WO2016035639A1 - Ignition device for internal combustion engine - Google Patents

Ignition device for internal combustion engine Download PDF

Info

Publication number
WO2016035639A1
WO2016035639A1 PCT/JP2015/074016 JP2015074016W WO2016035639A1 WO 2016035639 A1 WO2016035639 A1 WO 2016035639A1 JP 2015074016 W JP2015074016 W JP 2015074016W WO 2016035639 A1 WO2016035639 A1 WO 2016035639A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
voltage
ignition
ignition coil
discharge
Prior art date
Application number
PCT/JP2015/074016
Other languages
French (fr)
Japanese (ja)
Inventor
竹田 俊一
覚 中山
金千代 寺田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015096216A external-priority patent/JP6606856B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US15/508,222 priority Critical patent/US10113526B2/en
Publication of WO2016035639A1 publication Critical patent/WO2016035639A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/05Layout of circuits for control of the magnitude of the current in the ignition coil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/12Ignition, e.g. for IC engines

Definitions

  • the present disclosure relates to an ignition device used for an internal combustion engine.
  • a cylindrical ignition coil (stick coil) is installed between the spark plug and the rocker cover, and is connected to the upper end of the stick coil to form a rectangular ignition coil on the rocker cover.
  • two ignition coils can be arrange
  • the present disclosure is intended to enable continuous discharge by an ignition plug even in a case where an withstand voltage of at least one ignition coil is configured to be low in an ignition device including two ignition coils.
  • the present disclosure is an internal combustion engine ignition device according to a first aspect, and includes an ignition plug that performs discharge for igniting a combustible air-fuel mixture in a combustion chamber of the internal combustion engine, a primary coil, and a secondary coil.
  • a discharge start unit for starting the discharge, and the voltage boost unit by the second switching element boosts the discharge so that the discharge is maintained after the discharge start unit starts the discharge by the spark plug.
  • a discharge maintaining unit that repeats application and disconnection of the applied voltage.
  • the first ignition coil and the second ignition coil both include the primary coil and the secondary coil.
  • a predetermined voltage is applied to the primary coil of the first ignition coil by the voltage application unit. Then, when the discharge start unit controls the first switching element, the primary current flowing to the primary coil is turned on and off, and discharge of the spark plug is started.
  • the ignition device for an internal combustion engine of the present disclosure is further provided with a second switching element.
  • the second switching element is controlled by the discharge maintaining unit, and the voltage boosted by the voltage boosting unit is applied. Thereby, the discharge of the spark plug is maintained. Furthermore, application and disconnection of the boosted voltage are controlled. As a result, the discharge current can be controlled to an optimum discharge current, for example, increased or decreased, or kept constant.
  • the voltage for maintaining the discharge can be as small as 10 kV or less. Therefore, the withstand voltage design of the second ignition coil can be reduced.
  • FIG. 1 is a circuit diagram showing an electrical configuration of an internal combustion engine ignition device (first embodiment).
  • FIG. 2 is a cross-sectional view of the internal combustion engine ignition device.
  • FIG. 3 is a timing chart showing a discharge signal, a primary current, and a secondary current (first embodiment).
  • FIG. 4 is a circuit diagram showing an electrical configuration of the internal combustion engine ignition device (second embodiment).
  • FIG. 5 is a timing chart showing a discharge signal, a primary current, and a secondary current (second embodiment).
  • FIG. 6 is a sectional view (modified example) of the internal combustion engine ignition device.
  • FIG. 1 shows an embodiment of an ignition device for an internal combustion engine, and shows a configuration of an electric circuit of this embodiment.
  • This electric circuit includes a spark plug 12, a power transistor 13 (corresponding to a first switching element), a first ignition coil 15A, a second ignition coil 15B, a booster circuit 31 (corresponding to a voltage booster), and a MOSFET 25 (second switching).
  • diodes 14, 23, 27, 28, ECU 20 correspond to the discharge starting means and the discharge maintaining means
  • the ECU 20 receives signals from various sensors that detect parameters (warm-up state, engine rotation speed, engine load, presence / absence of lean combustion, degree of swirling flow, etc.) indicating the operating state and control state of the engine.
  • the ECU 20 includes an input circuit that processes an input signal, a CPU that performs control processing and arithmetic processing related to engine control based on the input signal, and stores data, programs, and the like necessary for engine control. And it is comprised with the output circuit etc. which output the signal required for engine control based on the various memory which hold
  • the first ignition coil 15A and the second ignition coil 15B are each provided with primary coils 17A and 17B.
  • the first ignition coil 15A and the second ignition coil 15B generate a secondary current I2 in the secondary coils 16A and 16B by electromagnetic induction according to the increase and decrease of the primary currents I11 and I12 flowing through the primary coils 17A and 17B.
  • This is a well-known structure for causing the spark plug 12 to discharge.
  • a first end is connected to an output electrode of a battery (corresponding to a voltage applying means) 11 and a second end is connected to the ground via various electronic elements.
  • the voltage supplied from the battery 11 can be applied to the primary coil 17A.
  • both 1st ends are connected to the center electrode of the spark plug 12 via the diode 14, and the 2nd end is connected to earth
  • the emitter terminal of the power transistor 13 is connected to the ground, and the collector terminal is connected to the second end of the primary coil 17A.
  • the power transistor 13 conducts and disconnects the primary current I11 flowing from the battery 11 to the primary coil 17A.
  • the conduction and disconnection are controlled by a discharge start signal IGt transmitted from the ECU 20 connected to the base terminal of the power transistor 13. That is, the discharge start signal IGt controls the on / off operation of the power transistor 13, and more specifically, is a signal that instructs a period in which magnetic energy is stored in the primary coil 17A.
  • the power transistor 13 can be replaced with an IGBT, a MOS transistor, a thyristor, or the like.
  • the discharge start signal IGt is given from the ECU 20, and the power transistor 13 is turned on.
  • the voltage of the battery 11 is applied to the primary coil 17A, the primary current I11 is energized, and magnetic energy is stored in the primary coil 17A.
  • the magnetic energy stored in the primary coil 17A is converted into electric energy by electromagnetic induction.
  • a high voltage is generated in the secondary coil 16A, and a high voltage is applied between the electrodes of the spark plug 12, causing discharge.
  • the booster circuit 31 boosts the voltage of the battery 11 and stores it as electric energy in the capacitor 24, and boosts and stores the voltage of the battery 11 during a period when the discharge start signal IGt is given from the ECU 20.
  • the booster circuit 31 includes a choke coil 30, a MOSFET 22, a first control circuit 21, and a diode 23.
  • the first end of the choke coil 30 is connected to the positive electrode of the battery 11, and the energized state of the choke coil 30 is interrupted by the MOSFET 22.
  • the first control circuit 21 gives a control signal to the MOSFET 22 to turn the MOSFET 22 on and off.
  • the magnetic energy stored in the choke coil 30 is charged in the capacitor 24 as electric energy.
  • the first control circuit 21 is provided so as to repeatedly turn on and off the MOSFET 22 during a period when the discharge start signal IGt is given from the ECU 20.
  • the diode 23 prevents the electrical energy stored in the capacitor 24 from flowing back to the choke coil 30 side.
  • the MOSFET 25 applies and disconnects the voltage stored in the capacitor 24 to the primary coil 17B by an on / off operation. At this time, the MOSFET 25 is turned on, and the electric energy stored in the capacitor 24 is input to the primary coil 17B.
  • a current in the same direction as the discharge current generated by turning on and off the power transistor 13 is superimposed between the electrodes of the spark plug 12, and the discharge is started following the start of the discharge. Will continue.
  • the MOSFET 25 is turned on / off by a control signal supplied from the second control circuit 26.
  • the second control circuit 26 repeatedly switches the control signal between high and low during the period when the discharge continuation signal IGw is given from the ECU 20 and outputs the control signal.
  • the discharge continuation signal IGw is a signal for instructing a period for continuing the discharge.
  • the second control circuit 26 is a signal for instructing the duration of the voltage applied from the booster circuit 31 to the primary coil 17B by causing the MOSFET 25 to be repeatedly turned on and off.
  • the MOSFET 25 repeatedly turns on and off while the discharge continuation signal IGw is given from the ECU 20, and sequentially supplies the electric energy of the booster circuit 31 to the primary coil 17B. Thereby, in the internal combustion engine ignition device 10 of the present embodiment, the discharge is continued.
  • the MOSFET 25 can be replaced with a power transistor, a thyristor, or the like.
  • the diodes 14A and 14B are provided between the center electrode of the spark plug 12 and the secondary coils 16A and 16B, respectively, and the direction of the secondary current is the same when the discharge starts and when the discharge continues thereafter. More specifically, the diodes 14A and 14B are configured so that the secondary current flowing through the secondary coil 16A when the power transistor 13 is turned on and off and the secondary current flowing through the secondary coil 16B when the MOSFET 25 is turned on and off are in the same direction. Provided.
  • the diode 27 is provided on the source side of the MOSFET 25, and prevents reverse current flow from the primary coil 17B to the booster circuit 31.
  • a current path branched and connected to the ground is provided between the diode 27 and the second ignition coil 15B.
  • a diode 28 is installed in the path.
  • the cathode side of the diode 28 is connected to the second end side of the secondary coil 16B, and the anode side of the diode 28 is connected to the ground. Therefore, the diode 28 operates as a freewheeling diode when the MOSFET 25 is switched from on to off. That is, the diode 28 circulates the current caused by the electromotive force generated in the primary coil 17B when the MOSFET 25 is turned off through the path of the primary coil 17B ⁇ the battery 11 ⁇ the ground ⁇ the diode 28 ⁇ the primary coil 17B.
  • a resistor is provided between the first end of the secondary coil 16B and the ground, and the current detection circuit 29 (corresponding to the secondary current detection means) is connected. Yes.
  • the internal combustion engine ignition device 40 applied to the internal combustion engine 47 in which the ignition plug 12 is mounted in the plug hole 44 is illustrated in FIG. 2 and the configuration thereof will be described.
  • the first ignition coil 15A is formed as a cylindrical ignition coil (stick coil).
  • the second ignition coil 15B is formed as a rectangular ignition coil (rectangular coil).
  • the plug hole 44 is a deep hole-like portion extending from the bottom surface of the housing recess 46 provided on the outer surface of the internal combustion engine 47 (more precisely, the cylinder head or head cover) toward the combustion chamber.
  • the first ignition coil 15A is inserted into the plug hole 44, and the second ignition coil 15B is disposed above the first ignition coil 15A.
  • the withstand voltage of the second ignition coil 15B is set to 1/3 of the withstand voltage of the first ignition coil 15A.
  • the first ignition coil 15A includes a center core 18, a secondary coil 16A, a primary coil 17A, and an outer iron core 19A on the outer side from the center side.
  • the second ignition coil 15B is mounted with a primary coil 17B, a secondary coil 16B, and an iron core 19B stacked vertically from the inside to the outside.
  • the wiring 45 extending from the secondary side of the second ignition coil 15B is in contact with the center core 18 of the first ignition coil 15A. And the lower end part of the center core 18 is connected to the electrode of the ignition plug 12 via the diode 14B for preventing premature ignition.
  • the secondary coil 16A of the first ignition coil 15A is connected to the electrode of the spark plug 12 via the diode 14A.
  • both diodes 14 is connected to a cap-shaped high voltage terminal 43, and the upper end of the spring terminal 42 is fitted and fixed to the lower end of the high voltage terminal 43. Both diodes 14 are connected to the lower end of the first ignition coil 15A. Furthermore, the upper end portion of the spring terminal 42 connected to the anode of the spark plug 12 is press-fitted into a cylindrical buffer member 41 disposed outside the high-voltage terminal 43 and the spring terminal 42.
  • the cylindrical buffer member 41 is made of a rubber material or the like.
  • IGt represents the input state of the discharge start signal IGt as high / low
  • IGw represents the input state of the discharge continuation signal IGw as high / low
  • ON switch represents ON / OFF of the MOSFET 25
  • I11” and I12 represent primary current values flowing through the primary coils 17A and 17B, respectively
  • I2 represents a secondary current value.
  • the discharge start signal IGt switches from low to high (see time t01)
  • the on state of the power transistor 13 is maintained during the period when the discharge start signal IGt is high.
  • the primary current I11 flows through the primary coil 17A, and magnetic energy is stored. Further, electric energy is stored in the booster circuit 31.
  • the power transistor 13 is turned off and the energized state of the primary coil 17A is cut (see time t02).
