WO2022018986A1 - Electronic control device - Google Patents

Electronic control device Download PDF

Info

Publication number
WO2022018986A1
WO2022018986A1 PCT/JP2021/021435 JP2021021435W WO2022018986A1 WO 2022018986 A1 WO2022018986 A1 WO 2022018986A1 JP 2021021435 W JP2021021435 W JP 2021021435W WO 2022018986 A1 WO2022018986 A1 WO 2022018986A1
Authority
WO
WIPO (PCT)
Prior art keywords
energization
discharge
primary coil
coil
ignition
Prior art date
Application number
PCT/JP2021/021435
Other languages
French (fr)
Japanese (ja)
Inventor
英一郎 大畠
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to JP2022538620A priority Critical patent/JP7330383B2/en
Priority to CN202180044719.3A priority patent/CN115735059A/en
Publication of WO2022018986A1 publication Critical patent/WO2022018986A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations

Definitions

  • the present invention relates to an electronic control device.
  • the amount of fuel and air in the combustion chamber deviates from the theoretical value, so that ignition failure of the fuel by the spark plug is likely to occur. Therefore, by increasing the gas flow velocity in the combustion chamber, the flow velocity between the electrodes of the spark plug is increased so that the discharge path is formed longer, so that the contact length between the discharge path and the gas is lengthened. There is a way to suppress ignition failure.
  • the flow velocity between the electrodes of the spark plug is increased, the frequency of blowout of the discharge path and the occurrence of re-discharge associated therewith increases, and it becomes difficult to form a long discharge path.
  • Patent Document 1 an ignition coil having a main primary coil and a secondary primary coil is used, and after generating a discharge spark in the spark plug by the main primary coil, the primary voltage and the threshold are compared and the threshold is exceeded.
  • a control device for an internal combustion engine is disclosed in which a current is superimposed by a secondary primary coil for a period of time.
  • the present invention has been made by paying attention to the above-mentioned problems, and an object thereof is to achieve both improvement of fuel efficiency of an internal combustion engine and suppression of ignition failure of fuel while suppressing an increase in the volume and cost of an ignition coil. And.
  • the electronic control device energizes an ignition coil including a main primary coil and a sub primary coil arranged on the primary side and a secondary coil arranged on the secondary side, respectively.
  • the electronic control device When the start time elapses, the energization of the sub-primary coil is started, and when a predetermined superimposition energization period according to the rotation speed of the internal combustion engine elapses after the energization of the sub-primary coil is started, the above-mentioned The energization of the ignition coil is controlled so as to end the energization of the secondary primary coil.
  • the electronic control device energizes an ignition coil including a main primary coil and a sub primary coil arranged on the primary side and a secondary coil arranged on the secondary side, respectively.
  • the supply of electric energy from the ignition coil to the ignition plug discharged in the cylinder of the internal combustion engine is controlled, and a predetermined superimposed energization is performed after the discharge of the main primary coil is started.
  • the start time elapses
  • the energization of the sub-primary coil is started, and when a predetermined superposition energization period elapses after the energization of the sub-primary coil is started, the energization of the sub-primary coil is terminated.
  • the energization of the ignition coil is controlled, and the earlier the discharge start timing of the main primary coil is made according to the operating state of the internal combustion engine, the more the superimposition energization start time is increased.
  • control device for an internal combustion engine according to the embodiment of the present invention will be described.
  • control device 1 which is one aspect of the electronic control device according to the embodiment of the present invention will be described.
  • the control device 1 controls the discharge (ignition) of the spark plug 200 provided in each cylinder 150 of the four-cylinder internal combustion engine 100
  • a combination of a partial configuration or all configurations of the internal combustion engine 100 and a partial configuration or all configurations of the control device 1 is referred to as a control device 1 of the internal combustion engine 100.
  • FIG. 1 is a diagram illustrating a main configuration of an internal combustion engine 100 and an ignition device for an internal combustion engine.
  • FIG. 2 is a partially enlarged view illustrating electrodes 210 and 220 of the spark plug 200.
  • the air sucked from the outside passes through the air cleaner 110, the intake pipe 111, and the intake manifold 112, and when the intake valve 151 is opened, it flows into each cylinder 150.
  • the amount of air flowing into each cylinder 150 is adjusted by the throttle valve 113, and the amount of air adjusted by the throttle valve 113 is measured by the flow rate sensor 114.
  • the throttle valve 113 is provided with a throttle opening sensor 113a that detects the opening of the throttle.
  • the opening degree information of the throttle valve 113 detected by the throttle opening degree sensor 113a is output to the control device (Electronic Control Unit: ECU) 1.
  • ECU Electronic Control Unit
  • the throttle valve 113 uses an electronic throttle valve driven by an electric motor, but may be another method as long as the air flow rate can be appropriately adjusted.
  • the temperature of the gas flowing into each cylinder 150 is detected by the intake air temperature sensor 115.
  • a crank angle sensor 121 is provided on the radial outer side of the ring gear 120 attached to the crankshaft 123.
  • the crank angle sensor 121 detects the rotation angle of the crankshaft 123.
  • the crank angle sensor 121 detects the rotation angle of the crankshaft 123, for example, every 10 ° and every combustion cycle.
  • a water temperature sensor 122 is provided on the water jacket (not shown) of the cylinder head.
  • the water temperature sensor 122 detects the temperature of the cooling water of the internal combustion engine 100.
  • the vehicle is provided with an accelerator position sensor (Accelerator Position Sensor: APS) 126 that detects the displacement amount (depression amount) of the accelerator pedal 125.
  • the accelerator position sensor 126 detects the torque required by the driver.
  • the required torque of the driver detected by the accelerator position sensor 126 is output to the control device 1 described later.
  • the control device 1 controls the throttle valve 113 based on this required torque.
  • the fuel stored in the fuel tank 130 is sucked and pressurized by the fuel pump 131, then flows through the fuel pipe 133 provided with the pressure regulator 132, and is guided to the fuel injection valve (injector) 134.
  • the fuel output from the fuel pump 131 is adjusted to a predetermined pressure by the pressure regulator 132, and is injected into each cylinder 150 from the fuel injection valve (injector) 134.
  • excess fuel is returned to the fuel tank 130 via a return pipe (not shown).
  • the cylinder head (not shown) of the internal combustion engine 100 is provided with a combustion pressure sensor (CylinderPressure Sensor: CPS, also referred to as an in-cylinder pressure sensor) 140.
  • the combustion pressure sensor 140 is provided in each cylinder 150 and detects the pressure (combustion pressure) in the cylinder 150.
  • combustion pressure sensor 140 a piezoelectric or gauge type pressure sensor is used, and it is possible to detect the combustion pressure (in-cylinder pressure) in the cylinder 150 over a wide temperature range.
  • Each cylinder 150 is equipped with an exhaust valve 152 and an exhaust manifold 160 that exhausts the gas (exhaust gas) after combustion to the outside of the cylinder 150.
  • a three-way catalyst 161 is provided on the exhaust side of the exhaust manifold 160. When the exhaust valve 152 is opened, exhaust gas is discharged from the cylinder 150 to the exhaust manifold 160. This exhaust gas is purified by the three-way catalyst 161 through the exhaust manifold 160 and then discharged to the atmosphere.
  • An upstream air-fuel ratio sensor 162 is provided on the upstream side of the three-way catalyst 161.
  • the upstream air-fuel ratio sensor 162 continuously detects the air-fuel ratio of the exhaust gas discharged from each cylinder 150.
  • a downstream air-fuel ratio sensor 163 is provided on the downstream side of the three-way catalyst 161.
  • the downstream air-fuel ratio sensor 163 outputs a switch-like detection signal in the vicinity of the theoretical air-fuel ratio.
  • the downstream air-fuel ratio sensor 163 is, for example, an O2 sensor.
  • a spark plug 200 is provided on the upper part of each cylinder 150. Due to the discharge (ignition) of the spark plug 200, sparks are ignited in the air-fuel mixture in the cylinder 150, an explosion occurs in the cylinder 150, and the piston 170 is pushed down. When the piston 170 is pushed down, the crankshaft 123 rotates.
  • the spark plug 200 is connected to an ignition coil 300 that generates electrical energy (voltage) supplied to the spark plug 200.
  • the voltage generated by the ignition coil 300 causes a discharge between the center electrode 210 and the outer electrode 220 of the spark plug 200 (see FIG. 2).
  • the center electrode 210 is supported by the insulator 230 in an insulated state.
  • a predetermined voltage (for example, 20,000V to 40,000V in the embodiment) is applied to the center electrode 210.
  • the outer electrode 220 is grounded. When a predetermined voltage is applied to the center electrode 210, a discharge (ignition) occurs between the center electrode 210 and the outer electrode 220.
  • the voltage at which discharge (ignition) occurs due to dielectric breakdown of the gas component fluctuates depending on the state of the gas (gas) existing between the center electrode 210 and the outer electrode 220 and the in-cylinder pressure. ..
  • the voltage at which this discharge occurs is called the breakdown voltage.
  • the discharge control (ignition control) of the spark plug 200 is performed by the ignition control unit 83 of the control device 1 described later.
  • the output signals from various sensors such as the throttle opening sensor 113a, the flow rate sensor 114, the crank angle sensor 121, the accelerator position sensor 126, the water temperature sensor 122, and the combustion pressure sensor 140 described above are sent to the control device 1. It is output.
  • the control device 1 detects the operating state of the internal combustion engine 100 based on the output signals from these various sensors, and controls the amount of air sent into the cylinder 150, the fuel injection amount, the ignition timing of the spark plug 200, and the like. ..
  • the control device 1 includes an analog input unit 10, a digital input unit 20, an A / D (Analog / Digital) conversion unit 30, a RAM (Random Access Memory) 40, and an MPU (Micro-). It has a Processing Unit) 50, a ROM (Read Only Memory) 60, an I / O (Input / Output) port 70, and an output circuit 80.
  • the analog input unit 10 is provided with various sensors such as a throttle opening sensor 113a, a flow rate sensor 114, an accelerator position sensor 126, an upstream air fuel ratio sensor 162, a downstream air fuel ratio sensor 163, a combustion pressure sensor 140, and a water temperature sensor 122.
  • An analog output signal is input.
  • the A / D conversion unit 30 is connected to the analog input unit 10.
  • the analog output signals from various sensors input to the analog input unit 10 are converted into digital signals by the A / D conversion unit 30 after signal processing such as noise removal, and stored in the RAM 40.
  • a digital output signal from the crank angle sensor 121 is input to the digital input unit 20.
  • An I / O port 70 is connected to the digital input unit 20, and the digital output signal input to the digital input unit 20 is stored in the RAM 40 via the I / O port 70.
  • Each output signal stored in the RAM 40 is arithmetically processed by the MPU 50.
  • the MPU 50 executes a control program (not shown) stored in the ROM 60 to perform arithmetic processing on the output signal stored in the RAM 40 according to the control program.
  • the MPU 50 calculates a control value that defines the operating amount of each actuator (for example, throttle valve 113, pressure regulator 132, spark plug 200, etc.) that drives the internal combustion engine 100 according to a control program, and temporarily stores it in the RAM 40. ..
  • the control value that defines the operating amount of the actuator stored in the RAM 40 is output to the output circuit 80 via the I / O port 70.
  • the output circuit 80 is provided with a function of an ignition control unit 83 (see FIG. 3) that controls a voltage applied to the spark plug 200.
  • control device functional block Next, the functional configuration of the control device 1 according to the embodiment of the present invention will be described.
  • FIG. 3 is a functional block diagram illustrating the functional configuration of the control device 1 according to the embodiment of the present invention.
  • Each function of the control device 1 is realized in the output circuit 80, for example, by the MPU 50 executing a control program stored in the ROM 60.
  • the output circuit 80 of the control device 1 includes an overall control unit 81, a fuel injection control unit 82, and an ignition control unit 83.
  • the overall control unit 81 is connected to the accelerator position sensor 126 and the combustion pressure sensor 140 (CPS), and has the required torque (acceleration signal S1) from the accelerator position sensor 126 and the output signal S2 from the combustion pressure sensor 140. Accept.
  • the overall control unit 81 controls the fuel injection control unit 82 and the ignition control unit 83 as a whole based on the required torque (acceleration signal S1) from the accelerator position sensor 126 and the output signal S2 from the combustion pressure sensor 140. I do.
  • the fuel injection control unit 82 includes a cylinder discrimination unit 84 that discriminates each cylinder 150 of the internal combustion engine 100, an angle information generation unit 85 that measures the crank angle of the crankshaft 123, and a rotation speed information generation unit that measures the engine rotation speed.
  • the cylinder discrimination information S3 from the cylinder discrimination unit 84, the crank angle information S4 from the angle information generation unit 85, and the engine rotation speed information S5 from the rotation speed information generation unit 86 are connected to the 86. accept.
  • the fuel injection control unit 82 measures the temperature of the engine cooling water, the intake amount measuring unit 87 that measures the intake amount of the air taken into the cylinder 150, the load information generation unit 88 that measures the engine load, and the engine cooling water. Connected to the water temperature measuring unit 89, the intake air amount information S6 from the intake air amount measuring unit 87, the engine load information S7 from the load information generation unit 88, and the cooling water temperature information S8 from the water temperature measuring unit 89. , Is accepted.
  • the fuel injection control unit 82 calculates the injection amount and injection time of the fuel injected from the fuel injection valve 134 (fuel injection valve control information S9) based on each received information, and the calculated fuel injection amount and injection.
  • the fuel injection valve 134 is controlled based on the time.
  • the ignition control unit 83 is connected to the cylinder discrimination unit 84, the angle information generation unit 85, the rotation speed information generation unit 86, the load information generation unit 88, and the water temperature measurement unit 89, in addition to the overall control unit 81. We accept each information from these.
  • the ignition control unit 83 energizes the primary side coil (not shown) of the ignition coil 300 with the current amount (energization angle), the energization start time, and the primary side coil. Calculate the time to cut off the current (ignition time).
  • the ignition control unit 83 outputs an ignition signal SA to the primary coil of the ignition coil 300 based on the calculated energization angle, the energization start time, and the ignition time, thereby controlling the discharge (ignition) by the spark plug 200. Control).
  • the function of the ignition control unit 83 to control the ignition of the spark plug 200 by using the ignition signal SA corresponds to the control device for an internal combustion engine of the present invention.
  • FIG. 4 is a diagram illustrating the relationship between the operating state of the internal combustion engine 100 and the gas flow velocity around the spark plug 200.
  • the higher the engine speed and the load the higher the gas flow rate in the cylinder 150, and the higher the gas flow rate around the spark plug 200. Therefore, the gas flows at high speed between the center electrode 210 and the outer electrode 220 of the spark plug 200.
  • the EGR rate is set, for example, as shown in FIG. 4, according to the relationship between the engine rotation speed and the load. It should be noted that the larger the high EGR region in which the EGR rate is set higher, the lower the fuel consumption and the lower the exhaust gas, but the ignition failure is likely to occur in the spark plug 200.
  • FIG. 5 is a diagram illustrating the relationship between the discharge path and the flow velocity between the electrodes of the spark plug 200.
  • a high voltage is generated in the secondary side coil of the spark plug 300 and dielectric breakdown occurs between the center electrode 210 and the outer electrode 220 of the spark plug 200
  • the current flowing between these electrodes becomes a constant value or less.
  • a discharge path is formed between the electrodes of the spark plug 200.
  • flame nuclei grow and lead to combustion. Since the discharge path moves under the influence of the gas flow between the electrodes, the higher the gas flow velocity, the longer the discharge path is formed, and the lower the gas flow velocity, the shorter the discharge path.
  • FIG. 5A shows an example of the discharge path 211 when the gas flow velocity is high
  • FIG. 5B shows an example of the discharge path 212 when the gas flow velocity is low.
  • the probability that the flame nucleus grows even if the combustible gas comes into contact with the discharge path decreases, so it is necessary to increase the chances that the combustible gas comes into contact with the discharge path.
  • the discharge path is generated by breaking the insulation of the gas, if the current required to maintain the discharge path is constant, it is necessary to output electric power according to the length of the discharge path. Therefore, when the gas flow velocity is high, the energization control of the ignition coil 300 is performed so that a large amount of electric power is output from the ignition coil 300 to the spark plug 200 in a short time, whereby the long discharge path as shown in FIG. 5A is performed.
  • the energization control of the ignition coil 300 is performed so that a small amount of power is continuously output from the ignition coil 300 to the spark plug 200 for a long period of time, whereby the short power as shown in FIG. 5 (b) is controlled.
  • the discharge path 212 it is preferable to obtain a contact opportunity with the gas passing near the electrode of the spark plug 200 for a longer period of time.
  • FIG. 6 is a diagram illustrating an electric circuit 400C including a conventional ignition coil 300C as a comparative example of the present invention.
  • the ignition coil 300C includes a primary coil 310 wound with a predetermined number of turns and a secondary coil 320 wound with a larger number of turns than the primary coil 310. Will be done.
  • One end of the primary coil 310 is connected to the DC power supply 330.
  • a predetermined voltage for example, 12V
  • the other end of the primary coil 310 is connected to the igniter 340 and is grounded via the igniter 340.
  • a transistor, a field effect transistor (FET), or the like is used for the igniter 340.
  • the base (B) terminal of the igniter 340 is connected to the ignition control unit 83.
  • the ignition signal SA output from the ignition control unit 83 is input to the base (B) terminal of the igniter 340.
  • the collector (C) terminal and the emitter (E) terminal of the igniter 340 are energized, and the collector (C) terminal and the emitter (E) terminal are connected to each other.
  • the ignition signal SA is output from the ignition control unit 83 to the primary coil 310 of the ignition coil 300 via the igniter 340, a current flows through the primary coil 310, and electric power (electrical energy) is accumulated.
  • the ignition control unit 83 controls the energization of the ignition coil 300A by using the ignition signal SA by the operation of the electric circuit 400C as described above. As a result, ignition control for controlling the spark plug 200 is performed.
  • FIG. 7 is a diagram showing an example of a timing chart for explaining the relationship between the control signal input to the ignition coil and the output in the conventional discharge control.
  • the timing chart of FIG. 7 is an example when the spark plug 200 is discharged when the gas has a high flow velocity by using the conventional ignition coil 300C.
  • the ignition signal SA output from the ignition control unit 83, the primary current I1 flowing through the primary coil 310 in response to the ignition signal SA, the electrical energy E stored in the ignition coil 300C, and the secondary side
  • the relationship between the secondary current I2 flowing through the coil 320 and the secondary voltage V2 generated in the secondary coil 320 is shown.
  • the measurement points of the secondary current I2 and the secondary voltage V2 are between the spark plug 200 and the ignition coil 300C.
  • the measurement point of the primary current I1 is between the DC power supply 330 and the ignition coil 300C.
  • the igniter 340 When the ignition signal SA becomes HIGH, the igniter 340 energizes the primary coil 310 and the primary current I1 rises. While the primary coil 310 is energized, the electric energy E in the ignition coil 300C rises with time.
  • the igniter 340 cuts off the energization of the primary coil 310. As a result, an electromotive force is generated in the secondary coil 320, and the supply of electric energy E from the ignition coil 300C to the spark plug 200 is started.
  • the spark plug 200 starts to be discharged.
  • the discharge of the spark plug 200 accompanied by such dielectric breakdown is called capacitive discharge.
  • the electric energy E in the ignition coil 300C decreases with time, and the discharge of the spark plug 200 is maintained.
  • the discharge of the spark plug 200 without such dielectric breakdown is called an induced discharge.
  • the secondary current I2 greatly increases when the capacity is discharged.
  • the secondary current I2 due to this capacity discharge ends in a short time.
  • the secondary current I2 drops sharply and then drops with time during the subsequent induced discharge. Since the discharge path extends with the flow of gas, the secondary voltage V2 rises with the passage of time. At this time, the magnitude of the secondary current I2 required to maintain the discharge path changes according to the flow velocity of the gas existing between the electrodes of the spark plug 200.
  • the spark plug 200 When the secondary current I2 is between the minimum value required to maintain the discharge path and the maximum value at which discharge cannot be performed, the spark plug 200 repeatedly blows out and re-discharges the discharge path.
  • the range of the secondary current I2 in which the discharge path is repeatedly blown out and re-discharged in this way is hereinafter referred to as an “intermittent operation region”. That is, when the secondary current I2 enters the intermittent operation region, the discharge path cannot be maintained, and the discharge path is blown out by the gas flow, so that the discharge of the spark plug 200 is interrupted. At this time, since the electric energy E in the ignition coil 300C remains even if the discharge path disappears, re-discharge (re-discharge) accompanied by capacity discharge occurs in the spark plug 200. In the example of FIG. 7, the initial discharge is once and the re-discharge is three times, and the capacity discharge number is four times.
  • the secondary current I2 When the electric energy E in the ignition coil 300C decreases, the secondary current I2 also decreases accordingly. When the secondary current I2 becomes equal to or less than the maximum value at which discharge cannot be performed, the discharge of the spark plug 200 is stopped.
  • an ignition coil 300 having two primary side coils is adopted, and discharge control is performed on the ignition coil 300 to suppress the number of capacitance discharges.
  • the discharge of the spark plug 200 is realized.
  • FIG. 8 is a diagram illustrating an electric circuit 400 including an ignition coil 300 according to the first embodiment of the present invention.
  • the ignition coil 300 has two types of primary coil 310 and 360 wound with a predetermined number of turns and a secondary side wound with a number of turns larger than the primary coil 310 and 360. It is configured to include and include a coil 320.
  • the electric power from the primary coil 310 is first supplied to the secondary coil 320, and the electric power from the primary coil 360 is superimposed on the electric power to the secondary coil 320. Is supplied to.
  • the primary coil 310 will be referred to as a “main primary coil” and the primary coil 360 will be referred to as a “secondary primary coil”. Further, the current flowing through the main primary coil 310 is referred to as “main primary current”, and the current flowing through the primary sub coil 360 is referred to as "secondary primary current”.
  • One end of the main primary coil 310 is connected to the DC power supply 330.
  • a predetermined voltage for example, 12V in the embodiment
  • the other end of the main primary coil 310 is connected to the igniter 340 and is grounded via the igniter 340.
  • a transistor, a field effect transistor (FET), or the like is used for the igniter 340.
  • the base (B) terminal of the igniter 340 is connected to the ignition control unit 83.
  • the ignition signal SA output from the ignition control unit 83 is input to the base (B) terminal of the igniter 340.
  • the collector (C) terminal and the emitter (E) terminal of the igniter 340 are energized, and the collector (C) terminal and the emitter (E) terminal are connected to each other.
  • the ignition signal SA is output from the ignition control unit 83 to the main primary coil 310 of the ignition coil 300 via the igniter 340, and the main primary current flows through the main primary coil 310 to accumulate electric power (electrical energy). Will be done.
  • One end of the secondary primary coil 360 is connected to the DC power supply 330 in common with the main primary coil 310.
  • a predetermined voltage for example, 12V in the embodiment
  • the other end of the secondary primary coil 360 is connected to the igniter 350 and is grounded via the igniter 350.
  • a transistor, a field effect transistor (FET), or the like is used for the igniter 350.
  • the base (B) terminal of the igniter 350 is connected to the phase control unit 380 provided in the ignition control unit 83.
  • the phase control unit 380 outputs an ignition signal SB as a signal for controlling the on / off of the igniter 350.
  • the ignition signal SB output from the phase control unit 380 is input to the base (B) terminal of the igniter 350.
  • the collector (C) terminal and the emitter (E) terminal of the igniter 350 are energized according to the voltage change of the ignition signal SB, and the collector (C).
  • a current corresponding to the voltage change of the ignition signal SB flows between the terminal) and the emitter (E) terminal.
  • the ignition signal SB is output from the ignition control unit 83 to the sub-primary coil 360 of the ignition coil 300 via the igniter 350, and the sub-primary current flows through the sub-primary coil 360 to generate electric power (electrical energy). do.
  • the high voltage generated in the secondary coil 320 by the ignition signal SA is applied to the high voltage generated in the secondary coil 320 by the ignition signal SB and applied to the spark plug 200 (center electrode 210) to ignite.
  • a potential difference is generated between the center electrode 210 of the plug 200 and the outer electrode 220.
  • Vm dielectric breakdown voltage of the gas (air-fuel mixture in the cylinder 150)
  • the gas component is dielectrically broken down to the center electrode 210 and the outer electrode 220.
  • a discharge occurs between the two, and the fuel (air-fuel mixture) is ignited (ignited).
  • the phase control unit 380 starts the ignition signal SB at a time A when a predetermined superimposition energization start time elapses from the falling time S of the ignition signal SA, and then elapses a predetermined superimposition energization period.
  • the output of the ignition signal SB is controlled so that the ignition signal SB is turned off at the time B.
  • the electric power from the secondary primary coil 360 is supplied to the spark plug 200 by superimposing on the electric power supplied from the main primary coil 310, and the discharge path formed between the center electrode 210 and the outer electrode 220 is formed. Be maintained.
  • the specific output control method of the ignition signal SB will be described later.
  • the ignition control unit 83 controls the energization of the ignition coil 300 by using the ignition signals SA and SB by the operation of the electric circuit 400 as described above. As a result, ignition control for controlling the spark plug 200 is performed.
  • the phase control unit 380 does not have to be provided inside the ignition control unit 83. That is, the ignition control unit 83 and the phase control unit 380 may be configured separately. In any case, since the phase control unit 380 operates according to the control of the ignition control unit 83, it can be said that the ignition control unit 83 controls the energization of the ignition coil 300.
  • the phase control unit 380 of the ignition control unit 83 determines the output time and output timing of the ignition signal SB based on the predetermined superimposition energization start time and superimposition energization period.
  • the superimposed energization start time is the time from the falling time S of the ignition signal SA to the rising time A of the ignition signal SB, that is, the secondary primary after the discharge of the main primary coil 310 is started according to the ignition signal SA. This is the time until the coil 360 starts to be energized.
  • the superimposed energization period is the time from the rise time A to the fall time B of the ignition signal SB, that is, the time from the start to the end of energization of the secondary primary coil 360. These times are set based on the result of measuring the occurrence state of re-discharge when the spark plug 200 is discharged in the cylinder 150 in the development stage of the ignition control unit 83. Hereinafter, an example of the specific method will be described.
  • a voltage sensor is installed between the spark plug 200 and the ignition coil 300, and the voltage sensor is used to discharge the spark plug 200 in the cylinder 150.
  • the voltage V2 is detected.
  • the electric circuit 400C shown in FIG. 6 may be used to detect the secondary voltage V2 when the spark plug 200 is discharged in the cylinder 150. Then, based on the obtained value of the secondary voltage V2, the secondary voltage V2 (hereinafter referred to as “re-discharge voltage”) at the time immediately before the re-discharge of the ignition plug 200 occurs is measured and re-discharged. Based on the time when the voltage is measured, the time from the start of discharge to the re-discharge of the ignition plug 200 (hereinafter referred to as "re-discharge time”) is measured.
  • the maximum value of the secondary voltage V2 during the discharge period of the spark plug 200 that is, the value immediately before the secondary voltage V2 suddenly drops after the start of discharge is V2max.
  • the re-discharge voltage and the re-discharge time are measured by obtaining the value of V2max and the time from the fall of the ignition signal SA to the detection of V2max (V2max timing) from the detection results of the secondary voltage V2, respectively. It can be performed.
  • the time derivative dV2 / dt of the secondary voltage V2 may be obtained and the value of the time derivative dV2 / dt may be compared with a predetermined threshold value. By doing so, the point where the secondary voltage V2 drops sharply can be easily detected as V2max, and the re-discharge time can be measured.
  • the set values of the superimposition energization start time and superimposition energization period are performed. Is determined. The method will be described below with reference to FIGS. 9 and 10.
  • FIG. 9 is a diagram showing an example of a scatter diagram in which the measurement results of the re-discharge voltage and the re-discharge time are recorded.
  • the horizontal axis represents the V2max time starting from the fall time S of the ignition signal SA, that is, the re-discharge time
  • the vertical axis represents the value of V2max, that is, the re-discharge voltage.
  • the gas flow between the electrodes of the spark plug 200 and the temperature of the electrodes in the cylinder 150 vary from combustion cycle to combustion cycle. Therefore, as shown in FIG. 9, the values of V2max and V2max timing fluctuate with each combustion cycle and are not constant.
  • the energization time of the secondary primary coil 360 is excessive. Will be.
  • the power consumption and heat generation amount of the ignition coil 300 become excessive, and in order to mount the ignition coil 300, the cooling capacity of the ignition coil 300 must be increased more than necessary, which causes an increase in volume and cost. There is a risk.
  • the energization period of the sub-primary coil 360 that is permissible for heat generation is set as the superimposition energization period, and within this superimposition energization period.
  • the superimposition energization start time is set so that the number of times of re-discharge of the spark plug 200 is maximized.
  • the line segments 91 and 92 corresponding to the rise time A and the fall time B of the ignition signal SB are set, respectively, and the interval between the line segments 91 and the line segment 92 is set. It is fixed according to the energization period of the sub-primary coil 360, which is permissible in terms of heat generation according to the rotation speed of the internal combustion engine 100.
  • the line segments 91 and 92 are moved laterally on the scatter plot to search for the position where the number of measurement points between the line segment 91 and the line segment 92 is maximized.
  • the superimposition energization start time can be set according to the position of the line segment 91 searched in this way. If there is no problem in heat generation of the ignition coil 300, the superimposition energization start time may be set so that all the measurement points are inserted between the line segment 91 and the line segment 92.
  • the line segments 93 and 94 corresponding to the lower limit voltage C and the upper limit voltage D of the secondary voltage V2 may be set, respectively.
  • the positions of the line segment 93 and the line segment 94 are set so as to satisfy a predetermined condition. Decide each. At this time, all the measurement points may be inserted between the line segment 93 and the line segment 94.
  • the lower limit voltage C and the upper limit voltage D of the secondary voltage V2 can be set according to the positions of the line segments 93 and 94 set in this way, and the ignition signal SB can be controlled using these. The method of controlling the ignition signal SB using the lower limit voltage C and the upper limit voltage D will be described in the second embodiment described later.
  • the measurement result of the re-discharge time may be recorded in a histogram, and the superimposed energization start time may be set using this histogram.
  • FIG. 10 is a diagram showing an example of a histogram in which the measurement result of the re-discharge time is recorded.
  • the horizontal axis represents the V2max time starting from the fall time S of the ignition signal SA, that is, the re-discharge time
  • the vertical axis represents the number of combustion cycles of the internal combustion engine 100 in which the value of each V2max time is measured, that is. It shows the frequency of each measurement result of the re-discharge time.
  • the superimposed energization start time can be set by the same method as the scatter diagram of FIG. That is, the line segments 95 and 96 corresponding to the rise time A and the fall time B of the ignition signal SB are set, respectively, and the interval between the line segments 95 and the line segment 96 is allowed to generate heat according to the rotation speed of the internal combustion engine 100. It is fixed according to the energization period of the sub-primary coil 360 that can be formed. In this state, the line segments 95 and 96 are moved laterally on the histogram to search for the position where the total value (frequency) of the number of combustion cycles between the line segments 95 and 96 is maximized.
  • the superimposition energization start time can be set according to the position of the line segment 95 searched in this way. If there is no problem in heat generation of the ignition coil 300, the entire region where the histogram is distributed may be set as the superimposed energization start time.
  • the method of setting the superimposed energization start time when the measurement result of the re-discharge time is recorded using the scatter diagram of FIG. 9 and the histogram of FIG. 10 has been described, but the measurement result of the re-discharge time can be obtained by another method.
  • the superimposed energization start time can be set in the same manner as in FIGS. 9 and 10. That is, in the distribution of the measurement results of the re-discharge time recorded by an arbitrary method, it is preferable to set the superposition energization start time so that the number of times of re-discharge occurs is maximized within a predetermined superposition energization period.
  • FIG. 11 is a diagram showing an example of a timing chart for explaining the relationship between the control signal input to the ignition coil and the output in the discharge control according to the first embodiment of the present invention.
  • the timing chart of FIG. 11 is an example when the spark plug 200 is discharged when the gas has a high flow velocity by using the ignition coil 300 of the present embodiment.
  • an ignition signal SA output from the ignition control unit 83
  • a main primary current I1 flowing through the main primary coil 310 in response to the ignition signal SA and an ignition signal SB output from the phase control unit 380.
  • the relationship with the secondary voltage V2 generated in 320 is shown.
  • the igniter 340 When the ignition signal SA becomes HIGH, the igniter 340 energizes the main primary coil 310, and the main primary current I1 rises. While the main primary coil 310 is energized, the electric energy E in the ignition coil 300 rises with time.
  • the igniter 340 cuts off the energization of the main primary coil 310. As a result, an electromotive force is generated in the secondary coil 320, and the supply of electric energy E from the ignition coil 300 to the spark plug 200 is started.
  • discharge capacitive discharge
  • the electric energy E in the ignition coil 300 decreases with time, and the discharge (induced discharge) of the spark plug 200 is maintained.
  • the secondary current I2 and the secondary voltage V2 greatly increase when the capacity is discharged.
  • the increase in the secondary current I2 and the secondary voltage V2 due to this capacitance discharge ends in a short time.
  • the secondary current I2 and the secondary voltage V2 each drop sharply.
  • the secondary current I2 decreases with time.
  • the secondary voltage V2 rises with the passage of time. At this time, the magnitude of the secondary current I2 required to maintain the discharge path changes according to the flow velocity of the gas existing between the electrodes of the spark plug 200.
  • the phase control unit 380 turns on the ignition signal SB at the time A when a predetermined superimposed energization start time elapses from the falling time S when the ignition signal SA changes from HIGH to LOW. After that, the ignition signal SB is turned off at the time B when the predetermined superimposed energization period has elapsed from the time A.
  • the superimposition energization start time and superimposition energization period used in the control of the ignition signal SB are preset in the phase control unit 380 as described above. That is, the superimposed energization start time is set based on the result of statistical processing of the measurement result of the re-discharge time when the spark plug 200 is discharged in the cylinder 150. Further, the superimposed energization period is set in advance according to the energization period of the sub-primary coil 360 that can be tolerated in terms of heat generation according to the rotation speed of the internal combustion engine 100.
  • phase control unit 380 While the phase control unit 380 outputs the ignition signal SB to the igniter 350, the high voltage generated in the secondary side coil 320 by the ignition signal SB is added to the high voltage generated in the secondary side coil 320 by the ignition signal SA. .. This high voltage is applied to the spark plug 200 (center electrode 210). As a result, the secondary current I2 is increased and the maintenance of the discharge path is continued. Therefore, in the spark plug 200, the occurrence of re-discharge (re-discharge) accompanied by capacitance discharge is suppressed. In the example of FIG. 11, the initial discharge is once and the re-discharge is once, and the capacity discharge number is twice.
  • the secondary current I2 when the ignition signal SB is output includes a current flowing through the secondary coil 320 by the main primary coil 310 and a current flowing through the secondary coil 320 by the secondary primary coil 360. Is included.
  • FIG. 12 is a diagram illustrating the effect of the present invention.
  • the signal waveform 501 shows the waveform of the ignition signal SB output by the method described in the above embodiment as the ignition signal for the superimposed current according to the present invention.
  • the pulse width of the ignition signal SB in the signal waveform 501 that is, the superimposed energization period from the rising time A when the ignition signal SB is turned on to the falling time B when the ignition signal SB is turned off is determined according to the rotation speed of the internal combustion engine 100. For example, when the rotation speed of the internal combustion engine 100 is 2400 [rpm], it is 0.5 [msec].
  • the signal waveform 502 shows the waveform of the ignition signal SB output for the entire range of the re-discharge time that can occur in the spark plug 200 as the ignition signal for the superimposed current according to the comparative example.
  • the current waveforms 503 and 504 show examples of waveforms of the secondary current I2 flowing according to the ignition signal SB shown in these signal waveforms 501 and 502, respectively.
  • FIG. 505 shows the relationship between the energy consumption of the ignition coil 300 and the combustion stability of the spark plug 200 due to the supply of the superimposed current according to the ignition signal SB.
  • points 506 and 507 represent the relationship between the energy consumption by the ignition signal SB and the connection stability in the present invention and the comparative example shown in the signal waveforms 501 and 502, respectively.
  • the point 508 represents the relationship between the energy consumption and the connection stability in the conventional example using the electric circuit 400C of FIG.
  • the comparative example is equivalent to the present invention in terms of combustion stability (ignition performance), but the present invention is significantly reduced in energy consumption (calorific value) as compared to the comparative example. You can see that there is. Further, when points 506 and 508 are compared, it can be seen that although the energy consumption (calorific value) is slightly increased in the present invention as compared with the conventional example, the combustion stability (ignition performance) is greatly improved.
  • the control method of the ignition coil 300 according to the present invention it is possible to achieve both suppression of power consumption of the ignition coil 300 and suppression of ignition failure of the spark plug 200. Therefore, it is possible to suppress an increase in the volume and cost of the ignition coil 300 while suppressing the ignition failure of the gas by the spark plug 200.
  • FIG. 13 is an example of a flowchart illustrating a method of setting a superimposed energization start time according to the first embodiment of the present invention.
  • the ignition coil 300 attached to the internal combustion engine 100 is connected to the ignition control unit 83 via the igniters 340 and 350 to ignite.
  • the actual operation of the coil 300 is started, it is carried out in a predetermined experimental facility or test facility.
  • step S101 Start the flow.
  • step S102 the ignition signal SA is output from the ignition control unit 83 to the ignition coil 300 to detect the secondary voltage V2 when the spark plug 200 is discharged.
  • step S103 the time derivative value dV2 / dt of the secondary voltage V2 is calculated and compared with a predetermined threshold value.
  • dV2 / dt exceeds the threshold value, it is determined that the discharge path formed between the electrodes of the spark plug 200 is blown out and re-discharge has occurred, and the process proceeds to step S104.
  • dV2 / dt does not exceed the threshold value, the process returns to step S102 to continue the detection of the secondary voltage V2.
  • the discharge path formed between the electrodes of the spark plug 200 is blown out and re-discharge occurs based on the time derivative dV2 / dt of the secondary voltage V2 by the process of step S103. I try to do it.
  • the presence or absence of re-discharge can be directly determined from the voltage between the electrodes of the spark plug 200, so that the detection accuracy can be improved. can. It is also possible to detect the occurrence of re-discharge based on the secondary current I2, but as shown in FIG.
  • step S104 When the time derivative dV2 / dt of the secondary voltage V2 exceeds the threshold value, the value of the secondary voltage V2 in a certain period before and after the excess time is recorded in step S104, and the maximum point is detected from the value. Thereby, the timing immediately before the re-discharge between the electrodes of the spark plug 200 can be detected.
  • step S105 the time of occurrence of the maximum point detected in step S104 is recorded as the maximum time.
  • step S106 it is determined whether or not a predetermined number of measurement results have been obtained in the processes of steps S101 to S105 performed so far.
  • a measurement result of a predetermined number of samples has been obtained from a statistical viewpoint or the like, and if it is obtained, the process proceeds to step S107.
  • the process returns to step S102 to continue the detection of the secondary voltage V2.
  • step S107 a distribution map of the maximum period recorded in step S105 carried out so far is created.
  • a scatter plot as shown in FIG. 9 and a histogram as shown in FIG. 10 can be created as a distribution map at the maximum time.
  • step S108 the interval between the rise time A and the fall time B of the ignition signal SB is set with respect to the distribution map created in step S107.
  • the interval between the rise time A and the fall time B on the distribution map is fixed according to the energization period of the sub-primary coil 360 that can tolerate heat generation according to the rotation speed of the internal combustion engine 100. ..
  • step S109 in the distribution map created in step S107, the rise time A and the fall time B in which the total number of times the maximum time is recorded is maximized within the range of the fixed interval set in step S108 are specified. ..
  • step S110 the superimposed energization start time is set based on the rise time A and the fall time B specified in step S109.
  • step S111 When the superimposition energization start time can be set by the above processing, the processing flow of FIG. 13 is terminated in step S111.
  • the process of FIG. 13 is performed for each operating state of the internal combustion engine 100.
  • a plurality of measurement target values are set for the engine speed, and the process of FIG. 13 is performed for each measurement target value. By doing so, it is possible to set the superimposed energization start time for each operating state of the internal combustion engine 100.
  • FIG. 14 is an example of a flowchart illustrating a method of controlling the sub-primary coil 360 by the phase control unit 380 according to the first embodiment of the present invention.
  • the phase control unit 380 starts controlling the sub-primary coil 360 according to the flowchart of FIG.
  • the process shown in the flowchart of FIG. 14 represents the process for one cycle of the internal combustion engine 100, and the phase control unit 380 performs the process shown in the flowchart of FIG. 14 for each cycle.
  • step S201 the phase control unit 380 starts the process shown in the flowchart of FIG.
  • step S202 the phase control unit 380 selects the superimposed energization start time.
  • the superimposition energization start time according to the operating state of the internal combustion engine 100, for example, the engine rotation speed is selected by using the preset map information or the like.
  • the map information used here represents the superimposed energization start time for each operating state of the internal combustion engine 100, and is set in advance by the process of FIG.
  • step S203 the phase control unit 380 determines whether or not the ignition signal SA has changed from HIGH to LOW.
  • the ignition control unit 83 starts the output of the ignition signal SA at a predetermined timing, and then stops the output of the ignition signal SA at a predetermined timing.
  • the main primary coil 310 starts supplying the electric energy E to the spark plug 200, and the spark plug 200 is started to be discharged.
  • the phase control unit 380 can detect the discharge start time of the spark plug 200 by detecting the falling time S of the ignition signal SA at this time in step S203.
  • step S210 the phase control unit 380 measures the elapsed time from that point to the present, starting from the fall time S of the ignition signal SA detected in step S203.
  • step S211 the phase control unit 380 compares the superimposed energization start time selected in step S202 with the elapsed time measured in step S210, and has the superimposed energization start time elapsed from the falling time S of the ignition signal SA? Judge whether or not. If the elapsed time is less than the superimposed energization start time, it is determined that the superimposed energization start time has not yet elapsed, and the process returns to step S210 to continue measuring the elapsed time. On the other hand, if the elapsed time is equal to or longer than the superimposed energization start time, it is determined that the superimposed energization start time has elapsed, and the process proceeds to step S220.
  • step S220 the phase control unit 380 turns on the ignition signal SB and starts outputting the ignition signal SB.
  • the supply of the superimposed current from the secondary primary coil 360 to the spark plug 200 is started at the rise time A of the ignition signal SB.
  • step S221 the phase control unit 380 compares the elapsed time from that point to the present with the predetermined superimposed energization period, starting from the rise time A of the ignition signal SB determined by performing the process of step S220.
  • the superimposed energization period compared here is preset according to the energization period of the sub-primary coil 360 that can be tolerated in terms of heat generation according to the rotation speed of the internal combustion engine 100.
  • the elapsed time is less than the superimposed energization period, it is determined that the superimposed energization period has not yet elapsed, and the determination in step S221 is continued.
  • the elapsed time is equal to or longer than the superimposed energization period, it is determined that the superimposed energization period has elapsed, and the process proceeds to step S222.
  • step S222 the phase control unit 380 turns off the ignition signal SB and stops the output of the ignition signal SB. As a result, the supply of the superimposed current from the secondary primary coil 360 to the spark plug 200 is stopped at the falling time B of the ignition signal SB.
  • step S223 the phase control unit 380 ends the process shown in the flowchart of FIG.
  • the control device 1 which is an electronic control device is an ignition provided with a main primary coil 310 and a secondary primary coil 360 arranged on the primary side, respectively, and a secondary coil 320 arranged on the secondary side.
  • the control device 1 energizes the sub-primary coil 360 when a predetermined superposition energization start time elapses (step S211: Yes) after the phase control unit 380 starts discharging the main primary coil 310.
  • step S220 When a predetermined superposition energization period corresponding to the rotation speed of the internal combustion engine 100 has elapsed since the start (step S220) and the energization of the sub-primary coil 360 are started (step S221: Yes), the sub-primary coil 360 is started.
  • the energization of the ignition coil 300 is controlled so as to end the energization of (step S222). Since this is done, it is possible to achieve both improvement in fuel efficiency of the internal combustion engine 100 and suppression of ignition failure of the fuel by the spark plug 200, while suppressing an increase in the volume and cost of the ignition coil 300.
  • the superimposed energization start time is determined based on the measurement result of the re-discharge time indicating the time from the start of discharge to the re-discharge when the spark plug 200 is discharged in the cylinder 150 of the internal combustion engine 100. Specifically, the superimposed energization start time is the maximum number of times of re-discharge occurs within a predetermined superimposed energization period in the distribution of each measurement result when the re-discharge time is measured a plurality of times by the process of FIG. Is determined to be (steps S109, S110).
  • the occurrence of re-discharge is detected based on the differential value dV2 / dt of the secondary voltage when the voltage of the secondary coil 320 is measured as the secondary voltage V2. May be good. By doing so, it is possible to determine that re-discharge has occurred when the secondary voltage V2 drops sharply, and to easily detect the occurrence of re-discharge. Therefore, the re-discharge time can be accurately measured.
  • FIG. 15 is a diagram illustrating an electric circuit 400A including an ignition coil 300 according to a second embodiment of the present invention.
  • the ignition coil 300 has the same configuration as that of FIG. 8 described in the first embodiment. That is, the ignition coil 300 of the present embodiment also has two types of primary coil 310 and 360 (main primary coil 310 and secondary primary coil 360) wound by a predetermined number of turns, and a primary coil 310. It is configured to include a secondary coil 320 wound with a number of turns larger than 360.
  • the electric circuit 400A is different from the electric circuit 400 described in the first embodiment in that the voltage detection unit 370 is provided between the secondary coil 320 and the spark plug 200. There is.
  • the voltage detection unit 370 detects the secondary voltage V2 and transmits the value to the ignition control unit 83.
  • the phase control unit 380 compares the secondary voltage V2 detected by the voltage detection unit 370 with a predetermined superimposed energization voltage range.
  • This superimposed energization voltage range reappears when the spark plug 200 is discharged in the cylinder 150 of the internal combustion engine 100 in the development stage of the ignition control unit 83, similarly to the superimposed energization start time described in the first embodiment. It is set based on the result of measuring the discharge occurrence status. Specifically, for example, in the scatter diagram of FIG. 9 described in the first embodiment, the lower limit voltage C and the upper limit voltage D of the secondary voltage V2 are set as described above, and the lower limit voltage C and the upper limit voltage D are set. The voltage range between is set as the superimposed energization voltage range.
  • the superimposed energization voltage range can be set in the same manner.
  • the distribution of the re-discharge voltage recorded by an arbitrary method that is, the measurement result of the secondary voltage V2 immediately before the occurrence of the re-discharge, superimposition is performed so that the number of times of the re-discharge occurs is the maximum within the predetermined voltage range. It is possible to set the lower limit voltage and the upper limit voltage of the energizing voltage range.
  • the phase control unit 380 performs the first operation.
  • the ignition signal SB is output in the same manner as described in the embodiment.
  • the superimposed current is supplied from the sub-primary coil 360 to the spark plug 200, and the occurrence of re-discharge (re-discharge) accompanied by capacitance discharge is suppressed in the spark plug 200.
  • the phase control unit 380 prevents the ignition signal SB from being output.
  • the possibility of re-discharging in the spark plug 200 is low, the supply of the superimposed current from the secondary primary coil 360 to the spark plug 200 is stopped so that the power consumption is suppressed.
  • FIG. 16 is an example of a flowchart illustrating a method of setting a superposed energization start time and a superposed energization voltage range according to a second embodiment of the present invention.
  • each step for carrying out the same process as the flowchart of FIG. 13 described in the first embodiment is assigned the same step number as that of FIG.
  • the processing shown in the flowchart of FIG. 16 will be described with a focus on the differences from FIG.
  • step S105A the value of the maximum point detected in step S104 and the time of occurrence are recorded as the maximum value and the maximum time, respectively.
  • step S107A a distribution map of the maximum value and the maximum time recorded in step S105A carried out so far is created.
  • a scatter plot as shown in FIG. 9 can be created as a distribution map of a maximum value and a maximum time.
  • step S108A the interval between the rise time A and the fall time B of the ignition signal SB and the interval between the lower limit voltage C and the upper limit voltage D are set with respect to the distribution map created in step S107A.
  • the interval between the rise time A and the fall time B on the distribution map is fixed according to the energization period of the secondary primary coil 360 that can tolerate heat generation, and a predetermined condition, for example, power consumption, is fixed.
  • the interval between the lower limit voltage C and the upper limit voltage D is fixed based on the required value of.
  • step S109A in the distribution map created in step S107A, the rise time A, the fall time B, and the lower limit in which the total number of times the maximum time is recorded is the maximum within the range of the fixed interval set in step S108A.
  • the voltage C and the upper limit voltage D are specified respectively.
  • step S110A the superimposed energization start time is set based on the rise time A and the fall time B specified in step S109A. Further, the superimposed energization voltage range is set based on the lower limit voltage C and the upper limit voltage D specified in step S109A.
  • step S111 When the superimposition energization start time and the superimposition energization voltage range can be set by the above processing, the processing flow of FIG. 16 is terminated in step S111.
  • the process of FIG. 16 is also performed for each operating state of the internal combustion engine 100, similarly to the process of FIG. For example, a plurality of measurement target values are set for the engine speed, and the processing of FIG. 16 is performed for each measurement target value. By doing so, the superimposition energization start time and the superimposition energization voltage range can be set for each operating state of the internal combustion engine 100.
  • FIG. 17 is an example of a flowchart illustrating a method of controlling the sub-primary coil 360 by the phase control unit 380 according to the second embodiment of the present invention.
  • each step for carrying out the same process as the flowchart of FIG. 14 described in the first embodiment is assigned the same step number as that of FIG.
  • the processing shown in the flowchart of FIG. 17 will be described with a focus on the differences from FIG.
  • step S211 If the elapsed time from the fall time S of the ignition signal SA in step S211 is equal to or longer than the superimposed energization start time, it is determined that the superimposed energization start time has elapsed, and the process proceeds to step S212.
  • step S212 the phase control unit 380 acquires the value of the secondary voltage V2 detected by the voltage detection unit 370.
  • step S213 the phase control unit 380 compares the secondary voltage V2 acquired in step S212 with the preset superimposed energization voltage range, and determines whether or not the secondary voltage V2 is within the superimposed energization voltage range. judge.
  • the superimposed energization voltage range used for comparison with the secondary voltage V2 here is set in advance by the process of FIG. 16, and is set for each operating state of the internal combustion engine 100.
  • step S213 When it is determined in step S213 that the secondary voltage V2 is within the superimposed energization voltage range, the phase control unit 380 proceeds to step S220, turns on the ignition signal SB, and starts outputting the ignition signal SB. As a result, the supply of the superimposed current from the secondary primary coil 360 to the spark plug 200 is started at the rise time A of the ignition signal SB.
  • step S213 if it is determined in step S213 that the secondary voltage V2 is out of the superimposed energization voltage range, that is, if it is larger than the upper limit voltage D or less than the lower limit voltage C, the phase control unit 380 proceeds to step S223. , The process shown in the flowchart of FIG. 17 is terminated. In this case, the superimposed current is not supplied from the secondary primary coil 360 to the spark plug 200.
  • the voltage V2 of the secondary coil 320 when the superimposed energization start time elapses after the discharge of the main primary coil 310 is started by the phase control unit 380 is higher than the predetermined upper limit voltage D.
  • the sub-primary coil 360 is not energized. Therefore, when the possibility of re-discharging in the spark plug 200 is low, the supply of the superimposed current from the secondary primary coil 360 to the spark plug 200 is stopped to further reduce the power consumption of the spark plug 300. It can be suppressed.
  • the upper limit voltage D and the lower limit voltage C are the re-discharge voltages indicating the voltage V2 of the secondary coil 320 immediately before the occurrence of re-discharge when the spark plug 200 is discharged in the cylinder 150 of the internal combustion engine 100. Determined based on the measurement results. Specifically, the upper limit voltage D and the lower limit voltage C are the number of occurrences of re-discharge within a predetermined voltage range in the distribution of each measurement result when the re-discharge voltage is measured a plurality of times by the process of FIG. Is determined to be the maximum (steps S109A, S110A). Since this is done, the secondary voltage for energizing the secondary primary coil 360 so that the ignition failure of the gas by the spark plug 200 can be suppressed and the power consumption of the ignition coil 300 can be further suppressed.
  • the range of V2 can be set appropriately.
  • FIG. 18 is a diagram illustrating an electric circuit 400B including an ignition coil 300 according to a third embodiment of the present invention.
  • the ignition coil 300 has the same configuration as that of FIG. 8 described in the first embodiment. That is, the ignition coil 300 of the present embodiment also has two types of primary coil 310 and 360 (main primary coil 310 and secondary primary coil 360) wound by a predetermined number of turns, and a primary coil 310. It is configured to include a secondary coil 320 wound with a number of turns larger than 360.
  • the electric circuit 400B has a timer circuit 381 installed separately from the ignition control unit 83 as compared with the electric circuit 400 described in the first embodiment, and the phase control unit 380 is provided in the timer circuit 381. The point that it is provided is different.
  • the timer circuit 381 sets a timer value according to the superimposed energization period, and when the ignition signal SB is output by the phase control unit 380 and the energization of the sub-primary coil 360 is started, the ignition signal SB rises from the rise time A. Count the elapsed time of. Then, when the elapsed time reaches the set timer value, the output of the ignition signal SB is stopped and the energization of the secondary primary coil 360 is terminated.
  • the ON period of the ignition signal SB is controlled by using the function of the timer circuit 381.
  • the timer circuit 381 acquires the ON period (charging period of the main primary coil 310) or the cycle (discharge cycle of the spark plug 200) of the ignition signal SA. Then, the timer value is set based on these acquired values. For example, a value obtained by multiplying the ON period or cycle of the ignition signal SA by a predetermined magnification is set as the timer value.
  • FIG. 19 is an example of map information showing the relationship between the engine speed of the internal combustion engine 100 and the ON period of the ignition signal SA. As shown in FIG. 19, the ON period of the ignition signal SA changes according to the engine speed of the internal combustion engine 100.
  • FIG. 20 is an example of a graph showing the relationship between the ON period of the ignition signal SA and the ON period of the ignition signal SB. As shown in the graph of FIG. 20, the shorter the ON period of the ignition signal SA, the shorter the ON period of the ignition signal SB is set.
  • the timer circuit 381 utilizes the relationship between the engine speed and the ON period of the ignition signal SA shown in FIG. 19, for example, according to the graph of FIG. 20, of the ignition signal SB corresponding to the ON period of the acquired ignition signal SA. Set the timer value according to the ON period. This makes it possible to set a timer value that changes according to the engine speed without using map information preset for each operating state of the internal combustion engine 100.
  • the ignition signal SB is set by setting the timer value of the timer circuit 381 based on the ON period of the ignition signal SA by utilizing the fact that the ON period of the ignition signal SA changes according to the engine rotation speed of the internal combustion engine 100.
  • the cycle of the ignition signal SA that is, the discharge cycle of the spark plug 200. That is, the cycle of the ignition signal SA changes according to the engine speed of the internal combustion engine 100. Therefore, by utilizing this, the timer value of the timer circuit 381 can be set based on the cycle of the ignition signal SA to control the ON period of the ignition signal SB. Even in this way, it is possible to set the timer value that changes according to the engine speed without using the map information set in advance for each operating state of the internal combustion engine 100.
  • FIG. 21 is an example of a flowchart illustrating a method of controlling the sub-primary coil 360 by the phase control unit 380 and the timer circuit 381 according to the third embodiment of the present invention.
  • each step for carrying out the same process as the flowchart of FIG. 14 described in the first embodiment is assigned the same step number as that of FIG.
  • the processing shown in the flowchart of FIG. 21 will be described with a focus on the differences from FIG.
  • the phase control unit 380 selects the superimposed energization start time in step S202.
  • the superimposition energization start time according to the operating state of the internal combustion engine 100, for example, the engine rotation speed is selected.
  • the timer circuit 381 acquires the ON period of the ignition signal SA in the following step S204.
  • the ON period of the ignition signal SA is acquired by acquiring a predetermined monitor signal output in synchronization with the ignition signal SA from the ignition control unit 83.
  • step S205 the timer circuit 381 sets the timer value based on the ON period of the ignition signal SA acquired in step S204.
  • a value obtained by multiplying the ON period of the ignition signal SA by a predetermined magnification is set as the timer value.
  • step S204 When setting the timer value of the timer circuit 381 based on the cycle of the ignition signal SA as described above, in step S204, the cycle is acquired instead of the ON period of the ignition signal SA, and the step is based on the cycle.
  • the timer value may be set by executing the process of S205.
  • the timer value set in step S205 is used for the determination in step S221. That is, in the present embodiment, in step S221, the timer circuit 381 compares the elapsed time counted since the ignition signal SB was turned on in step S220 with the timer value set in step S205. As a result, if the elapsed time is less than the timer value, it is determined that the superimposed energization period has not yet elapsed, and the determination in step S221 is continued. On the other hand, when the elapsed time reaches the timer value, it is determined that the superimposed energization period has elapsed, and the process proceeds to step S222.
  • the control device 1 sets a timer value according to the superimposed energization period, and when the elapsed time from the start of energization of the sub-primary coil 360 reaches the timer value, the sub-primary coil 360 is energized. It has a timer circuit 381 that ends. Since this is done, it is possible to control the energization of the sub-primary coil 360 that reflects the operating state of the internal combustion engine 100 without using the map information preset for each operating state of the internal combustion engine 100.
  • the timer circuit 381 sets the timer value based on the charge period of the main primary coil 310 or the discharge cycle of the spark plug 200. Since this is done, the timer value can be set so as to appropriately change the energization period of the sub-primary coil 360 according to the engine speed.
  • FIG. 22 is a diagram showing an example of a timing chart for explaining the relationship between the control signal input to the ignition coil and the output in the discharge control according to the fourth embodiment of the present invention.
  • the values of the secondary voltage V2 at the timings T1 and T2 are acquired during the discharge period of the spark plug 200 after the falling time S of the ignition signal SA, respectively. ..
  • the slope of the graph showing the time change of the secondary voltage V2 is obtained from the acquired value of each secondary voltage V2, and the superimposed energization start time is adjusted based on the magnitude of the slope.
  • the superimposition energization start time can be adjusted by using a preset superimposition energization start time as a reference value and adding a correction value according to a time change of the secondary voltage V2 to the reference value.
  • the secondary voltage V2 during discharge of the spark plug 200 changes according to the gas flow velocity between the electrodes. Therefore, by obtaining the slope of the graph showing the time change of the secondary voltage V2 as described above and changing the superimposed energization start time according to the magnitude of the slope, the ignition signal starts from the falling time S of the ignition signal SA.
  • the time interval until the rise time A of the SB can be adjusted according to the gas flow velocity between the electrodes. Therefore, it is possible to correct the superimposition energization start time according to the gas flow velocity between the electrodes during the discharge of the spark plug 200.
  • FIG. 23 is an example of a graph showing the relationship between the gas flow velocity between the electrodes (time change of the secondary voltage V2) and the correction addition value with respect to the rise time A of the ignition signal SB.
  • the rise time A of is corrected to be ahead of schedule. As a result, the superimposition energization start time can be shortened, and the energization period of the secondary primary coil 360 can be adjusted according to the gas flow velocity.
  • FIG. 24 is an example of a flowchart illustrating a method of controlling the sub-primary coil 360 by the phase control unit 380 according to the fourth embodiment of the present invention.
  • each step for carrying out the same process as the flowchart of FIG. 14 described in the first embodiment is assigned the same step number as that of FIG.
  • the processing shown in the flowchart of FIG. 24 will be described with a focus on the differences from FIG.
  • the phase control unit 380 selects the superimposed energization start time in step S202.
  • the superimposition energization start time according to the operating state of the internal combustion engine 100, for example, the engine rotation speed is selected.
  • step S203 When it is determined in step S203 that the ignition signal SA has changed from HIGH to LOW, in the subsequent step S206, the phase control unit 380 acquires the value of the secondary voltage V2 detected by the voltage detection unit 370.
  • step S207 the phase control unit 380 estimates the gas flow velocity between the electrodes of the spark plug 200 based on the secondary voltage V2 acquired in step S206.
  • the slope of the secondary voltage V2 is obtained based on the values of the secondary voltage V2 acquired at the present time and the time immediately before that, and the gas flow velocity between the electrodes is estimated from the magnitude of the slope. do. If only one value of the secondary voltage V2 has been acquired and the slope of the secondary voltage V2 cannot be calculated, the process of step S207 may be omitted.
  • step S208 the phase control unit 380 corrects the superimposed energization start time selected in step S202 based on the gas flow velocity estimated in step S207.
  • the correction addition value is determined based on the relationship between the gas flow velocity between the electrodes shown in FIG. 23 and the correction addition value for the rise time A of the ignition signal SB, and the correction addition value is added to superimpose energization. Correct the start time.
  • the superimposed energization start time is changed based on the time change of the secondary voltage V2 according to the change of the gas flow velocity.
  • the superimposed energization start time corrected in step S208 is used for the determination in step S211. That is, in the present embodiment, in step S211 the phase control unit 380 compares the superimposed energization start time corrected in step S208 with the elapsed time measured in step S210, and superimposes energization from the falling time S of the ignition signal SA. Determine if the start time has passed. As a result, if the elapsed time is less than the superimposed energization start time, it is determined that the superimposed energization start time has not yet elapsed, and the process returns to step S206 to correct the superimposed energization start time based on the time change of the secondary voltage V2.
  • step S220 Continue to measure the elapsed time. On the other hand, if the elapsed time is equal to or longer than the superimposed energization start time, it is determined that the superimposed energization start time has elapsed, and the process proceeds to step S220.
  • the control device 1 changes the superimposed energization start time based on the time change of the voltage V2 of the secondary coil 320 by the phase control unit 380 (steps 206 to S208). Since this is done, the energization period of the secondary primary coil 360 can be adjusted according to the gas flow velocity between the electrodes in the spark plug 200. Therefore, even when the operating state of the internal combustion engine 100 fluctuates in each combustion cycle, it is possible to reliably suppress ignition failure of the gas by the spark plug 200.
  • This is not only a series hybrid type electric vehicle in which a power generation motor is driven by the internal combustion engine 100 and the drive motor is driven by the electric power, but also a conventional automobile or a parallel hybrid in which the vehicle is driven by the internal combustion engine 100. It is also suitable for type electric vehicles.
  • the phase control unit 380 determines the discharge start timing of the main primary coil 310, that is, the ignition signal SA, according to the operating state of the internal combustion engine 100. As the falling time S of the ignition signal SA becomes earlier, the period from the falling time S of the ignition signal SA to the rising time A of the ignition signal SB may be lengthened to increase the superimposed energization start time. By doing so, when the spark plug 200 is discharged in the cylinder 150 of the internal combustion engine 100, the ignition signal SB is output in accordance with the timing at which the tumble flow collapse (tumble collapse) occurs in the gas in the cylinder 150. Then, the superimposed current can be supplied from the secondary primary coil 360 to the spark plug 200. Therefore, it is possible to effectively suppress the blowout of the discharge path due to the collapse of the tumble and improve the ignitability of the gas by the spark plug 200.
  • control device 1 may be realized by software executed by the MPU 50 as described above, or may be realized by FPGA (Field-Programmable Gate Array). ) And other hardware may be used. Further, these may be mixed and used.
  • FPGA Field-Programmable Gate Array
  • the first to fourth embodiments described above may be applied individually or in any combination of two or more. Further, any of them may be selectively applicable based on the operating conditions of the internal combustion engine 100 and the like.
  • Control device 10: Analog input unit, 20: Digital input unit, 30: A / D conversion unit, 40: RAM, 50: MPU, 60: ROM, 70: I / O port, 80: Output circuit, 81 : Overall control unit, 82: Fuel injection control unit, 83: Ignition control unit, 84: Cylinder discrimination unit, 85: Angle information generation unit, 86: Rotation speed information generation unit, 87: Intake amount measurement unit, 88: Load information Generation unit, 89: Water temperature measurement unit, 100: Internal combustion engine, 110: Air cleaner, 111: Intake pipe, 112: Intake manifold, 113: Throttle valve, 113a: Throttle opening sensor, 114: Flow sensor, 115: Intake temperature sensor , 120: Ring gear, 121: Crank angle sensor, 122: Water temperature sensor, 123: Crank shaft, 125: Accelerator pedal, 126: Accelerator position sensor, 130: Fuel tank, 131: Fuel pump, 132: Pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

