WO2019023922A1 - 确定触摸位置的方法和触摸控制芯片 - Google Patents

确定触摸位置的方法和触摸控制芯片 Download PDF

Info

Publication number
WO2019023922A1
WO2019023922A1 PCT/CN2017/095398 CN2017095398W WO2019023922A1 WO 2019023922 A1 WO2019023922 A1 WO 2019023922A1 CN 2017095398 W CN2017095398 W CN 2017095398W WO 2019023922 A1 WO2019023922 A1 WO 2019023922A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise
touch screen
capacitive touch
amount
original
Prior art date
Application number
PCT/CN2017/095398
Other languages
English (en)
French (fr)
Inventor
李刚
彭海军
彭永豪
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201780000767.6A priority Critical patent/CN107636583B/zh
Priority to PCT/CN2017/095398 priority patent/WO2019023922A1/zh
Priority to EP17905900.1A priority patent/EP3462292B1/en
Priority to US16/167,446 priority patent/US10725585B2/en
Publication of WO2019023922A1 publication Critical patent/WO2019023922A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04182Filtering of noise external to the device and not generated by digitiser components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits

Definitions

  • the present application relates to the field of capacitive touch and, more particularly, to a method of determining a touch location and a touch control chip.
  • a capacitive touch screen is a human-machine interaction device that is mainly composed of a driving electrode and a sensing electrode.
  • the touch control chip can be configured to send signals of different frequencies to the driving electrodes, and the sensing electrodes are responsible for receiving signals.
  • the signal received by the sensing electrode is subjected to digital signal processing or the like to obtain original value data.
  • the touch control chip can determine the location of the touch point on the capacitive touch screen based on the raw value data.
  • Capacitive touch screens are often affected by common mode noise during use, such as charger noise.
  • common mode interference noise if the original value data is mixed with noisy data, it will cause the mutual data to be abnormal, and the reaction to the data of the determined touch position may cause a phenomenon such as a dot phenomenon or a vanishing point. Affects the detection accuracy of the touch position.
  • the application provides a method of determining a touch location and a touch control chip. Helps improve the detection accuracy of touch locations.
  • the present application provides a method of determining a touch location.
  • the method includes: determining a change amount of noise caused by the original data of the capacitive touch screen; determining a noise processing method of the raw value data of the capacitive touch screen according to the amount of change caused by the noise on the raw data of the capacitive touch screen; using a noise processing method to the capacitor
  • the first raw value data set of the touch screen performs noise cancellation processing to obtain a first processing value set; and according to the first processing value set, the touch position on the capacitive touch screen is determined.
  • the noise processing method for eliminating noise interference in the original value data of the capacitive touch screen is determined according to the amount of change caused by the noise on the raw data of the capacitive touch screen, which helps to eliminate the original value data set by using an appropriate and accurate noise processing method.
  • the noise interference in the network helps to improve the detection accuracy of the touch position on the capacitive touch screen.
  • determining the amount of change caused by noise on the original data of the capacitive touch screen includes: when the capacitive touch screen is not coded, the original value obtained by the touch chip is determined to be noise. The amount of amplitude change caused by the raw data of the capacitive touch screen, the phase change The amount of change that is caused by the noise on the raw data of the capacitive touch screen.
  • determining a quantity of change caused by noise on the original data of the capacitive touch screen includes: acquiring a plurality of original data sets corresponding to each of the plurality of periods when the driving signal is output to the capacitive touch screen The phase difference between the two determines the amount of phase change caused by the noise on the raw data of the capacitive touch screen, which is the amount of change caused by the noise to the raw value data of the capacitive touch screen.
  • the plurality of cycles includes two cycles or two or more cycles.
  • a plurality of cycles may include two adjacent cycles.
  • the amount of phase change caused by the data includes: determining a maximum value in the difference set of the second original value set of the capacitive touch screen and the reference value set, and the second original value set is a set of the original value correspondingly obtained when the driving signal is output to the capacitive touch screen.
  • the amount of change, the first raw data set and the second raw data set are the original data sets obtained when the drive signal is output to the capacitive touch screen.
  • the phase change amount of the first sensing terminal corresponding to the maximum value in the difference set is used as the amount of change in determining the noise processing method, and on the one hand, the efficiency of acquiring the variation amount can be improved, and on the other hand, To improve the noise cancellation effect of the determined noise processing method on the original value data set.
  • the amount of phase change ⁇ caused by noise on the raw data of the capacitive touch screen satisfies the following formula:
  • M is the number of original data corresponding to the first sensing terminal in the first original data set
  • the phase of the i-th original data corresponding to the first sensing terminal in the first original data set The phase of the i-th original data corresponding to the first sensing terminal in the second original data set.
  • determining the amount of change caused by the noise on the original data of the capacitive touch screen and further comprising: the original value data obtained when the driving signal is not output to the capacitive touch screen, Determined as the amplitude of the noise caused by the raw data of the capacitive touch screen The amount of change in magnitude, which is the amount of change that the noise causes to the raw data of the capacitive touch screen.
  • the noise processing method for determining the original value data of the capacitive touch screen is determined according to the amount of change caused by the noise on the original data of the capacitive touch screen, including : determining the level of noise according to the determined amount of change caused by the determined noise on the raw data of the capacitive touch screen, and the corresponding relationship between the amount of change caused by the noise of the configured capacitive touch screen and the noise level; according to the level of the noise, and the noise Correspondence between the level and the noise processing method, and a noise processing method for determining the raw value data of the capacitive touch screen from a plurality of noise processing methods.
  • the method before the noise processing method for determining the original value data of the capacitive touch screen is determined according to the amount of change caused by the noise on the original data of the capacitive touch screen, The method further includes determining to perform noise cancellation processing on the raw value data of the capacitive touch screen when the amount of change caused by the noise on the raw data of the capacitive touch screen is greater than or equal to the first threshold.
  • the present application provides a touch control chip.
  • the touch control chip includes a memory, a microprocessor control unit (MCU), a driving circuit and a sensing circuit, and the MCU includes a processor and a conversion circuit.
  • MCU microprocessor control unit
  • the memory is used to store computer program code, a set of reference values, a collection of original values collected, a collection of original data, and the like.
  • the processor is configured to execute computer program code stored in the memory, and can control the driving circuit to output a driving signal of a corresponding frequency to the touch screen to drive the touch screen to work, obtain a set of original values, and detect a touch position or the like according to the original value set or the like.
  • the conversion circuit is configured to generate a raw data set according to the sensing signal collected by the sensing circuit from the touch screen.
  • the driving circuit is configured to output a driving signal of a corresponding frequency to the touch screen under the control of the processor.
  • the sensing circuit is configured to collect the sensing signal output by the touch screen under the control of the processor.
  • the processor is configured to: determine a quantity of change caused by noise on the raw data of the capacitive touch screen; determine a noise processing method of the original value of the capacitive touch screen according to the amount of change caused by the noise on the raw data of the capacitive touch screen; and use the determined noise processing Method for a first set of raw values of a capacitive touch screen Performing noise cancellation processing to obtain a first set of processing values; determining a touch position on the capacitive touch screen according to the first set of processed values.
  • the touch control chip in the embodiment of the present application determines a noise processing method for eliminating noise interference in the original value data of the capacitive touch screen according to the amount of change caused by the noise on the raw data of the capacitive touch screen, and helps to use a suitable and accurate noise processing method. To eliminate noise interference in the raw value data set, which helps to improve the accuracy of the touch position on the capacitive touch screen.
  • the processor is specifically configured to: determine a noise pair according to a phase difference between the plurality of original data sets obtained when the driving signal is output to the capacitive touch screen in a plurality of cycles
  • the amount of phase change caused by the raw data of the capacitive touch screen is used as the amount of change caused by noise to the raw data of the capacitive touch screen.
  • the processor is specifically configured to determine a maximum value, a second original value, in the difference set between the second original value set and the reference value set of the capacitive touch screen. Collecting a set of original values obtained when the driving signal is output to the capacitive touch screen; determining a first sensing terminal corresponding to the maximum value; and corresponding to the original data and the second corresponding to the first sensing terminal in the first original data set of the capacitive touch screen.
  • the phase difference of the original data corresponding to the first sensing terminal in the original data set determines the phase change amount, and the first original data set and the second original data set are acquired by the conversion circuit when outputting the driving signal to the capacitive touch screen.
  • the processor is specifically configured to: determine, according to the following formula, a phase change amount ⁇ caused by noise on the raw data of the capacitive touch screen:
  • M is the number of original data corresponding to the first sensing terminal in the first original data set
  • the phase of the i-th original data corresponding to the first sensing terminal in the first original data set The phase of the i-th original data corresponding to the first sensing terminal in the second original data set.
  • the processor is further configured to determine, as a noise pair, an original value obtained when the driving signal is not output to the capacitive touch screen.
  • the amount of amplitude change caused by the raw data of the capacitive touch screen as the amount of change caused by noise to the raw data of the capacitive touch screen.
  • the processor is further configured to be used to change the original data of the capacitive touch screen according to noise.
  • the amount of change, and the correspondence between the amount of change caused by the noise of the raw data of the capacitive touch screen and the noise level determine the level of noise; according to the level of noise, and the correspondence between the noise level and the noise processing method, from multiple noise processing methods A noise processing method that determines the original value of the capacitive touch screen.
  • the processor determines an original value of the capacitive touch screen according to a change amount caused by noise on the original data of the capacitive touch screen. Before the noise processing method, the processor is further configured to: perform noise cancellation processing on the original value of the capacitive touch screen when the amount of change caused by the noise to the original data of the capacitive touch screen is greater than or equal to the first threshold.
  • the touch control chip provided by the present application may include a module for performing a method for determining a touch location in any of the possible implementations of the first aspect or the first aspect, the module may be software And / or hardware.
  • Yet another aspect of the present application provides a computer readable storage medium having stored therein instructions that, when executed on a touch control chip, cause the touch control chip to perform the first aspect or the first A method of determining a touch location in any of the possible implementations of the aspects.
