WO2018227952A1 - 用于调整滤波器的通带宽度的方法及设备 - Google Patents

用于调整滤波器的通带宽度的方法及设备 Download PDF

Info

Publication number
WO2018227952A1
WO2018227952A1 PCT/CN2018/071295 CN2018071295W WO2018227952A1 WO 2018227952 A1 WO2018227952 A1 WO 2018227952A1 CN 2018071295 W CN2018071295 W CN 2018071295W WO 2018227952 A1 WO2018227952 A1 WO 2018227952A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
passband width
filter
initial
signal
Prior art date
Application number
PCT/CN2018/071295
Other languages
English (en)
French (fr)
Inventor
陆政华
何宗泽
杨建光
李硕
冯志鹏
张亮
陈宇轩
龙凤
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/092,078 priority Critical patent/US10622971B2/en
Publication of WO2018227952A1 publication Critical patent/WO2018227952A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0294Variable filters; Programmable filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • H03H11/12Frequency selective two-port networks using amplifiers with feedback
    • H03H11/1217Frequency selective two-port networks using amplifiers with feedback using a plurality of operational amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • H03H11/12Frequency selective two-port networks using amplifiers with feedback
    • H03H11/126Frequency selective two-port networks using amplifiers with feedback using a single operational amplifier
    • H03H11/1286Sallen-Key biquad
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/462Microelectro-mechanical filters
    • H03H9/467Post-fabrication trimming of parameters, e.g. center frequency
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/02Preprocessing
    • G06F2218/04Denoising
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H2017/0298DSP implementation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2210/00Indexing scheme relating to details of tunable filters
    • H03H2210/01Tuned parameter of filter characteristics
    • H03H2210/015Quality factor or bandwidth