This electronic control device controls energization of ignition coils including a main primary coil and an auxiliary primary coil each disposed on a primary side and a secondary coil disposed on a secondary side, and, as a result, controls supply of electric energy from the ignition coils to an ignition plug for generating an electric discharge in a cylinder of an internal combustion engine. The energization of the ignition coils is controlled such that after the elapse of a predetermined superimposing-energization start time from the start of discharging the main primary coil, energization of the auxiliary primary coil is started, and after the elapse of a predetermined superimposing-energization time period according to the rotation speed of the internal combustion engine from the start of energization of the auxiliary primary coil, energization of the auxiliary primary coil is ended.

Description

電子制御装置Electronic control device
 本発明は、電子制御装置に関する。 The present invention relates to an electronic control device.
 近年、車両の燃費向上のため、理論空燃比よりも薄い混合気を燃焼して内燃機関を運転する技術や、燃焼後の排気ガスの一部を取り入れて再度吸気させる技術などを導入した内燃機関の制御装置が開発されている。 In recent years, in order to improve the fuel efficiency of vehicles, an internal combustion engine that has introduced a technology to operate an internal combustion engine by burning an air-fuel mixture thinner than the stoichiometric air-fuel ratio and a technology to take in a part of the exhaust gas after combustion and re-intake it. Control device has been developed.
 この種の内燃機関の制御装置では、燃焼室における燃料や空気の量が理論値から乖離するため、点火プラグによる燃料への着火不良が生じやすくなる。そこで、燃焼室内のガス流速を高くすることで、点火プラグの電極間の流速を高くして放電路が長く形成されるようにすることで、放電路とガスの接触長さを長くして、着火不良を抑制する方法がある。しかし、点火プラグの電極間の流速を高くすると、放電路の吹き消えとこれに伴う再放電の発生頻度が高くなり、放電路を長く形成することが難しくなる。 In the control device of this type of internal combustion engine, the amount of fuel and air in the combustion chamber deviates from the theoretical value, so that ignition failure of the fuel by the spark plug is likely to occur. Therefore, by increasing the gas flow velocity in the combustion chamber, the flow velocity between the electrodes of the spark plug is increased so that the discharge path is formed longer, so that the contact length between the discharge path and the gas is lengthened. There is a way to suppress ignition failure. However, when the flow velocity between the electrodes of the spark plug is increased, the frequency of blowout of the discharge path and the occurrence of re-discharge associated therewith increases, and it becomes difficult to form a long discharge path.
 放電路を長く形成するためには、放電路が形成された後に十分な電流量で電流供給を続けることで、放電路をできるだけ長時間維持する必要がある。しかしながら、一般的に点火コイルは、放電開始から時間経過と共に内部エネルギーが低下し続けるため、次第に放電路の維持に必要な電流を供給できなくなる。その結果、ガスの燃焼途中で放電路の維持ができなくなり、再放電が必要になってしまうという問題が生じる。 In order to form a long discharge path, it is necessary to maintain the discharge path for as long as possible by continuing to supply current with a sufficient amount of current after the discharge path is formed. However, in general, since the internal energy of the ignition coil continues to decrease with the lapse of time from the start of discharge, the ignition coil gradually becomes unable to supply the current required to maintain the discharge path. As a result, the discharge path cannot be maintained during the combustion of the gas, which causes a problem that re-discharge is required.
 特許文献1には、主一次コイルと副一次コイルを有する点火コイルを用いて、主一次コイルにより点火プラグに放電火花を発生させた後に、1次電圧と閾値を比較して、閾値を超過した期間、副一次コイルにより電流を重畳させるようにした内燃機関の制御装置が開示されている。 In Patent Document 1, an ignition coil having a main primary coil and a secondary primary coil is used, and after generating a discharge spark in the spark plug by the main primary coil, the primary voltage and the threshold are compared and the threshold is exceeded. A control device for an internal combustion engine is disclosed in which a current is superimposed by a secondary primary coil for a period of time.
国際公開第2019/198119号International Publication No. 2019/198119
 特許文献1に開示されている技術では、1次電圧の大きさに従って重畳電流の通電時間が変化するため、内燃機関のサイクルごとに点火コイルの発熱量が変動する。こうした発熱量のサイクル変動に対応できるようにするためには、点火コイルに対して過大なマージンを含めた冷却能力を設定する必要があり、これに伴って点火コイルの容積やコストが増大する問題が生じる。 In the technique disclosed in Patent Document 1, since the energization time of the superimposed current changes according to the magnitude of the primary voltage, the calorific value of the ignition coil fluctuates in each cycle of the internal combustion engine. In order to be able to cope with such cycle fluctuations of the calorific value, it is necessary to set the cooling capacity including an excessive margin for the ignition coil, and the volume and cost of the ignition coil increase accordingly. Occurs.
 したがって、本発明は、上記の課題に着目してなされたもので、点火コイルの容積やコストの増大を抑えつつ、内燃機関の燃費向上と燃料への着火不良の抑制とを両立することを目的とする。 Therefore, the present invention has been made by paying attention to the above-mentioned problems, and an object thereof is to achieve both improvement of fuel efficiency of an internal combustion engine and suppression of ignition failure of fuel while suppressing an increase in the volume and cost of an ignition coil. And.
 本発明の第1の態様による電子制御装置は、1次側にそれぞれ配置された主1次コイルおよび副1次コイルと、2次側に配置された2次コイルとを備えた点火コイルの通電を制御することで、前記点火コイルから内燃機関の気筒内で放電する点火プラグへの電気エネルギーの供給を制御するものであって、前記主1次コイルの放電を開始してから所定の重畳通電開始時間を経過したときに前記副1次コイルの通電を開始し、前記副1次コイルの通電を開始してから前記内燃機関の回転数に応じた所定の重畳通電期間を経過したときに前記副1次コイルの通電を終了するように、前記点火コイルの通電を制御する。
 本発明の第2の態様による電子制御装置は、1次側にそれぞれ配置された主1次コイルおよび副1次コイルと、2次側に配置された2次コイルとを備えた点火コイルの通電を制御することで、前記点火コイルから内燃機関の気筒内で放電する点火プラグへの電気エネルギーの供給を制御するものであって、前記主1次コイルの放電を開始してから所定の重畳通電開始時間を経過したときに前記副1次コイルの通電を開始し、前記副1次コイルの通電を開始してから所定の重畳通電期間を経過したときに前記副1次コイルの通電を終了するように、前記点火コイルの通電を制御し、前記内燃機関の運転状態に応じて前記主1次コイルの放電開始タイミングが早くなるほど、前記重畳通電開始時間を増加させる。
The electronic control device according to the first aspect of the present invention energizes an ignition coil including a main primary coil and a sub primary coil arranged on the primary side and a secondary coil arranged on the secondary side, respectively. By controlling the above, the supply of electric energy from the ignition coil to the spark plug discharged in the cylinder of the internal combustion engine is controlled, and a predetermined superimposed energization is performed after the discharge of the main primary coil is started. When the start time elapses, the energization of the sub-primary coil is started, and when a predetermined superimposition energization period according to the rotation speed of the internal combustion engine elapses after the energization of the sub-primary coil is started, the above-mentioned The energization of the ignition coil is controlled so as to end the energization of the secondary primary coil.
The electronic control device according to the second aspect of the present invention energizes an ignition coil including a main primary coil and a sub primary coil arranged on the primary side and a secondary coil arranged on the secondary side, respectively. By controlling, the supply of electric energy from the ignition coil to the ignition plug discharged in the cylinder of the internal combustion engine is controlled, and a predetermined superimposed energization is performed after the discharge of the main primary coil is started. When the start time elapses, the energization of the sub-primary coil is started, and when a predetermined superposition energization period elapses after the energization of the sub-primary coil is started, the energization of the sub-primary coil is terminated. As described above, the energization of the ignition coil is controlled, and the earlier the discharge start timing of the main primary coil is made according to the operating state of the internal combustion engine, the more the superimposition energization start time is increased.
 本発明によれば、点火コイルの容積やコストの増大を抑えつつ、内燃機関の燃費向上と燃料への着火不良の抑制とを両立することができる。 According to the present invention, it is possible to achieve both improvement in fuel efficiency of an internal combustion engine and suppression of ignition failure of fuel while suppressing an increase in the volume and cost of the ignition coil.
実施の形態にかかる内燃機関及び内燃機機関の制御装置の要部構成を説明する図である。It is a figure explaining the main part structure of the internal combustion engine and the control device of the internal combustion engine which concerns on embodiment. 点火プラグを説明する部分拡大図である。It is a partially enlarged view explaining the spark plug. 実施の形態にかかる制御装置の機能構成を説明する機能ブロック図である。It is a functional block diagram explaining the functional structure of the control device which concerns on embodiment. 内燃機関の運転状態と点火プラグ周囲のガス流速との関係を説明する図である。It is a figure explaining the relationship between the operating state of an internal combustion engine, and the gas flow velocity around a spark plug. 点火プラグの電極間における放電路と流速の関係を説明する図である。It is a figure explaining the relationship between the discharge path and the flow velocity between the electrodes of a spark plug. 従来の点火コイルを含む電気回路を説明する図である。It is a figure explaining the electric circuit including the conventional ignition coil. 従来の放電制御における点火コイルへ入力される制御信号と出力の関係を説明するタイミングチャートの一例を示す図である。It is a figure which shows an example of the timing chart explaining the relationship between the control signal input to the ignition coil and the output in the conventional discharge control. 第1の実施形態にかかる点火コイルを含む電気回路を説明する図である。It is a figure explaining the electric circuit including the ignition coil which concerns on 1st Embodiment. 再放電電圧と再放電時間の計測結果を記録した散布図の例を示す図である。It is a figure which shows the example of the scatter diagram which recorded the measurement result of the re-discharge voltage and the re-discharge time. 再放電時間の計測結果を記録したヒストグラムの例を示す図である。It is a figure which shows the example of the histogram which recorded the measurement result of the re-discharge time. 第1の実施形態にかかる放電制御における点火コイルへ入力される制御信号と出力の関係を説明するタイミングチャートの一例を示す図である。It is a figure which shows an example of the timing chart explaining the relationship between the control signal input to the ignition coil and the output in the discharge control which concerns on 1st Embodiment. 本発明の効果を説明する図である。It is a figure explaining the effect of this invention. 第1の実施形態にかかる重畳通電開始時間の設定方法を説明するフローチャートの一例である。It is an example of the flowchart explaining the setting method of the superimposition energization start time which concerns on 1st Embodiment. 第1の実施形態にかかる副1次コイルの制御方法を説明するフローチャートの一例である。It is an example of the flowchart explaining the control method of the secondary primary coil which concerns on 1st Embodiment. 第2の実施形態にかかる点火コイルを含む電気回路を説明する図である。It is a figure explaining the electric circuit including the ignition coil which concerns on the 2nd Embodiment. 第2の実施形態にかかる重畳通電開始時間および重畳通電電圧範囲の設定方法を説明するフローチャートの一例である。It is an example of the flowchart explaining the setting method of the superimposition energization start time and superimposition energization voltage range which concerns on 2nd Embodiment. 第2の実施形態にかかる副1次コイルの制御方法を説明するフローチャートの一例である。It is an example of the flowchart explaining the control method of the secondary primary coil which concerns on 2nd Embodiment. 第3の実施形態にかかる点火コイルを含む電気回路を説明する図である。It is a figure explaining the electric circuit including the ignition coil which concerns on 3rd Embodiment. エンジン回転数と点火信号SAのON期間との関係を示したマップ情報の一例である。This is an example of map information showing the relationship between the engine speed and the ON period of the ignition signal SA. 点火信号SAのON期間と点火信号SBのON期間との関係を示したグラフの一例である。This is an example of a graph showing the relationship between the ON period of the ignition signal SA and the ON period of the ignition signal SB. 第3の実施形態にかかる副1次コイルの制御方法を説明するフローチャートの一例である。It is an example of the flowchart explaining the control method of the secondary primary coil which concerns on 3rd Embodiment. 第4の実施形態にかかる放電制御における点火コイルへ入力される制御信号と出力の関係を説明するタイミングチャートの一例を示す図である。It is a figure which shows an example of the timing chart explaining the relationship between the control signal input to the ignition coil and the output in the discharge control which concerns on 4th Embodiment. 電極間のガス流速と点火信号SBの立上り時期に対する補正加算値との関係を示したグラフの一例である。This is an example of a graph showing the relationship between the gas flow velocity between the electrodes and the correction addition value for the rise time of the ignition signal SB. 第4の実施形態にかかる副1次コイルの制御方法を説明するフローチャートの一例である。It is an example of the flowchart explaining the control method of the secondary primary coil which concerns on 4th Embodiment.
 以下、本発明の実施形態にかかる内燃機関用制御装置を説明する。 Hereinafter, the control device for an internal combustion engine according to the embodiment of the present invention will be described.
 以下、本発明の一実施形態にかかる電子制御装置の一態様である制御装置1を説明する。この実施の形態では、制御装置1により、4気筒の内燃機関100の各気筒150に各々設けられた点火プラグ200の放電(点火)を制御する場合を例示して説明する。
 以下、実施の形態において、内燃機関100の一部の構成又は全ての構成及び制御装置1の一部の構成又は全ての構成を組み合わせたものを、内燃機関100の制御装置1と言う。
Hereinafter, the control device 1 which is one aspect of the electronic control device according to the embodiment of the present invention will be described. In this embodiment, a case where the control device 1 controls the discharge (ignition) of the spark plug 200 provided in each cylinder 150 of the four-cylinder internal combustion engine 100 will be illustrated and described.
Hereinafter, in the embodiment, a combination of a partial configuration or all configurations of the internal combustion engine 100 and a partial configuration or all configurations of the control device 1 is referred to as a control device 1 of the internal combustion engine 100.
[内燃機関]
 図1は、内燃機関100及び内燃機関用点火装置の要部構成を説明する図である。
 図2は、点火プラグ200の電極210、220を説明する部分拡大図である。
[Internal combustion engine]
FIG. 1 is a diagram illustrating a main configuration of an internal combustion engine 100 and an ignition device for an internal combustion engine.
FIG. 2 is a partially enlarged view illustrating electrodes 210 and 220 of the spark plug 200.
 内燃機関100では、外部から吸引した空気はエアクリーナ110、吸気管111、吸気マニホールド112を通流し、吸気弁151が開くと各気筒150に流入する。各気筒150に流入する空気量は、スロットル弁113により調整され、スロットル弁113で調整された空気量は、流量センサ114により測定される。 In the internal combustion engine 100, the air sucked from the outside passes through the air cleaner 110, the intake pipe 111, and the intake manifold 112, and when the intake valve 151 is opened, it flows into each cylinder 150. The amount of air flowing into each cylinder 150 is adjusted by the throttle valve 113, and the amount of air adjusted by the throttle valve 113 is measured by the flow rate sensor 114.
 スロットル弁113には、スロットルの開度を検出するスロットル開度センサ113aが設けられている。このスロットル開度センサ113aで検出されたスロットル弁113の開度情報は、制御装置(Electronic Control Unit:ECU)1に出力される。 The throttle valve 113 is provided with a throttle opening sensor 113a that detects the opening of the throttle. The opening degree information of the throttle valve 113 detected by the throttle opening degree sensor 113a is output to the control device (Electronic Control Unit: ECU) 1.
 なお、スロットル弁113は、電動機で駆動される電子スロットル弁が用いられるが、空気の流量を適切に調整できるものであれば、その他の方式によるものでもよい。 The throttle valve 113 uses an electronic throttle valve driven by an electric motor, but may be another method as long as the air flow rate can be appropriately adjusted.
 各気筒150に流入したガスの温度は、吸気温センサ115で検出される。 The temperature of the gas flowing into each cylinder 150 is detected by the intake air temperature sensor 115.
 クランクシャフト123に取り付けられたリングギア120の径方向外側には、クランク角センサ121が設けられている。このクランク角センサ121により、クランクシャフト123の回転角度が検出される。実施の形態では、クランク角センサ121は、例えば10°毎及び燃焼周期毎のクランクシャフト123の回転角度を検出する。 A crank angle sensor 121 is provided on the radial outer side of the ring gear 120 attached to the crankshaft 123. The crank angle sensor 121 detects the rotation angle of the crankshaft 123. In the embodiment, the crank angle sensor 121 detects the rotation angle of the crankshaft 123, for example, every 10 ° and every combustion cycle.
 シリンダヘッドのウォータジャケット(図示せず)には、水温センサ122が設けられている。この水温センサ122により、内燃機関100の冷却水の温度を検出する。 A water temperature sensor 122 is provided on the water jacket (not shown) of the cylinder head. The water temperature sensor 122 detects the temperature of the cooling water of the internal combustion engine 100.
 また、車両には、アクセルペダル125の変位量(踏み込み量)を検出するアクセルポジションセンサ(Accelerator Position Sensor:APS)126が設けられている。このアクセルポジションセンサ126により、運転者の要求トルクを検出する。このアクセルポジションセンサ126で検出された運転者の要求トルクは、後述する制御装置1に出力される。制御装置1は、この要求トルクに基づいて、スロットル弁113を制御する。 Further, the vehicle is provided with an accelerator position sensor (Accelerator Position Sensor: APS) 126 that detects the displacement amount (depression amount) of the accelerator pedal 125. The accelerator position sensor 126 detects the torque required by the driver. The required torque of the driver detected by the accelerator position sensor 126 is output to the control device 1 described later. The control device 1 controls the throttle valve 113 based on this required torque.
 燃料タンク130に貯留された燃料は、燃料ポンプ131によって吸引及び加圧された後、プレッシャレギュレータ132が設けられた燃料配管133を通流し、燃料噴射弁(インジェクタ)134に誘導される。燃料ポンプ131から出力された燃料は、プレッシャレギュレータ132で所定の圧力に調整され、燃料噴射弁(インジェクタ)134から各気筒150内に噴射される。プレッシャレギュレータ132で圧力調整された結果、余分な燃料は戻り配管(図示せず)を介して燃料タンク130に戻される。 The fuel stored in the fuel tank 130 is sucked and pressurized by the fuel pump 131, then flows through the fuel pipe 133 provided with the pressure regulator 132, and is guided to the fuel injection valve (injector) 134. The fuel output from the fuel pump 131 is adjusted to a predetermined pressure by the pressure regulator 132, and is injected into each cylinder 150 from the fuel injection valve (injector) 134. As a result of pressure adjustment by the pressure regulator 132, excess fuel is returned to the fuel tank 130 via a return pipe (not shown).
 内燃機関100のシリンダヘッド(図示せず)には、燃焼圧センサ(CylinderPressure Sensor:CPS、筒内圧センサとも言う)140が設けられている。燃焼圧センサ140は、各気筒150内に設けられており、気筒150内の圧力(燃焼圧)を検出する。 The cylinder head (not shown) of the internal combustion engine 100 is provided with a combustion pressure sensor (CylinderPressure Sensor: CPS, also referred to as an in-cylinder pressure sensor) 140. The combustion pressure sensor 140 is provided in each cylinder 150 and detects the pressure (combustion pressure) in the cylinder 150.
 燃焼圧センサ140は、圧電式又はゲージ式の圧力センサが用いられ、広い温度領域に渡って気筒150内の燃焼圧(筒内圧)を検出することができるようになっている。 As the combustion pressure sensor 140, a piezoelectric or gauge type pressure sensor is used, and it is possible to detect the combustion pressure (in-cylinder pressure) in the cylinder 150 over a wide temperature range.
 各気筒150には、排気弁152と、燃焼後のガス(排気ガス)を気筒150の外側に排出する排気マニホールド160が取り付けられている。この排気マニホールド160の排気側には、三元触媒161が設けられている。排気弁152が開くと、気筒150から排気マニホールド160に排気ガスが排出される。この排気ガスは、排気マニホールド160を通って三元触媒161で浄化された後、大気に排出される。 Each cylinder 150 is equipped with an exhaust valve 152 and an exhaust manifold 160 that exhausts the gas (exhaust gas) after combustion to the outside of the cylinder 150. A three-way catalyst 161 is provided on the exhaust side of the exhaust manifold 160. When the exhaust valve 152 is opened, exhaust gas is discharged from the cylinder 150 to the exhaust manifold 160. This exhaust gas is purified by the three-way catalyst 161 through the exhaust manifold 160 and then discharged to the atmosphere.
 三元触媒161の上流側には、上流側空燃比センサ162が設けられている。この上流側空燃比センサ162は、各気筒150から排出された排気ガスの空燃比を連続的に検出する。 An upstream air-fuel ratio sensor 162 is provided on the upstream side of the three-way catalyst 161. The upstream air-fuel ratio sensor 162 continuously detects the air-fuel ratio of the exhaust gas discharged from each cylinder 150.
 また、三元触媒161の下流側には、下流側空燃比センサ163が設けられている。この下流側空燃比センサ163は、理論空燃比近傍でスイッチ的な検出信号を出力する。実施の形態では、下流側空燃比センサ163は、例えばO2センサである。 Further, a downstream air-fuel ratio sensor 163 is provided on the downstream side of the three-way catalyst 161. The downstream air-fuel ratio sensor 163 outputs a switch-like detection signal in the vicinity of the theoretical air-fuel ratio. In the embodiment, the downstream air-fuel ratio sensor 163 is, for example, an O2 sensor.
 また、各気筒150の上部には、点火プラグ200が各々設けられている。点火プラグ200の放電(点火)により、気筒150内の空気と燃料との混合気に火花が着火し、気筒150内で爆発が起こり、ピストン170が押し下げられる。ピストン170が押し下げられることにより、クランクシャフト123が回転する。 Further, a spark plug 200 is provided on the upper part of each cylinder 150. Due to the discharge (ignition) of the spark plug 200, sparks are ignited in the air-fuel mixture in the cylinder 150, an explosion occurs in the cylinder 150, and the piston 170 is pushed down. When the piston 170 is pushed down, the crankshaft 123 rotates.
 点火プラグ200には、点火プラグ200に供給される電気エネルギー(電圧)を生成する点火コイル300が接続されている。点火コイル300で発生した電圧により、点火プラグ200の中心電極210と外側電極220との間に放電が生じる(図2参照)。 The spark plug 200 is connected to an ignition coil 300 that generates electrical energy (voltage) supplied to the spark plug 200. The voltage generated by the ignition coil 300 causes a discharge between the center electrode 210 and the outer electrode 220 of the spark plug 200 (see FIG. 2).
 図2に示すように、点火プラグ200では、中心電極210は、絶縁体230により絶縁状態で支持されている。この中心電極210に所定の電圧(実施の形態では、例えば20,000V~40,000V)が印加される。 As shown in FIG. 2, in the spark plug 200, the center electrode 210 is supported by the insulator 230 in an insulated state. A predetermined voltage (for example, 20,000V to 40,000V in the embodiment) is applied to the center electrode 210.
 外側電極220は接地されている。中心電極210に所定の電圧が印加されると、中心電極210と外側電極220との間で放電(点火)が生じる。 The outer electrode 220 is grounded. When a predetermined voltage is applied to the center electrode 210, a discharge (ignition) occurs between the center electrode 210 and the outer electrode 220.
 なお、点火プラグ200において、中心電極210と外側電極220との間に存在する気体(ガス)の状態や筒内圧によって、ガス成分の絶縁破壊を起こして放電(点火)が発生する電圧が変動する。この放電が発生する電圧を絶縁破壊電圧と言う。 In the spark plug 200, the voltage at which discharge (ignition) occurs due to dielectric breakdown of the gas component fluctuates depending on the state of the gas (gas) existing between the center electrode 210 and the outer electrode 220 and the in-cylinder pressure. .. The voltage at which this discharge occurs is called the breakdown voltage.
 点火プラグ200の放電制御(点火制御)は、後述する制御装置1の点火制御部83により行われる。 The discharge control (ignition control) of the spark plug 200 is performed by the ignition control unit 83 of the control device 1 described later.
 図1に戻って、前述したスロットル開度センサ113a、流量センサ114、クランク角センサ121、アクセルポジションセンサ126、水温センサ122、燃焼圧センサ140等の各種センサからの出力信号は、制御装置1に出力される。制御装置1では、これら各種センサからの出力信号に基づいて、内燃機関100の運転状態を検出し、気筒150内に送出する空気量、燃料噴射量、点火プラグ200の点火タイミング等の制御を行う。 Returning to FIG. 1, the output signals from various sensors such as the throttle opening sensor 113a, the flow rate sensor 114, the crank angle sensor 121, the accelerator position sensor 126, the water temperature sensor 122, and the combustion pressure sensor 140 described above are sent to the control device 1. It is output. The control device 1 detects the operating state of the internal combustion engine 100 based on the output signals from these various sensors, and controls the amount of air sent into the cylinder 150, the fuel injection amount, the ignition timing of the spark plug 200, and the like. ..
[制御装置のハードウェア構成]
 次に、制御装置1のハードウェアの全体構成を説明する。
[Hardware configuration of controller]
Next, the overall configuration of the hardware of the control device 1 will be described.
 図1に示すように、制御装置1は、アナログ入力部10と、デジタル入力部20と、A/D(Analog/Digital)変換部30と、RAM(Random Access Memory)40と、MPU(Micro-Processing Unit)50と、ROM(Read Only Memory)60と、I/O(Input/Output)ポート70と、出力回路80と、を有する。 As shown in FIG. 1, the control device 1 includes an analog input unit 10, a digital input unit 20, an A / D (Analog / Digital) conversion unit 30, a RAM (Random Access Memory) 40, and an MPU (Micro-). It has a Processing Unit) 50, a ROM (Read Only Memory) 60, an I / O (Input / Output) port 70, and an output circuit 80.
 アナログ入力部10には、スロットル開度センサ113a、流量センサ114、アクセルポジションセンサ126、上流側空燃比センサ162、下流側空燃比センサ163、燃焼圧センサ140、水温センサ122等の各種センサからのアナログ出力信号が入力される。 The analog input unit 10 is provided with various sensors such as a throttle opening sensor 113a, a flow rate sensor 114, an accelerator position sensor 126, an upstream air fuel ratio sensor 162, a downstream air fuel ratio sensor 163, a combustion pressure sensor 140, and a water temperature sensor 122. An analog output signal is input.
 アナログ入力部10には、A/D変換部30が接続されている。アナログ入力部10に入力された各種センサからのアナログ出力信号は、ノイズ除去等の信号処理が行われた後、A/D変換部30でデジタル信号に変換され、RAM40に記憶される。 The A / D conversion unit 30 is connected to the analog input unit 10. The analog output signals from various sensors input to the analog input unit 10 are converted into digital signals by the A / D conversion unit 30 after signal processing such as noise removal, and stored in the RAM 40.
 デジタル入力部20には、クランク角センサ121からのデジタル出力信号が入力される。 A digital output signal from the crank angle sensor 121 is input to the digital input unit 20.
 デジタル入力部20には、I/Oポート70が接続されており、デジタル入力部20に入力されたデジタル出力信号は、このI/Oポート70を介してRAM40に記憶される。 An I / O port 70 is connected to the digital input unit 20, and the digital output signal input to the digital input unit 20 is stored in the RAM 40 via the I / O port 70.
 RAM40に記憶された各出力信号は、MPU50で演算処理される。 Each output signal stored in the RAM 40 is arithmetically processed by the MPU 50.
 MPU50は、ROM60に記憶された制御プログラム(図示せず)を実行することで、RAM40に記憶された出力信号を、制御プログラムに従って演算処理する。MPU50は、制御プログラムに従って、内燃機関100を駆動する各アクチュエータ(例えば、スロットル弁113、プレッシャレギュレータ132、点火プラグ200等)の作動量を規定する制御値を算出し、RAM40に一時的に記憶する。 The MPU 50 executes a control program (not shown) stored in the ROM 60 to perform arithmetic processing on the output signal stored in the RAM 40 according to the control program. The MPU 50 calculates a control value that defines the operating amount of each actuator (for example, throttle valve 113, pressure regulator 132, spark plug 200, etc.) that drives the internal combustion engine 100 according to a control program, and temporarily stores it in the RAM 40. ..
 RAM40に記憶されたアクチュエータの作動量を規定する制御値は、I/Oポート70を介して出力回路80に出力される。 The control value that defines the operating amount of the actuator stored in the RAM 40 is output to the output circuit 80 via the I / O port 70.
 出力回路80には、点火プラグ200に印加する電圧を制御する点火制御部83(図3参照)の機能などが設けられている。 The output circuit 80 is provided with a function of an ignition control unit 83 (see FIG. 3) that controls a voltage applied to the spark plug 200.
[制御装置の機能ブロック]
 次に、本発明の実施形態にかかる制御装置1の機能構成を説明する。
[Control device functional block]
Next, the functional configuration of the control device 1 according to the embodiment of the present invention will be described.
 図3は、本発明の一実施形態にかかる制御装置1の機能構成を説明する機能ブロック図である。この制御装置1の各機能は、例えばMPU50がROM60に記憶された制御プログラムを実行することで、出力回路80で実現される。 FIG. 3 is a functional block diagram illustrating the functional configuration of the control device 1 according to the embodiment of the present invention. Each function of the control device 1 is realized in the output circuit 80, for example, by the MPU 50 executing a control program stored in the ROM 60.
 図3に示すように、第1の実施形態にかかる制御装置1の出力回路80は、全体制御部81と、燃料噴射制御部82と、点火制御部83とを有する。 As shown in FIG. 3, the output circuit 80 of the control device 1 according to the first embodiment includes an overall control unit 81, a fuel injection control unit 82, and an ignition control unit 83.
 全体制御部81は、アクセルポジションセンサ126と、燃焼圧センサ140(CPS)に接続されており、アクセルポジションセンサ126からの要求トルク(加速信号S1)と、燃焼圧センサ140からの出力信号S2とを受け付ける。 The overall control unit 81 is connected to the accelerator position sensor 126 and the combustion pressure sensor 140 (CPS), and has the required torque (acceleration signal S1) from the accelerator position sensor 126 and the output signal S2 from the combustion pressure sensor 140. Accept.
 全体制御部81は、アクセルポジションセンサ126からの要求トルク(加速信号S1)と、燃焼圧センサ140からの出力信号S2とに基づいて、燃料噴射制御部82と点火制御部83の全体的な制御を行う。 The overall control unit 81 controls the fuel injection control unit 82 and the ignition control unit 83 as a whole based on the required torque (acceleration signal S1) from the accelerator position sensor 126 and the output signal S2 from the combustion pressure sensor 140. I do.
