WO2018227879A1 - 一种相变储能建筑保温结构 - Google Patents

一种相变储能建筑保温结构 Download PDF

Info

Publication number
WO2018227879A1
WO2018227879A1 PCT/CN2017/111891 CN2017111891W WO2018227879A1 WO 2018227879 A1 WO2018227879 A1 WO 2018227879A1 CN 2017111891 W CN2017111891 W CN 2017111891W WO 2018227879 A1 WO2018227879 A1 WO 2018227879A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase change
energy storage
thermal insulation
board
change energy
Prior art date
Application number
PCT/CN2017/111891
Other languages
English (en)
French (fr)
Inventor
张正国
方晓明
付露露
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US16/622,772 priority Critical patent/US11530880B2/en
Publication of WO2018227879A1 publication Critical patent/WO2018227879A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/7608Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising a prefabricated insulating layer, disposed between two other layers or panels
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/7675Insulating linings for the interior face of exterior walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2103/00Material constitution of slabs, sheets or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/023Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0004Particular heat storage apparatus
    • F28D2020/0008Particular heat storage apparatus the heat storage material being enclosed in plate-like or laminated elements, e.g. in plates having internal compartments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the invention relates to a building thermal insulation structure, in particular to a phase change energy storage building thermal insulation structure; and belongs to the technical field of building thermal insulation.
  • the phase change material has a large latent heat value and a storage energy density, and can utilize the heat absorption and heat release in the phase change process for energy storage and release, and can maintain the temperature constant during the phase change process. Therefore, the use of phase change materials for building walls and enclosures can improve their thermal inertia, increase heat storage capacity, delay indoor peak temperature occurrence time, reduce indoor temperature fluctuations, reduce air conditioning and building heating energy consumption, and improve living comfort. degree.
  • phase change energy storage materials mainly uses organic phase change materials combined with building materials.
  • Chinese invention patent CN 104674978 B discloses a building exterior wall structure with a double layer shaped phase change material layer.
  • the inner and outer surfaces of the wall layer are provided with an internal phase change wall layer and an external phase change wall panel, and the phase change materials of the inner phase change wall layer and the outer phase change wall layer are made of paraffin, polyethylene and Expanded graphite composition.
  • paraffin, polyethylene and expanded graphite are all flammable materials, there are fire safety hazards, and the price of organic phase change materials is generally high, which limits its practical application in building walls.
  • directly using inorganic materials there are disadvantages of easy phase separation and supercooling, which affects the persistence of phase change materials in wall applications.
  • the technical problem to be solved by the present invention is to address the deficiencies of the prior art, and propose a phase change energy storage building thermal insulation structure which has low cost, good flame retardant effect and can effectively overcome the disadvantages of inorganic phase separation and supercooling.
  • the invention combines the inorganic hydrated salt with the nucleating agent and the porous carrier to solve the disadvantages of easy phase separation and supercooling of the inorganic hydrated salt; the invention can prepare the inorganic hydrated salt composite phase change material.
  • the refractory plate is packaged to improve the durability and cycle of the phase change material, and the shaped phase change energy storage insulation board is obtained.
  • the inorganic hydrated salt phase change material has the advantages of cheap and easy to obtain, high energy storage density, large latent heat of phase change, and non-flammable. Characteristic, inorganic hydrated salt composite phase transition of the invention Materials will have broad application prospects in the field of building insulation materials.
  • a phase change energy storage building thermal insulation structure comprises a shaped phase change energy storage thermal insulation board, which is arranged on the inner wall surface of the building, and the wall structure is provided with a wall base body, an insulation layer, an oriented structural board and a shape from the outdoor direction to the indoor direction. Phase change energy storage board and exterior panel;
  • the shaped phase change energy storage insulation board is composed of an inorganic composite phase change material and a package plate; the inorganic composite phase change material is obtained by compounding an inorganic hydrated salt and a porous structure carrier, and the phase transition temperature thereof is 10 to 40 ° C; In the inorganic composite phase change material, the inorganic hydrated salt has a mass percentage of 40 to 95%, and the inorganic composite phase change material is coated with a photocurable resin having fire resistance and corrosion resistance.
  • the shaped phase change energy storage insulation board is prepared by the following steps:
  • the nucleating agent is borax, cesium chloride hexahydrate , one or more of CaF 2 , C powder and Na 4 P 2 O 7 ⁇ 6H 2 O; the mass ratio of the nucleating agent to the inorganic hydrated salt is 0.5:99.5 to 10:90;
  • the prepared inorganic composite phase change material is coated with a resin having fire resistance and corrosion resistance by photocuring;
  • the encapsulated inorganic composite phase change material is encapsulated in a packaged plate to obtain a shaped phase change energy storage and heat insulation plate.
  • the wall base body is made of lime sand brick and cement plaster layer
  • the thermal insulation layer is a refractory thermal insulation panel;
  • the refractory thermal insulation panel is a ceramic thermal insulation board, an XPS extruded board, an EPS foam board, a foamed cement, a perlite and a perlite brick, a vermiculite and a vermiculite brick, a phenolic foam, an oak One or more of plastic sponge, glass wool, rock wool and aerogel felt, and having a thickness of 5 mm to 200 mm.
  • the oriented structural board is one or more of plywood, MDF, oriented strand board, blockboard and finger joint board, and has a thickness of 1 mm to 100 mm;
  • the outer decorative board is gypsum board, One or more of a splint, an aluminum veneer, a PVC ceiling, a colored glass, and an aluminum composite panel, and having a thickness of 1 mm to 50 mm;
  • the outer panel has a groove matching the shaped phase change energy storage and heat insulation board.
  • the package plate is an aluminum foil bag, a PVC plate, a fiber cloth bag or a vacuum bag; the package plate has a thickness of 0.2 mm to 20 mm; and the package plate constitutes a cavity structure.
  • the surface of the packaging board is affixed with a high temperature resistant fireproof foil aluminum fiber cloth material.
  • the inorganic hydrated salt is sodium acetate trihydrate, sodium thiosulfate pentahydrate, calcium chloride hexahydrate, magnesium chloride hexahydrate, magnesium nitrate hexahydrate, magnesium nitrate heptahydrate, barium hydroxide octahydrate, decahydrate
  • sodium sulfate, sodium hydrogen phosphate dodecahydrate, ammonium aluminum sulfate dodecahydrate, and aluminum sulfate octahydrate is sodium acetate trihydrate, sodium thiosulfate pentahydrate, calcium chloride hexahydrate, magnesium chloride hexahydrate, magnesium nitrate hexahydrate, magnesium nitrate heptahydrate, barium hydroxide octahydrate, decahydrate
  • sodium sulfate, sodium hydrogen phosphate dodecahydrate, ammonium aluminum sulfate dodecahydrate, and aluminum sulfate octahydrate is sodium
  • the porous structural support is one of expanded graphite, expanded perlite, expanded vermiculite, diatom, montmorillonite, aluminum foam, copper foam, carbon foam, fumed silica, and aluminum oxide. kind or more.
  • the resin having fire resistance and corrosion resistance is one or two of epoxy acrylate and polyurethane.
  • the wall base body, the heat insulation layer, the oriented structural board, the shaped phase change energy storage heat preservation board and the outer decorative board are bonded by foam rubber.
  • the present invention has the following advantages and beneficial effects:
  • the heat insulation effect of the invention is good, and the cold quantity in the outdoor air in the summer night can be stored in the phase change energy storage heat preservation board, and the stored cold quantity is released into the indoor air during the daytime, thereby realizing the extension.
  • the time when the indoor peak temperature appears slows the fluctuation of the indoor temperature, improves the environmental comfort, and can reduce the air conditioning energy consumption in summer.
  • the inorganic composite phase change material of the present invention overcomes the disadvantages of easy phase separation and large supercooling which are common in inorganic hydrated salts by adding an appropriate amount of nucleating agent and compounding in the porous inorganic carrier during the preparation process.
  • the inorganic composite phase change material obtained by the composite of the present invention is coated on the surface of the inorganic composite phase change material particles by a resin having fire resistance and corrosion resistance, and can ensure that the inorganic composite phase change material does not leak during the recycling process. Significantly enhances durability.
  • the shaped phase change energy storage plate of the invention can fully utilize the advantages of the inorganic phase change material, and is cheap, easy to obtain, non-flammable, high in energy storage density, high in latent heat of phase change, high thermal inertia of the wall, and delayed indoor peak temperature occurrence time. .
  • the wall structure of the invention can focus on the effective thermal insulation of the thermal insulation material, and fully reduce the indoor temperature fluctuation range.
  • the test results show that compared with the shaped phase change energy storage insulation board in the outer fascia, the cavity structure of the invention is reduced by more than 5 °C, and the maximum temperature is delayed by more than 25 minutes. The effect is very remarkable. .
  • the wall structure material of the invention has wide sources, relatively low cost, and is easy to form, which is convenient for practical application production and on-site construction.
  • FIG. 1 is a schematic view showing a heat preservation structure of a phase change energy storage building according to the present invention.
  • Figure 2 is a schematic view showing the structure of the shaped phase change energy storage and heat insulation board.
  • a phase change energy storage building thermal insulation structure according to the embodiment of the present invention comprises a shaped phase change energy storage thermal insulation board 7, which is disposed on the inner wall of the building, and the wall structure is directed from the outside.
