合、異常状態検出手段154および発熱抑制手段155の連携により、重畳スイッチ151の正常復帰を促すことができるので、副一次コイル111bを用いた重畳動作の信頼性を高めることができる。したがって、重畳機能部15を備える内燃機関用点火装置1によれば、副一次コイル111bを用いた重畳放電を安定して行うことができる。 As described above, when an abnormality of the superimposition switch 151 is suspected, the superimposition switch 151 can be promoted to return to normal by the cooperation of the abnormal state detecting means 154 and the heat generation suppressing means 155. Therefore, the superimposition using the secondary primary coil 111b is used. The reliability of operation can be improved. Therefore, according to the ignition device 1 for an internal combustion engine including the superimposition function unit 15, the superimposition discharge using the secondary primary coil 111b can be stably performed.
 点火コイルユニット10に設ける重畳機能部15は、内燃機関駆動制御装置3からの重畳動作実行指示である重畳信号Spを受けて副一次コイル111bに重畳電流I1bを流す制御を行えれば、如何様に構成しても構わない。一例として、図2に、第1構成例の重畳機能部15Aを示す。 What if the superimposition function unit 15 provided in the ignition coil unit 10 can control the superimposition current I1b to flow through the sub-primary coil 111b in response to the superimposition signal Sp which is the superimposition operation execution instruction from the internal combustion engine drive control device 3? It may be configured as. As an example, FIG. 2 shows a superimposing function unit 15A of the first configuration example.
 例えば、重畳信号成形手段153は、動作電源Vccを受けて動作し、重畳指示信号線153L1を介して、重畳信号Spと同期した重畳指示信号Sp′を重畳制御手段152aへ出力する。重畳指示信号Sp′は、非反転入力信号線152L1を介して比較器U1の非反転入力(Vin(+))に入力される。非反転入力信号線152L1と接地ラインとの間には重畳指標コンデンサC1が接続されており、重畳指示信号Sp′により充電される重畳指標コンデンサC1の蓄積電荷に応じた電圧信号が比較器U1のVin(+)に入力される。 For example, the superimposition signal forming means 153 operates by receiving the operating power supply Vcc, and outputs the superimposition instruction signal Sp'synchronized with the superimposition signal Sp to the superimposition control means 152a via the superimposition instruction signal line 153L1. The superimposition instruction signal Sp'is input to the non-inverting input (Vin (+)) of the comparator U1 via the non-inverting input signal line 152L1. A superimposition index capacitor C1 is connected between the non-inverting input signal line 152L1 and the ground line, and a voltage signal corresponding to the accumulated charge of the superimposition index capacitor C1 charged by the superimposition instruction signal Sp'is a voltage signal of the comparator U1. It is input to Vin (+).
 一方、比較器U1の反転入力(Vin(-))には反転入力信号線152L2を介して重畳基準信号が入力される。比較器U1は、非反転入力と反転入力の差分に応じた出力Voutを能動信号として出力する。出力された能動信号は、能動信号線152L3を介して重畳スイッチ151のゲートに入力される。すなわち、重畳スイッチ151は、重畳制御手段152aからの能動信号に応じたオン電流(コレクタ電流)を流すので、副一次コイル111bに流す重畳電流I1bを制御できる。なお、能動信号線152L3と反転入力信号線152L2とを接続する線路中にはコンデンサC2と抵抗R1を設けて位相補償してあるので、比較器U1の出力Voutが急変することを抑制できる。 On the other hand, the superimposition reference signal is input to the inverting input (Vin (-)) of the comparator U1 via the inverting input signal line 152L2. The comparator U1 outputs an output Vout corresponding to the difference between the non-inverting input and the inverting input as an active signal. The output active signal is input to the gate of the superimposition switch 151 via the active signal line 152L3. That is, since the superimposition switch 151 flows an on-current (collector current) corresponding to the active signal from the superimposition control means 152a, the superimposition current I1b flowing through the sub-primary coil 111b can be controlled. Since the capacitor C2 and the resistor R1 are provided in the line connecting the active signal line 152L3 and the inverting input signal line 152L2 to compensate for the phase, it is possible to suppress a sudden change in the output Vout of the comparator U1.
 反転入力信号線152L2にはコンデンサC3を設けてあり、コンデンサC3の反接地側には、基準信号導入線152L4を介して、重畳スイッチ151のエミッタと同電位の信号が基準信号として入力される。基準信号導入線152L4は、重畳スイッチ151のエミッタと抵抗R3との間に接続され、重畳スイッチ151がオフのとき、基準信号はほぼ接地電位(便宜上、0〔V〕とする)となる。すなわち、重畳スイッチ151がオフで重畳動作が行われていないとき、コンデンサC3は充電されず、比較器U1の反転入力は0〔V〕である。また、重畳信号Spがオフで重畳動作が行われていなければ、重畳信号成形手段153より重畳指示信号Sp′が出力されず、重畳指標コンデンサC1が充電されないので、比較器U1の非反転入力も0〔V〕である。したがって、重畳信号Spがオフで重畳動作が行われていないときは、比較器U1の出力Voutが0〔V〕を維持し、重畳スイッチ151がオンしないので、副一次コイル111bに重畳電流I1bは流れない。 A capacitor C3 is provided on the inverting input signal line 152L2, and a signal having the same potential as the emitter of the superimposition switch 151 is input as a reference signal on the anti-ground side of the capacitor C3 via the reference signal introduction line 152L4. The reference signal introduction line 152L4 is connected between the emitter of the superimposition switch 151 and the resistor R3, and when the superimposition switch 151 is off, the reference signal becomes substantially the ground potential (for convenience, 0 [V]). That is, when the superimposition switch 151 is off and the superimposition operation is not performed, the capacitor C3 is not charged and the inverting input of the comparator U1 is 0 [V]. Further, if the superimposition signal Sp is off and the superimposition operation is not performed, the superimposition instruction signal Sp'is not output from the superimposition signal forming means 153 and the superimposition index capacitor C1 is not charged. It is 0 [V]. Therefore, when the superimposition signal Sp is off and the superimposition operation is not performed, the output Vout of the comparator U1 is maintained at 0 [V] and the superimposition switch 151 is not turned on. Not flowing.
 主一次コイル111aに流れる一次電流I1aを遮断する点火タイミング(点火信号SiがONからOFFになるタイミング)以降に重畳動作を行う場合、内燃機関駆動制御装置3は点火コイルユニット10への重畳信号Spをオンにする。これにより、重畳信号成形手段153より重畳指示信号Sp′が出力され、重畳指標コンデンサC1が充電され、充電電荷に応じた電圧信号が非反転入力信号線152L1を介して比較器U1のVin(+)に入力される。重畳動作開始以降でも、まだ重畳スイッチ151はオフであるから、比較器U1のVin(-)の入力は0〔V〕を維持しており、Vin(+)とVin(-)の差分に応じた能動信号が能動信号線152L3を介して重畳スイッチ151のゲートへ入力されるようになる。 When the superimposition operation is performed after the ignition timing (the timing at which the ignition signal Si changes from ON to OFF) that cuts off the primary current I1a flowing through the main primary coil 111a, the internal combustion engine drive control device 3 superimposes the signal Sp on the ignition coil unit 10. Turn on. As a result, the superimposition instruction signal Sp'is output from the superimposition signal forming means 153, the superimposition index capacitor C1 is charged, and the voltage signal corresponding to the charge charge is Vin (+) of the comparator U1 via the non-inverting input signal line 152L1. ) Is entered. Even after the start of the superimposition operation, the superimposition switch 151 is still off, so the input of Vin (-) of the comparator U1 is maintained at 0 [V], depending on the difference between Vin (+) and Vin (-). The active signal is input to the gate of the superimposition switch 151 via the active signal line 152L3.