Definitions

  • the present disclosure relates to the field of information processing technologies, and in particular, to a method and apparatus for adjusting a passband width of a filter.
  • the performance requirements of the filter are getting higher and higher.
  • the passband width of the filter needs to be shrunk to some extent.
  • a dynamically variable filter is often required to set the center frequency near the spectral line of the active signal.
  • Embodiments of the present disclosure provide methods and apparatus for adjusting the passband width of a filter.
  • a method for adjusting a passband width of a filter comprises: determining an initial passband width; and filtering the signal to be processed according to the initial passband width control filter; correcting the initial passband width according to the first frequency at which the peak spectral line corresponding to the filtered processed signal is located .
  • modifying the initial passband width includes determining a center frequency of the corrected passband according to the first frequency when the first frequency is within a range of the initial passband width; or, at the first When the frequency is not within the initial passband width, the signal to be processed is filtered by the new initial passband width.
  • the new initial passband width and initial passband width do not include overlapping bandwidth regions.
  • the method further includes filtering the signal to be processed using the corrected passband width.
  • the center frequency of the corrected pass band is corrected according to the second frequency.
  • controlling the filter according to the initial passband width to perform filtering processing on a signal to be processed includes: determining a target frequency pin of the filter according to an initial passband width; and enabling the target Frequency pin to allow the filter to operate with an initial passband width.
  • enabling the target frequency pin includes: enabling a target frequency pin of the filter through a target interface in a bus extender corresponding to the target frequency pin.
  • an apparatus for adjusting a passband width of a filter includes: filters and controllers.
  • the controller is configured to determine an initial passband width; to control the programmable filter according to the initial passband width, to perform filtering processing on the signal to be processed; and to determine an initial passband width according to a first frequency at which the peak spectral line corresponding to the filtered processed signal is located Make corrections.
  • the controller is further configured to determine a center frequency of the corrected pass band according to the first frequency when the first frequency is within the initial passband width range; or, the first frequency is not at the initial When the passband width is within the range, the signal to be processed is reprocessed with a new initial passband width.
  • the new initial passband width and initial passband width do not include overlapping bandwidth regions.
  • the controller is further configured to perform a filtering process on the processed signal with the corrected passband width. In response to determining that the second frequency at which the peak line corresponding to the filtered signal is different from the first frequency, the center frequency of the corrected pass band is corrected according to the second frequency.
  • the controller is further configured to determine a target frequency pin of the filter based on the initial passband width; and enable the target frequency pin to cause the filter to operate at an initial passband width.
  • the device further includes a bus extender.
  • the controller is further configured to enable the target frequency pin of the filter by turning on the target interface in the bus extender corresponding to the target frequency pin.
  • an apparatus for adjusting a passband width of a filter includes a processor and a memory.
  • the processor runs a program corresponding to the executable program code by reading the executable program code stored in the memory for implementing the method for adjusting the passband width of the filter proposed in the first aspect of the invention.
  • a computer program product is presented.
  • the instructions in the computer program product are executed by the processor, the method for adjusting the passband width of the filter proposed by the above-described first aspect of the present disclosure is performed.
  • a non-transitory computer readable storage medium is presented.
  • a computer program is stored on the non-transitory computer readable storage medium, wherein the computer program is executed by the processor to implement the method for adjusting the passband width of the filter proposed by the first aspect of the invention.
  • Figure 1 is a schematic diagram of a filter circuit
  • FIG. 2 is a schematic flowchart diagram of a method for adjusting a passband width of a filter according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram showing dynamic changes of a amplitude spectrum line of a continuous frequency modulated signal subjected to FFT processing according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a program-controlled filter circuit according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart diagram of another method for adjusting a passband width of a filter according to an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of communication between a host computer and a DSP according to an embodiment of the present disclosure
  • FIG. 7 is a schematic flowchart of a DSP configuration program control filter according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of an apparatus for adjusting a passband width of a filter according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of another apparatus for adjusting a passband width of a filter according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of a filter circuit.
  • the filter mainly includes a fourth-order Chebyshev high-pass filter and a fourth-order Chebyshev low-pass filter. Since the filter circuit includes four operational amplifiers and a large number of capacitor resistors, the circuit is relatively complicated, and the filter parameters can only be changed by manually soldering resistors and capacitors.
  • the effective signal frequency changes frequently, or the measurement range needs to be changed in real time, such as a frequency modulation circuit or a sensor circuit, the filtering effect is not good, and even an effective signal cannot be obtained in the interference noise.
  • Embodiments of the present disclosure determine the initial passband width by the type of signal to be processed. Then, the initial passband width is corrected according to the specific filtered spectral line peak. Thereby, the corrected band pass width is as narrow as possible on the basis of including the effective signal. This effectively improves the signal-to-noise ratio of the filter and significantly improves the filtering effect.
  • FIG. 2 is a schematic flow chart of a method for adjusting a passband width of a filter according to an embodiment of the present disclosure.
  • the following describes a program-controlled filter as an example. However, other filters whose filter parameters can be dynamically changed can be selected according to actual needs.
  • the method includes the following steps:
  • step S201 an initial passband width is determined.
  • the method for adjusting the passband width of the filter can be implemented by any controller.
  • the controller is configured to control the working state of the programmable filter, such as a Digital Signal Processor (DSP) DSP, a Field Programmable Gate Array (FPGA), an ARM, a microcontroller, etc. .
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • ARM a microcontroller
  • DSP has a wealth of integrated Analog-to-Digital Converter (ADC) and multiplier resources. Compared to microcontrollers, FPGAs, and ARM, DSPs can sample and process signals more easily and quickly. Therefore, when the controller is a DSP, the complexity of the circuit can be effectively reduced.
  • ADC Analog-to-Digital Converter
  • the initial passband width may be determined according to an attribute of a signal to be processed, such as a type of a signal to be processed, or a usage scenario of a programmable filter. For example, for steel mills, different steel mills may have different initial passband widths. Therefore, the initial passband width can be determined based on the steel mill where the programmed filter is located.
  • step S202 the filter is controlled according to the initial passband width, thereby performing filtering processing on the signal to be processed.
  • FIG. 3 is a schematic diagram of dynamic changes of a spectrum line of a continuous frequency modulated signal subjected to Fast Fourier Transform (FFT) processing.
  • FFT Fast Fourier Transform
  • One method is to implement a band-pass filter whose passband width can be dynamically changed.
  • the center frequency and the spectrum of the useful signal are as close as possible, and the cutoff frequency is located on both sides of the line, and as close as possible to the line. In this way, the useful signal is amplified as much as possible, and the noise frequency outside the passband is suppressed, thereby improving the signal-to-noise ratio.
  • the programmable signal filter may be filtered according to the initial passband width to determine the useful signal contained therein.
  • the programmable filter can be controlled to operate on different passband widths by controlling different frequency dividing circuits of the programmable filter.
  • the target frequency pin of the programmable filter can be determined based on the initial passband width. The target frequency pin is then enabled to allow the programmable filter to operate at the initial passband width to filter out the useful signal.
  • the GPIO interface is a General Purpose Input Output interface, or a bus extender.
  • the controller can enable the target frequency pin of the programmable filter through the target interface in the GPIO interface corresponding to the target frequency pin.
  • the programmable filter has a total of 24 pins, including a five-bit input F[4:0], a 7-bit input Q[6:0], a clock input, and so on.
  • the target frequency pin of the programmable filter can be enabled by configuring the values of F[4:0] and Q[6:0].
  • Controlling the programmable filter with a bus extender can increase the scalability of the device.
  • the filter bandwidth of the programmable filter is adjusted, and the implementation is simple. Because it can flexibly control the programmable filter to operate under different passband widths, it is very suitable for signal conditioning, sampling and processing of FM circuits and sensor circuits.
  • the programmable filter of an embodiment of the present disclosure is an analog filter. Unlike adaptive digital filters, analog filters are applied to the signal ADC before sampling, and by processing the analog signal.
  • the digital filter is applied to the sampling and quantization, and is implemented by a digital signal processing algorithm. Since a large amount of noise signals are mixed in the signal to be processed, the effective signal cannot be effectively identified only by digital filtering. Therefore, analog filtering is a prerequisite for digital filtering for devices with large noise and dynamic changes in useful signals.
  • the filtered signal to be processed and the FFT processing need to be processed by the prior art to obtain the frequency domain line of the signal to be processed. .
  • step S203 the initial passband width is corrected according to the first frequency at which the peak line corresponding to the filtered signal corresponds.
  • the peak line corresponding to the filtered signal is a useful signal in the signal to be processed. Therefore, the initial passband width can be corrected according to the first frequency of the peak line corresponding to the filtered signal, so that the corrected passband can effectively suppress the interference signal near the effective signal and the frequency of the carrier segment. In this way, the useful signal can be amplified as much as possible, and the noise frequency outside the passband can be suppressed, thereby improving the signal-to-noise ratio.
  • the above step 203 specifically includes: when the first frequency is within the initial passband width range, the corrected frequency may be determined according to the first frequency. The center frequency of the passband.
  • the signal to be processed is subjected to filtering processing with a new initial passband width.
  • the new initial passband width and initial passband width do not include overlapping bandwidth regions.
  • the center frequency of the corrected pass band is F 1 and the cutoff frequency is at the center frequency F 1 on both sides, and as close as possible to the center frequency is F 1 . Therefore, it is possible to mark a value as small as possible ⁇ F, and the cutoff frequencies are F 1 - ⁇ F and F 1 + ⁇ F, and the pass band width is 2 ⁇ F.
  • the peak spectrum corresponding to the first frequency F 1 is an interference signal of a fixed environment.
  • the signal to be processed can be reprocessed with a new initial passband width.
  • the new initial passband width and initial passband width do not include overlapping bandwidth regions.