  • the indoor direction is followed by wall base 1, insulation layer 2, oriented structural plate 3, shaped phase change energy storage insulation board 7 and exterior decoration board 6.
  • the shaped phase change energy storage and heat insulation board 7 is composed of an inorganic composite phase change material 4 and a package sheet 5.
  • the wall base 1 is made of lime sand brick and cement plaster layer.
  • An EPS foam board having a thickness of 200 mm was selected as the heat insulating layer 2, and a plywood having a thickness of 100 mm was used as the oriented structural sheet 3.
  • the inorganic hydrated salt magnesium chloride hexahydrate and magnesium nitrate hexahydrate are mixed and melted to obtain a molten magnesium chloride hexahydrate/magnesium hexahydrate phase change material, and then combined with an expanded graphite carrier to obtain a new inorganic composite phase of expanded graphite-based magnesium chloride hexahydrate/magnesium hexahydrate.
  • the phase transition temperature is 40 ° C, wherein the molten hexahydrate magnesium chloride / hexahydrate magnesium nitrate phase change material accounts for 95% of the composite phase change material mass fraction, and the composite phase change material is solid at room temperature, and the mass fraction of 5% is selected.
  • the oxypropyl acrylate resin is photocured on the surface of the composite phase change material, and the inorganic composite phase change material is coated, which greatly enhances the durability of the inorganic composite phase change material.
  • the obtained inorganic composite phase change material was tested for coldness, and the degree of subcooling was reduced by 10 ° C compared with the magnesium chloride hexahydrate / hexahydrate phase change material.
  • the degree of subcooling was greatly reduced and liquid leakage did not occur.
  • the aluminum foil bag with a thickness of 20 mm is used as the encapsulating plate 5 of the inorganic composite phase change material, and the composite phase change material coated with the resin is filled in the cavity of the encapsulating plate to obtain the shaped phase change energy storage and thermal insulation board 7 and the gypsum board with a thickness of 50 mm.
  • the exterior panel 6 the structure is as shown in FIG.
  • inorganic hydrated salt magnesium chloride hexahydrate and magnesium nitrate hexahydrate are used as phase change materials, and flammable phase change materials such as paraffin, polyethylene and expanded graphite are not used.
  • This embodiment effectively solves the flammable phase change in the prior art. Material problem.
  • the experimental room and the reference room are constructed by the above wall structure, and the temperature of the room is fluctuated with time under a solar light intensity.
  • the shaped phase change energy storage and heat insulation board 7 is placed in the outer fascia of the experimental room, and the reference room exterior decoration The shape of the phase change energy storage board 7 is not placed in the board.
  • the test results show that the temperature fluctuation in the laboratory room is reduced by 18 ° C, the maximum temperature is delayed by 90 minutes, the reference room is reduced by 10 ° C, and the maximum temperature is delayed by 20 minutes.
  • the wall structure with shaped phase change energy storage insulation board has better heat storage capacity, can significantly improve the thermal inertia of the wall, delay the indoor peak temperature occurrence time; fully reduce the indoor temperature fluctuation range, thereby reducing the air conditioning and building heating energy Consumption, improve living comfort.
  • the thermal insulation board is a ceramic thermal insulation board having a thickness of 100 mm.
  • the test experiment with the first example shows that the temperature fluctuation in the experimental room is reduced by 16 ° C, the maximum temperature is delayed by 80 minutes, the reference room temperature fluctuation is reduced by 8 ° C, and the maximum temperature is delayed by 10 minutes, indicating that the shaped phase change energy storage
  • the wall structure of the insulation board has better heat storage capacity, can significantly improve the thermal inertia of the wall, delay the peak temperature of the room; fully reduce the indoor temperature Range of fluctuations.
  • the thermal insulation effect of the experimental room is slightly worse than that of the experimental room of the first embodiment because the thermal conductivity of the ceramic thermal insulation board is higher than that of the EPS foam board, and the thickness of the thermal insulation layer is thin.
  • the insulation board is an XPS extruded board having a thickness of 50 mm.
  • the test experiment with Example 1 showed that the temperature fluctuation in the experimental room was reduced by 17 ° C, the maximum temperature was delayed by 85 minutes, the reference room temperature fluctuation was reduced by 9 ° C, and the maximum temperature was delayed by 15 minutes, indicating that the shaped phase change energy storage was included.
  • the wall structure of the thermal insulation board has better heat storage capacity, can significantly improve the thermal inertia of the wall, delay the occurrence time of the indoor peak temperature, and sufficiently reduce the indoor temperature fluctuation range.
  • the thermal insulation effect of the laboratory room is similar to that of the experimental room of the first embodiment because the thermal conductivity of the XPS extruded board insulation board is smaller than that of the EPS foam board.
  • the thermal insulation board is a foamed cement having a thickness of 30 mm.
  • the test experiment with the first example shows that the temperature fluctuation in the experimental room is reduced by 10 ° C, the maximum temperature is delayed by 60 minutes, the reference room temperature fluctuation is reduced by 5 ° C, and the maximum temperature is delayed by 10 minutes, indicating that the shaped phase change energy storage
  • the wall structure of the thermal insulation board has better heat storage capacity, can significantly improve the thermal inertia of the wall, delay the occurrence time of the indoor peak temperature, and sufficiently reduce the indoor temperature fluctuation range.
  • the thermal insulation effect of the experimental room is worse than that of the experimental room of the first embodiment because the thermal conductivity of the foamed cement thermal insulation board is similar to that of the EPS foam board, but the thickness of the foamed cement thermal insulation board is much smaller than that of the EPS foam board.
  • the thermal insulation board is glass wool and has a thickness of 20 mm.
  • the test experiment with Example 1 showed that the temperature fluctuation in the experimental room was reduced by 8 °C, the maximum temperature was delayed by 50 minutes, the reference room temperature fluctuation was reduced by 3 °C, and the maximum temperature was delayed by 6 minutes, indicating that the shaped phase change energy storage was included.
  • the wall structure of the thermal insulation board has better heat storage capacity, can significantly improve the thermal inertia of the wall, delay the occurrence time of the indoor peak temperature, and sufficiently reduce the indoor temperature fluctuation range.
  • the thermal insulation effect of the experimental room is worse than that of the experimental room of the first embodiment because the thermal conductivity of the glass wool thermal insulation board is similar to that of the EPS foam board, but the thickness of the glass wool thermal insulation board is much smaller than that of the EPS foam board.
  • the thermal insulation board was a phenolic foam having a thickness of 15 mm.
  • the test experiment with the first example shows that the temperature fluctuation in the experimental room is reduced by 9 ° C, the maximum temperature is delayed by 55 minutes, the reference room temperature fluctuation is reduced by 3 ° C, and the maximum temperature is delayed by 7 minutes, indicating that the shaped phase change energy storage
  • the wall structure of the thermal insulation board has better heat storage capacity, can significantly improve the thermal inertia of the wall, delay the occurrence time of the indoor peak temperature, and sufficiently reduce the indoor temperature fluctuation range.
  • the thermal insulation effect of the experimental room is worse than that of the experimental room of the first embodiment because the thermal conductivity of the phenolic foam thermal insulation board is smaller than that of the EPS foam board, but the thickness of the phenolic foam thermal insulation board is much smaller than that of the EPS foam board.
  • the thermal insulation board is a rubber sponge having a thickness of 10 mm.
  • the test experiment with the first example shows that the temperature fluctuation in the experimental room is reduced by 6 ° C, the maximum temperature is delayed by 30 minutes, the reference room temperature fluctuation is reduced by 2 ° C, and the maximum temperature is delayed by 5 minutes, indicating that the shaped phase change energy storage
  • the wall structure of the thermal insulation board has better heat storage capacity, can significantly improve the thermal inertia of the wall, delay the occurrence time of the indoor peak temperature, and sufficiently reduce the indoor temperature fluctuation range.
  • the thermal insulation effect of the experimental room is worse than that of the experimental room of the first embodiment, because the thermal conductivity of the rubber-plastic sponge insulation board is similar to that of the EPS foam board, but the thickness of the rubber-plastic sponge insulation board is much smaller than that of the EPS foam board.
  • the thermal insulation board was an aerogel felt having a thickness of 5 mm.
  • the test experiment with Example 1 showed that the temperature fluctuation in the experimental room was reduced by 7 °C, the maximum temperature was delayed by 35 minutes, the reference room temperature fluctuation was reduced by 2 °C, and the maximum temperature was delayed by 5 minutes, indicating that the shaped phase change energy storage was included.
  • the wall structure of the thermal insulation board has better heat storage capacity, can significantly improve the thermal inertia of the wall, delay the occurrence time of the indoor peak temperature, and sufficiently reduce the indoor temperature fluctuation range.
  • the thermal insulation effect of the laboratory room is worse than that of the experimental room of the first embodiment because the thermal conductivity of the aerogel felt insulation board is much smaller than that of the EPS foam board, but the thickness of the aerogel felt insulation board is much smaller than that of the EPS foam board.
  • the wall base 1 is made of lime sand brick and cement plaster layer.
  • a phenolic foam board having a thickness of 30 mm was selected as the heat insulating layer 2
  • a medium-density board having a thickness of 50 mm was used as the oriented structural sheet 3.
  • the inorganic hydrated salt sodium sulfate decahydrate is mixed with the nucleating agent borax and heated and melted, wherein the mass ratio of the nucleating agent to the sodium sulfate decahydrate is 3:97, and then combined with the expanded vermiculite carrier to obtain expanded vermiculite-based decahydrate sulfuric acid.
