WO2018228559A1 - 充电装置及充电方法 - Google Patents

充电装置及充电方法 Download PDF

Info

Publication number
WO2018228559A1
WO2018228559A1 PCT/CN2018/091631 CN2018091631W WO2018228559A1 WO 2018228559 A1 WO2018228559 A1 WO 2018228559A1 CN 2018091631 W CN2018091631 W CN 2018091631W WO 2018228559 A1 WO2018228559 A1 WO 2018228559A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
charging
temperature
current
charging current
Prior art date
Application number
PCT/CN2018/091631
Other languages
English (en)
French (fr)
Inventor
邓强
陈明明
邵校
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Priority to EP18818683.7A priority Critical patent/EP3641046B1/en
Priority to US16/622,595 priority patent/US11522381B2/en
Priority to CN201880013385.1A priority patent/CN110383572B/zh
Publication of WO2018228559A1 publication Critical patent/WO2018228559A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/247Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for portable devices, e.g. mobile phones, computers, hand tools or pacemakers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of battery charging technology, and in particular, to a charging device and a charging method for charging a battery pack.
  • the existing battery pack for supplying electric power to the electric tool includes a constant current charging phase and a constant voltage charging phase, wherein in the constant current charging phase, a fixed current is used to charge the battery pack, and during charging, the temperature of the battery pack is charged. Risingly, when the limit value of over-temperature protection is reached, the battery pack stops charging. When the temperature of the battery pack drops below the limit value of the over-temperature protection, the battery pack restarts charging. When the voltage of the battery pack reaches the voltage threshold, The constant voltage charging is started. During the charging process, the temperature of the battery pack is raised several times to reach the limit value of the over temperature protection, and the battery pack stops charging and waits for the temperature to fall back, so that the charging time of the battery pack becomes longer and the charging efficiency is lowered.
  • the prior art adopts parallel charging charging logic, and two control circuits respectively control charging of the first battery pack and charging of the second battery pack, and the two charging circuits do not interfere with each other, and the scheme is simultaneously
  • the first battery pack and the second battery pack are charged, and each battery pack is continuously charged with a respective charging current during the charging process, which may cause the battery pack temperature to be too high to reach the over-temperature protection condition, and prolong the charging time of the battery pack, so that the battery The charging efficiency of the package is reduced.
  • the problem to be solved by the present invention is to provide a charging device and a charging method, which can shorten the charging time of parallel charging of a plurality of batteries, and improve charging efficiency.
  • a charging device for charging a battery pack the battery pack being detachably mounted on a power tool for supplying power to the power tool, the charging device comprising:
  • a parameter detecting unit configured to detect a parameter related to a charging current of the battery pack, the parameter including a temperature of the battery pack;
  • control unit configured to adjust a charging current of the battery pack according to an output of the parameter detecting unit, to prevent the temperature of the battery pack from reaching a first preset temperature, wherein when the temperature of the battery pack reaches a first preset temperature, the battery pack enters Temperature protection status.
  • the parameter detecting unit is further configured to detect a voltage of the battery pack
  • the control unit is configured to adjust a charging current of the battery pack according to a temperature and a voltage of the battery pack output by the parameter detecting unit, to prevent the temperature of the battery pack from reaching the first A preset temperature.
  • the parameter detecting unit is further configured to detect a temperature of the environment, and the control unit is configured to adjust a charging current of the battery pack according to a temperature, a voltage, and an ambient temperature of the battery pack output by the parameter detecting unit, to prevent a temperature of the battery pack.
  • the first preset temperature is reached.
  • the control unit adjusts the charging current of the battery pack to increase, so that the temperature of the battery pack is not lower than the second preset temperature.
  • control unit adjusts the value of the charging current of the battery pack by adjusting the duty ratio.
  • the charging device comprises a first charging interface and a second charging interface
  • the battery package comprises a first battery package and a second battery package, wherein the first battery package and the second battery package are respectively connected to the first charging interface and the first The two charging interfaces are electrically connected
  • the control unit controls the charging current to alternately charge the first battery pack and the second battery pack
  • the parameter detecting unit respectively detects parameters of the first battery pack and the second battery pack
  • the control unit Adjusting the charging current of the first battery pack and the second battery pack during charging according to the output of the parameter detecting unit, preventing the temperatures of the first battery pack and the second battery pack from reaching the first preset temperature.
  • the manner of adjusting the charging current of the first battery pack and the second battery pack includes adjusting the values of the charging currents of the first battery pack and the second battery pack and adjusting each of the first battery pack and the second battery pack during the alternate charging process. At least one of the charging times of the secondary charging.
  • the charging device further includes a comparison module, configured to compare whether a difference between the parameters of the first battery pack and the second battery pack is greater than a preset value, and if yes, the control unit controls charging of the battery pack with a large parameter.
  • the value of the current is reduced and/or the charging time per charge is reduced in alternating charging.
  • control unit comprises a single controller, and the single controller respectively connects the first battery pack and the second battery pack, and controls the first battery pack and the second battery pack to be alternately charged.
  • the charging process of the charging device to the first battery pack and the second battery pack includes a first charging phase and a second charging phase, wherein the charging device outputs a charging current greater than the first charging phase.
  • the value of the charging current of the two-stage output the charging device controls the charging current to alternately charge the first battery pack and the second battery pack during the first charging phase, and in the second charging phase, controls the charging current while giving the first battery pack And the second battery pack is charged.
  • the method further includes a storage module, configured to store a correspondence table between the parameter and the charging current, and the control module controls the charging current of the battery pack according to the correspondence table.
  • a storage module configured to store a correspondence table between the parameter and the charging current
  • the control module controls the charging current of the battery pack according to the correspondence table.
  • Detecting parameters related to a charging current of the battery pack the parameters including a temperature of the battery pack
  • the charging current of the battery pack is adjusted according to the detected parameter to prevent the temperature of the battery pack from reaching a first preset temperature, wherein when the temperature of the battery pack reaches the first preset temperature, the battery pack enters an over-temperature protection state.
  • the parameter further includes a voltage of the battery pack
  • the step of adjusting the charging current of the battery pack according to the detected parameter to prevent the temperature of the battery pack from reaching the first preset temperature comprises:
  • the charging current of the battery pack is adjusted according to the detected temperature and voltage of the battery pack to prevent the temperature of the battery pack from reaching the first preset temperature.
  • the parameter further includes a temperature of the environment
  • the step of adjusting the charging current of the battery pack according to the detected parameter to prevent the temperature of the battery pack from reaching the first preset temperature comprises:
  • the charging current of the battery pack is adjusted according to the detected temperature, voltage and ambient temperature of the battery pack to prevent the temperature of the battery pack from reaching the first preset temperature.
  • the charging method further includes:
  • control unit adjusts the charging current of the battery pack to increase such that the temperature of the battery pack is not lower than the second preset temperature.
  • the step of adjusting the charging current of the battery pack according to the detected parameter comprises: adjusting the duty ratio according to the detected parameter to adjust the value of the charging current of the battery pack.
  • the charging device comprises a first charging interface and a second charging interface
  • the battery package comprises a first battery package and a second battery package, wherein the first battery package and the second battery package are respectively connected to the first charging interface and the first The charging interface is electrically connected
  • the charging method comprises:
  • the manner of adjusting the charging current of the first battery pack and the second battery pack includes adjusting the values of the charging currents of the first battery pack and the second battery pack and adjusting each of the first battery pack and the second battery pack during the alternate charging process. At least one of the charging times of the secondary charging.
  • the charging method further includes:
  • control unit controls the value of the charging current of the battery pack having a large parameter to decrease and/or the charging time of each charging in the alternating charging to decrease.
  • the charging process of the charging device to the first battery pack and the second battery pack includes a first charging phase and a second charging phase, wherein the charging device outputs a charging current greater than the first charging phase.
  • the value of the charging current of the two-stage output the charging device controls the charging current to alternately charge the first battery pack and the second battery pack during the first charging phase, and in the second charging phase, controls the charging current while giving the first battery pack And the second battery pack is charged.
  • the charging method further includes:
  • a correspondence table between the parameter and the charging current is stored in advance, and a charging current of the battery pack is controlled according to the correspondence table.
  • the beneficial effects of the invention are: adjusting the charging current according to the internal and external parameters of the battery pack, preventing the battery pack from being too hot and frequently entering the over-temperature protection, and the battery pack needs a period of time to cool down, re-charging, and prolonging the charging. time. Limiting the temperature of the battery pack to not lower than the second preset temperature prevents the control unit from adjusting the charging current of the battery pack too small, although the battery pack does not enter the over-temperature protection, but the charging current is too small, and the battery pack reaches The time of the second charging phase will be prolonged, affecting the charging efficiency.
  • the invention also adjusts the charging current of the two battery packs and the interval time of the alternating charging by controlling the two battery packs to be alternately charged, so that the temperature of the battery pack is limited between the optimal first preset temperature and the second preset temperature. , shortening the charging time and achieving higher charging efficiency.
  • FIG. 1 is a schematic structural view of a charging device according to first and second embodiments of the present invention.
  • FIG. 2 is a schematic structural view of a charging device according to third and fourth embodiments of the present invention.
  • FIG. 3 is a schematic flow chart of an eighth embodiment of the charging method of the present invention.
  • FIG. 4 is a schematic flow chart of a first charging stage of the charging method of the present invention.
  • FIG. 5 is a schematic flow chart of a second charging stage of the charging method of the present invention.
  • Figure 6 is a schematic view showing the connection of the charging device and the battery pack
  • FIG. 7 shows a flow chart of a charging method according to an embodiment of the present invention
  • FIG. 8 is a diagram showing a charging waveform of each battery pack and an output waveform of a charging device when charging a plurality of battery packs according to an embodiment of the present invention
  • FIG. 9 shows a flow chart of another charging method according to an embodiment of the present invention.
  • FIG. 10 shows a flow chart of still another charging method according to an embodiment of the present invention.
  • Figure 11 shows a schematic block diagram of an electrical device in accordance with an embodiment of the present invention.
  • FIG. 12 is a block diagram showing the principle of another charging device according to an embodiment of the present invention.
  • FIG. 13 shows a functional block diagram of yet another charging device in accordance with an embodiment of the present invention.
  • the present invention provides a charging device for charging a battery pack, wherein the battery pack is detachably mounted on the power tool to supply power to the power tool.
  • the charging device includes a power supply circuit 11, a control unit 21, and a parameter detecting unit 31.
  • the parameter detecting unit 31 is configured to detect internal and external parameters of the battery pack, the parameter and the battery.
  • the charging current of the packet is related.
  • the parameter includes the temperature of the battery pack;
  • the control unit 21 is electrically connected to the parameter detecting unit 31, and receives the parameter detected by the parameter detecting unit 31, and the control unit 21 adjusts the battery pack according to the detected parameter.
  • the charging current prevents the temperature of the battery pack from reaching the first preset temperature, wherein when the temperature of the battery pack reaches the first preset temperature, the battery pack enters an over-temperature protection state.
  • the first preset temperature of the overheat protection limit of the battery pack is preset, the temperature of the battery pack is detected in real time during the charging process, and the charging current is adjusted by detecting the temperature of the battery pack, so that the temperature of the battery pack does not exceed the first
  • the preset temperature prevents the battery pack from entering over-temperature protection, affecting the life of the battery pack and prolonging the charging time of the battery pack.
  • the parameter detecting unit 31 can also be used to detect the voltage of the battery pack, and the control unit 21 adjusts the charging current of the battery pack according to the temperature and voltage of the battery pack to prevent the temperature of the battery pack from rising during the charging process.
  • the first preset temperature is reached and the over temperature protection state is entered.
  • the parameter detecting unit 31 can also be used to detect the ambient temperature of the battery pack, and the control unit 21 adjusts the charging current of the battery pack according to the temperature, voltage and ambient temperature of the battery pack to prevent the temperature of the battery pack from being charged. During the process, the rise reaches the first preset temperature and enters the over-temperature protection state.
  • the control unit 21 adjusts the charging current of the battery pack according to the parameter of the battery pack detected by the parameter detecting unit 31, wherein the parameter of the battery pack may be the temperature of the battery pack, or the temperature of the battery pack and Voltage, or combination of temperature, voltage and ambient temperature of the battery pack.
  • the control unit adjusts the charging current of the battery pack to increase, and limits the temperature of the battery pack between the first preset temperature and the second preset temperature.
  • the threshold may be a fixed temperature or a floating unfixed temperature. In actual operation, the threshold may be determined according to actual conditions.
  • the control unit 21 adjusts the charging current of the battery pack to decrease, so that the temperature of the battery pack decreases.
  • the control unit 21 adjusts the charging current of the battery pack to increase, so that the temperature of the battery pack rises, and limits the temperature of the battery pack to the first preset temperature and the second preset temperature.
  • the first preset temperature is greater than the second preset temperature
  • the critical temperature T is a floating temperature. In actual operation, the critical temperature T may be determined according to factors such as the type of the battery pack or the ambient temperature.
  • the control unit 21 limits the temperature of the battery pack to the first preset temperature and the second preset temperature by adjusting internal and external parameters of the battery pack, such as ambient temperature and temperature, voltage and the like of the battery pack. Between, it can prevent the temperature of the battery pack from being greater than the first preset temperature, so that the battery pack enters the over-temperature protection, and the battery pack that enters the over-temperature protection needs to wait for a period of time, so that the temperature of the battery pack falls back, and after a period of time, the battery pack When the temperature is lower than the first preset temperature, the battery pack restarts charging, wherein the waiting process prolongs the charging time of the battery pack.
  • the temperature of the battery pack is limited to not lower than the second preset temperature, and the charging device is prevented from adjusting the charging current in a process of adjusting the charging current of the battery pack.
  • the charging current is small, the battery pack does not Into the over temperature protection, however, the smaller charging current will make the battery pack reach the preset voltage for a longer period of time, which is to extend the charging time of the battery pack. Therefore, limiting the temperature of the battery pack to between the first preset temperature and the second preset temperature allows the battery pack to have the shortest charging time without entering the over-temperature protection.
  • the manner of adjusting the current can be adjusted by the control unit 21 to adjust the magnitude of the charging current of the battery pack.
  • the charging device can charge a battery pack.
  • the charging device can charge at least two battery packs, that is, the charging device can give the first battery pack and the second battery pack. The battery pack is charged.
  • the charging device includes a first charging interface and a second charging interface
  • the battery pack includes a first battery pack and a second battery pack
  • the first battery pack and the second battery pack are respectively charged with the first battery
  • the interface and the second charging interface are electrically connected
  • the control unit 21 controls the charging current to alternately charge the first battery pack and the second battery pack
  • the parameter detecting unit 31 detects the parameters of the first battery pack and the second battery pack, respectively
  • the control unit 21 The charging current of the first battery pack and the second battery pack during charging is adjusted according to the output of the parameter detecting unit 31 to prevent the temperatures of the first battery pack and the second battery pack from reaching the first preset temperature.
  • the power circuit 11 is connected to the first battery pack through the first switch 41, and the second battery pack is connected through the second switch 42.
  • the control unit 21 electrically connects the first switch 41 and the second switch 41, respectively.
  • the control unit 21 alternately cycles the closing of the first switch 41 and the second switch 42 to alternately charge the first battery pack and the second battery pack, that is, after the first battery pack is charged for a period of time, the control unit 21 controls the first
  • the switch 41 is turned off, the charging of the first battery pack is stopped, the control unit 21 controls the second switch 42 to be closed, the second battery pack starts charging, and the control of the first switch 41 and the second switch 42 is alternately controlled by the control unit 21 Alternatingly charging the first battery pack and the second battery pack, so that the second battery pack can be cooled during the charging of the first battery pack, preventing the temperature of the second battery pack from continuously rising, reaching the first preset temperature and affecting The life and charging efficiency of the second battery pack.
  • the control unit 21 adjusts the charging current of the corresponding battery pack according to the parameters of the first battery pack and the second battery pack detected by the parameter detecting unit 31.
  • the parameter of the battery pack may be the temperature of the battery pack or the temperature of the battery pack and Voltage, or combination of temperature, voltage and ambient temperature of the battery pack.
  • the temperature of the first battery pack and the second battery pack are always near the first preset temperature but not exceeding the first preset temperature by current adjustment, so that the first battery pack and the second battery pack Under the premise of not entering the over-temperature protection, the charging time is the shortest, and the charging efficiency of the two battery packs is the highest.
  • the third embodiment described above alternately charges the first battery pack and the second battery pack such that only one battery pack is in a charged state at the same time, and the battery pack that satisfies the state of charge can be charged with the maximum charging current provided by the charging device.
  • the battery pack temperature can be prevented from rising to a first preset temperature by alternate charging.
  • the battery pack can be charged at a relatively high current during the charging-waiting-charging process, and the battery pack temperature is lowered during the waiting phase.
  • the current charging is continued during the charging phase, which prevents the battery pack from entering the over-temperature protection and shortens the charging time.
  • the battery pack temperature rises into an over-temperature protection state. This ensures efficient charging of the battery pack.
  • the temperature of the battery pack falls back relatively small, in the next charging.
  • the first preset temperature may still be reached. Therefore, in order to prevent the first battery pack or the second battery pack from being alternately charged, the temperature reaches the first preset temperature, and the battery pack enters the over temperature protection, and then enters Waiting state waits for the temperature of the battery pack to fall back, and prolongs the charging time of the battery pack.