 燃料噴射制御部82は、内燃機関100の各気筒150を判別する気筒判別部84と、クランクシャフト123のクランク角を計測する角度情報生成部85と、エンジン回転数を計測する回転数情報生成部86と、に接続されており、気筒判別部84からの気筒判別情報S3と、角度情報生成部85からのクランク角度情報S4と、回転数情報生成部86からのエンジン回転数情報S5と、を受け付ける。 The fuel injection control unit 82 includes a cylinder discrimination unit 84 that discriminates each cylinder 150 of the internal combustion engine 100, an angle information generation unit 85 that measures the crank angle of the crankshaft 123, and a rotation speed information generation unit that measures the engine rotation speed. The cylinder discrimination information S3 from the cylinder discrimination unit 84, the crank angle information S4 from the angle information generation unit 85, and the engine rotation speed information S5 from the rotation speed information generation unit 86 are connected to the 86. accept.
 また、燃料噴射制御部82は、気筒150内に吸気される空気の吸気量を計測する吸気量計測部87と、エンジン負荷を計測する負荷情報生成部88と、エンジン冷却水の温度を計測する水温計測部89と、に接続されており、吸気量計測部87からの吸気量情報S6と、負荷情報生成部88からのエンジン負荷情報S7と、水温計測部89からの冷却水温度情報S8と、を受け付ける。 Further, the fuel injection control unit 82 measures the temperature of the engine cooling water, the intake amount measuring unit 87 that measures the intake amount of the air taken into the cylinder 150, the load information generation unit 88 that measures the engine load, and the engine cooling water. Connected to the water temperature measuring unit 89, the intake air amount information S6 from the intake air amount measuring unit 87, the engine load information S7 from the load information generation unit 88, and the cooling water temperature information S8 from the water temperature measuring unit 89. , Is accepted.
 燃料噴射制御部82は、受け付けた各情報に基づいて、燃料噴射弁134から噴射される燃料の噴射量と噴射時間(燃料噴射弁制御情報S9)を算出し、算出した燃料の噴射量と噴射時間とに基づいて燃料噴射弁134を制御する。 The fuel injection control unit 82 calculates the injection amount and injection time of the fuel injected from the fuel injection valve 134 (fuel injection valve control information S9) based on each received information, and the calculated fuel injection amount and injection. The fuel injection valve 134 is controlled based on the time.
 点火制御部83は、全体制御部81のほか、気筒判別部84と、角度情報生成部85と、回転数情報生成部86と、負荷情報生成部88と、水温計測部89とに接続されており、これらからの各情報を受け付ける。 The ignition control unit 83 is connected to the cylinder discrimination unit 84, the angle information generation unit 85, the rotation speed information generation unit 86, the load information generation unit 88, and the water temperature measurement unit 89, in addition to the overall control unit 81. We accept each information from these.
 点火制御部83は、受け付けた各情報に基づいて、点火コイル300の1次側コイル(図示せず)に通電する電流量(通電角)と、通電開始時間と、1次側コイルに通電した電流を遮断する時間(点火時間)とを算出する。 Based on each received information, the ignition control unit 83 energizes the primary side coil (not shown) of the ignition coil 300 with the current amount (energization angle), the energization start time, and the primary side coil. Calculate the time to cut off the current (ignition time).
 点火制御部83は、算出した通電角と、通電開始時間と、点火時間とに基づいて、点火コイル300の1次側コイルに点火信号SAを出力することで、点火プラグ200による放電制御(点火制御)を行う。 The ignition control unit 83 outputs an ignition signal SA to the primary coil of the ignition coil 300 based on the calculated energization angle, the energization start time, and the ignition time, thereby controlling the discharge (ignition) by the spark plug 200. Control).
 なお、少なくとも、点火制御部83が点火信号SAを用いて点火プラグ200の点火制御を行う機能は、本発明の内燃機関用制御装置に相当する。 At least, the function of the ignition control unit 83 to control the ignition of the spark plug 200 by using the ignition signal SA corresponds to the control device for an internal combustion engine of the present invention.
 図4は、内燃機関100の運転状態と点火プラグ200周囲のガス流速との関係を説明する図である。図4に示すように、一般にはエンジン回転数や負荷が高いほど、気筒150内のガス流速が高くなり、点火プラグ200周囲のガスも高流速になる。したがって、点火プラグ200の中心電極210と外側電極220の間において、ガスが高速に流れることとなる。また、排気再循環(EGR:Exhaust Gas Recirculation)が行われる内燃機関100では、エンジン回転数と負荷の関係に応じて、例えば図4に示すようにEGR率が設定される。なお、EGR率をより高く設定する高EGR領域を拡大するほど、低燃費化や低排気化を実現できるが、点火プラグ200において着火不良が生じやすくなる。 FIG. 4 is a diagram illustrating the relationship between the operating state of the internal combustion engine 100 and the gas flow velocity around the spark plug 200. As shown in FIG. 4, generally, the higher the engine speed and the load, the higher the gas flow rate in the cylinder 150, and the higher the gas flow rate around the spark plug 200. Therefore, the gas flows at high speed between the center electrode 210 and the outer electrode 220 of the spark plug 200. Further, in the internal combustion engine 100 in which exhaust gas recirculation (EGR: Exhaust Gas Recirculation) is performed, the EGR rate is set, for example, as shown in FIG. 4, according to the relationship between the engine rotation speed and the load. It should be noted that the larger the high EGR region in which the EGR rate is set higher, the lower the fuel consumption and the lower the exhaust gas, but the ignition failure is likely to occur in the spark plug 200.
 図5は、点火プラグ200の電極間における放電路と流速の関係を説明する図である。点火コイル300において2次側コイルに高電圧が発生し、点火プラグ200の中心電極210と外側電極220の間に絶縁破壊が生じると、これらの電極間に流れる電流が一定値以下になるまでの間、点火プラグ200の電極間に放電路が形成される。この放電路に可燃ガスが接触すると、火炎核が成長して燃焼に至る。放電路は、電極間のガス流れの影響を受けて移動するため、ガス流速が高いほど短時間で長い放電路を形成し、ガス流速が低いほど放電路が短くなる。図5(a)はガス流速が高いときの放電路211の例を示しており、図5(b)はガス流速が低いときの放電路212の例を示している。 FIG. 5 is a diagram illustrating the relationship between the discharge path and the flow velocity between the electrodes of the spark plug 200. When a high voltage is generated in the secondary side coil of the spark plug 300 and dielectric breakdown occurs between the center electrode 210 and the outer electrode 220 of the spark plug 200, the current flowing between these electrodes becomes a constant value or less. Meanwhile, a discharge path is formed between the electrodes of the spark plug 200. When combustible gas comes into contact with this discharge path, flame nuclei grow and lead to combustion. Since the discharge path moves under the influence of the gas flow between the electrodes, the higher the gas flow velocity, the longer the discharge path is formed, and the lower the gas flow velocity, the shorter the discharge path. FIG. 5A shows an example of the discharge path 211 when the gas flow velocity is high, and FIG. 5B shows an example of the discharge path 212 when the gas flow velocity is low.
 内燃機関100が高EGR率で運転される場合、可燃ガスが放電路と接触しても火炎核が成長する確率が下がるため、可燃ガスが放電路と接触する機会を増やす必要がある。前述のように、放電路はガスの絶縁を破壊して生成されるため、放電路の維持に必要な電流を一定とすれば、放電路の長さに応じた電力の出力が必要となる。このため、ガス流速が高い場合は、短時間で大きな電力を点火コイル300から点火プラグ200へ出力するように点火コイル300の通電制御を行い、これにより図5(a)のような長い放電路211を形成することで、より広範な空間のガスと接触機会を得ることが好ましい。一方、ガス流速が低い場合は、小さな電力を長時間の間に点火コイル300から点火プラグ200へ出力し続けるように点火コイル300の通電制御を行い、これにより図5(b)のような短い放電路212の形成を維持することで、点火プラグ200の電極付近を通過するガスとの接触機会をより長時間にわたって得ることが好ましい。 When the internal combustion engine 100 is operated at a high EGR rate, the probability that the flame nucleus grows even if the combustible gas comes into contact with the discharge path decreases, so it is necessary to increase the chances that the combustible gas comes into contact with the discharge path. As described above, since the discharge path is generated by breaking the insulation of the gas, if the current required to maintain the discharge path is constant, it is necessary to output electric power according to the length of the discharge path. Therefore, when the gas flow velocity is high, the energization control of the ignition coil 300 is performed so that a large amount of electric power is output from the ignition coil 300 to the spark plug 200 in a short time, whereby the long discharge path as shown in FIG. 5A is performed. It is preferable to form 211 to obtain contact opportunities with gas in a wider space. On the other hand, when the gas flow velocity is low, the energization control of the ignition coil 300 is performed so that a small amount of power is continuously output from the ignition coil 300 to the spark plug 200 for a long period of time, whereby the short power as shown in FIG. 5 (b) is controlled. By maintaining the formation of the discharge path 212, it is preferable to obtain a contact opportunity with the gas passing near the electrode of the spark plug 200 for a longer period of time.
[従来の点火コイルの電気回路]
 次に、本発明の実施形態を説明する前に、従来の点火コイルについて説明する。
[Electric circuit of conventional ignition coil]
Next, before explaining the embodiment of the present invention, the conventional ignition coil will be described.
 図6は、本発明の比較例としての従来の点火コイル300Cを含む電気回路400Cを説明する図である。電気回路400Cにおいて、点火コイル300Cは、所定の巻き数で巻かれた1次側コイル310と、1次側コイル310よりも多い巻き数で巻かれた2次側コイル320と、を含んで構成される。 FIG. 6 is a diagram illustrating an electric circuit 400C including a conventional ignition coil 300C as a comparative example of the present invention. In the electric circuit 400C, the ignition coil 300C includes a primary coil 310 wound with a predetermined number of turns and a secondary coil 320 wound with a larger number of turns than the primary coil 310. Will be done.
 1次側コイル310の一端は、直流電源330に接続されている。これにより、1次側コイル310には、所定の電圧(例えば12V)が印加される。 One end of the primary coil 310 is connected to the DC power supply 330. As a result, a predetermined voltage (for example, 12V) is applied to the primary coil 310.
 1次側コイル310の他端は、イグナイタ340に接続されており、イグナイタ340を介して接地されている。イグナイタ340には、トランジスタや電界効果トランジスタ(Field Effect Transistor:FET)などが用いられる。 The other end of the primary coil 310 is connected to the igniter 340 and is grounded via the igniter 340. A transistor, a field effect transistor (FET), or the like is used for the igniter 340.
 イグナイタ340のベース(B)端子は、点火制御部83に接続されている。点火制御部83から出力された点火信号SAは、イグナイタ340のベース(B)端子に入力される。イグナイタ340のベース(B)端子に点火信号SAが入力されると、イグナイタ340のコレクタ(C)端子とエミッタ(E)端子間が通電状態となり、コレクタ(C)端子とエミッタ(E)端子間に電流が流れる。これにより、点火制御部83からイグナイタ340を介して点火コイル300の1次側コイル310に点火信号SAが出力され、1次側コイル310に電流が流れて電力(電気エネルギー)が蓄積される。 The base (B) terminal of the igniter 340 is connected to the ignition control unit 83. The ignition signal SA output from the ignition control unit 83 is input to the base (B) terminal of the igniter 340. When the ignition signal SA is input to the base (B) terminal of the igniter 340, the collector (C) terminal and the emitter (E) terminal of the igniter 340 are energized, and the collector (C) terminal and the emitter (E) terminal are connected to each other. Current flows through. As a result, the ignition signal SA is output from the ignition control unit 83 to the primary coil 310 of the ignition coil 300 via the igniter 340, a current flows through the primary coil 310, and electric power (electrical energy) is accumulated.
 点火制御部83からの点火信号SAの出力が停止して、1次側コイル310に流れる電流が遮断されると、1次側コイル310に対するコイルの巻き数比に応じた高電圧が2次側コイル320に発生する。 When the output of the ignition signal SA from the ignition control unit 83 is stopped and the current flowing through the primary coil 310 is cut off, a high voltage corresponding to the coil turns ratio with respect to the primary coil 310 is applied to the secondary side. It occurs in the coil 320.
 点火信号SAにより2次側コイル320に発生する高電圧が、点火プラグ200(中心電極210)に印加されることで、点火プラグ200の中心電極210と、外側電極220との間に電位差が発生する。この中心電極210と外側電極220との間に発生した電位差が、ガス(気筒150内の混合気)の絶縁破壊電圧Vm以上になると、ガス成分が絶縁破壊されて中心電極210と外側電極220との間に放電が生じ、燃料(混合気)への点火(着火)が行われる。 When a high voltage generated in the secondary coil 320 by the ignition signal SA is applied to the spark plug 200 (center electrode 210), a potential difference is generated between the center electrode 210 of the spark plug 200 and the outer electrode 220. do. When the potential difference generated between the center electrode 210 and the outer electrode 220 becomes equal to or higher than the dielectric breakdown voltage Vm of the gas (air-fuel mixture in the cylinder 150), the gas component is dielectrically broken down to the center electrode 210 and the outer electrode 220. A discharge occurs between the two, and the fuel (air-fuel mixture) is ignited (ignited).
 比較例では、点火制御部83は、以上説明したような電気回路400Cの動作により、点火信号SAを用いて点火コイル300Aの通電を制御する。これにより、点火プラグ200を制御するための点火制御を実施する。 In the comparative example, the ignition control unit 83 controls the energization of the ignition coil 300A by using the ignition signal SA by the operation of the electric circuit 400C as described above. As a result, ignition control for controlling the spark plug 200 is performed.
[従来の点火コイルの放電制御]
 次に、従来の点火コイルの放電制御について説明する。図7は、従来の放電制御における点火コイルへ入力される制御信号と出力の関係を説明するタイミングチャートの一例を示す図である。図7のタイミングチャートは、従来の点火コイル300Cを用いてガスが高流速の場合に点火プラグ200を放電させたときの一例である。図7では、点火制御部83から出力される点火信号SAと、この点火信号SAに応じて1次側コイル310に流れる1次電流I1、点火コイル300Cに蓄積される電気エネルギーE、2次側コイル320に流れる2次電流I2、および2次側コイル320に発生する2次電圧V2との関係を示している。なお、2次電流I2と2次電圧V2の測定ポイントは、図6に示すように、点火プラグ200と点火コイル300Cの間としている。また、1次電流I1の測定ポイントは、直流電源330と点火コイル300Cの間としている。
[Conventional ignition coil discharge control]
Next, the discharge control of the conventional ignition coil will be described. FIG. 7 is a diagram showing an example of a timing chart for explaining the relationship between the control signal input to the ignition coil and the output in the conventional discharge control. The timing chart of FIG. 7 is an example when the spark plug 200 is discharged when the gas has a high flow velocity by using the conventional ignition coil 300C. In FIG. 7, the ignition signal SA output from the ignition control unit 83, the primary current I1 flowing through the primary coil 310 in response to the ignition signal SA, the electrical energy E stored in the ignition coil 300C, and the secondary side The relationship between the secondary current I2 flowing through the coil 320 and the secondary voltage V2 generated in the secondary coil 320 is shown. As shown in FIG. 6, the measurement points of the secondary current I2 and the secondary voltage V2 are between the spark plug 200 and the ignition coil 300C. The measurement point of the primary current I1 is between the DC power supply 330 and the ignition coil 300C.
 点火信号SAがHIGHになると、イグナイタ340が1次側コイル310を通電し、1次電流I1が上昇する。1次側コイル310の通電中は、点火コイル300C内の電気エネルギーEが時間と共に上昇する。 When the ignition signal SA becomes HIGH, the igniter 340 energizes the primary coil 310 and the primary current I1 rises. While the primary coil 310 is energized, the electric energy E in the ignition coil 300C rises with time.
 その後、点火信号SAがLOWになると、イグナイタ340は1次側コイル310の通電を遮断する。これにより、2次側コイル320へ起電力が生じて、点火コイル300Cから点火プラグ200への電気エネルギーEの供給が開始される。点火プラグ200の電極間の絶縁が破壊されると、点火プラグ200の放電が開始される。このような絶縁破壊を伴う点火プラグ200の放電は、容量放電と呼ばれる。点火プラグ200の放電開始後は、点火コイル300C内の電気エネルギーEが時間と共に減少し、点火プラグ200の放電が維持される。このような絶縁破壊を伴わない点火プラグ200の放電は、誘導放電と呼ばれる。 After that, when the ignition signal SA becomes LOW, the igniter 340 cuts off the energization of the primary coil 310. As a result, an electromotive force is generated in the secondary coil 320, and the supply of electric energy E from the ignition coil 300C to the spark plug 200 is started. When the insulation between the electrodes of the spark plug 200 is broken, the spark plug 200 starts to be discharged. The discharge of the spark plug 200 accompanied by such dielectric breakdown is called capacitive discharge. After the discharge of the spark plug 200 is started, the electric energy E in the ignition coil 300C decreases with time, and the discharge of the spark plug 200 is maintained. The discharge of the spark plug 200 without such dielectric breakdown is called an induced discharge.
 2次電流I2は、容量放電時に大きく上昇する。この容量放電による2次電流I2は短時間で終了する。点火プラグ200の放電が開始されて電極間に放電路が形成されると、2次電流I2は急激に低下し、その後の誘導放電時には時間と共に減少する。放電路はガスの流れと共に伸長するため、時間経過と共に2次電圧V2が上昇する。このとき、点火プラグ200の電極間に存在するガスの流速に応じて、放電路の維持に必要な2次電流I2の大きさが変化する。 The secondary current I2 greatly increases when the capacity is discharged. The secondary current I2 due to this capacity discharge ends in a short time. When the discharge of the spark plug 200 is started and a discharge path is formed between the electrodes, the secondary current I2 drops sharply and then drops with time during the subsequent induced discharge. Since the discharge path extends with the flow of gas, the secondary voltage V2 rises with the passage of time. At this time, the magnitude of the secondary current I2 required to maintain the discharge path changes according to the flow velocity of the gas existing between the electrodes of the spark plug 200.
 2次電流I2が、放電路の維持に必要な最低値から、放電できなくなる最大値までの間になると、点火プラグ200は放電路の吹き消えと再放電を繰り返す。このように放電路の吹き消えと再放電が繰り返される2次電流I2の範囲を、以下では「断続運転領域」と言う。すなわち、2次電流I2が断続運転領域に入ると、放電路を維持できなくなり、放電路がガス流れによって吹き消えることで、点火プラグ200の放電が中断する。このとき、放電路が無くなっても点火コイル300C内の電気エネルギーEは残っているため、点火プラグ200において容量放電を伴う再放電(リストライク)が発生する。図7の例では、初放電が1回と再放電3回となっており、容量放電回数は4回である。 When the secondary current I2 is between the minimum value required to maintain the discharge path and the maximum value at which discharge cannot be performed, the spark plug 200 repeatedly blows out and re-discharges the discharge path. The range of the secondary current I2 in which the discharge path is repeatedly blown out and re-discharged in this way is hereinafter referred to as an “intermittent operation region”. That is, when the secondary current I2 enters the intermittent operation region, the discharge path cannot be maintained, and the discharge path is blown out by the gas flow, so that the discharge of the spark plug 200 is interrupted. At this time, since the electric energy E in the ignition coil 300C remains even if the discharge path disappears, re-discharge (re-discharge) accompanied by capacity discharge occurs in the spark plug 200. In the example of FIG. 7, the initial discharge is once and the re-discharge is three times, and the capacity discharge number is four times.
 点火コイル300C内の電気エネルギーEが減少すると、それに伴って2次電流I2も低下する。2次電流I2が放電できなくなる最大値以下になると、点火プラグ200の放電が停止する。 When the electric energy E in the ignition coil 300C decreases, the secondary current I2 also decreases accordingly. When the secondary current I2 becomes equal to or less than the maximum value at which discharge cannot be performed, the discharge of the spark plug 200 is stopped.
 本発明では、図6で説明した点火コイル300Cに替えて、1次側コイルを2つ有する点火コイル300を採用し、この点火コイル300に対して放電制御を行うことにより、容量放電回数を抑制した点火プラグ200の放電を実現している。 In the present invention, instead of the ignition coil 300C described with reference to FIG. 6, an ignition coil 300 having two primary side coils is adopted, and discharge control is performed on the ignition coil 300 to suppress the number of capacitance discharges. The discharge of the spark plug 200 is realized.
[第1の実施形態:点火コイルの電気回路]
 次に、本発明の第1の実施形態にかかる点火コイル300を含む電気回路400を説明する。
[First Embodiment: Electric circuit of ignition coil]
Next, the electric circuit 400 including the ignition coil 300 according to the first embodiment of the present invention will be described.
 図8は、本発明の第1の実施形態にかかる点火コイル300を含む電気回路400を説明する図である。電気回路400において、点火コイル300は、所定の巻き数でそれぞれ巻かれた2種類の1次側コイル310、360と、1次側コイル310、360よりも多い巻き数で巻かれた2次側コイル320と、を含んで構成される。ここで、点火プラグ200の点火時には、先に1次側コイル310からの電力が2次側コイル320に供給され、その電力に重ねて、1次側コイル360からの電力が2次側コイル320に供給される。そのため以下では、1次側コイル310を「主1次コイル」、1次側コイル360を「副1次コイル」とそれぞれ称する。また、主1次コイル310に流れる電流を「主1次電流」、1次副コイル360に流れる電流を「副1次電流」とそれぞれ称する。 FIG. 8 is a diagram illustrating an electric circuit 400 including an ignition coil 300 according to the first embodiment of the present invention. In the electric circuit 400, the ignition coil 300 has two types of primary coil 310 and 360 wound with a predetermined number of turns and a secondary side wound with a number of turns larger than the primary coil 310 and 360. It is configured to include and include a coil 320. Here, at the time of ignition of the spark plug 200, the electric power from the primary coil 310 is first supplied to the secondary coil 320, and the electric power from the primary coil 360 is superimposed on the electric power to the secondary coil 320. Is supplied to. Therefore, in the following, the primary coil 310 will be referred to as a "main primary coil" and the primary coil 360 will be referred to as a "secondary primary coil". Further, the current flowing through the main primary coil 310 is referred to as "main primary current", and the current flowing through the primary sub coil 360 is referred to as "secondary primary current".
 主1次コイル310の一端は、直流電源330に接続されている。これにより、主1次コイル310には、所定の電圧(実施の形態では、例えば12V)が印加される。 One end of the main primary coil 310 is connected to the DC power supply 330. As a result, a predetermined voltage (for example, 12V in the embodiment) is applied to the main primary coil 310.
 主1次コイル310の他端は、イグナイタ340に接続されており、イグナイタ340を介して接地されている。イグナイタ340には、トランジスタや電界効果トランジスタ(Field Effect Transistor:FET)などが用いられる。 The other end of the main primary coil 310 is connected to the igniter 340 and is grounded via the igniter 340. A transistor, a field effect transistor (FET), or the like is used for the igniter 340.
 イグナイタ340のベース(B)端子は、点火制御部83に接続されている。点火制御部83から出力された点火信号SAは、イグナイタ340のベース(B)端子に入力される。イグナイタ340のベース(B)端子に点火信号SAが入力されると、イグナイタ340のコレクタ(C)端子とエミッタ(E)端子間が通電状態となり、コレクタ(C)端子とエミッタ(E)端子間に電流が流れる。これにより、点火制御部83からイグナイタ340を介して点火コイル300の主1次コイル310に点火信号SAが出力され、主1次コイル310に主1次電流が流れて電力(電気エネルギー)が蓄積される。 The base (B) terminal of the igniter 340 is connected to the ignition control unit 83. The ignition signal SA output from the ignition control unit 83 is input to the base (B) terminal of the igniter 340. When the ignition signal SA is input to the base (B) terminal of the igniter 340, the collector (C) terminal and the emitter (E) terminal of the igniter 340 are energized, and the collector (C) terminal and the emitter (E) terminal are connected to each other. Current flows through. As a result, the ignition signal SA is output from the ignition control unit 83 to the main primary coil 310 of the ignition coil 300 via the igniter 340, and the main primary current flows through the main primary coil 310 to accumulate electric power (electrical energy). Will be done.
 点火制御部83からの点火信号SAの出力が停止して、主1次コイル310に流れる主1次電流が遮断されると、主1次コイル310に対するコイルの巻き数比に応じた高電圧が2次側コイル320に発生する。 When the output of the ignition signal SA from the ignition control unit 83 is stopped and the main primary current flowing through the main primary coil 310 is cut off, a high voltage corresponding to the coil turns ratio with respect to the main primary coil 310 is generated. It occurs in the secondary coil 320.
 副1次コイル360の一端は、主1次コイル310と共通で直流電源330に接続されている。これにより、副1次コイル360にも、所定の電圧(実施の形態では、例えば12V)が印加される。 One end of the secondary primary coil 360 is connected to the DC power supply 330 in common with the main primary coil 310. As a result, a predetermined voltage (for example, 12V in the embodiment) is also applied to the secondary primary coil 360.
 副1次コイル360の他端は、イグナイタ350に接続されており、イグナイタ350を介して接地されている。イグナイタ350には、トランジスタや電界効果トランジスタ(Field Effect Transistor:FET)などが用いられる。 The other end of the secondary primary coil 360 is connected to the igniter 350 and is grounded via the igniter 350. For the igniter 350, a transistor, a field effect transistor (FET), or the like is used.
 イグナイタ350のベース(B)端子は、点火制御部83内に設けられた位相制御部380に接続されている。位相制御部380は、イグナイタ350のオンオフを制御するための信号として、点火信号SBを出力する。位相制御部380から出力された点火信号SBは、イグナイタ350のベース(B)端子に入力される。イグナイタ350のベース(B)端子に点火信号SBが入力されると、イグナイタ350のコレクタ(C)端子とエミッタ(E)端子間が点火信号SBの電圧変化に応じた通電状態となり、コレクタ(C)端子とエミッタ(E)端子間に点火信号SBの電圧変化に応じた電流が流れる。これにより、点火制御部83からイグナイタ350を介して点火コイル300の副1次コイル360に点火信号SBが出力され、副1次コイル360に副1次電流が流れて電力(電気エネルギー)が発生する。 The base (B) terminal of the igniter 350 is connected to the phase control unit 380 provided in the ignition control unit 83. The phase control unit 380 outputs an ignition signal SB as a signal for controlling the on / off of the igniter 350. The ignition signal SB output from the phase control unit 380 is input to the base (B) terminal of the igniter 350. When the ignition signal SB is input to the base (B) terminal of the igniter 350, the collector (C) terminal and the emitter (E) terminal of the igniter 350 are energized according to the voltage change of the ignition signal SB, and the collector (C). A current corresponding to the voltage change of the ignition signal SB flows between the terminal) and the emitter (E) terminal. As a result, the ignition signal SB is output from the ignition control unit 83 to the sub-primary coil 360 of the ignition coil 300 via the igniter 350, and the sub-primary current flows through the sub-primary coil 360 to generate electric power (electrical energy). do.
 位相制御部380からの点火信号SBの出力が変化して、副1次コイル360に流れる副1次電流が変化すると、副1次コイル360に対するコイルの巻き数比に応じた高電圧が2次側コイル320に発生する。 When the output of the ignition signal SB from the phase control unit 380 changes and the secondary primary current flowing through the secondary primary coil 360 changes, a high voltage corresponding to the coil turns ratio to the secondary primary coil 360 becomes secondary. It occurs in the side coil 320.
 点火信号SAにより2次側コイル320に発生する高電圧に、点火信号SBにより2次側コイル320に発生する高電圧が加わって、点火プラグ200(中心電極210)に印加されることで、点火プラグ200の中心電極210と、外側電極220との間に電位差が発生する。この中心電極210と外側電極220との間に発生した電位差が、ガス(気筒150内の混合気)の絶縁破壊電圧Vm以上になると、ガス成分が絶縁破壊されて中心電極210と外側電極220との間に放電が生じ、燃料(混合気)への点火(着火)が行われる。 The high voltage generated in the secondary coil 320 by the ignition signal SA is applied to the high voltage generated in the secondary coil 320 by the ignition signal SB and applied to the spark plug 200 (center electrode 210) to ignite. A potential difference is generated between the center electrode 210 of the plug 200 and the outer electrode 220. When the potential difference generated between the center electrode 210 and the outer electrode 220 becomes equal to or higher than the dielectric breakdown voltage Vm of the gas (air-fuel mixture in the cylinder 150), the gas component is dielectrically broken down to the center electrode 210 and the outer electrode 220. A discharge occurs between the two, and the fuel (air-fuel mixture) is ignited (ignited).
 位相制御部380は、点火信号SAの立下り時期Sを起点として、そこから予め定めた重畳通電開始時間を経過した時期Aで点火信号SBを立ち上げるとともに、その後に所定の重畳通電期間を経過した時期Bで点火信号SBを立ち下げるように、点火信号SBの出力制御を行う。これにより、主1次コイル310からの供給電力に重畳して、副1次コイル360からの電力が点火プラグ200へ供給され、中心電極210と外側電極220との間に形成された放電路が維持される。なお、点火信号SBの具体的な出力制御方法については後述する。 The phase control unit 380 starts the ignition signal SB at a time A when a predetermined superimposition energization start time elapses from the falling time S of the ignition signal SA, and then elapses a predetermined superimposition energization period. The output of the ignition signal SB is controlled so that the ignition signal SB is turned off at the time B. As a result, the electric power from the secondary primary coil 360 is supplied to the spark plug 200 by superimposing on the electric power supplied from the main primary coil 310, and the discharge path formed between the center electrode 210 and the outer electrode 220 is formed. Be maintained. The specific output control method of the ignition signal SB will be described later.
 点火制御部83は、以上説明したような電気回路400の動作により、点火信号SAとSBを用いて点火コイル300の通電を制御する。これにより、点火プラグ200を制御するための点火制御を実施する。 The ignition control unit 83 controls the energization of the ignition coil 300 by using the ignition signals SA and SB by the operation of the electric circuit 400 as described above. As a result, ignition control for controlling the spark plug 200 is performed.
 なお、位相制御部380は、点火制御部83の内部に設けなくてもよい。すなわち、点火制御部83と位相制御部380を別構成としてもよい。いずれの場合であっても、位相制御部380は点火制御部83の制御に応じて動作するため、点火制御部83が点火コイル300の通電を制御すると言うことができる。 The phase control unit 380 does not have to be provided inside the ignition control unit 83. That is, the ignition control unit 83 and the phase control unit 380 may be configured separately. In any case, since the phase control unit 380 operates according to the control of the ignition control unit 83, it can be said that the ignition control unit 83 controls the energization of the ignition coil 300.
[第1の実施形態:点火コイルの放電制御]
 次に、本発明の第1の実施形態にかかる点火コイルの放電制御について説明する。本実施形態では、点火制御部83の位相制御部380において、予め定めた重畳通電開始時間および重畳通電期間に基づき、点火信号SBの出力時間および出力タイミングを決定する。重畳通電開始時間とは、点火信号SAの立下り時期Sから点火信号SBの立上り時期Aまでの時間、すなわち、点火信号SAに応じて主1次コイル310の放電が開始されてから副1次コイル360の通電を開始するまでの時間である。一方、重畳通電期間とは、点火信号SBの立上り時期Aから立下り時期Bまでの時間、すなわち、副1次コイル360の通電を開始してから終了するまでの時間である。これらの時間は、点火制御部83の開発段階において、気筒150内で点火プラグ200を放電させたときの再放電の発生状況を計測した結果に基づいて設定される。以下では、その具体的な方法の一例を説明する。
