WO2018228423A1 - 动力机构的隔振装置和包含该隔振装置的电动汽车 - Google Patents

动力机构的隔振装置和包含该隔振装置的电动汽车 Download PDF

Info

Publication number
WO2018228423A1
WO2018228423A1 PCT/CN2018/091031 CN2018091031W WO2018228423A1 WO 2018228423 A1 WO2018228423 A1 WO 2018228423A1 CN 2018091031 W CN2018091031 W CN 2018091031W WO 2018228423 A1 WO2018228423 A1 WO 2018228423A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration isolation
power mechanism
controller
electric vehicle
damping
Prior art date
Application number
PCT/CN2018/091031
Other languages
English (en)
French (fr)
Inventor
肖宁
Original Assignee
上海蔚来汽车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海蔚来汽车有限公司 filed Critical 上海蔚来汽车有限公司
Publication of WO2018228423A1 publication Critical patent/WO2018228423A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/023Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/08Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal

Definitions

  • the present invention relates to the field of vibration control technologies, and in particular, to a vibration isolation device for a power mechanism and an electric vehicle including the vibration isolation device.
  • the motor, the gearbox and the inverter (PEU) in the power mechanism are tightly connected, and the original rigid connection method causes the vibration generated by the motor and the gearbox to be transmitted to the inverter, thereby causing the internal components of the inverter. Vibration endurance problems and radiated noise problems in the inverter housing.
  • the technical problem to be solved by the present invention is to provide a vibration isolation device for a power mechanism and an electric vehicle including the vibration isolation device, which are intended to isolate the vibration transmitted from the power mechanism to the controller, and reduce the vibration of the internal components of the controller and extend the vibration.
  • the service life of the controller and to solve the technical problem of the controller's radiation noise and vibration durability.
  • an anti-vibration device for an electric vehicle power mechanism is provided.
  • One end of the vibration isolation device is connected to an electric power mechanism, and the other end is connected to a controller.
  • the apparatus primarily includes a vibration isolation structure that includes one or more sets of elastic structures and one or more sets of damping structures.
  • the vibration isolation device includes: a limit locking block, a casing of the controller, a casing of the electric power mechanism, a middle bolt, and a vibration isolation structure, wherein one end of the middle bolt and the limit lock
  • the compact block is fixed, and the other end is fixedly connected with the shell of the electric power mechanism, and the limit locking block and the middle bolt are integrally formed with the shell of the electric power mechanism, and the vibration isolation structure and the shell of the controller and the electric power respectively
  • the housing of the mechanism, the limit locking block and the middle bolt are elastically connected in multiple directions.
  • the housing of the electric power mechanism, the housing of the controller, and the limit locking block are arranged along the axial direction of the middle through bolt, and are respectively passed by the middle through bolt, and the axial direction An axial gap between adjacent two;
  • the vibration isolation structure is disposed in the axial gap to connect adjacent ones.
  • a plurality of the vibration isolation structures are disposed in the axial gap and are arranged around the circumferential direction of the middle through bolt.
  • the housing of the controller has a through hole through which the middle through bolt passes, and the through hole and the middle through bolt have a circumferential gap, and the circumferential gap is provided with the a vibration isolating structure to connect the housing of the controller and the middle through bolt.
  • a plurality of the vibration isolation structures are disposed in the circumferential gap and are arranged around the circumferential direction of the middle bolt.
  • the plurality of the vibration isolation structures are four in number and uniformly arranged along the circumferential direction.
  • the vibration isolation structure comprises one or more sets of elastic structures, one or more sets of damping structures, the elastic structures and the damping structures are arranged in pairs, and each pair of elastic structures and damping structures are parallel to each other.
  • a set of elastic structures and a set of damping structures are respectively connected to the housing of the electric power mechanism at one end, and the first side is connected to the first side of the housing of the controller; the other set of elastic structures and another set of damping structures One end is connected to the second side of the casing of the controller, and the other end is connected to the limit locking block; and one end of the elastic structure and the other set of damping structures are respectively connected to the third side of the casing of the controller The other end is connected with the middle bolt; the vibration isolation connection is formed in the X and Y directions.
  • the elastic structure comprises an axial horizontal direction elastic element
  • the damping structure comprises an axial horizontal direction damping element
  • one end of the axial horizontal direction elastic element and the axial horizontal direction damping element and the controller housing The other end is connected to the housing of the electric power mechanism or the limit locking block to form a vibration isolation connection in the X direction.
  • the elastic structure comprises a radial horizontal direction elastic element and a radial vertical direction elastic element;
  • the damping structure comprises a radial horizontal direction damping element, a radial vertical direction damping element, wherein the radial horizontal direction elasticity