  • Yet another aspect of the present application provides a computer program product comprising instructions that, when run on a touch control chip, cause the touch control chip to perform the determination in the first aspect or any one of the possible implementations of the first aspect The method of touching the location.
  • FIG. 1 is a diagram showing an example of a system of a capacitive touch screen and a touch chip.
  • FIG. 2 is a schematic diagram of noise value detection according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for determining a touch position according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of raw value data detection of an embodiment of the present application.
  • FIG. 5 is a schematic diagram of phase detection of raw value data according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a touch control chip according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a touch control chip according to another embodiment of the present application.
  • FIG. 1 is a diagram showing an example of a system of a capacitive touch screen and a touch chip. It should be understood that the system shown in FIG. 1 is only an example, and other modules or units may be included in the system, or include each module in FIG. Functionally similar modules.
  • the capacitive touch screen shown in FIG. 1 may be a mutual capacitance touch screen.
  • the capacitive touch screen in the embodiment of the present application may also be a self-capacitive touch screen.
  • capacitive touch screen 110 generally includes two sets of electrodes, one may be referred to as a lateral electrode and the other may be referred to as a longitudinal electrode.
  • a capacitor is formed where the two sets of electrodes intersect. That is to say, the two sets of electrodes respectively constitute the two poles of the capacitive touch screen 110.
  • the touch chip 120 can also be referred to as a touch control chip or a touch controller.
  • the touch chip 120 may include a driving terminal (TX) and a sensing terminal (RX).
  • the driving terminal of the touch chip 120 can be connected to the lateral electrode of the capacitive touch screen 110, and the sensing terminal of the touch chip 120 can be connected to the longitudinal electrode of the capacitive touch screen 110.
  • the touch chip 120 can input a signal of a certain frequency to the lateral electrode of the capacitive touch screen 110 through a driving terminal, and the signal can be referred to as a driving signal; and the signal on the longitudinal electrode of the capacitive touch screen 110 is collected through the sensing terminal, and the signal can be referred to as induction. signal.
  • the touch chip 120 processes the sensing signals collected by a certain sensing terminal, such as sampling, analog-to-digital conversion, and quadrature demodulation processing, to obtain two signals of I and Q, and the two signals can be It is called a raw data of the capacitive touch screen 110.
  • a certain sensing terminal such as sampling, analog-to-digital conversion, and quadrature demodulation processing
  • the touch chip 120 After the touch chip 120 processes the plurality of sensing signals collected by the plurality of sensing terminals, the obtained plurality of I and Q signals may be referred to as a raw data set.
  • the touch chip 120 can substitute a raw data into a formula An original value RawData of the capacitive touch screen 110 is obtained.
  • the touch chip 120 can obtain the original set of values of the capacitive touch screen 110 according to the original data set of the capacitive touch screen 110 and the above formula.
  • the touch chip 120 can determine the touch position on the capacitive touch screen 110 according to the original set of values of the capacitive touch screen 110 and the set of reference values.
  • noise in the raw data which causes noise in the raw value data, such as common mode noise. Therefore, it is necessary to perform noise processing on the original value data in the original value data set to eliminate or reduce the influence of noise on the original value data.
  • noise processing methods are various, but only one noise processing method is usually arranged in the touch chip. No matter what kind of noise processing method is configured in the touch chip, the noise processing effect is not ideal.
  • the magnitude of the effect of noise on the raw value data is not fixed, it is randomly variable, and sometimes the effect of noise is relatively large, and sometimes it is relatively small, if only a fixed noise is used.
  • the sound processing method to eliminate the noise in the original value data can not balance the noise of various sizes, and can not achieve the ideal noise elimination effect, and even cause side effects.
  • the noise processing method configured in the touch chip can well eliminate large noise
  • the noise processing method may excessively eliminate the noise of the original value data when the noise is small, thereby causing the determined touch position not to be determined. accurate.
  • the present application proposes a new method of determining a touch location, the method including a new noise processing method to improve the accuracy of the touch location determined from the processed raw value data.
  • FIG. 3 is a schematic flowchart of a method for determining a touch position according to an embodiment of the present application. It should be understood that FIG. 3 illustrates the steps or operations of the method, but these steps or operations are merely examples, and other embodiments of the present application may also perform other operations or variations of the various operations in FIG.
  • the method can be performed by a touch chip.
  • the amount of change caused by the noise to the original data may be the amount of change caused by the noise to the amplitude of the original data, that is, the amount of change of the amplitude caused by the noise to the original data; or may be the amount of change caused by the phase of the noise to the original data, that is, The amount of phase change caused by noise to the original data; or may include the aforementioned two variations.
  • the amount of amplitude change caused by noise on the raw data of the capacitive touch screen may be determined according to a set of original values obtained by the touch chip when the touch chip does not output a driving signal to the capacitive touch screen. For example, when the touch chip does not output a driving signal to the capacitive touch screen, the average value of all the original values in the original value set acquired by the touch chip is determined as the amount of amplitude change caused by the noise on the raw data of the capacitive touch screen.
  • the touch chip does not output a driving signal to the capacitive touch screen through the driving terminal
  • the original value data obtained by the touch chip according to the sensing signal collected by the sensing terminal from the capacitive touch screen can be regarded as all noise values.
  • FIG. 4 The block diagram of the noise value detection when the touch chip does not output the driving signal to the capacitive touch screen is shown in FIG. 4 .
  • the driving terminals of the touch chip are all grounded, and all or part of the sensing terminals of the touch chip collect the sensing signals on the longitudinal electrodes of the capacitive touch screen, and the sensing signals are applied thereto.
  • the signal is processed, such as sampling, analog-to-digital conversion, quadrature demodulation, and the like.
  • the raw data I and Q are obtained after each sensing signal is processed. According to the formula Get the raw value RawData of the noise value.
  • a set of original values of the capacitive touch screen can be obtained from a plurality of sensing signals.
  • the touch chip can be used when the touch chip does not output a driving signal to the capacitive touch screen.
  • the mean value of one original value or multiple original values obtained from the sensing signal collected by one sensing terminal is determined as the amount of amplitude change caused by noise to the original value.
  • the sensing terminal is referred to as a second sensing terminal.
  • the second sensing terminal is determined by the following method: when the touch chip outputs a driving signal to the capacitive touch screen, the original value set obtained by the touch chip is subtracted from the reference value set to obtain a difference set; The sensing terminal corresponding to the largest difference in the difference set is determined as the second sensing terminal.
  • a possible determination manner of the amount of phase change caused by the noise on the original data may include: determining, according to the plurality of original data sets of the capacitive touch screen, a phase change amount caused by noise on the raw data of the capacitive touch screen, the plurality of original data sets being touched When the control chip outputs the driving signal to the capacitive touch screen in a plurality of cycles, the plurality of original data sets are in one-to-one correspondence with the plurality of cycles according to the original data set acquired by the sensing signal.
  • the plurality of cycles referred to herein may include two cycles or more than two cycles. Further, multiple cycles may include two adjacent cycles. That is, the amount of phase change caused by the noise on the raw data of the capacitive touch screen can be determined according to the two original data sets of the capacitive touch screen, and the two original data sets are the output of the touch chip to the capacitive touch screen in two adjacent cycles.
  • the original data set obtained from the sensing signal when the signal is received.
  • Determining the amount of phase change caused by the noise on the raw data of the capacitive touch screen according to the two original data sets of the capacitive touch screen may include: determining, according to the phase difference set between the two original data sets, the noise caused by the raw data of the capacitive touch screen The amount of phase change.
  • the direction corresponding to the original data I and Q is taken as the coordinate axis, and the angle between the original values A and I corresponding to the original data I and Q can be understood as the phase of the original data.
  • the amount of phase change caused by the noise on the original data of the capacitive touch screen can be determined according to the phase difference set of the two original data sets obtained when the touch chip outputs the driving signal to the capacitive touch screen in two adjacent periods.
  • the two original data sets may be obtained when the touch chip outputs a driving signal to the capacitive touch screen in two adjacent cycles, according to the sensing signal collected by the sensing terminal from the capacitive touch screen.
  • the sensing terminal is referred to as a first sensing terminal.
  • the first sensing terminal can be determined by subtracting the original value set obtained by outputting the driving signal to the capacitive touch screen in one cycle and subtracting the reference value set to obtain a difference set; The sensing terminal corresponding to the largest difference in the set is determined as the first sensing terminal.
  • the first sensing terminal and the second sensing terminal may be the same, that is, the first sensing The terminal and the second sensing terminal are the same sensing terminal.
  • the amount of change caused by the noise on the raw data of the capacitive touch screen can also be determined by other means. If the touch chip is not outputting the driving signal to the capacitive touch screen, the phase of the original data obtained according to the sensing signal collected by the sensing terminal is determined as the amount of change caused by noise to the original data of the capacitive touch screen.
  • the corresponding relationship between the amount of change caused by the noise on the raw data of the capacitive touch screen and the noise processing method can be configured on the touch chip.
  • the touch chip can determine the noise processing method that should be used to eliminate the noise in the original value of the capacitive touch screen according to the amount of change caused by the noise on the raw data of the capacitive touch screen and the corresponding relationship.
  • the amount of change caused by noise on the raw data of the capacitive touch screen includes the amount of change N caused by the noise to the amplitude of the original data and the amount of change caused by the phase of the noise to the original data.
  • the following correspondence can be configured on the touch chip: Corresponding recursive (IIR) filtering, Corresponding to the self-capacity filter frame or the accelerated frequency hopping, where N 0 and N 1 are configured amplitude threshold values, with The phase change threshold for the configuration.
  • IIR Corresponding recursive
  • the noise processing method to be used is IIR filtering, that is, IIR filtering is performed on the original set of values of the capacitive touch screen.
  • the corresponding relationship between the amount of change caused by the noise of the touch chip on the raw data of the capacitive touch screen and the noise processing method may be obtained by performing multiple elimination tests on different variations using different noise processing methods.
  • the level of noise may be determined based on the amount of change caused by noise on the raw data of the capacitive touch screen, and the noise processing method may be determined according to the level of the noise.