[First Embodiment: Discharge control of ignition coil]
Next, the discharge control of the ignition coil according to the first embodiment of the present invention will be described. In the present embodiment, the phase control unit 380 of the ignition control unit 83 determines the output time and output timing of the ignition signal SB based on the predetermined superimposition energization start time and superimposition energization period. The superimposed energization start time is the time from the falling time S of the ignition signal SA to the rising time A of the ignition signal SB, that is, the secondary primary after the discharge of the main primary coil 310 is started according to the ignition signal SA. This is the time until the coil 360 starts to be energized. On the other hand, the superimposed energization period is the time from the rise time A to the fall time B of the ignition signal SB, that is, the time from the start to the end of energization of the secondary primary coil 360. These times are set based on the result of measuring the occurrence state of re-discharge when the spark plug 200 is discharged in the cylinder 150 in the development stage of the ignition control unit 83. Hereinafter, an example of the specific method will be described.
 まず、図8に示した電気回路400において、点火プラグ200と点火コイル300の間に電圧センサを設置し、この電圧センサを用いて、気筒150内で点火プラグ200を放電させたときの2次電圧V2を検出する。なお、電気回路400に替えて、図6に示した電気回路400Cを用いて、気筒150内で点火プラグ200を放電させたときの2次電圧V2を検出してもよい。そして、得られた2次電圧V2の値に基づき、点火プラグ200の再放電が発生する直前の時点での2次電圧V2(以下、「再放電電圧」と称する)を計測するとともに、再放電電圧が計測された時期に基づき、点火プラグ200の放電開始から再放電までの時間(以下、「再放電時間」と称する)を計測する。 First, in the electric circuit 400 shown in FIG. 8, a voltage sensor is installed between the spark plug 200 and the ignition coil 300, and the voltage sensor is used to discharge the spark plug 200 in the cylinder 150. The voltage V2 is detected. In addition, instead of the electric circuit 400, the electric circuit 400C shown in FIG. 6 may be used to detect the secondary voltage V2 when the spark plug 200 is discharged in the cylinder 150. Then, based on the obtained value of the secondary voltage V2, the secondary voltage V2 (hereinafter referred to as “re-discharge voltage”) at the time immediately before the re-discharge of the ignition plug 200 occurs is measured and re-discharged. Based on the time when the voltage is measured, the time from the start of discharge to the re-discharge of the ignition plug 200 (hereinafter referred to as "re-discharge time") is measured.
 例えば、図7に示した2次電圧V2の波形において、点火プラグ200の放電期間中における2次電圧V2の最大値、すなわち放電開始後に2次電圧V2が急激に低下する直前の値を、V2maxと定義する。このV2maxの値と、点火信号SAの立下りからV2maxが検出されるまでの時間(V2max時期)とを、2次電圧V2の検出結果からそれぞれ求めることにより、再放電電圧と再放電時間の計測を行うことができる。なお、V2maxを検出する際には、2次電圧V2の時間微分dV2/dtを求め、この時間微分dV2/dtの値を予め定めた閾値と比較してもよい。このようにすれば、2次電圧V2が急激に低下する点をV2maxとして容易に検出し、再放電時間を計測することができる。 For example, in the waveform of the secondary voltage V2 shown in FIG. 7, the maximum value of the secondary voltage V2 during the discharge period of the spark plug 200, that is, the value immediately before the secondary voltage V2 suddenly drops after the start of discharge is V2max. Is defined as. The re-discharge voltage and the re-discharge time are measured by obtaining the value of V2max and the time from the fall of the ignition signal SA to the detection of V2max (V2max timing) from the detection results of the secondary voltage V2, respectively. It can be performed. When detecting V2max, the time derivative dV2 / dt of the secondary voltage V2 may be obtained and the value of the time derivative dV2 / dt may be compared with a predetermined threshold value. By doing so, the point where the secondary voltage V2 drops sharply can be easily detected as V2max, and the re-discharge time can be measured.
 上記のような2次電圧V2の検出結果に基づく再放電電圧および再放電時間の計測を複数回行い、各計測結果を統計的に処理することで、重畳通電開始時間および重畳通電期間の設定値が決定される。その手法を、図9、図10を参照して以下に説明する。 By measuring the re-discharge voltage and re-discharge time multiple times based on the detection result of the secondary voltage V2 as described above and statistically processing each measurement result, the set values of the superimposition energization start time and superimposition energization period are performed. Is determined. The method will be described below with reference to FIGS. 9 and 10.
 図9は、再放電電圧と再放電時間の計測結果を記録した散布図の例を示す図である。この散布図において、横軸は点火信号SAの立下り時期Sを起点としたV2max時期、すなわち再放電時間を表し、縦軸はV2maxの値、すなわち再放電電圧を表している。 FIG. 9 is a diagram showing an example of a scatter diagram in which the measurement results of the re-discharge voltage and the re-discharge time are recorded. In this scatter plot, the horizontal axis represents the V2max time starting from the fall time S of the ignition signal SA, that is, the re-discharge time, and the vertical axis represents the value of V2max, that is, the re-discharge voltage.
 内燃機関100の運転中、気筒150内において点火プラグ200の電極間のガス流動や電極の温度は、燃焼サイクルごとにばらつきがある。そのため、V2maxやV2max時期の値は、図9に示すように、燃焼サイクルごとに変動して一定とはならない。しかしながら、Vmax時期の変動範囲に応じた全ての再放電時間の範囲内で、副1次コイル360による点火プラグ200への重畳電流の供給を行おうとすると、副1次コイル360の通電時間が過剰となる。その結果、点火コイル300の消費電力や発熱量が過大となり、点火コイル300を実装するためには、点火コイル300の冷却能力を必要以上に大きくしなければならず、容積やコストの増大を引き起こすおそれがある。 During the operation of the internal combustion engine 100, the gas flow between the electrodes of the spark plug 200 and the temperature of the electrodes in the cylinder 150 vary from combustion cycle to combustion cycle. Therefore, as shown in FIG. 9, the values of V2max and V2max timing fluctuate with each combustion cycle and are not constant. However, when trying to supply the superimposed current to the spark plug 200 by the secondary primary coil 360 within the range of all the re-discharge times according to the fluctuation range of the Vmax timing, the energization time of the secondary primary coil 360 is excessive. Will be. As a result, the power consumption and heat generation amount of the ignition coil 300 become excessive, and in order to mount the ignition coil 300, the cooling capacity of the ignition coil 300 must be increased more than necessary, which causes an increase in volume and cost. There is a risk.
 そこで本実施形態では、再放電時間の計測を複数回行ったときの各計測結果の分布において、発熱上許容できる副1次コイル360の通電期間を重畳通電期間に設定し、この重畳通電期間内で点火プラグ200の再放電の発生回数が最大となるように、重畳通電開始時間を設定する。これにより、点火コイル300の冷却能力を上げることなく、点火プラグ200における再放電の発生をできるだけ抑制し、点火コイル300の消費電力の抑制と、点火プラグ200の電極間における放電路の延長とを、両立させるようにしている。 Therefore, in the present embodiment, in the distribution of each measurement result when the re-discharge time is measured a plurality of times, the energization period of the sub-primary coil 360 that is permissible for heat generation is set as the superimposition energization period, and within this superimposition energization period. The superimposition energization start time is set so that the number of times of re-discharge of the spark plug 200 is maximized. As a result, the occurrence of re-discharge in the spark plug 200 is suppressed as much as possible without increasing the cooling capacity of the ignition coil 300, the power consumption of the ignition coil 300 is suppressed, and the discharge path between the electrodes of the spark plug 200 is extended. , I try to make it compatible.
 具体的には、例えば図9に示した散布図において、点火信号SBの立上り時期Aと立下り時期Bにそれぞれ対応する線分91,92を設定し、線分91と線分92の間隔を、内燃機関100の回転数に応じて発熱上許容できる副1次コイル360の通電期間に合わせて固定する。この状態で、線分91,92を散布図上で横方向に移動させ、線分91と線分92の間に入る測定点の数が最大となる位置を探索する。こうして探索された線分91の位置により、重畳通電開始時間を設定することができる。なお、点火コイル300の発熱上問題がない場合は、線分91と線分92の間に全ての測定点が入るように、重畳通電開始時間を設定してもよい。 Specifically, for example, in the scatter diagram shown in FIG. 9, the line segments 91 and 92 corresponding to the rise time A and the fall time B of the ignition signal SB are set, respectively, and the interval between the line segments 91 and the line segment 92 is set. It is fixed according to the energization period of the sub-primary coil 360, which is permissible in terms of heat generation according to the rotation speed of the internal combustion engine 100. In this state, the line segments 91 and 92 are moved laterally on the scatter plot to search for the position where the number of measurement points between the line segment 91 and the line segment 92 is maximized. The superimposition energization start time can be set according to the position of the line segment 91 searched in this way. If there is no problem in heat generation of the ignition coil 300, the superimposition energization start time may be set so that all the measurement points are inserted between the line segment 91 and the line segment 92.
 さらに、図9に示した散布図において、2次電圧V2の下限電圧Cと上限電圧Dにそれぞれ対応する線分93,94を設定してもよい。例えば、線分93と線分94の間隔や、線分93と線分94の間に入る測定点の数などに基づいて、所定の条件を満たすように線分93と線分94の位置をそれぞれ決定する。このとき、線分93と線分94の間に全ての測定点が入るようにしてもよい。こうして設定された線分93,94の位置により、2次電圧V2の下限電圧Cと上限電圧Dを設定し、これらを用いて点火信号SBの制御を行うことができる。なお、下限電圧Cおよび上限電圧Dを用いた点火信号SBの制御方法については、後述する第2の実施形態において説明する。 Further, in the scatter diagram shown in FIG. 9, the line segments 93 and 94 corresponding to the lower limit voltage C and the upper limit voltage D of the secondary voltage V2 may be set, respectively. For example, based on the distance between the line segment 93 and the line segment 94, the number of measurement points between the line segment 93 and the line segment 94, and the like, the positions of the line segment 93 and the line segment 94 are set so as to satisfy a predetermined condition. Decide each. At this time, all the measurement points may be inserted between the line segment 93 and the line segment 94. The lower limit voltage C and the upper limit voltage D of the secondary voltage V2 can be set according to the positions of the line segments 93 and 94 set in this way, and the ignition signal SB can be controlled using these. The method of controlling the ignition signal SB using the lower limit voltage C and the upper limit voltage D will be described in the second embodiment described later.
 なお、再放電時間の計測結果をヒストグラムに記録し、このヒストグラムを用いて重畳通電開始時間を設定してもよい。図10は、再放電時間の計測結果を記録したヒストグラムの例を示す図である。このヒストグラムにおいて、横軸は点火信号SAの立下り時期Sを起点としたV2max時期、すなわち再放電時間を表し、縦軸は各V2max時期の値が計測された内燃機関100の燃焼サイクル数、すなわち再放電時間の計測結果ごとの頻度を表している。 The measurement result of the re-discharge time may be recorded in a histogram, and the superimposed energization start time may be set using this histogram. FIG. 10 is a diagram showing an example of a histogram in which the measurement result of the re-discharge time is recorded. In this histogram, the horizontal axis represents the V2max time starting from the fall time S of the ignition signal SA, that is, the re-discharge time, and the vertical axis represents the number of combustion cycles of the internal combustion engine 100 in which the value of each V2max time is measured, that is. It shows the frequency of each measurement result of the re-discharge time.
 図10に示したヒストグラムでも、図9の散布図と同様の方法により、重畳通電開始時間を設定することができる。すなわち、点火信号SBの立上り時期Aと立下り時期Bにそれぞれ対応する線分95,96を設定し、線分95と線分96の間隔を、内燃機関100の回転数に応じて発熱上許容できる副1次コイル360の通電期間に合わせて固定する。この状態で、線分95,96をヒストグラム上で横方向に移動させ、線分95と線分96の間に入る燃焼サイクル数の合計値(頻度)が最大となる位置を探索する。こうして探索された線分95の位置により、重畳通電開始時間を設定することができる。なお、点火コイル300の発熱上問題がない場合は、ヒストグラムが分布している全領域を重畳通電開始時間に設定してもよい。 Also in the histogram shown in FIG. 10, the superimposed energization start time can be set by the same method as the scatter diagram of FIG. That is, the line segments 95 and 96 corresponding to the rise time A and the fall time B of the ignition signal SB are set, respectively, and the interval between the line segments 95 and the line segment 96 is allowed to generate heat according to the rotation speed of the internal combustion engine 100. It is fixed according to the energization period of the sub-primary coil 360 that can be formed. In this state, the line segments 95 and 96 are moved laterally on the histogram to search for the position where the total value (frequency) of the number of combustion cycles between the line segments 95 and 96 is maximized. The superimposition energization start time can be set according to the position of the line segment 95 searched in this way. If there is no problem in heat generation of the ignition coil 300, the entire region where the histogram is distributed may be set as the superimposed energization start time.
 上記では、図9の散布図や図10のヒストグラムを用いて再放電時間の計測結果を記録した場合の重畳通電開始時間の設定方法を説明したが、他の方法で再放電時間の計測結果を記録した場合についても、図9や図10と同様に重畳通電開始時間の設定を行うことができる。すなわち、任意の方法で記録された再放電時間の計測結果の分布において、所定の重畳通電期間内で再放電の発生回数が最大となるように、重畳通電開始時間を設定することが好ましい。 In the above, the method of setting the superimposed energization start time when the measurement result of the re-discharge time is recorded using the scatter diagram of FIG. 9 and the histogram of FIG. 10 has been described, but the measurement result of the re-discharge time can be obtained by another method. Even in the case of recording, the superimposed energization start time can be set in the same manner as in FIGS. 9 and 10. That is, in the distribution of the measurement results of the re-discharge time recorded by an arbitrary method, it is preferable to set the superposition energization start time so that the number of times of re-discharge occurs is maximized within a predetermined superposition energization period.
 図11は、本発明の第1の実施形態にかかる放電制御における点火コイルへ入力される制御信号と出力の関係を説明するタイミングチャートの一例を示す図である。図11のタイミングチャートは、本実施形態の点火コイル300を用いてガスが高流速の場合に点火プラグ200を放電させたときの一例である。図11では、点火制御部83から出力される点火信号SAと、この点火信号SAに応じて主1次コイル310に流れる主1次電流I1と、位相制御部380から出力される点火信号SBと、この点火信号SBに応じて副1次コイル360に流れる副1次電流I3と、点火コイル300に蓄積される電気エネルギーE、2次側コイル320に流れる2次電流I2、および2次側コイル320に発生する2次電圧V2との関係を示している。 FIG. 11 is a diagram showing an example of a timing chart for explaining the relationship between the control signal input to the ignition coil and the output in the discharge control according to the first embodiment of the present invention. The timing chart of FIG. 11 is an example when the spark plug 200 is discharged when the gas has a high flow velocity by using the ignition coil 300 of the present embodiment. In FIG. 11, an ignition signal SA output from the ignition control unit 83, a main primary current I1 flowing through the main primary coil 310 in response to the ignition signal SA, and an ignition signal SB output from the phase control unit 380. , The secondary primary current I3 flowing in the secondary primary coil 360 according to the ignition signal SB, the electric energy E stored in the ignition coil 300, the secondary current I2 flowing in the secondary coil 320, and the secondary coil. The relationship with the secondary voltage V2 generated in 320 is shown.
 点火信号SAがHIGHになると、イグナイタ340が主1次コイル310を通電し、主1次電流I1が上昇する。主1次コイル310の通電中は、点火コイル300内の電気エネルギーEが時間と共に上昇する。 When the ignition signal SA becomes HIGH, the igniter 340 energizes the main primary coil 310, and the main primary current I1 rises. While the main primary coil 310 is energized, the electric energy E in the ignition coil 300 rises with time.
 その後、点火信号SAが立下り時期SにおいてLOWになると、イグナイタ340は主1次コイル310の通電を遮断する。これにより、2次側コイル320へ起電力が生じて、点火コイル300から点火プラグ200への電気エネルギーEの供給が開始される。点火プラグ200の電極間の絶縁が破壊されると、点火プラグ200の放電(容量放電)が開始される。点火プラグ200の放電開始後は、点火コイル300内の電気エネルギーEが時間と共に減少し、点火プラグ200の放電(誘導放電)が維持される。 After that, when the ignition signal SA becomes LOW at the falling time S, the igniter 340 cuts off the energization of the main primary coil 310. As a result, an electromotive force is generated in the secondary coil 320, and the supply of electric energy E from the ignition coil 300 to the spark plug 200 is started. When the insulation between the electrodes of the spark plug 200 is broken, discharge (capacitive discharge) of the spark plug 200 is started. After the discharge of the spark plug 200 is started, the electric energy E in the ignition coil 300 decreases with time, and the discharge (induced discharge) of the spark plug 200 is maintained.
 2次電流I2および2次電圧V2は、容量放電時に大きく上昇する。この容量放電による2次電流I2および2次電圧V2の上昇は、短時間で終了する。点火プラグ200の放電が開始されて電極間に放電路が形成されると、2次電流I2と2次電圧V2はそれぞれ急激に低下する。その後の誘導放電時には、2次電流I2は時間と共に減少する。一方、放電路はガスの流れと共に伸長するため、時間経過と共に2次電圧V2が上昇する。このとき、点火プラグ200の電極間に存在するガスの流速に応じて、放電路の維持に必要な2次電流I2の大きさが変化する。 The secondary current I2 and the secondary voltage V2 greatly increase when the capacity is discharged. The increase in the secondary current I2 and the secondary voltage V2 due to this capacitance discharge ends in a short time. When the discharge of the spark plug 200 is started and a discharge path is formed between the electrodes, the secondary current I2 and the secondary voltage V2 each drop sharply. During the subsequent induced discharge, the secondary current I2 decreases with time. On the other hand, since the discharge path extends with the flow of gas, the secondary voltage V2 rises with the passage of time. At this time, the magnitude of the secondary current I2 required to maintain the discharge path changes according to the flow velocity of the gas existing between the electrodes of the spark plug 200.
 位相制御部380は、点火信号SAがHIGHからLOWに変化する立下り時期Sを起点として、そこから所定の重畳通電開始時間を経過した時期Aにおいて、点火信号SBをONにする。その後、時期Aから所定の重畳通電期間を経過した時期Bにおいて、点火信号SBをOFFにする。この点火信号SBの制御で用いられる重畳通電開始時間および重畳通電期間は、前述のように位相制御部380において予め設定されている。すなわち、重畳通電開始時間は、気筒150内で点火プラグ200を放電させたときの再放電時間の計測結果を統計処理した結果に基づいて設定されている。また、重畳通電期間は、内燃機関100の回転数に応じて発熱上許容できる副1次コイル360の通電期間に応じて予め設定されている。 The phase control unit 380 turns on the ignition signal SB at the time A when a predetermined superimposed energization start time elapses from the falling time S when the ignition signal SA changes from HIGH to LOW. After that, the ignition signal SB is turned off at the time B when the predetermined superimposed energization period has elapsed from the time A. The superimposition energization start time and superimposition energization period used in the control of the ignition signal SB are preset in the phase control unit 380 as described above. That is, the superimposed energization start time is set based on the result of statistical processing of the measurement result of the re-discharge time when the spark plug 200 is discharged in the cylinder 150. Further, the superimposed energization period is set in advance according to the energization period of the sub-primary coil 360 that can be tolerated in terms of heat generation according to the rotation speed of the internal combustion engine 100.
 位相制御部380がイグナイタ350へ点火信号SBを出力している間、点火信号SAにより2次側コイル320に発生する高電圧に、点火信号SBにより2次側コイル320に発生する高電圧が加わる。この高電圧は点火プラグ200(中心電極210)に印加される。その結果、2次電流I2が増加して、放電路の維持が継続される。したがって、点火プラグ200において容量放電を伴う再放電(リストライク)の発生が抑制される。図11の例では、初放電が1回と再放電1回となっており、容量放電回数は2回である。 While the phase control unit 380 outputs the ignition signal SB to the igniter 350, the high voltage generated in the secondary side coil 320 by the ignition signal SB is added to the high voltage generated in the secondary side coil 320 by the ignition signal SA. .. This high voltage is applied to the spark plug 200 (center electrode 210). As a result, the secondary current I2 is increased and the maintenance of the discharge path is continued. Therefore, in the spark plug 200, the occurrence of re-discharge (re-discharge) accompanied by capacitance discharge is suppressed. In the example of FIG. 11, the initial discharge is once and the re-discharge is once, and the capacity discharge number is twice.
 なお、点火信号SBが出力されているときの2次電流I2には、主1次コイル310により2次側コイル320に流れる電流と、副1次コイル360により2次側コイル320に流れる電流とが含まれる。 The secondary current I2 when the ignition signal SB is output includes a current flowing through the secondary coil 320 by the main primary coil 310 and a current flowing through the secondary coil 320 by the secondary primary coil 360. Is included.
 図12は、本発明の効果を説明する図である。図12において、信号波形501は、本発明による重畳電流用の点火信号として、上記の実施形態で説明した方法により出力される点火信号SBの波形を示している。なお、信号波形501における点火信号SBのパルス幅、すなわち点火信号SBがONになる立上り時期AからOFFになる立下り時期Bまでの重畳通電期間は、内燃機関100の回転数に応じて定まり、例えば内燃機関100の回転数が2400[rpm]のときには、0.5[msec]である。一方、信号波形502は、比較例による重畳電流用の点火信号として、点火プラグ200で発生し得る全ての再放電時間の範囲に対して出力される点火信号SBの波形を示している。また、電流波形503,504は、これらの信号波形501,502で示した点火信号SBに応じて流れる2次電流I2の波形例をそれぞれ示している。 FIG. 12 is a diagram illustrating the effect of the present invention. In FIG. 12, the signal waveform 501 shows the waveform of the ignition signal SB output by the method described in the above embodiment as the ignition signal for the superimposed current according to the present invention. The pulse width of the ignition signal SB in the signal waveform 501, that is, the superimposed energization period from the rising time A when the ignition signal SB is turned on to the falling time B when the ignition signal SB is turned off is determined according to the rotation speed of the internal combustion engine 100. For example, when the rotation speed of the internal combustion engine 100 is 2400 [rpm], it is 0.5 [msec]. On the other hand, the signal waveform 502 shows the waveform of the ignition signal SB output for the entire range of the re-discharge time that can occur in the spark plug 200 as the ignition signal for the superimposed current according to the comparative example. Further, the current waveforms 503 and 504 show examples of waveforms of the secondary current I2 flowing according to the ignition signal SB shown in these signal waveforms 501 and 502, respectively.
 プロット図505は、点火信号SBに応じた重畳電流の供給による点火コイル300のエネルギー消費量と点火プラグ200の燃焼安定性との関係を示している。このプロット図505において、点506,507は、信号波形501,502にそれぞれ示した本発明と比較例での点火信号SBによるエネルギー消費量と接続安定性との関係をそれぞれ表している。また、点508は、図6の電気回路400Cを用いた従来例でのエネルギー消費量と接続安定性との関係を表している。 Plot FIG. 505 shows the relationship between the energy consumption of the ignition coil 300 and the combustion stability of the spark plug 200 due to the supply of the superimposed current according to the ignition signal SB. In this plot diagram 505, points 506 and 507 represent the relationship between the energy consumption by the ignition signal SB and the connection stability in the present invention and the comparative example shown in the signal waveforms 501 and 502, respectively. Further, the point 508 represents the relationship between the energy consumption and the connection stability in the conventional example using the electric circuit 400C of FIG.
 点506と点507を比較すると、燃焼安定性(着火性能)については本発明と比較例が同等であるが、エネルギー消費量(発熱量)については本発明が比較例よりも大幅に低減していることが分かる。また、点506と点508を比較すると、本発明では従来例よりもエネルギー消費量(発熱量)が少し増えているものの、燃焼安定性(着火性能)が大きく向上していることが分かる。 Comparing points 506 and 507, the comparative example is equivalent to the present invention in terms of combustion stability (ignition performance), but the present invention is significantly reduced in energy consumption (calorific value) as compared to the comparative example. You can see that there is. Further, when points 506 and 508 are compared, it can be seen that although the energy consumption (calorific value) is slightly increased in the present invention as compared with the conventional example, the combustion stability (ignition performance) is greatly improved.
 以上説明したように、本発明による点火コイル300の制御方法を採用することで、点火コイル300の消費電力の抑制と、点火プラグ200の着火不良抑制との両立を図ることができる。したがって、点火プラグ200によるガスへの着火不良を抑えつつ、点火コイル300の容積やコストの増大を抑制することが可能となる。 As described above, by adopting the control method of the ignition coil 300 according to the present invention, it is possible to achieve both suppression of power consumption of the ignition coil 300 and suppression of ignition failure of the spark plug 200. Therefore, it is possible to suppress an increase in the volume and cost of the ignition coil 300 while suppressing the ignition failure of the gas by the spark plug 200.
[第1の実施形態:重畳通電開始時間の設定フロー]
 次に、上記の放電制御を実施するために、事前に行われる重畳通電開始時間の設定方法を説明する。図13は、本発明の第1の実施形態にかかる重畳通電開始時間の設定方法を説明するフローチャートの一例である。図13のフローチャートに示す処理は、例えば点火コイル300の開発段階や出荷前など、内燃機関100に取り付けられた点火コイル300がイグナイタ340,350を介して点火制御部83と接続されることで点火コイル300の実運用が開始される前に、所定の実験設備や試験設備において実施される。
[First embodiment: Flow of setting the superimposition energization start time]
Next, in order to carry out the above discharge control, a method of setting the superimposition energization start time performed in advance will be described. FIG. 13 is an example of a flowchart illustrating a method of setting a superimposed energization start time according to the first embodiment of the present invention. In the process shown in the flowchart of FIG. 13, for example, in the development stage of the ignition coil 300 or before shipment, the ignition coil 300 attached to the internal combustion engine 100 is connected to the ignition control unit 83 via the igniters 340 and 350 to ignite. Before the actual operation of the coil 300 is started, it is carried out in a predetermined experimental facility or test facility.
 点火プラグ200や点火コイル300を実験用の内燃機関100の所定位置にそれぞれ搭載し、図8の電気回路400を構成して2次電圧V2の測定準備ができたら、ステップS101で図13の処理フローを開始する。 When the spark plug 200 and the ignition coil 300 are mounted at predetermined positions of the internal combustion engine 100 for the experiment, the electric circuit 400 of FIG. 8 is configured, and the measurement of the secondary voltage V2 is ready, the process of FIG. 13 is performed in step S101. Start the flow.
 ステップS102では、点火制御部83から点火コイル300に点火信号SAを出力して点火プラグ200を放電させたときの2次電圧V2を検出する。 In step S102, the ignition signal SA is output from the ignition control unit 83 to the ignition coil 300 to detect the secondary voltage V2 when the spark plug 200 is discharged.
 ステップS103では、2次電圧V2の時間微分値dV2/dtを算出し、予め定めた閾値と比較する。dV2/dtが閾値を超過した場合は、点火プラグ200の電極間に形成された放電路が吹き消えて再放電が発生したと判断し、ステップS104へ進む。一方、dV2/dtが閾値を超過していない場合は、ステップS102へ戻って2次電圧V2の検出を継続する。 In step S103, the time derivative value dV2 / dt of the secondary voltage V2 is calculated and compared with a predetermined threshold value. When dV2 / dt exceeds the threshold value, it is determined that the discharge path formed between the electrodes of the spark plug 200 is blown out and re-discharge has occurred, and the process proceeds to step S104. On the other hand, if dV2 / dt does not exceed the threshold value, the process returns to step S102 to continue the detection of the secondary voltage V2.
 本実施形態では、上記ステップS103の処理により、2次電圧V2の時間微分dV2/dtに基づいて、点火プラグ200の電極間に形成された放電路が吹き消えて再放電が発生したことを検知するようにしている。これにより、1次電圧V1に基づいて再放電の発生を検知する場合と比べて、点火プラグ200の電極間の電圧から再放電の有無を直接的に判断できるため、検知精度を向上させることができる。また、2次電流I2に基づいて再放電の発生を検知することも可能であるが、図7に示したように、点火プラグ200の再放電による2次電流I2の変化は、短時間で一瞬のうちに起こる。したがって上記のように、2次電圧V2の時間微分dV2/dtに基づいて点火プラグ200の再放電を検知することで、より確実な検知が可能となる。 In the present embodiment, it is detected that the discharge path formed between the electrodes of the spark plug 200 is blown out and re-discharge occurs based on the time derivative dV2 / dt of the secondary voltage V2 by the process of step S103. I try to do it. As a result, compared to the case where the occurrence of re-discharge is detected based on the primary voltage V1, the presence or absence of re-discharge can be directly determined from the voltage between the electrodes of the spark plug 200, so that the detection accuracy can be improved. can. It is also possible to detect the occurrence of re-discharge based on the secondary current I2, but as shown in FIG. 7, the change in the secondary current I2 due to the re-discharge of the spark plug 200 is instantaneous in a short time. It happens in. Therefore, as described above, by detecting the re-discharge of the spark plug 200 based on the time derivative dV2 / dt of the secondary voltage V2, more reliable detection becomes possible.
 2次電圧V2の時間微分dV2/dtが閾値を超過した場合、ステップS104において、当該超過時点の前後の一定期間における2次電圧V2の値を記録し、その中から極大点を検出する。これにより、点火プラグ200の電極間における再放電の直前のタイミングを検出することができる。 When the time derivative dV2 / dt of the secondary voltage V2 exceeds the threshold value, the value of the secondary voltage V2 in a certain period before and after the excess time is recorded in step S104, and the maximum point is detected from the value. Thereby, the timing immediately before the re-discharge between the electrodes of the spark plug 200 can be detected.