  • the present invention separately adjusts the charging current of the first battery pack and the second battery pack to prevent the battery pack from rising in the charging phase.
  • the first battery pack and the second battery pack do not enter the over-temperature protection state, shorten the charging time, and improve the charging efficiency of the two battery packs.
  • the manner of adjusting the charging current of the first battery pack and the second battery pack includes adjusting the magnitude of the charging current of the first battery pack and the second battery pack or adjusting the first battery pack and the second battery pack alternately.
  • the invention can prevent the charging current from being excessively increased by adjusting the magnitude of the charging current of the first battery pack and the second battery pack, and the temperature of the battery pack rises too fast, and the interval of the alternating charging is adjusted, so that the first battery pack or the second battery can be made.
  • the temperature of the battery pack can be dropped during the waiting phase, so that the first battery pack or the second battery pack can be charged with a larger charging current, and the battery is intelligently adjusted to alternate charging time or alternating charging time.
  • the package has the highest charging efficiency.
  • a charging device is provided.
  • the control unit 21 detects each battery according to the parameter detecting unit 31.
  • the parameter adjustment of the packet corresponds to the charging time of the battery pack, that is, the control unit 21 controls the first battery pack and the second battery pack to be alternately charged, and the control unit 21 controls the first battery pack charging time to reach T1, and the control unit 21 controls the first switch 41 to be off. Turning on, stopping charging the first battery pack, the control unit 21 controls the second switch 42 to be closed, and the second battery pack starts charging. After the charging time reaches T2, the control unit 21 controls the second switch 42 to be turned off, and stops charging the second battery pack.
  • the control unit 21 controls the first battery pack to start charging, wherein T1 and T2 are determined by the control unit 21 according to the parameters of the first battery pack and the second battery pack, and the present invention is based on the temperature difference between the first battery pack and the second battery pack. Or the difference in voltage, or the voltage and temperature together determine the magnitude of the charging current and the charging time T1 and T2 of the first battery pack and the second battery pack during charging or Ratio.
  • the magnitude of the charging current and the length of the charging time in the alternating charging process of the first battery pack and the second battery pack are determined according to the parameters of the battery pack, and the temperature of the battery pack is adjusted according to the length of the interval to prevent the battery pack from being The temperature is too high to reach the first preset temperature, which affects battery pack life and charging efficiency.
  • a comparison module is further configured to compare whether a difference between a parameter of the first battery pack and a parameter of the second battery pack is greater than The preset value, if the parameter of the first battery pack is greater than the parameter of the second battery pack, and the parameter difference between the two battery packs is greater than a preset value, the control unit controls the charging current of the first battery pack to decrease, and the charging time decreases.
  • the charging current of the second battery pack is controlled to be constant, but the charging time is increased.
  • the switching time of the alternating charging is adjusted according to the difference of the parameters of the battery pack, the charging current of the battery pack with a high temperature or voltage is reduced, the charging time is shortened, and the charging time of the battery pack with a low temperature or voltage is prolonged, such that the temperature
  • the high battery pack can be cooled during the charging process of the low temperature battery pack to lower the temperature, preventing the temperature of the high temperature battery pack from continuing to rise into the over temperature protection and affecting the charging efficiency.
  • the parameter of the battery pack may be temperature alone, that is, the magnitude of the charging current of each battery pack during the alternating charging process or the alternate charging interval time may be adjusted according to the temperature difference between the two battery packs, or two battery packs may be adjusted at the same time.
  • the parameters of the battery pack may also be temperature and voltage, and the magnitude of the charging current value of each battery pack during the alternating charging process or the alternate charging interval time is adjusted according to the temperature difference and the voltage difference between the two battery packs, or the two battery packs are simultaneously adjusted.
  • the magnitude of the charging current value and the interval between alternate charging is: 1.
  • the value of the charging current of the first battery pack and the charging time are both decreased, and the charging current of the second battery pack is controlled, and the charging time is constant. If it is not satisfied, it is judged whether the voltage and temperature of the first battery pack and the second battery pack satisfy the condition 2, and if the condition 2 is satisfied, the value of the charging current of the first battery pack and the charging time are both reduced, and the control is performed. The charging current of the second battery pack does not change, and the charging time increases.
  • control unit also controls the charging current of the battery pack according to the ambient temperature.
  • the charging current is controlled to decrease relative to prevent the battery pack from entering the over-temperature protection state.
  • the control unit controls The charging current is increased relative to the charging efficiency.
  • the parameter detecting unit detects the parameters of the first battery pack, and controls the first battery pack according to the parameters of the first battery pack.
  • Charging current when the charging device is connected to the second battery pack, the parameter detecting unit detects the parameter of the first battery pack and the parameter of the second battery pack, and transmits the parameter to the comparing module, and the comparing module compares the size of the two battery pack parameters, if One battery pack is a high temperature battery pack, and the other battery pack is a low temperature battery pack.
  • the control unit controls the low temperature battery pack to charge first. When the critical temperature is reached, the charging is stopped.
  • the temperature of the high temperature battery pack is lower than the first preset temperature.
  • the control unit switches to the high temperature battery pack to start charging, and determines the charging current according to the parameters of the high temperature battery pack, and determines the alternate charging interval time according to the temperature difference between the two battery packs.
  • the control unit includes a controller, the first battery pack is connected to the controller through the first switch, the second battery pack is connected to the controller through the second switch, and the controller alternately controls the first The switch and the second switch are closed.
  • the controller controls the first switch to be closed, the first battery pack is charged.
  • the controller controls the first switch to be turned off, the second switch is controlled to be closed, and the second battery pack starts to be charged.
  • the invention controls two battery packs to be alternately charged by one controller, which can achieve higher charging efficiency and save cost.
  • the second charging phase is further included, that is, after the first battery pack and the second battery pack voltage detected by the parameter detecting unit reach the voltage threshold, the control unit controls the first The battery pack and the second battery pack are switched from a first charging phase of alternating charging to a second charging phase, wherein in the second charging phase, the first battery pack and the second battery pack are connected in constant voltage in parallel. If the voltage of one of the battery packs first reaches the voltage threshold, the battery pack enters the shelving device, and the other battery pack is charged separately. When the voltages of the two battery packs reach the voltage threshold, the two battery packs enter the constant voltage charging solution together. stage.
  • the first battery pack and the second battery pack are sequentially charged in a certain time range, for example, after the first battery pack starts the second phase charging for 0.05 s, the second battery The package begins charging in the second charging phase.
  • the first battery pack and the second battery pack are simultaneously charged in parallel.
  • the voltage threshold may be a fixed voltage value or a floating voltage value
  • the time of the second charging phase is greater than the charging time of the battery pack in the first charging phase. If two battery packs are charged at a constant voltage and then charged at a constant voltage, each battery pack needs a constant voltage charging phase, so that both battery packs will be charged for a longer period of time.
  • the controller of the invention controls the first battery pack and the second battery pack to enter the constant voltage phase at the same time, reduces the time of the constant voltage charging phase of the two battery packs, and improves the charging efficiency.
  • the parameter detecting unit detects parameters of the first battery pack and the second battery pack, and determines whether the temperature of the first battery pack and the second battery pack reaches a first preset temperature, If yes, the battery pack that reaches the first preset temperature enters the over-temperature protection, and the other battery pack controls the charging current according to the parameter detected by the parameter detecting unit, if the temperatures of the first battery pack and the second battery pack are lower than the first pre-charge Set the temperature, the control unit controls the first switch connected to the first battery pack to be closed, and the control unit searches for the charging current of the first battery pack according to the correspondence table between the battery pack parameter and the charging current stored in the storage module, and controls the first A battery pack is charged with the charging current and a preset charging time.
  • the control unit controls the first switch to be turned off, the charging device stops charging the first battery pack, and at the same time, the control unit controls the second switch to be closed, and the control unit stores the corresponding information according to the storage module.
  • the relationship table searches for the charging current of the second battery pack, and controls the second battery pack to charge the preset charging time with the charging current.
  • the control unit controls the second switch to be turned off, and the first switch is controlled to be closed. Charging the first battery pack and the second battery pack.
  • the parameter detecting unit detects the voltages of the first battery pack and the second battery pack.
  • the battery pack When the voltage of one of the battery packs reaches the voltage threshold, the battery pack enters the shelving mode, and the control unit obtains the parameter check table according to the parameter detection module. After the charging current of the other battery pack is controlled to continuously charge the battery pack to the voltage threshold, the control unit simultaneously turns on the first switch and the second switch, and controls the first battery pack and the second battery pack to be charged in parallel to reach the charging cutoff voltage. , stop charging.
  • the control unit controls the second battery pack to continuously charge separately, and detects whether the temperature of the first battery pack is less than the first preset temperature during the charging process.
  • the control unit controls the first battery pack and the second battery pack to be alternately charged, and after reaching the voltage threshold, the control unit controls the first battery pack and the first The two battery packs are charged together under constant voltage. If the temperature of the first battery pack is still higher than the first preset temperature when the second battery pack is fully charged, the control unit controls the second battery pack to be fully charged and then controls the first battery pack to be charged.
  • a charging method for charging a battery pack the battery pack being detachably mounted on a power tool to provide power to the power tool, The method includes the following steps:
  • S10 detecting a parameter related to a charging current of the battery pack, the parameter including a temperature of the battery pack;
  • S20 Adjust the charging current of the battery pack according to the detected parameter to prevent the temperature of the battery pack from reaching the first preset temperature. Wherein, when the temperature of the battery pack reaches the first preset temperature, the battery pack enters an over-temperature protection state.
  • the parameter may be the temperature of the battery pack, a combination of the temperature and voltage of the battery pack, or a combination of the temperature, voltage and ambient temperature of the battery pack.
  • the present invention also provides a charging method using the charging device in any of the above second to seventh embodiments. Specifically, in addition to the eighth embodiment, the method further includes the following steps:
  • the control unit adjusts the charging current of the battery pack to increase, and limits the temperature of the battery pack between the first preset temperature and the second preset temperature.
  • the present invention adjusts the charging current of the battery pack by adjusting the duty ratio.
  • the charging device includes a first charging interface and a second charging interface, respectively, for connecting the first battery pack and the second battery pack, the charging method further comprising:
  • the first battery pack and the second battery pack are alternately controlled for charging in the first charging phase; when there are two battery packs, the charging device alternately charges the first battery pack and the second battery pack.
  • the manner of adjusting the charging current of the first battery pack and the second battery pack includes adjusting the magnitude of the charging current of the first battery pack and the second battery pack or adjusting the first battery pack and the second battery pack alternately.
  • the invention can prevent the charging current from being excessively increased by adjusting the magnitude of the charging current of the first battery pack and the second battery pack, and the temperature of the battery pack rises too fast, and the interval of the alternating charging is adjusted, so that the first battery pack or the second battery can be made.
  • the temperature of the battery pack can be dropped during the waiting phase, so that the first battery pack or the second battery pack can be charged with a larger charging current, and the battery is intelligently adjusted to alternate charging time or alternating charging time.
  • the package has the highest charging efficiency.
  • the difference between the temperature of the first battery pack and the temperature of the second battery pack is outside the preset range. That is, determining whether the temperature of the first battery pack is greater than the temperature of the second battery pack, and the difference is greater than a preset range; if yes, controlling the charging current of the first battery pack to decrease, the charging time is decreased, and controlling the second battery pack
  • the charging current does not change and the charging time increases.
  • the charging current and the charging time of the first battery pack with high temperature of the invention are reduced, the charging current of the second battery pack with low temperature is unchanged, and the charging time is increased, so that the first battery pack and the second battery pack can both reach a higher level. Charging efficiency and does not enter over temperature protection.
  • the start of each charging cycle pre-determines whether the temperature difference between the first battery pack and the second battery pack is outside the preset range, and if so, the temperature of one of the battery packs is relatively too high, The charging current and charging time of the battery pack with a small temperature and the charging time of the battery pack with a low temperature.
  • the value of the charging current of the two battery packs and the charging time can be intelligently adjusted during the charging process, and the temperature of one of the battery packs is prevented from being too high, and the limit value of the over-temperature protection is reached to stop charging, thereby affecting the two batteries.
  • the charging time of the package is completed, which affects the charging efficiency.
  • the parameter further includes a voltage
  • the determining condition is: determining whether the difference between the voltage of the first battery pack and the voltage of the second battery pack is outside a preset range, and if so, the charging current and the charging time of the battery pack with a high voltage
  • the charging current of the battery pack with the low voltage is the same, and the charging time is increased.
  • the specific control method is the same as that of the above embodiment, and will not be further described herein. In this embodiment, it is determined in advance whether the voltage difference between the first battery pack and the second battery pack is outside the preset range, and if yes, the voltage of one of the battery packs is too high, and the high voltage battery pack is reduced.
  • Charging current and charging time while increasing the charging time of the low-voltage battery pack, so as to prevent the battery pack with excessive voltage from completing the first charging phase prematurely with respect to the low-voltage battery pack, so that the battery pack with low voltage is separately performed first.
  • the temperature is too high to reach the limit value of the over-temperature protection and the charging is stopped. Therefore, in this embodiment, the charging current and the charging time of the two battery packs are adjusted every cycle, so as to make two The battery packs are alternately charged to improve charging efficiency and shorten charging time.
  • the parameter includes a temperature and a voltage
  • the determining condition is: 1. determining whether the temperature of the first battery pack is higher than the temperature of the second battery pack and whether the difference between the two reaches a first preset value; Whether the voltage of the first battery pack is higher than the voltage of the second battery pack and whether the difference between the two reaches a second preset value.
  • two battery packs A and B are respectively connected to the two battery pack interfaces of the charging device, and when charging is started, it is judged whether the temperature of the A pack is greater than the temperature of the B pack and the temperature difference between the A pack and the B pack.
  • the charging current I1 of the adjustment A package is decreased, the charging time T1 is decreased, the charging current I2 of the B packet is unchanged, and the charging time T2 is increased. Otherwise, it is determined whether the voltage of the A packet is greater than the voltage of the B packet and the voltage difference between the A packet voltage and the B packet voltage is greater than a preset value. If the voltage difference between the A packet and the B packet is greater than a preset value, the control packet A charging current I1 is decreased. The charging time T1 is decreased, the charging current I2 of the B pack is unchanged, and the charging time T2 is increased.
  • the charging current of the B packet is adjusted.
  • I2 is decreased, the charging time T2 is decreased, the charging current I1 of the A pack is unchanged, and the charging time T1 is increased.
  • the temperature difference between the B packet and the A packet is not greater than a preset value, it is determined whether the B packet voltage is greater than the A packet voltage, and whether the voltage difference between the B packet and the A packet is greater than a preset value, and if so, controlling the charging current of the B packet
  • I2 is decreased
  • the charging time T2 is decreased
  • the charging current I1 of the A pack is unchanged
  • the charging time T1 is increased. Otherwise, if none of the above conditions are satisfied, then the control packet A charging current and charging time are unchanged, and the B packet charging current and charging time are unchanged.
  • the second charging phase is further included, and when the voltages of the first battery pack and the second battery pack both reach the voltage threshold, the first battery pack and the second battery pack are controlled. Switching from the first charging phase to the second charging phase, the first battery pack and the second battery pack are subjected to parallel constant voltage charging in the second charging phase. If the voltage of one of the battery packs first reaches the voltage threshold, the battery pack enters the shelving device, and the other battery pack is charged separately. When the voltages of the two battery packs reach the voltage threshold, the two battery packs enter the constant voltage charging solution together. stage.
  • the first battery pack and the second battery pack are sequentially charged in a certain time range, for example, after the first battery pack starts the second phase charging for 0.05 s, the second battery The package begins charging in the second charging phase.
  • the first battery pack and the second battery pack are simultaneously charged in parallel.
  • the voltage threshold may be a fixed voltage value or a floating voltage value
  • the time of the second charging phase is greater than the charging time of the battery pack in the first charging phase. If two battery packs are charged at a constant voltage and then charged at a constant voltage, each battery pack needs a constant voltage charging phase, so that both battery packs will be charged for a longer period of time.
  • the controller of the invention controls the first battery pack and the second battery pack to enter the constant voltage phase at the same time, reduces the time of the constant voltage charging phase of the two battery packs, and improves the charging efficiency.
  • the charging current of the battery pack and the second battery pack in the first charging phase are respectively obtained.
  • the first battery parameter may be the number of charge and discharge cycles of the battery pack, and the number of charge and discharge cycles of the first battery pack and the number of charge and discharge cycles of the second battery pack are respectively obtained before the start of charging, and the first battery pack and the second battery pack are respectively The number of charging and discharging cycles of the battery pack is respectively compared with the data of the pre-stored charging current relationship table, and the charging current corresponding to the first battery pack and the second battery pack respectively is found, wherein the charging current relationship table includes the number of charging cycles and One-to-one correspondence of currents.
  • the life of the first battery pack and the life of the second battery pack can be known, and the charging current is set according to the life of the battery pack, that is, the charge and discharge cycle.