  • the touch chip may be configured with a corresponding relationship between the amount of change caused by noise on the raw data of the capacitive touch screen and the noise level, and may be configured with a noise level and a noise processing method.
  • the noise processing method is used to perform noise cancellation processing on the first original set of values of the capacitive touch screen.
  • the noise cancellation processing method is recursive filtering, then according to the formula Performing noise cancellation processing on each original value RawDataNow in the first original value set, wherein RawData is a value in the first processed value set obtained by the noise canceling process, RawDataLast is a value in the IIR filtered historical value set, 128 is Refers to dividing each value RawData in the first set of processing values into 128 copies, and DynamicParam represents the ratio of each value of RawDataLast in the IIR filtered historical value set in the corresponding value RawData in the first set of processed values, ie, IIR filtering.
  • the historical processing value RawDataLast is the number of copies in the corresponding value RawData in the first set of processed values.
  • the touch location on the capacitive touch screen is determined based on the subtracted set of differences. Specifically, the position of the capacitive sensing node corresponding to the difference greater than a certain threshold is the touch position.
  • driving signals output to the capacitive touch screen are usually driving signals of the same frequency.
  • the noise processing method for determining the original value of the capacitive touch screen may be combined with other factors. For example, the noise processing method of determining the original value of the capacitive touch screen according to the size of the original value.
  • the method may further include: determining whether to perform the original value of the capacitive touch screen according to the amount of change caused by the noise on the raw data of the capacitive touch screen. Noise cancellation processing.
  • a threshold may be configured on the touch chip, and the threshold may be referred to as a first threshold.
  • the first threshold When the amount of change of the noise to the original data of the capacitive touch screen is greater than or equal to the first threshold, it is determined that the original value of the capacitive touch screen is subjected to noise cancellation processing; otherwise, it is determined that the original value of the capacitive touch screen is not subjected to noise cancellation processing.
  • This method can avoid the side effects caused by noise elimination of the original value that does not require noise processing, and thus can further contribute to improving the determination accuracy of the touch position.
  • S320 is performed, that is, according to the amount of change caused by the noise on the raw data of the capacitive touch screen, which noise cancellation processing method is adopted for the original value of the capacitive touch screen.
  • FIG. 6 is an exemplary structural diagram of a touch control chip according to an embodiment of the present application. It should be understood that the touch control chip 600 shown in FIG. 6 is only an example, and the touch control chip of the embodiment of the present application may further include other modules or units, or include modules similar to those of the respective modules in FIG. 6, or not Includes all the modules in Figure 6.
  • the processing module 610 is configured to determine an amount of change caused by noise on the raw data of the capacitive touch screen.
  • the processing module 610 is further configured to determine a noise processing method of the original value of the capacitive touch screen according to the amount of change caused by the noise on the raw data of the capacitive touch screen.
  • the processing module 610 is further configured to perform noise cancellation processing on the first set of original values of the capacitive touch screen by using a noise processing method to obtain a first set of processed values.
  • the processing module 610 is further configured to determine a touch location on the capacitive touch screen according to the first set of processing values.
  • a noise processing method for eliminating noise interference in the original value of the capacitive touch screen is determined according to the amount of change caused by the noise on the raw data of the capacitive touch screen, which helps to eliminate the original value by using an appropriate and accurate noise processing method.
  • the noise interference helps to improve the accuracy of the touch position on the capacitive touch screen.
  • the processing module 610 is specifically configured to determine a phase change caused by noise on the original data of the capacitive touch screen according to a phase difference between the plurality of original data sets obtained when the driving signal is output to the capacitive touch screen in a plurality of cycles.
  • the phase change amount is used as the amount of change caused by the noise to the raw data of the capacitive touch screen.
  • the processing module 610 is specifically configured to: determine a maximum value in the difference set of the second original value set of the capacitive touch screen and the reference value set, where the second original value set is to input to the capacitive touch screen a set of original values obtained when the driving signal is output; determining a first sensing terminal corresponding to the maximum value; and determining, according to the first sensing terminal corresponding to the first sensing data in the first raw data set of the capacitive touch screen, and the first sensing in the second original data set A phase difference corresponding to the original data corresponding to the terminal determines a phase change amount, and the first original data set and the second original data set are acquired when the driving signal is output to the capacitive touch screen.
  • the amount of phase change ⁇ induced by the noise on the raw data of the capacitive touch screen satisfies the following formula
  • M is the number of original data corresponding to the first sensing terminal in the first original data set
  • the phase of the i-th original data corresponding to the first sensing terminal in the first original data set The phase of the i-th original data corresponding to the first sensing terminal in the second original data set.
  • the processing module is further configured to: determine an original value obtained when no driving signal is output to the capacitive touch screen, and determine an amplitude variation caused by noise to the original data of the capacitive touch screen, and the amplitude variation is used as the noise pair. The amount of change caused by the raw data of the capacitive touch screen.
  • the processing module 610 is specifically configured to: determine a level of noise according to the amount of change caused by the determined noise to the original data of the capacitive touch screen, and the corresponding relationship between the amount of change caused by the noise on the raw data of the capacitive touch screen and the noise level.
  • the processing module 610 may further be configured to: use the noise on the capacitive touch screen.
  • the amount of change caused by the data is greater than or equal to the first threshold, it is determined that the original value of the capacitive touch screen is subjected to noise cancellation processing.
  • the touch control chip shown in FIG. 6 can perform various steps in the method shown in FIG. 2, and details are not described herein for brevity.
  • FIG. 7 is a schematic structural diagram of a touch control chip according to another embodiment of the present application.
  • the touch control chip is used to implement the function of the touch chip in the embodiment shown in FIG. It should be understood that the touch control chip 700 illustrated in FIG. 7 is only an example, and the touch control chip of the embodiment of the present application may further include other modules or units, or include modules similar in function to the respective modules in FIG. 7.
  • the memory 710 is configured to store computer program code, a set of reference values, and a collection of original values collected. And raw data collections, etc.
  • the processor 721 in the MCU 720 is configured to execute computer program code stored in the memory, and can control the driving circuit 730 to output a driving signal of a corresponding frequency to the touch screen to drive the touch screen to work, and obtain a set of original values, and according to the original value set, etc. Detect touch position, etc.
  • the conversion circuit 722 generates a raw data set based on the sensing signals acquired by the sensing circuit 740 from the touch screen.
  • the drive circuit 730 outputs a drive signal of a corresponding frequency to the touch screen under the control of the MCU 720.
  • the sensing circuit 740 collects the sensing signal output by the touch screen under the control of the MCU 720.
  • the processor 721 is configured to: determine a quantity of change caused by noise on the raw data of the capacitive touch screen; determine a noise processing method of the original value of the capacitive touch screen according to the amount of change caused by the noise on the raw data of the capacitive touch screen; The noise processing method performs noise cancellation processing on the first original value set of the capacitive touch screen to obtain a first processing value set; and determines a touch position on the capacitive touch screen according to the first processing value set.
  • the touch control chip in the embodiment of the present application determines a noise processing method for eliminating noise interference in the original value data of the capacitive touch screen according to the amount of change caused by the noise on the raw data of the capacitive touch screen, and helps to use a suitable and accurate noise processing method. To eliminate noise interference in the raw value data set, which helps to improve the accuracy of the touch position on the capacitive touch screen.
  • the processor 721 is specifically configured to: determine a phase change caused by noise on the original data of the capacitive touch screen according to a phase difference between the plurality of original data sets acquired correspondingly when the driving signal is output to the capacitive touch screen in a plurality of cycles
  • the amount of phase change is used as the amount of change that noise causes to the raw data of the capacitive touch screen.
  • the processor 721 is specifically configured to determine a maximum value in the difference set of the second original value set of the capacitive touch screen and the reference value set, where the second original value set is the original obtained when the driving signal is output to the capacitive touch screen. a set of values; a first sensing terminal corresponding to the maximum value; a raw data corresponding to the first sensing terminal in the first original data set of the capacitive touch screen and original data corresponding to the first sensing terminal in the second original data set
  • the phase difference determines the phase change amount, and the first original data set and the second original data set are acquired by the conversion circuit when the drive signal is output to the capacitive touch screen.
  • the processor 721 is specifically configured to: determine, according to the following formula, a phase change amount ⁇ caused by noise on the raw data of the capacitive touch screen:
  • M is the number of original data corresponding to the first sensing terminal in the first original data set
  • the phase of the i-th original data corresponding to the first sensing terminal in the first original data set The phase of the i-th original data corresponding to the first sensing terminal in the second original data set.
  • the processor 721 is further configured to determine an original value obtained when no driving signal is output to the capacitive touch screen, and an amplitude variation caused by noise to the original data of the capacitive touch screen, the amplitude variation is used as a noise to the capacitive touch screen. The amount of change caused by the raw data.
  • the processor 721 is further configured to determine a level of the noise according to the amount of change caused by the noise on the original data of the capacitive touch screen, and the corresponding relationship between the amount of change caused by the noise on the raw data of the capacitive touch screen and the noise level; The level, and the correspondence between the noise level and the noise processing method, a noise processing method for determining the original value of the capacitive touch screen from a plurality of noise processing methods.
  • the processor 721 is further configured to: before the noise processing method for determining the original value of the capacitive touch screen by the amount of change caused by the noise of the raw data of the capacitive touch screen, the processor 721 is further configured to: change the original data caused by the noise on the capacitive touch screen.
  • the amount is greater than or equal to the first threshold, it is determined that the original value of the capacitive touch screen is subjected to noise cancellation processing.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be indirect coupling through some interface, device or unit.
  • a communication connection which may be in electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Abstract