 ステップS105では、ステップS104で検出した極大点の発生時期を、極大時期として記録する。 In step S105, the time of occurrence of the maximum point detected in step S104 is recorded as the maximum time.
 ステップS106では、これまでに実施したステップS101~S105の処理において所定数の測定結果が得られたか否かを判定する。ここでは、統計上の観点等により予め定めたサンプル数の測定結果が得られたか否かを判定し、得られた場合はステップS107へ進む。一方、所定数の測定結果が得られていない場合は、ステップS102へ戻って2次電圧V2の検出を継続する。 In step S106, it is determined whether or not a predetermined number of measurement results have been obtained in the processes of steps S101 to S105 performed so far. Here, it is determined whether or not a measurement result of a predetermined number of samples has been obtained from a statistical viewpoint or the like, and if it is obtained, the process proceeds to step S107. On the other hand, if a predetermined number of measurement results have not been obtained, the process returns to step S102 to continue the detection of the secondary voltage V2.
 ステップS107では、これまでに実施したステップS105で記録された極大時期の分布図を作成する。ここでは、例えば図9に示したような散布図や図10に示したようなヒストグラムを、極大時期の分布図として作成することができる。 In step S107, a distribution map of the maximum period recorded in step S105 carried out so far is created. Here, for example, a scatter plot as shown in FIG. 9 and a histogram as shown in FIG. 10 can be created as a distribution map at the maximum time.
 ステップS108では、ステップS107で作成した分布図に対して、点火信号SBの立上り時期Aと立下り時期Bの間隔を設定する。ここでは前述のように、内燃機関100の回転数に応じて発熱上許容できる副1次コイル360の通電期間に合わせて、分布図上での立上り時期Aと立下り時期Bの間隔を固定する。 In step S108, the interval between the rise time A and the fall time B of the ignition signal SB is set with respect to the distribution map created in step S107. Here, as described above, the interval between the rise time A and the fall time B on the distribution map is fixed according to the energization period of the sub-primary coil 360 that can tolerate heat generation according to the rotation speed of the internal combustion engine 100. ..
 ステップS109では、ステップS107で作成した分布図において、ステップS108で設定した固定の間隔の範囲内で、極大時期が記録されている合計回数が最大となる立上り時期Aと立下り時期Bを特定する。 In step S109, in the distribution map created in step S107, the rise time A and the fall time B in which the total number of times the maximum time is recorded is maximized within the range of the fixed interval set in step S108 are specified. ..
 ステップS110では、ステップS109で特定した立上り時期Aと立下り時期Bに基づき、重畳通電開始時間を設定する。 In step S110, the superimposed energization start time is set based on the rise time A and the fall time B specified in step S109.
 上記の処理により重畳通電開始時間を設定できたら、ステップS111で図13の処理フローを終了する。 When the superimposition energization start time can be set by the above processing, the processing flow of FIG. 13 is terminated in step S111.
 なお、図13の処理は、内燃機関100の運転状態ごとに実施することが好ましい。例えば、エンジン回転数に対して複数の測定対象値を設定し、その測定対象値ごとに図13の処理を実施する。このようにすれば、内燃機関100の運転状態ごとに重畳通電開始時間を設定することができる。 It is preferable that the process of FIG. 13 is performed for each operating state of the internal combustion engine 100. For example, a plurality of measurement target values are set for the engine speed, and the process of FIG. 13 is performed for each measurement target value. By doing so, it is possible to set the superimposed energization start time for each operating state of the internal combustion engine 100.
[第1の実施形態:副1次コイルの放電制御フロー]
 次に、上記の放電制御を実施する際の位相制御部380による副1次コイル360の制御方法を説明する。図14は、本発明の第1の実施形態にかかる位相制御部380による副1次コイル360の制御方法を説明するフローチャートの一例である。本実施形態において、位相制御部380は、車両のイグニッションスイッチがONされて内燃機関100の電源が投入されると、図14のフローチャートに従って副1次コイル360の制御を開始する。なお、図14のフローチャートに示す処理は、内燃機関100の1サイクル分の処理を表しており、位相制御部380は各サイクルごとに図14のフローチャートに示す処理を実施する。
[First Embodiment: Discharge control flow of the secondary primary coil]
Next, a method of controlling the sub-primary coil 360 by the phase control unit 380 when the above discharge control is performed will be described. FIG. 14 is an example of a flowchart illustrating a method of controlling the sub-primary coil 360 by the phase control unit 380 according to the first embodiment of the present invention. In the present embodiment, when the ignition switch of the vehicle is turned on and the power of the internal combustion engine 100 is turned on, the phase control unit 380 starts controlling the sub-primary coil 360 according to the flowchart of FIG. The process shown in the flowchart of FIG. 14 represents the process for one cycle of the internal combustion engine 100, and the phase control unit 380 performs the process shown in the flowchart of FIG. 14 for each cycle.
 ステップS201において、位相制御部380は、図14のフローチャートに示す処理を開始する。 In step S201, the phase control unit 380 starts the process shown in the flowchart of FIG.
 ステップS202において、位相制御部380は、重畳通電開始時間を選択する。ここでは、予め設定されたマップ情報等を用いて、内燃機関100の運転状態、例えばエンジン回転数に応じた重畳通電開始時間を選択する。なお、ここで使用されるマップ情報は、内燃機関100の運転状態ごとの重畳通電開始時間を表しており、図13の処理によって事前に設定されたものである。 In step S202, the phase control unit 380 selects the superimposed energization start time. Here, the superimposition energization start time according to the operating state of the internal combustion engine 100, for example, the engine rotation speed is selected by using the preset map information or the like. The map information used here represents the superimposed energization start time for each operating state of the internal combustion engine 100, and is set in advance by the process of FIG.
 ステップS203において、位相制御部380は、点火信号SAがHIGHからLOWに変化したか否かを判定する。前述のように、点火制御部83は、所定のタイミングで点火信号SAの出力を開始し、その後、所定のタイミングで点火信号SAの出力を停止する。これにより、主1次コイル310によって点火プラグ200に電気エネルギーEの供給が開始され、点火プラグ200の放電が開始される。位相制御部380は、このときの点火信号SAの立下り時期SをステップS203において検知することで、点火プラグ200の放電開始時期を検出することができる。 In step S203, the phase control unit 380 determines whether or not the ignition signal SA has changed from HIGH to LOW. As described above, the ignition control unit 83 starts the output of the ignition signal SA at a predetermined timing, and then stops the output of the ignition signal SA at a predetermined timing. As a result, the main primary coil 310 starts supplying the electric energy E to the spark plug 200, and the spark plug 200 is started to be discharged. The phase control unit 380 can detect the discharge start time of the spark plug 200 by detecting the falling time S of the ignition signal SA at this time in step S203.
 ステップS210において、位相制御部380は、ステップS203で検知した点火信号SAの立下り時期Sを起点として、その時点から現在までの経過時間を計測する。 In step S210, the phase control unit 380 measures the elapsed time from that point to the present, starting from the fall time S of the ignition signal SA detected in step S203.
 ステップS211において、位相制御部380は、ステップS202で選択した重畳通電開始時間と、ステップS210で計測した経過時間とを比較し、点火信号SAの立下り時期Sから重畳通電開始時間を経過したか否かを判定する。経過時間が重畳通電開始時間未満の場合は、まだ重畳通電開始時間を経過していないと判定し、ステップS210に戻って経過時間の計測を継続する。一方、経過時間が重畳通電開始時間以上の場合は、重畳通電開始時間を経過したと判定し、ステップS220へ進む。 In step S211, the phase control unit 380 compares the superimposed energization start time selected in step S202 with the elapsed time measured in step S210, and has the superimposed energization start time elapsed from the falling time S of the ignition signal SA? Judge whether or not. If the elapsed time is less than the superimposed energization start time, it is determined that the superimposed energization start time has not yet elapsed, and the process returns to step S210 to continue measuring the elapsed time. On the other hand, if the elapsed time is equal to or longer than the superimposed energization start time, it is determined that the superimposed energization start time has elapsed, and the process proceeds to step S220.
 ステップS220において、位相制御部380は、点火信号SBをONにして点火信号SBの出力を開始する。これにより、点火信号SBの立上り時期Aにおいて副1次コイル360から点火プラグ200への重畳電流の供給が開始される。 In step S220, the phase control unit 380 turns on the ignition signal SB and starts outputting the ignition signal SB. As a result, the supply of the superimposed current from the secondary primary coil 360 to the spark plug 200 is started at the rise time A of the ignition signal SB.
 ステップS221において、位相制御部380は、ステップS220の処理を行うことで決定された点火信号SBの立上り時期Aを起点として、その時点から現在までの経過時間を所定の重畳通電期間と比較する。なお、ここで比較される重畳通電期間は、前述のように、内燃機関100の回転数に応じて発熱上許容できる副1次コイル360の通電期間に従って予め設定されている。その結果、経過時間が重畳通電期間未満の場合は、まだ重畳通電期間を経過していないと判定し、ステップS221の判定を継続する。一方、経過時間が重畳通電期間以上の場合は、重畳通電期間を経過したと判定し、ステップS222へ進む。 In step S221, the phase control unit 380 compares the elapsed time from that point to the present with the predetermined superimposed energization period, starting from the rise time A of the ignition signal SB determined by performing the process of step S220. As described above, the superimposed energization period compared here is preset according to the energization period of the sub-primary coil 360 that can be tolerated in terms of heat generation according to the rotation speed of the internal combustion engine 100. As a result, if the elapsed time is less than the superimposed energization period, it is determined that the superimposed energization period has not yet elapsed, and the determination in step S221 is continued. On the other hand, if the elapsed time is equal to or longer than the superimposed energization period, it is determined that the superimposed energization period has elapsed, and the process proceeds to step S222.
 ステップS222において、位相制御部380は、点火信号SBをOFFにして点火信号SBの出力を停止する。これにより、点火信号SBの立下り時期Bにおいて副1次コイル360から点火プラグ200への重畳電流の供給が停止される。 In step S222, the phase control unit 380 turns off the ignition signal SB and stops the output of the ignition signal SB. As a result, the supply of the superimposed current from the secondary primary coil 360 to the spark plug 200 is stopped at the falling time B of the ignition signal SB.
 ステップS223において、位相制御部380は、図14のフローチャートに示す処理を終了する。 In step S223, the phase control unit 380 ends the process shown in the flowchart of FIG.
 以上説明した本発明の第1の実施形態によれば、以下の作用効果を奏する。 According to the first embodiment of the present invention described above, the following effects are exhibited.
(1)電子制御装置である制御装置1は、1次側にそれぞれ配置された主1次コイル310および副1次コイル360と、2次側に配置された2次コイル320とを備えた点火コイル300の通電を制御することで、点火コイル300から内燃機関100の気筒150内で放電する点火プラグ200への電気エネルギーの供給を制御するものである。この制御装置1は、位相制御部380により、主1次コイル310の放電を開始してから所定の重畳通電開始時間を経過したときに(ステップS211:Yes)、副1次コイル360の通電を開始し(ステップS220)、副1次コイル360の通電を開始してから内燃機関100の回転数に応じた所定の重畳通電期間を経過したときに(ステップS221:Yes)、副1次コイル360の通電を終了する(ステップS222)ように、点火コイル300の通電を制御する。このようにしたので、点火コイル300の容積やコストの増大を抑えつつ、内燃機関100の燃費向上と点火プラグ200による燃料への着火不良の抑制とを両立することができる。 (1) The control device 1 which is an electronic control device is an ignition provided with a main primary coil 310 and a secondary primary coil 360 arranged on the primary side, respectively, and a secondary coil 320 arranged on the secondary side. By controlling the energization of the coil 300, the supply of electric energy from the ignition coil 300 to the spark plug 200 discharged in the cylinder 150 of the internal combustion engine 100 is controlled. The control device 1 energizes the sub-primary coil 360 when a predetermined superposition energization start time elapses (step S211: Yes) after the phase control unit 380 starts discharging the main primary coil 310. When a predetermined superposition energization period corresponding to the rotation speed of the internal combustion engine 100 has elapsed since the start (step S220) and the energization of the sub-primary coil 360 are started (step S221: Yes), the sub-primary coil 360 is started. The energization of the ignition coil 300 is controlled so as to end the energization of (step S222). Since this is done, it is possible to achieve both improvement in fuel efficiency of the internal combustion engine 100 and suppression of ignition failure of the fuel by the spark plug 200, while suppressing an increase in the volume and cost of the ignition coil 300.
(2)重畳通電開始時間は、内燃機関100の気筒150内で点火プラグ200を放電させたときの放電開始から再放電までの時間を示す再放電時間の計測結果に基づいて決定される。具体的には、重畳通電開始時間は、図13の処理により、再放電時間の計測を複数回行ったときの各計測結果の分布において、所定の重畳通電期間内で再放電の発生回数が最大となるように決定される(ステップS109、S110)。このようにしたので、内燃機関100の燃費向上と点火プラグ200による燃料への着火不良の抑制とを両立できるように、副1次コイル360の通電開始時期を適切に決定することができる。 (2) The superimposed energization start time is determined based on the measurement result of the re-discharge time indicating the time from the start of discharge to the re-discharge when the spark plug 200 is discharged in the cylinder 150 of the internal combustion engine 100. Specifically, the superimposed energization start time is the maximum number of times of re-discharge occurs within a predetermined superimposed energization period in the distribution of each measurement result when the re-discharge time is measured a plurality of times by the process of FIG. Is determined to be (steps S109, S110). Since this is done, it is possible to appropriately determine the energization start timing of the sub-primary coil 360 so that the improvement of the fuel efficiency of the internal combustion engine 100 and the suppression of the ignition failure of the fuel by the spark plug 200 can be achieved at the same time.
(3)再放電時間の計測では、2次コイル320の電圧を2次電圧V2として計測したときの2次電圧の微分値dV2/dtに基づいて、再放電の発生が検出されるようにしてもよい。このようにすれば、2次電圧V2が急激に低下したときに再放電が発生したと判断して、再放電の発生を容易に検出可能となる。そのため、再放電時間の計測を正確に行うことができる。 (3) In the measurement of the re-discharge time, the occurrence of re-discharge is detected based on the differential value dV2 / dt of the secondary voltage when the voltage of the secondary coil 320 is measured as the secondary voltage V2. May be good. By doing so, it is possible to determine that re-discharge has occurred when the secondary voltage V2 drops sharply, and to easily detect the occurrence of re-discharge. Therefore, the re-discharge time can be accurately measured.
[第2の実施形態:点火コイルの電気回路]
 次に、本発明の第2の実施形態にかかる点火コイル300を含む電気回路400Aを説明する。
[Second embodiment: electric circuit of ignition coil]
Next, the electric circuit 400A including the ignition coil 300 according to the second embodiment of the present invention will be described.
 図15は、本発明の第2の実施形態にかかる点火コイル300を含む電気回路400Aを説明する図である。本実施形態では、点火コイル300は、第1の実施形態で説明した図8と同様の構成を有している。すなわち、本実施形態の点火コイル300も、所定の巻き数でそれぞれ巻かれた2種類の1次側コイル310、360(主1次コイル310、副1次コイル360)と、1次側コイル310、360よりも多い巻き数で巻かれた2次側コイル320と、を含んで構成される。 FIG. 15 is a diagram illustrating an electric circuit 400A including an ignition coil 300 according to a second embodiment of the present invention. In the present embodiment, the ignition coil 300 has the same configuration as that of FIG. 8 described in the first embodiment. That is, the ignition coil 300 of the present embodiment also has two types of primary coil 310 and 360 (main primary coil 310 and secondary primary coil 360) wound by a predetermined number of turns, and a primary coil 310. It is configured to include a secondary coil 320 wound with a number of turns larger than 360.
 本実施形態において、電気回路400Aは、第1の実施形態で説明した電気回路400と比べて、電圧検知部370が2次側コイル320と点火プラグ200の間に設けられている点が異なっている。電圧検知部370は、2次電圧V2を検知し、その値を点火制御部83へ送信する。 In the present embodiment, the electric circuit 400A is different from the electric circuit 400 described in the first embodiment in that the voltage detection unit 370 is provided between the secondary coil 320 and the spark plug 200. There is. The voltage detection unit 370 detects the secondary voltage V2 and transmits the value to the ignition control unit 83.
 本実施形態において位相制御部380は、電圧検知部370により検知された2次電圧V2と、所定の重畳通電電圧範囲とを比較する。この重畳通電電圧範囲は、第1の実施形態で説明した重畳通電開始時間と同様に、点火制御部83の開発段階において、内燃機関100の気筒150内で点火プラグ200を放電させたときの再放電の発生状況を計測した結果に基づいて設定される。具体的には、例えば第1の実施形態で説明した図9の散布図において、前述のようにして2次電圧V2の下限電圧Cと上限電圧Dを設定し、この下限電圧Cと上限電圧Dの間の電圧範囲を、重畳通電電圧範囲として設定する。 In the present embodiment, the phase control unit 380 compares the secondary voltage V2 detected by the voltage detection unit 370 with a predetermined superimposed energization voltage range. This superimposed energization voltage range reappears when the spark plug 200 is discharged in the cylinder 150 of the internal combustion engine 100 in the development stage of the ignition control unit 83, similarly to the superimposed energization start time described in the first embodiment. It is set based on the result of measuring the discharge occurrence status. Specifically, for example, in the scatter diagram of FIG. 9 described in the first embodiment, the lower limit voltage C and the upper limit voltage D of the secondary voltage V2 are set as described above, and the lower limit voltage C and the upper limit voltage D are set. The voltage range between is set as the superimposed energization voltage range.
 なお、他の方法で再放電の発生状況を記録した場合についても、同様にして重畳通電電圧範囲の設定を行うことができる。任意の方法で記録された再放電電圧、すなわち再放電の発生直前時点での2次電圧V2の計測結果の分布において、所定の電圧範囲内で再放電の発生回数が最大となるように、重畳通電電圧範囲の下限電圧と上限電圧を設定することが可能である。 In addition, even when the occurrence status of re-discharge is recorded by another method, the superimposed energization voltage range can be set in the same manner. In the distribution of the re-discharge voltage recorded by an arbitrary method, that is, the measurement result of the secondary voltage V2 immediately before the occurrence of the re-discharge, superimposition is performed so that the number of times of the re-discharge occurs is the maximum within the predetermined voltage range. It is possible to set the lower limit voltage and the upper limit voltage of the energizing voltage range.
 2次電圧V2と重畳通電電圧範囲を比較した結果、2次電圧V2が重畳通電電圧範囲内のときに点火プラグ200の再放電が発生した場合には、位相制御部380は、第1の実施形態で説明したのと同様に点火信号SBを出力する。これにより、副1次コイル360から点火プラグ200への重畳電流の供給を行い、点火プラグ200において容量放電を伴う再放電(リストライク)の発生が抑制されるようにする。一方、2次電圧V2が重畳通電電圧範囲外のときに点火プラグ200の再放電が発生した場合には、位相制御部380は、点火信号SBを出力しないようにする。これにより、点火プラグ200において再放電が発生する可能性が低いときには、副1次コイル360から点火プラグ200への重畳電流の供給を停止して、消費電力が抑制されるようにする。 As a result of comparing the secondary voltage V2 and the superposed energizing voltage range, when the spark plug 200 is re-discharged when the secondary voltage V2 is within the superposed energizing voltage range, the phase control unit 380 performs the first operation. The ignition signal SB is output in the same manner as described in the embodiment. As a result, the superimposed current is supplied from the sub-primary coil 360 to the spark plug 200, and the occurrence of re-discharge (re-discharge) accompanied by capacitance discharge is suppressed in the spark plug 200. On the other hand, when the spark plug 200 is re-discharged when the secondary voltage V2 is out of the superimposed energization voltage range, the phase control unit 380 prevents the ignition signal SB from being output. As a result, when the possibility of re-discharging in the spark plug 200 is low, the supply of the superimposed current from the secondary primary coil 360 to the spark plug 200 is stopped so that the power consumption is suppressed.
[第2の実施形態:重畳通電開始時間および重畳通電電圧範囲の設定フロー]
 次に、上記の放電制御を実施するために、事前に行われる重畳通電開始時間および重畳通電電圧範囲の設定方法を説明する。図16は、本発明の第2の実施形態にかかる重畳通電開始時間および重畳通電電圧範囲の設定方法を説明するフローチャートの一例である。なお、図16のフローチャートにおいて、第1の実施形態で説明した図13のフローチャートと共通の処理を実施する各ステップには、図13と同一のステップ番号を付している。以下では、図13との相違点を中心に、図16のフローチャートに示す処理について説明する。
[Second embodiment: Flow of setting superimposition energization start time and superimposition energization voltage range]
Next, in order to carry out the above discharge control, a method of setting the superimposition energization start time and the superimposition energization voltage range performed in advance will be described. FIG. 16 is an example of a flowchart illustrating a method of setting a superposed energization start time and a superposed energization voltage range according to a second embodiment of the present invention. In the flowchart of FIG. 16, each step for carrying out the same process as the flowchart of FIG. 13 described in the first embodiment is assigned the same step number as that of FIG. Hereinafter, the processing shown in the flowchart of FIG. 16 will be described with a focus on the differences from FIG.
 ステップS105Aでは、ステップS104で検出した極大点の値と発生時期を、極大値および極大時期としてそれぞれ記録する。 In step S105A, the value of the maximum point detected in step S104 and the time of occurrence are recorded as the maximum value and the maximum time, respectively.
 ステップS107Aでは、これまでに実施したステップS105Aで記録された極大値と極大時期の分布図を作成する。ここでは、例えば図9に示したような散布図を、極大値と極大時期の分布図として作成することができる。 In step S107A, a distribution map of the maximum value and the maximum time recorded in step S105A carried out so far is created. Here, for example, a scatter plot as shown in FIG. 9 can be created as a distribution map of a maximum value and a maximum time.
 ステップS108Aでは、ステップS107Aで作成した分布図に対して、点火信号SBの立上り時期Aと立下り時期Bの間隔、および下限電圧Cと上限電圧Dの間隔を設定する。ここでは前述のように、発熱上許容できる副1次コイル360の通電期間に合わせて、分布図上での立上り時期Aと立下り時期Bの間隔を固定するとともに、所定の条件、例えば消費電力の要求値などに基づいて下限電圧Cと上限電圧Dの間隔を固定する。 In step S108A, the interval between the rise time A and the fall time B of the ignition signal SB and the interval between the lower limit voltage C and the upper limit voltage D are set with respect to the distribution map created in step S107A. Here, as described above, the interval between the rise time A and the fall time B on the distribution map is fixed according to the energization period of the secondary primary coil 360 that can tolerate heat generation, and a predetermined condition, for example, power consumption, is fixed. The interval between the lower limit voltage C and the upper limit voltage D is fixed based on the required value of.
 ステップS109Aでは、ステップS107Aで作成した分布図において、ステップS108Aで設定した固定の間隔の範囲内で、極大時期が記録されている合計回数が最大となる立上り時期Aと立下り時期B、および下限電圧Cと上限電圧Dをそれぞれ特定する。 In step S109A, in the distribution map created in step S107A, the rise time A, the fall time B, and the lower limit in which the total number of times the maximum time is recorded is the maximum within the range of the fixed interval set in step S108A. The voltage C and the upper limit voltage D are specified respectively.
 ステップS110Aでは、ステップS109Aで特定した立上り時期Aと立下り時期Bに基づき、重畳通電開始時間を設定する。また、ステップS109Aで特定した下限電圧Cと上限電圧Dに基づき、重畳通電電圧範囲を設定する。 In step S110A, the superimposed energization start time is set based on the rise time A and the fall time B specified in step S109A. Further, the superimposed energization voltage range is set based on the lower limit voltage C and the upper limit voltage D specified in step S109A.
 上記の処理により重畳通電開始時間および重畳通電電圧範囲を設定できたら、ステップS111で図16の処理フローを終了する。 When the superimposition energization start time and the superimposition energization voltage range can be set by the above processing, the processing flow of FIG. 16 is terminated in step S111.
 なお、図16の処理も図13の処理と同様に、内燃機関100の運転状態ごとに実施することが好ましい。例えば、エンジン回転数に対して複数の測定対象値を設定し、その測定対象値ごとに図16の処理を実施する。このようにすれば、内燃機関100の運転状態ごとに重畳通電開始時間および重畳通電電圧範囲を設定することができる。 It is preferable that the process of FIG. 16 is also performed for each operating state of the internal combustion engine 100, similarly to the process of FIG. For example, a plurality of measurement target values are set for the engine speed, and the processing of FIG. 16 is performed for each measurement target value. By doing so, the superimposition energization start time and the superimposition energization voltage range can be set for each operating state of the internal combustion engine 100.
[第2の実施形態:副1次コイルの放電制御フロー]
 次に、上記の放電制御を実施する際の位相制御部380による副1次コイル360の制御方法を説明する。図17は、本発明の第2の実施形態にかかる位相制御部380による副1次コイル360の制御方法を説明するフローチャートの一例である。なお、図17のフローチャートにおいて、第1の実施形態で説明した図14のフローチャートと共通の処理を実施する各ステップには、図14と同一のステップ番号を付している。以下では、図14との相違点を中心に、図17のフローチャートに示す処理について説明する。
[Second embodiment: Discharge control flow of the secondary primary coil]
Next, a method of controlling the sub-primary coil 360 by the phase control unit 380 when the above discharge control is performed will be described. FIG. 17 is an example of a flowchart illustrating a method of controlling the sub-primary coil 360 by the phase control unit 380 according to the second embodiment of the present invention. In the flowchart of FIG. 17, each step for carrying out the same process as the flowchart of FIG. 14 described in the first embodiment is assigned the same step number as that of FIG. Hereinafter, the processing shown in the flowchart of FIG. 17 will be described with a focus on the differences from FIG.
 ステップS211で点火信号SAの立下り時期Sからの経過時間が重畳通電開始時間以上の場合は、重畳通電開始時間を経過したと判定し、ステップS212へ進む。 If the elapsed time from the fall time S of the ignition signal SA in step S211 is equal to or longer than the superimposed energization start time, it is determined that the superimposed energization start time has elapsed, and the process proceeds to step S212.
 ステップS212において、位相制御部380は、電圧検知部370により検知された2次電圧V2の値を取得する。 In step S212, the phase control unit 380 acquires the value of the secondary voltage V2 detected by the voltage detection unit 370.
 ステップS213において、位相制御部380は、ステップS212で取得した2次電圧V2と、予め設定された重畳通電電圧範囲とを比較し、2次電圧V2が重畳通電電圧範囲内であるか否かを判定する。なお、ここで2次電圧V2との比較に使用される重畳通電電圧範囲は、図16の処理によって事前に設定されたものであり、内燃機関100の運転状態ごとに設定されている。 In step S213, the phase control unit 380 compares the secondary voltage V2 acquired in step S212 with the preset superimposed energization voltage range, and determines whether or not the secondary voltage V2 is within the superimposed energization voltage range. judge. The superimposed energization voltage range used for comparison with the secondary voltage V2 here is set in advance by the process of FIG. 16, and is set for each operating state of the internal combustion engine 100.
 ステップS213で2次電圧V2が重畳通電電圧範囲内であると判定した場合、位相制御部380はステップS220へ進み、点火信号SBをONにして点火信号SBの出力を開始する。これにより、点火信号SBの立上り時期Aにおいて副1次コイル360から点火プラグ200への重畳電流の供給が開始される。一方、ステップS213で2次電圧V2が重畳通電電圧範囲外であると判定した場合、すなわち上限電圧Dよりも大きいか、または下限電圧C未満の場合には、位相制御部380はステップS223へ進み、図17のフローチャートに示す処理を終了する。この場合、副1次コイル360から点火プラグ200への重畳電流の供給は行われない。 When it is determined in step S213 that the secondary voltage V2 is within the superimposed energization voltage range, the phase control unit 380 proceeds to step S220, turns on the ignition signal SB, and starts outputting the ignition signal SB. As a result, the supply of the superimposed current from the secondary primary coil 360 to the spark plug 200 is started at the rise time A of the ignition signal SB. On the other hand, if it is determined in step S213 that the secondary voltage V2 is out of the superimposed energization voltage range, that is, if it is larger than the upper limit voltage D or less than the lower limit voltage C, the phase control unit 380 proceeds to step S223. , The process shown in the flowchart of FIG. 17 is terminated. In this case, the superimposed current is not supplied from the secondary primary coil 360 to the spark plug 200.
 以上説明した本発明の第2の実施形態によれば、第1の実施形態で説明した(1)~(3)に加えて、さらに以下の作用効果を奏する。 According to the second embodiment of the present invention described above, in addition to the (1) to (3) described in the first embodiment, the following effects are further exerted.
(4)制御装置1は、位相制御部380により、主1次コイル310の放電を開始してから重畳通電開始時間を経過したときの2次コイル320の電圧V2が所定の上限電圧Dよりも大きいか、または所定の下限電圧C未満の場合(ステップS213:No)は、副1次コイル360の通電を行わない。このようにしたので、点火プラグ200において再放電が発生する可能性が低いときには、副1次コイル360から点火プラグ200への重畳電流の供給を停止して、点火コイル300の消費電力をより一層抑制することができる。 (4) In the control device 1, the voltage V2 of the secondary coil 320 when the superimposed energization start time elapses after the discharge of the main primary coil 310 is started by the phase control unit 380 is higher than the predetermined upper limit voltage D. When it is large or less than the predetermined lower limit voltage C (step S213: No), the sub-primary coil 360 is not energized. Therefore, when the possibility of re-discharging in the spark plug 200 is low, the supply of the superimposed current from the secondary primary coil 360 to the spark plug 200 is stopped to further reduce the power consumption of the spark plug 300. It can be suppressed.