  • the magnetic energy stored in the primary coil 17A is converted into electric energy, a high voltage is generated in the secondary coil 16A, and discharge is started in the spark plug 12.
  • the secondary current I2 induced by cutting the primary current I11 takes a negative value with respect to the current flowing from the positive electrode of the battery 11. Therefore, in the graph of the secondary current I2 in FIG. 3, the negative direction is the increasing direction of the secondary current I2.
  • the secondary current I2 detected by the current detection circuit 29 is attenuated into a substantially triangular wave shape.
  • the discharge continuation signal IGw is switched from low to high, the on / off operation of the MOSFET 25 is started (see time t03).
  • discharge continuation signal IGw switches from low to high.
  • the second threshold value is provided as a value larger than a limit current value ⁇ determined as a current value necessary for maintaining discharge.
  • the second control circuit 26 alternately turns on and off the MOSFET 25 during the period when the discharge continuation signal IGw is high. Executed. For this reason, the electrical energy stored in the booster circuit 31 is sequentially input to the primary coil 17B, and the primary current I12 flows from the primary coil 17B toward the positive electrode of the battery 11. More specifically, each time the MOSFET 25 is turned on, the primary current I12 is added to the primary coil 17B in order to compensate for the decrease in the secondary current I2. As a result, the primary current I12 is repeatedly increased to the negative side compared to the previous time when the voltage was applied by the MOSFET 25 (see times t03 to t04). And in the period when the primary current I12 increases, the secondary current I2 increases. In FIG. 3, the magnitude of the secondary current I2 at the start of discharge is larger than the limit current value ⁇ , but it may be less than that if the discharge can be started.
  • the secondary current I2 is maintained within a predetermined range by increasing the primary current I12 as an overall tendency.
  • the MOSFET 25 is turned off by the second control circuit 26. Thereby, the increase in the primary current I12 is stopped.
  • the first threshold is set as a value larger than the second threshold.
  • the second control circuit 26 controls the on / off operation of the MOSFET 25, and the discharge is continued by repeatedly performing this control.
  • the internal combustion engine ignition device 10 has the following effects.
  • the internal combustion engine ignition device 10 of the present embodiment is provided with a MOSFET 25.
  • the second control circuit 26 controls the on / off operation of the MOSFET 25 so that the discharge can be maintained.
  • a high voltage of 30 kV or more is required to start the discharge, but once the discharge is started, the discharge sustaining voltage generated between the electrodes of the spark plug 12 is reduced to 10 kV or less. Accordingly, with this configuration, the voltage required to maintain the subsequent discharge after the spark plug 12 starts discharging can be reduced, and the withstand voltage design value of the second ignition coil 15B can be lowered.
  • the ECU 20 controls the power transistor 13 to conduct the primary current I11 flowing through the primary coil 17A of the first ignition coil 15A. Then, after the conduction is continued, the primary current I11 is cut off, whereby the spark plug 12 starts discharging. Thereafter, the voltage boosted by the booster circuit 31 is applied by the MOSFET 25. As a result, a discharge current in the same direction as the discharge current generated by the control of the power transistor 13 can flow between the electrodes of the spark plug 12. Further, by providing a current path connected to the ground via the diode 28 between the MOSFET 25 and the second ignition coil 15B, the voltage applied from the booster circuit 31 to the second ignition coil 15B by the MOSFET 25 is disconnected. . Thereby, the second ignition coil 15B is supplied from the ground. With this configuration, it is possible to suppress an extreme decrease in the primary current I12 and, in turn, a decrease in the secondary current I2.
  • the primary current I12 flowing through the primary coil 17B of the second ignition coil 15B is increased.
  • a voltage having a magnitude corresponding to the primary current I12 can be generated in the secondary coil 16B, and a decrease in the secondary current I2 can be suppressed.
  • the ECU 20 controls the MOSFET 25 via the second control circuit 26 after the spark plug 12 starts discharging. Thereby, application and disconnection of the voltage boosted by the booster circuit 31 are repeated, and the discharge of the spark plug 12 is maintained. With this configuration, after the spark plug 12 starts discharging, the voltage for maintaining the discharge can be small, so that the withstand voltage design of the second ignition coil 15B can be reduced.
  • the withstand voltage of the first ignition coil 15A is 30 kV or more in order to start the discharge, but the withstand voltage of the second ignition coil 15B that operates after the start of the discharge only needs to satisfy 10 kV. Therefore, the withstand voltage of the second ignition coil 15B is set to 1/3 of the withstand voltage of the first ignition coil 15A. For this reason, it is possible to reduce the insulation distance between the primary coil 17B and the secondary coil 16B and the grounding body and the secondary coil 16B included in the second ignition coil 15B, and to reduce the size of the second ignition coil 15B. I can do it.
  • the first ignition coil 15A is inserted into the plug hole 44 formed in the internal combustion engine 47, and the second ignition coil 15B is disposed above the first ignition coil 15A. It is arranged. With this configuration, the two ignition coils 15A and 15B can be accommodated in a compact manner.
  • the output side of the secondary coil 16B included in the second ignition coil 15B is connected to the center core 18 included in the first ignition coil 15A.
  • the lower end part of the center core 18 is connected to the spark plug 12 via the diode 14B.
  • the primary current I12 when the secondary current I2 detected by the current detection circuit 29 is greater than the first threshold by the ECU 20, the primary current I12 is cut off by the MOSFET 25.
  • the secondary current I2 detected by the current detection circuit 29 becomes smaller than the second threshold value, the primary current I12 is conducted by the MOSFET 25.
  • the secondary current I2 flowing through the secondary coil 16B of the second ignition coil 15B can be kept between the first threshold value and the second threshold value.
  • the secondary current I2 can be stored in a desired region by controlling the MOSFET 25.
  • the current detection circuit 29 is connected by providing a resistor between the first end of the secondary coil 16B and the ground.
  • a resistor is provided between the ground and the power transistor 13 to connect a current detection circuit 51 (corresponding to primary current detection means).
  • a current detection circuit 51 is connected by providing a resistor between the ground and the battery 11.
  • the discharge start signal IGt is switched from low to high (see time t01), and the power transistor 13 is kept on during the period when the discharge start signal IGt is high.
  • the primary current I11 flows through the primary coil 17A, and magnetic energy is stored. Further, electric energy is stored in the booster circuit 31.
  • the discharge start signal IGt is switched from high to low when a first predetermined time has elapsed after the primary current I11 starts to flow through the primary coil 17A.
  • the power transistor 13 is turned off, and the energized state of the primary coil 17A is disconnected (see time t02).
  • the magnetic energy stored in the primary coil 17A is converted into electric energy, a high voltage is generated in the secondary coil 16A, and discharge is started in the spark plug 12.
  • the first predetermined time is set as a time during which the primary current I11 increases to a value that is large enough to cause the spark plug 12 to start discharging and does not damage the power transistor 13.
  • the discharge continuation signal IGw transmitted from the ECU 20 switches from low to high after the second predetermined time has elapsed since the discharge of the spark plug 12 started (see time t03). . Accordingly, the MOSFET 25 is turned on by the second control circuit 26 that has received the discharge continuation signal IGw, and the primary current I12 is caused to flow through the primary coil 17B. At this time, the second control circuit 26 monitors the magnitude of the primary current I12 detected by the current detection circuit 51. In the internal combustion engine ignition device 50, when the magnitude of the primary current I12 increases by the first predetermined amount after the MOSFET 25 is turned on (voltage application is started), the second control circuit 26 turns off the MOSFET 25 to turn off the voltage.
  • the spark plug 12 continues to be discharged (see times t03 to t04).
  • the first predetermined amount and the second predetermined amount are values for suppressing an extreme increase or decrease in the secondary current I2, and specifically, the first predetermined amount is set larger than the second predetermined amount. Has been.
  • the internal combustion engine ignition device 50 has the following effects.
  • a current detection circuit 51 is connected by providing a resistor between the ground and the power transistor 13. Further, a current detection circuit 51 is connected by providing a resistor between the ground and the battery 11. With this configuration, the primary current I11 and the primary current I12 can be monitored, and the primary currents I11 and I12 can be precisely controlled.
  • the internal combustion engine ignition device 50 of the present embodiment includes a current detection circuit 51 that detects a primary current I12 flowing through the primary coil 17B included in the second ignition coil 15B.
  • the second control circuit 26 can constantly monitor the magnitude of the primary current I12 detected by the current detection circuit 51.
  • the second control circuit 26 cuts off the primary current I12 by the MOSFET 25 when the primary current I12 detected by the current detection circuit 51 becomes larger by a first predetermined amount after starting to apply voltage to the primary coil 17B. Let Then, when the primary current I12 is reduced by a second predetermined amount after starting to cut off the voltage to the primary coil 17B, the primary current I12 is again conducted by the MOSFET 25.
  • the internal combustion engine ignition device 50 can suppress an extreme increase or decrease in the secondary current I2 flowing through the secondary coil 16B of the second ignition coil 15B.
  • a resistor is provided between the ground and the battery 11 to connect the current detection circuit 51.
  • the current detection method for the primary current I12 may be other methods.
  • the current detection circuit 51 may be connected by providing a resistor between the diode 28 and the ground.
  • the current detection circuit 51 may be connected by providing a resistor between the capacitor 24 and the ground.
  • the wiring 45 extending from the secondary side of the second ignition coil 15B is in contact with the center core 18 of the first ignition coil 15A. And the lower end part of the center core 18 is connected to the electrode of the ignition plug 12 via the diode 14A for preventing premature ignition.
  • the wiring 45 extending from the secondary side of the second ignition coil 15B may be connected to the wiring 61 provided between the case 48 and the outer iron core 19A. .
  • the wiring 61 is connected to the spark plug 12 via the diode 14B.
  • the secondary current I2 in order to maintain the secondary current I2 in a state larger than the limit current value ⁇ for a certain period, the secondary current I2 is provided with two thresholds and controlled to fall within the range.
  • the primary current I12 is monitored, and when the primary current I12 increases or decreases by a predetermined value, the MOSFET 25 is turned on / off, and the secondary current I2 is extremely increased or decreased. Suppressed feedback control was performed. About this control, you may control ON / OFF operation
  • the time for turning on the MOSFET 25 is set longer than the time for turning it off.
  • the decrease in the primary current I12 that occurs when the MOSFET 25 is turned off can be increased during the period when the MOSFET 25 is turned on, and as a result, the decrease in the secondary current I2 can be suppressed. Is possible.
  • the first ignition coil 15A is defined as a stick coil and the second ignition coil 15B is defined as a rectangular coil, but the shape is not limited thereto.
  • the first ignition coil 15A may be a rectangular coil
  • the second ignition coil 15B may be a stick coil.
  • two rectangular coils may be applied to the first ignition coil 15A and the second ignition coil 15B, respectively
  • two stick coils may be used as the first ignition coil 15A and the second ignition coil 15B, respectively. You may apply to. Even in these cases, the withstand voltage of the ignition coil to which a voltage for maintaining the discharge is applied after the ignition plug 12 starts discharging can be designed to be small.
  • the withstand voltage of the second ignition coil 15B is set to 1/3 of the withstand voltage of the first ignition coil 15A, but the present invention is not limited to this. If the discharge of the spark plug 12 can be maintained, the withstand voltage of the second ignition coil 15B may be 1/3 or less of the first ignition coil 15A, or may be more than that.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

An ignition device for an internal combustion engine, said ignition device being provided with: a spark plug (12); a first ignition coil (15A) and a second ignition coil (15B); a battery (11); a booster circuit (31) for boosting a voltage supplied from the battery; a power transistor (13) for allowing and interrupting passage of a primary current flowing into the primary coil (17A) of the first ignition coil; a MOSFET (25) for applying and disconnecting the voltage boosted by the booster circuit to the primary coil (17B) of the second ignition coil; and an ECU (20) that controls the power transistor so as to cause the spark plug to start electric discharge and causes the MOSFET to repeat application and disconnecting of the voltage boosted by the booster circuit such that the ongoing electric discharge is maintained.