一种确定触摸位置的方法和触摸控制芯片。该方法包括:确定噪声对电容触摸屏的原始数据引发的变化量(S310);根据噪声对电容触摸屏的原始数据引发的变化量,确定电容触摸屏的原始值的噪声处理方法(S320);使用噪声处理方法对电容触摸屏的第一原始值集合进行噪声消除处理,得到第一处理值集合(S330);根据第一处理值集合,确定电容触摸屏上的触摸位置(S340)。该定触摸位置的方法和触摸控制芯片,有助于提高触摸位置的准确率。

Description

确定触摸位置的方法和触摸控制芯片 技术领域
本申请涉及电容触摸领域,并且更具体地,涉及确定触摸位置的方法和触摸控制芯片。
背景技术
电容触摸屏是一种人机交互装置,其主要由驱动电极和感应电极组成。触摸控制芯片可以通过配置向驱动电极打出不同频率的信号,感应电极负责接收信号。感应电极接收到的信号经过数字信号处理等操作得到原始值数据。触摸控制芯片可以根据原始值数据确定电容触摸屏上的触摸点位置。
电容触摸屏在使用过程中经常会受到共模噪声的影响,如充电器噪声的影响。遇到共模干扰噪声的情况下,如果原始值数据中混杂有噪声数据,将会导致互容数据异常,反应到确定触摸位置的数据上,会导致如冒点现象或消点现象发生,从而影响触摸位置的检测准确率。
发明内容
本申请提供确定触摸位置的方法和触摸控制芯片。有助于提高触摸位置的检测准确率。
第一方面,本申请提供了确定触摸位置的方法。该方法包括:确定噪声对电容触摸屏的原始数据引发的变化量;根据所述噪声对电容触摸屏的原始数据引发的变化量,确定电容触摸屏的原始值数据的噪声处理方法;使用噪声处理方法对电容触摸屏的第一原始值数据集合进行噪声消除处理,得到第一处理值集合;根据第一处理值集合,确定电容触摸屏上的触摸位置。
该方法中,根据噪声对电容触摸屏的原始数据引发的变化量来确定消除电容触摸屏的原始值数据中的噪声干扰的噪声处理方法,有助于使用合适准确的噪声处理方法来消除原始值数据集合中的噪声干扰,从而有助于提高电容触摸屏上的触摸位置的检测准确率。
结合第一方面,在第一种可能的实现方式中,确定噪声对电容触摸屏的原始数据引发的变化量,包括:将电容触摸屏不打码时,触控芯片获取到的原始值,确定为噪声对电容触摸屏的原始数据引发的幅度变化量,该相位变 化量作为噪声对电容触摸屏的原始数据引发的变化量。
结合第一方面,在第二种可能的实现方式中,确定噪声对电容触摸屏的原始数据引发的变化量,包括:根据多个周期内向电容触摸屏输出驱动信号时对应获取的多个原始数据集合之间的相位差,确定噪声对电容触摸屏的原始数据引发的相位变化量,该相位变化量作为噪声对电容触摸屏的原始值数据引发的变化量。
其中,多个周期包括两个周期或两个以上周期。具体地,多个周期可以包括两个相邻的周期。
结合第二种可能的实现方式,在第三种可能的实现方式中,根据多个周期内向电容触摸屏输出驱动信号时对应获取的多个原始数据集合之间相位差,确定噪声对电容触摸屏的原始数据引发的相位变化量,包括:确定电容触摸屏的第二原始值集合与基准值集合的差值集合中的最大值,第二原始值集合为向电容触摸屏输出驱动信号时对应获取的原始值集合;确定最大值对应的第一感应端子;根据电容触摸屏的第一原始数据集合中第一感应端子对应的原始数据和第二原始数据集合中第一感应端子对应的原始数据的相位差,确定相位变化量,第一原始数据集合和第二原始数据集合为向电容触摸屏输出驱动信号时获取的原始数据集合。
该种可能的实现方式中,将差值集合中的最大值对应的第一感应端子的相位变化量作为确定噪声处理方法的变化量,一方面可以提高获取变化量的效率,另一方面有助于提高确定的噪声处理方法对原始值数据集合中的噪声消除效果。
结合第三种可能的实现方式,在第四种可能的实现方式中,噪声对电容触摸屏的原始数据引发的相位变化量φ满足以下公式:
Figure PCTCN2017095398-appb-000001
其中,M为第一原始数据集合中第一感应端子对应的原始数据的数量,
Figure PCTCN2017095398-appb-000002
为第一原始数据集合中第一感应端子对应的第i个原始数据的相位,
Figure PCTCN2017095398-appb-000003
为第二原始数据集合中第一感应端子对应的第i个原始数据的相位。
结合第四种可能的实现方式,在第五种可能的实现方式中,确定噪声对电容触摸屏的原始数据引发的变化量,还包括:将没有向电容触摸屏输出驱动信号时获取的原始值数据,确定为噪声对电容触摸屏的原始数据引发的幅 度变化量,该幅度变化量作为噪声对电容触摸屏的原始数据引发的变化量。
结合第一方面或上述任意一种可能的实现方式,在第六种可能的实现方式中,根据噪声对电容触摸屏的原始数据引发的变化量,确定电容触摸屏的原始值数据的噪声处理方法,包括:根据确定得到的噪声对电容触摸屏的原始数据引发的变化量,以及配置的噪声对电容触摸屏的原始数据引发的变化量与噪声等级的对应关系,确定噪声的等级;根据噪声的等级,以及噪声等级与噪声处理方法的对应关系,从多个噪声处理方法中确定电容触摸屏的原始值数据的噪声处理方法。
结合第一方面或上述任意一种可能的实现方式,在第七种可能的实现方式中,根据噪声对电容触摸屏的原始数据引发的变化量,确定电容触摸屏的原始值数据的噪声处理方法之前,该方法还包括:在噪声对电容触摸屏的原始数据引发的变化量大于或等于第一阈值时,确定对电容触摸屏的原始值数据进行噪声消除处理。
该种可能的实现方式中,在噪声对电容触摸屏的原始数据引发的变化量大于或等于某个阈值时,才进行上述各种可能的实现方式中的步骤,从而可以避免不必要的噪声消除处理,进而有助于提高触摸位置的准确率。
第二方面,本申请提供了一种触摸控制芯片。该触摸控制芯片包括存储器、微处理机控制器(microprocessor control unit,MCU)、驱动电路和感应电路,MCU包括处理器和转化电路。
其中,存储器用于存储计算机程序代码、基准值集合、采集的原始值集合和原始数据集合等。
处理器用于执行存储器中存储的计算机程序代码,并可以控制驱动电路向触摸屏输出相应频率的驱动信号,以驱动触摸屏工作,以及获取原始值集合,并根据原始值集合等检测触摸位置等。
转化电路用于根据感应电路从触摸屏采集的感应信号生成原始数据集合。
驱动电路用于在处理器的控制下,向触摸屏输出相应频率的驱动信号。
感应电路用于在处理器的控制下,采集触摸屏输出的感应信号。
具体地,处理器用于:确定噪声对电容触摸屏的原始数据引发的变化量;根据噪声对电容触摸屏的原始数据引发的变化量,确定电容触摸屏的原始值的噪声处理方法;于使用确定的噪声处理方法对电容触摸屏的第一原始值集 合进行噪声消除处理,得到第一处理值集合;根据第一处理值集合,确定电容触摸屏上的触摸位置。
本申请实施例中的触摸控制芯片,根据噪声对电容触摸屏的原始数据引发的变化量来确定消除电容触摸屏的原始值数据中的噪声干扰的噪声处理方法,有助于使用合适准确的噪声处理方法来消除原始值数据集合中的噪声干扰,从而有助于提高电容触摸屏上的触摸位置的准确率。
结合第二方面,在第一种可能的实现方式中,处理器具体用于:根据多个周期内向电容触摸屏输出驱动信号时对应获取的多个原始数据集合之间的相位差,确定噪声对所述电容触摸屏的原始数据引发的相位变化量,所述相位变化量作为噪声对电容触摸屏的原始数据引发的变化量。
结合第一种可能的实现方式,在第二种可能的实现方式中,处理器具体用于确定电容触摸屏的第二原始值集合与基准值集合的差值集合中的最大值,第二原始值集合为向所述电容触摸屏输出驱动信号时获取的原始值集合;确定最大值对应的第一感应端子;根据电容触摸屏的第一原始数据集合中所述第一感应端子对应的原始数据和第二原始数据集合中所述第一感应端子对应的原始数据的相位差,确定所述相位变化量,第一原始数据集合和第二原始数据集合在向电容触摸屏输出驱动信号时由转换电路获取。
结合第二种可能的实现方式,在第三种可能的实现方式中,处理器具体用于:根据下面的公式确定噪声对电容触摸屏的原始数据引发的相位变化量φ:
Figure PCTCN2017095398-appb-000004
其中,M为第一原始数据集合中第一感应端子对应的原始数据的数量,
Figure PCTCN2017095398-appb-000005
为第一原始数据集合中第一感应端子对应的第i个原始数据的相位,
Figure PCTCN2017095398-appb-000006
为第二原始数据集合中第一感应端子对应的第i个原始数据的相位。
结合第二方面或第二方面中任意一种可能的实现方式,在第四种可能的实现方式中,处理器还用于将没有向电容触摸屏输出驱动信号时获取的原始值,确定为噪声对电容触摸屏的原始数据引发的幅度变化量,所述幅度变化量作为噪声对电容触摸屏的原始数据引发的变化量。
结合第二方面或第二方面中任意一种可能的实现方式,在第五种可能的实现方式中,处理器还具体用于根据噪声对电容触摸屏的原始数据引发的变 化量,以及噪声对电容触摸屏的原始数据引发的变化量与噪声等级的对应关系,确定噪声的等级;根据噪声的等级,以及噪声等级与噪声处理方法的对应关系,从多个噪声处理方法中确定电容触摸屏的原始值的噪声处理方法。
结合第二方面或第二方面中任意一种可能的实现方式,在第六种可能的实现方式中,所述处理器根据噪声对电容触摸屏的原始数据引发的变化量,确定电容触摸屏的原始值的噪声处理方法之前,处理器还用于:在噪声对电容触摸屏的原始数据引发的变化量大于或等于第一阈值时,确定对电容触摸屏的原始值进行噪声消除处理。
在一种可能的设计中,本申请提供的触摸控制芯片可以包括用于执行第一方面或第一方面中任意一种可能的实现方式中的确定触摸位置的方法的模块,该模块可以是软件和/或硬件。