  • the charging current set by the battery pack with a large number of times is small with respect to the charging current of the battery pack with a small number of charging and discharging cycles, and the specific value can be obtained by querying the data in the charging current relationship table stored in advance. In this way, different charging currents can be set according to the life of the battery pack, and the battery pack with a short life can be prevented from being charged with a large current, resulting in damage to the battery pack.
  • the first battery parameter may also be the capacity of the battery pack.
  • the capacity of the first battery pack and the capacity of the second battery pack are respectively obtained, and the capacities of the first battery pack and the second battery pack are respectively stored with the pre-stored charging.
  • the data of the current relationship table is compared to find a charging current corresponding to the first battery pack and the second battery pack respectively, wherein the charging current relationship table includes a one-to-one correspondence between the capacity and the current.
  • the charging current of the large-capacity battery pack is greater than the charging current of the battery pack having a small capacity, and the specific value can be obtained by pre-storing the charging current relationship table. Data query is obtained.
  • the time of the battery pack in the first charging phase can be shortened, and after the other battery pack receives the first preset voltage, it needs to enter a waiting state, waiting for a large-capacity battery pack. The voltage reaches the first preset voltage, thereby saving time and improving the charging efficiency.
  • the first battery parameter can be either the capacity of the battery pack or the number of charge and discharge cycles of the battery pack.
  • the invention intelligently adjusts the current of the battery pack according to the internal and external parameters of the battery pack by detecting the internal and external parameters of the battery pack, and prevents the temperature of the battery pack from reaching the first preset value, so that the battery pack can reach the highest without entering the over-temperature protection.
  • the charging effect
  • the double-pack charging device not only the charging current of the battery pack is adjusted by parameters, but also the charging efficiency can be improved by alternate charging, and the two battery packs of different voltages and temperatures are intelligently adjusted by adjusting the charging current and charging time of the alternating charging.
  • the charging current and the time of alternate charging enable the double-pack charging device to achieve the highest charging efficiency.
  • FIG. 7 shows a flow chart of a charging method in accordance with an embodiment of the present invention.
  • the method is adapted to control charging of a plurality of battery packs when a plurality of battery packs are connected to the same charging device, wherein the plurality of battery packs form a preset cyclic charging sequence.
  • Multiple battery packs can be of different types, different models, and different rated voltages and different rated currents.
  • the charging device is connected with battery packs A, B, and C.
  • the charging device charges the four battery packs by the charging method provided by the present invention, assuming that the preset cyclic charging sequence is: ABCABC -...
  • the method comprises the following steps:
  • step S120 Determine whether the current charging duration of the current battery pack reaches a preset single charging duration. When the current charging duration of the current battery pack reaches the preset single charging duration, step S130 is performed; otherwise, step S110 is continued.
  • this charging time of the current battery pack refers to the cumulative charging duration of the battery pack during the current cycle until the time when the judgment step is performed.
  • the “preset single charging duration” refers to the total accumulated charging time of the battery pack in a single cycle process, which is set in advance when the battery pack is charged according to the preset cyclic charging sequence.
  • the preset single charging durations of the respective battery packs may be the same; or may be different, for example, the preset single charging duration corresponding to each battery pack and the charging voltage, the amount of charging or the charging current are preset. Relationship (such as proportional to the amount to be charged).
  • step S130 Set the next battery pack of the current battery pack in the preset cyclic charging sequence as the current battery pack, and jump to step S110.
  • the first battery pack A in the preset cyclic charging sequence may be the current battery pack, or any one of the battery packs may be randomly determined as the current battery pack.
  • the charging device is controlled to charge the current battery pack A.
  • the charging device is continuously controlled to charge the battery pack.
  • the next battery pack B of the battery pack A in the preset cyclic charging sequence is set as the current battery pack.
  • the charging device is controlled to charge the current battery pack B. Assume that the preset single charging time of battery pack B is 40 seconds.
  • the first time it is judged whether the current charging time of the current battery pack B reaches 40 seconds. If the current charging time of the current battery pack B is less than 40 seconds at this time, the charging device is continuously controlled to charge the battery pack.
  • the next battery pack C of the battery pack B in the preset cyclic charging sequence is set as the current battery pack.
  • the charging device is controlled to charge the current battery pack C. Assume that the preset single charging time of the battery pack C is 50 seconds.
  • the charging device is continuously controlled to charge the battery pack.
  • the next battery pack A of the battery pack C in the preset cyclic charging sequence is set as the current battery pack. This completes the first cycle of the preset cyclic charging sequence.
  • the charging device continuously outputs a voltage or current, and the single battery pack exhibits a pulse charging manner.
  • the horizontal axis represents time, and the line 1 represents the charging voltage or charging current of the battery pack A.
  • Line 2 represents the charging voltage or charging current of the battery pack B
  • line 3 represents the charging voltage or charging current of the battery pack C
  • line 4 represents the output voltage or current of the charging device. It should be noted that the line 4 is only the case where the charging voltage or the charging current of each battery pack is equal. In fact, the charging voltage or the charging current of each battery pack may not be equal.
  • the traditional charging method is to fully charge one battery pack before charging other battery packs.
  • the charging current is large, there is a battery polarization phenomenon in the battery pack, resulting in the possibility that charging with a current of 6 A is the same as charging with a current of 4 A. Therefore, the conventional charging method cannot charge a single battery pack with a large current.
  • the charging method of the present application uses a pulse charging method for a single battery pack, that is, first charges the battery pack with a large charging current, and then stops charging for a period of time waiting for depolarization in the battery pack, thereby When the battery pack is recharged at a time, it can still be charged with a large charging current, so that the overall charging time for a single battery pack and the overall charging time of a plurality of battery packs can be shortened.
  • the charging device uses a pulse charging method for a single battery pack, and can charge the battery pack with a larger charging current, thereby shortening the charging time of a single battery pack; There is a time gap between the two charging pulses, which can prevent the battery pack from heating up and shorten the battery life by charging for a long time; on the other hand, charging other battery packs in the pulse charging gap of a certain battery pack, making full use of The charging gap can reduce the overall charging time of multiple battery packs.
  • the “battery pack” described in the present application may be a battery pack composed of a plurality of battery cells, or may be a battery cell (the battery pack is composed of one battery cell).
  • FIG. 9 shows a flow chart of another charging method in accordance with an embodiment of the present invention.
  • the method is adapted to control charging of the plurality of battery packs when the plurality of battery packs are connected to the same charging device, wherein the plurality of battery packs form a preset cyclic charging sequence.
  • Multiple battery packs can be of different types, different models, and different rated voltages and different rated currents.
  • battery packs A, B, and C are connected to the charging device, and the charging device charges the four battery packs by the charging method provided by the present invention, assuming that the preset cyclic charging sequence is: ABCABC -...
  • the method comprises the following steps:
  • the current power of each battery pack may be obtained by first acquiring the current voltage of each battery pack, and then estimating the current power of the battery pack according to the correspondence between the voltage of the battery pack and the power.
  • the current amount of the battery pack can be obtained by integrating the charging current of the battery pack with time. The method for obtaining the current power of the battery pack is not limited in this application.
  • the rated capacity of the battery pack can be pre-stored and corresponding to the identification of the battery pack, so that the rated capacity of the battery pack can be obtained according to the identification of the battery pack.
  • S220 Calculate the amount of charge to be charged for each battery pack, and the amount of charge to be charged is the difference between the rated power and the current power.
  • S230 Determine a preset single charging duration corresponding to each of the plurality of battery packs, wherein a ratio of a preset single charging duration between the plurality of battery packs is the same as a ratio of the to-be-charged amount.
  • the ratio of the amount of the battery packs A, B, and C to be charged is 3:4:5
  • the preset single charging time of the battery packs A, B, and C is 30 seconds, 40. Seconds, 50 seconds, so that the battery packs A, B, and C can complete the charging process at the same time, so that the user can use them at the same time.
  • S240 Determine a preset cyclic charging sequence of the plurality of battery packs.
  • the preset cycle charging sequence is: ABCABC-..., that is, the battery pack A is charged first, then the battery pack B is charged, and then the battery pack C is charged, thereby completing one cycle; and then the battery pack A is respectively in the above order. , B, C charge, complete the second cycle... and so on.
  • step S250 Determine whether the current battery pack meets the charging cutoff condition. When the current battery pack meets the charge cutoff condition, step S260 is performed; otherwise, step S270 is performed.
  • the charge cut-off condition may be that the voltage across the battery pack reaches a predetermined voltage, or the charging current of the battery pack reaches a predetermined charging current.
  • S260 The current battery pack is deleted from the preset cycle charging sequence.
  • S270 Control the charging device to charge the current battery pack.
  • step S280 When the charging reaches the preset duration, it is determined whether the current charging duration of the current battery pack reaches a preset single charging duration. When the current charging duration of the current battery pack reaches the preset single charging duration, step S290 is performed; otherwise, step S270 is continued.
  • preset duration is the time interval at which the judgment operation is performed.
  • this charging time of the current battery pack refers to the charging time of the battery pack in one cycle when the battery pack is charged according to the preset cyclic charging sequence.
  • the charging device is controlled to charge the current battery pack A.
  • the charging device When the charging reaches 5 seconds, it is judged whether or not the current charging time of the current battery pack A reaches 30 seconds. Since the current charging time of the current battery pack A is less than 30 seconds in the first judgment, the charging device is continuously controlled to charge the battery pack.
  • the current charging time of the current battery pack A reaches 30 seconds.
  • the next battery pack B of the battery pack A in the preset cyclic charging sequence is set as the current battery pack.
  • the charging device is controlled to charge the current battery pack B. Assume that the preset single charging time of battery pack B is 40 seconds, and the preset duration is 5 seconds.
  • the charging device When the charging reaches 5 seconds, it is judged whether or not the current charging time of the current battery pack B reaches 40 seconds. Since the current charging time of the current battery pack B is less than 40 seconds in the first judgment, the charging device is continuously controlled to charge the battery pack.
  • the current charging time of the current battery pack B reaches 40 seconds. At this time, the next battery pack C of the battery pack B in the preset cyclic charging sequence is set as the current battery pack.
  • the charging device is controlled to charge the current battery pack C. Assume that the preset single charging time of the battery pack C is 50 seconds, and the preset duration is 5 seconds.
  • the charging device When the charging reaches 5 seconds, it is judged whether or not the current charging time of the current battery pack C reaches 50 seconds. Since the current charging time of the current battery pack C is less than 50 seconds in the first judgment, the charging device is continuously controlled to charge the battery pack.
  • the current charging time of the current battery pack C reaches 50 seconds.
  • the next battery pack A of the battery pack C in the preset cyclic charging sequence is set as the current battery pack. This completes the first cycle of the preset cyclic charging sequence.
  • FIG. 10 shows a flow chart of still another charging method in accordance with an embodiment of the present invention.
  • the method is adapted to control charging of the plurality of battery packs when the plurality of battery packs are connected to the same charging device, wherein the plurality of battery packs form a preset cyclic charging sequence.
  • Multiple battery packs can be of different types, different models, and different rated voltages and different rated currents.
  • the charging device is connected with battery packs A, B, and C.
  • the charging device charges the four battery packs by the charging method provided by the present invention, assuming that the preset cyclic charging sequence is: ABCABC -...
  • the method comprises the following steps:
  • S320 Calculate the amount of charge to be charged for each battery pack, and the amount of charge to be charged is the difference between the rated power and the current power.
  • S330 Determine a preset single charging duration corresponding to each of the plurality of battery packs, wherein a ratio of a preset single charging duration between the plurality of battery packs is the same as a ratio of the to-be-charged amount.
  • S340 Determine a preset cyclic charging sequence of the plurality of battery packs.
  • steps S310, S320, S330, and S340 refer to S210, S220, S230, and S240 in the first embodiment, and details are not described herein again.
  • step S350 Determine whether the current battery pack meets the charging cut-off condition; when the current battery pack meets the charging cut-off condition, step S380 is performed; otherwise, step S360 is performed.
  • the charge cut-off condition may be that the voltage across the battery pack reaches a predetermined voltage, or the charge current of the battery pack reaches a predetermined charge current.
  • S360 Control the charging device to charge the current battery pack.
  • step S370 Determine whether the current charging duration of the current battery pack reaches a preset single charging duration. When the current charging duration of the current battery pack reaches the preset single charging duration, step S380 is performed; otherwise, step S360 is continued.
  • this charging time of the current battery pack refers to the charging time of the battery pack in one cycle when the battery pack is charged according to the preset cyclic charging sequence.
  • step S380 Set the next battery pack of the current battery pack in the preset cyclic charging sequence as the current battery pack, and jump to step S360.
  • steps S360, S370, and S380 refer to S110, S120, and S130 in the first embodiment, or S270, S280, and S290 in the second embodiment, and details are not described herein again.
  • FIG. 11 shows a functional block diagram of a charging device in accordance with an embodiment of the present invention.
  • the apparatus is adapted to control charging of the plurality of battery packs when the plurality of battery packs are connected to the same charging device, wherein the plurality of battery packs form a preset cyclic charging sequence.
  • Multiple battery packs can be of different types, different models, and different rated voltages and different rated currents.
  • the charging device is connected with battery packs A, B, and C.
  • the charging device charges the four battery packs by the charging method provided by the present invention, assuming that the preset cyclic charging sequence is: ABCABC -...
  • the apparatus includes a charging unit 10, a first determining unit 20, and a setting unit 30 for performing the charging method of the first embodiment.
  • the charging unit 10 is configured to control the charging device to charge the current battery pack.
  • the first determining unit 20 is configured to determine whether the current charging duration of the current battery pack reaches a preset single charging duration.
  • the setting unit 30 is configured to set the next battery pack of the current battery pack in the preset cyclic charging sequence as the current battery pack.
  • the charging device performs the charging method according to the first embodiment.
  • the battery pack is charged with a larger charging current by using a pulse charging method for a single battery pack, thereby shortening the charging time of the single battery pack;
  • There is a time gap between the two charging pulses which can prevent the battery pack from heating up and shorten the battery life by charging for a long time;
  • charging other battery packs in the pulse charging gap of a certain battery pack making full use of The charging gap can reduce the overall charging time of multiple battery packs.
  • FIG. 12 shows a functional block diagram of another charging device in accordance with an embodiment of the present invention.
  • the apparatus is adapted to control charging of the plurality of battery packs when the plurality of battery packs are connected to the same charging device, wherein the plurality of battery packs form a preset cyclic charging sequence.
  • Multiple battery packs can be of different types, different models, and different rated voltages and different rated currents.
  • the charging device is connected with battery packs A, B, and C.
  • the charging device charges the four battery packs by the charging method provided by the present invention, assuming that the preset cyclic charging sequence is: ABCABC -... According to FIG.
  • the apparatus includes a charging unit 10, a first determining unit 20, a setting unit 30, a first determining unit 40, a second determining unit 50, a calculating unit 70, and a second determining unit 80 for executing the embodiment.
  • the charging unit 10 is configured to control the charging device to charge the current battery pack.
  • the first determining unit 20 is configured to determine whether the current charging duration of the current battery pack reaches a preset single charging duration.
  • the setting unit 30 is configured to set the next battery pack of the current battery pack in the preset cyclic charging sequence as the current battery pack.
  • the first determining unit 40 is configured to determine a preset cyclic charging sequence of the plurality of battery packs.
  • the second determining unit 50 is configured to determine whether the current battery pack meets the charging cutoff condition.
  • the deleting unit 60 is configured to delete the current battery pack from the preset cyclic charging sequence when the current battery pack meets the charging cutoff condition.
  • the obtaining unit 70 is configured to acquire the current power and the rated power of each battery pack.
  • the calculating unit 80 is configured to calculate the amount of charge to be charged of each battery pack, and the amount to be charged is a difference between the rated power and the current power.
  • the second determining unit 90 is configured to determine a preset single charging duration corresponding to each of the plurality of battery packs, wherein a ratio of a preset single charging duration between the plurality of battery packs is the same as a ratio of the to-be-charged amount.
  • FIG. 13 shows a functional block diagram of yet another charging device in accordance with an embodiment of the present invention.
  • the apparatus is adapted to control charging of the plurality of battery packs when the plurality of battery packs are connected to the same charging device, wherein the plurality of battery packs form a preset cyclic charging sequence.
  • Multiple battery packs can be of different types, different models, and different rated voltages and different rated currents.
  • the charging device is connected with battery packs A, B, and C.
  • the charging device charges the four battery packs by the charging method provided by the present invention, assuming that the preset cyclic charging sequence is: ABCABC -... According to FIG.
  • the apparatus includes a charging unit 10, a first determining unit 20, a setting unit 30, a first determining unit 40, a second determining unit 50, an obtaining unit 60, a calculating unit 70, and a second determining unit 80.
  • the charging method described in Embodiment 3 is performed.
  • the charging unit 10 is configured to control the charging device to charge the current battery pack.
  • the first determining unit 20 is configured to determine whether the current charging duration of the current battery pack reaches a preset single charging duration.
  • the setting unit 30 is configured to set the next battery pack of the current battery pack in the preset cyclic charging sequence as the current battery pack.
  • the first determining unit 40 is configured to determine a preset cyclic charging sequence of the plurality of battery packs.
  • the second determining unit 50 is configured to determine whether the current battery pack meets the charging cutoff condition.
  • the obtaining unit 70 is configured to acquire the current power and the rated power of each battery pack.
  • the calculating unit 80 is configured to calculate the amount of charge to be charged of each battery pack, and the amount to be charged is a difference between the rated power and the current power.
  • the second determining unit 90 is configured to determine a preset single charging duration corresponding to each of the plurality of battery packs, wherein a ratio of a preset single charging duration between the plurality of battery packs is the same as a ratio of the to-be-charged amount.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Computer Hardware Design (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种充电装置,用于给电池包充电,所述电池包可拆卸的安装于电动工具上,为电动工具提供电能,所述充电装置包括:参数检测单元,用于检测与电池包的充电电流有关的参数,所述参数包括电池包的温度;和控制单元,用于根据参数检测单元的输出来调节电池包的充电电流,防止电池包的温度达到第一预设温度,其中,当电池包的温度达到第一预设温度时,电池包进入过温保护状态,影响电池包的寿命,本发明通过调节充电电流既可以保证电池包不进入过温保护,又可保证电池包的充电电流不会过小,使得电池包有最高的充电效率。