  • One end of the element and the radial horizontal direction damping element is coupled to the housing of the controller, and the other end is coupled to the intermediate bolt;
  • one end of the radially vertical direction elastic element and the radially vertical damping element is coupled to the housing of the controller The other end is connected to the middle bolt to form a vibration isolation connection in the Y and Z directions.
  • the housing of the electric power mechanism and the top of the middle bolt are connected by a thread, a welding or a riveting structure, and the bottom end of the middle bolt is fixed to the limit locking block by a thread, a welding or a riveting structure.
  • the elastic structure is an adjustable air spring, a hydraulic spring, a metal spring or a polymer material elastic element.
  • the damping structure is a friction damping structure, a hydraulic damping structure, a viscoelastic damping structure or a rubber damping structure.
  • an electric vehicle including the vibration isolating device including the vibration isolating device, the electric vehicle including the vibration isolating device, and the power mechanism and the controller are connected by the vibration isolating device.
  • the electric vehicle further includes a sealing elastic member disposed between the electric power mechanism and the controller.
  • the vibration isolation device of the power mechanism and the electric vehicle including the vibration isolation device of the present invention can achieve considerable technical advancement and practicability, and have industrially widespread use value, and have at least the following advantage:
  • FIG. 1 is a schematic diagram of a vibration isolation device of a power mechanism according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the vibration isolation device of the power mechanism of FIG. 1 taken along line A-A.
  • FIG. 3 is a schematic diagram of a vibration isolation device of a power mechanism according to another embodiment of the present invention.
  • FIG. 4 is a schematic view of a vibration isolating device provided with an electric mechanism of the present invention on an electric vehicle.
  • Figure 5 is a schematic cross-sectional view of B-B of Figure 4.
  • Vibration isolation structure 51 elastic structure
  • an vibration isolation device for an electric vehicle power mechanism has one end connected to an electric power mechanism and the other end connected to a controller.
  • the vibration isolation device includes: a limit locking block 1, a casing of the controller, a casing 3 of the electric power mechanism, a middle bolt 4, and a vibration isolating structure 5, wherein one end of the middle bolt 4 is
  • the limit locking block 1 is fixedly connected, and the other end is fixedly connected to the casing 3 of the electric power mechanism.
  • the housing 3 of the electric power mechanism, the limit locking block 1, and the middle bolt 4 are integrally formed to follow the vibration of the power mechanism.
  • the controller housing 2 is connected to the housing 3 of the electric power mechanism, the intermediate bolt 4 and the limit locking block 1 via the vibration isolating structure 5, respectively.
  • the housing 3 of the electric power mechanism, the housing 2 of the controller and the limit locking block 1 are arranged along the axial direction of the middle bolt 4, and are respectively passed through the middle bolt 4, and the axially adjacent ones are There is an axial gap 21 therebetween; a vibration isolation structure 5 is provided in the axial gap 21 to connect the adjacent ones.
  • a plurality of the vibration isolating structures 5 are disposed in the axial gap 21 and are arranged around the circumferential direction of the intermediate bolts 4.
  • the housing 2 of the controller has a through hole 41 through which the middle through bolt 4 passes, and a through gap 22 is formed between the through hole 41 and the middle through bolt 4, and the vibration isolation structure 5 is disposed in the circumferential gap 22. To connect the housing 2 of the controller and the intermediate bolt 4 .
  • a plurality of vibration isolating structures 5 are provided in the circumferential gap 22 and are arranged around the circumferential direction of the intermediate bolts 4.
  • the number of the plurality of vibration isolation structures is four and uniformly arranged along the circumferential direction.
  • the top of the middle bolt 4 is fixed to the casing 3 of the electric power mechanism by a screw connection, welding, riveting, etc., and the bottom end of the middle bolt 4 is threaded, welded, riveted, etc.
  • the limit locking block 1 is fixed.
  • One set of elastic structures 51 and one set of damping structures 52 are respectively connected to the housing 3 of the electric power mechanism, the other end is connected to the first side of the housing 2 of the controller; the other set of elastic structures 51' and the other One end of the group damping structure 52' is respectively connected to the second side of the casing 2 of the controller, and the other end is connected with the limit locking block 1; the other end of the elastic structure 51" and the further damping structure 52" are respectively The third side of the casing 2 of the controller is connected, and the other end is connected to the intermediate bolt 4; and the vibration isolation connection is formed in the X and Y directions.
  • the housing 3 of the electric power mechanism is the housing of the gearbox.
  • a set of elastic structures 51 and a set of damping structures 52 are also disposed in the Z direction, respectively, with the gear box and the middle bolt. 4.
  • the housing of the controller and the limit locking block 1 are elastically connected to form a vibration isolation connection in multiple directions of X, Y and Z.
  • the vibration isolation connection of the plurality of pairs of elastic structures 51 and the plurality of groups of damping structures 52 is formed in multiple directions of X, Y and Z.