  • the processed signal is processed by the corrected passband width, that is, the process returns to step S201, and the passband width is corrected at the corrected speed as soon as possible.
  • the initial passband width is first determined, and then the signal to be processed is filtered by the determined initial passband width, and then the initial passband width is determined according to the specific filtered spectral peak value. Make corrections.
  • the specific spectral line peak according to the signal to be processed is realized, the passband width of the filter is adjusted, the signal to noise ratio of the filter is improved, and the filtering effect of the filter is improved.
  • Embodiments of the present disclosure propose a method for adjusting a passband width of a filter to adjust a passband width of a filter according to a specific spectral peak of a signal to be processed, thereby improving a signal-to-noise ratio of the filter and improving The filtering effect of the filter. Therefore, solving the existing method of constructing the structure of the operational amplifier and the resistor and capacitor on the hardware for filtering and changing the filtering parameters is very cumbersome and complicated, and the problem of dynamically changing the filter parameters of the filter cannot be realized.
  • the first frequency of the peak line of the signal to be processed when the first frequency of the peak line of the signal to be processed is within the initial passband width, the first frequency can be set as the center frequency of the corrected passband, and the corrected passband can be utilized.
  • the width of the signal to be processed is filtered.
  • the passband width of the filter can be corrected in real time according to the variation of the frequency of the peak line of the signal to be processed.
  • FIG. 5 is a schematic flow chart of another method for adjusting a passband width of a filter according to an embodiment of the present disclosure. Referring to Figure 5, the method includes:
  • step S501 determining an initial passband width.
  • the implementation process of step S501 may be referred to the related description of S201 in the foregoing embodiment, and details are not described herein again.
  • the target frequency pin of the programmable filter can be enabled by a target interface in the bus expander corresponding to the target frequency pin.
  • the controller can enable the target frequency pin of the programmable filter by turning on the GPIO interface corresponding to the target frequency pin.
  • the embodiment of the present disclosure may also use the upper computer to communicate with the DSP, change the program of the controller through the upper computer instruction, and then dynamically change the filtering parameter of the filter. .
  • the controller can dynamically change the filter parameters of the filter through C language programming. For example, you can write all your programs in a while(1) loop. Since the assignment process to the GPIO interface takes a long time, in order to optimize the running time of the main program, the entire communication process can be divided into two sections: code 1 and code 2.
  • code 1 is the value of the upper machine assignment flag.
  • code 2 is to detect the code corresponding to the change of the flag quantity and configure the external GPIO interface.
  • the flag quantity is configured to mark the current passband width.
  • the host computer can communicate with the DSP by using the CAN bus, and assign a value of a certain flag m in the corresponding communication mailbox through different instruction numbers. Further, after the DSP assigns a value to the flag m, it can also feed back to the host computer to inform the host computer that the value is received.
  • FIG. 6 is a schematic flowchart of communication between a host computer and a DSP according to an embodiment of the present disclosure.
  • the DSP can configure the programmable filter through the switch statement. Specifically, with m as the determination condition, in response to the value of m being unchanged, jumping out, in response to the change of the value of m, changing the value of m, the corresponding program can be enabled, and the code block in the corresponding case statement is run to configure External GPIO interface.
  • the filtered signal to be processed needs to be sampled and FFT processed to obtain the frequency domain line of the signal to be processed. .
  • the peak line corresponding to the filtered signal is a useful signal in the signal to be processed. Therefore, the initial passband width can be corrected according to the first frequency of the peak line corresponding to the filtered signal, so as to effectively suppress the interference signal near the effective signal and the frequency of the carrier segment, thereby amplifying the useful signal as much as possible.
  • the noise frequency outside the passband is suppressed, thereby improving the signal-to-noise ratio.
  • the first frequency may be within the initial passband width or outside the initial passband width. Therefore, it is judged whether the first frequency is within the initial passband width range, so that the initial passband width is corrected according to the position where the first frequency is located, thereby correcting the passband width at an early correction speed.
  • the new initial passband width and initial passband width do not include overlapping bandwidth regions.
  • the processing signal is reprocessed with a new initial passband width, that is, returning to step S501, the initial passband width is re-determined, and the subsequent flow is performed to correct the passband width as fast as possible.
  • the frequency at which the peak line of the signal to be processed is located may vary. For example, if the frequency of the effective signal changes frequently or the measurement range needs to be changed in real time, for example, the effective signal needs to be tracked in real time, and the useful signal is the peak line corresponding to the filtered signal. Therefore, in response to determining that the second frequency of the peak line corresponding to the signal after the filtering process is different from the first frequency, it is necessary to correct the center frequency of the corrected pass band according to the second frequency, thereby enabling the filter The signal-to-noise ratio maintains a high value at any time.
  • the center frequency of the new corrected passband is determined according to the second frequency.
  • the processing signal is reprocessed with a new initial passband width.
  • the new initial passband width and the corrected passband width do not include an overlapping bandwidth region, which can effectively track the useful signal in the signal to be processed, and then select a suitable passband width to obtain a signal with a higher signal to noise ratio.
  • the method for adjusting the passband width of the filter of the embodiment by determining the target frequency pin of the programmable filter according to the initial passband width, enabling the target frequency pin, so that the programmable filter operates at the initial passband Under the width. Therefore, the scalability of the device can be effectively improved, and the implementation is simple.
  • the center frequency of the corrected pass band is determined according to the first frequency when the first frequency is within the initial passband width range by determining the first frequency at which the peak line corresponding to the filtered signal is located. When the first frequency is not within the initial passband width range, the signal to be processed is subjected to filtering processing with a new initial passband width to correct the passband width as fast as possible.
  • the corrected The center frequency of the passband is corrected. In this way, the signal-to-noise ratio of the filter can be maintained at a high value at any time, thereby effectively improving the filtering effect.
  • FIG. 8 is a schematic structural diagram of an apparatus 800 for adjusting a passband width of a filter according to an embodiment of the present disclosure.
  • the device 800 includes a filter 810 and a controller 820.
  • the controller 820 is configured to determine an initial passband width; perform filtering processing on the signal to be processed according to the initial passband width control filter 810; and initial passband according to the first frequency at which the peak spectral line corresponding to the filtered processed signal is located The width is corrected.
  • the controller 820 can be any processing chip with an arithmetic function, such as a DSP, an FPGA, or the like.
  • the controller 820 is further configured to: determine a center frequency of the corrected pass band according to the first frequency when the first frequency is within the initial pass band width; alternatively, in the When a frequency is not within the initial passband width range, the signal to be processed is filtered again with a new initial passband width.
  • the new initial passband width and initial passband width do not include overlapping bandwidth regions.
  • the controller 820 may be further configured to: during the filtering process of the signal to be processed by using the corrected passband width, in response to determining the peak spectral line corresponding to the filtered signal
  • the second frequency is different from the first frequency, and the center frequency of the corrected pass band is corrected according to the second frequency.
  • the programmable filter can be controlled to operate at different passband widths by controlling the operation of the different frequency divider circuits of the programmable filter.
  • the controller 820 can be configured to: determine a target frequency pin of the programmable filter 810 based on the initial passband width; enable the target frequency pin to operate the programmable filter 810 at an initial passband width.
  • the apparatus 800 may further include a bus expander 830.
  • the controller 820 is further configured to enable the target frequency pin of the programmable filter 810 by turning on the target interface in the bus extender 830 corresponding to the target frequency pin.
  • the apparatus for adjusting the passband width of the filter of the embodiment first determines the initial passband width, and then performs filtering processing on the processed signal by using the determined initial passband width, and then according to the specific filtered spectral line peak, The initial passband width is corrected.
  • the specific spectral line peak according to the signal to be processed is realized, the passband width of the filter is adjusted, the signal to noise ratio of the filter is improved, and the filtering effect of the filter is improved.
  • Embodiments of the present disclosure also propose an apparatus for adjusting the passband width of a filter.
  • the device includes a processor and a memory.
  • the computer program instructions when executed by the processor, cause the apparatus to implement the method for adjusting the passband width of the filter as described in the previous embodiments.
  • Embodiments of the present disclosure also propose a computer program product.
  • the instructions in the computer program product are executed by the processor, the method for adjusting the passband width of the filter proposed by the above embodiments of the present disclosure is performed.
  • Embodiments of the present disclosure also propose a non-transitory computer readable storage medium having stored thereon a computer program.
  • the computer program when executed by the processor, implements a method for adjusting the passband width of the filter as described in the previous embodiments.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include at least one feature, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • Any process or method description in the flowcharts or otherwise described herein may be understood to represent a module, segment or portion of code comprising one or more executable instructions for implementing the steps of a custom logic function or process.
  • the scope of the preferred embodiments of the present disclosure includes additional implementations, in which the functions may be performed in a substantially simultaneous manner or in an inverse order depending on the functions involved, in the order shown or discussed. It will be understood by those skilled in the art to which the embodiments of the present disclosure pertain.
  • a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with the instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory.
  • portions of the present disclosure can be implemented in hardware, software, firmware, or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware and in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: discrete with logic gates for implementing logic functions on data signals Logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), and the like.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like. While the embodiments of the present disclosure have been shown and described above, it is understood that the foregoing embodiments are illustrative and are not to be construed as limiting the scope of the disclosure The embodiments are subject to variations, modifications, substitutions and variations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Networks Using Active Elements (AREA)
  • Noise Elimination (AREA)