  • a new inorganic composite phase change material with sodium has a phase transition temperature of 35 ° C.
  • the molten sodium sulfate decahydrate accounts for 80% of the composite phase change material.
  • the composite phase change material is solid at room temperature, and the polyurethane resin with a mass fraction of 10% is selected.
  • the surface of the composite phase change material is photocured, and the inorganic composite phase change material is coated, which greatly enhances the durability of the inorganic composite phase change material.
  • the obtained inorganic composite phase change material was tested for coldness, and its subcooling degree was reduced by 13 ° C compared with the supercooling degree of the sodium sulfate decahydrate phase change material, and the degree of subcooling was greatly reduced and liquid leakage did not occur.
  • the fiber cloth bag with a thickness of 15mm is used as the encapsulating sheet 5 of the inorganic composite phase change material, and the composite phase change material coated with the resin is filled in the cavity of the encapsulating sheet to obtain the shaped phase change energy storage and heat insulation board 7, and the aluminum plastic having a thickness of 30 mm.
  • the board serves as the exterior panel 6, and the structure is as shown in FIG.
  • the experimental room and the reference room are constructed by the above wall structure, and the temperature of the room is fluctuated with time under a solar light intensity.
  • the shaped phase change energy storage and heat insulation board 7 is placed in the outer fascia of the experimental room, and the reference room exterior decoration The shape of the phase change energy storage board 7 is not placed in the board.
  • the test results show that the temperature fluctuation in the laboratory room is reduced by 15 °C, the maximum temperature is delayed by 60 minutes, the reference room is reduced by 5 °C, and the maximum temperature is delayed by 15 minutes.
  • the body structure has better heat storage capacity, can significantly improve the thermal inertia of the wall, delay the indoor peak temperature occurrence time; fully reduce the indoor temperature fluctuation range, thereby reducing the air conditioning and building heating energy consumption, and improving the living comfort.
  • the difference is that the oriented structural panel is a blockboard having a thickness of 20 mm.
  • the test experiment with the example 9 shows that the temperature fluctuation in the experimental room is reduced by 14 ° C, the maximum temperature is delayed by 50 minutes, the reference room temperature fluctuation is reduced by 4 ° C, and the maximum temperature is delayed by 12 minutes, indicating that the phase change energy storage is contained.
  • the wall structure of the thermal insulation board has better heat storage capacity, can significantly improve the thermal inertia of the wall, delay the occurrence time of the indoor peak temperature, and sufficiently reduce the indoor temperature fluctuation range.
  • the thermal insulation effect of the experimental room was similar to that of the experimental room of Example 9.
  • the wall base 1 is made of lime sand brick and cement plaster layer.
  • An XPS extruded board having a thickness of 10 mm was selected as the insulating layer 2
  • an oriented strand board (OSB board) having a thickness of 30 mm was used as the oriented structural sheet 3.
  • the inorganic salt anhydrous calcium chloride, deionized water and the nucleating agent cesium chloride hexahydrate are melted to obtain a saturated solution of calcium chloride hexahydrate, wherein the mass ratio of anhydrous calcium chloride to deionized water is higher than that of deionized water.
  • the phase transition temperature is 27 °C
  • the molten calcium chloride hexahydrate accounts for the composite phase transition.
  • the material mass fraction is 55%.
  • the composite phase change material is solid at room temperature.
  • the polyurethane resin with a mass fraction of 15% is photocured on the surface of the composite phase change material, and the inorganic composite phase change material is coated to greatly enhance the inorganic composite phase. The durability of the variable material.
  • the obtained inorganic composite phase change material was tested for coldness, and its subcooling degree was reduced by 15 ° C compared with the supercooling degree of the sodium sulfate decahydrate phase change material, the degree of subcooling was greatly reduced and liquid leakage did not occur.
  • the PVC board with a thickness of 10 mm is used as the encapsulating sheet 5 of the inorganic composite phase change material, and the composite phase change material coated with the resin is filled in the cavity of the encapsulating sheet to obtain the shaped phase change energy storage and heat insulation board 7 and the aluminum sheet with a thickness of 20 mm.
  • the board serves as the exterior panel 6, and the structure is as shown in FIG.
  • the experimental room and the reference room are constructed by the above wall structure, and the temperature of the room is fluctuated with time under a solar light intensity.
  • the shaped phase change energy storage and heat insulation board 7 is placed in the outer fascia of the experimental room, and the reference room exterior decoration The shape of the phase change energy storage board 7 is not placed in the board.
  • the test results show that the temperature fluctuation in the laboratory room is reduced by 13 ° C, the maximum temperature is delayed by 45 minutes, the reference room is reduced by 5 ° C, and the maximum temperature is delayed by 15 minutes.
  • the wall structure with shaped phase change energy storage insulation board has better heat storage capacity, can significantly improve the thermal inertia of the wall, delay the indoor peak temperature occurrence time; fully reduce the indoor temperature fluctuation range, thereby reducing the air conditioning and building heating energy Consumption, improve living comfort.
  • Example 11 the difference is that the exterior panel is colored glass and has a thickness of 10 mm.
  • the test experiment with Example 11 showed that the temperature fluctuation in the laboratory room was reduced by 13 °C, the maximum temperature was delayed by 45 minutes, the reference room temperature fluctuation was reduced by 4 °C, and the maximum temperature was delayed by 11 minutes, indicating that the phase change energy storage was contained.
  • the wall structure of the insulation board has more Excellent heat storage capacity can significantly improve the thermal inertia of the wall, delay the peak temperature of the room; fully reduce the indoor temperature fluctuation range.
  • the thermal insulation effect of the experimental room is similar to that of the experimental room of the first embodiment, because the outer decorative board has less influence on the heat insulation effect in the room.
  • the difference is that the exterior panel is a PVC ceiling panel having a thickness of 5 mm.
  • the test experiment with the same example 11 shows that the temperature fluctuation in the experimental room is reduced by 12 ° C, the maximum temperature is delayed by 45 minutes, the reference room temperature fluctuation is reduced by 4 ° C, and the maximum temperature is delayed by 10 minutes, indicating that the shaped phase change energy storage
  • the wall structure of the thermal insulation board has better heat storage capacity, can significantly improve the thermal inertia of the wall, delay the occurrence time of the indoor peak temperature, and sufficiently reduce the indoor temperature fluctuation range.
  • the thermal insulation effect of the experimental room is similar to that of the experimental room of the first embodiment, because the outer decorative board has less influence on the heat insulation effect in the room.
  • the wall base 1 is made of lime sand brick and cement plaster layer.
  • An aerogel felt having a thickness of 5 mm was selected as the heat insulating layer 2, and a finger joint plate having a thickness of 1 mm was used as the oriented structural plate 3.
  • the inorganic hydrated salt calcium chloride hexahydrate and magnesium nitrate hexahydrate are mixed and melted to obtain a molten calcium chloride hexahydrate/magnesium nitrate hexahydrate phase change material, and then combined with a fumed silica carrier to obtain a fumed silica-based hexahydrate chlorination.
  • the phase transition temperature is 10 °C, wherein the molten calcium chloride hexahydrate/hexahydrate magnesium phase change material accounts for 40% of the composite phase change material mass fraction, and the composite phase change material at normal temperature
  • the polyurethane resin with a mass fraction of 20% is photocured on the surface of the composite phase change material, and the inorganic composite phase change material is coated, which greatly enhances the durability of the inorganic composite phase change material.
  • the obtained inorganic composite phase change material was tested for coldness, and its degree of subcooling was reduced by 15 °C compared with the degree of subcooling of the magnesium chloride hexahydrate/magnesium nitrate hexahydrate phase change material, and the degree of subcooling was greatly reduced and liquid leakage did not occur.
  • a vacuum bag having a thickness of 0.2 mm is used as a package plate 5 of a novel inorganic composite phase change material, and a composite phase change material coated with a resin is filled in a cavity of a packaged plate to obtain a shaped phase change energy storage and heat insulation plate 7, having a thickness of 1 mm.
  • the splint is used as the outer panel 6, and the structure is as shown in FIG.
  • the experimental room and the reference room are constructed by the above wall structure, and the temperature of the room is fluctuated with time under a solar light intensity.
  • the shaped phase change energy storage and heat insulation board 7 is placed in the outer fascia of the experimental room, and the reference room exterior decoration The shape of the phase change energy storage board 7 is not placed in the board.
  • the test results show that the temperature fluctuation in the laboratory room is reduced by 8 °C, the maximum temperature is delayed by 40 minutes, the reference room is lowered by 2 °C, and the maximum temperature is delayed by 10 minutes.
  • the wall structure with shaped phase change energy storage insulation board has better heat storage capacity, can significantly improve the thermal inertia of the wall, delay the indoor peak temperature occurrence time; fully reduce the indoor temperature fluctuation range, thereby reducing the air conditioning and building heating energy Consumption, improve living comfort.
  • Embodiment 14 In a thermal insulation structure, a surface of a package material of an inorganic composite phase change material is affixed with a high temperature resistant fireproof foil aluminum The fiber cloth material makes the obtained shaped phase change energy storage and heat insulation board 7 have good fireproof performance.
  • Embodiment 15 In a heat insulating structure, a wall base 1, an insulating layer 2, an oriented structural plate 3, a shaped phase change energy storage heat insulating plate 7 and an outer decorative plate 6 are bonded by a foam rubber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Dispersion Chemistry (AREA)
  • Building Environments (AREA)