  • the vibration isolating structure 5 comprises one or more sets of elastic structures 51, one or more sets of damping structures 52, wherein the elastic structures 51 comprise axial horizontal elastic elements 511, radial horizontal elastic elements 512, radial vertical elasticity Element 513; damping structure 52 includes an axial horizontal direction damping element 521, a radial horizontal direction damping element 522, and a radially vertical direction damping element 523, wherein one end of the axial horizontal direction elastic element 511 and the axial horizontal direction damping element 521 Connected to the housing 2 of the controller, the other end is connected to the housing 3 of the electric power mechanism or the limit locking block 1; one end of the radial horizontal direction elastic element 512 and the radial horizontal direction damping element 522 and the shell of the controller The body 2 is connected, and the other end is connected to the intermediate bolt 4; one end of the radially vertical direction elastic member 513 and the radially vertical direction damping member 523 is connected to the casing 2 of the controller, and the other end is connected
  • the elastic structure 51 and the damping structure 52 are disposed in pairs, and each pair of the elastic structure and the damping structure are parallel to each other.
  • One or more pairs of the elastic structure 51 and the damping structure 52 are respectively in the axial horizontal, radial horizontal and radial vertical directions with the housing 3 of the electric power mechanism, the housing 2 of the controller, the middle bolt 4 and the limit lock
  • the tight block 1 is elastically connected, thereby achieving vibration isolation in three coordinate directions of X, Y, and Z.
  • Wide-frequency vibration isolation between the power mechanism and the controller is realized by connecting a plurality of sets of elastic elements and damping elements to the electric vehicle power mechanism and the controller.
  • Vibration sources in different directions include: low frequency vibration of road surface excitation and high frequency vibration of different power components. Vibration isolation in different frequency bands in each direction can be achieved by matching the parameters of the elastic element and the damping element one by one.
  • the above several embodiments can be designed as different types of vibration isolating devices according to different structures of electric vehicles and different requirements of users.
  • the electric vehicle of the present invention further includes a sealing elastic member 10, and the sealing elastic member 10 is disposed between the electric power mechanism and the controller.
  • the sealing elastic element is a low rigidity and large compression sealing element, and the sealing elastic element 10 can be a rubber pad or a silicone pad, and the stiffness parameter setting of the sealing elastic element 10 ensures that the relative displacement between the power mechanism and the controller does not exceed The maximum amount of compression of the sealing elastic member 10,
  • the vibration isolating structure 5 of the present invention can be designed into a plurality of sets of different stiffness elastic structures and damping structures, and realizes comprehensive vibration isolation in multiple directions, and can adjust the stiffness of the elastic structure and the damping structure to be applicable to different frequency bands in different directions. Vibration.
  • the stiffness and damping parameters of each set of elastic structures can be matched according to the frequency range of actual vibration isolation.
  • the setting of stiffness and damping parameters is related to the quality of the point power component and the controller, the position of the centroid, and the installation position.
  • the elastic structure 51 is a metal spring
  • the static balance position stiffness ranges from 50 to 500 N/mm
  • the damping structure 52 is a rubber damping structure
  • the damping ratio coefficient ranges from 0.05 to 0.3
  • the damping ratio coefficients of the components are all based on the required vibration isolation frequency band.
  • the elastic structure 51 can also be an adjustable air spring, a hydraulic spring or a polymeric material elastic element.
  • the polymer material elastic member comprises a rubber bushing elastic member and an elastic plastic elastic member.
  • the damping structure 52 may also be a friction damping structure, a hydraulic damping structure, and a viscoelastic damping structure.
  • the invention also discloses an electric vehicle comprising the vibration isolating device, the electric vehicle comprising a vibration isolating device 9, connecting the power mechanism and the controller through a plurality of sets of vibration isolation structures, connecting the power mechanism and the controller multifunctional
  • the vibration generated by the power mechanism is isolated to reduce the vibration transmitted by the power mechanism to the controller, thereby solving the problem of vibration durability of the controller, ensuring that the controller is not easily damaged, prolonging the service life of the controller, and saving the user's Car cost.
  • the power mechanism of the electric vehicle of the present invention comprises a motor 6, a gear box 7, a controller 8, and a vibration isolating device 9 which are seven sets of vibration isolation structures and a sealing elastic member 10, wherein the motor 6 and the gear box 7
  • the bolt box is rigidly connected
  • the gear box 7 and the controller 8 are connected by seven sets of vibration isolation structures in the vibration isolating device 9, and the seven sets of vibration isolation structures are respectively arranged in X, Y and Z directions (as shown in Fig. 4).
  • the vibration isolation the tight connection of the gear box 7 and the controller 8 is ensured, the use space is saved, and the connection cable is reduced, and electromagnetic interference is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