(5)上限電圧Dおよび下限電圧Cは、内燃機関100の気筒150内で点火プラグ200を放電させたときの再放電の発生直前時点での2次コイル320の電圧V2を示す再放電電圧の計測結果に基づいて決定される。具体的には、上限電圧Dおよび下限電圧Cは、図16の処理により、再放電電圧の計測を複数回行ったときの各計測結果の分布において、所定の電圧範囲内で再放電の発生回数が最大となるように決定される(ステップS109A、S110A)。このようにしたので、点火プラグ200によるガスへの着火不良を抑制しつつ、点火コイル300のさらなる消費電力の抑制を図ることができるように、副1次コイル360への通電を行う2次電圧V2の範囲を適切に設定することができる。 (5) The upper limit voltage D and the lower limit voltage C are the re-discharge voltages indicating the voltage V2 of the secondary coil 320 immediately before the occurrence of re-discharge when the spark plug 200 is discharged in the cylinder 150 of the internal combustion engine 100. Determined based on the measurement results. Specifically, the upper limit voltage D and the lower limit voltage C are the number of occurrences of re-discharge within a predetermined voltage range in the distribution of each measurement result when the re-discharge voltage is measured a plurality of times by the process of FIG. Is determined to be the maximum (steps S109A, S110A). Since this is done, the secondary voltage for energizing the secondary primary coil 360 so that the ignition failure of the gas by the spark plug 200 can be suppressed and the power consumption of the ignition coil 300 can be further suppressed. The range of V2 can be set appropriately.
[第3の実施形態:点火コイルの電気回路]
 次に、本発明の第3の実施形態にかかる点火コイル300を含む電気回路400Bを説明する。
[Third Embodiment: electric circuit of ignition coil]
Next, the electric circuit 400B including the ignition coil 300 according to the third embodiment of the present invention will be described.
 図18は、本発明の第3の実施形態にかかる点火コイル300を含む電気回路400Bを説明する図である。本実施形態では、点火コイル300は、第1の実施形態で説明した図8と同様の構成を有している。すなわち、本実施形態の点火コイル300も、所定の巻き数でそれぞれ巻かれた2種類の1次側コイル310、360(主1次コイル310、副1次コイル360)と、1次側コイル310、360よりも多い巻き数で巻かれた2次側コイル320と、を含んで構成される。 FIG. 18 is a diagram illustrating an electric circuit 400B including an ignition coil 300 according to a third embodiment of the present invention. In the present embodiment, the ignition coil 300 has the same configuration as that of FIG. 8 described in the first embodiment. That is, the ignition coil 300 of the present embodiment also has two types of primary coil 310 and 360 (main primary coil 310 and secondary primary coil 360) wound by a predetermined number of turns, and a primary coil 310. It is configured to include a secondary coil 320 wound with a number of turns larger than 360.
 本実施形態において、電気回路400Bは、第1の実施形態で説明した電気回路400と比べて、点火制御部83とは別にタイマー回路381が設置され、このタイマー回路381内に位相制御部380が設けられている点が異なっている。タイマー回路381は、重畳通電期間に応じたタイマー値を設定し、位相制御部380により点火信号SBが出力されて副1次コイル360の通電が開始されると、点火信号SBの立上り時期Aからの経過時間をカウントする。そして、経過時間が設定したタイマー値に到達すると、点火信号SBの出力を停止して副1次コイル360の通電を終了する。本実施形態では、このようなタイマー回路381の機能を用いて、点火信号SBのON期間を制御している。 In the present embodiment, the electric circuit 400B has a timer circuit 381 installed separately from the ignition control unit 83 as compared with the electric circuit 400 described in the first embodiment, and the phase control unit 380 is provided in the timer circuit 381. The point that it is provided is different. The timer circuit 381 sets a timer value according to the superimposed energization period, and when the ignition signal SB is output by the phase control unit 380 and the energization of the sub-primary coil 360 is started, the ignition signal SB rises from the rise time A. Count the elapsed time of. Then, when the elapsed time reaches the set timer value, the output of the ignition signal SB is stopped and the energization of the secondary primary coil 360 is terminated. In the present embodiment, the ON period of the ignition signal SB is controlled by using the function of the timer circuit 381.
 本実施形態においてタイマー回路381は、点火信号SAのON期間(主1次コイル310の充電期間)または周期(点火プラグ200の放電周期)を取得する。そして、取得したこれらの値に基づき、タイマー値を設定する。例えば、点火信号SAのON期間または周期に所定の倍率を乗じた値をタイマー値として設定する。 In the present embodiment, the timer circuit 381 acquires the ON period (charging period of the main primary coil 310) or the cycle (discharge cycle of the spark plug 200) of the ignition signal SA. Then, the timer value is set based on these acquired values. For example, a value obtained by multiplying the ON period or cycle of the ignition signal SA by a predetermined magnification is set as the timer value.
 図19は、内燃機関100のエンジン回転数と点火信号SAのON期間との関係を示したマップ情報の一例である。図19に示すように、点火信号SAのON期間は、内燃機関100のエンジン回転数に応じて変化する。 FIG. 19 is an example of map information showing the relationship between the engine speed of the internal combustion engine 100 and the ON period of the ignition signal SA. As shown in FIG. 19, the ON period of the ignition signal SA changes according to the engine speed of the internal combustion engine 100.
 図20は、点火信号SAのON期間と点火信号SBのON期間との関係を示したグラフの一例である。図20のグラフに示すように、点火信号SAのON期間が短くなるほど、点火信号SBのON期間も短く設定される。 FIG. 20 is an example of a graph showing the relationship between the ON period of the ignition signal SA and the ON period of the ignition signal SB. As shown in the graph of FIG. 20, the shorter the ON period of the ignition signal SA, the shorter the ON period of the ignition signal SB is set.
 タイマー回路381は、図19に示したエンジン回転数と点火信号SAのON期間との関係を利用して、例えば図20のグラフに従い、取得した点火信号SAのON期間に対応する点火信号SBのON期間に合わせてタイマー値を設定する。これにより、内燃機関100の運転状態ごとに予め設定されたマップ情報を用いることなく、エンジン回転数に応じて変化するタイマー値の設定が可能となる。 The timer circuit 381 utilizes the relationship between the engine speed and the ON period of the ignition signal SA shown in FIG. 19, for example, according to the graph of FIG. 20, of the ignition signal SB corresponding to the ON period of the acquired ignition signal SA. Set the timer value according to the ON period. This makes it possible to set a timer value that changes according to the engine speed without using map information preset for each operating state of the internal combustion engine 100.
 なお、上記では点火信号SAのON期間が内燃機関100のエンジン回転数に応じて変化することを利用して、点火信号SAのON期間に基づきタイマー回路381のタイマー値を設定して点火信号SBのON期間を制御する例を説明したが、点火信号SAの周期、すなわち点火プラグ200の放電周期についても、同様の制御が可能である。すなわち、点火信号SAの周期は、内燃機関100のエンジン回転数に応じて変化する。そのため、これを利用し、点火信号SAの周期に基づきタイマー回路381のタイマー値を設定して点火信号SBのON期間を制御することもできる。このようにしても、内燃機関100の運転状態ごとに予め設定されたマップ情報を用いることなく、エンジン回転数に応じて変化するタイマー値の設定が可能となる。 In the above, the ignition signal SB is set by setting the timer value of the timer circuit 381 based on the ON period of the ignition signal SA by utilizing the fact that the ON period of the ignition signal SA changes according to the engine rotation speed of the internal combustion engine 100. Although an example of controlling the ON period of the ignition signal SA has been described, the same control is possible for the cycle of the ignition signal SA, that is, the discharge cycle of the spark plug 200. That is, the cycle of the ignition signal SA changes according to the engine speed of the internal combustion engine 100. Therefore, by utilizing this, the timer value of the timer circuit 381 can be set based on the cycle of the ignition signal SA to control the ON period of the ignition signal SB. Even in this way, it is possible to set the timer value that changes according to the engine speed without using the map information set in advance for each operating state of the internal combustion engine 100.
[第3の実施形態:副1次コイルの放電制御フロー]
 次に、上記の放電制御を実施する際の位相制御部380およびタイマー回路381による副1次コイル360の制御方法を説明する。図21は、本発明の第3の実施形態にかかる位相制御部380およびタイマー回路381による副1次コイル360の制御方法を説明するフローチャートの一例である。なお、図21のフローチャートにおいて、第1の実施形態で説明した図14のフローチャートと共通の処理を実施する各ステップには、図14と同一のステップ番号を付している。以下では、図14との相違点を中心に、図21のフローチャートに示す処理について説明する。
[Third Embodiment: Discharge control flow of the secondary primary coil]
Next, a method of controlling the sub-primary coil 360 by the phase control unit 380 and the timer circuit 381 when the above discharge control is performed will be described. FIG. 21 is an example of a flowchart illustrating a method of controlling the sub-primary coil 360 by the phase control unit 380 and the timer circuit 381 according to the third embodiment of the present invention. In the flowchart of FIG. 21, each step for carrying out the same process as the flowchart of FIG. 14 described in the first embodiment is assigned the same step number as that of FIG. Hereinafter, the processing shown in the flowchart of FIG. 21 will be described with a focus on the differences from FIG.
 ステップS201で図21のフローチャートに示す処理を開始すると、ステップS202において、位相制御部380は、重畳通電開始時間を選択する。ここでは第1の実施形態と同様の方法で事前に設定された情報を用いて、内燃機関100の運転状態、例えばエンジン回転数に応じた重畳通電開始時間を選択する。 When the process shown in the flowchart of FIG. 21 is started in step S201, the phase control unit 380 selects the superimposed energization start time in step S202. Here, using the information set in advance by the same method as in the first embodiment, the superimposition energization start time according to the operating state of the internal combustion engine 100, for example, the engine rotation speed is selected.
 ステップS203で点火信号SAがHIGHからLOWに変化したと判定すると、続くステップS204において、タイマー回路381は、点火信号SAのON期間を取得する。ここでは、例えば点火制御部83から点火信号SAと同期して出力される所定のモニタ信号を取得することで、点火信号SAのON期間を取得する。 When it is determined in step S203 that the ignition signal SA has changed from HIGH to LOW, the timer circuit 381 acquires the ON period of the ignition signal SA in the following step S204. Here, for example, the ON period of the ignition signal SA is acquired by acquiring a predetermined monitor signal output in synchronization with the ignition signal SA from the ignition control unit 83.
 ステップS205において、タイマー回路381は、ステップS204で取得した点火信号SAのON期間に基づいてタイマー値を設定する。ここでは、例えば点火信号SAのON期間に所定の倍率を乗じた値をタイマー値として設定する。 In step S205, the timer circuit 381 sets the timer value based on the ON period of the ignition signal SA acquired in step S204. Here, for example, a value obtained by multiplying the ON period of the ignition signal SA by a predetermined magnification is set as the timer value.
 なお、前述のように点火信号SAの周期に基づいてタイマー回路381のタイマー値を設定する場合は、ステップS204において、点火信号SAのON期間に替えて周期を取得し、その周期に基づいてステップS205の処理を実施することで、タイマー値の設定を行えばよい。 When setting the timer value of the timer circuit 381 based on the cycle of the ignition signal SA as described above, in step S204, the cycle is acquired instead of the ON period of the ignition signal SA, and the step is based on the cycle. The timer value may be set by executing the process of S205.
 ステップS205で設定したタイマー値は、ステップS221の判定に用いられる。すなわち、本実施形態ではステップS221において、タイマー回路381は、ステップS220で点火信号SBがONされてからカウントした経過時間と、ステップS205で設定したタイマー値とを比較する。その結果、経過時間がタイマー値未満の場合は、まだ重畳通電期間を経過していないと判定し、ステップS221の判定を継続する。一方、経過時間がタイマー値に到達した場合は、重畳通電期間を経過したと判定し、ステップS222へ進む。 The timer value set in step S205 is used for the determination in step S221. That is, in the present embodiment, in step S221, the timer circuit 381 compares the elapsed time counted since the ignition signal SB was turned on in step S220 with the timer value set in step S205. As a result, if the elapsed time is less than the timer value, it is determined that the superimposed energization period has not yet elapsed, and the determination in step S221 is continued. On the other hand, when the elapsed time reaches the timer value, it is determined that the superimposed energization period has elapsed, and the process proceeds to step S222.
 以上説明した本発明の第3の実施形態によれば、第1の実施形態で説明した(1)~(3)に加えて、さらに以下の作用効果を奏する。 According to the third embodiment of the present invention described above, in addition to the (1) to (3) described in the first embodiment, the following effects are further exerted.
(6)制御装置1は、重畳通電期間に応じたタイマー値を設定し、副1次コイル360の通電を開始してからの経過時間がタイマー値に到達すると、副1次コイル360の通電を終了するタイマー回路381を有する。このようにしたので、内燃機関100の運転状態ごとに予め設定されたマップ情報を用いることなく、内燃機関100の運転状態を反映した副1次コイル360の通電制御を行うことができる。 (6) The control device 1 sets a timer value according to the superimposed energization period, and when the elapsed time from the start of energization of the sub-primary coil 360 reaches the timer value, the sub-primary coil 360 is energized. It has a timer circuit 381 that ends. Since this is done, it is possible to control the energization of the sub-primary coil 360 that reflects the operating state of the internal combustion engine 100 without using the map information preset for each operating state of the internal combustion engine 100.
(7)タイマー回路381は、主1次コイル310の充電期間または点火プラグ200の放電周期に基づいてタイマー値を設定する。このようにしたので、エンジン回転数に応じて副1次コイル360の通電期間を適切に変化させるように、タイマー値の設定を行うことができる。 (7) The timer circuit 381 sets the timer value based on the charge period of the main primary coil 310 or the discharge cycle of the spark plug 200. Since this is done, the timer value can be set so as to appropriately change the energization period of the sub-primary coil 360 according to the engine speed.
[第4の実施形態]
 次に、本発明の第4の実施形態について説明する。本実施形態では、第2の実施形態で説明した電気回路400Aを用いて、点火プラグ200の放電中における電極間のガス流速に応じた重畳通電開始時間の補正を行う例を説明する。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described. In this embodiment, an example of correcting the superimposition energization start time according to the gas flow velocity between the electrodes during the discharge of the spark plug 200 will be described using the electric circuit 400A described in the second embodiment.
 図22は、本発明の第4の実施形態にかかる放電制御における点火コイルへ入力される制御信号と出力の関係を説明するタイミングチャートの一例を示す図である。本実施形態では、図22のタイミングチャートに示すように、点火信号SAの立下り時期S以降における点火プラグ200の放電期間中に、時期T1、T2での2次電圧V2の値をそれぞれ取得する。そして、取得した各2次電圧V2の値から、2次電圧V2の時間変化を表すグラフの傾きを求め、その傾きの大きさに基づいて重畳通電開始時間を調節する。例えば、予め設定された重畳通電開始時間を基準値として、そこに2次電圧V2の時間変化に応じた補正値を加算することで、重畳通電開始時間を調節することができる。 FIG. 22 is a diagram showing an example of a timing chart for explaining the relationship between the control signal input to the ignition coil and the output in the discharge control according to the fourth embodiment of the present invention. In the present embodiment, as shown in the timing chart of FIG. 22, the values of the secondary voltage V2 at the timings T1 and T2 are acquired during the discharge period of the spark plug 200 after the falling time S of the ignition signal SA, respectively. .. Then, the slope of the graph showing the time change of the secondary voltage V2 is obtained from the acquired value of each secondary voltage V2, and the superimposed energization start time is adjusted based on the magnitude of the slope. For example, the superimposition energization start time can be adjusted by using a preset superimposition energization start time as a reference value and adding a correction value according to a time change of the secondary voltage V2 to the reference value.
 点火プラグ200の放電中における2次電圧V2は、電極間のガス流速に応じて変化する。そのため、上記のように2次電圧V2の時間変化を表すグラフの傾きを求め、その傾きの大きさに応じて重畳通電開始時間を変化させることで、点火信号SAの立下り時期Sから点火信号SBの立上り時期Aまでの時間間隔を、電極間のガス流速に応じて調節することができる。したがって、点火プラグ200の放電中における電極間のガス流速に応じた重畳通電開始時間の補正を行うことが可能となる。 The secondary voltage V2 during discharge of the spark plug 200 changes according to the gas flow velocity between the electrodes. Therefore, by obtaining the slope of the graph showing the time change of the secondary voltage V2 as described above and changing the superimposed energization start time according to the magnitude of the slope, the ignition signal starts from the falling time S of the ignition signal SA. The time interval until the rise time A of the SB can be adjusted according to the gas flow velocity between the electrodes. Therefore, it is possible to correct the superimposition energization start time according to the gas flow velocity between the electrodes during the discharge of the spark plug 200.
 図23は、電極間のガス流速(2次電圧V2の時間変化)と点火信号SBの立上り時期Aに対する補正加算値との関係を示したグラフの一例である。図23のグラフに示すように、電極間のガス流速が高流速となり、それに応じて2次電圧V2の時間変化が大きくなるほど、立上り時期Aに対する補正加算値が小さく設定され、これによって点火信号SBの立上り時期Aが前倒しとなるように補正される。その結果、重畳通電開始時間を短縮させ、ガス流速に応じて副1次コイル360の通電期間を調節することができる。 FIG. 23 is an example of a graph showing the relationship between the gas flow velocity between the electrodes (time change of the secondary voltage V2) and the correction addition value with respect to the rise time A of the ignition signal SB. As shown in the graph of FIG. 23, the higher the gas flow velocity between the electrodes and the larger the time change of the secondary voltage V2, the smaller the correction addition value for the rise time A is set, whereby the ignition signal SB is set. The rise time A of is corrected to be ahead of schedule. As a result, the superimposition energization start time can be shortened, and the energization period of the secondary primary coil 360 can be adjusted according to the gas flow velocity.
[第4の実施形態:副1次コイルの放電制御フロー]
 次に、上記の放電制御を実施する際の位相制御部380による副1次コイル360の制御方法を説明する。図24は、本発明の第4の実施形態にかかる位相制御部380による副1次コイル360の制御方法を説明するフローチャートの一例である。なお、図24のフローチャートにおいて、第1の実施形態で説明した図14のフローチャートと共通の処理を実施する各ステップには、図14と同一のステップ番号を付している。以下では、図14との相違点を中心に、図24のフローチャートに示す処理について説明する。
[Fourth Embodiment: Discharge control flow of the secondary primary coil]
Next, a method of controlling the sub-primary coil 360 by the phase control unit 380 when the above discharge control is performed will be described. FIG. 24 is an example of a flowchart illustrating a method of controlling the sub-primary coil 360 by the phase control unit 380 according to the fourth embodiment of the present invention. In the flowchart of FIG. 24, each step for carrying out the same process as the flowchart of FIG. 14 described in the first embodiment is assigned the same step number as that of FIG. Hereinafter, the processing shown in the flowchart of FIG. 24 will be described with a focus on the differences from FIG.
 ステップS201で図24のフローチャートに示す処理を開始すると、ステップS202において、位相制御部380は、重畳通電開始時間を選択する。ここでは第1の実施形態と同様の方法で事前に設定された情報を用いて、内燃機関100の運転状態、例えばエンジン回転数に応じた重畳通電開始時間を選択する。 When the process shown in the flowchart of FIG. 24 is started in step S201, the phase control unit 380 selects the superimposed energization start time in step S202. Here, using the information set in advance by the same method as in the first embodiment, the superimposition energization start time according to the operating state of the internal combustion engine 100, for example, the engine rotation speed is selected.
 ステップS203で点火信号SAがHIGHからLOWに変化したと判定すると、続くステップS206において、位相制御部380は、電圧検知部370により検知された2次電圧V2の値を取得する。 When it is determined in step S203 that the ignition signal SA has changed from HIGH to LOW, in the subsequent step S206, the phase control unit 380 acquires the value of the secondary voltage V2 detected by the voltage detection unit 370.
 ステップS207において、位相制御部380は、ステップS206で取得した2次電圧V2に基づいて、点火プラグ200の電極間のガス流速を推定する。ここでは前述のように、現時点とその直前の時期においてそれぞれ取得された2次電圧V2の値に基づいて、2次電圧V2の傾きを求め、その傾きの大きさから電極間のガス流速を推定する。なお、2次電圧V2の値がまだ1つしか取得されておらず、そのため2次電圧V2の傾きを算出できない場合は、ステップS207の処理を省略してもよい。 In step S207, the phase control unit 380 estimates the gas flow velocity between the electrodes of the spark plug 200 based on the secondary voltage V2 acquired in step S206. Here, as described above, the slope of the secondary voltage V2 is obtained based on the values of the secondary voltage V2 acquired at the present time and the time immediately before that, and the gas flow velocity between the electrodes is estimated from the magnitude of the slope. do. If only one value of the secondary voltage V2 has been acquired and the slope of the secondary voltage V2 cannot be calculated, the process of step S207 may be omitted.
 ステップS208において、位相制御部380は、ステップS207で推定したガス流速に基づいて、ステップS202で選択した重畳通電開始時間を補正する。ここでは、例えば図23に示した電極間のガス流速と点火信号SBの立上り時期Aへの補正加算値との関係に基づいて補正加算値を決定し、その補正加算値を加えることで重畳通電開始時間を補正する。これにより、ガス流速の変化に応じた2次電圧V2の時間変化に基づいて、重畳通電開始時間を変化させる。 In step S208, the phase control unit 380 corrects the superimposed energization start time selected in step S202 based on the gas flow velocity estimated in step S207. Here, for example, the correction addition value is determined based on the relationship between the gas flow velocity between the electrodes shown in FIG. 23 and the correction addition value for the rise time A of the ignition signal SB, and the correction addition value is added to superimpose energization. Correct the start time. As a result, the superimposed energization start time is changed based on the time change of the secondary voltage V2 according to the change of the gas flow velocity.
 ステップS208で補正した重畳通電開始時間は、ステップS211の判定に用いられる。すなわち、本実施形態ではステップS211において、位相制御部380は、ステップS208で補正した重畳通電開始時間と、ステップS210で計測した経過時間とを比較し、点火信号SAの立下り時期Sから重畳通電開始時間を経過したか否かを判定する。その結果、経過時間が重畳通電開始時間未満の場合は、まだ重畳通電開始時間を経過していないと判定し、ステップS206に戻って2次電圧V2の時間変化に基づく重畳通電開始時間の補正と、経過時間の計測とを継続する。一方、経過時間が重畳通電開始時間以上の場合は、重畳通電開始時間を経過したと判定し、ステップS220へ進む。 The superimposed energization start time corrected in step S208 is used for the determination in step S211. That is, in the present embodiment, in step S211 the phase control unit 380 compares the superimposed energization start time corrected in step S208 with the elapsed time measured in step S210, and superimposes energization from the falling time S of the ignition signal SA. Determine if the start time has passed. As a result, if the elapsed time is less than the superimposed energization start time, it is determined that the superimposed energization start time has not yet elapsed, and the process returns to step S206 to correct the superimposed energization start time based on the time change of the secondary voltage V2. , Continue to measure the elapsed time. On the other hand, if the elapsed time is equal to or longer than the superimposed energization start time, it is determined that the superimposed energization start time has elapsed, and the process proceeds to step S220.
 以上説明した本発明の第4の実施形態によれば、第1の実施形態で説明した(1)~(3)に加えて、さらに以下の作用効果を奏する。 According to the fourth embodiment of the present invention described above, in addition to the (1) to (3) described in the first embodiment, the following effects are further exerted.
(8)制御装置1は、位相制御部380により、2次コイル320の電圧V2の時間変化に基づいて重畳通電開始時間を変化させる(ステップ206~S208)。このようにしたので、点火プラグ200における電極間のガス流速に応じて副1次コイル360の通電期間を調節することができる。そのため、内燃機関100の運転状態が燃焼サイクルごとに変動する場合でも、点火プラグ200によるガスへの着火不良を確実に抑制することが可能となる。これは、内燃機関100により発電用モータを駆動させ、その電力を用いて駆動用モータを駆動させるシリーズハイブリッド型の電気自動車のみならず、内燃機関100により車両を駆動させる従来型の自動車やパラレルハイブリッド型の電気自動車においても好適である。 (8) The control device 1 changes the superimposed energization start time based on the time change of the voltage V2 of the secondary coil 320 by the phase control unit 380 (steps 206 to S208). Since this is done, the energization period of the secondary primary coil 360 can be adjusted according to the gas flow velocity between the electrodes in the spark plug 200. Therefore, even when the operating state of the internal combustion engine 100 fluctuates in each combustion cycle, it is possible to reliably suppress ignition failure of the gas by the spark plug 200. This is not only a series hybrid type electric vehicle in which a power generation motor is driven by the internal combustion engine 100 and the drive motor is driven by the electric power, but also a conventional automobile or a parallel hybrid in which the vehicle is driven by the internal combustion engine 100. It is also suitable for type electric vehicles.
[変形例]
 なお、以上説明した第1~第4の各実施形態において、制御装置1は、位相制御部380により、内燃機関100の運転状態に応じて主1次コイル310の放電開始タイミング、すなわち点火信号SAの立下り時期Sが早くなるほど、点火信号SAの立下り時期Sから点火信号SBの立上り時期Aまでの期間を長くし、重畳通電開始時間を増加させるようにしてもよい。このようにすれば、内燃機関100の気筒150内で点火プラグ200を放電させたときに、気筒150内のガスにおいてタンブル流の崩壊(タンブル崩壊)が生じるタイミングに合わせて、点火信号SBを出力して副1次コイル360から点火プラグ200への重畳電流の供給を行うことができる。したがって、タンブル崩壊による放電路の吹き消えを効果的に抑制し、点火プラグ200によるガスへの着火性を向上させることができる。
[Modification example]
In each of the first to fourth embodiments described above, in the control device 1, the phase control unit 380 determines the discharge start timing of the main primary coil 310, that is, the ignition signal SA, according to the operating state of the internal combustion engine 100. As the falling time S of the ignition signal SA becomes earlier, the period from the falling time S of the ignition signal SA to the rising time A of the ignition signal SB may be lengthened to increase the superimposed energization start time. By doing so, when the spark plug 200 is discharged in the cylinder 150 of the internal combustion engine 100, the ignition signal SB is output in accordance with the timing at which the tumble flow collapse (tumble collapse) occurs in the gas in the cylinder 150. Then, the superimposed current can be supplied from the secondary primary coil 360 to the spark plug 200. Therefore, it is possible to effectively suppress the blowout of the discharge path due to the collapse of the tumble and improve the ignitability of the gas by the spark plug 200.
 なお、以上説明した各実施形態において、図3で説明した制御装置1の各機能構成は、前述のようにMPU50で実行されるソフトウェアにより実現してもよいし、あるいはFPGA(Field-Programmable Gate Array)等のハードウェアにより実現してもよい。また、これらを混在して使用してもよい。 In each of the above-described embodiments, the functional configurations of the control device 1 described with reference to FIG. 3 may be realized by software executed by the MPU 50 as described above, or may be realized by FPGA (Field-Programmable Gate Array). ) And other hardware may be used. Further, these may be mixed and used.
 以上説明した第1~第4の実施形態は、それぞれ単独で適用してもよいし、いずれか2つ以上を任意に組み合わせて適用してもよい。また、内燃機関100の運転条件等に基づいて、いずれかを選択的に適用可能としてもよい。 The first to fourth embodiments described above may be applied individually or in any combination of two or more. Further, any of them may be selectively applicable based on the operating conditions of the internal combustion engine 100 and the like.
 以上説明した各実施形態や各種変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。また、上記では種々の実施形態や変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 The embodiments and various modifications described above are merely examples, and the present invention is not limited to these contents as long as the features of the invention are not impaired. Further, although various embodiments and modifications have been described above, the present invention is not limited to these contents. Other aspects considered within the scope of the technical idea of the present invention are also included within the scope of the present invention.
 1:制御装置、10:アナログ入力部、20:デジタル入力部、30:A/D変換部、40:RAM、50:MPU、60:ROM、70:I/Oポート、80:出力回路、81:全体制御部、82:燃料噴射制御部、83:点火制御部、84:気筒判別部、85:角度情報生成部、86:回転数情報生成部、87:吸気量計測部、88:負荷情報生成部、89:水温計測部、100:内燃機関、110:エアクリーナ、111:吸気管、112:吸気マニホールド、113:スロットル弁、113a:スロットル開度センサ、114:流量センサ、115:吸気温センサ、120:リングギア、121:クランク角センサ、122:水温センサ、123:クランクシャフト、125:アクセルペダル、126:アクセルポジションセンサ、130:燃料タンク、131:燃料ポンプ、132:プレッシャレギュレータ、133:燃料配管、134:燃料噴射弁、140:燃焼圧センサ、150:気筒、151:吸気弁、152:排気弁、160:排気マニホールド、161:三元触媒、162:上流側空燃比センサ、163:下流側空燃比センサ、170:ピストン、200:点火プラグ、210:中心電極、220:外側電極、230:絶縁体、300,300C:点火コイル、310:主1次コイル、320:2次側コイル、330:直流電源、340,350:イグナイタ、360:副1次コイル、370:電圧検知部、380:位相制御部、381:タイマー回路、390:抵抗、400,400A,400B,400C:電気回路 1: Control device, 10: Analog input unit, 20: Digital input unit, 30: A / D conversion unit, 40: RAM, 50: MPU, 60: ROM, 70: I / O port, 80: Output circuit, 81 : Overall control unit, 82: Fuel injection control unit, 83: Ignition control unit, 84: Cylinder discrimination unit, 85: Angle information generation unit, 86: Rotation speed information generation unit, 87: Intake amount measurement unit, 88: Load information Generation unit, 89: Water temperature measurement unit, 100: Internal combustion engine, 110: Air cleaner, 111: Intake pipe, 112: Intake manifold, 113: Throttle valve, 113a: Throttle opening sensor, 114: Flow sensor, 115: Intake temperature sensor , 120: Ring gear, 121: Crank angle sensor, 122: Water temperature sensor, 123: Crank shaft, 125: Accelerator pedal, 126: Accelerator position sensor, 130: Fuel tank, 131: Fuel pump, 132: Pressure regulator, 133: Fuel piping, 134: Fuel injection valve, 140: Combustion pressure sensor, 150: Cylinder, 151: Intake valve, 152: Exhaust valve, 160: Exhaust manifold, 161: Three-way catalyst, 162: Upstream air fuel ratio sensor, 163: Downstream air fuel ratio sensor, 170: piston, 200: ignition plug, 210: center electrode, 220: outer electrode, 230: insulator, 300, 300C: ignition coil, 310: main primary coil, 320: secondary side coil , 330: DC power supply, 340, 350: Igniter, 360: Secondary primary coil, 370: Voltage detector, 380: Phase control unit, 381: Timer circuit, 390: Resistance, 400, 400A, 400B, 400C: Electric circuit