本申请的又一方面提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在触摸控制芯片上运行时,使得触摸控制芯片执行第一方面中或第一方面中任意一种可能的实现方式中的确定触摸位置的方法。
本申请的又一方面提供了一种包含指令的计算机程序产品,当其在触摸控制芯片上运行时,使得触摸控制芯片执行第一方面或第一方面中任意一种可能的实现方式中的确定触摸位置的方法。
附图说明
图1是电容触摸屏和触控芯片的系统示例图。
图2是本申请一个实施例的噪声值检测原理图。
图3是本申请一个实施例的确定触摸位置的方法的示意性流程图。
图4是本申请一个实施例的原始值数据检测原理图。
图5是本申请一个实施例的原始值数据相位检测原理图。
图6是本申请一个实施例的触摸控制芯片的示意性结构图。
图7是本申请另一个实施例的触摸控制芯片的示意性结构图。
具体实施方式
图1为电容触摸屏和触控芯片的系统示例图。应理解,图1示出的系统仅是示例,该系统中还可包括其他模块或单元,或者包括与图1中各个模块 功能相似的模块。如,图1所示的电容触摸屏可以为互电容触摸屏,本申请实施例中的电容触摸屏也可以是自电容触摸屏。
如图1所示,电容触摸屏110一般包括两组电极,一组可以称为横向电极,另一组可以称为纵向电极。两组电极交叉的地方会形成电容。也就是说,这两组电极分别构成了电容触摸屏110的两极。
触控芯片120也可以称为触摸控制芯片或者触摸控制器。触控芯片120可以包括驱动端子(TX)和感应端子(RX)。
触控芯片120的驱动端子可以与电容触摸屏110的横向电极相连,触控芯片120的感应端子可以与电容触摸屏110的纵向电极相连。
触控芯片120可通过驱动端子向电容触摸屏110的横向电极输入一定频率的信号,该信号可以称为驱动信号;同时通过感应端子采集电容触摸屏110的纵向电极上的信号,该信号可以称为感应信号。
如图2所示,触控芯片120通过某个感应端子采集到的感应信号进行处理,如采样、模数转换和正交解调处理,可以得到I和Q两路信号,这两路信号可以称为电容触摸屏110的一个原始数据。
触控芯片120通过多个感应端子采集到的多个感应信号进行处理后,得到的多个I和Q信号可以称为原始数据集合。
触控芯片120可以将一个原始数据代入公式
Figure PCTCN2017095398-appb-000007
得到电容触摸屏110的一个原始值RawData。
触控芯片120根据电容触摸屏110的原始数据集合和上述公式可以得到电容触摸屏110的原始值集合。
触控芯片120可以根据电容触摸屏110的原始值集合和基准值集合,确定电容触摸屏110上的触摸位置。
原始数据中会存在噪声,从而导致原始值数据中会存在噪声,如共模噪声。因此需要对原始值数据集合中的原始值数据进行噪声处理,以消除或减小噪声对原始值数据的影响。
目前,噪声的处理方法各种各样,但是,触控芯片中通常仅配置有一种噪声处理方法。无论触控芯片中配置的是哪种噪声处理方法,噪声的处理效果均不是很理想。
例如,噪声对原始值数据产生的影响的大小不是固定的,是随机变动的,有的时候噪声的影响比较大,有的时候又比较小,如果仅使用一种固定的噪 声处理方法来消除原始值数据中的噪声,则不能兼顾各种大小的噪声,达不到理想的噪声消除效果,甚至会产生副作用。
如触控芯片中配置的噪声处理方法可以很好地消除较大的噪声,则该噪声处理方法有可能在噪声较小时,会对原始值数据进行噪声的过度消除,从而导致确定的触摸位置不准确。
因此,本申请提出了一种新的确定触摸位置的方法,该方法中包括新的噪声处理方法,以提高根据处理后的原始值数据确定的触摸位置的准确率。
图3是本申请一个实施例的确定触摸位置的方法的示意性流程图。应理解,图3示出了的该方法的步骤或操作,但这些步骤或操作仅是示例,本申请实施例还可以执行其他操作或者图3中的各个操作的变形。该方法可以由触控芯片执行。
S310,确定噪声对电容触摸屏的原始数据引发的变化量。
此处噪声对原始数据引发的变化量,可以是噪声对原始数据的幅度引发的变化量,即噪声对原始数据引发的幅度变化量;或者可以是噪声对原始数据的相位引发的变化量,即噪声对原始数据引发的相位变化量;或者可以包括前述两种变化量。
可以根据触控芯片没有向电容触摸屏输出驱动信号时,触控芯片获取到的原始值集合,确定噪声对电容触摸屏的原始数据引发的幅度变化量。例如,可以将触控芯片没有向电容触摸屏输出驱动信号时,触控芯片获取到的原始值集合中所有原始值的均值,确定为噪声对电容触摸屏的原始数据引发的幅度变化量。
触控芯片通过驱动端子没有向电容触摸屏输出驱动信号时,触控芯片根据感应端子从电容触摸屏采集的感应信号得到的原始值数据可以认为全是噪声值。
触控芯片没有向电容触摸屏输出驱动信号时的噪声值检测原理框图如图4所示。由图4可知,触控芯片没有向电容触摸屏输出驱动信号时,触控芯片的驱动端子全部接地,触控芯片的全部或部分感应端子采集电容触摸屏的纵向电极上的感应信号,并对这些感应信号进行处理,如进行采样、模数转换、正交解调等处理。每个感应信号处理后可以得到原始数据I和Q。根据公式
Figure PCTCN2017095398-appb-000008
得到噪声值的原始值RawData。根据多个感应信号可以得到电容触摸屏的原始值集合。
可选地,可以将触控芯片没有向电容触摸屏输出驱动信号时,触控芯片 根据一个感应端子采集的感应信号得到的一个原始值或多个原始值的均值,确定为噪声对原始值引发的幅度变化量。为了后续描述方便,将该感应端子称为第二感应端子。
在此之前,可以先通过下面这种方式确定第二感应端子:将触控芯片向电容触摸屏输出驱动信号时触控芯片获取到的原始值集合与基准值集合相减,得到差值集合;将差值集合中最大的差值对应的感应端子确定为第二感应端子。
噪声对原始数据引发的相位变化量的一种可能的确定方式可以包括:根据电容触摸屏的多个原始数据集合确定噪声对电容触摸屏的原始数据引发的相位变化量,这多个原始数据集合为触控芯片在多个周期内向电容触摸屏输出驱动信号时,根据感应信号获取的原始数据集合,这多个原始数据集合与这多个周期一一对应。
此处所说的多个周期可以包括两个周期或两个以上周期。进一步地,多个周期可以包括两个相邻的周期。也就是说,可以根据电容触摸屏的两个原始数据集合确定噪声对电容触摸屏的原始数据引发的相位变化量,这两个原始数据集合是触控芯片在两个相邻的周期内向电容触摸屏输出驱动信号时根据感应信号获取的原始数据集合。
根据电容触摸屏的两个原始数据集合确定噪声对电容触摸屏的原始数据引发的相位变化量,可以包括:根据这两个原始数据集合之间的相位差集合,确定噪声对电容触摸屏的原始数据引发的相位变化量。
如图5所示,将原始数据I和Q对应的方向作为坐标轴,原始数据I和Q对应的原始值A与I之间的夹角可以理解为原始数据的相位
Figure PCTCN2017095398-appb-000009
通常情况下,若原始数据没有受到噪声的影响,则
Figure PCTCN2017095398-appb-000010
不会改变。应理解,此处所说的不会改变不是绝对不变,而是略微变化,但该变化可以忽略。
若原始数据受到噪声的影响,则
Figure PCTCN2017095398-appb-000011
发生变化,且
Figure PCTCN2017095398-appb-000012
的变化程度与噪声的大小呈正相关。因此,可以根据触控芯片在两个相邻的周期内向电容触摸屏输出驱动信号时获取的两个原始数据集合的相位差集合,确定噪声对电容触摸屏的原始数据引发的相位变化量。
其中,该两个原始数据集合可以是触控芯片在两个相邻周期内向电容触摸屏输出驱动信号时,根据一个感应端子从电容触摸屏采集到的感应信号获取的。为了后续描述方便,将该感应端子称为第一感应端子。
在此之前,可以通过下述方式确定第一感应端子:将触控芯片在一个周期内向电容触摸屏输出驱动信号时得到的原始值集合与基准值集合相减,得到差值集合;将确定差值集合中最大的差值对应的感应端子确定为第一感应端子。
确定第一感应端子以及电容触摸屏的两个原始数据集合后,可以根据公式
Figure PCTCN2017095398-appb-000013
计算得到噪声对电容触摸屏的原始数据引发的相位变化量
Figure PCTCN2017095398-appb-000014
其中,M为触控芯片的驱动端子的数量,或者可以说是电容触摸屏的横向电极的数量,
Figure PCTCN2017095398-appb-000015
为相邻两个周期中第一个周期内获取的第一感应端子的第i个原始数据的相位,
Figure PCTCN2017095398-appb-000016
为第二个周期内获取的第一感应端子的第i个原始数据的相位,其中第i个原始数据表示该第一感应端子与第i个驱动端子形成的电容节点对应的原始数据。
若噪声对原始值引发的变化量既包括噪声对原始数据引发的相位变化量,又包括噪声对原始数据引发的幅度变化量,则第一感应端子与第二感应端子可以相同,即第一感应端子和第二感应端子是同一个感应端子。
当然,还可以通过其他方式确定噪声对电容触摸屏的原始数据引发的变化量。如可以将触控芯片没有向电容触摸屏输出驱动信号时,根据感应端子采集到的感应信号获取的原始数据的相位确定为噪声对电容触摸屏的原始数据引发的变化量。
S320,根据噪声对电容触摸屏的原始数据引发的变化量,确定电容触摸屏的原始值的噪声处理方法。
触控芯片上可以配置噪声对电容触摸屏的原始数据引发的变化量与噪声处理方法的对应关系。这样,触控芯片可以根据噪声对电容触摸屏的原始数据引发的变化量,以及上述对应关系,确定对电容触摸屏的原始值中的噪声进行消除应使用的噪声处理方法。