Abstract

一种用于调整滤波器的通带宽度的方法及系统。方法包括:确定初始通带宽度(S201)。根据初始通带宽度控制滤波器,对待处理信号进行滤波处理(S202)。根据滤波处理后的信号对应的峰值谱线所在的第一频率,对初始通带宽度进行修正(S203)。

Description

用于调整滤波器的通带宽度的方法及设备
相关申请的交叉引用
本申请要求于2017年6月14日递交的中国专利申请第201710446111.9号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及信息处理技术领域,尤其涉及一种用于调整滤波器的通带宽度的方法及设备。
背景技术
随着信息处理技术和滤波技术的不断发展,对滤波器的性能要求越来越高。为了得到较高的信噪比,需在一定程度上收缩滤波器的通带宽度。对于较窄的带宽,往往需要一个可以动态变化的滤波器,将中心频率设置在有效信号的谱线附近。
发明内容
本公开的实施例提供了用于调整滤波器的通带宽度的方法及设备。
根据本公开的第一方面,提出了一种用于调整滤波器的通带宽度的方法。方法包括:确定初始通带宽度;根据初始通带宽度控制滤波器,以对待处理信号进行滤波处理;根据滤波处理后的信号对应的峰值谱线所在的第一频率,对初始通带宽度进行修正。
在本公开的实施例中,对初始通带宽度进行修正包括:在第一频率位于初始通带宽度的范围内时,根据第一频率确定修正后的通带的中心频率;或者,在第一频率不是位于初始通带宽度范围内时,以新的初始通带宽度,重新对待处理信号进行滤波处理。新的初始通带宽度与初始通带宽度不包含重叠带宽区域。
在本公开的实施例中,方法进一步包括利用修正后的通带宽度对待处理信号进行滤波处理。响应于确定滤波处理后的信号对应的峰值谱线所在的第二频率与第一频率不同,则根据第二频率,对修正后的通带的中心频率进行修正。
在本公开的实施例中,根据所述初始通带宽度控制所述滤波器,以对待处理信号进行滤波处理,包括:根据初始通带宽度,确定滤波器的目标频率引脚;以及使能目标频率引脚,以使滤波器以初始通带宽度操作。
在本公开的实施例中,使能目标频率引脚,包括:通过与目标频率引脚对应的总线扩展器中的目标接口,来使能滤波器的目标频率引脚。
根据本公开的第二方面,提出了一种用于调整滤波器的通带宽度的设备。设备包括:滤波器及控制器。控制器被配置为确定初始通带宽度;根据初始通带宽度控制程控滤波器,对待处理信号进行滤波处理;根据滤波处理后的信号对应的峰值谱线所在的第一频率,对初始通带宽度进行修正。
在本公开的实施例中,控制器进一步被配置为在第一频率位于初始通带宽度范围内时,根据第一频率确定修正后的通带的中心频率;或者,在第一频率不是位于初始通带宽度范围内时,以新的初始通带宽度重新对待处理信号进行滤波处理。新的初始通带宽度与初始通带宽度不包含重叠带宽区域。
在本公开的实施例中,控制器进一步被配置为利用修正后的通带宽度对待处理信号进行滤波处理。响应于确定滤波处理后的信号对应的峰值谱线所在的第二频率与第一频率不同,则根据第二频率,对修正后的通带的中心频率进行修正。
在本公开的实施例中,控制器进一步被配置为根据初始通带宽度,确定滤波器的目标频率引脚;以及使能目标频率引脚,以使滤波器以初始通带宽度操作。
在本公开的实施例中,设备还包括总线扩展器。控制器进一步被配置为通过与目标频率引脚对应的总线扩展器中的目标接口导通,来使能滤波器的目标频率引脚。
根据本公开的第三方面,提出了一种用于调整滤波器的通带宽度的装置。装置包括:处理器和存储器。处理器通过读取存储器中存储的可执行程序代码来运行与可执行程序代码对应的程序,以用于实现上述第一方面实施例提出的用于调整滤波器的通带宽度的方法。
根据本公开的第四方面,提出了一种计算机程序产品。当计算机程序产品中的指令由处理器执行时,执行本公开上述第一方面实施例提出的用于调整滤波器的通带宽度的方法。
根据本公开的第五方面,提出了一种非临时计算机可读存储介质。在非临时计算机可读存储介质上存储有计算机程序,其中,该计算机程序被处理器执行时实现上述第一方面实施例提出的用于调整滤波器的通带宽度的方法。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
为了更清楚地说明本公开的技术方案,下面将对实施例的附图进行简单说明。应当知道,以下描述的附图仅仅是本公开的一些实施例,而非对本公开的限制,其中:
图1为一种滤波器电路的示意图;
图2为本公开实施例提供的一种用于调整滤波器的通带宽度的方法的流程示意图;
图3为本公开实施例中连续调频信号经过FFT处理的幅频谱线动态变化的示意图;
图4为本公开实施例中程控滤波电路的结构示意图;
图5为本公开实施例提供的另一种用于调整滤波器的通带宽度的方法的流程示意图;
图6为本公开实施例中上位机与DSP进行通信的流程示意图;
图7为本公开实施例中DSP配置程控滤波器的流程示意图;
图8为本公开实施例提供的一种用于调整滤波器的通带宽度的设备的结构示意图;
图9为本公开实施例提供的另一种用于调整滤波器的通带宽度的设备的结构示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
目前,主要通过利用运放、电阻、电容等器件搭建的硬件电路来进行滤波。例如,图1为一种滤波器电路的示意图。参见图1,滤波器主要包括:四阶切比雪夫高通滤波器和四阶切比雪夫低通滤波器。由于滤波器电路包括四个运算放大器以及大量的电容电阻,电路相对复杂,且只能手动焊接电阻和电容才能改变滤波参数。
因此,对于信噪比要求高、有效信号频率变化频繁或者需要实时更改测量范围的场合,例如调频电路或者传感器电路等,滤波效果不佳,甚至无法在干扰噪声中获取有效信号。
在采用上述硬件电路进行滤波时,很难动态改变滤波器的滤波参数。更改滤波参数的步骤繁琐且非常复杂。
本公开实施例通过根据待处理信号的类型,确定初始通带宽度。然后,再根据具体的滤波后的谱线峰值,对初始通带宽度进行修正。由此,使修正后的带通宽度在包含有效信号的基础上,范围尽量的窄。这有效提高了滤波器的信噪比,并显著提升滤波效果。
下面参考附图描述本公开实施例的滤波器通带宽度调整方法及装置。
图2为本公开实施例提供的一种用于调整滤波器的通带宽度的方法的流程示意图。以下以程控滤波器为例进行描述,然而也可以根据实际需要选用其它滤波参数可以动态改变的滤波器。
如图2所示,该方法包括以下步骤:
在步骤S201,确定初始通带宽度。
本公开实施例提供的用于调整滤波器的通带宽度的方法可以通过任意控制器来实现。控制器被配置为对程控滤波器的工作状态进行控制,例如可以是数字信号处理器(Digital Signal Processor,DSP)DSP、现场可编程门阵列(Field Programmable Gate Array,FPGA)、ARM、单片机等等。
进一步的,由于DSP拥有丰富的集成模数转换器(Analog DigitalConverter,ADC)与乘法器资源。与单片机、FPGA以及ARM相比,DSP能更方便且更快速地采样并处理信号。因此,当控制器为DSP时,能够有效降低电路的复杂程度。