Claims (12)

  1.  1次側にそれぞれ配置された主1次コイルおよび副1次コイルと、2次側に配置された2次コイルとを備えた点火コイルの通電を制御することで、前記点火コイルから内燃機関の気筒内で放電する点火プラグへの電気エネルギーの供給を制御する電子制御装置であって、
     前記主1次コイルの放電を開始してから所定の重畳通電開始時間を経過したときに前記副1次コイルの通電を開始し、前記副1次コイルの通電を開始してから前記内燃機関の回転数に応じた所定の重畳通電期間を経過したときに前記副1次コイルの通電を終了するように、前記点火コイルの通電を制御する電子制御装置。
    By controlling the energization of the ignition coil including the main primary coil and the sub primary coil arranged on the primary side and the secondary coil arranged on the secondary side, the ignition coil can be used as the internal combustion engine. An electronic control device that controls the supply of electrical energy to the spark plug that discharges in the cylinder.
    When a predetermined superposition energization start time elapses after the discharge of the main primary coil is started, the energization of the sub-primary coil is started, and after the energization of the sub-primary coil is started, the internal combustion engine An electronic control device that controls the energization of the ignition coil so that the energization of the sub-primary coil is terminated when a predetermined superimposition energization period corresponding to the rotation speed has elapsed.
  2.  請求項1に記載の電子制御装置において、
     前記重畳通電開始時間は、前記内燃機関の気筒内で前記点火プラグを放電させたときの放電開始から再放電までの時間を示す再放電時間の計測結果に基づいて決定される電子制御装置。
    In the electronic control device according to claim 1,
    The superimposed energization start time is an electronic control device determined based on a measurement result of a re-discharge time indicating a time from the start of discharge to re-discharge when the spark plug is discharged in the cylinder of the internal combustion engine.
  3.  請求項2に記載の電子制御装置において、
     前記重畳通電開始時間は、前記再放電時間の計測を複数回行ったときの各計測結果の分布において、前記重畳通電期間内で前記再放電の発生回数が最大となるように決定される電子制御装置。
    In the electronic control device according to claim 2,
    The superimposed energization start time is electronically controlled so that the number of occurrences of the re-discharge is maximized within the superimposed energization period in the distribution of each measurement result when the re-discharge time is measured a plurality of times. Device.
  4.  請求項3に記載の電子制御装置において、
     前記再放電時間の計測では、前記2次コイルの電圧を2次電圧として計測したときの前記2次電圧の微分値に基づいて、前記再放電の発生が検出される電子制御装置。
    In the electronic control device according to claim 3,
    In the measurement of the re-discharge time, an electronic control device that detects the occurrence of the re-discharge based on the differential value of the secondary voltage when the voltage of the secondary coil is measured as the secondary voltage.
  5.  請求項1から請求項4のいずれか一項に記載の電子制御装置において、
     前記主1次コイルの放電を開始してから前記重畳通電開始時間を経過したときの前記2次コイルの電圧が所定の上限電圧よりも大きいか、または所定の下限電圧未満の場合は、前記副1次コイルの通電を行わない電子制御装置。
    In the electronic control device according to any one of claims 1 to 4.
    If the voltage of the secondary coil is larger than the predetermined upper limit voltage or less than the predetermined lower limit voltage when the superposition energization start time has elapsed after the discharge of the main primary coil is started, the sub An electronic control device that does not energize the primary coil.
  6.  請求項5に記載の電子制御装置において、
     前記上限電圧および前記下限電圧は、前記内燃機関の気筒内で前記点火プラグを放電させたときの再放電の発生直前時点での前記2次コイルの電圧を示す再放電電圧の計測結果に基づいて決定される電子制御装置。
    In the electronic control device according to claim 5,
    The upper limit voltage and the lower limit voltage are based on the measurement result of the re-discharge voltage indicating the voltage of the secondary coil at the time immediately before the occurrence of the re-discharge when the spark plug is discharged in the cylinder of the internal combustion engine. The electronic control device to be determined.
  7.  請求項6に記載の電子制御装置において、
     前記上限電圧および前記下限電圧は、前記再放電電圧の計測を複数回行ったときの各計測結果の分布において、所定の電圧範囲内で前記再放電の発生回数が最大となるように決定される電子制御装置。
    In the electronic control device according to claim 6,
    The upper limit voltage and the lower limit voltage are determined so that the number of occurrences of the re-discharge is maximized within a predetermined voltage range in the distribution of each measurement result when the re-discharge voltage is measured a plurality of times. Electronic control device.
  8.  請求項1に記載の電子制御装置において、
     前記内燃機関の回転数が2400回転毎分であるときの前記重畳通電期間は、0.5ミリ秒である電子制御装置。
    In the electronic control device according to claim 1,
    An electronic control device having a superimposed energization period of 0.5 milliseconds when the rotation speed of the internal combustion engine is 2400 rpm.
  9.  請求項1に記載の電子制御装置において、
     前記重畳通電期間に応じたタイマー値を設定し、前記副1次コイルの通電を開始してからの経過時間が前記タイマー値に到達すると、前記副1次コイルの通電を終了するタイマー回路を有する電子制御装置。
    In the electronic control device according to claim 1,
    It has a timer circuit that sets a timer value according to the superimposed energization period and ends the energization of the sub-primary coil when the elapsed time from the start of energization of the sub-primary coil reaches the timer value. Electronic control device.
  10.  請求項9に記載の電子制御装置において、
     前記タイマー回路は、前記主1次コイルの充電期間または前記点火プラグの放電周期に基づいて前記タイマー値を設定する電子制御装置。
    In the electronic control device according to claim 9,
    The timer circuit is an electronic control device that sets the timer value based on the charging period of the main primary coil or the discharge cycle of the spark plug.
  11.  請求項1に記載の電子制御装置において、
     前記2次コイルの電圧の時間変化に基づいて前記重畳通電開始時間を変化させる電子制御装置。
    In the electronic control device according to claim 1,
    An electronic control device that changes the superimposed energization start time based on the time change of the voltage of the secondary coil.
  12.  1次側にそれぞれ配置された主1次コイルおよび副1次コイルと、2次側に配置された2次コイルとを備えた点火コイルの通電を制御することで、前記点火コイルから内燃機関の気筒内で放電する点火プラグへの電気エネルギーの供給を制御する電子制御装置であって、
     前記主1次コイルの放電を開始してから所定の重畳通電開始時間を経過したときに前記副1次コイルの通電を開始し、前記副1次コイルの通電を開始してから所定の重畳通電期間を経過したときに前記副1次コイルの通電を終了するように、前記点火コイルの通電を制御し、
     前記内燃機関の運転状態に応じて前記主1次コイルの放電開始タイミングが早くなるほど、前記重畳通電開始時間を増加させる電子制御装置。
    By controlling the energization of the ignition coil including the main primary coil and the sub primary coil arranged on the primary side and the secondary coil arranged on the secondary side, the ignition coil can be used as the internal combustion engine. An electronic control device that controls the supply of electrical energy to the spark plug that discharges in the cylinder.
    When a predetermined superposition energization start time has elapsed since the discharge of the main primary coil was started, the energization of the sub-primary coil is started, and after the energization of the sub-primary coil is started, the predetermined superimposition energization is started. The energization of the ignition coil is controlled so that the energization of the sub-primary coil is terminated when the period elapses.
    An electronic control device that increases the superimposed energization start time as the discharge start timing of the main primary coil becomes earlier according to the operating state of the internal combustion engine.
PCT/JP2021/021435 2020-07-20 2021-06-04 Electronic control device WO2022018986A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022538620A JP7330383B2 (en) 2020-07-20 2021-06-04 electronic controller
CN202180044719.3A CN115735059A (en) 2020-07-20 2021-06-04 Electronic control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020123395 2020-07-20
JP2020-123395 2020-07-20