Description

内燃機関用点火装置Ignition device for internal combustion engine
 本開示は内燃機関に用いられる点火装置に関する。 The present disclosure relates to an ignition device used for an internal combustion engine.
 内燃機関の点火装置としては、点火栓のくすぶりに対して良好な着火性能を得るために、二次電圧が急峻に立ち上がる特性が要求され、一方、リーンバーンや通常の燃焼を良好に維持するために、放電時間が長い特性が要求される。しかし、二次電圧を急峻に立ち上げるためには、点火コイルの二次巻線数を小さくするなどして短時間にエネルギを放出させるため、放電時間は短くなる。このように、これら両特性の要求は相反している。そこで、複数の点火コイルを用いて個々の特性を合成して多重放電とすることにより、前記2つの要求を同時に満たすことが可能となる。 As an ignition device for an internal combustion engine, in order to obtain a good ignition performance against the smoldering of the spark plug, a characteristic in which the secondary voltage rises sharply is required. On the other hand, in order to maintain the lean burn and normal combustion well In addition, long discharge characteristics are required. However, in order to raise the secondary voltage sharply, the discharge time is shortened because energy is released in a short time by reducing the number of secondary windings of the ignition coil. Thus, these requirements for both characteristics are contradictory. Therefore, by combining the individual characteristics using a plurality of ignition coils to form multiple discharges, it is possible to satisfy the two requirements simultaneously.
 前記2つの要求を満たす構成としては、点火栓とロッカカバーとの間に円筒状の点火コイル(スティックコイル)を設置し、スティックコイルの上端部に連結させてロッカカバー上に矩形状の点火コイルを配置させたものがある(特許文献1参照)。特許文献1に記載のものでは、2つの点火コイルをコンパクトに配置し、多重放電特性を有する点火装置を小型化することができる。 As a configuration satisfying the above two requirements, a cylindrical ignition coil (stick coil) is installed between the spark plug and the rocker cover, and is connected to the upper end of the stick coil to form a rectangular ignition coil on the rocker cover. (See Patent Document 1). In the thing of patent document 1, two ignition coils can be arrange | positioned compactly and the ignition device which has a multiple discharge characteristic can be reduced in size.
特開2000-199470JP 2000-199470 A
 特許文献1に記載のものでは、点火プラグの放電を開始可能な程度に、大きな電圧を両方の点火コイルに印加させているため、両方の点火コイルの耐電圧を大きいものとしなければならない。そして、点火コイルの耐電圧を大きくするには、点火コイルが具備している一次コイル及びアース体と二次コイルとの絶縁距離を大きくしなければならず、点火コイルの大型化に繋がる。 In the device described in Patent Document 1, since a large voltage is applied to both ignition coils to such an extent that discharge of the spark plug can be started, the withstand voltage of both ignition coils must be large. In order to increase the withstand voltage of the ignition coil, it is necessary to increase the insulation distance between the primary coil and the earth body provided in the ignition coil and the secondary coil, leading to an increase in the size of the ignition coil.
 本開示は、2つの点火コイルを備える点火装置において、少なくとも1つの点火コイルの耐電圧が低く構成されても、点火プラグによる連続放電を実行可能とすることを目的とするものである。 The present disclosure is intended to enable continuous discharge by an ignition plug even in a case where an withstand voltage of at least one ignition coil is configured to be low in an ignition device including two ignition coils.
 以下、本開示の第1の態様、及びその作用効果について記載する。 Hereinafter, the first aspect of the present disclosure and the effects thereof will be described.
 本開示は、第1の態様に係る内燃機関用点火装置であって、内燃機関の燃焼室内の可燃混合気に点火するための放電を実行する点火プラグと、一次コイル及び二次コイルを具備し、前記二次コイルにより前記点火プラグに電圧を印加する第一点火コイル及び第二点火コイルと、前記第一点火コイルが具備する前記一次コイルに所定の電圧を印加する電圧印加部と、前記電圧印加部により供給される電圧を昇圧させる電圧昇圧部と、前記第一点火コイルが具備する前記一次コイルへ流れる一次電流の導通と切断を行う第一スイッチング素子と、前記第二点火コイルが具備する前記一次コイルへ、前記電圧昇圧部により昇圧された電圧の印加と切断を行う第二スイッチング素子と、前記第一スイッチング素子を制御することで、前記点火プラグにより前記放電を開始させる放電開始部と、前記放電開始部によって前記点火プラグにより前記放電を開始させた後、前記放電が維持されるように、前記第二スイッチング素子による前記電圧昇圧部により昇圧された電圧の印加と切断とを繰り返させる放電維持部と、を備える。 The present disclosure is an internal combustion engine ignition device according to a first aspect, and includes an ignition plug that performs discharge for igniting a combustible air-fuel mixture in a combustion chamber of the internal combustion engine, a primary coil, and a secondary coil. A first ignition coil and a second ignition coil that apply a voltage to the spark plug by the secondary coil, and a voltage application unit that applies a predetermined voltage to the primary coil included in the first ignition coil, A voltage booster that boosts the voltage supplied by the voltage application unit; a first switching element that conducts and disconnects a primary current that flows to the primary coil of the first ignition coil; and the second ignition coil A second switching element that applies and disconnects the voltage boosted by the voltage boosting unit to the primary coil, and the spark plug by controlling the first switching element. A discharge start unit for starting the discharge, and the voltage boost unit by the second switching element boosts the discharge so that the discharge is maintained after the discharge start unit starts the discharge by the spark plug. A discharge maintaining unit that repeats application and disconnection of the applied voltage.
 上記構成によれば、本開示の内燃機関用点火装置は、第一点火コイルと第二点火コイルとが、共に一次コイルと二次コイルとを具備している。そのうち第一点火コイルが具備している一次コイルには、電圧印加部により所定の電圧が印加される。そして、放電開始部が第一スイッチング素子を制御することにより、一次コイルへ流れる一次電流は、その導通と切断が行われ、点火プラグの放電を開始させる。 According to the above configuration, in the ignition device for an internal combustion engine of the present disclosure, the first ignition coil and the second ignition coil both include the primary coil and the secondary coil. A predetermined voltage is applied to the primary coil of the first ignition coil by the voltage application unit. Then, when the discharge start unit controls the first switching element, the primary current flowing to the primary coil is turned on and off, and discharge of the spark plug is started.
 また、本開示の内燃機関用点火装置には、さらに第二スイッチング素子が設けられている。放電開始部により、点火プラグが放電を開始して以後、放電維持部により第二スイッチング素子を制御し、電圧昇圧部により昇圧された電圧を印加させる。これにより、点火プラグの放電を維持させる。更に昇圧された電圧の印加と切断を制御する。これにより、放電電流を増加又は減少させ、あるいは一定に保つなど最適な放電電流に制御することが出来る。この構成により、点火プラグが放電を開始して以後は、その放電を維持するための電圧は10kV以下と小さくて済む。そのため、第二点火コイルの耐電圧設計を小さくすることが可能となる。 Further, the ignition device for an internal combustion engine of the present disclosure is further provided with a second switching element. After the spark plug starts discharging by the discharge starting unit, the second switching element is controlled by the discharge maintaining unit, and the voltage boosted by the voltage boosting unit is applied. Thereby, the discharge of the spark plug is maintained. Furthermore, application and disconnection of the boosted voltage are controlled. As a result, the discharge current can be controlled to an optimum discharge current, for example, increased or decreased, or kept constant. With this configuration, after the spark plug starts discharging, the voltage for maintaining the discharge can be as small as 10 kV or less. Therefore, the withstand voltage design of the second ignition coil can be reduced.
図1は、内燃機関用点火装置の電気的構成を示す回路図である(第1の実施形態)。FIG. 1 is a circuit diagram showing an electrical configuration of an internal combustion engine ignition device (first embodiment). 図2は、内燃機関用点火装置の断面図である。FIG. 2 is a cross-sectional view of the internal combustion engine ignition device. 図3は、放電信号、一次電流、及び二次電流を示したタイミングチャートである(第1の実施形態)。FIG. 3 is a timing chart showing a discharge signal, a primary current, and a secondary current (first embodiment). 図4は、内燃機関用点火装置の電気的構成を示す回路図である(第2の実施形態)。FIG. 4 is a circuit diagram showing an electrical configuration of the internal combustion engine ignition device (second embodiment). 図5は、放電信号、一次電流、及び二次電流を示したタイミングチャートである(第2の実施形態)。FIG. 5 is a timing chart showing a discharge signal, a primary current, and a secondary current (second embodiment). 図6は、内燃機関用点火装置の断面図(変更例)である。FIG. 6 is a sectional view (modified example) of the internal combustion engine ignition device.
 (第1の実施形態)
 以下、実施の形態を示す図面に基づいて本開示を詳細に説明する。図1は、内燃機関用点火装置の一実施形態を示したもので、本実施形態の電気回路の構成を示している。この電気回路は、点火プラグ12、パワートランジスタ13(第一スイッチング素子に該当)、第一点火コイル15A、第二点火コイル15B、昇圧回路31(電圧昇圧手段に該当)、MOSFET25(第二スイッチング素子に該当)、およびダイオード14,23,27,28、ECU20(放電開始手段,放電維持手段に該当)等を備えている。
(First embodiment)
Hereinafter, the present disclosure will be described in detail with reference to the drawings illustrating embodiments. FIG. 1 shows an embodiment of an ignition device for an internal combustion engine, and shows a configuration of an electric circuit of this embodiment. This electric circuit includes a spark plug 12, a power transistor 13 (corresponding to a first switching element), a first ignition coil 15A, a second ignition coil 15B, a booster circuit 31 (corresponding to a voltage booster), and a MOSFET 25 (second switching). Corresponding to the element), diodes 14, 23, 27, 28, ECU 20 (corresponding to the discharge starting means and the discharge maintaining means) and the like.
 ここで、ECU20には、エンジンの運転状態や制御状態を示すパラメータ(暖機状態、エンジン回転速度、エンジン負荷、希薄燃焼の有無、旋回流の程度等)を検出する各種センサから信号が入力される。また、ECU20は、入力された信号を処理する入力回路、入力された信号に基づき、エンジン制御に関する制御処理や演算処理を行うCPU等を備え、エンジン制御に必要なデータやプログラム等を記憶する。そしてその記憶を保持する各種のメモリ、CPUの処理結果に基づき、エンジン制御に必要な信号を出力する出力回路等を備えて構成される。そして、ECU20は、各種センサからエンジンパラメータを取得し、取得したエンジンパラメータに応じて、放電開始信号IGtおよび放電継続信号IGwを生成し、出力する。 Here, the ECU 20 receives signals from various sensors that detect parameters (warm-up state, engine rotation speed, engine load, presence / absence of lean combustion, degree of swirling flow, etc.) indicating the operating state and control state of the engine. The The ECU 20 includes an input circuit that processes an input signal, a CPU that performs control processing and arithmetic processing related to engine control based on the input signal, and stores data, programs, and the like necessary for engine control. And it is comprised with the output circuit etc. which output the signal required for engine control based on the various memory which hold | maintains the memory | storage, and the processing result of CPU. Then, the ECU 20 acquires engine parameters from various sensors, generates and outputs a discharge start signal IGt and a discharge continuation signal IGw according to the acquired engine parameters.
 第一点火コイル15A及び第二点火コイル15Bは、それぞれが一次コイル17A,17Bを具備している。第一点火コイル15A及び第二点火コイル15Bは、一次コイル17A,17Bを流れる一次電流I11,I12の増減に応じて、電磁誘導により二次コイル16A,16Bに二次電流I2を発生させ、点火プラグ12の放電を実行させる周知構造である。一次コイル17A,17Bは、両方とも、第一端がバッテリ(電圧印加手段に該当)11の出力電極に接続され、第二端が各種電子素子等を介してアースに接続されている。この構成により、本実施形態の内燃機関用点火装置10では、バッテリ11から供給される電圧を一次コイル17Aに印加させることが可能となる。また、二次コイル16A,16Bは、両方とも第一端がダイオード14を介して点火プラグ12の中心電極に接続され、第二端がアースに接続されている。 The first ignition coil 15A and the second ignition coil 15B are each provided with primary coils 17A and 17B. The first ignition coil 15A and the second ignition coil 15B generate a secondary current I2 in the secondary coils 16A and 16B by electromagnetic induction according to the increase and decrease of the primary currents I11 and I12 flowing through the primary coils 17A and 17B. This is a well-known structure for causing the spark plug 12 to discharge. In each of the primary coils 17A and 17B, a first end is connected to an output electrode of a battery (corresponding to a voltage applying means) 11 and a second end is connected to the ground via various electronic elements. With this configuration, in the internal combustion engine ignition device 10 of the present embodiment, the voltage supplied from the battery 11 can be applied to the primary coil 17A. Moreover, as for secondary coil 16A, 16B, both 1st ends are connected to the center electrode of the spark plug 12 via the diode 14, and the 2nd end is connected to earth | ground.
 パワートランジスタ13のエミッタ端子はアースに接続され、コレクタ端子は、一次コイル17Aの第二端に接続されている。このパワートランジスタ13は、バッテリ11から一次コイル17Aへ流れる一次電流I11の導通と切断とを行うものである。そしてこの導通と切断とは、パワートランジスタ13のベース端子に接続されているECU20から送信される放電開始信号IGtにより制御される。つまり放電開始信号IGtは、パワートランジスタ13のオンオフ動作を制御するものであり、より具体的には、一次コイル17Aに磁気エネルギーを蓄えさせる期間を指令する信号である。なお、パワートランジスタ13は、IGBT、MOS型トランジスタ、サイリスタ等でも代用可能である。 The emitter terminal of the power transistor 13 is connected to the ground, and the collector terminal is connected to the second end of the primary coil 17A. The power transistor 13 conducts and disconnects the primary current I11 flowing from the battery 11 to the primary coil 17A. The conduction and disconnection are controlled by a discharge start signal IGt transmitted from the ECU 20 connected to the base terminal of the power transistor 13. That is, the discharge start signal IGt controls the on / off operation of the power transistor 13, and more specifically, is a signal that instructs a period in which magnetic energy is stored in the primary coil 17A. The power transistor 13 can be replaced with an IGBT, a MOS transistor, a thyristor, or the like.