如噪声对电容触摸屏的原始数据引发的变化量包括噪声对原始数据的幅度引发的变化量N和噪声对原始数据的相位引发的变化量
Figure PCTCN2017095398-appb-000017
触控芯片上可以配置有如下对应关系:
Figure PCTCN2017095398-appb-000018
对应递归(IIR)滤波,
Figure PCTCN2017095398-appb-000019
对应自容滤框或加速跳频,其中,N0和N1为配置的幅度变化量阈值、
Figure PCTCN2017095398-appb-000020
Figure PCTCN2017095398-appb-000021
为配置的相位变化量阈值。
当触控芯片实时确定的噪声对原始数据的幅度引发的变化量N≤N0,且噪声对原始数据的相位引发的变化量
Figure PCTCN2017095398-appb-000022
时,可以确定应使用的噪声处理方法为IIR滤波,即对电容触摸屏的原始值集合进行IIR滤波。
触控芯片上配置的噪声对电容触摸屏的原始数据引发的变化量与噪声处理方法的对应关系,可以是对不同的变化量使用不同的噪声处理方法进行多次消除试验得到的。
或者,可以根据噪声对电容触摸屏的原始数据引发的变化量,确定噪声的等级,再根据噪声的等级确定噪声处理方法。
具体地,触控芯片上可以配置有噪声对电容触摸屏的原始数据引发的变化量与噪声等级的对应关系,以及可以配置有噪声等级与噪声处理方法的
S330,使用所确定的噪声处理方法对电容触摸屏的第一原始值集合进行噪声消除处理,得到第一处理值集合。
确定应使用的噪声处理方法后,使用该噪声处理方法对电容触摸屏的第一原始值集合进行噪声消除处理。
如噪声消除处理方法为递归滤波,则可以根据公式
Figure PCTCN2017095398-appb-000023
对第一原始值集合中各个原始值RawDataNow进行噪声消除处理,其中,RawData为经过噪声消除处理得到的第一处理值集合中的值,RawDataLast为经过IIR滤波的历史值集合中的值,128是指将第一处理值集合中每个值RawData分为128份,DynamicParam表示经过IIR滤波的历史值集合中每个值RawDataLast在第一处理值集合中对应的值RawData中的比例,即IIR滤波的历史处理值RawDataLast在第一处理值集合中对应值RawData中占的份数。
S340,根据第一处理数值集合,确定电容触摸屏上的触摸位置。
如可以将第一处理值集合与基准值集合相减,根据相减得到的差值集合确定电容触摸屏上的触摸位置。具体地,大于某个阈值的差值对应的电容感应节点的位置即为触摸位置。
应理解,上述所说的向电容触摸屏输出的驱动信号通常情况下为同一个频率的驱动信号。
此外,本申请实施例中,除了可以根据噪声对电容触摸屏的原始数据引发的变化量确定电容触摸屏的原始值的噪声处理方法外,还可以结合其他因素确定电容触摸屏的原始值的噪声处理方法,如还可以根据原始值值的大小确定电容触摸屏的原始值的噪声处理方法。
可选地,在本申请实施例中,在S320之前,还可以包括:根据噪声对电容触摸屏的原始数据引发的变化量,确定是否对电容触摸屏的原始值进行 噪声消除处理。
具体地,触控芯片上可以配置一个阈值,可以将该阈值称为第一阈值。当噪声对电容触摸屏的原始数据发的变化量大于或等于第一阈值时,确定对电容触摸屏的原始值进行噪声消除处理;否则确定不对电容触摸屏的原始值进行噪声消除处理。
这种方式可以避免对不需要噪声处理的原始值进行噪声消除引起的副作用,从而可以进一步有助于提高触摸位置的确定准确率。
确定对电容触摸屏的原始值进行噪声消除处理时,执行S320,即根据噪声对电容触摸屏的原始数据引发的变化量,确定对电容触摸屏的原始值采用哪种噪声消除处理方法。
图6是本申请一个实施例的触摸控制芯片的示例性结构图。应理解,图6示出的触摸控制芯片600仅是示例,本申请实施例的触摸控制芯片还可包括其他模块或单元,或者包括与图6中的各个模块的功能相似的模块,或者并非要包括图6中所有模块。
处理模块610,用于确定噪声对电容触摸屏的原始数据引发的变化量。
处理模块610还用于根据噪声对电容触摸屏的原始数据引发的变化量,确定电容触摸屏的原始值的噪声处理方法。
处理模块610还用于使用噪声处理方法对电容触摸屏的第一原始值集合进行噪声消除处理,得到第一处理值集合。
处理模块610还用于根据第一处理值集合,确定电容触摸屏上的触摸位置。
该触摸控制芯片中,根据噪声对电容触摸屏的原始数据引发的变化量来确定消除电容触摸屏的原始值中的噪声干扰的噪声处理方法,有助于使用合适准确的噪声处理方法来消除原始值中的噪声干扰,从而有助于提高电容触摸屏上的触摸位置的准确率。
可选地,处理模块610具体可以用于根据多个周期内向电容触摸屏输出驱动信号时对应获取的多个原始数据集合之间相位差,确定噪声对电容触摸屏的原始数据引发的相位变化量,所述相位变化量作为所述噪声对电容触摸屏的原始数据引发的变化量。
可选地,处理模块610具体可以用于:确定电容触摸屏的第二原始值集合与基准值集合的差值集合中的最大值,第二原始值集合为向电容触摸屏输 出驱动信号时获取的原始值集合;确定所述最大值对应的第一感应端子;根据电容触摸屏的第一原始数据集合中第一感应端子对应的原始数据和第二原始数据集合中第一感应端子对应的原始数据的相位差,确定相位变化量,第一原始数据集合和第二原始数据集合在向电容触摸屏输出驱动信号时获取。
可选地,噪声对电容触摸屏的原始数据引发的相位变化量φ满足以下公式
Figure PCTCN2017095398-appb-000024
其中,M为第一原始数据集合中第一感应端子对应的原始数据的数量,
Figure PCTCN2017095398-appb-000025
为第一原始数据集合中第一感应端子对应的第i个原始数据的相位,
Figure PCTCN2017095398-appb-000026
为第二原始数据集合中第一感应端子对应的第i个原始数据的相位。
可选地,处理模块还具体可以用于:将没有向电容触摸屏输出驱动信号时获取的原始值,确定为噪声对电容触摸屏的原始数据引发的幅度变化量,该幅度变化量作为所述噪声对电容触摸屏的原始数据引发的变化量。
可选地,处理模块610具体可以用于:根据确定的噪声对电容触摸屏的原始数据引发的变化量,以及噪声对电容触摸屏的原始数据引发的变化量与噪声等级的对应关系,确定噪声的等级;根据噪声的等级,以及噪声等级与噪声处理方法的对应关系,从多个噪声处理方法中确定电容触摸屏的原始值的噪声处理方法。
可选地,处理模块根据所述噪声对电容触摸屏的原始数据引发的变化量,确定电容触摸屏的原始值的噪声处理方法之前,处理模块610还可以用于:在所述噪声对电容触摸屏的原始数据引发的变化量大于或等于第一阈值时,确定对电容触摸屏的原始值进行噪声消除处理。
图6所示的触摸控制芯片可以执行图2所示的方法中各个步骤,为了简洁,此处不再赘述。
图7是本申请另一个实施例的触摸控制芯片的示意性结构图。该触摸控制芯片用于实现图3所示实施例中触控芯片的功能。应理解,图7示出的触摸控制芯片700仅是示例,本申请实施例的触摸控制芯片还可包括其他模块或单元,或者包括与图7中的各个模块的功能相似的模块。
存储器710用于存储计算机程序代码、基准值集合、采集的原始值集合 和原始数据集合等。
MCU 720中的处理器721用于执行存储器中存储的计算机程序代码,并可以控制驱动电路730向触摸屏输出相应频率的驱动信号,以驱动触摸屏工作,以及获取原始值集合,并根据原始值集合等检测触摸位置等。
转化电路722根据感应电路740从触摸屏采集的感应信号生成原始数据集合。
驱动电路730在MCU 720的控制下,向触摸屏输出相应频率的驱动信号。
感应电路740在MCU 720的控制下,采集触摸屏输出的感应信号。
具体地,处理器721用于:确定噪声对电容触摸屏的原始数据引发的变化量;根据噪声对电容触摸屏的原始数据引发的变化量,确定电容触摸屏的原始值的噪声处理方法;于使用确定的噪声处理方法对电容触摸屏的第一原始值集合进行噪声消除处理,得到第一处理值集合;根据第一处理值集合,确定电容触摸屏上的触摸位置。
本申请实施例中的触摸控制芯片,根据噪声对电容触摸屏的原始数据引发的变化量来确定消除电容触摸屏的原始值数据中的噪声干扰的噪声处理方法,有助于使用合适准确的噪声处理方法来消除原始值数据集合中的噪声干扰,从而有助于提高电容触摸屏上的触摸位置的准确率。
可选地,处理器721具体用于:根据多个周期内向电容触摸屏输出驱动信号时对应获取的多个原始数据集合之间的相位差,确定噪声对所述电容触摸屏的原始数据引发的相位变化量,所述相位变化量作为噪声对电容触摸屏的原始数据引发的变化量。
可选地,处理器721具体用于确定电容触摸屏的第二原始值集合与基准值集合的差值集合中的最大值,第二原始值集合为向所述电容触摸屏输出驱动信号时获取的原始值集合;确定最大值对应的第一感应端子;根据电容触摸屏的第一原始数据集合中所述第一感应端子对应的原始数据和第二原始数据集合中所述第一感应端子对应的原始数据的相位差,确定所述相位变化量,第一原始数据集合和第二原始数据集合在向电容触摸屏输出驱动信号时由转换电路获取。
可选地,处理器721具体用于:根据下面的公式确定噪声对电容触摸屏的原始数据引发的相位变化量φ:
Figure PCTCN2017095398-appb-000027
其中,M为第一原始数据集合中第一感应端子对应的原始数据的数量,
Figure PCTCN2017095398-appb-000028