Abstract

一种相变储能建筑保温结构,从室外指向室内方向依次设有墙体基体(1)、保温层(2)、定向结构板(3)、定形相变储能保温板(7)和外饰板(6);定形相变储能保温板(7)由无机复合相变材料(4)和封装板材(5)组成;无机复合相变材料(4)为无机水合盐和多孔结构载体复合得到,其相变温度为10~40℃;无机复合相变材料(4)中,无机水合盐的质量百分含量为40~95%,无机复合相变材料(4)由具有耐火耐腐蚀性能的光固化树脂包覆。该结构保温隔热效果好,能延长室内峰值温度出现的时间,减缓室内温度的波动,提高环境舒适度,且能降低夏季空调能耗。

Description

一种相变储能建筑保温结构 技术领域
本发明涉及建筑保温结构,具体涉及一种相变储能建筑保温结构;属于建筑保温技术领域。
背景技术
随着社会经济的不断发展,通过建筑供暖和制冷所消耗能量在总能耗中所占的比例不断地攀升。具体来说,建筑能耗大约占全球总能耗的32%,而由建筑所引起的温室气体排放量可达其总量的30%。传统轻质建筑材料热容较小,储热能力较差,无法满足人们对环境舒适度的要求,开发出新型的建筑储能材料对于建筑节能的实现具有重要意义。
相变材料具有较大的潜热值和储能密度,可以利用相变过程中吸热和放热来进行能量的储存和释放,且在相变过程中能维持温度恒定。因此将相变材料用于建筑墙体和围护结构,可以提高其热惰性,增大储热能力,延迟室内峰值温度出现时间,降低室内温度波动,降低空调及建筑供暖能耗,提高居住舒适度。
目前,关于相变储能材料的研究主要是采用有机相变材料与建筑材料相结合,例如中国发明专利CN 104674978 B公布了一种具备双层定型相变材料层的建筑外墙结构体,在墙体层内外表面放置了内定型相变墙板层和外定型相变墙板,所述的内定型相变墙板层和外定型相变墙板层的相变材料由石蜡、聚乙烯和膨胀石墨组成。但由于石蜡、聚乙烯和膨胀石墨都是易燃物,所以存在着火灾安全隐患,而且对于有机相变材料价格普遍很高,限制了其在建筑墙体中的实际应用。但直接用无机相比材料,又存在容易产生相分离和过冷度大的缺点,影响相变材料在墙体应用的持续性。
发明内容
本发明要解决的技术问题是针对现有技术的不足,提出一种成本低,阻燃效果好,可有效克服无机相比材料相分离和过冷度大缺点的相变储能建筑保温结构。
本发明将无机水合盐与成核剂和多孔载体复合能很好地解决无机水合盐所存在的容易相分离和过冷度大的缺点;本发明将制备得到的无机水合盐复合相变材料用耐火板材封装好,提高相变材料的使用耐久性和循环性,得到定形相变储能保温板,无机水合盐相变材料具有便宜易得、储能密度高、相变潜热大、不可燃的特点,本发明无机水合盐复合相变 材料将会在建筑保温材料领域具有广阔应用前景。
本发明要解决的技术问题是通过以下技术方案实现的:
一种相变储能建筑保温结构,包括了定形相变储能保温板,设于建筑内墙面,墙体结构从室外指向室内方向依次设有墙体基体、保温层、定向结构板、定形相变储能保温板和外饰板;
所述定形相变储能保温板由无机复合相变材料和封装板材组成;所述无机复合相变材料为无机水合盐和多孔结构载体复合得到,其相变温度为10~40℃;所述无机复合相变材料中,无机水合盐的质量百分含量为40~95%,所述无机复合相变材料由具有耐火耐腐蚀性能的光固化树脂包覆。
为进一步实现本发明目的,优选地,所述定形相变储能保温板由以下步骤制备:
(1)将无机盐、去离子水与成核剂加热融化或直接将无机水合盐加热融化,得到液态状态下的无机水合盐相变物质;所述成核剂为硼砂、六水合氯化锶、CaF2、C粉和Na4P2O7·6H2O中的一种或两种以上;所述成核剂与无机水合盐的质量比为0.5:99.5~10:90;
(2)在真空环境下,将融化状态下的无机水合盐相变物质吸附到多孔结构载体材料的孔表面及孔内,充分搅拌;
(3)在低于无机水合盐相变材料相变温度的条件下进行固化,得到无机复合相变材料;
(4)将制备得到的无机复合相变材料用具有耐火耐腐蚀性能的树脂经光固化进行包覆;
(5)将包覆后的无机复合相变材料封装于封装板材中,得到定形相变储能保温板。
优选地,所述墙体基体由灰砂砖与水泥抹灰层砌成;
所述保温层为耐火保温面板;所述耐火保温面板为陶瓷保温板、XPS挤塑板、EPS泡沫板、发泡水泥、珍珠岩及珍珠岩砖、蛭石及蛭石砖、酚醛泡沫、橡塑海绵、玻璃棉、岩棉和气凝胶毡中的一种或两种以上,厚度为5mm~200mm。
优选地,所述的定向结构板为为胶合板、中纤板、定向刨花板、细木工板和指接板中的一种或多种,厚度为1mm~100mm;所述外饰板为石膏板、夹板、铝单板、PVC吊顶、彩色玻璃、铝塑板中的一种或两种以上,厚度为1mm~50mm;所述外饰板具有与定形相变储能保温板相匹配的凹槽。
优选地,所述封装板材为铝箔袋、PVC板、纤维布袋或真空袋;封装板材厚度为0.2mm~20mm;所述封装板材构成的空腔结构。
优选地,所述封装板材表面贴有耐高温防火箔铝纤维布材料。
优选地,所述的无机水合盐为三水合醋酸钠、五水合硫代硫酸钠、六水合氯化钙、六水合氯化镁、六水合硝酸镁、七水合硝酸镁、八水合氢氧化钡、十水合硫酸钠、十二水合磷酸氢钠、十二水合硫酸铝铵及十八水合硫酸铝中的一种或多种。
优选地,所述的多孔结构载体为膨胀石墨、膨胀珍珠岩、膨胀蛭石、硅藻体、蒙脱土、泡沫铝、泡沫铜、碳泡沫、气相二氧化硅、三氧化二铝中的一种或多种。
优选地,所述的具有耐火耐腐蚀性能的树脂为环氧丙稀酸酯和聚氨酯中的一种或两种。
优选地,所述墙体基体、保温层、定向结构板、定形相变储能保温板和外饰板之间通过泡沫胶进行粘接。
相对于现有技术,本发明具有如下优点和有益效果:
1)本发明保温隔热效果好,可以将把夏季夜晚室外空气中的冷量储存在相变储能保温板内,在白天里,将所储存的冷量释放到室内空气中,从而实现延长室内峰值温度出现的时间,减缓室内温度的波动,提高环境舒适度,并且能降低夏季空调能耗。
2)本发明无机复合相变材料在制备过程中通过添加适量的成核剂并于多孔无机载体复合,很好地克服了无机水合盐普遍存在的容易相分离和过冷大的缺点。
3)本发明复合后得到的无机复合相变材料经过具有耐火耐腐蚀性能的树脂在无机复合相变材料粒子表面光固化后包覆,可以保证无机复合相变材料在循环使用过程中不发生液漏,显著增强耐用性。
4)本发明定形相变储能板能充分发挥无机相变材料的优点,便宜易得、不可燃性、储能密度高、相变潜热大,提高墙体热惰性,延迟室内峰值温度出现时间。