 重畳動作開始により、重畳指標コンデンサC1の蓄積電荷が増えると、比較器U1から出力される能動信号の信号電位が上がり、重畳スイッチ151のゲート入力がオン電圧に達すると、重畳スイッチ151がオンになる。重畳スイッチ151がオフのとき、コレクタ-エミッタ間電圧Vceは直流電源4の電源電圧に近い値であるが、重畳スイッチ151がオンになると、流れるコレクタ電流に応じてVceが低下してゆく。これにより、抵抗R3よりも重畳スイッチ151のエミッタ側に接続された基準信号導入線152L4の信号電位が上がって、コンデンサC3が充電されるようになり、コンデンサC3の充電電荷に応じて反転入力信号線152L2の信号電位が上がる。したがって、比較器U1のVin(-)の入力値が上昇して、比較器U1の出力Voutが増加する傾きが緩くなり、好適と推定される重畳電流I1bを流すのに必要十分な信号レベルの能動信号を維持できるようになる。 When the accumulated charge of the superimposition index capacitor C1 increases due to the start of the superimposition operation, the signal potential of the active signal output from the comparator U1 rises, and when the gate input of the superimposition switch 151 reaches the on voltage, the superimposition switch 151 turns on. Become. When the superimposition switch 151 is off, the collector-emitter voltage Vce is a value close to the power supply voltage of the DC power supply 4, but when the superimposition switch 151 is turned on, the Vce decreases according to the collector current flowing. As a result, the signal potential of the reference signal introduction line 152L4 connected to the emitter side of the superimposition switch 151 rises from the resistor R3, the capacitor C3 is charged, and the inverting input signal is charged according to the charge charge of the capacitor C3. The signal potential of line 152L2 rises. Therefore, the input value of Vin (-) of the comparator U1 rises, the slope of the increase of the output Vout of the comparator U1 becomes gentle, and the signal level is sufficient to flow the superposed current I1b presumed to be suitable. You will be able to maintain an active signal.
 上記のような重畳動作が開始されてから規定の重畳時間が経過すると、重畳信号Spがオフになり、重畳信号成形手段153からの重畳指示信号Sp′もオフになるので、重畳指標コンデンサC1およびコンデンサC3は放電され、比較器U1のVin(+)とVin(-)が0〔V〕に戻る。よって、比較器U1から重畳スイッチ151への能動信号もオフとなり、副一次コイル111bに重畳電流I1bが流れなくなる。 When the specified superimposition time elapses after the superimposition operation as described above is started, the superimposition signal Sp is turned off, and the superimposition instruction signal Sp'from the superimposition signal forming means 153 is also turned off. The capacitor C3 is discharged, and Vin (+) and Vin (−) of the comparator U1 return to 0 [V]. Therefore, the active signal from the comparator U1 to the superimposition switch 151 is also turned off, and the superimposition current I1b does not flow through the secondary primary coil 111b.
 重畳制御手段152aからの能動信号によって制御される重畳スイッチ151の異常状態を検出する異常状態検出手段154aは、重畳スイッチ151のコレクタ-エミッタ間電圧Vceを監視する。異常状態検出手段154aには、異常か否かを判定するための規制閾値として、異常判定用閾値が予め記憶させてある。正常な重畳動作が行われていれば、重畳スイッチ151のVce検出値が異常判定用閾値に達することはないが、点火プラグ2のプラグ電極間の負荷状態変化や直流電源4の電圧変動といった異常があると、Vce検出値が上がって異常判定用閾値に達する。すなわち、異常状態検出手段154aは、重畳スイッチ151のVce検出値が異常判定用閾値に達したことを異常状態の発生として検知し、異常状態を検知した旨を発熱抑制手段155aに通知する。 The abnormal state detecting means 154a for detecting the abnormal state of the superimposing switch 151 controlled by the active signal from the superimposing control means 152a monitors the collector-emitter voltage Vce of the superimposing switch 151. The abnormality state detecting means 154a stores in advance an abnormality determination threshold value as a regulation threshold value for determining whether or not there is an abnormality. If the normal superimposition operation is performed, the Vce detection value of the superimposition switch 151 does not reach the abnormality determination threshold value, but an abnormality such as a load state change between the plug electrodes of the spark plug 2 or a voltage fluctuation of the DC power supply 4 If there is, the Vce detection value rises and reaches the abnormality determination threshold value. That is, the abnormal state detecting means 154a detects that the Vce detection value of the superimposition switch 151 reaches the abnormality determination threshold value as the occurrence of the abnormal state, and notifies the heat generation suppressing means 155a that the abnormal state has been detected.
 発熱抑制手段155aは、発熱抑制信号線155L1を介して重畳指示信号線153L1と接続してあり、この重畳指示信号線153L1を接地ラインに短絡することができる。重畳指示信号線153L1が接地ラインに短絡されると、重畳指示信号Sp′がオンであっても、非反転入力信号線152L1の信号電位が接地電位に落ちるので、比較器U1から能動信号が出力されなくなり、重畳スイッチ151がオフになる。すなわち、異常状態検出手段154aから異常状態発生が通知された発熱抑制手段155aは、発熱抑制信号線155L1を接地ラインに短絡することにより、重畳スイッチ151への能動信号を遮断してオフにし、重畳スイッチ151自身の発熱を抑制するのである。なお、発熱抑制手段155aは、能動信号線152L3を接地ラインに短絡させて能動信号を遮断するようにしても良い。 The heat generation suppressing means 155a is connected to the superimposition instruction signal line 153L1 via the heat generation suppression signal line 155L1, and the superimposition instruction signal line 153L1 can be short-circuited to the ground line. When the superimposition instruction signal line 153L1 is short-circuited to the ground line, the signal potential of the non-inverting input signal line 152L1 drops to the ground potential even if the superimposition instruction signal Sp'is on, so that an active signal is output from the comparator U1. The superimposition switch 151 is turned off. That is, the heat generation suppressing means 155a notified by the abnormal state detecting means 154a that an abnormal state has occurred cuts off the active signal to the superimposition switch 151 by short-circuiting the heat generation suppression signal line 155L1 to the ground line, and superimposes the signal. It suppresses the heat generation of the switch 151 itself. The heat generation suppressing means 155a may short-circuit the active signal line 152L3 to the ground line to cut off the active signal.
 上記のように構成した重畳機能部15Aを備える内燃機関用点火装置1による重畳動作の一例を、図3に基づき説明する。図3において、左側に示す第1点火制御は重畳動作中に重畳スイッチ151の発熱が検出されなかった場合を示し、右側に示す第2点火制御は重畳動作中に重畳スイッチ151の発熱が検出された場合を示す。 An example of the superimposition operation by the ignition device 1 for an internal combustion engine including the superimposition function unit 15A configured as described above will be described with reference to FIG. In FIG. 3, the first ignition control shown on the left side shows the case where the heat generation of the superimposition switch 151 is not detected during the superimposition operation, and the second ignition control shown on the right side shows the case where the heat generation of the superimposition switch 151 is detected during the superimposition operation. Indicates the case.
 点火信号Siのオン・オフによって主一次コイル111aへの通電・遮断が実行され、高電圧が印加された点火プラグ2に火花放電が起きて、二次コイル112に二次電流I2が流れるようになる。例えば、点火信号Siがオフになった点火タイミングと同時に重畳信号Spをオンにして、重畳動作を開始する。なお、重畳動作の開始タイミングは、点火プラグ2に火花放電を起こした点火タイミング以降であれば良く、点火タイミングから若干の猶予期間を空けて、重畳動作を開始するようにしても良い。 The ignition signal Si is turned on and off to energize and shut off the main primary coil 111a, spark discharge occurs in the spark plug 2 to which a high voltage is applied, and the secondary current I2 flows through the secondary coil 112. Become. For example, the superimposition signal Sp is turned on at the same time as the ignition timing when the ignition signal Si is turned off, and the superimposition operation is started. The start timing of the superimposition operation may be after the ignition timing at which the spark plug 2 causes a spark discharge, and the superimposition operation may be started with a slight grace period from the ignition timing.
 重畳信号Spがオンになることで、重畳制御手段152aより能動信号が重畳スイッチ151のゲートに入力され、重畳スイッチ151がオンになり、副一次コイル111bに重畳電流I1bが流れ始める。重畳動作が開始されることにより、重畳電流I1bを流した副一次コイル111bから二次側に放電エネルギーが与えられるので、減少していた二次電流I2が増加し、点火プラグ2内の火花放電を好適に持続させることができる。 When the superimposition signal Sp is turned on, an active signal is input from the superimposition control means 152a to the gate of the superimposition switch 151, the superimposition switch 151 is turned on, and the superimposition current I1b starts to flow in the secondary primary coil 111b. When the superimposition operation is started, discharge energy is given to the secondary side from the secondary primary coil 111b through which the superimposition current I1b is passed, so that the reduced secondary current I2 increases and the spark discharge in the spark plug 2 Can be suitably sustained.