 そして、本実施形態の内燃機関用点火装置10では、ECU20から放電開始信号IGtが与えられ、パワートランジスタ13がオン動作をする。これにより、一次コイル17Aにバッテリ11の電圧が印加されて一次電流I11が通電され、一次コイル17Aに磁気エネルギーが蓄えられる。その後、パワートランジスタ13の切断により、電磁誘導によって、一次コイル17Aに蓄えられた磁気エネルギーが電気エネルギーに変換される。その結果、二次コイル16Aに高電圧が発生するとともに点火プラグ12の電極間に高電圧が印加され、放電が生じる。 In the internal combustion engine ignition device 10 of this embodiment, the discharge start signal IGt is given from the ECU 20, and the power transistor 13 is turned on. Thereby, the voltage of the battery 11 is applied to the primary coil 17A, the primary current I11 is energized, and magnetic energy is stored in the primary coil 17A. Thereafter, by cutting the power transistor 13, the magnetic energy stored in the primary coil 17A is converted into electric energy by electromagnetic induction. As a result, a high voltage is generated in the secondary coil 16A, and a high voltage is applied between the electrodes of the spark plug 12, causing discharge.
 昇圧回路31は、バッテリ11の電圧を昇圧し、電気エネルギーとしてコンデンサ24に蓄えるものであり、ECU20から放電開始信号IGtが与えられる期間において、バッテリ11の電圧を昇圧して蓄える。また、昇圧回路31は、コンデンサ24以外に、チョークコイル30、MOSFET22、第一制御回路21、およびダイオード23により構成される。 The booster circuit 31 boosts the voltage of the battery 11 and stores it as electric energy in the capacitor 24, and boosts and stores the voltage of the battery 11 during a period when the discharge start signal IGt is given from the ECU 20. In addition to the capacitor 24, the booster circuit 31 includes a choke coil 30, a MOSFET 22, a first control circuit 21, and a diode 23.
 ここで、チョークコイル30は第一端がバッテリ11のプラス電極に接続され、MOSFET22によりチョークコイル30の通電状態が断続される。また、第一制御回路21は、MOSFET22に制御信号を与えて、MOSFET22をオンオフさせるものである。このMOSFET22のオンオフ動作により、チョークコイル30で蓄えた磁気エネルギーはコンデンサ24に電気エネルギーとして充電される。 Here, the first end of the choke coil 30 is connected to the positive electrode of the battery 11, and the energized state of the choke coil 30 is interrupted by the MOSFET 22. The first control circuit 21 gives a control signal to the MOSFET 22 to turn the MOSFET 22 on and off. By the on / off operation of the MOSFET 22, the magnetic energy stored in the choke coil 30 is charged in the capacitor 24 as electric energy.
 なお、第一制御回路21は、ECU20から放電開始信号IGtが与えられる期間において、MOSFET22を繰り返してオンオフするように設けられている。 The first control circuit 21 is provided so as to repeatedly turn on and off the MOSFET 22 during a period when the discharge start signal IGt is given from the ECU 20.
 また、ダイオード23は、コンデンサ24に蓄えた電気エネルギーがチョークコイル30側へ逆流するのを防ぐものである。 The diode 23 prevents the electrical energy stored in the capacitor 24 from flowing back to the choke coil 30 side.
 MOSFET25はオンオフ動作により、一次コイル17Bへのコンデンサ24に蓄えられた電圧の印加と切断を行う。このとき、MOSFET25はオン動作を行う事で、コンデンサ24に蓄えられた電気エネルギーを一次コイル17Bに投入する。これにより、本実施形態の内燃機関用点火装置10では、点火プラグ12の電極間に、パワートランジスタ13のオンオフにより発生した放電電流と同一方向の電流が重畳加算され、放電開始に続けて放電が継続される。なお、MOSFET25は、第二制御回路26から与えられる制御信号によりオンオフされるものである。 The MOSFET 25 applies and disconnects the voltage stored in the capacitor 24 to the primary coil 17B by an on / off operation. At this time, the MOSFET 25 is turned on, and the electric energy stored in the capacitor 24 is input to the primary coil 17B. As a result, in the internal combustion engine ignition device 10 of the present embodiment, a current in the same direction as the discharge current generated by turning on and off the power transistor 13 is superimposed between the electrodes of the spark plug 12, and the discharge is started following the start of the discharge. Will continue. The MOSFET 25 is turned on / off by a control signal supplied from the second control circuit 26.
 第二制御回路26は、ECU20から放電継続信号IGwが与えられる期間において、制御信号のハイ/ローを繰り返し切り替えて出力するものである。ここで、放電継続信号IGwは、放電を継続する期間を指令する信号である。より具体的には、第二制御回路26によりMOSFET25にオンオフを繰り返させて、昇圧回路31から一次コイル17Bへと印加される電圧の継続期間を指令する信号である。 The second control circuit 26 repeatedly switches the control signal between high and low during the period when the discharge continuation signal IGw is given from the ECU 20 and outputs the control signal. Here, the discharge continuation signal IGw is a signal for instructing a period for continuing the discharge. More specifically, the second control circuit 26 is a signal for instructing the duration of the voltage applied from the booster circuit 31 to the primary coil 17B by causing the MOSFET 25 to be repeatedly turned on and off.
 そして、MOSFET25は、ECU20から放電継続信号IGwが与えられる間、オンオフを繰り返して昇圧回路31の電気エネルギーを一次コイル17Bに逐次投入する。これにより、本実施形態の内燃機関用点火装置10では、放電が継続される。なお、MOSFET25は、パワートランジスタ、サイリスタ等で代用可能である。 Then, the MOSFET 25 repeatedly turns on and off while the discharge continuation signal IGw is given from the ECU 20, and sequentially supplies the electric energy of the booster circuit 31 to the primary coil 17B. Thereby, in the internal combustion engine ignition device 10 of the present embodiment, the discharge is continued. The MOSFET 25 can be replaced with a power transistor, a thyristor, or the like.
 ダイオード14A,14Bは、それぞれ、点火プラグ12の中心電極と二次コイル16A,16Bとの間に設けられ、放電開始とその後の放電継続時とで二次電流の方向を同一の方向としている。より具体的には、ダイオード14A,14Bは、パワートランジスタ13のオンオフにより二次コイル16Aに流れる二次電流と、MOSFET25のオンオフにより二次コイル16Bに流れる二次電流が同一の方向となるように設けられる。 The diodes 14A and 14B are provided between the center electrode of the spark plug 12 and the secondary coils 16A and 16B, respectively, and the direction of the secondary current is the same when the discharge starts and when the discharge continues thereafter. More specifically, the diodes 14A and 14B are configured so that the secondary current flowing through the secondary coil 16A when the power transistor 13 is turned on and off and the secondary current flowing through the secondary coil 16B when the MOSFET 25 is turned on and off are in the same direction. Provided.
 また、ダイオード27は、MOSFET25のソース側に設けられ、一次コイル17Bから昇圧回路31への電流の逆流を阻止するものである。 The diode 27 is provided on the source side of the MOSFET 25, and prevents reverse current flow from the primary coil 17B to the booster circuit 31.
 さらに、ダイオード27と第二点火コイル15Bとの間には、分岐してアースに接続された電流経路が設けられている。その経路にはダイオード28が設置されている。ダイオード28のカソード側は、二次コイル16Bの第二端側に接続され、ダイオード28のアノード側はアースに接続されている。そのため、ダイオード28は、MOSFET25をオンからオフに切り替えたときに還流ダイオードとして動作する。つまり、ダイオード28は、MOSFET25のオフ時に一次コイル17Bにおいて発生する起電力による電流を、一次コイル17B→バッテリ11→アース→ダイオード28→一次コイル17Bの経路で還流させる。 Furthermore, a current path branched and connected to the ground is provided between the diode 27 and the second ignition coil 15B. A diode 28 is installed in the path. The cathode side of the diode 28 is connected to the second end side of the secondary coil 16B, and the anode side of the diode 28 is connected to the ground. Therefore, the diode 28 operates as a freewheeling diode when the MOSFET 25 is switched from on to off. That is, the diode 28 circulates the current caused by the electromotive force generated in the primary coil 17B when the MOSFET 25 is turned off through the path of the primary coil 17B → the battery 11 → the ground → the diode 28 → the primary coil 17B.
 このとき、本実施形態の内燃機関用点火装置10では、二次コイル16Bの第一端とアースとの間に抵抗を設け、電流検出回路29(二次電流検出手段に該当)を接続させている。 At this time, in the internal combustion engine ignition device 10 of the present embodiment, a resistor is provided between the first end of the secondary coil 16B and the ground, and the current detection circuit 29 (corresponding to the secondary current detection means) is connected. Yes.
 以下、図2にプラグホール44の内部に点火プラグ12を装着した内燃機関47に適用する内燃機関用点火装置40を例示し、その構成を説明する。この構成において、第一点火コイル15Aは円筒状の点火コイル(スティックコイル)として形成されている。また、第二点火コイル15Bは矩形状の点火コイル(矩形コイル)として形成されている。 Hereinafter, the internal combustion engine ignition device 40 applied to the internal combustion engine 47 in which the ignition plug 12 is mounted in the plug hole 44 is illustrated in FIG. 2 and the configuration thereof will be described. In this configuration, the first ignition coil 15A is formed as a cylindrical ignition coil (stick coil). The second ignition coil 15B is formed as a rectangular ignition coil (rectangular coil).
 プラグホール44は、内燃機関47(より正確にはシリンダヘッドやヘッドカバー)の外表面に設けた収容凹部46の底面から燃焼室に向けて延在した深い穴状部分である。本実施形態の内燃機関用点火装置40では、このプラグホール44に第一点火コイル15Aを挿入させ、その上部に第二点火コイル15Bを配設させている。ここで、第二点火コイル15Bの耐電圧は、第一点火コイル15Aの耐電圧の1/3に設定されている。 The plug hole 44 is a deep hole-like portion extending from the bottom surface of the housing recess 46 provided on the outer surface of the internal combustion engine 47 (more precisely, the cylinder head or head cover) toward the combustion chamber. In the internal combustion engine ignition device 40 of the present embodiment, the first ignition coil 15A is inserted into the plug hole 44, and the second ignition coil 15B is disposed above the first ignition coil 15A. Here, the withstand voltage of the second ignition coil 15B is set to 1/3 of the withstand voltage of the first ignition coil 15A.
 第一点火コイル15Aは、中心側から外側にセンタコア18と、二次コイル16Aと、一次コイル17Aと、外装鉄心19Aとを備えて構成される。 The first ignition coil 15A includes a center core 18, a secondary coil 16A, a primary coil 17A, and an outer iron core 19A on the outer side from the center side.
 第二点火コイル15Bは、内側から外側へ一次コイル17Bと、二次コイル16Bと、上下に積層した鉄心19Bとが装着される。 The second ignition coil 15B is mounted with a primary coil 17B, a secondary coil 16B, and an iron core 19B stacked vertically from the inside to the outside.
 ここで、第一点火コイル15Aと第二点火コイル15Bは、第二点火コイル15Bの二次側から伸びた配線45が第一点火コイル15Aのセンタコア18に接触している。そして、センタコア18の下端部は、過早着火防止用のダイオード14Bを介して、点火プラグ12の電極に接続される。一方で、第一点火コイル15Aの二次コイル16Aは、ダイオード14Aを介して、点火プラグ12の電極に接続される。 Here, in the first ignition coil 15A and the second ignition coil 15B, the wiring 45 extending from the secondary side of the second ignition coil 15B is in contact with the center core 18 of the first ignition coil 15A. And the lower end part of the center core 18 is connected to the electrode of the ignition plug 12 via the diode 14B for preventing premature ignition. On the other hand, the secondary coil 16A of the first ignition coil 15A is connected to the electrode of the spark plug 12 via the diode 14A.
 両ダイオード14のアノード側は、それぞれキャップ状の高圧端子43に接続され、高圧端子43の下端部には、スプリング端子42の上端部が嵌挿して固定される。また、両ダイオード14は、第一点火コイル15Aの下端部と連結している。さらに、高圧端子43及びスプリング端子42の外側に配設された円筒状の緩衝部材41に、点火プラグ12の陽極と接続されるスプリング端子42の上端部が圧入される。このときスプリング端子42の上端部は、スプリング端子42を押し縮めることにより、高圧端子43及びダイオード14を介して、第一点火コイル15A及び第二点火コイル15Bの各二次コイル16A,16Bと電気的に接続される。なお、円筒状の緩衝部材41は、ゴム材等からなる。 The anode side of both diodes 14 is connected to a cap-shaped high voltage terminal 43, and the upper end of the spring terminal 42 is fitted and fixed to the lower end of the high voltage terminal 43. Both diodes 14 are connected to the lower end of the first ignition coil 15A. Furthermore, the upper end portion of the spring terminal 42 connected to the anode of the spark plug 12 is press-fitted into a cylindrical buffer member 41 disposed outside the high-voltage terminal 43 and the spring terminal 42. At this time, the upper end portion of the spring terminal 42 pushes and contracts the spring terminal 42, so that the secondary coils 16 </ b> A and 16 </ b> B of the first ignition coil 15 </ b> A and the second ignition coil 15 </ b> B can be Electrically connected. The cylindrical buffer member 41 is made of a rubber material or the like.
 次に、図3を参照して本実施形態の内燃機関用点火装置10の動作を説明する。 Next, the operation of the internal combustion engine ignition device 10 according to this embodiment will be described with reference to FIG.
 なお、図3において、「IGt」は放電開始信号IGtの入力状態をハイ/ローで表すものであり、「IGw」は放電継続信号IGwの入力状態をハイ/ローで表すものである。また、「投入スイッチ」は、MOSFET25のオンオフを表し、「I11」、「I12」はそれぞれ一次コイル17A、17Bに流れる一次電流の値、「I2」は二次電流の値を表す。 In FIG. 3, “IGt” represents the input state of the discharge start signal IGt as high / low, and “IGw” represents the input state of the discharge continuation signal IGw as high / low. “On switch” represents ON / OFF of the MOSFET 25, “I11” and “I12” represent primary current values flowing through the primary coils 17A and 17B, respectively, and “I2” represents a secondary current value.
 本実施形態の内燃機関用点火装置10では、放電開始信号IGtがローからハイへ切り替わると(時間t01参照)、放電開始信号IGtがハイの期間において、パワートランジスタ13のオン状態が維持される。これにより、一次コイル17Aに一次電流I11が流れて磁気エネルギーが蓄えられる。また、昇圧回路31に電気エネルギーが蓄えられる。 In the internal combustion engine ignition device 10 of the present embodiment, when the discharge start signal IGt switches from low to high (see time t01), the on state of the power transistor 13 is maintained during the period when the discharge start signal IGt is high. As a result, the primary current I11 flows through the primary coil 17A, and magnetic energy is stored. Further, electric energy is stored in the booster circuit 31.