5)本发明墙体结构可以集中利用保温材料有效保温隔热,充分减小室内温度波动范围。测试结果表明,相对于外饰板内不放置定形相变储能保温板,应用本发明的腔体结构,实验房内温度波动减少5℃以上,最高温度出现延迟了25分钟以上,效果非常显著。
6)本发明墙体结构材料来源广泛,成本相对较低,容易成型,便于实际应用生产和现场施工。
附图说明
图1为本发明一种相变储能建筑保温结构示意图。
图2为定形相变储能保温板结构示意图。
具体实施方式
以下参照附图进一步描述本发明的具体技术方案,以便于本领域的技术人员进一步地理解本发明,实施方式不构成保护范围的限制。
如图1、图2所示,本发明所述实施例的一种相变储能建筑保温结构,包括了定形相变储能保温板7,设于建筑内墙面,墙体结构从室外指向室内方向依次是墙体基体1、保温层2、定向结构板3、定形相变储能保温板7和外饰板6。定形相变储能保温板7由无机复合相变材料4及封装板材5组成。
实施例1
墙体基体1由灰砂砖与水泥抹灰层砌成。选取厚度为200mm的EPS泡沫板作为保温层2,厚度为100mm的胶合板作为定向结构板3。将无机水合盐六水合氯化镁与六水合硝酸镁混合融化得到熔融六水合氯化镁/六水合硝酸镁相变材料,再与膨胀石墨载体复合得到膨胀石墨基六水合氯化镁/六水合硝酸镁新型无机复合相变材料,相变温度为40℃,其中熔融六水合氯化镁/六水合硝酸镁相变材料占复合相变材料质量分数95%,常温下复合相变材料为固体,选择质量分数为5%的环氧丙稀酸酯树脂在复合相变材料表面经光固化,对无机复合相变材料进行包覆,大大增强了无机复合相变材料的耐用性。得到的无机复合相变材料经过冷度测试,其过冷度相比于六水合氯化镁/六水合硝酸镁相变材料过冷度减少了10℃,过冷度大大降低并且不发生液漏现象。厚度为20mm的铝箔袋作为无机复合相变材料的封装板5,将树脂包覆后的复合相变材料填充于封装板材空腔内得到定形相变储能保温板7,厚度为50mm的石膏板作为外饰板6,结构如图1所示。
本实施例采用无机水合盐六水合氯化镁与六水合硝酸镁为相变材料,没有使用石蜡、聚乙烯和膨胀石墨等易燃相变材料,本实施例有效解决了现有技术采用易燃相变材料的问题。
由上述墙体结构搭建实验房和参考房,在一个太阳光强度下,测试房间内温度随时间的波动,其中实验房外饰板内放置了定形相变储能保温板7,参考房外饰板内不放置定形相变储能保温板7,测试结果表明实验房内温度波动减少了18℃,最高温度出现延迟了90分钟,参考房降低了10℃,最高温度出现延迟了20分钟,说明含定形相变储能保温板的墙体结构具有更优异的储热能力,能明显提高墙体热惰性,延迟室内峰值温度出现时间;充分减小室内温度波动范围,从而降低空调及建筑供暖能耗,提高居住舒适度。
实施例2
参考实施例1,所不同的是保温板为陶瓷保温板,厚度为100mm。同实施例1测试实验表明实验房内温度波动减少了16℃,最高温度出现延迟了80分钟,参考房内温度波动降低了8℃,最高温度出现延迟了10分钟,说明含定形相变储能保温板的墙体结构具有更优异的储热能力,能明显提高墙体热惰性,延迟室内峰值温度出现时间;充分减小室内温 度波动范围。该实验房保温隔热效果略差于实施例1实验房,是因为陶瓷保温板的导热系数高于EPS泡沫板,且保温层厚度变薄。
实施例3
参考实施例1,所不同的是保温板为XPS挤塑板,厚度为50mm。
同实施例1测试实验表明实验房内温度波动减少了17℃,最高温度出现延迟了85分钟,参考房内温度波动降低了9℃,最高温度出现延迟了15分钟,说明含定形相变储能保温板的墙体结构具有更优异的储热能力,能明显提高墙体热惰性,延迟室内峰值温度出现时间;充分减小室内温度波动范围。该实验房保温隔热效果与实施例1实验房相近,是因为XPS挤塑板保温板的导热系数小于EPS泡沫板。
实施例4
参考实施例1,所不同的是保温板为发泡水泥,厚度为30mm。同实施例1测试实验表明实验房内温度波动减少了10℃,最高温度出现延迟了60分钟,参考房内温度波动降低了5℃,最高温度出现延迟了10分钟,说明含定形相变储能保温板的墙体结构具有更优异的储热能力,能明显提高墙体热惰性,延迟室内峰值温度出现时间;充分减小室内温度波动范围。该实验房保温隔热效果差于实施例1实验房,是因为发泡水泥保温板的导热系数与EPS泡沫板相近,但发泡水泥保温板的厚度远小于EPS泡沫板。
实施例5
参考实施例1,所不同的是保温板为玻璃棉,厚度为20mm。同实施例1测试实验表明实验房内温度波动减少了8℃,最高温度出现延迟了50分钟,参考房内温度波动降低了3℃,最高温度出现延迟了6分钟,说明含定形相变储能保温板的墙体结构具有更优异的储热能力,能明显提高墙体热惰性,延迟室内峰值温度出现时间;充分减小室内温度波动范围。该实验房保温隔热效果差于实施例1实验房,是因为玻璃棉保温板的导热系数与EPS泡沫板相近,但玻璃棉保温板的厚度远小于EPS泡沫板。
实施例6
参考实施例1,所不同的是保温板为酚醛泡沫,厚度为15mm。同实施例1测试实验表明实验房内温度波动减少了9℃,最高温度出现延迟了55分钟,参考房内温度波动降低了3℃,最高温度出现延迟了7分钟,说明含定形相变储能保温板的墙体结构具有更优异的储热能力,能明显提高墙体热惰性,延迟室内峰值温度出现时间;充分减小室内温度波动范围。该实验房保温隔热效果差于实施例1实验房,是因为酚醛泡沫保温板的导热系数小于EPS泡沫板,但酚醛泡沫保温板的厚度远小于EPS泡沫板。
实施例7
参考实施例1,所不同的是保温板为橡塑海绵,厚度为10mm。同实施例1测试实验表明实验房内温度波动减少了6℃,最高温度出现延迟了30分钟,参考房内温度波动降低了2℃,最高温度出现延迟了5分钟,说明含定形相变储能保温板的墙体结构具有更优异的储热能力,能明显提高墙体热惰性,延迟室内峰值温度出现时间;充分减小室内温度波动范围。该实验房保温隔热效果差于实施例1实验房,是因为橡塑海绵保温板的导热系数与EPS泡沫板相近,但橡塑海绵保温板的厚度远小于EPS泡沫板。
实施例8
参考实施例1,所不同的是保温板为气凝胶毡,厚度为5mm。同实施例1测试实验表明实验房内温度波动减少了7℃,最高温度出现延迟了35分钟,参考房内温度波动降低了2℃,最高温度出现延迟了5分钟,说明含定形相变储能保温板的墙体结构具有更优异的储热能力,能明显提高墙体热惰性,延迟室内峰值温度出现时间;充分减小室内温度波动范围。该实验房保温隔热效果差于实施例1实验房,是因为气凝胶毡保温板的导热系数远小于EPS泡沫板,但气凝胶毡保温板的厚度远小于EPS泡沫板。
实施例9