在本公开的实施例中,可以根据待处理信号的属性,例如待处理信号的类型,或者程控滤波器的使用场景,确定初始通带宽度。例如,对于钢厂来说,不同的钢厂对应的初始通带宽度可能不同。因此,可以根据该程控滤波器所在的钢厂,确定初始通带宽度。
在步骤S202,根据初始通带宽度控制滤波器,从而对待处理信号进行滤波处理。
以连续调频波为例,在调频前,调制信号可能混有大量环境噪声干扰,并且在频域上会在一定的频率范围内变化。参见图3,图3为连续调频信号经过快速傅里叶变换(Fast Fourier Transform,简称FFT)处理的幅频谱线动态变化的示意图。由图3可知,对于解调后的信号,由于测量环境不同,有用信号(即图3中最高的谱线)在频域上动态变化,且在一定频率范围内存在大量干扰噪声。
在解调后,不但需要抑制载波频段的频率,还要抑制有效信号附近的干扰噪声。一种方法为实现一个通带宽度可以动态变化的带通滤波器,其中心频率与有用信号的谱线尽可能重合,截止频率则位于该谱线两边,且尽可能贴近该谱线。以这种方式,尽可能放大有用信号,抑制通带外的噪声频率,进而提高信噪比。
为了有效的跟踪待处理信号中的有用信号,可以根据初始通带宽度, 控制程控滤波器对待处理信号进行滤波处理,以确定其中包含的有用信号。具体的,可以通过控制程控滤波器不同的分频电路工作,来控制程控滤波器工作在不同的通带宽度上。
由于程控滤波器的中心频率和操作模式可以通过引脚输入而选定。因此,在确定初始通带宽度后,可以根据初始通带宽度,确定程控滤波器的目标频率引脚。而后,使能目标频率引脚,以使程控滤波器工作在初始通带宽度下,从而滤出有用信号。
图4为本公开实施例中用于调整滤波器的通带宽度的设备的结构示意图。参见图4,GPIO接口为通用输入/输出(General Purpose Input Output)接口,或总线扩展器。控制器可以通过与目标频率引脚对应的GPIO接口中的目标接口,来使能程控滤波器的目标频率引脚。
作为一种示例,程控滤波器共有24个引脚,包含一个五位的输入F[4:0]、7位的输入Q[6:0]、一个时钟输入等。在根据初始通带宽度,确定程控滤波器的目标频率引脚后,即可通过配置F[4:0]、Q[6:0]的值,来使能程控滤波器的目标频率引脚。
利用总线扩展器对程控滤波器进行控制,能够提高设备的可扩展性。通过使能程控滤波器的频率引脚,调整程控滤波器的滤波带宽,实现方式简单。由于可以灵活的控制程控滤波器在不同的通带宽度下操作,因此非常适合调频电路以及传感器电路的信号调理、采样以及处理。
应理解的是,本公开实施例的程控滤波器是模拟滤波器。与自适应数字滤波器不同,模拟滤波器作用于信号ADC采样前,通过处理模拟信号来实现。而数字滤波器作用于采样、量化后,通过数字信号处理算法来实现。由于待处理信号中夹杂着大量的噪声信号,只通过数字滤波往往无法有效识别有效信号。因此,对于噪声较大、有用信号会动态变化的设备,模拟滤波是数字滤波的前提。
此外,在待处理信号经过滤波处理后,在确定待处理信号的峰值谱线时,还需要利用现有技术对滤波后的待处理信号进行采样以及FFT处理,得到待处理信号的频域谱线。
在步骤S203,根据滤波处理后的信号对应的峰值谱线所在的第一频率,对初始通带宽度进行修正。
滤波处理后的信号对应的峰值谱线为待处理信号中的有用信号。因此,可以根据滤波处理后的信号对应的峰值谱线所在的第一频率,对初始通带宽度进行修正,使修正后的通带能够有效抑制有效信号附近的干扰信号,以及载波段的频率。以这种方式,可以尽可能放大有用信号,抑制通带外的噪声频率,进而提高信噪比。
由于第一频率可能在初始通带宽度内,也可能在初始通带宽度外,因此上述步骤203,具体包括:在第一频率位于初始通带宽度范围内时,可根据第一频率确定修正后的通带的中心频率。另一方面,在第一频率不是位于初始通带宽度范围内时,以新的初始通带宽度,重新对待处理信号进行滤波处理。新的初始通带宽度与初始通带宽度未包含重叠带宽区域。
例如,当第一频率为F 1,那么在第一频率F 1位于初始通带宽度范围内时,则可以确定修正后的通带的中心频率为F 1,而截止频率则位于中心频率为F 1两边,且尽可能贴近中心频率为F 1。因此,可以标记一个尽可能小的值为ΔF,则截止频率为F 1-ΔF和F 1+ΔF,通带宽度为2ΔF。
此外,在第一频率F 1不是位于初始通带宽度范围内时,表明第一频率F 1对应的峰值谱线为固定环境的干扰信号。由此,可以以新的初始通带宽度,重新对待处理信号进行滤波处理。新的初始通带宽度与初始通带宽度未包含重叠带宽区域。而后,再利用修正后的通带宽度对待处理信号进行滤波处理,即返回重新执行步骤S201,从而以尽快的修正速度对通带宽度进行修正。
本实施例的滤波器通带宽度调整方法,首先确定初始通带宽度,然后利用确定的初始通带宽度对待处理信号进行滤波处理,再根据具体的滤波后的谱线峰值,对初始通带宽度进行修正。实现了根据待处理信号的具体谱线峰值,调整滤波器的通带宽度,提高了滤波器的信噪比,提升了滤波器的滤波效果。
本公开的实施例提出一种用于调整滤波器的通带宽度的方法,以实现 根据待处理信号的具体谱线峰值,调整滤波器的通带宽度,提高了滤波器的信噪比,提升了滤波器的滤波效果。由此,解决现有采用在硬件上搭建运放与电阻电容的结构来进行滤波,更改滤波参数的步骤,非常繁琐、且复杂,无法实现动态改变滤波器的滤波参数的问题。
通过上述分析可知,当待处理信号的峰值谱线所在的第一频率在初始通带宽度内时,可以将第一频率,设置为修正后的通带的中心频率,进而利用修正后的通带宽度对待处理信号进行滤波。在具体实现时,若待处理信号的峰值谱线所在的频率是变化的,那么还可以根据待处理信号的峰值谱线所在的频率的变化情况,对滤波器的通带宽度进行实时的修正,下面结合图5,对上述情况进行详细说明。
图5为本公开实施例提供的另一种用于调整滤波器的通带宽度的方法的流程示意图。参见图5,该方法包括:
S501,确定初始通带宽度。步骤S501的执行过程可以对应参照前述实施例中S201的相关描述,在此不再赘述。
S502,根据初始通带宽度,确定程控滤波器的目标频率引脚。
S503,使能目标频率引脚,以使程控滤波器工作在初始通带宽度下。
具体地,可以通过与目标频率引脚对应的总线扩展器中的目标接口,来使能程控滤波器的目标频率引脚。例如,参见图4,控制器可以通过与目标频率引脚对应的GPIO接口导通,来使能程控滤波器的目标频率引脚。
在本申请一种可能的实现形式中,为了使滤波控制更灵活,本公开实施例还可以利用上位机与DSP进行通信,通过上位机指令更改控制器的程序,进而动态更改滤波器的滤波参数。
具体的,若控制器为DSP,则上位机可以通过C语言编程实现动态更改滤波器的滤波参数。例如,可以将所有的程序编写在一个while(1)循环中。由于对GPIO接口赋值过程时间较长,因此,为了优化主程序的运行时间,可以将整个通信过程分为两段:代码1和代码2。代码1的功能为上位机赋值标志量,代码2的功能为检测标志量变化使能对应的代码,并配置外部GPIO接口,其中,标志量被配置为标志当前的通带宽度。
根据代码1,上位机可以采用CAN总线与DSP进行通信,通过不同指令编号为相应通讯邮箱中某一标志量m赋值。进一步的,DSP在为标志量m赋值后,还可以反馈给上位机,告知上位机已接收到该赋值量。参见图6,图6为本公开实施例中上位机与DSP进行通信的流程示意图。