 やがて、本実施形態の内燃機関用点火装置10では、放電開始信号IGtがハイからローへ切り替わると、パワートランジスタ13がオフされ、一次コイル17Aの通電状態が切断される(時間t02参照)。これにより、一次コイル17Aに蓄えられた磁気エネルギーが電気エネルギーに変換されて、二次コイル16Aに高電圧を発生させ、点火プラグ12において放電が開始される。なお、一次電流I11を切断することにより誘起する二次電流I2は、バッテリ11のプラス電極から流れる電流に対して負の値となる。よって、図3の二次電流I2のグラフでは、負の方向を二次電流I2の増大方向としている。 Eventually, in the internal combustion engine ignition device 10 of this embodiment, when the discharge start signal IGt switches from high to low, the power transistor 13 is turned off and the energized state of the primary coil 17A is cut (see time t02). Thereby, the magnetic energy stored in the primary coil 17A is converted into electric energy, a high voltage is generated in the secondary coil 16A, and discharge is started in the spark plug 12. The secondary current I2 induced by cutting the primary current I11 takes a negative value with respect to the current flowing from the positive electrode of the battery 11. Therefore, in the graph of the secondary current I2 in FIG. 3, the negative direction is the increasing direction of the secondary current I2.
 本実施形態の内燃機関用点火装置10では、点火プラグ12において放電が開始された後、電流検出回路29により検出された二次電流I2が略三角波形状に減衰する。そして、放電継続信号IGwがローからハイへ切り替わるとMOSFET25のオンオフ動作が開始される(時間t03参照)。なお、二次電流I2が予め定められた所定の第二閾値よりも小さくなった場合に、放電継続信号IGwがローからハイへ切り替わる。このとき、第二閾値は、放電を維持するために必要な電流値として定めた限界電流値γより大きな値として設けられる。 In the internal combustion engine ignition device 10 of the present embodiment, after the discharge is started in the spark plug 12, the secondary current I2 detected by the current detection circuit 29 is attenuated into a substantially triangular wave shape. When the discharge continuation signal IGw is switched from low to high, the on / off operation of the MOSFET 25 is started (see time t03). When secondary current I2 becomes smaller than a predetermined second threshold value, discharge continuation signal IGw switches from low to high. At this time, the second threshold value is provided as a value larger than a limit current value γ determined as a current value necessary for maintaining discharge.
 本実施形態の内燃機関用点火装置10では、放電継続信号IGwがローからハイへ切り替わると、放電継続信号IGwがハイの期間中、第二制御回路26によりMOSFET25のオン動作とオフ動作が交互に実行される。このため、昇圧回路31に蓄えられていた電気エネルギーが、一次コイル17Bに順次投入され、一次コイル17Bからバッテリ11のプラス電極に向かって一次電流I12が流れる。より具体的には、MOSFET25がオンされる毎に、二次電流I2の減少を補うために一次電流I12が一次コイル17Bに追加される。その結果、前回、MOSFET25により電圧を印加させた時よりも、一次電流I12はマイナス側に大きくなることが繰り返される(時間t03~t04参照)。そして、一次電流I12が増大する期間において、二次電流I2が増大する。なお、図3では、放電開始時の二次電流I2の大きさが、限界電流値γよりも大きくなっているが、放電を開始することが出来ればそれ以下となっていてもよい。 In the internal combustion engine ignition device 10 of the present embodiment, when the discharge continuation signal IGw switches from low to high, the second control circuit 26 alternately turns on and off the MOSFET 25 during the period when the discharge continuation signal IGw is high. Executed. For this reason, the electrical energy stored in the booster circuit 31 is sequentially input to the primary coil 17B, and the primary current I12 flows from the primary coil 17B toward the positive electrode of the battery 11. More specifically, each time the MOSFET 25 is turned on, the primary current I12 is added to the primary coil 17B in order to compensate for the decrease in the secondary current I2. As a result, the primary current I12 is repeatedly increased to the negative side compared to the previous time when the voltage was applied by the MOSFET 25 (see times t03 to t04). And in the period when the primary current I12 increases, the secondary current I2 increases. In FIG. 3, the magnitude of the secondary current I2 at the start of discharge is larger than the limit current value γ, but it may be less than that if the discharge can be started.
 そして、本実施形態の内燃機関用点火装置10では、一次電流I12が全体的な傾向として大きくなることにより、二次電流I2が所定の範囲内に維持される。二次電流I2が第一閾値より大きくなった際には、MOSFET25が第二制御回路26によりオフ動作が実行される。これにより、一次電流I12の増大が停止される。このとき、第一閾値は、第二閾値より大きな値として設定されている。 And in the ignition device 10 for internal combustion engines of this embodiment, the secondary current I2 is maintained within a predetermined range by increasing the primary current I12 as an overall tendency. When the secondary current I2 becomes larger than the first threshold, the MOSFET 25 is turned off by the second control circuit 26. Thereby, the increase in the primary current I12 is stopped. At this time, the first threshold is set as a value larger than the second threshold.
 このように、本実施形態の内燃機関用点火装置10では、第二制御回路26によりMOSFET25のオンオフ動作を制御し、この制御を繰り返し行う事で放電が継続される。 Thus, in the internal combustion engine ignition device 10 of the present embodiment, the second control circuit 26 controls the on / off operation of the MOSFET 25, and the discharge is continued by repeatedly performing this control.
 上記構成により、本実施形態に係る内燃機関用点火装置10は、以下の効果を奏する。 With the above configuration, the internal combustion engine ignition device 10 according to the present embodiment has the following effects.
 ・本実施形態の内燃機関用点火装置10には、MOSFET25が設けられている。点火プラグ12が放電を開始して以後、その放電を維持し続けられるように第二制御回路26によりMOSFET25のオンオフ動作を制御する。これにより、放電開始させるには30kV以上の高電圧が必要だが、一旦放電が開始されると点火プラグ12の電極間で起こる放電維持電圧は10kV以下に低下する。従ってこの構成により、点火プラグ12が放電を開始して以後の放電維持に必要な電圧は低くてすむため、第二点火コイル15Bの耐電圧設計値を低くすることが可能となる。 The internal combustion engine ignition device 10 of the present embodiment is provided with a MOSFET 25. After the spark plug 12 starts discharging, the second control circuit 26 controls the on / off operation of the MOSFET 25 so that the discharge can be maintained. As a result, a high voltage of 30 kV or more is required to start the discharge, but once the discharge is started, the discharge sustaining voltage generated between the electrodes of the spark plug 12 is reduced to 10 kV or less. Accordingly, with this configuration, the voltage required to maintain the subsequent discharge after the spark plug 12 starts discharging can be reduced, and the withstand voltage design value of the second ignition coil 15B can be lowered.
 ・本実施形態の内燃機関用点火装置10では、ECU20によりパワートランジスタ13を制御し、第一点火コイル15Aの一次コイル17Aに流れる一次電流I11の導通を行わせる。そして導通継続後に一次電流I11を切断することで、点火プラグ12により放電を開始させる。以降は、MOSFET25により、昇圧回路31によって昇圧された電圧を印加させる。これにより、点火プラグ12の電極間に、パワートランジスタ13の制御により発生した放電電流と同一方向の放電電流を流れさせることが可能となる。さらに、MOSFET25と第二点火コイル15Bとの間に、ダイオード28を介してアースに接続させた電流経路を設けることで、MOSFET25により昇圧回路31から第二点火コイル15Bに印加される電圧を切断させる。これにより、アースから第二点火コイル15Bが供給される。この構成により、一次電流I12の極端な減少、ひいては二次電流I2の減少を抑制する事が可能となる。 In the internal combustion engine ignition device 10 of the present embodiment, the ECU 20 controls the power transistor 13 to conduct the primary current I11 flowing through the primary coil 17A of the first ignition coil 15A. Then, after the conduction is continued, the primary current I11 is cut off, whereby the spark plug 12 starts discharging. Thereafter, the voltage boosted by the booster circuit 31 is applied by the MOSFET 25. As a result, a discharge current in the same direction as the discharge current generated by the control of the power transistor 13 can flow between the electrodes of the spark plug 12. Further, by providing a current path connected to the ground via the diode 28 between the MOSFET 25 and the second ignition coil 15B, the voltage applied from the booster circuit 31 to the second ignition coil 15B by the MOSFET 25 is disconnected. . Thereby, the second ignition coil 15B is supplied from the ground. With this configuration, it is possible to suppress an extreme decrease in the primary current I12 and, in turn, a decrease in the secondary current I2.
 ・本実施形態の内燃機関用点火装置10では、MOSFET25により電圧を印加させるたびに、前回、MOSFET25により電圧を印加させた時よりも、オン時間を長くしたり、オフ時間を短くしたりする。これにより、第二点火コイル15Bの一次コイル17Bに流れる一次電流I12を大きくさせる。このため、この一次電流I12に対応した大きさの電圧を二次コイル16Bに発生させることができ、二次電流I2の減少を抑制することが可能となる。 In the internal combustion engine ignition device 10 of the present embodiment, each time the voltage is applied by the MOSFET 25, the on time is increased or the off time is shortened compared to the previous time when the voltage was applied by the MOSFET 25. Thereby, the primary current I12 flowing through the primary coil 17B of the second ignition coil 15B is increased. For this reason, a voltage having a magnitude corresponding to the primary current I12 can be generated in the secondary coil 16B, and a decrease in the secondary current I2 can be suppressed.
 ・本実施形態の内燃機関用点火装置10では、ECU20により、点火プラグ12が放電を開始して以後、第二制御回路26を介してMOSFET25を制御する。これにより、昇圧回路31により昇圧された電圧の印加と切断を繰り返させ、点火プラグ12の放電を維持する。この構成により、点火プラグ12が放電を開始して以後は、その放電を維持するための電圧は小さくて済むため、第二点火コイル15Bの耐電圧設計を小さくすることが可能となる。 In the internal combustion engine ignition device 10 of the present embodiment, the ECU 20 controls the MOSFET 25 via the second control circuit 26 after the spark plug 12 starts discharging. Thereby, application and disconnection of the voltage boosted by the booster circuit 31 are repeated, and the discharge of the spark plug 12 is maintained. With this configuration, after the spark plug 12 starts discharging, the voltage for maintaining the discharge can be small, so that the withstand voltage design of the second ignition coil 15B can be reduced.
 具体的には、放電を開始するため第一点火コイル15Aの耐電圧は30kV以上であるが、放電開始後に動作する第二点火コイル15Bの耐電圧は10kVを満足していればよい。よって、第二点火コイル15Bの耐電圧は第一点火コイル15Aの耐電圧の1/3に設定されている。このため、第二点火コイル15Bが具備する一次コイル17Bと二次コイル16B及びアース体と二次コイル16Bとの絶縁距離を小さくすることが可能となり、第二点火コイル15Bの体格を小さくすることが出来る。 Specifically, the withstand voltage of the first ignition coil 15A is 30 kV or more in order to start the discharge, but the withstand voltage of the second ignition coil 15B that operates after the start of the discharge only needs to satisfy 10 kV. Therefore, the withstand voltage of the second ignition coil 15B is set to 1/3 of the withstand voltage of the first ignition coil 15A. For this reason, it is possible to reduce the insulation distance between the primary coil 17B and the secondary coil 16B and the grounding body and the secondary coil 16B included in the second ignition coil 15B, and to reduce the size of the second ignition coil 15B. I can do it.
 ・本実施形態の内燃機関用点火装置10では、第一点火コイル15Aを内燃機関47に形成されたプラグホール44内に挿入させ、第一点火コイル15Aの上部に第二点火コイル15Bを配設させている。この構成により、2つの点火コイル15A,15Bをコンパクトに収納することが可能となる。 In the internal combustion engine ignition device 10 of the present embodiment, the first ignition coil 15A is inserted into the plug hole 44 formed in the internal combustion engine 47, and the second ignition coil 15B is disposed above the first ignition coil 15A. It is arranged. With this configuration, the two ignition coils 15A and 15B can be accommodated in a compact manner.
 ・本実施形態の内燃機関用点火装置10では、第二点火コイル15Bが具備する二次コイル16Bの出力側が、第一点火コイル15Aが具備するセンタコア18に接続されている。そして、センタコア18の下端部がダイオード14Bを介して点火プラグ12に接続されている。この構成により、点火プラグ12まで配線を延ばす必要がなくなり、構造の簡便化を図ることが可能となる。 In the internal combustion engine ignition device 10 of the present embodiment, the output side of the secondary coil 16B included in the second ignition coil 15B is connected to the center core 18 included in the first ignition coil 15A. And the lower end part of the center core 18 is connected to the spark plug 12 via the diode 14B. With this configuration, it is not necessary to extend the wiring to the spark plug 12, and the structure can be simplified.
 ・本実施形態の内燃機関用点火装置10では、ECU20により、電流検出回路29で検出された二次電流I2が第一閾値より大きくなった場合に、MOSFET25により一次電流I12を切断させる。一方で、電流検出回路29で検出された二次電流I2が第二閾値より小さくなった場合に、MOSFET25により一次電流I12を導通させる。この構成により、第二点火コイル15Bの二次コイル16Bに流れる二次電流I2を、第一閾値と第二閾値の間に収めることが可能となる。さらに、二次電流I2が予期せぬ変化を起こしても、MOSFET25を制御することで、二次電流I2を所望の領域に収めることが出来る。 In the internal combustion engine ignition device 10 of the present embodiment, when the secondary current I2 detected by the current detection circuit 29 is greater than the first threshold by the ECU 20, the primary current I12 is cut off by the MOSFET 25. On the other hand, when the secondary current I2 detected by the current detection circuit 29 becomes smaller than the second threshold value, the primary current I12 is conducted by the MOSFET 25. With this configuration, the secondary current I2 flowing through the secondary coil 16B of the second ignition coil 15B can be kept between the first threshold value and the second threshold value. Furthermore, even if the secondary current I2 changes unexpectedly, the secondary current I2 can be stored in a desired region by controlling the MOSFET 25.
 (第2の実施形態)
 以下、第2の実施形態について、先の第1の実施形態との相違点を中心に図面を参照しつつ説明する。
(Second Embodiment)
Hereinafter, the second embodiment will be described with reference to the drawings with a focus on differences from the first embodiment.