墙体基体1由灰砂砖与水泥抹灰层砌成。选取厚度为30mm的酚醛泡沫板作为保温层2,厚度为50mm的中纤板作为定向结构板3。将无机水合盐十水合硫酸钠与成核剂硼砂混合后加热融化,其中成核剂与十水合硫酸钠的质量比为3:97,再与膨胀蛭石载体复合得到膨胀蛭石基十水合硫酸钠新型无机复合相变材料,相变温度为35℃,其中熔融十水合硫酸钠占复合相变材料质量分数80%,常温下复合相变材料为固体,选择质量分数为10%的聚氨酯树脂在复合相变材料表面经光固化,对无机复合相变材料进行包覆,大大增强了无机复合相变材料的耐用性。得到的无机复合相变材料经过冷度测试,其过冷度相比于十水合硫酸钠相变材料过冷度减少了13℃,过冷度大大降低并且不发生液漏现象。厚度为15mm的纤维布袋作为无机复合相变材料的封装板材5,将树脂包覆后的复合相变材料填充于封装板材空腔内得到定形相变储能保温板7,厚度为30mm的铝塑板作为外饰板6,结构如图1所示。
由上述墙体结构搭建实验房和参考房,在一个太阳光强度下,测试房间内温度随时间的波动,其中实验房外饰板内放置了定形相变储能保温板7,参考房外饰板内不放置定形相变储能保温板7,测试结果表明实验房内温度波动减少了15℃,最高温度出现延迟了60分钟,参考房降低了5℃,最高温度出现延迟了15分钟,说明含定形相变储能保温板的墙 体结构具有更优异的储热能力,能明显提高墙体热惰性,延迟室内峰值温度出现时间;充分减小室内温度波动范围,从而降低空调及建筑供暖能耗,提高居住舒适度。
实施例10
参考实施例9,所不同的是定向结构板为细木工板,厚度为20mm。同实施例9测试实验表明实验房内温度波动减少了14℃,最高温度出现延迟了50分钟,参考房内温度波动降低了4℃,最高温度出现延迟了12分钟,说明含定形相变储能保温板的墙体结构具有更优异的储热能力,能明显提高墙体热惰性,延迟室内峰值温度出现时间;充分减小室内温度波动范围。该实验房保温隔热效果与实施例9实验房相近。
实施例11
墙体基体1由灰砂砖与水泥抹灰层砌成。选取厚度为10mm的XPS挤塑板作为保温层2,厚度为30mm的定向刨花板(OSB板)作为定向结构板3。将无机盐无水氯化钙、去离子水与成核剂六水氯化锶融化得到六水合氯化钙饱和溶液,其中无水氯化钙比去离子水比六水氯化锶的质量比为:10.28:10.0:0.41,再与膨胀珍珠岩载体复合得到膨胀珍珠岩基六水合氯化钙新型无机复合相变材料,相变温度为27℃,其中熔融六水合氯化钙占复合相变材料质量分数55%,常温下复合相变材料为固体,选择质量分数为15%的聚氨酯树脂在复合相变材料表面经光固化,对无机复合相变材料进行包覆,大大增强了无机复合相变材料的耐用性。得到的无机复合相变材料经过冷度测试,其过冷度相比于十水合硫酸钠相变材料过冷度减少了15℃,过冷度大大降低并且不发生液漏现象。厚度为10mm的PVC板作为无机复合相变材料的封装板材5,将树脂包覆后的复合相变材料填充于封装板材空腔内得到定形相变储能保温板7,厚度为20mm的铝单板作为外饰板6,结构如图1所示。
由上述墙体结构搭建实验房和参考房,在一个太阳光强度下,测试房间内温度随时间的波动,其中实验房外饰板内放置了定形相变储能保温板7,参考房外饰板内不放置定形相变储能保温板7,测试结果表明实验房内温度波动减少了13℃,最高温度出现延迟了45分钟,参考房降低了5℃,最高温度出现延迟了15分钟,说明含定形相变储能保温板的墙体结构具有更优异的储热能力,能明显提高墙体热惰性,延迟室内峰值温度出现时间;充分减小室内温度波动范围,从而降低空调及建筑供暖能耗,提高居住舒适度。
实施例12
参考实施例11,所不同的是外饰板为彩色玻璃,厚度为10mm。同实施例11测试实验表明实验房内温度波动减少了13℃,最高温度出现延迟了45分钟,参考房内温度波动降低了4℃,最高温度出现延迟了11分钟,说明含定形相变储能保温板的墙体结构具有更 优异的储热能力,能明显提高墙体热惰性,延迟室内峰值温度出现时间;充分减小室内温度波动范围。该实验房保温隔热效果与实施例11实验房相近,因为外饰板对房间内的隔热保温效果影响较小。
实施例13
参考实施例11,所不同的是外饰板为PVC吊顶板,厚度为5mm。同实施例11测试实验表明实验房内温度波动减少了12℃,最高温度出现延迟了45分钟,参考房内温度波动降低了4℃,最高温度出现延迟了10分钟,说明含定形相变储能保温板的墙体结构具有更优异的储热能力,能明显提高墙体热惰性,延迟室内峰值温度出现时间;充分减小室内温度波动范围。该实验房保温隔热效果与实施例11实验房相近,因为外饰板对房间内的隔热保温效果影响较小。
实施例14
墙体基体1由灰砂砖与水泥抹灰层砌成。选取厚度为5mm的气凝胶毡作为保温层2,厚度为1mm的指接板作为定向结构板3。将无机水合盐六水合氯化钙和六水合硝酸镁混合融化得到熔融六水合氯化钙/六水合硝酸镁相变材料,再与气相二氧化硅载体复合得到气相二氧化硅基六水合氯化钙/六水合硝酸镁无机复合相变材料,相变温度为10℃,其中熔融六水合氯化钙/六水合硝酸镁相变材料占复合相变材料质量分数40%,常温下复合相变材料为固体,选择质量分数为20%的聚氨酯树脂在复合相变材料表面经光固化,对无机复合相变材料进行包覆,大大增强了无机复合相变材料的耐用性。得到的无机复合相变材料经过冷度测试,其过冷度相比于六水合氯化镁/六水合硝酸镁相变材料过冷度减少了15℃,过冷度大大降低并且不发生液漏现象。厚度为0.2mm的真空袋作为新型无机复合相变材料的封装板材5,将树脂包覆后的复合相变材料填充于封装板材空腔内得到定形相变储能保温板7,厚度为1mm的夹板作为外饰板6,结构如图1所示。
由上述墙体结构搭建实验房和参考房,在一个太阳光强度下,测试房间内温度随时间的波动,其中实验房外饰板内放置了定形相变储能保温板7,参考房外饰板内不放置定形相变储能保温板7,测试结果表明实验房内温度波动减少了8℃,最高温度出现延迟了40分钟,参考房降低了2℃,最高温度出现延迟了10分钟,说明含定形相变储能保温板的墙体结构具有更优异的储热能力,能明显提高墙体热惰性,延迟室内峰值温度出现时间;充分减小室内温度波动范围,从而降低空调及建筑供暖能耗,提高居住舒适度。
实施例15
实施例14一种保温结构中,无机复合相变材料的封装板材表面贴有耐高温防火箔铝 纤维布材料,使得得到的定形相变储能保温板7具有良好的防火性能。
实施例16
实施例15一种保温结构中:墙体基体1、保温层2、定向结构板3、定形相变储能保温板7和外饰板6之间通过泡沫胶进行粘接。
实施例并非是对本发明做任何其他形式的限制,依据本发明的技术实质所作的任何修改或等同变化,仍属于本发明所要求保护的范围。