根据代码2,DSP可以通过switch语句配置程控滤波器。具体地,以m作为判定条件,响应于m的值不变,则跳出,响应于m的值改变,则改变的m值,可以使能对应的程序,运行对应case语句中的代码块来配置外部GPIO接口。例如,参见图7,图7为本公开实施例中DSP配置程控滤波芯片的流程示意图,当m=8时,执行代码块8,并给F[4:0]、Q[6:0]赋值。然后将F[4:0]和Q[6:0]的值送至外部GPIO接口,即配置外部GPIO接口,使能程控滤波器的目标频率引脚,以使程控滤波器工作在初始通带宽度下。
S504,确定滤波处理后的信号对应的峰值谱线所在的第一频率。
需要说明的是,在待处理信号经过滤波处理后,要确定待处理信号的峰值谱线时,还需要对滤波后的待处理信号进行采样以及FFT处理,以得到待处理信号的频域谱线。
可以理解的是,滤波处理后的信号对应的峰值谱线,为待处理信号中的有用信号。因此,可以根据滤波处理后的信号对应的峰值谱线所在的第一频率,对初始通带宽度进行修正,以有效抑制有效信号附近的干扰信号,以及载波段的频率,从而尽可能放大有用信号,抑制通带外的噪声频率,进而提高信噪比。
S505,判断第一频率是否位于初始通带宽度范围内。若是,执行S506。否则,执行S507。
第一频率可能在初始通带宽度内,也可能在初始通带宽度外。因此,判断第一频率是否位于初始通带宽度范围内,以根据第一频率所处的位置,采用不同的方案对初始通带宽度进行修正,从而以尽快的修正速度对通带宽度进行修正。
S506,根据第一频率,确定修正后的通带的中心频率。
S507,以新的初始通带宽度,重新对待处理信号进行滤波处理。新的初始通带宽度与初始通带宽度未包含重叠带宽区域。
具体地,以新的初始通带宽度,重新对待处理信号进行滤波处理,即返回步骤S501,重新确定初始通带宽度,以及执行后续流程,从而以尽量快的修正速度对通带宽度进行修正。
S508,在利用修正后的通带宽度对待处理信号进行滤波处理的过程中,响应于确定滤波处理后的信号对应的峰值谱线所在的第二频率与第一频率不同,则根据第二频率对修正后的通带的中心频率进行修正。
在具体实现时,待处理信号的峰值谱线所在的频率可能是变化的。如,例如调频电路或者传感器电路等,其有效信号频率变化频繁或者需要实时更改测量范围,此时就需实时跟踪有用信号,有用信号即滤波处理后的信号对应的峰值谱线。因此,响应于确定滤波处理后的信号对应的峰值谱线所在的第二频率,与第一频率不同,则需要根据第二频率,对修正后的通带的中心频率进行修正,能够使滤波器的信噪比在任意时刻均能保持较高的值。
具体地,在第二频率位于修正后的通带宽度范围内时,根据第二频率,确定新的修正后的通带的中心频率。可替代地,在第二频率不是位于修正后的通带宽度范围内时,再以新的初始通带宽度,重新对待处理信号进行滤波处理。新的初始通带宽度与修正后的通带宽度未包含重叠带宽区域,能够有效的跟踪待处理信号中的有用信号,进而选用合适的通带宽度,得到信噪比更高的信号。
本实施例的用于调整滤波器的通带宽度的方法,通过根据初始通带宽度,确定程控滤波器的目标频率引脚,使能目标频率引脚,以使程控滤波器工作在初始通带宽度下。因此,能够有效提高设备的可扩展性,且实现方式简单。通过确定滤波处理后的信号对应的峰值谱线所在的第一频率,在第一频率位于初始通带宽度范围内时,根据第一频率,确定修正后的通带的中心频率。在第一频率不是位于初始通带宽度范围内时,以新的初始通带宽度,重新对待处理信号进行滤波处理,从而以尽量快的修正速度对 通带宽度进行修正。通过利用修正后的通带宽度对待处理信号进行滤波处理过程中,响应于确定滤波处理后的信号对应的峰值谱线所在的第二频率与第一频率不同,则根据第二频率对修正后的通带的中心频率进行修正。这样,能够使滤波器的信噪比在任意时刻均能保持较高的值,有效提升滤波效果。
图8为本公开实施例提供的一种用于调整滤波器的通带宽度的设备800的结构示意图。
如图8所示,该设备800包括:滤波器810及控制器820。
控制器820被配置为确定初始通带宽度;根据初始通带宽度控制滤波器810,对待处理信号进行滤波处理;根据滤波处理后的信号对应的峰值谱线所在的第一频率,对初始通带宽度进行修正。控制器820可以为任意具有运算功能的处理芯片,比如可以为DSP、FPGA等等。
在本公开的实施例中,控制器820进一步被配置为:在第一频率位于初始通带宽度范围内时,根据第一频率,确定修正后的通带的中心频率;可替代地,在第一频率不是位于初始通带宽度范围内时,以新的初始通带宽度,重新对待处理信号进行滤波处理。新的初始通带宽度与初始通带宽度未包含重叠带宽区域。
为了进一步提高程控滤波器的信噪比,控制器820还可被配置为:利用修正后的通带宽度对待处理信号进行滤波处理过程中,响应于确定滤波处理后的信号对应的峰值谱线所在的第二频率与第一频率不同,则根据第二频率,对修正后的通带的中心频率进行修正。
此外,可以通过控制程控滤波器不同的分频电路工作,来控制程控滤波器工作在不同的通带宽度上。由此,控制器820可被配置为:根据初始通带宽度,确定程控滤波器810的目标频率引脚;使能目标频率引脚,以使程控滤波器810工作在初始通带宽度下。
在本公开的实施例中,在图8的基础上,参见图9,该设备800还可进一步包括总线扩展器830。控制器820进一步被配置为:通过与目标频率引脚对应的总线扩展器830中的目标接口导通,来使能程控滤波器810 的目标频率引脚。
需要说明的是,前述图1-图7实施例对用于调整滤波器的通带宽度的方法的实施例的解释说明也适用于该实施例的用于调整滤波器的通带宽度的设备800,此处不再赘述。
本实施例的用于调整滤波器的通带宽度的设备,首先确定初始通带宽度,然后利用确定的初始通带宽度对待处理信号进行滤波处理,再根据具体的滤波后的谱线峰值,对初始通带宽度进行修正。实现了根据待处理信号的具体谱线峰值,调整滤波器的通带宽度,提高了滤波器的信噪比,提升了滤波器的滤波效果。
本公开的实施例还提出一种用于调整滤波器的通带宽度的装置。该装置包括:处理器和存储器。计算机程序指令在被处理器执行时使得该装置实现如前述实施例所述的用于调整滤波器的通带宽度的方法。
本公开的实施例还提出一种计算机程序产品。当计算机程序产品中的指令由处理器执行时,执行本公开上述实施例提出的用于调整滤波器的通带宽度的方法。
本公开的实施例还提出一种非临时性计算机可读存储介质,其上存储有计算机程序。该计算机程序被处理器执行时实现如前述实施例所述的用于调整滤波器的通带宽度的方法。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第 一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本公开的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本公开的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组 合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本公开各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (11)