 第1の実施形態では、二次コイル16Bの第一端とアースの間に抵抗を設けて電流検出回路29を接続させていた。本実施形態では、図4に示されているようにアースとパワートランジスタ13の間に抵抗を設けて電流検出回路51(一次電流検出手段に該当)を接続させている。また、アースとバッテリ11の間に抵抗を設けて電流検出回路51を接続させている。 In the first embodiment, the current detection circuit 29 is connected by providing a resistor between the first end of the secondary coil 16B and the ground. In this embodiment, as shown in FIG. 4, a resistor is provided between the ground and the power transistor 13 to connect a current detection circuit 51 (corresponding to primary current detection means). Further, a current detection circuit 51 is connected by providing a resistor between the ground and the battery 11.
 図5を参照して本実施形態の内燃機関用点火装置50の動作を説明する。 The operation of the internal combustion engine ignition device 50 according to this embodiment will be described with reference to FIG.
 本実施形態の内燃機関用点火装置50では、放電開始信号IGtがローからハイへ切り替わり(時間t01参照)、放電開始信号IGtがハイの期間中に、パワートランジスタ13のオン状態を維持させる。これにより、一次コイル17Aに一次電流I11が流れて磁気エネルギーが蓄えられる。また、昇圧回路31に電気エネルギーが蓄えられる。 In the ignition device 50 for an internal combustion engine of the present embodiment, the discharge start signal IGt is switched from low to high (see time t01), and the power transistor 13 is kept on during the period when the discharge start signal IGt is high. As a result, the primary current I11 flows through the primary coil 17A, and magnetic energy is stored. Further, electric energy is stored in the booster circuit 31.
 本実施形態の内燃機関用点火装置50では、一次コイル17Aに一次電流I11を流し始めてから第一所定時間が経過すると、放電開始信号IGtがハイからローへ切り替わる。その結果、パワートランジスタ13がオフされ、一次コイル17Aの通電状態が切断される(時間t02参照)。これにより、一次コイル17Aに蓄えられた磁気エネルギーが電気エネルギーに変換されて、二次コイル16Aに高電圧を発生させ、点火プラグ12において放電が開始される。このとき、第一所定時間は、一次電流I11が点火プラグ12に放電を開始させる程度に大きく、且つパワートランジスタ13を損傷させるおそれがない値にまで上昇する時間として設定される。 In the internal combustion engine ignition device 50 of the present embodiment, the discharge start signal IGt is switched from high to low when a first predetermined time has elapsed after the primary current I11 starts to flow through the primary coil 17A. As a result, the power transistor 13 is turned off, and the energized state of the primary coil 17A is disconnected (see time t02). Thereby, the magnetic energy stored in the primary coil 17A is converted into electric energy, a high voltage is generated in the secondary coil 16A, and discharge is started in the spark plug 12. At this time, the first predetermined time is set as a time during which the primary current I11 increases to a value that is large enough to cause the spark plug 12 to start discharging and does not damage the power transistor 13.
 本実施形態の内燃機関用点火装置50では、点火プラグ12の放電が開始してから第二所定時間の経過後に、ECU20により送信される放電継続信号IGwがローからハイへ切り替わる(時間t03参照)。これにより、放電継続信号IGwを受信した第二制御回路26によりMOSFET25がオン動作を実行し、一次コイル17Bに一次電流I12が流される。このとき、第二制御回路26は、電流検出回路51により検出された一次電流I12の大きさを監視している。内燃機関用点火装置50では、MOSFET25をオン(電圧の印加を開始)してから一次電流I12の大きさが第一所定量だけ大きくなったら、第二制御回路26によりMOSFET25をオフにさせ、電圧を切断させる。そして、MOSFET25をオフ(電圧の切断を開始)してから一次電流I12が第二所定量だけ小さくなったら、再度MOSFET25をオンにさせ、電圧を再度印加させる。この第二制御回路26により、上述した制御を繰り返し行うことで、点火プラグ12の放電は継続される(時間t03~t04参照)。このとき、第一所定量と第二所定量は、二次電流I2の極端な増大や減少を抑制するための値であり、具体的には第一所定量は第二所定量よりも大きく設定されている。 In the internal combustion engine ignition device 50 of the present embodiment, the discharge continuation signal IGw transmitted from the ECU 20 switches from low to high after the second predetermined time has elapsed since the discharge of the spark plug 12 started (see time t03). . Accordingly, the MOSFET 25 is turned on by the second control circuit 26 that has received the discharge continuation signal IGw, and the primary current I12 is caused to flow through the primary coil 17B. At this time, the second control circuit 26 monitors the magnitude of the primary current I12 detected by the current detection circuit 51. In the internal combustion engine ignition device 50, when the magnitude of the primary current I12 increases by the first predetermined amount after the MOSFET 25 is turned on (voltage application is started), the second control circuit 26 turns off the MOSFET 25 to turn off the voltage. To disconnect. When the primary current I12 decreases by a second predetermined amount after the MOSFET 25 is turned off (voltage cutting is started), the MOSFET 25 is turned on again and the voltage is applied again. By repeating the above-described control by the second control circuit 26, the spark plug 12 continues to be discharged (see times t03 to t04). At this time, the first predetermined amount and the second predetermined amount are values for suppressing an extreme increase or decrease in the secondary current I2, and specifically, the first predetermined amount is set larger than the second predetermined amount. Has been.
 上記構成により、本実施形態に係る内燃機関用点火装置50は、以下の効果を奏する。 With the above configuration, the internal combustion engine ignition device 50 according to the present embodiment has the following effects.
 ・本実施形態の内燃機関用点火装置50では、アースとパワートランジスタ13の間に抵抗を設けて電流検出回路51を接続させている。また、アースとバッテリ11の間に抵抗を設けて電流検出回路51を接続させている。この構成により、一次電流I11と一次電流I12の監視をすることができ、両者の一次電流I11,I12を精密に制御することが可能となる。 In the internal combustion engine ignition device 50 of the present embodiment, a current detection circuit 51 is connected by providing a resistor between the ground and the power transistor 13. Further, a current detection circuit 51 is connected by providing a resistor between the ground and the battery 11. With this configuration, the primary current I11 and the primary current I12 can be monitored, and the primary currents I11 and I12 can be precisely controlled.
 ・本実施形態の内燃機関用点火装置50では、第二点火コイル15Bが具備している一次コイル17Bに流れる一次電流I12を検出する電流検出回路51を備えている。第二制御回路26は、この電流検出回路51により検出された一次電流I12の大きさを常時監視することが出来る。第二制御回路26は、電流検出回路51により検出された一次電流I12が、一次コイル17Bへ電圧の印加を開始してから第一所定量だけ大きくなった場合に、MOSFET25により一次電流I12を切断させる。そして、一次コイル17Bへの電圧の切断を開始してから一次電流I12が第二所定量だけ小さくなった場合に、MOSFET25により一次電流I12を再度導通させる。内燃機関用点火装置50は、この制御を繰り返すことで、第二点火コイル15Bの二次コイル16Bに流れる二次電流I2の極端な増大、減少を抑制することが出来る。 The internal combustion engine ignition device 50 of the present embodiment includes a current detection circuit 51 that detects a primary current I12 flowing through the primary coil 17B included in the second ignition coil 15B. The second control circuit 26 can constantly monitor the magnitude of the primary current I12 detected by the current detection circuit 51. The second control circuit 26 cuts off the primary current I12 by the MOSFET 25 when the primary current I12 detected by the current detection circuit 51 becomes larger by a first predetermined amount after starting to apply voltage to the primary coil 17B. Let Then, when the primary current I12 is reduced by a second predetermined amount after starting to cut off the voltage to the primary coil 17B, the primary current I12 is again conducted by the MOSFET 25. By repeating this control, the internal combustion engine ignition device 50 can suppress an extreme increase or decrease in the secondary current I2 flowing through the secondary coil 16B of the second ignition coil 15B.
 なお、本実施形態は、以下のように変更して実施してもよい。 In addition, you may implement this embodiment as follows.
 ・図4に示すように、本実施形態では、アースとバッテリ11の間に抵抗を設けて電流検出回路51を接続させている。一次電流I12の電流検出方法はこれ以外の方法でもよい。例えばダイオード28とアースの間に抵抗を設けて電流検出回路51を接続させてもよい。又は、コンデンサ24とアースの間に抵抗を設けて電流検出回路51を接続させてもよい。 As shown in FIG. 4, in this embodiment, a resistor is provided between the ground and the battery 11 to connect the current detection circuit 51. The current detection method for the primary current I12 may be other methods. For example, the current detection circuit 51 may be connected by providing a resistor between the diode 28 and the ground. Alternatively, the current detection circuit 51 may be connected by providing a resistor between the capacitor 24 and the ground.
 また、上記各実施形態は、以下のように変更して実施してもよい。 Also, the above embodiments may be implemented with the following modifications.
 ・上記各実施形態では、第二点火コイル15Bの二次側から伸びた配線45が第一点火コイル15Aのセンタコア18に接触させている。そして、センタコア18の下端部は、過早着火防止用のダイオード14Aを介して、点火プラグ12の電極に接続される。この構成については、図6に示すように、第二点火コイル15Bの二次側から延びる配線45が、ケース48と外装鉄心19Aとの間に設けられた配線61と接続するようにしても良い。この配線61は、ダイオード14Bを介して、点火プラグ12に接続される。 In the above embodiments, the wiring 45 extending from the secondary side of the second ignition coil 15B is in contact with the center core 18 of the first ignition coil 15A. And the lower end part of the center core 18 is connected to the electrode of the ignition plug 12 via the diode 14A for preventing premature ignition. With regard to this configuration, as shown in FIG. 6, the wiring 45 extending from the secondary side of the second ignition coil 15B may be connected to the wiring 61 provided between the case 48 and the outer iron core 19A. . The wiring 61 is connected to the spark plug 12 via the diode 14B.
 ・上記第1の実施形態では、二次電流I2を限界電流値γよりも大きい状態で一定期間維持させるために、二次電流I2に2つの閾値を設けてその範囲に収める制御を行なった。上記第2の実施形態では、一次電流I12を監視し、一次電流I12が予め定めていた所定値だけ増大又は減少した場合にMOSFET25のオンオフ動作を行い、二次電流I2の極端な増大又は減少を抑制するフィードバック制御を行なった。この制御については、予め設定した時間(所定の周期)に従って、パワートランジスタ13やMOSFET25のオンオフ動作を制御してもよい。このように制御することで、上記各実施形態では、電流検出回路29,51を不要とし、点火装置の簡略化を図ることが出来る。また、このとき、点火プラグ12の放電維持を行う際に、MOSFET25をオンする時間は、オフする時間よりも長く設定されている。これにより、上記各実施形態では、MOSFET25をオフした際に生じる一次電流I12の減少分を、MOSFET25をオンした期間中に増加させることができ、結果的に二次電流I2の減少を抑制する事が可能となる。 In the first embodiment, in order to maintain the secondary current I2 in a state larger than the limit current value γ for a certain period, the secondary current I2 is provided with two thresholds and controlled to fall within the range. In the second embodiment, the primary current I12 is monitored, and when the primary current I12 increases or decreases by a predetermined value, the MOSFET 25 is turned on / off, and the secondary current I2 is extremely increased or decreased. Suppressed feedback control was performed. About this control, you may control ON / OFF operation | movement of the power transistor 13 or MOSFET25 according to preset time (predetermined period). By controlling in this way, in each said embodiment, the electric current detection circuits 29 and 51 are unnecessary, and simplification of an ignition device can be aimed at. At this time, when maintaining the discharge of the spark plug 12, the time for turning on the MOSFET 25 is set longer than the time for turning it off. Thus, in each of the above embodiments, the decrease in the primary current I12 that occurs when the MOSFET 25 is turned off can be increased during the period when the MOSFET 25 is turned on, and as a result, the decrease in the secondary current I2 can be suppressed. Is possible.
 ・上記各実施形態では、第一点火コイル15Aをスティックコイル、第二点火コイル15Bを矩形コイルと定めたが、形状はこれらに限らない。第一点火コイル15Aを矩形コイルとし、第二点火コイル15Bをスティックコイルとしてもよい。他にも、2つの矩形コイルを、それぞれ第一点火コイル15Aと第二点火コイル15Bに適用してもよいし、2つのスティックコイルを、それぞれ第一点火コイル15Aと第二点火コイル15Bに適用してもよい。これらの場合であっても、点火プラグ12が放電を開始して以後に、その放電を維持するための電圧が印加される点火コイルの耐電圧を小さく設計することができる。 In the above embodiments, the first ignition coil 15A is defined as a stick coil and the second ignition coil 15B is defined as a rectangular coil, but the shape is not limited thereto. The first ignition coil 15A may be a rectangular coil, and the second ignition coil 15B may be a stick coil. In addition, two rectangular coils may be applied to the first ignition coil 15A and the second ignition coil 15B, respectively, and two stick coils may be used as the first ignition coil 15A and the second ignition coil 15B, respectively. You may apply to. Even in these cases, the withstand voltage of the ignition coil to which a voltage for maintaining the discharge is applied after the ignition plug 12 starts discharging can be designed to be small.
 ・上記各実施形態では、第二点火コイル15Bの耐電圧を第一点火コイル15Aの耐電圧の1/3と設定しているが、これに限らない。点火プラグ12の放電を維持できるなら、第二点火コイル15Bの耐電圧は第一点火コイル15Aの1/3以下であってもよいし、それ以上であってもよい。 In the above embodiments, the withstand voltage of the second ignition coil 15B is set to 1/3 of the withstand voltage of the first ignition coil 15A, but the present invention is not limited to this. If the discharge of the spark plug 12 can be maintained, the withstand voltage of the second ignition coil 15B may be 1/3 or less of the first ignition coil 15A, or may be more than that.
 11…バッテリ、13…パワートランジスタ、15A…スティックコイル、15B…矩形コイル、20…ECU、25…MOSFET、31…昇圧回路、47…内燃機関。 DESCRIPTION OF SYMBOLS 11 ... Battery, 13 ... Power transistor, 15A ... Stick coil, 15B ... Rectangular coil, 20 ... ECU, 25 ... MOSFET, 31 ... Booster circuit, 47 ... Internal combustion engine.