Claims (10)

  1. 一种相变储能建筑保温结构,其特征在于,包括了定形相变储能保温板,设于建筑内墙面,墙体结构从室外指向室内方向依次设有墙体基体、保温层、定向结构板、定形相变储能保温板和外饰板;
    所述定形相变储能保温板由无机复合相变材料和封装板材组成;所述无机复合相变材料为无机水合盐和多孔结构载体复合得到,其相变温度为10~40℃;所述无机复合相变材料中,无机水合盐的质量百分含量为40~95%,所述无机复合相变材料由具有耐火耐腐蚀性能的光固化树脂包覆。
  2. 根据权利要求1所述的相变储能建筑保温结构,其特征在于:所述定形相变储能保温板由以下步骤制备:
    (1)将无机盐、去离子水与成核剂加热融化或直接将无机水合盐加热融化,得到液态状态下的无机水合盐相变物质;所述成核剂为硼砂、六水合氯化锶、CaF2、C粉和Na4P2O7·6H2O中的一种或两种以上;所述成核剂与无机水合盐的质量比为0.5:99.5~10:90;
    (2)在真空环境下,将融化状态下的无机水合盐相变物质吸附到多孔结构载体材料的孔表面及孔内,充分搅拌;
    (3)在低于无机水合盐相变材料相变温度的条件下进行固化,得到无机复合相变材料;
    (4)将制备得到的无机复合相变材料用具有耐火耐腐蚀性能的树脂经光固化进行包覆;
    (5)将包覆后的无机复合相变材料封装于封装板材中,得到定形相变储能保温板。
  3. 根据权利要求1所述的相变储能建筑保温结构,其特征在于:所述墙体基体由灰砂砖与水泥抹灰层砌成;
    所述保温层为耐火保温面板;所述耐火保温面板为陶瓷保温板、XPS挤塑板、EPS泡沫板、发泡水泥、珍珠岩及珍珠岩砖、蛭石及蛭石砖、酚醛泡沫、橡塑海绵、玻璃棉、岩棉和气凝胶毡中的一种或两种以上,厚度为5mm~200mm。
  4. 根据权利要求1所述的相变储能建筑保温结构,其特征在于:所述的定向结构板为为胶合板、中纤板、定向刨花板、细木工板和指接板中的一种或多种,厚度为1mm~100mm;所述外饰板为石膏板、夹板、铝单板、PVC吊顶、彩色玻璃、铝塑板中的一种或两种以上,厚度为1mm~50mm;所述外饰板具有与定形相变储能保温板相匹配的凹槽。
  5. 根据权利要求1所述的相变储能建筑保温结构,其特征在于:所述封装板材为铝箔袋、PVC板、纤维布袋或真空袋;封装板材厚度为0.2mm~20mm;所述封装板材构成的空腔结构。
  6. 根据权利要求1所述的相变储能建筑保温结构,其特征在于:所述封装板材表面贴有耐高温防火箔铝纤维布材料。
  7. 根据权利要求2所述的相变储能建筑保温结构,其特征在于:所述的无机水合盐为三水合醋酸钠、五水合硫代硫酸钠、六水合氯化钙、六水合氯化镁、六水合硝酸镁、七水合硝酸镁、八水合氢氧化钡、十水合硫酸钠、十二水合磷酸氢钠、十二水合硫酸铝铵及十八水合硫酸铝中的一种或多种。
  8. 根据权利要求1或2所述的相变储能建筑保温结构,其特征在于:所述的多孔结构载体为膨胀石墨、膨胀珍珠岩、膨胀蛭石、硅藻体、蒙脱土、泡沫铝、泡沫铜、碳泡沫、气相二氧化硅、三氧化二铝中的一种或多种。
  9. 根据权利要求1或2所述的相变储能建筑保温结构,其特征在于:所述的具有耐火耐腐蚀性能的树脂为环氧丙稀酸酯和聚氨酯中的一种或两种。
  10. 根据权利要求1所述的相变储能建筑保温结构,其特征在于:所述墙体基体、保温层、定向结构板、定形相变储能保温板和外饰板之间通过泡沫胶进行粘接。
PCT/CN2017/111891 2017-06-13 2017-11-20 一种相变储能建筑保温结构 WO2018227879A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/622,772 US11530880B2 (en) 2017-06-13 2017-11-20 Phase-change energy-storage structure for building insulation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710442799.3 2017-06-13
CN201710442799.3A CN107227807A (zh) 2017-06-13 2017-06-13 一种相变储能建筑保温结构