为第一原始数据集合中第一感应端子对应的第i个原始数据的相位,
Figure PCTCN2017095398-appb-000029
为第二原始数据集合中第一感应端子对应的第i个原始数据的相位。
可选地,处理器721还用于将没有向电容触摸屏输出驱动信号时获取的原始值,确定为噪声对电容触摸屏的原始数据引发的幅度变化量,所述幅度变化量作为噪声对电容触摸屏的原始数据引发的变化量。
可选地,处理器721还具体用于根据噪声对电容触摸屏的原始数据引发的变化量,以及噪声对电容触摸屏的原始数据引发的变化量与噪声等级的对应关系,确定噪声的等级;根据噪声的等级,以及噪声等级与噪声处理方法的对应关系,从多个噪声处理方法中确定电容触摸屏的原始值的噪声处理方法。
可选地,处理器721根据噪声对电容触摸屏的原始数据引发的变化量,确定电容触摸屏的原始值的噪声处理方法之前,处理器721还用于:在噪声对电容触摸屏的原始数据引发的变化量大于或等于第一阈值时,确定对电容触摸屏的原始值进行噪声消除处理。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合 或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种确定触摸位置的方法,其特征在于,包括:
    确定噪声对电容触摸屏的原始数据引发的变化量;
    根据所述噪声对电容触摸屏的原始数据引发的变化量,确定所述电容触摸屏的原始值的噪声处理方法;
    使用所述噪声处理方法对所述电容触摸屏的第一原始值集合进行噪声消除处理,得到第一处理值集合;
    根据所述第一处理值集合,确定所述电容触摸屏上的触摸位置。
  2. 根据权利要求1所述的方法,其特征在于,所述确定噪声对电容触摸屏的原始数据引发的变化量,包括:
    根据多个周期内向所述电容触摸屏输出驱动信号时对应获取的多个原始数据集合之间的相位差,确定所述噪声对所述电容触摸屏的原始数据引发的相位变化量,所述相位变化量作为所述噪声对电容触摸屏的原始数据引发的变化量。
  3. 根据权利要求2所述的方法,其特征在于,所述根据多个周期内向所述电容触摸屏输出驱动信号时对应获取的多个原始数据集合之间的相位差,确定所述噪声对所述电容触摸屏的原始数据引发的相位变化量,包括:
    确定所述电容触摸屏的第二原始值集合与基准值集合的差值集合中的最大值,所述第二原始值集合为向所述电容触摸屏输出驱动信号时获取的原始值集合;
    确定所述最大值对应的第一感应端子;
    根据所述电容触摸屏的第一原始数据集合中所述第一感应端子对应的原始数据和第二原始数据集合中所述第一感应端子对应的原始数据的相位差,确定所述相位变化量,所述第一原始数据集合和所述第二原始数据集合在向所述电容触摸屏输出驱动信号时获取。
  4. 根据权利要求3所述的方法,其特征在于,所述噪声对所述电容触摸屏的原始数据引发的相位变化量φ满足以下公式:
    Figure PCTCN2017095398-appb-100001
    其中,M为所述第一原始数据集合中所述第一感应端子对应的原始数据的数量,
    Figure PCTCN2017095398-appb-100002
    为所述第一原始数据集合中第一感应端子对应的第i个原始数据 的相位,
    Figure PCTCN2017095398-appb-100003
    为所述第二原始数据集合中所述第一感应端子对应的第i个原始数据的相位。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述确定噪声对电容触摸屏的原始数据引发的变化量,还包括:
    将没有向所述电容触摸屏输出驱动信号时获取的原始值,确定为所述噪声对所述电容触摸屏的原始数据引发的幅度变化量,所述幅度变化量作为所述噪声对电容触摸屏的原始数据引发的变化量。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述根据所述噪声对电容触摸屏的原始数据引发的变化量,确定所述电容触摸屏的原始值的噪声处理方法,包括:
    根据所述噪声对电容触摸屏的原始数据引发的变化量,以及噪声对电容触摸屏的原始数据引发的变化量与噪声等级的对应关系,确定所述噪声的等级;
    根据所述噪声的等级,以及噪声等级与噪声处理方法的对应关系,从多个噪声处理方法中确定所述电容触摸屏的原始值的噪声处理方法。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述根据所述噪声对电容触摸屏的原始数据引发的变化量,确定所述电容触摸屏的原始值的噪声处理方法之前,所述方法还包括:
    在所述噪声对电容触摸屏的原始数据引发的变化量大于或等于一阈值时,确定对所述电容触摸屏的原始值进行噪声消除处理。
  8. 一种触摸控制芯片,其特征在于,包括:
    处理模块,用于确定噪声对电容触摸屏的原始数据引发的变化量;
    所述处理模块还用于根据所述噪声对电容触摸屏的原始数据引发的变化量,确定所述电容触摸屏的原始值的噪声处理方法;
    所述处理模块还用于使用所述噪声处理方法对所述电容触摸屏的第一原始值集合进行噪声消除处理,得到第一处理值集合;
    所述处理模块还用于根据所述第一处理值集合,确定所述电容触摸屏上的触摸位置。
  9. 根据权利要求8所述的触摸控制芯片,其特征在于,所述处理模块具体用于根据多个周期内向所述电容触摸屏输出驱动信号时对应获取的多个原始数据集合之间的相位差,确定所述噪声对所述电容触摸屏的原始数据 引发的相位变化量,所述相位变化量作为所述噪声对电容触摸屏的原始数据引发的变化量。
  10. 根据权利要求9所述的触摸控制芯片,其特征在于,所述处理模块具体用于:
    确定所述电容触摸屏的第二原始值集合与基准值集合的差值集合中的最大值,所述第二原始值集合为向所述电容触摸屏输出驱动信号时获取的原始值集合;
    确定所述最大值对应的第一感应端子;
    根据所述电容触摸屏的第一原始数据集合中所述第一感应端子对应的原始数据和第二原始数据集合中所述第一感应端子对应的原始数据的相位差,确定所述相位变化量,所述第一原始数据集合和所述第二原始数据集合在向所述电容触摸屏输出驱动信号时获取。
  11. 根据权利要求10所述的触摸控制芯片,其特征在于,所述噪声对所述电容触摸屏的原始数据引发的相位变化量φ满足以下公式:
    Figure PCTCN2017095398-appb-100004
    其中,M为所述第一原始数据集合中所述第一感应端子对应的原始数据的数量,
    Figure PCTCN2017095398-appb-100005
    为所述第一原始数据集合中第一感应端子对应的第i个原始数据的相位,
    Figure PCTCN2017095398-appb-100006
    为所述第二原始数据集合中所述第一感应端子对应的第i个原始数据的相位。
  12. 根据权利要求8至11中任一项所述的触摸控制芯片,其特征在于,所述处理模块还具体用于:
    将没有向所述电容触摸屏输出驱动信号时获取的原始值,确定为所述噪声对所述电容触摸屏的原始数据引发的幅度变化量,所述幅度变化量作为所述噪声对电容触摸屏的原始数据引发的变化量。
  13. 根据权利要求8至12中任一项所述的触摸控制芯片,其特征在于,所述处理模块具体用于:
    根据所述噪声对电容触摸屏的原始数据引发的变化量,以及噪声对电容触摸屏的原始数据引发的变化量与噪声等级的对应关系,确定所述噪声的等级;
    根据所述噪声的等级,以及噪声等级与噪声处理方法的对应关系,从多 个噪声处理方法中确定所述电容触摸屏的原始值的噪声处理方法。
  14. 根据权利要求8至13中任一项所述的触摸控制芯片,其特征在于,所述处理模块根据所述噪声对电容触摸屏的原始数据引发的变化量,确定所述电容触摸屏的原始值的噪声处理方法之前,所述处理模块还用于:在所述噪声对电容触摸屏的原始数据引发的变化量大于或等于第一阈值时,确定对所述电容触摸屏的原始值进行噪声消除处理。
PCT/CN2017/095398 2017-08-01 2017-08-01 确定触摸位置的方法和触摸控制芯片 WO2019023922A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780000767.6A CN107636583B (zh) 2017-08-01 2017-08-01 确定触摸位置的方法和触摸控制芯片
PCT/CN2017/095398 WO2019023922A1 (zh) 2017-08-01 2017-08-01 确定触摸位置的方法和触摸控制芯片
EP17905900.1A EP3462292B1 (en) 2017-08-01 2017-08-01 Method for determining touch position and touch control chip
US16/167,446 US10725585B2 (en) 2017-08-01 2018-10-22 Method for determining touch position and touch control chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/095398 WO2019023922A1 (zh) 2017-08-01 2017-08-01 确定触摸位置的方法和触摸控制芯片