 第1点火制御のように、重畳電流I1bの増加に伴って異常状態検出手段154aに入力されるVce検出値が正常な態様で低下してゆけば、規定の重畳時間が経過するまでVce検出値が異常判定用閾値を超えることはない。この異常判定用閾値は、重畳動作開始後における経過時間で判定用の規制値を特定できる波形情報である。重畳動作開始により重畳スイッチ151が動作している間は、重畳スイッチ151の動作開始から時間経過に伴って変化するVce規制値の点群データあるいは連続した特性曲線を異常判定用閾値に設定する。これが重畳動作中の重畳スイッチ151に対する異常判定用基本波形となる。そして、重畳スイッチ151が動作開始した後のある時間におけるVce検出値が、当該時間における異常判定用閾値以上になっていると、重畳スイッチ151が発熱している蓋然性が高いと判定できる。 As in the first ignition control, if the Vce detection value input to the abnormal state detection means 154a decreases in a normal manner as the superimposition current I1b increases, the Vce detection value continues until the specified superimposition time elapses. Does not exceed the abnormality determination threshold. This abnormality determination threshold value is waveform information that can specify the regulation value for determination based on the elapsed time after the start of the superposition operation. While the superimposition switch 151 is operating due to the start of the superimposition operation, the point cloud data of the Vce regulation value or the continuous characteristic curve that changes with the passage of time from the start of the operation of the superimposition switch 151 is set as the abnormality determination threshold value. This is the basic waveform for determining an abnormality for the superimposition switch 151 during the superimposition operation. Then, when the Vce detection value at a certain time after the superimposition switch 151 starts operation is equal to or higher than the abnormality determination threshold value at that time, it can be determined that there is a high probability that the superimposition switch 151 is generating heat.
 なお、異常状態検出手段154aが異常判定用閾値とVce検出値との対比を開始するタイミングは、重畳信号Spがオンになった重畳開始タイミングT0でも良いが、本構成例では、重畳スイッチ151が動作してVce検出値が低下し始めた通電開始タイミングT1とした。かくすれば、重畳信号Spのオンタイミングから重畳電流I1bが流れ始めるまでの遅延時間のズレで誤検知が発生する可能性を低減できる。一方、重畳スイッチ151が動作していない期間であるT2から次回点火サイクルのT1(或いはT0)までの異常判定用閾値は設定しないでも良いが、例えば、重畳スイッチ151のコレクタに印加される電源電圧よりも適宜高い規制高電圧値に設定しておく。かくすれば、重畳動作を行っていない期間であっても、異常な高電圧が重畳スイッチ151に印加された危険な状態を異常状態検出手段154aによって検出することができる。ただし、重畳スイッチ151に危険な高電圧が印加された異常状態を異常状態検出手段154aが検出した場合、発熱抑制手段155aが動作しても有効な発熱抑制効果を得ることはできないので、異常検出履歴として内燃機関駆動制御装置3等へ送信しても良い。 The timing at which the abnormal state detection means 154a starts comparing the abnormality determination threshold value with the Vce detection value may be the superimposition start timing T0 when the superimposition signal Sp is turned on, but in this configuration example, the superimposition switch 151 is used. The energization start timing T1 was set when the operation started and the Vce detection value began to decrease. In this way, it is possible to reduce the possibility that erroneous detection will occur due to the difference in the delay time from the on-timing of the superimposed signal Sp to the start of the superimposed current I1b. On the other hand, the abnormality determination threshold value from T2, which is the period during which the superimposition switch 151 is not operating, to T1 (or T0) of the next ignition cycle may not be set, but for example, the power supply voltage applied to the collector of the superimposition switch 151. Set to a regulated high voltage value that is appropriately higher than that. In this way, the abnormal state detecting means 154a can detect a dangerous state in which an abnormally high voltage is applied to the superimposing switch 151 even during the period when the superimposing operation is not performed. However, when the abnormal state detecting means 154a detects an abnormal state in which a dangerous high voltage is applied to the superimposition switch 151, an effective heat generating suppressing effect cannot be obtained even if the heat generation suppressing means 155a operates, so that the abnormality is detected. The history may be transmitted to the internal combustion engine drive control device 3 or the like.
 また、高EGR燃焼必要時など、標準的な重畳制御時間(例えば、規定ON幅)よりも長い重畳制御時間の重畳信号Spに基づいて重畳制御を行う場合を考慮して、重畳スイッチ151の最長動作時間に合わせて、異常判定用基本波形を設定しておくことが望ましい。かくする場合、最長動作時間(例えば、図3中のT1からT2までの時間)よりも短い動作時間で重畳スイッチ151がオフになったとき、Vce検出値が異常判定用閾値を上回るため、異常状態検出手段154aで異常判定条件が成立してしまう。そこで、異常状態検出手段154aが重畳動作終了時のVce上昇を異常状態と判定しないようにして、重畳動作終了後に発熱抑制手段155aが無駄に放熱抑制動作を行うことが無いようにすることが望ましい。あるいは、重畳動作の終了タイミングで異常状態検出手段154aおよび発熱抑制手段155aへの動作用電源を遮断することで、次の重畳動作開始まで異常状態検出手段154aおよび発熱抑制手段155aを不能動化しておいても良い。 Further, in consideration of the case where the superimposition control is performed based on the superimposition signal Sp of the superimposition control time longer than the standard superimposition control time (for example, the specified ON width) such as when high EGR combustion is required, the maximum length of the superimposition switch 151 is taken into consideration. It is desirable to set the basic waveform for abnormality determination according to the operating time. In this case, when the superimposition switch 151 is turned off in an operation time shorter than the maximum operation time (for example, the time from T1 to T2 in FIG. 3), the Vce detection value exceeds the abnormality determination threshold value, which is an abnormality. The abnormality determination condition is satisfied by the state detecting means 154a. Therefore, it is desirable that the abnormal state detecting means 154a does not determine the Vce rise at the end of the superimposition operation as an abnormal state so that the heat generation suppressing means 155a does not uselessly perform the heat dissipation suppressing operation after the superimposing operation is completed. .. Alternatively, by shutting off the operation power supply to the abnormal state detecting means 154a and the heat generation suppressing means 155a at the end timing of the superimposing operation, the abnormal state detecting means 154a and the heat generating suppressing means 155a are disabled until the next superimposing operation is started. You can leave it.
 Vce検出値が異常判定用閾値に達することなく、規定の重畳時間が経過して重畳信号Spがオフになると、重畳制御手段152aからの能動信号が停止され、重畳スイッチ151がオフになって副一次コイル111bに重畳電流I1bが流れなくなる。すなわち、副一次コイル111bから二次側に放電エネルギーを与える重畳動作が終了するのである。重畳動作が終了すると、副一次コイル111bから二次側へ与えられていた放電エネルギーが消失するので、二次電流I2は通常値に戻り、時間経過に伴って更に低下してゆく。 When the superimposition signal Sp is turned off after the specified superimposition time elapses without the Vce detection value reaching the abnormality determination threshold value, the active signal from the superimposition control means 152a is stopped, the superimposition switch 151 is turned off, and the sub The superimposed current I1b does not flow through the primary coil 111b. That is, the superimposition operation of applying the discharge energy from the secondary primary coil 111b to the secondary side is completed. When the superimposition operation is completed, the discharge energy given to the secondary side from the secondary primary coil 111b disappears, so that the secondary current I2 returns to the normal value and further decreases with the passage of time.
 一方、重畳動作開始以降、重畳電流I1bの増加に伴って異常状態検出手段154aに入力されるVce検出値が正常な態様で低下せず、規定の重畳時間が経過する前にVce検出値が異常判定用閾値に達した場合、第2点火制御のような発熱抑制動作を行う。 On the other hand, after the start of the superimposition operation, the Vce detection value input to the abnormal state detecting means 154a does not decrease in a normal manner as the superimposition current I1b increases, and the Vce detection value becomes abnormal before the specified superimposition time elapses. When the determination threshold value is reached, a heat generation suppression operation such as the second ignition control is performed.