Claims (8)

  1.  内燃機関(47)の燃焼室内の可燃混合気に点火するための放電を実行する点火プラグ(12)と、
     一次コイル(17A,17B)及び二次コイル(16A,16B)を具備し、前記二次コイルにより前記点火プラグに電圧を印加する第一点火コイル(15A)及び第二点火コイル(15B)と、
     前記第一点火コイルが具備する前記一次コイルに所定の電圧を印加する電圧印加手段(11)と、
     前記電圧印加手段により供給される電圧を昇圧させる電圧昇圧手段(31)と、
     前記第一点火コイルが具備する前記一次コイルへ流れる一次電流の導通と切断を行う第一スイッチング素子(13)と、
     前記第二点火コイルが具備する前記一次コイルへ、前記電圧昇圧手段により昇圧された電圧の印加を行う第二スイッチング素子(25)と、
     前記第一スイッチング素子を制御することで、前記点火プラグにより前記放電を開始させる放電開始手段(20)と、
     前記放電開始手段によって前記点火プラグにより前記放電を開始させた後、前記放電が維持されるように、前記第二スイッチング素子による前記電圧昇圧手段により昇圧された電圧の印加をさせる放電維持手段(20、26)と、
    を備える内燃機関用点火装置。
    A spark plug (12) for performing a discharge for igniting the combustible air-fuel mixture in the combustion chamber of the internal combustion engine (47);
    A first ignition coil (15A) and a second ignition coil (15B), each having a primary coil (17A, 17B) and a secondary coil (16A, 16B), for applying a voltage to the spark plug by the secondary coil; ,
    Voltage application means (11) for applying a predetermined voltage to the primary coil of the first ignition coil;
    Voltage boosting means (31) for boosting the voltage supplied by the voltage applying means;
    A first switching element (13) for conducting and disconnecting a primary current flowing to the primary coil of the first ignition coil;
    A second switching element (25) for applying a voltage boosted by the voltage boosting means to the primary coil of the second ignition coil;
    A discharge start means (20) for starting the discharge by the spark plug by controlling the first switching element;
    Discharge maintaining means (20) for applying a voltage boosted by the voltage boosting means by the second switching element so that the discharge is maintained after the discharge is started by the spark plug by the discharge starting means. 26)
    An internal combustion engine ignition device.
  2.  前記第二スイッチング素子と前記第二点火コイルとの間にダイオード(28)を介してアースに接続させた電流経路を備え、
     前記放電開始手段により、前記第一スイッチング素子を制御し、前記第一点火コイルの前記一次コイルに流れる前記一次電流の導通を行わせ、導通継続後に前記一次電流を切断して前記点火プラグの前記放電を開始させ、その後に、前記放電維持手段により、前記第二スイッチング素子を制御し、前記電圧昇圧手段により昇圧された電圧を印加させることで、前記点火プラグの電極間に、前記第一スイッチング素子の制御により発生した放電電流と同一方向の放電電流を流れさせ、さらに、前記電圧昇圧手段により昇圧された電圧を切断させることで、前記電流経路を通じて前記アースから前記第二点火コイルの前記一次コイルへ電流を供給させる請求項1に記載の内燃機関用点火装置。
    A current path connected to ground via a diode (28) between the second switching element and the second ignition coil;
    The first switching element is controlled by the discharge start means, the primary current flowing through the primary coil of the first ignition coil is conducted, the primary current is disconnected after the conduction is continued, and the ignition plug The discharge is started, and then the second switching element is controlled by the discharge maintaining unit, and the voltage boosted by the voltage boosting unit is applied, so that the first plug is interposed between the electrodes of the spark plug. By causing a discharge current in the same direction as the discharge current generated by the control of the switching element to flow, and further disconnecting the voltage boosted by the voltage boosting means, the current of the second ignition coil from the ground through the current path The ignition device for an internal combustion engine according to claim 1, wherein a current is supplied to the primary coil.
  3.  前記第二スイッチング素子により、前記電圧昇圧手段により昇圧された電圧を印加させるたびに、前回に前記第二スイッチング素子により、前記電圧昇圧手段により昇圧された電圧を印加させた時よりも、前記第二点火コイルの前記一次コイルに流れる前記一次電流を大きくさせる請求項1又は2に記載の内燃機関用点火装置。 Each time the voltage boosted by the voltage boosting means is applied by the second switching element, the second switching element is more than the first time the voltage boosted by the voltage boosting means is applied by the second switching element. The ignition device for an internal combustion engine according to claim 1 or 2, wherein the primary current flowing through the primary coil of a secondary ignition coil is increased.
  4.  前記第二点火コイルの耐電圧は、前記第一点火コイルの耐電圧の1/3以下に設定されている請求項1乃至3のいずれか1項に記載の内燃機関用点火装置。 The internal combustion engine ignition device according to any one of claims 1 to 3, wherein a withstand voltage of the second ignition coil is set to 1/3 or less of a withstand voltage of the first ignition coil.
  5.  前記第一点火コイルを円筒状の点火コイルとし、前記第二点火コイルを矩形状の点火コイルとし、
     前記円筒状の点火コイルを前記内燃機関に形成されたプラグホール(44)内に挿入させ、前記円筒状の点火コイルの上部に前記矩形状の点火コイルを配設させている請求項1乃至4のいずれか1項に記載の内燃機関用点火装置。
    The first ignition coil is a cylindrical ignition coil, the second ignition coil is a rectangular ignition coil,
    The cylindrical ignition coil is inserted into a plug hole (44) formed in the internal combustion engine, and the rectangular ignition coil is disposed above the cylindrical ignition coil. The ignition device for internal combustion engines of any one of these.
  6.  前記第二点火コイルの二次コイル(16B)の出力側は、前記第一点火コイルのセンタコア(18)に接続され、前記センタコアの下端部がダイオード(14B)を介して前記点火プラグに接続されている請求項1乃至5のいずれか1項に記載の内燃機関用点火装置。 The output side of the secondary coil (16B) of the second ignition coil is connected to the center core (18) of the first ignition coil, and the lower end of the center core is connected to the spark plug via a diode (14B). The internal combustion engine ignition device according to any one of claims 1 to 5.
  7.  前記第二点火コイルの二次コイルに流れる二次電流の大きさを検出する二次電流検出手段(29)を備え、
     前記放電維持手段は、前記二次電流検出手段により検出された前記二次電流の大きさが第一閾値よりも大きくなった場合に、前記第二スイッチング素子により、前記電圧昇圧手段により昇圧された電圧を切断させ、前記二次電流検出手段により検出された前記二次電流の大きさが前記第一閾値よりも小さい第二閾値よりも小さくなった場合に、前記第二スイッチング素子により、前記電圧昇圧手段により昇圧された電圧を印加させる請求項1乃至6のいずれか1項に記載の内燃機関用点火装置。
    Secondary current detection means (29) for detecting the magnitude of the secondary current flowing in the secondary coil of the second ignition coil;
    The discharge maintaining means is boosted by the voltage boosting means by the second switching element when the magnitude of the secondary current detected by the secondary current detecting means is larger than a first threshold value. When the voltage is cut and the magnitude of the secondary current detected by the secondary current detection means is smaller than a second threshold value smaller than the first threshold value, the second switching element causes the voltage The ignition device for an internal combustion engine according to any one of claims 1 to 6, wherein a voltage boosted by a boosting means is applied.
  8.  前記第二点火コイルの前記一次コイルに流れる前記一次電流の大きさを検出する一次電流検出手段(51)を備え、
     前記放電維持手段は、前記一次電流検出手段により検出された前記一次電流の大きさを監視し、前記第二スイッチング素子による前記電圧昇圧手段により昇圧された電圧の印加を開始してから前記一次電流が第一所定量だけ大きくなった場合に、前記第二スイッチング素子により、前記電圧昇圧手段により昇圧された電圧を切断させ、前記第二スイッチング素子による前記電圧昇圧手段により昇圧された電圧の切断を開始してから前記一次電流が第二所定量だけ小さくなった場合に、前記第二スイッチング素子により、前記電圧昇圧手段により昇圧された電圧を印加させる請求項1乃至6のいずれか1項に記載の内燃機関用点火装置。
    Primary current detection means (51) for detecting the magnitude of the primary current flowing through the primary coil of the second ignition coil;
    The discharge maintaining means monitors the magnitude of the primary current detected by the primary current detection means, and starts applying the voltage boosted by the voltage boosting means by the second switching element, and then the primary current Is increased by the first predetermined amount, the second switching element causes the voltage boosted by the voltage boosting means to be disconnected, and the second switching element disconnects the voltage boosted by the voltage boosting means. The voltage boosted by the voltage boosting means is applied by the second switching element when the primary current is reduced by a second predetermined amount from the start. Ignition device for internal combustion engine.
PCT/JP2015/074016 2014-09-02 2015-08-26 Ignition device for internal combustion engine WO2016035639A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/508,222 US10113526B2 (en) 2014-09-02 2015-08-26 Ignition apparatus for internal combustion engine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014177643 2014-09-02
JP2014-177643 2014-09-02
JP2015096216A JP6606856B2 (en) 2014-09-02 2015-05-11 Ignition device for internal combustion engine
JP2015-096216 2015-05-11