一种电动汽车动力机构的隔振装置,其一端与电动力机构连接,另一端与一个控制器连接,隔振装置主要包括隔振结构(5),隔振结构(5)包括一组或多组弹性结构(51)和一组或多组阻尼结构(52)。隔振装置通过多向隔振减少动力机构传递到控制器壳体的不同方向的振动,减少了控制器内部元器件受到的振动,延长使用寿命,也降低了控制器壳体的辐射噪音,提高了电动汽车的乘坐舒适性,从而提升了用户体验。还涉及一种包含该隔振装置的电动汽车。

Description

动力机构的隔振装置和包含该隔振装置的电动汽车 技术领域
本发明涉及振动控制技术领域,尤其涉及一种动力机构的隔振装置和包含该隔振装置的电动汽车。
背景技术
近年来,随着电动汽车的逐渐普及,用户对车辆的振动噪音舒适度(NVH)、易维护性、耐久性的需求日益增长。然而,目前的电动汽车的电驱系统中,由于空间布置及电磁兼容性(EMC)等需求,动力机构和控制器之间采取了紧密连接的布置方式,这样就造成了动力机构产生的振动传递到控制器上,会引发诸多问题。
例如,动力机构中的电机、齿轮箱和逆变器(PEU)紧密连接,原有的刚性连接方式会导致电机及齿轮箱产生的振动传递到逆变器上,进而导致逆变器内部元件的振动耐久问题以及逆变器壳体辐射噪声问题。
发明内容
本发明所要解决的技术问题在于,提供一种动力机构的隔振装置和包含该隔振装置的电动汽车,旨在隔离动力机构传递到控制器的振动,减少控制器内部元件受到的振动,延长控制器的使用寿命,并以此解决控制器的辐射噪声及振动耐久的技术问题。
为解决上述技术问题,根据本发明的一方面,提供了一种电动汽车动力机构的隔振装置,该隔振装置的一端与电动力机构连接,另一端与一个控制器连接,所述隔振装置主要包括隔振结构,所述隔振结构包括一组或多组弹性结构和一组或多组阻尼结构。
进一步的,所述隔振装置包括:限位锁紧块、控制器的壳体、电动力机构的壳体、中通螺栓、隔振结构,其中,所述中通螺栓的一端与限位锁紧块固接,另一端与电动力机构的壳体固接,限位锁紧块、中通螺栓与电动力机构的壳体形成一个整体,隔振结构分别与控制器的壳体、电动力机构的壳体、限位锁紧块、中通螺栓多方向弹性连接。
进一步的,所述电动力机构的壳体、所述控制器的壳体和限位锁紧块沿所述中通螺栓的轴向排布,并分别由所述中通螺栓穿过,轴向相邻的两者之间具有轴向间隙;
所述轴向间隙中设有所述隔振结构,以将相邻的两者连接。
进一步的,所述轴向间隙中设有多个所述隔振结构且围绕所述中通螺栓的周向排列。
进一步的,所述控制器的壳体具有供所述中通螺栓穿过的通孔,所述通孔和所述中通螺栓之间具有周向间隙,所述周向间隙中设有所述隔振结构,以将所述控制器的壳体和所述中通螺栓连接。
进一步的,所述周向间隙中设有多个所述隔振结构且围绕所述中通螺栓的周向排列。
进一步的,所述多个所述隔振结构的数量为四个且沿所述周向均匀排列。
进一步的,所述隔振结构包括一组或多组弹性结构、一组或多组阻尼结构,所述弹性结构和阻尼结构成对配置,且每对弹性结构和阻尼结构相互平行。
进一步的,一组弹性结构和一组阻尼结构一端分别与所述电动力机构的壳体连接,另一端与控制器的壳体的第一侧面连接;另一组弹性结构和另一组阻尼结构的一端分别与控制器的壳体的第二侧面连接,另一端与限位锁紧块连接;再一组弹性结构和再一组阻尼结构的一端分别与控制器的壳体的第三侧面连接,另一端与中通螺栓连接;形成在X、Y方向的隔振连接。
进一步的,所述弹性结构包括轴向水平方向弹性元件,所述阻尼结构包括轴向水平方向阻尼元件,所述轴向水平方向弹性元件和轴向水平方向阻尼元件的一端与控制器的壳体连接,另一端与电动力机构的壳体或限位锁紧块连接,形成在X方向隔振连接。
进一步的,所述弹性结构包括径向水平方向弹性元件、径向垂直方向弹性元件;所述阻尼结构包括径向水平方向阻尼元件、径向垂直方向阻尼元件,其中,所述径向水平方向弹性元件和径向水平方向阻尼元件的一端与控制器的壳体连接,另一端与中通螺栓连接;所述径向垂直方向弹性元件和径向垂直方向阻尼元件的一端与控制器的壳体连接,另一端与中通螺栓连接,形成在Y、Z方向的隔振连接。
进一步的,所述电动力机构的壳体与中通螺栓的顶部通过螺纹、焊接或者铆接结构连接,中通螺栓的底端通过螺纹、焊接或铆接结构与所述限位锁紧块固接。
进一步的,所述弹性结构为可调式空气弹簧、液压弹簧、金属弹簧或高分子材料弹性元件。