  1. 一种用于调整滤波器的通带宽度的方法,包括:
    确定初始通带宽度;
    根据所述初始通带宽度控制所述滤波器,以对待处理信号进行滤波处理;以及
    根据滤波处理后的信号对应的峰值谱线所在的第一频率,对所述初始通带宽度进行修正。
  2. 如权利要求1所述的方法,其中,对所述初始通带宽度进行修正,包括:
    在所述第一频率位于所述初始通带宽度的范围内时,根据所述第一频率,确定修正后的通带的中心频率;或者,
    在所述第一频率不是位于所述初始通带宽度范围内时,以新的初始通带宽度,重新对所述待处理信号进行滤波处理,其中,新的初始通带宽度与所述初始通带宽度不包含重叠带宽区域。
  3. 如权利要求1所述的方法,进一步包括:
    利用修正后的通带宽度对所述待处理信号进行滤波处理,响应于确定滤波处理后的信号对应的峰值谱线所在的第二频率与所述第一频率不同,则根据所述第二频率,对所述修正后的通带的中心频率进行修正。
  4. 如权利要求1所述的方法,其中,根据所述初始通带宽度控制所述滤波器,以对待处理信号进行滤波处理,包括:
    根据所述初始通带宽度,确定所述滤波器的目标频率引脚;以及,
    使能所述目标频率引脚,以使所述滤波器工作在所述初始通带宽度下。
  5. 如权利要求4所述的方法,其中,使能所述目标频率引脚,包括:
    通过与所述目标频率引脚对应的总线扩展器中的目标接口,来使能所述滤波器的目标频率引脚。
  6. 一种用于调整滤波器的通带宽度的设备,包括:滤波器和控制器;
    其中,所述控制器被配置为:
    确定初始通带宽度;
    根据所述初始通带宽度控制所述滤波器,对待处理信号进行滤波处理;以及
    根据滤波处理后的信号对应的峰值谱线所在的第一频率,对所述初始通带宽度进行修正。
  7. 如权利要求6所述的设备,其中,所述控制器进一步被配置为:
    在所述第一频率位于所述初始通带宽度范围内时,根据所述第一频率确定修正后的通带的中心频率;或者,
    在所述第一频率不是位于所述初始通带宽度范围内时,以新的初始通带宽度重新对所述待处理信号进行滤波处理,其中,新的初始通带宽度与所述初始通带宽度不包含重叠带宽区域。
  8. 如权利要求6所述的设备,其中,所述控制器进一步被配置为:
    利用修正后的通带宽度对所述待处理信号进行滤波处理,响应于确定滤波处理后的信号对应的峰值谱线所在的第二频率与所述第一频率不同,则根据所述第二频率,对所述修正后的通带的中心频率进行修正。
  9. 如权利要求6所述的设备,其中,所述控制器进一步被配置为:
    根据所述初始通带宽度,确定所述滤波器的目标频率引脚;以及,使能所述目标频率引脚,以使所述滤波器工作在所述初始通带宽度下。
  10. 如权利要求9所述的设备,其中,所述系统还包括总线扩展器;
    所述控制器进一步被配置为通过与所述目标频率引脚对应的总线扩展器中的目标接口导通,来使能所述滤波器的目标频率引脚。
  11. 一种用于调整滤波器的通带宽度的装置,包括:
    一个或多个处理器;
    存储器,其与所述处理器耦接,并存储有计算机程序指令,
    其中,所述计算机程序指令在被所述处理器执行时使得所述装置实现如权利要求1-5所述的方法。
PCT/CN2018/071295 2017-06-14 2018-01-04 用于调整滤波器的通带宽度的方法及设备 WO2018227952A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/092,078 US10622971B2 (en) 2017-06-14 2018-01-04 Method and device for adjusting passband width of filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710446111.9A CN107038437B (zh) 2017-06-14 2017-06-14 滤波器通带宽度调整方法及系统
CN201710446111.9 2017-06-14