 点火プラグ2の電極間の負荷状態が変化し、負荷が軽くなったような場合(例えば、点火プラグ2の電極間で膨らんだ火花放電が吹き消えて、電極間を短経路で結ぶ火花放電に変化したような場合)、重畳スイッチ151のコレクタ-エミッタ間電圧Vceが上昇する。また、直流電源4として車両バッテリを用いる場合、バッテリ電圧の変動により電圧が高くなると、重畳スイッチ151のコレクタ-エミッタ間電圧Vceが上昇する。このような要因により、コレクタ-エミッタ間電圧Vceが上昇すると、重畳スイッチ151の内部抵抗による発熱が生じて、重畳スイッチ151が正常動作できなくなる危険性がある。 When the load state between the electrodes of the spark plug 2 changes and the load becomes lighter (for example, the spark discharge that swells between the electrodes of the spark plug 2 is blown out, resulting in a spark discharge that connects the electrodes in a short path. (When it seems to have changed), the collector-emitter voltage Vce of the superimposition switch 151 rises. Further, when a vehicle battery is used as the DC power supply 4, the collector-emitter voltage Vce of the superimposition switch 151 rises when the voltage rises due to fluctuations in the battery voltage. When the collector-emitter voltage Vce rises due to such a factor, heat is generated by the internal resistance of the superimposition switch 151, and there is a risk that the superimposition switch 151 cannot operate normally.
 したがって、第2点火制御のように、異常状態検出手段154aに入力されるVce検出値が正常な態様で低下せず、途中で増加に転じると、Vce検出値が異常判定用閾値に達することとなる。Vce検出値が異常判定用閾値に達すると、これを異常状態の発生として異常状態検出手段154aが検知し、発熱抑制手段155aが発熱抑制信号線155L1を接地ラインに短絡する。これが発熱抑制動作実行タイミングとなり、重畳スイッチ151への能動信号が遮断され、重畳スイッチ151がオフになるので、重畳スイッチ151自身の発熱が抑制される。 Therefore, as in the second ignition control, if the Vce detection value input to the abnormal state detection means 154a does not decrease in a normal manner and starts to increase in the middle, the Vce detection value reaches the abnormality determination threshold value. Become. When the Vce detection value reaches the abnormality determination threshold value, the abnormal state detecting means 154a detects this as the occurrence of an abnormal state, and the heat generation suppressing means 155a short-circuits the heat generation suppressing signal line 155L1 to the ground line. This is the execution timing of the heat generation suppression operation, the active signal to the superposition switch 151 is cut off, and the superimposition switch 151 is turned off, so that the heat generation of the superimposition switch 151 itself is suppressed.
 上記のような発熱抑制動作を伴う第2点火制御を行った点火サイクルでは、重畳動作によって二次側に必要十分な放電エネルギーを与えられなかったかもしれないが、重畳スイッチ151が自然放熱により回復すれば、次回の点火サイクルでは適正な重畳動作を行える可能性が高い。すなわち、重畳スイッチ151の発熱をいち早く判断して発熱抑制動作を行う内燃機関用点火装置1は、副一次コイル111bを用いた重畳放電を安定して行うことが可能となる。 In the ignition cycle in which the second ignition control accompanied by the heat generation suppression operation as described above is performed, the necessary and sufficient discharge energy may not be given to the secondary side by the superimposition operation, but the superimposition switch 151 recovers by natural heat dissipation. Then, there is a high possibility that proper superposition operation can be performed in the next ignition cycle. That is, the internal combustion engine ignition device 1 that quickly determines the heat generation of the superposition switch 151 and performs the heat generation suppression operation can stably perform the superimposition discharge using the secondary primary coil 111b.
 上述した第1構成例の重畳機能部15Aでは、重畳スイッチ151を停止させることを発熱抑制動作としたが、発熱抑制動作は、これに限定されるものではない。図4に、重畳スイッチ151を飽和領域で動作させることにより発熱抑制を行う第2構成例の重畳機能部15Bを示す。なお、重畳機能部15Aと同一構成については、同一符号を付して説明を省略する。 In the superimposition function unit 15A of the first configuration example described above, stopping the superimposition switch 151 is a heat generation suppression operation, but the heat generation suppression operation is not limited to this. FIG. 4 shows a superimposition function unit 15B of a second configuration example in which heat generation is suppressed by operating the superimposition switch 151 in a saturation region. The same configuration as that of the superimposition function unit 15A is designated by the same reference numerals and the description thereof will be omitted.
 発熱抑制手段155bは、重畳指示信号線153L1と接続された発熱抑制信号線155L1の電位を重畳指示信号Sp′のオン電圧よりも適宜高い発熱抑制電位に上げることができる。発熱抑制手段155bによって発熱抑制信号線155L1の電位が発熱抑制電位に上がると、重畳指標コンデンサC1が発熱抑制電位まで充電されて比較器U1のVin(+)の入力電位が高まり、比較器U1の出力Voutである能動信号の電位も高くなる。ゲート入力となる能動信号の電位が高くなり、重畳スイッチ151のゲート-エミッタ間電圧Vgeがしきい値を超えると、コレクタ電流がそれ以上増加しない飽和状態となる。重畳スイッチ151を飽和領域で動作させれば、コレクタ-エミッタ間電圧Vceが低下して、ドリフト層部分の抵抗が大幅に下がるので、重畳スイッチ151の発熱が抑制される。 The heat generation suppression means 155b can raise the potential of the heat generation suppression signal line 155L1 connected to the superposition instruction signal line 153L1 to a heat generation suppression potential appropriately higher than the on voltage of the superposition instruction signal Sp'. When the potential of the heat generation suppression signal line 155L1 rises to the heat generation suppression potential by the heat generation suppression means 155b, the superimposition index capacitor C1 is charged to the heat generation suppression potential, the input potential of Vin (+) of the comparator U1 increases, and the input potential of Vin (+) of the comparator U1 increases. The potential of the active signal, which is the output Vout, also increases. When the potential of the active signal serving as the gate input becomes high and the gate-emitter voltage Vge of the superimposition switch 151 exceeds the threshold value, the collector current becomes saturated without further increase. When the superimposition switch 151 is operated in the saturation region, the collector-emitter voltage Vce is lowered and the resistance of the drift layer portion is significantly lowered, so that the heat generation of the superimposition switch 151 is suppressed.
 したがって、異常状態検出手段154aが異常状態を検出したタイミングで、発熱抑制手段155bが重畳指示信号線153L1を発熱抑制電位に上げる発熱抑制動作を実行すると、重畳スイッチ151の発熱を抑制できるのである。なお、発熱抑制手段155bによる発熱抑制動作は、重畳動作の終了タイミングと同期して終了させる必要がある。そこで、例えば重畳信号検知線155L2を介して重畳信号Spのオン・オフを発熱抑制手段155bで検知できるようにし、重畳信号Spがオフになったタイミングを検知した発熱抑制手段155bが、自発的に発熱抑制信号線155L1への電圧印加を終了させれば良い。かくすれば、重畳動作の終了タイミングと同期させて発熱抑制動作を終了させることができる。 Therefore, when the abnormal state detecting means 154a detects the abnormal state and the heat generation suppressing means 155b executes the heat generation suppressing operation for raising the superimposition instruction signal line 153L1 to the heat generation suppressing potential, the heat generation of the superimposing switch 151 can be suppressed. The heat generation suppression operation by the heat generation suppression means 155b needs to be completed in synchronization with the end timing of the superposition operation. Therefore, for example, the heat generation suppressing means 155b can detect the on / off of the superimposing signal Sp via the superimposing signal detection line 155L2, and the heat generation suppressing means 155b that detects the timing when the superimposing signal Sp is turned off voluntarily. The voltage application to the heat generation suppression signal line 155L1 may be terminated. In this way, the heat generation suppression operation can be ended in synchronization with the end timing of the superimposition operation.