Description

充电装置及充电方法 技术领域
本发明涉及电池充电技术领域,特别涉及一种用于给电池包充电的充电装置和充电方法。
背景技术
现有的给电动工具提供电能的电池包,充电过程包括恒流充电阶段和恒压充电阶段,其中,在恒流充电阶段,采用固定的电流给电池包充电,充电过程中,电池包的温度不断上升,当达到过温保护的限制值时,电池包停止充电,当电池包的温度下降至低于过温保护的限制值,电池包重新开始充电,当电池包的电压达到电压阈值后,开始恒压充电,在该充电过程中,电池包的温度会多次升高达到过温保护的限制值,电池包停止充电等待温度回落,使得电池包的充电时间变长,充电效率降低。
对于双包充电的情况,现有技术采用并联充电的充电逻辑,采用两个控制电路分别控制第一电池包的充电和第二电池包的充电,两个充电电路互不干扰,该方案同时为第一电池包和第二电池包充电,在充电过程中每一电池包以各自的充电电流持续充电,会产生电池包温度过高达到过温保护的情况,延长电池包的充电时间,使得电池包的充电效率降低。
发明内容
为克服现有技术的缺陷,本发明所要解决的问题是提供一种充电装置和充电方法,可以缩短多个电池并联充电的充电时间,提高充电效率。
本发明解决现有技术问题所采用的技术方案是:
一种充电装置,用于给电池包充电,所述电池包可拆卸的安装于电动工具上,为电动工具提供电能,所述充电装置包括:
参数检测单元,用于检测与电池包的充电电流有关的参数,所述参数包括电池包的温度;和
控制单元,用于根据参数检测单元的输出来调节电池包的充电电流,防止电池包的温度达到第一预设温度,其中,当电池包的温度达到第一预设温度时,电池包进入过温保护状态。
优选的,所述参数检测单元还用于检测电池包的电压,所述控制单元用于根据参数检测单元输出的电池包的温度和电压来调节电池包的充电电流, 防止电池包的温度达到第一预设温度。
优选的,所述参数检测单元还用于检测环境的温度,所述控制单元用于根据参数检测单元输出的电池包的温度、电压和环境温度来调节电池包的充电电流,防止电池包的温度达到第一预设温度。
优选的,当所述电池包的温度低于阈值时,控制单元调节电池包的充电电流增大,使得所述电池包的温度不低于第二预设温度。
优选的,所述控制单元通过调节占空比来调节电池包的充电电流的数值。
优选的,所述充电装置包括第一充电接口和第二充电接口,所述电池包包括第一电池包和第二电池包,第一电池包和第二电池包分别于第一充电接口和第二充电接口电连接,所述控制单元控制充电电流交替的给第一电池包和第二电池包充电,所述参数检测单元分别检测第一电池包和第二电池包的参数,所述控制单元根据参数检测单元的输出来调节第一电池包和第二电池包在充电过程中的充电电流,防止第一电池包和第二电池包的温度达到第一预设温度。
优选的,调节第一电池包和第二电池包的充电电流的方式包括调节第一电池包和第二电池包的充电电流的数值和调节第一电池包和第二电池包交替充电过程中每次充电的充电时间中的至少一种。
优选的,所述充电装置还包括比较模块,用于比较所述第一电池包和第二电池包的参数的差值是否大于预设值,若是,则控制单元控制参数大的电池包的充电电流的数值减小和/或交替充电中每次充电的充电时间减小。
优选的,所述控制单元包括单控制器,所述单控制器分别连接第一电池包和第二电池包,控制第一电池包和第二电池包交替充电。
优选的,所述充电装置对第一电池包和第二电池包的充电过程包括第一充电阶段和第二充电阶段,其中,所述充电装置在第一充电阶段输出的充电电流的数值大于第二阶段输出的充电电流的数值,所述充电装置在第一充电阶段控制充电电流交替的给第一电池包和第二电池包充电,在第二充电阶段,控制充电电流同时给第一电池包和第二电池包充电。
优选的,还包括存储模块,用于存储所述参数与充电电流的对应关系表,所述控制模块根据所述对应关系表控制电池包的充电电流。
一种充电方法,用于给电池包充电,所述电池包可拆卸的安装于电动工具上,为电动工具提供电能,所述方法包括:
检测与电池包的充电电流有关的参数,所述参数包括电池包的温度;
根据检测的参数来调节电池包的充电电流,防止电池包的温度达到第一预设温度,其中,当电池包的温度达到第一预设温度时,电池包进入过温保护状态。
优选的,所述参数还包括电池包的电压,所述根据检测的参数来调节电池包的充电电流,防止电池包的温度达到第一预设温度的步骤包括:
根据检测的电池包的温度和电压来调节电池包的充电电流,防止电池包的温度达到第一预设温度。
优选的,所述参数还包括环境的温度,所述根据检测的参数来调节电池包的充电电流,防止电池包的温度达到第一预设温度的步骤包括:
根据检测的电池包的温度、电压和环境温度来调节电池包的充电电流,防止电池包的温度达到第一预设温度。
优选的,所述充电方法还包括:
当所述电池包的温度低于阈值时,控制单元调节电池包的充电电流增大,使得所述电池包的温度不低于第二预设温度。
优选的,所述根据检测的参数来调节电池包的充电电流的步骤包括:根据检测的参数调节占空比来调节电池包的充电电流的数值。
优选的,所述充电装置包括第一充电接口和第二充电接口,所述电池包包括第一电池包和第二电池包,第一电池包和第二电池包分别于第一充电接口和第二充电接口电连接,所述充电方法包括:
控制充电电流交替的给第一电池包和第二电池包充电;
分别检测第一电池包和第二电池包的参数;
根据参数检测单元的输出来调节第一电池包和第二电池包在充电过程中的充电电流,防止第一电池包和第二电池包的温度达到第一预设温度。
优选的,调节第一电池包和第二电池包的充电电流的方式包括调节第一电池包和第二电池包的充电电流的数值和调节第一电池包和第二电池包交替充电过程中每次充电的充电时间中的至少一种。
优选的,所述充电方法还包括:
比较所述第一电池包和第二电池包的参数的差值是否大于预设值;
若是,则控制单元控制参数大的电池包的充电电流的数值减小和/或交替充电中每次充电的充电时间减小。
优选的,所述充电装置对第一电池包和第二电池包的充电过程包括第一充电阶段和第二充电阶段,其中,所述充电装置在第一充电阶段输出的充电电流的数值大于第二阶段输出的充电电流的数值,所述充电装置在第一充电阶段控制充电电流交替的给第一电池包和第二电池包充电,在第二充电阶段,控制充电电流同时给第一电池包和第二电池包充电。
优选的,所述充电方法还包括:
预先存储所述参数与充电电流的对应关系表,根据所述对应关系表控制电池包的充电电流。
与现有技术相比,本发明的有益效果是:根据电池包的内外参数调节充电电流,防止电池包温度过高频繁进入过温保护,电池包需要一段时间才能降温,重新充电,延长了充电时间。将电池包的温度限制在不低于第二预设温度,可防止控制单元将电池包的充电电流调节的过小,虽然电池包不会进入过温保护,但是充电电流过小,电池包达到第二充电阶段的时间会延长,影响充电效率。本发明还通过控制两个电池包交替充电,调节两个电池包的充电电流和交替充电的间隔时间,使得电池包的温度限制在最优的第一预设温度和第二预设温度之间,缩短了充电时间,达到了较高的充电效率。
附图说明
以上所述的本发明的目的、技术方案以及有益效果可以通过下面附图实现:
图1是本发明的第一、第二实施例的充电装置的结构示意图;
图2是本发明的第三、第四实施例的充电装置的结构示意图;
图3是本发明的充电方法的第八实施例的流程示意图;
图4是本发明的充电方法的第一充电阶段的流程示意图;
图5是本发明的充电方法的第二充电阶段的流程示意图;
图6示出了充电装置与电池包的连接示意图;
图7示出了根据本发明实施例的一种充电方法的流程图;
图8示出了根据本发明实施例中对多个电池包充电时每个电池包的充电波形及充电装置的输出波形;
图9示出了根据本发明实施例的另一种充电方法的流程图;
图10示出了根据本发明实施例的再一种充电方法的流程图;
图11示出了根据本发明实施例的一种电装置的原理框图;
图12示出了根据本发明实施例的另一种充电装置的原理框图;
图13示出了根据本发明实施例的再一种充电装置的原理框图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于发明的技术领域的技术人员通常理解的含义相同。本文中在发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明提供一种充电装置,用于给电池包充电,其中,电池包可拆卸的安装于电动工具上,为电动工具提供电能。
在本发明的第一实施例中,请参见图1所示,充电装置包括电源电路11,控制单元21和参数检测单元31,参数检测单元31用于检测电池包的内外参数,该参数与电池包的充电电流有关,本实施例中,参数包括电池包的温度;控制单元21电连接该参数检测单元31,并接收该参数检测单元31检测的参数,控制单元21根据检测的参数调节电池包的充电电流,防止电池包的温度达到第一预设温度,其中,当电池包的温度达到第一预设温度时,电池包进入过温保护状态。
上述实施例通过预先设置电池包的过温保护的限制值第一预设温度,充电过程中实时检测电池包的温度,通过检测电池包的温度调节充电电流,使得电池包的温度不超过第一预设温度,防止电池包进入过温保护,影响电池包的寿命并延长电池包的充电时间。
在第一实施例中,参数检测单元31还可以用于检测电池包的电压,控制单元21根据电池包的温度和电压来调节电池包的充电电流,防止电池包的温度在充电过程中升高达到第一预设温度,而进入过温保护状态。
在第一实施例中,参数检测单元31还可以用于检测电池包的环境温度,控制单元21根据电池包的温度、电压和环境温度来调节电池包的充电电流,防止电池包的温度在充电过程中升高达到第一预设温度而进入过温保护状 态。
在本发明的第二实施例中,控制单元21根据参数检测单元31检测的电池包的参数调节电池包的充电电流,其中,电池包的参数可以是电池包的温度,或者电池包的温度和电压,或者电池包的温度,电压和环境温度的组合。当电池包的温度低于阈值时,控制单元调节电池包的充电电流增大,将电池包的温度限制在第一预设温度和第二预设温度之间。本发明中,上述阈值可以为一固定的温度也可以是一浮动的不固定的温度,实际操作中可根据实际情况决定阈值的大小。
在上述第二实施例中,电池包在充电过程中,温度不断升高,当电池包的温度达到某一临界温度T时,控制单元21调节电池包的充电电流减少,使电池包的温度下降,当电池包的温度下降至一阈值时,控制单元21调节电池包的充电电流增大,使得电池包的温度上升,将电池包的温度限制在第一预设温度和第二预设温度之间,其中,第一预设温度大于第二预设温度,且临界温度T为一浮动的温度,实际操作中可根据电池包的类型或环境温度等因素决定临界温度T的大小。
在上述第二实施例中,控制单元21通过调节电池包的内外参数,例如环境温度和电池包的温度,电压等参数,将电池包的温度限制在第一预设温度和第二预设温度之间,既能防止电池包的温度大于第一预设温度,使得电池包进入过温保护,进入过温保护的电池包需要等待一段时间,使得电池包的温度回落,一段时间后电池包的温度低于第一预设温度时,电池包重新开始充电,其中,等待的过程延长了电池包的充电时间。本实施例将电池包的温度限制在不低于第二预设温度,防止充电装置在调节电池包充电电流的过程中,将充电电流调节的较小,充电电流较小时,电池包虽然不会进入过温保护,但是,较小的充电电流会使得电池包达到预设电压的时间延长,即延长了电池包的充电时间。因此,将电池包的温度限制在第一预设温度和第二预设温度之间,可以使得电池包在不进入过温保护的前提下,充电时间最短。
在上述第一,第二实施例中,调节电流的方式可以通过控制单元21调节占空比,进而调节电池包的充电电流的数值大小。
上述第一,第二实施例中,充电装置可以给一个电池包充电,为了达到更高的充电效率,充电装置可以给至少两个电池包充电,即充电装置可以给第一电池包和第二电池包充电。
在本发明的第三实施例中,充电装置包括第一充电接口和第二充电接口,电池包包括第一电池包和第二电池包,第一电池包和第二电池包分别与第一充电接口和第二充电接口电连接,控制单元21控制充电电流交替的给第一电池包和第二电池包充电,参数检测单元31分别检测第一电池包和第二电池包的参数,控制单元21根据参数检测单元31的输出来调节第一电池包和第二电池包在充电过程中的充电电流,防止第一电池包和第二电池包的温度达到第一预设温度。
具体的,请参考图2所示,电源电路11通过第一开关41连接第一电池包,通过第二开关42连接第二电池包,控制单元21分别电连接第一开关41和第二开关41,控制单元21交替循环的控制第一开关41和第二开关42的闭合,交替的给第一电池包和第二电池包充电,即第一电池包充电一段时间后,控制单元21控制第一开关41断开,停止对第一电池包的充电,控制单元21控制第二开关42闭合,第二电池包开始充电,通过交替得控制第一开关41和第二开关42的闭合,控制单元21交替的给第一电池包和第二电池包充电,使得第二电池包在第一电池包充电的过程中可以进行冷却,防止第二电池包的温度持续上升,达到第一预设温度而影响第二电池包的寿命和充电效率。在本发明中,控制单元21根据参数检测单元31检测的第一电池包和第二电池包的参数调节对应电池包的充电电流,电池包的参数可以是电池包的温度或者电池包的温度和电压,或者电池包的温度,电压和环境温度的组合。本实施例中,通过电流调节的方式使得第一电池包和第二电池包的温度始终在第一预设温度的附近但不超过第一预设温度,使得第一电池包和第二电池包在不进入过温保护的前提下,充电时间最短,两个电池包的充电效率最高。
上述第三实施例通过交替的给第一电池包和第二电池包充电,使得同一时间只有一个电池包处于充电状态,既满足了充电状态的电池包可以以充电装置提供的最大充电电流充电,又可通过交替充电防止电池包温度上升至第一预设温度,电池包在充电-等待-充电的过程中,在充电阶段可以以一个相对较高的电流充电,在等待阶段使得电池包温度回落,在充电阶段继续该电流充电,既防止电池包进入过温保护,又缩短了充电时间。电池包温度上升进入过温保护状态。从而保证了电池包高效率的充电。其中,交替充电的过程中,当其中一个电池包在充电-等待-充电的过程中,充电阶段充电电流的 数值过大,即使有等待阶段,电池包的温度回落也比较小,在下次充电的过程中仍有可等达到第一预设温度,因此,为了防止第一电池包或第二电池包在交替充电的过程中,温度达到第一预设温度,电池包进入过温保护,进而进入等待状态等待电池包的温度回落,延长电池包的充电时间,本发明在交替充电的过程中,分别调节第一电池包和第二电池包的充电电流,防止电池包在充电阶段上升的温度无法在等待阶段回落,使得第一电池包和第二电池包均不会进入过温保护状态,缩短充电时间,提高了两个电池包的充电效率。
在上述实施例中,调节第一电池包和第二电池包的充电电流的方式包括调节第一电池包和第二电池包的充电电流的数值大小或者调节第一电池包和第二电池包交替充电过程中每次充电的充电时间,或者既调节第一电池包和第二电池包的充电电流的数值大小又调节第一电池包和第二电池包交替充电过程中每次充电的充电时间。本发明通过调节第一电池包和第二电池包的充电电流的数值大小可以防止充电电流过大,电池包的温度上升过快,调节交替充电的间隔时间,可以使得第一电池包或第二电池包的温度在等待阶段可以进行回落,使得第一电池包或第二电池包可以以较大的充电电流进行充电,通过智能的调节交替充电的间隔时间或者说交替充电的充电时间,使得电池包的充电效率最高。