Publications (1)

Publication Number Publication Date
WO2022018986A1 true WO2022018986A1 (en) 2022-01-27

Family

ID=79728660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021435 WO2022018986A1 (en) 2020-07-20 2021-06-04 Electronic control device

Country Status (3)

Country Link
JP (1) JP7330383B2 (en)
CN (1) CN115735059A (en)
WO (1) WO2022018986A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251762A (en) * 1985-08-29 1987-03-06 Nippon Soken Inc Ignition device
JPH11210607A (en) * 1998-01-27 1999-08-03 Ngk Spark Plug Co Ltd Ignition device for internal combustion engine and internal combustion engine
JP2015200254A (en) * 2014-04-10 2015-11-12 株式会社デンソー Ignitor
WO2016157541A1 (en) * 2015-03-30 2016-10-06 日立オートモティブシステムズ阪神株式会社 Ignition device for internal combustion engine
WO2018083719A1 (en) * 2016-11-01 2018-05-11 日立オートモティブシステムズ阪神株式会社 Internal combustion engine ignition device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251762A (en) * 1985-08-29 1987-03-06 Nippon Soken Inc Ignition device
JPH11210607A (en) * 1998-01-27 1999-08-03 Ngk Spark Plug Co Ltd Ignition device for internal combustion engine and internal combustion engine
JP2015200254A (en) * 2014-04-10 2015-11-12 株式会社デンソー Ignitor
WO2016157541A1 (en) * 2015-03-30 2016-10-06 日立オートモティブシステムズ阪神株式会社 Ignition device for internal combustion engine
WO2018083719A1 (en) * 2016-11-01 2018-05-11 日立オートモティブシステムズ阪神株式会社 Internal combustion engine ignition device

Also Published As

Publication number Publication date
CN115735059A (en) 2023-03-03
JP7330383B2 (en) 2023-08-21
JPWO2022018986A1 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
WO2020235219A1 (en) Control device for internal combustion engine
WO2021106520A1 (en) Internal combustion engine control device
JP2019210827A (en) Controller for internal combustion engine
JP6893997B2 (en) Internal combustion engine control device and internal combustion engine control method
WO2022018986A1 (en) Electronic control device
JP6942885B2 (en) Control device for internal combustion engine
JP6931127B2 (en) Control device for internal combustion engine
JP7077420B2 (en) Control device for internal combustion engine
JP6906106B2 (en) Control device for internal combustion engine
WO2020262098A1 (en) Control device for internal combustion engine
JP7247364B2 (en) Control device for internal combustion engine
WO2021095456A1 (en) Control device for internal combustion engine
WO2021240898A1 (en) Electronic control device
WO2022123861A1 (en) Internal combustion engine control device
JP7324384B2 (en) Cylinder Pressure Detection Method, Cylinder Pressure Sensor Diagnosis Method, and Internal Combustion Engine Control Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21846763

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022538620

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21846763

Country of ref document: EP

Kind code of ref document: A1