 上記のように構成した重畳機能部15Bを備える内燃機関用点火装置1による重畳動作の一例を、図5に基づき説明する。図5においても、左側に示す第1点火制御は重畳動作中に重畳スイッチ151の発熱が検出されなかった場合を示し、右側に示す第2点火制御は重畳動作中に重畳スイッチ151の発熱が検出された場合を示す。 An example of the superimposition operation by the ignition device 1 for an internal combustion engine including the superimposition function unit 15B configured as described above will be described with reference to FIG. Also in FIG. 5, the first ignition control shown on the left side shows the case where the heat generation of the superimposition switch 151 is not detected during the superimposition operation, and the second ignition control shown on the right side detects the heat generation of the superimposition switch 151 during the superimposition operation. Indicates the case where it is done.
 第1点火制御では、重畳スイッチ151の発熱が検知されない(Vce検出値が異常判定用閾値に達しない)ので、前述した第1構成例の重畳機能部15Aによる重畳動作と同様に、副一次コイル111bへの通電により二次側へ与える放電エネルギーを高める重畳動作が行われる。 In the first ignition control, the heat generation of the superimposition switch 151 is not detected (the Vce detection value does not reach the abnormality determination threshold value), so that the subprimary coil is the same as the superimposition operation by the superimposition function unit 15A of the first configuration example described above. A superposition operation is performed in which the discharge energy given to the secondary side is increased by energizing the 111b.
 一方、第2点火制御では、重畳電流I1bの増加に伴って異常状態検出手段154aに入力されるVce検出値が正常な態様で低下せず、規定の重畳時間が経過する前にVce検出値が異常判定用閾値に達してしまい、これが発熱抑制動作実行タイミングとなる。すなわち、Vce検出値が異常判定用閾値に達すると、これを異常状態の発生として異常状態検出手段154aが検知し、発熱抑制手段155bが発熱抑制信号線155L1を介して重畳指示信号線153L1の電位を発熱抑制電位に上げる。 On the other hand, in the second ignition control, the Vce detection value input to the abnormal state detection means 154a does not decrease in a normal manner as the superimposition current I1b increases, and the Vce detection value becomes higher before the specified superimposition time elapses. The threshold value for abnormality determination is reached, and this is the execution timing of the heat generation suppression operation. That is, when the Vce detection value reaches the abnormality determination threshold value, the abnormal state detecting means 154a detects this as the occurrence of an abnormal state, and the heat generation suppressing means 155b transmits the potential of the superposed instruction signal line 153L1 via the heat generation suppressing signal line 155L1. To the heat generation suppression potential.
 これにより、比較器U1の出力Voutの信号電位が高まって、重畳スイッチ151が飽和領域で動作するようになり、Vce検出値は低くなる(理想的には、0〔V〕になる)。重畳スイッチ151が飽和領域で動作することにより、重畳電流I1bが増加し、二次コイル112の二次電流I2も増加する。規定の重畳時間が経過して重畳信号Spがオフになると、発熱抑制手段155bによる発熱抑制動作も終了し、重畳制御手段152aからの能動信号がオフになって重畳スイッチ151もオフとなり、副一次コイル111bに重畳電流I1bが流れなくなる。これにより、副一次コイル111bから二次側に与えられていた放電エネルギーが消失するので、二次電流I2は通常値に戻り、時間経過に伴って低下してゆく。 As a result, the signal potential of the output Vout of the comparator U1 increases, the superimposition switch 151 operates in the saturation region, and the Vce detection value becomes low (ideally, it becomes 0 [V]). When the superimposition switch 151 operates in the saturation region, the superimposition current I1b increases, and the secondary current I2 of the secondary coil 112 also increases. When the superimposition signal Sp is turned off after the specified superimposition time has elapsed, the heat generation suppression operation by the heat generation suppression means 155b is also terminated, the active signal from the superposition control means 152a is turned off, the superimposition switch 151 is also turned off, and the secondary primary The superimposed current I1b does not flow through the coil 111b. As a result, the discharge energy given to the secondary side from the secondary primary coil 111b disappears, so that the secondary current I2 returns to the normal value and decreases with the passage of time.
 なお、発熱抑制手段155bによる発熱抑制動作を行うと、重畳スイッチ151を飽和領域で動作させると共に、重畳電流I1bを増加させるので、電力消費を高めてしまう。そこで、発熱抑制手段155bによる発熱抑制動作は、重畳動作の終了タイミングまでとせず、重畳スイッチ151が正常動作可能な状態に復帰した蓋然性の高い発熱抑制保持時間が経過したときに発熱抑制動作を終了させるようにしても良い。発熱抑制保持時間が経過する前に重畳動作の終了タイミングとなったときは、重畳動作の終了タイミングに合わせて発熱抑制動作を終了させれば良い。発熱抑制保持時間が経過した後にも重畳動作が継続していた場合には、重畳指示信号線153L1の電位が重畳指示信号Sp′の電位に戻るので、それに応じて能動信号の電位が下がり、副一次コイル111bに流れる重畳電流I1bを低下させ、電力消費を抑えられる。 When the heat generation suppression operation by the heat generation suppression means 155b is performed, the superimposition switch 151 is operated in the saturation region and the superimposition current I1b is increased, so that the power consumption is increased. Therefore, the heat generation suppression operation by the heat generation suppression means 155b is not performed until the end timing of the superposition operation, and the heat generation suppression operation is terminated when the heat generation suppression holding time, which is highly probable that the superposition switch 151 has returned to the normal operation state, has elapsed. You may let it. If the end timing of the superimposition operation is reached before the heat generation suppression holding time elapses, the heat generation suppression operation may be ended in accordance with the end timing of the superimposition operation. If the superimposition operation continues even after the heat generation suppression holding time has elapsed, the potential of the superimposition instruction signal line 153L1 returns to the potential of the superimposition instruction signal Sp', so that the potential of the active signal decreases accordingly, and the sub The superimposed current I1b flowing through the primary coil 111b can be reduced, and power consumption can be suppressed.
 上述した第1構成例の重畳機能部15Aや第2構成例の重畳機能部15Bでは、重畳スイッチ151を停止させたり、重畳スイッチ151を飽和流域で動作させたりすることで、重畳電流I1bを急激に増減させる発熱抑制動作とした。図6に示す第3構成例の重畳機能部15Cは、緩やかに重畳電流I1bを増減させるようにして、発熱抑制を行うものである。なお、図6において、重畳機能部15A,15Bと同一構成については、同一符号を付して説明を省略する。 In the superimposition function unit 15A of the first configuration example and the superimposition function unit 15B of the second configuration example described above, the superimposition current I1b is suddenly increased by stopping the superimposition switch 151 or operating the superimposition switch 151 in the saturated basin. The heat generation suppression operation was performed to increase or decrease the amount. The superimposing function unit 15C of the third configuration example shown in FIG. 6 suppresses heat generation by gradually increasing or decreasing the superimposing current I1b. In FIG. 6, the same configurations as those of the superimposing function units 15A and 15B are designated by the same reference numerals, and the description thereof will be omitted.
 前述したように、重畳制御手段152aの重畳指標コンデンサC1は、主一次コイル111aへの通電遮断以降に重畳信号Spがオンになることで充電を開始するコンデンサである。そして、重畳指標コンデンサC1の蓄積電荷に応じた電位が比較器U1の非反転入力となることで、比較器U1の出力Voutである能動信号は、重畳指標コンデンサC1の蓄積電荷に応じた上昇カーブを描く。このような上昇カーブで変化する能動信号をゲートに受けて動作する重畳スイッチ151は、能動信号の上昇カーブに応じてコレクタ電流が上昇してゆく。すなわち、充電開始後における重畳指標コンデンサC1の電荷蓄積状態を指標として生成した能動信号を重畳スイッチ151へ供給することで、時間経過に伴う重畳電流I1bの増加状態をコントロールできるのである。よって、重畳指標コンデンサC1の蓄積電荷量の増減をコントロールできれば、重畳電流I1bの増減をコントロールすることが可能となる。 As described above, the superimposition index capacitor C1 of the superimposition control means 152a is a capacitor that starts charging when the superimposition signal Sp is turned on after the energization of the main primary coil 111a is cut off. Then, the potential corresponding to the accumulated charge of the superimposition index capacitor C1 becomes the non-inverting input of the comparator U1, so that the active signal which is the output Vout of the comparator U1 has an ascending curve corresponding to the accumulated charge of the superimposition index capacitor C1. Draw. The superimposition switch 151 that operates by receiving an active signal that changes in such an ascending curve at the gate increases the collector current according to the ascending curve of the active signal. That is, by supplying the active signal generated by using the charge accumulation state of the superimposition index capacitor C1 as an index after the start of charging to the superimposition switch 151, it is possible to control the increase state of the superimposition current I1b with the passage of time. Therefore, if the increase / decrease in the accumulated charge amount of the superimposition index capacitor C1 can be controlled, the increase / decrease in the superimposition current I1b can be controlled.