具体的,在本发明的第四实施例中,提供一种充电装置,请参考图2所示,,与第三实施例的不同之处在于,控制单元21根据参数检测单元31检测的各个电池包的参数调节对应电池包的充电时间,即控制单元21控制第一电池包和第二电池包交替充电,控制单元21控制第一电池包充电时间达到T1后控制单元21控制第一开关41断开,停止对第一电池包充电,控制单元21控制第二开关42闭合,第二电池包开始充电,充电时间达到T2后控制单元21控制第二开关42断开,停止对第二电池包充电,控制单元21控制第一电池包开始充电,其中,T1和T2由控制单元21根据第一电池包和第二电池包的参数决定,本发明根据第一电池包和第二电池包的温度差或者电压的差值,或者电压和温度一起决定第一电池包和第二电池包在充电过程中充电电流的数值大小和充电时间T1和T2的大小或者比值。
上述实施例根据电池包的参数决定第一电池包和第二电池包交替充电过程中充电电流数值大小和交替充电中充电时间的长短,根据间隔时间的长短调节电池包的温度,防止电池包的温度过高达到第一预设温度,影响电池包 寿命和充电效率。
在本发明的第五实施例中,在第三实施例和第四实施例的基础上,还包括比较模块,用于比较第一电池包的参数与第二电池包的参数的差值是否大于预设值,若第一电池包的参数大于第二电池包的参数,且两电池包的参数差值大于预设值,则控制单元控制第一电池包的充电电流减小,充电时间减小,控制第二电池包的充电电流不变,但是充电时间增大。
本实施例中,根据电池包的参数的差值调节交替充电的切换时间,温度或电压高的电池包充电电流减小,充电时间缩短,温度或电压低的电池包充电时间延长,这样,温度高的电池包在温度低的电池包的充电过程中,可进行冷却,使其温度回落,防止温度高的电池包的温度继续上升进入过温保护,影响充电效率。
上述实施例中,电池包的参数可以单独为温度,即根据两个电池包的温度差调节交替充电过程中各电池包的充电电流的数值大小或交替充电间隔时间,或者同时调节两个电池包的充电电流数值的大小和交替充电的间隔时间。电池包的参数还可以是温度和电压,根据两个电池包的温度差和电压差调节交替充电过程中各电池包的充电电流数值的大小或交替充电间隔时间,或者同时调节两个电池包的充电电流数值的大小和交替充电的间隔时间。例如,判断条件为:1、判断所述第一电池包的温度是否高于第二电池包的温度且二者的差值是否达到第一预设值;2、判断所述第一电池包的电压是否高于第二电池包的电压且二者的差值是否达到第二预设值。
当第一电池包和第二电池包的温度和电压符合条件1时,则控制第一电池包的充电电流的数值和充电时间均减小,控制第二电池包的充电电流不变,充电时间增大;若不满足,则判断第一电池包和第二电池包的电压和温度是否满足条件2,若满足条件2,则控制第一电池包的充电电流的数值和充电时间均减少,控制第二电池包的充电电流不变,充电时间增大。
在上述实施例中,控制单元还会根据环境温度控制电池包的充电电流,当环境温度高时,控制充电电流相对于减小,防止电池包进入过温保护状态,当环境温度低时,控制充电电流相对于增大,提高充电效率。
在上述第三至第五实施例中,当充电装置的两个充电接口先连接第一电池包时,参数检测单元检测第一电池包的参数,根据第一电池包的参数控制第一电池包的充电电流,当充电装置连接第二电池包时,参数检测单元检测 第一电池包的参数和第二电池包的参数,并传输给比较模块,比较模块比较两电池包参数的大小,若其中一个电池包为高温电池包,另一电池包为低温电池包,则控制单元控制低温电池包先充电,当达到临界温度时,停止充电,此时高温电池包的温度低于第一预设温度,控制单元切换至高温电池包开始充电,并根据高温电池包的参数决定充电电流的大小,根据两个电池包的温度差决定交替充电间隔的时间。
在本发明的第六实施例中,控制单元包括一个控制器,第一电池包通过第一开关连接该控制器,第二电池包通过第二开关连接该控制器,控制器交替的控制第一开关和第二开关的闭合,当控制器控制第一开关闭合时,第一电池包充电,充电T1时间后,控制器控制第一开关断开,控制第二开关闭合,第二电池包开始充电。本发明通过一个控制器控制两个电池包交替充电,既可以达到较高的充电效率又节约了成本。
上述第三实施例至第五实施例的第一充电阶段之后还包括第二充电阶段,即参数检测单元检测的第一电池包和第二电池包电压均达到电压阈值后,控制单元控制第一电池包和第二电池包从交替充电的第一充电阶段切换到第二充电阶段,其中,在第二充电阶段,第一电池包和第二电池包并联恒压充电。若其中一个电池包的电压先达到电压阈值,则该电池包进入搁置装置,另一电池包单独充电,当两个电池包的电压均达到电压阈值后,两个电池包一起进入恒压充电解阶段。
本领域技术人员可知的,在第二充电阶段中,第一电池包和第二电池包在一定时间范围内先后充电,例如,第一个电池包开始第二阶段充电0.05s后,第二电池包开始第二充电阶段充电。优选的,第一电池包和第二电池包同时并联充电。
上述实施例中,电压阈值可以为一固定的电压值,也可以为一浮动的电压值,第二充电阶段的时间大于该电池包在第一充电阶段的充电时间。若两个电池包一个恒压充电后再恒压充另一个,每一个电池包都需要一个恒压充电阶段,这样,两个电池包均完成充电的时间会较长。本发明控制器控制第一电池包和第二电池包同时进入恒压阶段,减少了两个电池包恒压充电阶段的时间,提高了充电效率。
具体的,在本发明的第七实施例中,参数检测单元检测第一电池包和第二电池包的参数,并判断第一电池包和第二电池包的温度是否达到第一预设 温度,若是,则达到第一预设温度的电池包进入过温保护,另一电池包根据参数检测单元检测的参数控制充电电流,若第一电池包和第二电池包的温度均低于第一预设温度,则控制单元控制与第一电池包连接的第一开关闭合,控制单元根据存储模块存储的电池包参数与充电电流关系的对应关系表中查找第一电池包的充电电流,并控制第一电池包以该充电电流和预设充电时间充电。当第一电池包达到预设充电时间后,控制单元控制第一开关断开,充电装置停止对第一电池包进行充电,同时,控制单元控制第二开关闭合,控制单元根据存储模块存储的对应关系表查找第二电池包的充电电流,并控制第二电池包以该充电电流充电预设充电时间,达到预设充电时间后,控制单元控制第二开关断开,控制第一开关闭合,交替的对第一电池包和第二电池包充电。充电过程中,参数检测单元检测第一电池包和第二电池包的电压,当其中一个电池包的电压达到电压阈值,该电池包进入搁置模式,控制单元根据参数检测模块检测的参数查表获得另一电池包的充电电流,控制另一电池包持续充电至电压阈值后,控制单元同时打开第一开关和第二开关,控制第一电池包和第二电池包并联充电,达到充电截止电压后,停止充电。
上述实施例中,若第一电池包的温度高于第一预设温度,则控制单元控制第二电池包持续单独充电,充电过程中检测第一电池包的温度是否小于第一预设温度,第一充电阶段内,若第一电池包的温度低于第一预设温度,控制单元控制第一电池包和第二电池包交替充电,达到电压阈值后,控制单元控制第一电池包和第二电池包一起进行恒压充电。若计算第二电池包满充时,第一电池包的温度仍高于第一预设温度,则控制单元控制第二电池包满充后再控制第一电池包充电。
在本发明的第八实施例中,请参考图3所示,一种充电方法,用于给电池包充电,所述电池包可拆卸的安装于电动工具上,为电动工具提供电能,所述方法包括以下步骤:
S10:检测与电池包的充电电流有关的参数,所述参数包括电池包的温度;
S20:根据检测的参数来调节电池包的充电电流,防止电池包的温度达到第一预设温度。其中,当电池包的温度达到第一预设温度时,电池包进入过温保护状态。
上述实施例中,参数可以为电池包的温度,还可以是电池包的温度和电 压的组合,还可以是电池包的温度,电压和环境温度的组合。
本发明还提供一种采用上述第二至第七实施任一实施例中的充电装置的充电方法,具体的,在上述第八实施例的基础上,还包括步骤:
当所述电池包的温度低于阈值时,控制单元调节电池包的充电电流增大,将电池包的温度限制在第一预设温度和第二预设温度之间。
其中,本发明通过调节占空比来调节电池包的充电电流。
本发明的其中一实施例中,充电装置包括第一充电接口和第二充电接口,分别用于连接第一电池包和第二电池包,该充电方法进一步包括:
交替的控制第一电池包和第二电池包进行第一充电阶段的充电;当有两个电池包时,充电装置交替的给第一电池包和第二电池包充电。在上述实施例中,调节第一电池包和第二电池包的充电电流的方式包括调节第一电池包和第二电池包的充电电流的数值大小或者调节第一电池包和第二电池包交替充电过程中每次充电的充电时间,或者既调节第一电池包和第二电池包的充电电流的数值大小又调节第一电池包和第二电池包交替充电过程中每次充电的充电时间。本发明通过调节第一电池包和第二电池包的充电电流的数值大小可以防止充电电流过大,电池包的温度上升过快,调节交替充电的间隔时间,可以使得第一电池包或第二电池包的温度在等待阶段可以进行回落,使得第一电池包或第二电池包可以以较大的充电电流进行充电,通过智能的调节交替充电的间隔时间或者说交替充电的充电时间,使得电池包的充电效率最高。
进一步的,当第一电池包和第二电池包的参数值相差较大时,判断第一电池包的温度和第二电池包的温度的差值是否在预设范围外。即判断第一电池包的温度是否大于第二电池包的温度,且差值大于预设范围;若是,则控制第一电池包的充电电流减小,充电时间减小,控制第二电池包的充电电流不变,充电时间增大。本发明温度高的第一电池包的充电电流和充电时间均减少,温度低的第二电池包充电电流不变,充电时间增大,使得第一电池包和第二电池包均能达到较高的充电效率,且不进入过温保护。
在上述实施例中,每个充电周期的开始预先判断第一电池包和第二电池包的温度差是否在预设的范围外,若是,则说明其中一个电池包的温度相对过高,则减小温度高的电池包的充电电流和充电时间,同时增大温度低的电池包的充电时间。本实施例在充电过程中可智能调节两个电池包的充电电流 的数值大小和充电时间,防止其中一个电池包的温度过高,达到过温保护的限制值而停止充电,从而影响两个电池包完成充电的时间,影响充电效率。
进一步的,参数还包括电压,判断条件为:判断第一电池包的电压和第二电池包的电压的差值是否在预设范围外,若是,则电压高的电池包的充电电流和充电时间减小,电压低的电池包的充电电流不变,充电时间增长,具体控制方法与上述实施例相同,在此不再一一赘述。本实施例每个充电周期的开始预先判断第一电池包和第二电池包的电压差是否在预设范围外,若是,则说明其中一个电池包的电压过高,则减小高压电池包的充电电流和充电时间,同时增大低压电池包的充电时间,以防止电压过高的电池包相对于电压低的电池包过早的完成第一充电阶段,使得电压低的电池包单独进行第一充电阶段的充电而产生温度过高,达到过温保护的限制值而停止充电的情况,因此,本实施例中,每个周期调节两个电池包的充电电流和充电时间,尽可能的使得两个电池包交替充电,提高充电效率,缩短充电时间。
进一步的,参数包括温度和电压,判断条件为:1、判断所述第一电池包的温度是否高于第二电池包的温度且二者的差值是否达到第一预设值;2、判断所述第一电池包的电压是否高于第二电池包的电压且二者的差值是否达到第二预设值。具体请参考图4所示,两个电池包A包和B包分别连接充电装置的两个电池包接口,开始充电时,判断A包温度是否大于B包温度且A包与B包的温度差是否在大于预设值,若是,则调节A包的充电电流I1减小,充电时间T1减小,B包的充电电流I2不变,充电时间T2增大。否则,再判断A包的电压是否大于B包的电压且A包电压与B包电压差大于预设值,若A包与B包电压差大于预设值,则控制A包充电电流I1减小,充电时间T1减小,B包的充电电流I2不变,充电时间T2增大。若A包与B包的电压差不大于预设值,则判断B包温度是否大于A包温度,且B包与A包的温度差是否大于预设值,若是,则调节B包的充电电流I2减小,充电时间T2减小,A包的充电电流I1不变,充电时间T1增大。若B包与A包的温度差不大于预设值,则判断B包电压是否大于A包电压,且B包与A包的电压差是否大于预设值,若是,则控制B包的充电电流I2减小,充电时间T2减小,A包的充电电流I1不变,充电时间T1增大。否则,若上述条件均不满足,则控制A包充电电流和充电时间不变,B包充电电流和充电时间不变。
在上述各实施例中,如何更准确的预先设置第一电池包和第二电池包的充电电流和充电时间,关系到第一电池包和第二电池包是否能以最高效率进行充电。设置的充电电流过大,可能会影响电池包的使用寿命,设置的过小,会延长充电时间,因此,如何设置合适的充电电流至关重要。
在上述各充电方法的实施例中,第一充电阶段之后还包括第二充电阶段,当第一电池包和第二电池包的电压均达到电压阈值时,控制第一电池包和第二电池包从第一充电阶段切换到第二充电阶段,在第二充电阶段对第一电池包和第二电池包进行并联恒压充电。若其中一个电池包的电压先达到电压阈值,则该电池包进入搁置装置,另一电池包单独充电,当两个电池包的电压均达到电压阈值后,两个电池包一起进入恒压充电解阶段。
具体请参考图5所示,充电过程中,检测A包和B包的电压,判断A包电压是否达到预设电压,即是否达到预设值,若是,则控制A包停止充电,此时A包的充电电流I1=0,充电时间T1=0;否则,判断B包的电压是否达到预设电压,即是否达到预设值,若是,则控制B包停止充电,此时B包的充电电流I2=0,充电时间T2=0,否则,判断I1=T1=I2=T2=0?,若是,则控制A包B包同时充电,若不满足I1=T1=I2=T2=0,则控制A包充电电流为I1,充电时间为T1,B包充电电流为I2,充电时间为T2。
本领域技术人员可知的,在第二充电阶段中,第一电池包和第二电池包在一定时间范围内先后充电,例如,第一个电池包开始第二阶段充电0.05s后,第二电池包开始第二充电阶段充电。优选的,第一电池包和第二电池包同时并联充电。
上述实施例中,电压阈值可以为一固定的电压值,也可以为一浮动的电压值,第二充电阶段的时间大于该电池包在第一充电阶段的充电时间。若两个电池包一个恒压充电后再恒压充另一个,每一个电池包都需要一个恒压充电阶段,这样,两个电池包均完成充电的时间会较长。本发明控制器控制第一电池包和第二电池包同时进入恒压阶段,减少了两个电池包恒压充电阶段的时间,提高了充电效率。
上述各实施例还包括步骤:
分别获取电池包和第二电池包在第一充电阶段的充电电流。
其中,第一电池参数可以是电池包的充放电循环次数,充电开始前,分别获取第一电池包的充放电循环次数和第二电池包的充放电循环次数,将第 一电池包和第二电池包的充放电循环次数分别与预先存储的充电电流关系表的数据进行比对,找到第一电池包和第二电池包分别对应的充电电流,其中,充电电流关系表中包括充电循环次数与电流的一一对应关系。
通过获取第一电池包的充放电循环次数和第二电池包的充放电循环次数可获知第一电池包的寿命和第二电池包的寿命,根据电池包的寿命设置充电电流,即充放电循环次数多的电池包设置的充电电流相对于充放电循环次数小的电池包的充电电流小,具体数值可通过预先存储的充电电流关系表中的数据查询得到。如此,能够根据电池包寿命设置不同的充电电流,防止寿命短的电池包大电流充电,造成电池包的损坏。
第一电池参数还可以是电池包的容量,充电开始前,分别获取第一电池包的容量和第二电池包的容量,将第一电池包和第二电池包的容量分别与预先存储的充电电流关系表的数据进行比对,找到第一电池包和第二电池包分别对应的充电电流,其中,充电电流关系表中包括容量与电流的一一对应关系。