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/167,446 Continuation US10725585B2 (en) 2017-08-01 2018-10-22 Method for determining touch position and touch control chip

Publications (1)

Publication Number Publication Date
WO2019023922A1 true WO2019023922A1 (zh) 2019-02-07

Family

ID=61107531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095398 WO2019023922A1 (zh) 2017-08-01 2017-08-01 确定触摸位置的方法和触摸控制芯片

Country Status (4)

Country Link
US (1) US10725585B2 (zh)
EP (1) EP3462292B1 (zh)
CN (1) CN107636583B (zh)
WO (1) WO2019023922A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108073329B (zh) * 2018-01-31 2021-04-27 北京集创北方科技股份有限公司 触控装置及其驱动方法和终端
WO2021088083A1 (zh) * 2019-11-08 2021-05-14 深圳市汇顶科技股份有限公司 触控检测方法、触控检测电路、触控芯片以及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103516441A (zh) * 2012-06-26 2014-01-15 上海海尔集成电路有限公司 电容式触摸屏抗噪声方法及触控芯片
CN103516329A (zh) * 2012-06-29 2014-01-15 敦泰科技有限公司 一种基于电容屏触摸检测的降噪方法、设备和系统
CN104520796A (zh) * 2012-08-09 2015-04-15 麦孚斯公司 触摸传感装置和方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7876311B2 (en) * 2007-06-13 2011-01-25 Apple Inc. Detection of low noise frequencies for multiple frequency sensor panel stimulation
US8664548B2 (en) 2009-09-11 2014-03-04 Apple Inc. Touch controller with improved diagnostics calibration and communications support
CN102043508B (zh) * 2009-10-09 2013-01-02 禾瑞亚科技股份有限公司 信号量测的方法与装置
EP2569687A2 (en) * 2010-05-14 2013-03-20 Elo Touch Solutions, Inc. System and method for detecting locations of touches on a touch sensor
WO2012108911A1 (en) * 2011-02-07 2012-08-16 Cypress Semiconductor Corporation Noise filtering devices, systems and methods for capacitance sensing devices
TWI469007B (zh) * 2012-04-17 2015-01-11 Raydium Semiconductor Corp 用於控制觸控面板的雜訊處理電路的方法以及相關訊號處理裝置
KR101607694B1 (ko) * 2012-06-21 2016-03-30 엘지디스플레이 주식회사 영상표시장치 및 터치 드라이버
WO2014057569A1 (ja) 2012-10-12 2014-04-17 Nltテクノロジー株式会社 電子機器、静電容量センサ及びタッチパネル
KR20140071050A (ko) * 2012-12-03 2014-06-11 삼성전자주식회사 용량성 멀티 터치 시스템 및 용량성 멀티 터치 시스템의 제어 방법
KR101942971B1 (ko) 2012-12-03 2019-01-28 삼성전자주식회사 낮은 소비전력을 갖는 전기습윤 디스플레이 장치 및 전기습윤 디스플레이 장치의 구동 방법
TWI483159B (zh) * 2013-06-11 2015-05-01 Quanta Comp Inc 觸控裝置及使用其之觸控方法
US9746960B2 (en) * 2013-11-06 2017-08-29 Apex Material Technology Corp. Handling of electromagnetic interference in an electronic apparatus
US10037094B2 (en) * 2015-10-29 2018-07-31 Novatek Microelectronics Corp. Carrier touch sensing system capable of performing phase calibration and carrier signal demodulation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103516441A (zh) * 2012-06-26 2014-01-15 上海海尔集成电路有限公司 电容式触摸屏抗噪声方法及触控芯片
CN103516329A (zh) * 2012-06-29 2014-01-15 敦泰科技有限公司 一种基于电容屏触摸检测的降噪方法、设备和系统
CN104520796A (zh) * 2012-08-09 2015-04-15 麦孚斯公司 触摸传感装置和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3462292A4 *

Also Published As

Publication number Publication date
US10725585B2 (en) 2020-07-28
EP3462292B1 (en) 2020-12-23
US20190056838A1 (en) 2019-02-21
CN107636583B (zh) 2021-05-11
EP3462292A4 (en) 2019-06-26
CN107636583A (zh) 2018-01-26
EP3462292A1 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
WO2019023923A1 (zh) 确定触摸位置的方法和触摸控制芯片
US9069427B2 (en) High noise immunity sensing methods and apparatus for a capacitive touch device
KR101921675B1 (ko) 터치스크린 간섭 억제 방법 및 장치, 그리고 단말 기기
CN105045426B (zh) 一种触摸屏抗噪声方法及装置
WO2016033849A1 (zh) 指纹检测装置和方法
CN107636596B (zh) 触控位置的确定方法、电容触控装置以及电容触控终端
CN110389678B (zh) 并行检测触控装置及其运作方法
TW201322070A (zh) 雜訊過濾方法
WO2012006929A1 (zh) 多点触控装置及对其进行多点触控检测的方法
CN106095207B (zh) 可消除互容影响的电容检测装置及其运作方法
WO2018148902A1 (zh) 一种按键检测方法及装置
WO2019006667A1 (zh) 电子设备、触摸检测电路以及触摸屏的基准值的更新方法
WO2019023922A1 (zh) 确定触摸位置的方法和触摸控制芯片
CN104360769A (zh) 一种触控面板抗干扰的方法、触控面板及显示器
EP3373120B1 (en) Method and device for determining touch position on capacitive screen
CN107544719A (zh) 电容感测装置及其感测方法
TWI526906B (zh) 信號處理方法
CN108595375A (zh) 一种滤波方法、装置及存储介质
CN110554791B (zh) 触控面板信号检测方法及装置
CN109791448B (zh) 触摸检测方法和触控芯片
TWI556147B (zh) 在觸控偵測系統中判斷觸控事件的方法
WO2015166568A1 (ja) 入力装置、入力方法およびプログラム
KR101145674B1 (ko) 랜덤 스캔 방식을 이용한 정전용량 노이즈 제거 장치
CN109324711B (zh) 数据处理方法及装置
TW201423609A (zh) 觸控面板的觸控點判斷方法與裝置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017905900

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017905900

Country of ref document: EP

Effective date: 20181116

NENP Non-entry into the national phase

Ref country code: DE