 そこで、発熱抑制手段155cは、異常状態検出手段154cが異常状態を検出したとき、発熱抑制信号線155L1を介して重畳指示信号線153L1の電位を重畳指示信号Sp′の電位よりも十分に低い低減電位に下げる発熱抑制動作を行う。これにより、重畳指標コンデンサC1が放電して、比較器U1の出力Voutである能動信号は、重畳指標コンデンサC1の放電に応じた下降カーブを描く。このような下降カーブで変化する能動信号をゲートに受けて動作する重畳スイッチ151は、能動信号の下降カーブに応じてコレクタ電流が下降してゆく。すなわち、発熱抑制手段155cによる発熱抑制動作で重畳電流I1bが低減されるので、重畳スイッチ151の発熱を抑制できるのである。 Therefore, when the abnormal state detecting means 154c detects the abnormal state, the heat generation suppressing means 155c reduces the potential of the superimposing instruction signal line 153L1 via the heat generation suppressing signal line 155L1 to be sufficiently lower than the potential of the superimposing instruction signal Sp'. Performs heat generation suppression operation to lower the potential. As a result, the superimposition index capacitor C1 is discharged, and the active signal, which is the output Vout of the comparator U1, draws a downward curve according to the discharge of the superimposition index capacitor C1. The superimposition switch 151, which operates by receiving an active signal that changes in such a downward curve at the gate, causes the collector current to decrease according to the downward curve of the active signal. That is, since the superposed current I1b is reduced by the heat generation suppressing operation by the heat generation suppressing means 155c, the heat generation of the superimposing switch 151 can be suppressed.
 なお、発熱抑制手段155cによる発熱抑制動作は、重畳指示信号線153L1の電位を極く短時間で一気に低減電位まで下げて重畳指標コンデンサC1の放電時間を短くしても良いし、徐々に低減電位まで下げて重畳指標コンデンサC1の放電時間を長くしても良い。また、発熱抑制手段155cが行う発熱抑制動作は、重畳信号Spがオフになる重畳動作終了タイミングまで継続させても良いし、重畳スイッチ151の発熱が抑制されたと看做し得る発熱抑制動作解除条件が成立したときに終了させても良い。本構成例では、重畳抑制動作の開始から、重畳スイッチ151の発熱が抑制されたと看做し得る所定時間幅の期間(発熱抑制動作実行期間)が経過したことを発熱抑制動作解除条件とした。かくすれば、発熱抑制動作の開始から発熱抑制動作実行期間が経過したとき、重畳動作が継続中(重畳信号Spがオン)であれば、重畳指示信号線153L1の電位は再び重畳指示信号Sp′の電位に戻るので、改めて重畳指標コンデンサC1の充電を開始できる。これにより、重畳制御手段152aから出力される能動信号の電位が上昇し、正常動作が可能な状態に戻った蓋然性の高い重畳スイッチ151のコレクタ電流を増加させるので、二次側に与える放電エネルギーを再び高めることができる。 In the heat generation suppression operation by the heat generation suppression means 155c, the potential of the superposition instruction signal line 153L1 may be lowered to the reduction potential at once in a very short time to shorten the discharge time of the superposition index capacitor C1, or the reduction potential may be gradually reduced. The discharge time of the superimposition index capacitor C1 may be lengthened by lowering to. Further, the heat generation suppression operation performed by the heat generation suppression means 155c may be continued until the end timing of the superposition operation when the superimposition signal Sp is turned off, or the heat generation suppression operation release condition which can be regarded as suppressing the heat generation of the superposition switch 151. May be terminated when is satisfied. In this configuration example, the heat generation suppression operation release condition is that a predetermined time width period (heat generation suppression operation execution period) that can be regarded as suppressing the heat generation of the superposition switch 151 has elapsed from the start of the superposition suppression operation. Thus, when the heat generation suppression operation execution period elapses from the start of the heat generation suppression operation, if the superposition operation is continuing (superimposition signal Sp is on), the potential of the superimposition instruction signal line 153L1 is again the superimposition instruction signal Sp ′. Since the potential returns to the above potential, charging of the superimposition index capacitor C1 can be started again. As a result, the potential of the active signal output from the superimposition control means 152a rises, and the collector current of the superimposition switch 151, which is highly likely to have returned to a state in which normal operation is possible, is increased, so that the discharge energy given to the secondary side can be increased. Can be raised again.
 上記のように構成した重畳機能部15Cを備える内燃機関用点火装置1による重畳動作の一例を、図7に基づき説明する。図7においても、左側に示す第1点火制御は重畳動作中に重畳スイッチ151の発熱が検出されなかった場合を示し、右側に示す第2点火制御は重畳動作中に重畳スイッチ151の発熱が検出された場合を示す。 An example of the superimposition operation by the ignition device 1 for an internal combustion engine including the superimposition function unit 15C configured as described above will be described with reference to FIG. 7. Also in FIG. 7, the first ignition control shown on the left side shows the case where the heat generation of the superimposition switch 151 is not detected during the superimposition operation, and the second ignition control shown on the right side detects the heat generation of the superimposition switch 151 during the superimposition operation. Indicates the case where it is done.
 第1点火制御では、重畳スイッチ151の発熱が検知されない(Vce検出値が異常判定用閾値に達しない)ので、前述した第1,第2構成例の重畳機能部15A,15Bによる重畳動作と同様に、副一次コイル111bへの通電により二次側へ与える放電エネルギーを高める重畳動作が行われる。 In the first ignition control, the heat generation of the superimposition switch 151 is not detected (the Vce detection value does not reach the abnormality determination threshold value), so that it is the same as the superimposition operation by the superimposition function units 15A and 15B of the first and second configuration examples described above. In addition, a superposition operation is performed to increase the discharge energy given to the secondary side by energizing the secondary primary coil 111b.
 一方、第2点火制御では、重畳電流I1bの増加に伴って異常状態検出手段154cに入力されるVce検出値が正常な態様で低下せず、規定の重畳時間が経過する前にVce検出値が異常判定用閾値に達したとき、発熱抑制動作実行タイミングとなる。Vce検出値が異常判定用閾値に達すると、これを異常状態の発生として異常状態検出手段154cが検知し、発熱抑制手段155cが発熱抑制信号線155L1を介して重畳指示信号線153L1の電位を低減電位に下げる。 On the other hand, in the second ignition control, the Vce detection value input to the abnormal state detecting means 154c does not decrease in a normal manner as the superimposition current I1b increases, and the Vce detection value becomes higher before the specified superimposition time elapses. When the abnormality determination threshold value is reached, the heat generation suppression operation execution timing is reached. When the Vce detection value reaches the abnormality determination threshold value, the abnormal state detecting means 154c detects this as the occurrence of an abnormal state, and the heat generation suppressing means 155c reduces the potential of the superposed instruction signal line 153L1 via the heat generation suppressing signal line 155L1. Lower to potential.