通过获取第一电池包的容量和第二电池包的容量设置的充电电流,容量大的电池包充电电流大于容量小的电池包的充电电流,具体数值可通过预先存储的充电电流关系表中的数据查询得到。通过对大容量的电池包设置相对高的充电电流可缩短该电池包在第一充电阶段的时间,防止另一电池包得到第一预设电压后,需要进入等待状态,等待大容量的电池包的电压达到第一预设电压,从而节约了时间,提高了充电效率。
其中,本领域技术人员可知的,第一电池参数既可以是电池包的容量,也可以是电池包的充放电循环次数。
本发明通过检测电池包的内外参数,根据电池包的内外参数智能调节电池包的电流,防止电池包的温度达到第一预设值,使得电池包在不进入过温保护的前提下可以达到最高的充电效果。
对于双包充电装置,不仅通过参数调节电池包的充电电流,还可以通过交替充电来提高充电效率,通过调节交替充电的充电电流和充电时间,使得不同的电压,温度的两个电池包智能调节充电电流和交替充电的时间,使得双包充电装置达到最高的充电效率。
图7示出了根据本发明实施例的一种充电方法的流程图。该方法适用于当多个电池包连接在同一个充电装置上时控制对该多个电池包进行充电,其 中多个电池包形成预设循环充电顺序。多个电池包可以是不同种类、不同型号以及不同额定电压、不同额定电流的。例如,如图6所示,充电装置上连接有电池包A、B、C,该充电装置通过本发明所提供的充电方法对这四个电池包进行充电,假设预设循环充电顺序为:A-B-C-A-B-C-…。根据图7所示,该方法包括如下步骤:
S110:控制充电装置对当前电池包进行充电。
S120:判断对当前电池包的本次充电时长是否达到预设单次充电时长。当对当前电池包的本次充电时长达到预设单次充电时长时,执行步骤S130;否则继续执行步骤S110。
此处“对当前电池包的本次充电时长”是指至执行判断步骤的时刻前,电池包在本次循环过程中的累计充电时长。
此处“预设单次充电时长”是指按照预设循环充电顺序对电池包进行充电时,预先设置的、一次循环过程对电池包的累计充电总时长。各个电池包分别对应的预设单次充电时长可以是相同的;也可以是不同的,例如各个电池包分别对应的预设单次充电时长与其充电电压、待充电量或者充电电流呈预设数量关系(如与待充电量成正比例关系)。
S130:将预设循环充电顺序中当前电池包的下一电池包设置为当前电池包,并跳转至步骤S110。
在控制充电装置对电池包进行充电的初始时刻,首先可以以预设循环充电顺序中的第一个电池包A为当前电池包,或者随机确定任意一个电池包为当前电池包。
沿用上例,假设当前电池包为A,并且电池包A的预设单次充电时长为30秒。首先控制充电装置对当前电池包A进行充电。
第一次判断对当前电池包A的本次充电时长是否达到30秒。若此时对当前电池包A的本次充电时长不足30秒,则继续控制充电装置对电池包进行充电。
若当前电池包A的本次充电时长达到30秒,则将预设循环充电顺序中电池包A的下一电池包B设置为当前电池包。
控制充电装置对当前电池包B进行充电。假设电池包B的预设单次充电 时长为40秒。
第一次判断对当前电池包B的本次充电时长是否达到40秒。若此时对当前电池包B的本次充电时长不足40秒,则继续控制充电装置对电池包进行充电。
若当前电池包B的本次充电时长达到40秒,则将预设循环充电顺序中电池包B的下一电池包C设置为当前电池包。
控制充电装置对当前电池包C进行充电。假设电池包C的预设单次充电时长为50秒。
第一次判断对当前电池包C的本次充电时长是否达到50秒。若此时对当前电池包C的本次充电时长不足50秒,则继续控制充电装置对电池包进行充电。
若当前电池包C的本次充电时长达到50秒,则将预设循环充电顺序中电池包C的下一电池包A设置为当前电池包。至此完成预设循环充电顺序的第一次循环。
在上述充电方式下,充电装置持续输出电压或电流,而对单个电池包则表现为脉冲充电的方式,如图8所示,横轴表示时间,线条1表示电池包A的充电电压或充电电流,线条2表示电池包B的充电电压或充电电流,线条3表示电池包C的充电电压或充电电流,线条4表示充电装置的输出电压或电流。需要补充说明的是,线条4所示的仅仅是各个电池包的充电电压或充电电流相等的情形,实际上各个电池包的充电电压或充电电流可以不相等。
对于多个电池包,传统的充电方法是先对一个电池包充满电,然后再对其他电池包充电。但是,当充电电流较大时,电池包内存在电池极化现象,导致可能以6A电流充电与以4A电流充电的充电速度是一样的。因此,传统的充电方法不能够以较大的电流对单个电池包充电。而本申请的充电方法,对于单个电池包所采用的是脉冲充电的方式,即先以较大的充电电流对电池包进行充电,然后停止充电一段时间等待电池包内去极化现象,从而下一次再对该电池包进行充电时,依然能够以较大的充电电流对其充电,从而能够缩短对单个电池包的总体充电时间以及多个电池包的总体充电时间。
通过上述分析可知,本申请所提供的充电装置,一方面,对单个电池包 采用脉冲充电的方式,可以以较大的充电电流对电池包充电,从而缩短对单个电池包的充电时间;单个电池包两次充电脉冲之间有时间间隙,可以防止长时间充电导致电池包发热,缩短电池使用寿命;另一方面,在对某一电池包的脉冲充电间隙内对其他电池包进行充电,充分利用充电间隙,可以减少多个电池包的总体充电时间。
需要补充说明的是,本申请中所述的“电池包”可以为多个电池单体组成的电池包,也可以是一个电池单体(电池包由一个电池单体组成)。
图9示出了根据本发明实施例的另一种充电方法的流程图。该方法适用于当多个电池包连接在同一个充电装置上时控制对该多个电池包进行充电,其中多个电池包形成预设循环充电顺序。多个电池包可以是不同种类、不同型号以及不同额定电压、不同额定电流的。例如,如图1所示,充电装置上连接有电池包A、B、C,该充电装置通过本发明所提供的充电方法对这四个电池包进行充电,假设预设循环充电顺序为:A-B-C-A-B-C-…。根据图9所示,该方法包括如下步骤:
S210:获取每个电池包的当前电量以及额定电量。
可选地,获取每个电池包的当前电量的方式可以是先获取每个电池包的当前电压,然后根据电池包的电压与电量的对应关系估算电池包的当前电量。或者也可以通过电池包的充电电流对时间进行积分的方式获取电池包的当前电量。本申请对电池包的当前电量的获取方式不做限定。
电池包的额定电量可以是预先存储、与电池包的标识一一对应的,从而根据电池包的标识便可以获取电池包的额定容量。
S220:计算每个电池包的待充电量,待充电量为额定电量与当前电量的差值。
S230:确定多个电池包分别对应的预设单次充电时长,其中多个电池包之间的预设单次充电时长的比值与待充电量的比值相同。
依然采用实施例一所述示例,电池包A、B、C的待充电量的比值为3:4:5,则确定电池包A、B、C的预设单次充电时长为30秒、40秒、50秒,以便电池包A、B、C能够同时完成充电过程,从而用户可以同时使用。
S240:确定多个电池包的预设循环充电顺序。
例如,确定预设循环充电顺序为:A-B-C-A-B-C-…,即先对电池包A充电,再对电池包B充电,然后对电池包C充电,至此完成一个循环;再按照上述顺序分别对电池包A、B、C充电,完成第二个循环……依次类推。
S250:判断当前电池包是否满足充电截止条件。当当前电池包满足充电截止条件时,执行步骤S260;否则执行步骤S270。
充电截止条件可以为电池包两端的电压达到预定电压,或者电池包的充电电流达到预定充电电流。
S260:将当前电池包从预设循环充电顺序中删除。
S270:控制充电装置对当前电池包进行充电。
S280:充电达到预设时长时,判断对当前电池包的本次充电时长是否达到预设单次充电时长。当对当前电池包的本次充电时长达到预设单次充电时长时,执行步骤S290;否则继续执行步骤S270。
此处“预设时长”为执行判断操作的时间间隔。
此处“对当前电池包的本次充电时长”是指按照预设循环充电顺序对电池包进行充电时,一次循环过程对电池包的充电时长。
S290:将预设循环充电顺序中当前电池包的下一电池包设置为当前电池包,并跳转至步骤S270。
沿用上例,假设当前电池包为A,并且电池包A的预设单次充电时长为30秒,预设时长(即执行判断操作的时间间隔)为5秒。首先控制充电装置对当前电池包A进行充电。
充电达到5秒时,判断对当前电池包A的本次充电时长是否达到30秒。由于第一次判断时对当前电池包A的本次充电时长不足30秒,因此继续控制充电装置对电池包进行充电。
当执行第六次判断时,对当前电池包A的本次充电时长达到30秒。此时将预设循环充电顺序中电池包A的下一电池包B设置为当前电池包。
控制充电装置对当前电池包B进行充电。假设电池包B的预设单次充电时长为40秒,预设时长为5秒。
充电达到5秒时,判断对当前电池包B的本次充电时长是否达到40秒。由于第一次判断时对当前电池包B的本次充电时长不足40秒,因此继续控 制充电装置对电池包进行充电。
当执行第八次判断时,对当前电池包B的本次充电时长达到40秒。此时将预设循环充电顺序中电池包B的下一电池包C设置为当前电池包。
控制充电装置对当前电池包C进行充电。假设电池包C的预设单次充电时长为50秒,预设时长为5秒。
充电达到5秒时,判断对当前电池包C的本次充电时长是否达到50秒。由于第一次判断时对当前电池包C的本次充电时长不足50秒,因此继续控制充电装置对电池包进行充电。
当执行第十次判断时,对当前电池包C的本次充电时长达到50秒。此时将预设循环充电顺序中电池包C的下一电池包A设置为当前电池包。至此完成预设循环充电顺序的第一次循环。
图10示出了根据本发明实施例的再一种充电方法的流程图。该方法适用于当多个电池包连接在同一个充电装置上时控制对该多个电池包进行充电,其中多个电池包形成预设循环充电顺序。多个电池包可以是不同种类、不同型号以及不同额定电压、不同额定电流的。例如,如图6所示,充电装置上连接有电池包A、B、C,该充电装置通过本发明所提供的充电方法对这四个电池包进行充电,假设预设循环充电顺序为:A-B-C-A-B-C-…。根据图10所示,该方法包括如下步骤:
S310:获取每个电池包的当前电量以及额定电量。
S320:计算每个电池包的待充电量,待充电量为额定电量与当前电量的差值。
S330:确定多个电池包分别对应的预设单次充电时长,其中多个电池包之间的预设单次充电时长的比值与待充电量的比值相同。
S340:确定多个电池包的预设循环充电顺序。
上述步骤S310、S320、S330和S340请参阅实施例一中的S210、S220、S230和S240,在此不再赘述。
S350:判断当前电池包是否满足充电截止条件;当当前电池包满足充电截止条件时,执行步骤S380;否则,执行步骤S360。
充电截止条件可以为电池包两端的电压达到预定电压,或者电池包的充 电电流达到预定充电电流。
S360:控制充电装置对当前电池包进行充电。
S370:判断对当前电池包的本次充电时长是否达到预设单次充电时长。当对当前电池包的本次充电时长达到预设单次充电时长时,执行步骤S380;否则继续执行步骤S360。
此处“对当前电池包的本次充电时长”是指按照预设循环充电顺序对电池包进行充电时,一次循环过程对电池包的充电时长。
S380:将预设循环充电顺序中当前电池包的下一电池包设置为当前电池包,并跳转至步骤S360。
上述步骤S360、S370和S380请参阅实施例一中的S110、S120和S130,或者实施例二中的S270、S280和S290,在此不再赘述。
图11示出了根据本发明实施例的一种充电装置的原理框图。该装置适用于当多个电池包连接在同一个充电装置上时控制对该多个电池包进行充电,其中多个电池包形成预设循环充电顺序。多个电池包可以是不同种类、不同型号以及不同额定电压、不同额定电流的。例如,如图6所示,充电装置上连接有电池包A、B、C,该充电装置通过本发明所提供的充电方法对这四个电池包进行充电,假设预设循环充电顺序为:A-B-C-A-B-C-…。根据图11所示,该装置包括充电单元10、第一判断单元20和设置单元30,用于执行实施例一所述的充电方法。
充电单元10,用于控制充电装置对当前电池包进行充电。
第一判断单元20,用于判断对当前电池包的本次充电时长是否达到预设单次充电时长。
设置单元30,用于将预设循环充电顺序中当前电池包的下一电池包设置为当前电池包。
上述充电装置执行实施例一所述的充电方法,一方面,对单个电池包采用脉冲充电的方式,可以以较大的充电电流对电池包充电,从而缩短对单个电池包的充电时间;单个电池包两次充电脉冲之间有时间间隙,可以防止长时间充电导致电池包发热,缩短电池使用寿命;另一方面,在对某一电池包的脉冲充电间隙内对其他电池包进行充电,充分利用充电间隙,可以减少多 个电池包的总体充电时间。
图12示出了根据本发明实施例的另一种充电装置的原理框图。该装置适用于当多个电池包连接在同一个充电装置上时控制对该多个电池包进行充电,其中多个电池包形成预设循环充电顺序。多个电池包可以是不同种类、不同型号以及不同额定电压、不同额定电流的。例如,如图6所示,充电装置上连接有电池包A、B、C,该充电装置通过本发明所提供的充电方法对这四个电池包进行充电,假设预设循环充电顺序为:A-B-C-A-B-C-…。根据图12所示,该装置包括充电单元10、第一判断单元20、设置单元30、第一确定单元40、第二判断单元50、计算单元70和第二确定单元80,用于执行实施例二所述的充电方法。
充电单元10,用于控制充电装置对当前电池包进行充电。
第一判断单元20,用于判断对当前电池包的本次充电时长是否达到预设单次充电时长。
设置单元30,用于将预设循环充电顺序中当前电池包的下一电池包设置为当前电池包。
第一确定单元40,用于确定多个电池包的预设循环充电顺序。
第二判断单元50,用于判断当前电池包是否满足充电截止条件。
删除单元60,用于当当前电池包满足充电截止条件时,将当前电池包从预设循环充电顺序中删除。
获取单元70,用于获取每个电池包的当前电量以及额定电量。
计算单元80,用于计算每个电池包的待充电量,待充电量为额定电量与当前电量的差值。
第二确定单元90,用于确定多个电池包分别对应的预设单次充电时长,其中多个电池包之间的预设单次充电时长的比值与待充电量的比值相同。
图13示出了根据本发明实施例的再一种充电装置的原理框图。该装置适用于当多个电池包连接在同一个充电装置上时控制对该多个电池包进行充电,其中多个电池包形成预设循环充电顺序。多个电池包可以是不同种类、不同型号以及不同额定电压、不同额定电流的。例如,如图6所示,充电装置上连接有电池包A、B、C,该充电装置通过本发明所提供的充电方法对这 四个电池包进行充电,假设预设循环充电顺序为:A-B-C-A-B-C-…。根据图13所示,该装置包括充电单元10、第一判断单元20、设置单元30、第一确定单元40、第二判断单元50、获取单元60、计算单元70和第二确定单元80,用于执行实施例三所述的充电方法。
充电单元10,用于控制充电装置对当前电池包进行充电。
第一判断单元20,用于判断对当前电池包的本次充电时长是否达到预设单次充电时长。
设置单元30,用于将预设循环充电顺序中当前电池包的下一电池包设置为当前电池包。
第一确定单元40,用于确定多个电池包的预设循环充电顺序。
第二判断单元50,用于判断当前电池包是否满足充电截止条件。
获取单元70,用于获取每个电池包的当前电量以及额定电量。
计算单元80,用于计算每个电池包的待充电量,待充电量为额定电量与当前电量的差值。
第二确定单元90,用于确定多个电池包分别对应的预设单次充电时长,其中多个电池包之间的预设单次充电时长的比值与待充电量的比值相同。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (21)