Publications (1)

Publication Number Publication Date
WO2018227952A1 true WO2018227952A1 (zh) 2018-12-20

Family

ID=59542109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071295 WO2018227952A1 (zh) 2017-06-14 2018-01-04 用于调整滤波器的通带宽度的方法及设备

Country Status (3)

Country Link
US (1) US10622971B2 (zh)
CN (1) CN107038437B (zh)
WO (1) WO2018227952A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107038437B (zh) * 2017-06-14 2021-03-02 京东方科技集团股份有限公司 滤波器通带宽度调整方法及系统
US11799451B2 (en) 2020-03-13 2023-10-24 Netcom, Inc. Multi-tune filter and control therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1758536A (zh) * 2004-10-09 2006-04-12 深圳迈瑞生物医疗电子股份有限公司 一种工业频率自动跟踪的滤波方法与装置
CN101841074A (zh) * 2009-03-19 2010-09-22 富士通株式会社 滤波器、滤波方法及通信设备
CN102308483A (zh) * 2009-02-04 2012-01-04 高通股份有限公司 响应于频谱信息的可调整的接收滤波器
CN105187131A (zh) * 2015-08-31 2015-12-23 华中科技大学 一种基于超连续谱的波长可调谐相干光检测系统及方法
CN107038437A (zh) * 2017-06-14 2017-08-11 京东方科技集团股份有限公司 滤波器通带宽度调整方法及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201018443A (en) * 2008-11-07 2010-05-16 Inst Information Industry Digital filtering system, method and program
CN101846815B (zh) * 2010-04-30 2012-01-25 天津大学 可同时提取双波长的带宽可调的光波长滤波器
CN103986529B (zh) * 2014-06-04 2016-03-16 吉林大学 高带宽可调谐双通带微波光子滤波器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1758536A (zh) * 2004-10-09 2006-04-12 深圳迈瑞生物医疗电子股份有限公司 一种工业频率自动跟踪的滤波方法与装置
CN102308483A (zh) * 2009-02-04 2012-01-04 高通股份有限公司 响应于频谱信息的可调整的接收滤波器
CN101841074A (zh) * 2009-03-19 2010-09-22 富士通株式会社 滤波器、滤波方法及通信设备
CN105187131A (zh) * 2015-08-31 2015-12-23 华中科技大学 一种基于超连续谱的波长可调谐相干光检测系统及方法
CN107038437A (zh) * 2017-06-14 2017-08-11 京东方科技集团股份有限公司 滤波器通带宽度调整方法及系统

Also Published As

Publication number Publication date
CN107038437A (zh) 2017-08-11
US10622971B2 (en) 2020-04-14
US20190245522A1 (en) 2019-08-08
CN107038437B (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
US8860401B2 (en) Sensor system and method
KR102411755B1 (ko) 비선형 필터 및 방법을 이용하는 근접 센서
WO2018227952A1 (zh) 用于调整滤波器的通带宽度的方法及设备
US9606671B2 (en) Capacitive sensing device capable of eliminating influence from mutual capacitance and operating method thereof
EP3531143B1 (en) Method for determining control parameters for offset branch, and device and touch detection device thereof
US10728663B2 (en) Method and apparatus for setting filter frequency response
US9559658B2 (en) Filter coefficient group computation device and filter coefficient group computation method
GB2576997A (en) Crosstalk mitigation
US10727813B2 (en) Fractional scaling digital signal processing
Badajos et al. Reduction of audio noise with lowpass Chebyshev Type II filter simulated using GNU octave
JP6711417B2 (ja) 自動フィルタリング方法及び装置
CN112799459B (zh) 功率源调试方法、装置、存储介质及电子设备
US10418974B2 (en) Apparatus for modifying a sampling rate system including an apparatus for modifying a sampling rate and method for modifying a sampling rate
US10408870B2 (en) Capacitor sensor apparatus and sensing method thereof
JP6527472B2 (ja) 半導体装置、位置検出装置、及び半導体装置の制御方法
WO2019023922A1 (zh) 确定触摸位置的方法和触摸控制芯片
CN109391336B (zh) 基于脉冲的接收方法和接收器
CN107990929B (zh) 滤波时间常数的控制方法及装置、计算机装置、存储介质
JP2020047476A (ja) 荷電粒子ビームシステム
US20150139362A1 (en) Pulse shaping circuit for improving spectrum efficiency and on-off keying (ook) transmitter including pulse shaping circuit
US9531346B2 (en) Signal processing apparatus and method
CN114143665A (zh) 一种服务器风扇的降噪处理系统及方法
KR101844300B1 (ko) 입력 신호에 응답하여 동적으로 제어 가능한 포락선 검파 장치 및 방법
CN106850083B (zh) 一种抑制本振泄露信号的方法、电路板及通信设备
CN112748682B (zh) 信号采样处理方法、装置、设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/04/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18818767

Country of ref document: EP

Kind code of ref document: A1