Publications (1)

Publication Number Publication Date
WO2016035639A1 true WO2016035639A1 (en) 2016-03-10

Family

ID=55439704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074016 WO2016035639A1 (en) 2014-09-02 2015-08-26 Ignition device for internal combustion engine

Country Status (1)

Country Link
WO (1) WO2016035639A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016181971A1 (en) * 2015-05-11 2016-11-17 株式会社デンソー Internal-combustion engine ignition device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6085250A (en) * 1983-10-14 1985-05-14 Hitachi Ltd Lap discharge type igniter
JP2000199470A (en) * 1998-12-28 2000-07-18 Nissan Motor Co Ltd Ignition device of internal combustion engine
JP2012041912A (en) * 2010-07-22 2012-03-01 Diamond Electric Mfg Co Ltd Internal combustion engine control system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6085250A (en) * 1983-10-14 1985-05-14 Hitachi Ltd Lap discharge type igniter
JP2000199470A (en) * 1998-12-28 2000-07-18 Nissan Motor Co Ltd Ignition device of internal combustion engine
JP2012041912A (en) * 2010-07-22 2012-03-01 Diamond Electric Mfg Co Ltd Internal combustion engine control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016181971A1 (en) * 2015-05-11 2016-11-17 株式会社デンソー Internal-combustion engine ignition device

Similar Documents

Publication Publication Date Title
JP6606856B2 (en) Ignition device for internal combustion engine
JP6375452B2 (en) Ignition device for internal combustion engine and ignition control method for internal combustion engine ignition device
WO2016181971A1 (en) Internal-combustion engine ignition device
KR20180129853A (en) Method and apparatus for controlling an ignition system
JP5897099B1 (en) Ignition device
JP6820080B2 (en) Methods and equipment to control the ignition system
JP2018084209A (en) Ignition device for internal combustion engine
JP6640372B2 (en) Ignition device for internal combustion engine
JP6773004B2 (en) Ignition system for internal combustion engine
WO2016035639A1 (en) Ignition device for internal combustion engine
JP6398601B2 (en) Ignition device for internal combustion engine
WO2018229883A1 (en) Internal combustion engine ignition device
JP2017160879A (en) High-frequency discharge ignition device
US6782880B2 (en) Ignition system and method for operating an ignition system
CN113490791B (en) Ignition device for internal combustion engine
US9212645B2 (en) Internal combustion engine ignition device
JP5900384B2 (en) Ignition device
JP6515643B2 (en) Ignition control device for internal combustion engine
WO2022064645A1 (en) Ignition device for internal combustion engine
JP5900383B2 (en) Ignition device
JP2019143507A (en) Ignition device for internal combustion engine
CZ20023503A3 (en) Filling device for internal combustion engine
JP6214118B2 (en) Ignition device for internal combustion engine
JP2019157856A (en) System and method for use in boosted non-linear ignition coil
US9793688B2 (en) Sparkplug having variable spark gap and ignition device for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15508222

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15838770

Country of ref document: EP

Kind code of ref document: A1