 これにより、重畳指標コンデンサC1の放電が始まり、発熱抑制実行期間が経過するまで重畳指標コンデンサC1の蓄積電荷は減って行き、比較器U1の出力Voutの信号電位も低下するので、重畳スイッチ151のコレクタ電流も下がってゆく。発熱抑制実行期間中、重畳スイッチ151の発熱は抑制されるものの、重畳電流I1bが低下しただけ二次側に与える放電エネルギーも低下し、二次電流I2も下がってしまう。しかしながら、重畳時間が経過する前(重畳信号Spがオフになる前)に発熱抑制実行期間が経過すれば、熱抑制手段155cによる発熱抑制動作の終了後に、再び、重畳指示コンデンサC1の電荷蓄積状態を指標とした重畳スイッチ151の動作制御が実行される。 As a result, the discharge of the superimposition index capacitor C1 starts, the accumulated charge of the superimposition index capacitor C1 decreases until the heat generation suppression execution period elapses, and the signal potential of the output Vout of the comparator U1 also decreases. The collector current also goes down. During the heat generation suppression execution period, the heat generation of the superimposition switch 151 is suppressed, but the discharge energy given to the secondary side also decreases as the superimposition current I1b decreases, and the secondary current I2 also decreases. However, if the heat generation suppression execution period elapses before the superimposition time elapses (before the superimposition signal Sp is turned off), the charge accumulation state of the superimposition indicating capacitor C1 is again after the heat generation suppression operation by the heat suppression means 155c is completed. The operation control of the superimposition switch 151 is executed using the above as an index.
 発熱抑制手段155cによる発熱抑制動作が終了し、重畳指示コンデンサC1の電荷蓄積状態を指標とした重畳スイッチ151の動作制御が再開された場合、改めて重畳スイッチ151の異常監視を行うことが望ましい。しかしながら、重畳動作の開始に伴う重畳電流I1bの通電タイミングT1から異常判定用基本波形での異常監視をT2まで継続しても、発熱抑制動作終了後の異常判定を適切に行うことはできない。そこで、異常状態検出手段154cは、Vce検出値が異常判定用閾値に達して異常状態を検出したタイミングT2′にて、重畳スイッチ151に対する異常状態検出動作を一旦リセットする。これにより、異常状態検出手段154cがVce検出値と対比する異常判定用閾値は、重畳スイッチ151が動作していないときと同じ規制高電圧値に戻る。その後、発熱抑制動作を終了した発熱抑制手段155cが異常状態検出手段154cへ異常検出再開指示を出すタイミングT1′から、異常状態検出手段154cは改めて異常判定用基本波形を異常判定用閾値とした異常判定を開始する。 When the heat generation suppressing operation by the heat generation suppressing means 155c is completed and the operation control of the superimposition switch 151 using the charge accumulation state of the superimposition indicating capacitor C1 as an index is restarted, it is desirable to monitor the abnormality of the superimposition switch 151 again. However, even if the abnormality monitoring with the abnormality determination basic waveform is continued from the energization timing T1 of the superimposed current I1b accompanying the start of the superposition operation to T2, the abnormality determination after the end of the heat generation suppression operation cannot be appropriately performed. Therefore, the abnormal state detecting means 154c temporarily resets the abnormal state detecting operation for the superimposition switch 151 at the timing T2'when the Vce detection value reaches the abnormality determination threshold value and detects the abnormal state. As a result, the abnormality determination threshold value that the abnormality state detecting means 154c compares with the Vce detection value returns to the same regulated high voltage value as when the superimposition switch 151 is not operating. After that, from the timing T1'when the heat generation suppressing means 155c, which has finished the heat generation suppressing operation, issues an abnormality detection restart instruction to the abnormal state detecting means 154c, the abnormal state detecting means 154c again sets the abnormality determination basic waveform as the abnormality determination threshold value. Start the judgment.
 発熱抑制手段155cによる発熱抑制動作が終了した後、発熱が抑制された重畳スイッチ151が正常動作可能な状態に戻っていれば、Vce検出値が異常判定用閾値に達することはないので、異常状態検出手段154cによる異常状態検出は無く、重畳動作が継続される。なお、重畳スイッチ151が未だ正常動作に戻っていなかった場合には、再びVce検出値が異常判定用閾値に達してしまい、異常状態検出手段154cによって異常状態の発生が検出されるため、再び発熱抑制手段155cによる発熱抑制動作が実行される可能性がある。 If the superposition switch 151 in which heat generation is suppressed returns to a state in which normal operation is possible after the heat generation suppression operation by the heat generation suppression means 155c is completed, the Vce detection value does not reach the abnormality determination threshold value, so that it is in an abnormal state. There is no abnormal state detection by the detection means 154c, and the superimposition operation is continued. If the superimposition switch 151 has not yet returned to the normal operation, the Vce detection value reaches the abnormality determination threshold value again, and the abnormality state detection means 154c detects the occurrence of the abnormality state, so that heat is generated again. There is a possibility that the heat generation suppressing operation by the suppressing means 155c is executed.
 規定の重畳時間が経過して重畳信号Spがオフになると、重畳制御手段152aからの能動信号がオフになって重畳スイッチ151もオフとなり、副一次コイル111bに重畳電流I1bが流れなくなる。これにより、副一次コイル111bから二次側に与えられていた放電エネルギーが消失するので、二次電流I2は通常値に戻り、時間経過に伴って低下してゆく。 When the superimposition signal Sp is turned off after the specified superimposition time elapses, the active signal from the superimposition control means 152a is turned off, the superimposition switch 151 is also turned off, and the superimposition current I1b does not flow in the secondary primary coil 111b. As a result, the discharge energy given to the secondary side from the secondary primary coil 111b disappears, so that the secondary current I2 returns to the normal value and decreases with the passage of time.
 以上、本発明に係る内燃機関用点火装置の実施形態を添付図面に基づいて説明したが、本発明は、この実施形態のみに限定されるものではなく、特許請求の範囲に記載の構成を変更しない範囲で、公知既存の等価な技術手段を転用することにより実施しても構わない。 Although the embodiment of the ignition device for an internal combustion engine according to the present invention has been described above based on the accompanying drawings, the present invention is not limited to this embodiment, and the configuration described in the claims is changed. It may be carried out by diverting known and existing equivalent technical means to the extent that it does not.
 1    内燃機関用点火装置
 10   点火コイルユニット
 11   点火コイル
 111a 主一次コイル
 111b 副一次コイル
 112  二次コイル
 13   点火スイッチ
 15   重畳機能部
 151  重畳スイッチ
 152  重畳制御手段
 154  異常状態検出手段
 155  発熱抑制手段
 2    点火プラグ
 3    内燃機関駆動制御装置
 4    直流電源
1 Ignition system for internal combustion engine 10 Ignition coil unit 11 Ignition coil 111a Main primary coil 111b Secondary primary coil 112 Secondary coil 13 Ignition switch 15 Superimposition function unit 151 Superimposition switch 152 Superimposition control means 154 Abnormal state detection means 155 Heat generation suppression means 2 Ignition Plug 3 Internal engine drive controller 4 DC power supply

Claims (6)

  1.  点火制御手段からの点火信号のオン・オフによって点火コイルへの通電制御を行うことで、点火コイルの二次側に放電エネルギーを与えて点火プラグに火花放電を起こさせる内燃機関用点火装置において、
     前記点火コイルは、前記点火信号がオンで行われる主一次電流の通電により順方向の磁束量が増加し、前記点火信号がオフになって前記主一次電流を遮断することにより前記順方向の磁束量が減少する主一次コイルと、該主一次コイルに対する通電遮断以降の放電期間内に重畳電流を流すことにより、前記順方向と逆の遮断方向に磁束を発生させる副一次コイルと、一端側が前記点火プラグと接続され、前記主一次コイルと前記副一次コイルの磁束変化が作用して放電エネルギーが与えられる二次コイルと、を有し、
     入力される能動信号に応じて前記副一次コイルへの通電量を増減させる能動素子で構成し、前記副一次コイルへの通電・遮断を行うと共に、前記副一次コイルへの通電量を変えることで、前記遮断方向の磁束量を変化させる副一次コイル通電手段と、
     前記主一次コイルへの通電遮断以降に、前記能動信号を前記副一次コイル通電手段へ送って能動動作させる重畳制御手段と、
     前記副一次コイル通電手段が発熱により正常動作できない危険性がある異常状態を検出する異常状態検出手段と、
     前記異常状態検出手段が前記異常状態を検出することに基づいて、前記副一次コイル通電手段の発熱を抑える発熱抑制手段と、
     を備えることを特徴とする内燃機関用点火装置。
    In an ignition device for an internal combustion engine, which applies discharge energy to the secondary side of the ignition coil to cause spark discharge in the ignition plug by controlling the energization of the ignition coil by turning on / off the ignition signal from the ignition control means.