进一步的,所述阻尼结构为摩擦阻尼结构、液压阻尼结构、粘弹性阻尼结构或橡胶阻尼结构。
根据本发明的另一方面,提供了一种包含所述隔振装置的电动汽车,所述电动汽车包含所述隔振装置,通过隔振装置将动力机构和控制器连接起来。
进一步的,所述电动汽车还包括一个密封弹性元件,所述密封弹性元件设置在电动力机构和控制器之间。
本发明与现有技术相比具有明显的优点和有益效果。借由上述技术方案,本发明一种动力机构的隔振装置和包含该隔振装置的电动汽车,可达到相当的技术进步性及实用性,并具有产业上的广泛利用价值,其至少具有下列优点:
(1)通过多向隔振减少动力机构传递到控制器壳体的各个频率段不同方向的振动,有效降低了控制器壳体的辐射噪音,大幅降低了整套电动力机构产生的使人难受的频段的噪音,大大提高了电动汽车的乘坐舒适性,从而提升了用户体验。
(2)通过设置中通螺栓,既可保证连接的可靠性,又不受橡胶老化的影响。
(3)通过多组隔振装置连接动力机构和控制器多功能,将动力机构产生的振动进行了隔离,减轻动力机构产生传递给控制器的振动,从而解决了控制器的振动耐久的问题,确保控制器不易损坏,延长了控制器的使用寿命,节约了用户的用车成本。
(4)通过在动力机构和控制器之间设置密封弹性元件,在实现隔振的同时,确保了动力机构和控制器连接的紧密性,节约了使用空间,并且有益于减少连接电缆,减少电磁干扰。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图说明
图1为本发明一实施例提供的动力机构的隔振装置示意图。
图2为图1提供的动力机构的隔振装置的A-A剖面示意图。
图3为本发明又一实施例提供的动力机构的隔振装置示意图。
图4为在电动汽车上设有本发明动力机构的隔振装置示意图。
图5为图4中B-B的剖面示意图。
主要附图标记说明:
1:限位锁紧块               2:控制器壳体
3:电动力机构壳体           4:中通螺栓
5:隔振结构                 51:弹性结构
52:阻尼结构                6:电机
7:齿轮箱                   8:控制器
9:隔振装置                 10:密封弹性元件
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的一种动力机构的隔振装置和包含该隔振装置的电动汽车的具体实施方式及其功效,详细说明如后。
请参阅图1、图2所示,一种电动汽车动力机构的隔振装置,该隔振装置的一端与电动力机构连接,另一端与一个控制器连接。所述隔振装置包括:限位锁紧块1、控制器的壳体2、电动力机构的壳体3、中通螺栓4、隔振结构5,其中,所述中通螺栓4的一端与限位锁紧块1固接,另一端与电动力机构的壳体3固接,电动力机构的壳体3、限位锁紧块1、中通螺栓4形成一个整体,跟随动力机构振动。所述控制器壳体2通过隔振结构5分别与电动力机构的壳体3、中通螺栓4和限位锁紧块1连接。
实施例一
电动力机构的壳体3、控制器的壳体2和限位锁紧块1沿中通螺栓4的轴向排布,并分别由中通螺栓4穿过,轴向相邻的两者之间具有轴向间隙21;轴向间隙21中设有隔振结构5,以将相邻的两者连接。优选的,轴向间隙21中设有多个所述隔振结构5且围绕所述中通螺栓4的周向排列。
控制器的壳体2具有供所述中通螺栓4穿过的通孔41,所述通孔41和中通螺栓4之间具有周向间隙22,周向间隙22中设有隔振结构5,以将控制器的壳体2和中通螺栓4连接。
优选的,周向间隙22中设有多个隔振结构5且围绕所述中通螺栓4的周向排列。多个所述隔振结构的数量为四个且沿所述周向均匀排列。
实施例二
请参阅附图3所示,中通螺栓4的顶部通过螺纹连接、焊接、铆接等结构与电动力机构的壳体3固接,中通螺栓4的底端通过螺纹、焊接、铆接等结构与限位锁紧块1固接。一组弹性结构51和一组阻尼结构52一端分别与所述电动力机构的壳体3连接,另一端与控制器的壳体2的第一侧面连接;另一组弹性结构51'和另一组阻尼结构52'的一端分别与控制器的壳体2的第二侧面连接,另一端与限位锁紧块1连接;再一组弹性结构51″和再一组阻尼结构52″一端分别与控制器的壳体2的第三侧面连接,再一端与中通螺栓4连接;形成在X、Y方向的隔振连接。优选的,电动力机构的壳体3为齿轮箱的壳体。