  1. 一种充电装置,用于给电池包充电,所述电池包可拆卸的安装于电动工具上,为电动工具提供电能,其特征在于,所述充电装置包括:
    参数检测单元,用于检测与电池包的充电电流有关的参数,所述参数包括电池包的温度;和
    控制单元,用于根据参数检测单元的输出来调节电池包的充电电流,防止电池包的温度达到第一预设温度,其中,当电池包的温度达到第一预设温度时,电池包进入过温保护状态。
  2. 根据权利要求1所述的充电装置,其特征在于,所述参数检测单元还用于检测电池包的电压,所述控制单元用于根据参数检测单元输出的电池包的温度和电压来调节电池包的充电电流,防止电池包的温度达到第一预设温度。
  3. 根据权利要求2所述的充电装置,其特征在于,所述参数检测单元还用于检测环境的温度,所述控制单元用于根据参数检测单元输出的电池包的温度、电压和环境温度来调节电池包的充电电流,防止电池包的温度达到第一预设温度。
  4. 根据权利要求1所述的充电装置,其特征在于,当所述电池包的温度低于阈值时,控制单元调节电池包的充电电流增大,使得所述电池包的温度不低于第二预设温度。
  5. 根据权利要求1所述的充电装置,其特征在于,所述控制单元通过调节占空比来调节电池包的充电电流的数值。
  6. 根据权利要求1所述的充电装置,其特征在于,所述充电装置包括第一充电接口和第二充电接口,所述电池包包括第一电池包和第二电池包,第一电池包和第二电池包分别与第一充电接口和第二充电接口电连接,所述控制单元控制充电电流交替的给第一电池包和第二电池包充电,所述参数检测单元分别检测第一电池包和第二电池包的参数,所述控制单元根据参数检测单元的输出来调节第一电池包和第二电池包在充电过程中的充电电流,防止第一电池包和第二电池包的温度达到第一预设温度。
  7. 根据权利要求6所述的充电装置,其特征在于,调节第一电池包和第二电池包的充电电流的方式包括调节第一电池包和第二电池包的充电电流的数值和调节第一电池包和第二电池包交替充电过程中每次充电的充电时间中的至少一种。
  8. 根据权利要求7所述的充电装置,其特征在于,所述充电装置还包括比较 模块,用于比较所述第一电池包和第二电池包的参数的差值是否大于预设值,若是,则控制单元控制参数大的电池包的充电电流的数值减小和/或交替充电中每次充电的充电时间减小。
  9. 根据权利要求1所述的充电装置,其特征在于,所述控制单元包括单控制器,所述单控制器分别连接第一电池包和第二电池包,控制第一电池包和第二电池包交替充电。
  10. 根据权利要求6所述的充电装置,其特征在于,所述充电装置对第一电池包和第二电池包的充电过程包括第一充电阶段和第二充电阶段,其中,所述充电装置在第一充电阶段输出的充电电流的数值大于第二阶段输出的充电电流的数值,所述充电装置在第一充电阶段控制充电电流交替的给第一电池包和第二电池包充电,在第二充电阶段,控制充电电流同时给第一电池包和第二电池包充电。
  11. 根据权利要求1所述的充电装置,其特征在于,还包括存储模块,用于存储所述参数与充电电流的对应关系表,所述控制模块根据所述对应关系表控制电池包的充电电流。
  12. 一种充电方法,用于给电池包充电,所述电池包可拆卸的安装于电动工具上,为电动工具提供电能,其特征在于,所述方法包括:
    检测与电池包的充电电流有关的参数,所述参数包括电池包的温度;
    根据检测的参数来调节电池包的充电电流,防止电池包的温度达到第一预设温度,其中,当电池包的温度达到第一预设温度时,电池包进入过温保护状态。
  13. 根据权利要求12所述的充电方法,其特征在于,所述参数还包括电池包的电压,所述根据检测的参数来调节电池包的充电电流,防止电池包的温度达到第一预设温度的步骤包括:
    根据检测的电池包的温度和电压来调节电池包的充电电流,防止电池包的温度达到第一预设温度。
  14. 根据权利要求13所述的充电方法,其特征在于,所述参数还包括环境的温度,所述根据检测的参数来调节电池包的充电电流,防止电池包的温度达到第一预设温度的步骤包括:
    根据检测的电池包的温度、电压和环境温度来调节电池包的充电电流,防止电池包的温度达到第一预设温度。
  15. 根据权利要求12所述的充电方法,其特征在于,所述充电方法还包括:当所述电池包的温度低于阈值时,控制单元调节电池包的充电电流增大,使得所述电池包的温度不低于第二预设温度。
  16. 根据权利要求12所述的充电方法,其特征在于,所述根据检测的参数来调节电池包的充电电流的步骤包括:
    根据检测的参数调节占空比来调节电池包的充电电流的数值。
  17. 根据权利要求12所述的充电方法,其特征在于,所述充电装置包括第一充电接口和第二充电接口,所述电池包包括第一电池包和第二电池包,第一电池包和第二电池包分别于第一充电接口和第二充电接口电连接,所述充电方法包括:
    控制充电电流交替的给第一电池包和第二电池包充电;
    分别检测第一电池包和第二电池包的参数;
    根据参数检测单元的输出来调节第一电池包和第二电池包在充电过程中的充电电流,防止第一电池包和第二电池包的温度达到第一预设温度。
  18. 根据权利要求17所述的充电方法,其特征在于,调节第一电池包和第二电池包的充电电流的方式包括调节第一电池包和第二电池包的充电电流的数值和调节第一电池包和第二电池包交替充电过程中每次充电的充电时间中的至少一种。
  19. 根据权利要求18所述的充电方法,其特征在于,所述充电方法还包括:比较所述第一电池包和第二电池包的参数的差值是否大于预设值;
    若是,则控制单元控制参数大的电池包的充电电流的数值减小和/或交替充电中每次充电的充电时间减小。
  20. 根据权利要求17所述的充电方法,其特征在于,所述充电装置对第一电池包和第二电池包的充电过程包括第一充电阶段和第二充电阶段,其中,所述充电装置在第一充电阶段输出的充电电流的数值大于第二阶段输出的充电电流的数值,所述充电装置在第一充电阶段控制充电电流交替的给第一电池包和第二电池包充电,在第二充电阶段,控制充电电流同时给第一电池包和第二电池包充电。
  21. 根据权利要求12所述的充电方法,其特征在于,所述充电方法还包括:预先存储所述参数与充电电流的对应关系表,根据所述对应关系表控制电池包的充电电流。
PCT/CN2018/091631 2017-06-15 2018-06-15 充电装置及充电方法 WO2018228559A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18818683.7A EP3641046B1 (en) 2017-06-15 2018-06-15 Charging device and charging method
US16/622,595 US11522381B2 (en) 2017-06-15 2018-06-15 Charging device and charging method
CN201880013385.1A CN110383572B (zh) 2017-06-15 2018-06-15 充电装置及充电方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710442104.1A CN109148985A (zh) 2017-06-15 2017-06-15 一种电池包充电方法及装置
CN201710442104.1 2017-06-15