    In the ignition coil, the amount of forward magnetic flux increases due to the energization of the main primary current performed when the ignition signal is on, and the ignition signal is turned off to cut off the main primary current, whereby the forward magnetic flux is generated. The main primary coil whose amount is reduced, the sub-primary coil that generates magnetic flux in the breaking direction opposite to the forward direction by passing a superimposed current within the discharge period after the energization cutoff for the main primary coil, and the one end side are described above. It has a secondary coil that is connected to an ignition plug and that is given discharge energy by the action of changes in the magnetic flux of the main primary coil and the secondary primary coil.
    It is composed of active elements that increase or decrease the amount of electricity applied to the sub-primary coil according to the input active signal, and by energizing and shutting off the sub-primary coil and changing the amount of electricity applied to the sub-primary coil. , The sub-primary coil energizing means that changes the amount of magnetic flux in the breaking direction,
    A superimposition control means that sends the active signal to the sub-primary coil energizing means to actively operate after the energization of the main primary coil is cut off.
    An abnormal state detecting means for detecting an abnormal state in which there is a risk that the secondary primary coil energizing means may not operate normally due to heat generation, and an abnormal state detecting means.
    Based on the abnormality state detecting means detecting the abnormal state, the heat generation suppressing means for suppressing the heat generation of the secondary primary coil energizing means, and the heat generation suppressing means.
    An ignition device for an internal combustion engine.
  2.  前記異常状態検出手段は、前記副一次コイル通電手段を構成する能動素子のコレクタ-エミッタ間電圧Vceが、予め定めた規制閾値に達することで前記異常状態を判定するようにしたことを特徴とする請求項1に記載の内燃機関用点火装置。 The abnormal state detecting means is characterized in that the abnormal state is determined when the collector-emitter voltage Vce of the active element constituting the sub-primary coil energizing means reaches a predetermined regulation threshold value. The ignition device for an internal combustion engine according to claim 1.
  3.  前記発熱抑制手段は、前記副一次コイルへの通電を遮断することで、前記副一次コイル通電手段の発熱を抑えるようにしたことを特徴とする請求項1または請求項2に記載の内燃機関用点火装置。 The internal combustion engine according to claim 1 or 2, wherein the heat generation suppressing means suppresses heat generation of the secondary primary coil energizing means by shutting off the energization of the sub primary coil. Ignition device.
  4.  前記発熱抑制手段は、前記重畳制御手段より出力される能動信号を停止させ、前記副一次コイル通電手段による前記副一次コイルへの通電を遮断するようにしたことを特徴とする請求項3に記載の内燃機関用点火装置。 The third aspect of the present invention is characterized in that the heat generation suppressing means stops the active signal output from the superimposition control means and cuts off the energization of the sub-primary coil by the sub-primary coil energizing means. Ignition system for internal combustion engines.
  5.  前記発熱抑制手段は、前記重畳制御手段より出力される能動信号を変化させ、前記副一次コイル通電手段を構成する能動素子を飽和領域で動作させることにより、前記副一次コイル通電手段の発熱を抑えるようにしたことを特徴とする請求項1または請求項2に記載の内燃機関用点火装置。 The heat generation suppressing means suppresses heat generation of the sub-primary coil energizing means by changing the active signal output from the superimposition control means and operating the active element constituting the sub-primary coil energizing means in a saturation region. The ignition device for an internal combustion engine according to claim 1 or 2, wherein the ignition device for an internal combustion engine is described.
  6.  前記重畳制御手段は、前記主一次コイルへの通電遮断以降に充電を開始するコンデンサを備え、充電開始後における前記コンデンサの電荷蓄積状態を指標として生成した前記能動信号を前記副一次コイル通電手段へ出力することで、時間経過に伴う重畳電流の増加制御を行うものとし、
     前記発熱抑制手段は、前記異常状態検出手段が前記異常状態を検出したとき、前記重畳制御手段が備える前記コンデンサの電荷蓄積量を低下させて能動信号を変化させることにより、前記副一次コイル通電手段の発熱を抑えるようにしたことを特徴とする請求項1または請求項2に記載の内燃機関用点火装置。
    The superimposition control means includes a capacitor that starts charging after the energization of the main primary coil is cut off, and sends the active signal generated using the charge accumulation state of the capacitor as an index to the sub-primary coil energization means after the start of charging. By outputting, it is assumed that the increase control of the superimposed current with the passage of time is performed.
    When the abnormal state detecting means detects the abnormal state, the heat generation suppressing means reduces the charge accumulation amount of the capacitor included in the superimposition control means to change the active signal, thereby causing the secondary primary coil energizing means. The ignition device for an internal combustion engine according to claim 1 or 2, wherein the heat generation is suppressed.
PCT/JP2019/038694 2019-10-01 2019-10-01 Internal combustion engine ignition device WO2021064851A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021550802A JPWO2021064851A1 (en) 2019-10-01 2019-10-01
PCT/JP2019/038694 WO2021064851A1 (en) 2019-10-01 2019-10-01 Internal combustion engine ignition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/038694 WO2021064851A1 (en) 2019-10-01 2019-10-01 Internal combustion engine ignition device

Publications (1)

Publication Number Publication Date
WO2021064851A1 true WO2021064851A1 (en) 2021-04-08

Family

ID=75337825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038694 WO2021064851A1 (en) 2019-10-01 2019-10-01 Internal combustion engine ignition device

Country Status (2)

Country Link
JP (1) JPWO2021064851A1 (en)
WO (1) WO2021064851A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045514A (en) * 2006-08-18 2008-02-28 Hitachi Ltd Ignition device for internal combustion engine
JP2016169727A (en) * 2015-03-09 2016-09-23 富士電機株式会社 Semiconductor device
JP2019143507A (en) * 2018-02-19 2019-08-29 日立オートモティブシステムズ阪神株式会社 Ignition device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045514A (en) * 2006-08-18 2008-02-28 Hitachi Ltd Ignition device for internal combustion engine
JP2016169727A (en) * 2015-03-09 2016-09-23 富士電機株式会社 Semiconductor device
JP2019143507A (en) * 2018-02-19 2019-08-29 日立オートモティブシステムズ阪神株式会社 Ignition device for internal combustion engine

Also Published As

Publication number Publication date
JPWO2021064851A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
JP6375452B2 (en) Ignition device for internal combustion engine and ignition control method for internal combustion engine ignition device
WO2015080270A1 (en) Ignition device
JP7012830B2 (en) Ignition system for internal combustion engine
US10364787B2 (en) Discharge stopping device
JP6273988B2 (en) Ignition device for internal combustion engine
WO2019102976A1 (en) Ignition device for internal combustion engine, and control device for internal combustion engine
JP2018084209A (en) Ignition device for internal combustion engine
JP6992198B2 (en) Ignition system for internal combustion engine
WO2021064851A1 (en) Internal combustion engine ignition device
JP6536155B2 (en) Ignition system for internal combustion engine
JP6337584B2 (en) Ignition device
JP6739644B2 (en) Ignition device for internal combustion engine
JP6451876B2 (en) Ignition device
JP6381008B2 (en) Ignition device for internal combustion engine
JPS61294167A (en) Ignitor for internal-combustion engine
JP2019143507A (en) Ignition device for internal combustion engine
JP2015200279A (en) ignition device
JP7408453B2 (en) Ignition system for internal combustion engines
JP6992174B2 (en) Ignition system for internal combustion engine
WO2019211885A1 (en) Ignition device for internal combustion engines
WO2022064645A1 (en) Ignition device for internal combustion engine
JP6375177B2 (en) Ignition coil for internal combustion engine
WO2020179016A1 (en) Ignition device for internal combustion engine
JPWO2020065855A1 (en) Ignition system for internal combustion engine
JP2019143635A (en) Ignition device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021550802

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947898

Country of ref document: EP

Kind code of ref document: A1