实施例三
同实施例二的上述一组弹性结构51和一组阻尼结构52结构相同的连接之外,在Z方向上同样设置一组弹性结构51和一组阻尼结构52,分别与齿轮箱、中通螺栓4、控制器的壳体、限位锁紧块1弹性连接,形成在X、Y、Z多方向的隔振连接。
实施例四
同实施例二连接结构相同外,在X、Y、Z多方向形成多组成对的弹性结构51和多组阻尼结构52的隔振连接。
实施例五
隔振结构5包括一组或多组弹性结构51、一组或多组阻尼结构52,其中,弹性结构51包括轴向水平方向弹性元件511、径向水平方向弹性元件512、径向垂直方向弹性元件513;阻尼结构52包括轴向水平方向阻尼元件521、径向水平方向阻尼元件522、径向垂直方向阻尼元件523,其中,轴向水平方向弹性元件511和轴向水平方向阻尼元件521的一端与控制器的壳体2连接,另一端与电动力机构的壳体3或限位锁紧块1连接;径向水平方向弹性元件512和径向水平方向阻尼元件522的一端与控制器的壳体2连接,另一端与中通螺栓4连接;径向垂直方向弹性元件513和径向垂直方向阻尼元件523的一端与控制器的壳体2连接,另一端与中通螺栓4连接。所述弹性结构51和阻尼结构52成对设置,且每对弹性结构和阻尼结构相互平行。一对或多对弹性结构51和阻尼结构52分别在轴向水平、径向水平和径向垂直方向与电动力机构的壳体3、控制器的壳体2、中通螺栓4和限位锁紧块1弹性连接,从而实现了X、Y、Z三个坐标方向的隔振。
通过多组弹性元件、阻尼元件连接电动汽车动力机构和控制器,实现动力机构和控制器之间的宽频隔振。不同方向的振源包括:路面激励低频振动、不同动力元件高频振动。通过逐个匹配弹性元件和阻尼元件的参数可以实现各个方向不同频段的隔振。
上述几种实施例,可以根据电动汽车的不同结构和使用者的不同要求,设计为不同种类的隔振装置。
请参阅图4、图5所示,本发明的电动汽车还包括一个密封弹性元件10,密封弹性元10件设置在电动力机构和控制器之间。密封弹性元件为低刚度大压缩量的密封元件,该密封弹性元件10可为橡胶垫或硅胶垫,且所述密封弹性元件10的刚度参数设置保证动力机构和控制器之间的相对位移不超过所述密封弹性元件10的最大压缩量,
本发明的隔振结构5可以设计成多组不同刚度弹性结构和阻尼结构,实现了多方向的全面隔振,并可以通过调整弹性结构和阻尼结构的刚度,以适用于各个方向不同频段的隔振。每组弹性结构的刚度和阻尼参数可根据实际需要隔振的频率范围进行匹配设置,刚度、阻尼参数的设置与点动力元件及控制器的质量、质心位置、安装位置等相关。通过多向隔振减少动力机构传递到控制器壳体的各个频率段不同方向的振动,有效降低了控制器壳体的辐射噪音,大幅降低了整套电动力机构产生的使人难受的频段的噪音,大大提高了电动汽车的乘坐舒适性,从而提升了用户体验。
本实施例中,弹性结构51为金属弹簧,静平衡位置刚度范围为50~500N/mm,阻尼结构52为橡胶阻尼结构,阻尼比系数范围为0.05~0.3,不同方向的弹性结构的刚度和阻尼元件的阻尼比系数均根据所需隔振频段进行取值。弹性结构51还可以是可调式空气弹簧、液压弹簧或高分子材料弹性元件。其中,所述高分子材料弹性元件包括橡胶衬套弹性元件和弹性塑料弹性元件。阻尼结构52还可以是摩擦阻尼结构、液压阻尼结构和粘弹性阻尼结构。
本发明还公开了一种包含所述隔振装置的电动汽车,所述电动汽车包含隔振装置9,通过多组隔振结构将动力机构和控制器连接起来,连接动力机构和控制器多功能将动力机构产生的振动进行了隔离,减轻动力机构产生传递给控制器的振动,从而解决了控制器的振动耐久的问题,确保控制器不易损坏,延长了控制器的使用寿命,节约了用户的用车成本。
如附图4所示,本发明电动汽车的动力机构包括电机6、齿轮箱7、控制器8、隔振装置9为七组隔振结构、密封弹性元件10,其中,电机6和齿轮箱7采用螺栓刚性连接,齿轮箱7和控制器8通过隔振装置9中的七组隔振结构连接,七组隔振结构分别设置在X、Y、Z多方向上(如附图4所示),在实现隔振的同时,确保了齿轮箱7和控制器8连接的紧密性,节约了使用空间,并且有益于减少连接电缆,减少电磁干扰。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (16)