Publications (1)

Publication Number Publication Date
WO2018228559A1 true WO2018228559A1 (zh) 2018-12-20

Family

ID=64659908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091631 WO2018228559A1 (zh) 2017-06-15 2018-06-15 充电装置及充电方法

Country Status (4)

Country Link
US (1) US11522381B2 (zh)
EP (1) EP3641046B1 (zh)
CN (2) CN109148985A (zh)
WO (1) WO2018228559A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI713964B (zh) * 2018-12-27 2020-12-21 加百裕工業股份有限公司 電池組均溫系統及方法
CN112732351A (zh) * 2020-12-31 2021-04-30 宇龙计算机通信科技(深圳)有限公司 芯片兼容性配置方法、装置、存储介质及电子设备
EP3866299A1 (en) * 2020-02-11 2021-08-18 Beijing Xiaomi Mobile Software Co., Ltd. Method, apparatus, storage medium, and electronic device for controlling temperature

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018210524A1 (de) * 2018-06-27 2020-01-02 Robert Bosch Gmbh Verfahren zum Aufladen von Akkupacks für Elektrowerkzeugmaschinen sowie Ladegerät zur Durchführung des Verfahrens
CN110474395A (zh) * 2019-08-27 2019-11-19 常州格力博有限公司 电力系统
CN112952224B (zh) * 2019-12-11 2022-12-20 南京泉峰科技有限公司 一种电池包的充电平衡方法、系统和电池包
CN112910036B (zh) * 2021-01-21 2022-08-09 重庆新源创实业有限公司 一种充电控制方法、装置和系统
CN114824536B (zh) * 2022-06-29 2022-11-08 荣耀终端有限公司 一种电池温度采样的方法和可穿戴设备
CN117594851A (zh) * 2022-08-16 2024-02-23 南京泉峰科技有限公司 为电动工具提供电力的电池包
CN116667506B (zh) * 2023-08-02 2024-04-05 荣耀终端有限公司 放电电路及其放电方法、电子设备
CN117929901B (zh) * 2024-03-13 2024-05-28 深圳市乌托邦创意科技有限公司 一种移动式电源充电兼容性检测方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1510814A (zh) * 2002-12-24 2004-07-07 ������������ʽ���� 充电装置和充电方法
CN102315660A (zh) * 2010-07-06 2012-01-11 冒风明 电动汽车行驶中在线充电装置
US20120229078A1 (en) * 2011-03-11 2012-09-13 Juergen Mack Energy store method and charging method
CN106208208A (zh) * 2016-07-29 2016-12-07 乐视控股(北京)有限公司 充电保护方法和充电保护装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825159A (en) * 1997-09-29 1998-10-20 Motorola, Inc. Battery charging method for properly terminating rapid charge
JP2001186683A (ja) * 1999-12-27 2001-07-06 Sanyo Electric Co Ltd 電池の急速充電方法
JP2001211558A (ja) * 2000-01-27 2001-08-03 Sanyo Electric Co Ltd 複数の電池の充電方法
US7176654B2 (en) * 2002-11-22 2007-02-13 Milwaukee Electric Tool Corporation Method and system of charging multi-cell lithium-based batteries
JP2004357481A (ja) * 2003-05-30 2004-12-16 Sanyo Electric Co Ltd 複数のバッテリを充電する方法と放電する方法
JP4123517B2 (ja) * 2003-12-26 2008-07-23 ソニー株式会社 バッテリー装置
JP2006280060A (ja) 2005-03-28 2006-10-12 Matsushita Electric Works Ltd 充電装置
JP2007006628A (ja) * 2005-06-24 2007-01-11 Matsushita Electric Works Ltd 充電器およびそれを用いる電動工具セット
CN2905543Y (zh) 2006-03-09 2007-05-30 明门实业股份有限公司 儿童座椅底座调整机构
US8441230B2 (en) * 2008-09-08 2013-05-14 Techtronic Power Tools Technology Limited Battery charger
US9127658B2 (en) * 2011-11-04 2015-09-08 Briggs & Stratton Corporation Internal combustion engine including starting system powered by lithium-ion battery
CN104953198A (zh) 2014-03-26 2015-09-30 苏州宝时得电动工具有限公司 电池包组的控制方法、电池包组及电动工具
KR20150116661A (ko) * 2014-04-08 2015-10-16 삼성에스디아이 주식회사 연료 전지 하이브리드 시스템
US9991726B2 (en) * 2015-01-12 2018-06-05 Potential Difference, Inc. Rapid battery charging
US9748782B1 (en) * 2015-01-12 2017-08-29 Google Inc. Power adapter charging modification based on a feedback loop
KR102332337B1 (ko) * 2015-01-30 2021-11-29 삼성에스디아이 주식회사 배터리 시스템 및 이를 포함하는 에너지 저장 시스템
JP6628501B2 (ja) * 2015-06-08 2020-01-08 株式会社マキタ 充電制御装置、充電器及び充電システム
WO2017133393A1 (zh) * 2016-02-05 2017-08-10 广东欧珀移动通信有限公司 用于终端的充电系统、充电方法以及终端
JP6615873B2 (ja) 2016-02-05 2019-12-04 オッポ広東移動通信有限公司 充電方法、アダプター及び移動端末
US10879715B2 (en) * 2017-03-08 2020-12-29 Mediatek Inc. Method for improving temperature management of battery pack

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1510814A (zh) * 2002-12-24 2004-07-07 ������������ʽ���� 充电装置和充电方法
CN102315660A (zh) * 2010-07-06 2012-01-11 冒风明 电动汽车行驶中在线充电装置
US20120229078A1 (en) * 2011-03-11 2012-09-13 Juergen Mack Energy store method and charging method
CN106208208A (zh) * 2016-07-29 2016-12-07 乐视控股(北京)有限公司 充电保护方法和充电保护装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3641046A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI713964B (zh) * 2018-12-27 2020-12-21 加百裕工業股份有限公司 電池組均溫系統及方法
EP3866299A1 (en) * 2020-02-11 2021-08-18 Beijing Xiaomi Mobile Software Co., Ltd. Method, apparatus, storage medium, and electronic device for controlling temperature
US11719583B2 (en) 2020-02-11 2023-08-08 Beijing Xiaomi Mobile Software Co., Ltd. Temperature control
CN112732351A (zh) * 2020-12-31 2021-04-30 宇龙计算机通信科技(深圳)有限公司 芯片兼容性配置方法、装置、存储介质及电子设备
CN112732351B (zh) * 2020-12-31 2024-01-05 宇龙计算机通信科技(深圳)有限公司 芯片兼容性配置方法、装置、存储介质及电子设备

Also Published As

Publication number Publication date
CN110383572A (zh) 2019-10-25
EP3641046A4 (en) 2021-03-17
US11522381B2 (en) 2022-12-06
CN109148985A (zh) 2019-01-04
CN110383572B (zh) 2022-11-18
US20210152011A1 (en) 2021-05-20
EP3641046B1 (en) 2023-07-12
EP3641046A1 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
WO2018228559A1 (zh) 充电装置及充电方法
TWI463763B (zh) 充電控制裝置、方法及其電池管理系統
US9461495B2 (en) Battery warm up system and method for warming up battery using the same
CN106972206B (zh) 电池控制系统和电池组
TWI473323B (zh) 充電電池的充電方法及其相關的充電架構
US20180316196A1 (en) Equalization control method, apparatus, and circuit for power battery
JPWO2019026143A1 (ja) 充電時間演算方法及び充電制御装置
WO2016113791A1 (ja) 電池装置、充電制御装置および充電制御方法
JP2016012984A5 (zh)
WO2013140710A1 (ja) バランス補正装置及び蓄電システム
KR101738846B1 (ko) 과열 상태 배터리 냉각 충전 장치 및 방법
TWI497796B (zh) 對一可充電式電池的充電方法
CN110391688B (zh) 一种安全智能充电方法
JP2010252474A (ja) 二次電池の充電方法
JP4727562B2 (ja) 充電方法および充電回路
CN107749500A (zh) 用于电池均衡的方法及装置
KR102342202B1 (ko) 배터리 장치 및 그 제어 방법
JP2000270491A (ja) リチウムイオン電池充電方法及びリチウムイオン電池充電装置
JP5949510B2 (ja) 充電制御装置および充電制御方法
TWI672844B (zh) 鋁電池充電方法及鋁電池充電裝置
KR19990028876A (ko) 배터리 충전과정의 제어 및 종결방법
JP3707636B2 (ja) 充電制御方法および充電制御装置
TW587359B (en) Multi-functional lead secondary battery charger
JP2002199606A (ja) パック電池と電池の充電方法
JP3851037B2 (ja) 二次電池の充電方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018818683

Country of ref document: EP

Effective date: 20200115