  1. 一种电动汽车动力机构的隔振装置,其特征在于,该隔振装置的一端与电动力机构连接,另一端与一个控制器连接,所述隔振装置主要包括隔振结构,所述隔振结构包括一组或多组弹性结构和一组或多组阻尼结构。
  2. 根据权利要求1所述的电动汽车动力机构的隔振装置,其特征在于,所述隔振装置包括:限位锁紧块(1)、控制器的壳体(2)、电动力机构的壳体(3)、中通螺栓(4)、隔振结构(5),其中,所述中通螺栓(4)的一端与限位锁紧块(1)固接,另一端与电动力机构的壳体(3)固接,限位锁紧块(1)、中通螺栓(4)与电动力机构的壳体(3)形成一个整体,隔振结构(5)分别与控制器的壳体(2)、电动力机构的壳体(3)、限位锁紧块(1)、中通螺栓(4)多方向弹性连接。
  3. 根据权利要求2所述的电动汽车动力机构的隔振装置,其特征在于,所述电动力机构的壳体(3)、所述控制器的壳体(2)和限位锁紧块(1)沿所述中通螺栓(4)的轴向排布,并分别由所述中通螺栓(4)穿过,轴向相邻的两者之间具有轴向间隙(21);
    所述轴向间隙(21)中设有所述隔振结构(5),以将相邻的两者连接。
  4. 根据权利要求3所述的电动汽车动力机构的隔振装置,其特征在于,所述轴向间隙(21)中设有多个所述隔振结构(5)且围绕所述中通螺栓(4)的周向排列。
  5. 根据权利要求2所述的电动汽车动力机构的隔振装置,其特征在于,所述控制器的壳体(2)具有供所述中通螺栓(4)穿过的通孔(41),所述通孔(41)和所述中通螺栓(4)之间具有周向间隙(22),所述周向间隙(22)中设有所述隔振结构(5),以将所述控制器的壳体(3)和所述中通螺栓(4)连接。
  6. 根据权利要求5所述的电动汽车动力机构的隔振装置,其特征在于,所述周向间隙(22)中设有多个所述隔振结构(5)且围绕所述中通螺栓(4)的周向排列。
  7. 根据权利要求6所述的电动汽车动力机构的隔振装置,其特征在于,所述多个所述隔振结构(5)的数量为四个且沿所述周向均匀排列。
  8. 根据权利要求2-7中任意一项所述的电动汽车动力机构的隔振装置,其特征在于,所述隔振结构(5)包括一组或多组弹性结构(51)、一组或多组阻尼结构(52),所述弹性结构(51)和阻尼结构(52)成对配置,且每对弹性结构(51)和阻尼结构(52)相互平行。
  9. 根据权利要求8所述的电动汽车动力机构的隔振装置,其特征在于,一组弹性结构(51)和一组阻尼结构(52)一端分别与所述电动力机构的 壳体(3)连接,另一端与控制器的壳体(2)的第一侧面连接;另一组弹性结构(51')和另一组阻尼结构(52')的一端分别与控制器的壳体(2)的第二侧面连接,另一端与限位锁紧块(1)连接;再一组弹性结构(51”)和再一组阻尼结构(52”)的一端分别与控制器的壳体(2)的第三侧面连接,另一端与中通螺栓(4)连接;形成在X、Y方向的隔振连接。
  10. 根据权利要求8所述的电动汽车动力机构的隔振装置,其特征在于,所述弹性结构(51)包括轴向水平方向弹性元件(511),所述阻尼结构(52)包括轴向水平方向阻尼元件(521),所述轴向水平方向弹性元件(511)和轴向水平方向阻尼元件(521)的一端与控制器的壳体(2)连接,另一端与电动力机构的壳体(3)或限位锁紧块(1)连接,形成在X方向隔振连接。
  11. 根据权利要求8所述的电动汽车动力机构的隔振装置,其特征在于,所述弹性结构(51)包括径向水平方向弹性元件(512)、径向垂直方向弹性元件(513);所述阻尼结构(52)包括径向水平方向阻尼元件(522)、径向垂直方向阻尼元件(523),其中,所述径向水平方向弹性元件(512)和径向水平方向阻尼元件(522)的一端与控制器的壳体(2)连接,另一端与中通螺栓(4)连接;所述径向垂直方向弹性元件(513)和径向垂直方向阻尼元件(523)的一端与控制器的壳体(2)连接,另一端与中通螺栓(4)连接,形成在Y、Z方向的隔振连接。
  12. 根据权利要求1所述的电动汽车动力机构的隔振装置,其特征在于,所述电动力机构的壳体(3)与中通螺栓(4)的顶部通过螺纹、焊接或者铆接结构连接,中通螺栓(4)的底端通过螺纹、焊接或铆接结构与所述限位锁紧块(1)固接。
  13. 根据权利要求8所述的电动汽车动力机构的隔振装置,其特征在于,所述弹性结构(51)为可调式空气弹簧、液压弹簧、金属弹簧或高分子材料弹性元件。
  14. 根据权利要求8所述的电动汽车动力机构的隔振装置,其特征在于,所述阻尼结构(52)为摩擦阻尼结构、液压阻尼结构、粘弹性阻尼结构或橡胶阻尼结构。
  15. 一种包含所述隔振装置的电动汽车,其特征在于,所述电动汽车包含权利要求1至14所述的隔振装置,通过隔振装置将动力机构和控制器连接起来。
  16. 根据权利要求15所述的隔振装置的电动汽车,其特征在于,所述电动汽车还包括一个密封弹性元件(10),所述密封弹性元件(10)设置在电动力机构和控制器之间。
PCT/CN2018/091031 2017-06-13 2018-06-13 动力机构的隔振装置和包含该隔振装置的电动汽车 WO2018228423A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710444267.3A CN109083975A (zh) 2017-06-13 2017-06-13 动力机构的隔振装置和包含该隔振装置的电动汽车
CN201710444267.3 2017-06-13

Publications (1)

Publication Number Publication Date
WO2018228423A1 true WO2018228423A1 (zh) 2018-12-20

Family

ID=64659971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091031 WO2018228423A1 (zh) 2017-06-13 2018-06-13 动力机构的隔振装置和包含该隔振装置的电动汽车

Country Status (3)

Country Link
CN (1) CN109083975A (zh)
TW (2) TWM569283U (zh)
WO (1) WO2018228423A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141427A (ja) * 1996-11-08 1998-05-29 Nissan Motor Co Ltd 能動型振動制御装置
CN102765329A (zh) * 2012-07-02 2012-11-07 奇瑞汽车股份有限公司 一种增程式电动车动力总成
CN203186058U (zh) * 2013-03-28 2013-09-11 北汽福田汽车股份有限公司 横梁构件,车辆动力总成的布置结构和电动车辆
CN103334509A (zh) * 2013-07-10 2013-10-02 隔而固(青岛)振动控制有限公司 高频调谐质量减振器
CN205836565U (zh) * 2016-06-16 2016-12-28 北京长城华冠汽车科技股份有限公司 电动动力总成和具有其的车辆
CN206943322U (zh) * 2017-06-13 2018-01-30 上海蔚来汽车有限公司 动力机构的隔振装置和包含该隔振装置的电动汽车

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04210135A (ja) * 1990-12-03 1992-07-31 Toshiba Corp 制振装置
DE19645471A1 (de) * 1996-11-05 1998-05-07 Schenck Process Gmbh Vorrichtung zur Schwingungsisolierung bei Schwingmaschinen
US20060179729A1 (en) * 2003-11-21 2006-08-17 Feng Li Shock absorbing support system
JP2008030500A (ja) * 2006-07-26 2008-02-14 Hitachi Ltd 防振装置
CN100436261C (zh) * 2006-08-25 2008-11-26 郑钢铁 卫星整体减振隔振装置
CN104132086B (zh) * 2014-07-28 2015-12-30 山西大学 平面不对称电磁阻尼器
CN105471124B (zh) * 2015-12-18 2018-08-24 北京金风科创风电设备有限公司 电机定子的吸振装置、电机定子及电机
CN106051032B (zh) * 2016-08-17 2018-05-18 广东工业大学 一种用于吊装过程的动力吸振装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141427A (ja) * 1996-11-08 1998-05-29 Nissan Motor Co Ltd 能動型振動制御装置
CN102765329A (zh) * 2012-07-02 2012-11-07 奇瑞汽车股份有限公司 一种增程式电动车动力总成
CN203186058U (zh) * 2013-03-28 2013-09-11 北汽福田汽车股份有限公司 横梁构件,车辆动力总成的布置结构和电动车辆
CN103334509A (zh) * 2013-07-10 2013-10-02 隔而固(青岛)振动控制有限公司 高频调谐质量减振器
CN205836565U (zh) * 2016-06-16 2016-12-28 北京长城华冠汽车科技股份有限公司 电动动力总成和具有其的车辆
CN206943322U (zh) * 2017-06-13 2018-01-30 上海蔚来汽车有限公司 动力机构的隔振装置和包含该隔振装置的电动汽车

Also Published As

Publication number Publication date
TWM569283U (zh) 2018-11-01
TW201902740A (zh) 2019-01-16
CN109083975A (zh) 2018-12-25

Similar Documents

Publication Publication Date Title
WO2020215018A8 (en) Electric powertrain system for heavy duty vehicles
US9018793B2 (en) Routing structure of high-voltage cable in vehicle
WO2016111201A1 (ja) ケーブル保持構造
JP2014240675A (ja) 車載電力制御ユニットの金属製ケースへの制御基板の締結構造
KR20200018834A (ko) 케이블용 고정장치
CN101285514B (zh) 阻尼可调式发动机悬置减振装置
CN111032395B (zh) 用于电子设备的车辆安装结构
WO2018228423A1 (zh) 动力机构的隔振装置和包含该隔振装置的电动汽车
CN206943322U (zh) 动力机构的隔振装置和包含该隔振装置的电动汽车
US20190338822A1 (en) Mount assembly for a vehicle
EP2917053B1 (en) Mounting device for vehicle
CN214138168U (zh) 机动车中采用的双级减振系统
KR20130124709A (ko) 축부재의 진동 감쇠장치
KR101876800B1 (ko) 모터 노이즈 제거 장치
CN106329811A (zh) 一种电机减震外壳
US20210078379A1 (en) Device for mounting an air-conditioning compressor
CN105172809A (zh) 一种轨道车辆及其车身
CN219706957U (zh) 应用于电动车辆的安装架及电动车辆
JP2020177740A (ja) コネクタおよびケーブル
CN204323360U (zh) 具有分隔壁的轨道车辆
CN206807212U (zh) 一种鼓风机电机安装结构
CN220248771U (zh) 一种侧装的单级隔振压缩机悬置支架
CN107901746A (zh) 一种万向减振结构
CN109281972A (zh) 减振降噪装置
KR101511560B1 (ko) 전기차의 모터부와 파워컨트롤부의 장착구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18818353

Country of ref document: EP

Kind code of ref document: A1