Publications (1)

Publication Number Publication Date
WO2018227879A1 true WO2018227879A1 (zh) 2018-12-20

Family

ID=59935828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111891 WO2018227879A1 (zh) 2017-06-13 2017-11-20 一种相变储能建筑保温结构

Country Status (3)

Country Link
US (1) US11530880B2 (zh)
CN (1) CN107227807A (zh)
WO (1) WO2018227879A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110594851A (zh) * 2019-09-30 2019-12-20 天津和汇能源科技发展有限公司 基于地道风、空气源热泵及太阳能转轮除湿的相变房屋
CN111779156A (zh) * 2019-08-31 2020-10-16 江龙 绿色建筑墙体结构施工方法
CN113443852A (zh) * 2021-07-21 2021-09-28 江西宏柏新材料股份有限公司 一种纳米保温材料及其制备方法和应用

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107227807A (zh) 2017-06-13 2017-10-03 华南理工大学 一种相变储能建筑保温结构
CN109084360B (zh) * 2018-07-17 2020-07-03 陕西惠泽热能有限公司 一种具有阶梯式蓄热层的电热膜地暖
CN108951987B (zh) * 2018-08-07 2023-10-10 南宁市亚西亚节能科技有限公司 一种蓄能天花吊顶板及其制造方法
CN108951972B (zh) * 2018-08-07 2023-10-03 南宁市亚西亚节能科技有限公司 一种多功能双层幕墙系统
CN109321208A (zh) * 2018-09-29 2019-02-12 西安建筑科技大学 一种建筑用定型相变保温材料、制备方法及其应用
CN109266313A (zh) * 2018-11-15 2019-01-25 航天特种材料及工艺技术研究所 一种吸/导热材料及其制备方法
CN109233752A (zh) * 2018-11-21 2019-01-18 江苏昂彼特堡能源科技有限公司 一种无机水合盐复合相变储热材料及其制备方法
CN109466872B (zh) * 2018-12-14 2023-10-13 杭州鲁尔新材料科技有限公司 一种带相变储能材料的冷链运输用保温罩
CN109631646A (zh) * 2018-12-26 2019-04-16 安徽智磁新材料科技有限公司 利用多孔碳和铁磁流体的蓄热装置和方法
CN109868930A (zh) * 2019-01-30 2019-06-11 深装总建设集团股份有限公司 金属相变复合幕墙板材及其制备方法和应用
CN109825253A (zh) * 2019-01-30 2019-05-31 深装总建设集团股份有限公司 相变储能单元模块及其制备方法和应用
CN111606653B (zh) * 2019-04-29 2021-12-17 中建材创新科技研究院有限公司 一种相变蓄热纸面石膏板及其制备方法
CN110437804A (zh) * 2019-07-18 2019-11-12 常州海卡太阳能热泵有限公司 自封装复合无机相变储能材料及制备方法
WO2021026058A1 (en) * 2019-08-03 2021-02-11 Mishko Teodorovich Apparatus and method for exposed finishable insulated wallboard
CN110934016A (zh) * 2019-12-11 2020-03-31 黑龙江省农业科学院园艺分院 日光节能温室
CN111018379A (zh) * 2019-12-16 2020-04-17 中国科学院青海盐湖研究所 一种降低镁水泥水化热的方法
CN111500263B (zh) * 2019-12-31 2024-08-30 天津市城市规划设计研究总院有限公司 一种严寒区相变储热混凝土结构
CN111141185A (zh) * 2020-01-21 2020-05-12 宜晨虹 一种多功能弹药包装箱
US11352783B2 (en) 2020-01-28 2022-06-07 University Of North Texas Fabrication of a phase change material (PCM) integrated insulation
CN113173739B (zh) * 2020-05-09 2022-12-06 中国科学院青海盐湖研究所 一种相变混凝土及其制备方法
CN112092141B (zh) * 2020-08-11 2022-03-29 北新集团建材股份有限公司 一种夹心相变储能石膏板及其制备方法
CN112854527A (zh) * 2021-01-14 2021-05-28 上海久山医疗科技有限公司 一种防火防水保温装配式隔音墙
CN113046032A (zh) * 2021-03-19 2021-06-29 徐凯国 一种被动调节室内居住环境的装修材料制备
CN113062494A (zh) * 2021-04-02 2021-07-02 中国科学技术大学 一种使用相变材料的多功能太阳能墙体系统
KR102466264B1 (ko) * 2021-04-23 2022-11-14 한국과학기술연구원 상변화 물질을 이용한 건물의 에너지 절감장치
CN113861945B (zh) * 2021-10-19 2023-11-21 佛山市顺德区美的洗涤电器制造有限公司 一种缓释型成核剂及其制备方法和应用
CN113846799B (zh) * 2021-11-01 2022-06-14 哈尔滨商业大学 一种装配式建筑的相变保温墙体
CN114395375B (zh) * 2021-12-31 2024-06-07 苏州荣格君新材料有限公司 一种金属有机骨架基光热复合相变材料及其应用
CN114804805B (zh) * 2022-04-24 2023-08-22 巩义市泛锐熠辉复合材料有限公司 一种气凝胶复合材料及其制备方法
CN114809358A (zh) * 2022-04-25 2022-07-29 上海师范大学 一种保温隔热用相变储能混凝土墙体
CN114804747A (zh) * 2022-04-27 2022-07-29 西安德润九州新材料有限公司 一种瓷砖粘结剂及其制备方法
CN114683653B (zh) * 2022-05-13 2024-01-26 巩义市泛锐熠辉复合材料有限公司 一种耐烧蚀气凝胶复合材料及其制备方法
CN115030353B (zh) * 2022-06-08 2024-06-14 中国核电工程有限公司 一种兼具消声、相变蓄冷和强化换热功能的墙体
CN115233859B (zh) * 2022-06-24 2023-10-03 哈尔滨工业大学 一种低能耗相变储能连接件
CN114991338A (zh) * 2022-06-29 2022-09-02 西安建筑科技大学 一种履带旋转式相变蓄热特朗伯墙
CN115157797B (zh) * 2022-06-30 2023-04-07 湖南星鑫航天新材料股份有限公司 一种多组分长时轻质复合防隔热套及其制作方法
CN115418195B (zh) * 2022-08-18 2024-09-13 嘉兴赛曼泰克新材料有限公司 锂电池包热管理用复合相变储热材料及其制备方法
CN116854426A (zh) * 2023-06-25 2023-10-10 武汉轻工大学 一种气凝胶基定形复合相变材料及其制备方法和应用
CN117024163B (zh) * 2023-10-10 2023-12-22 中南大学 一种变梯度耐烧蚀防隔热一体化磷酸盐复合材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101413299A (zh) * 2008-09-05 2009-04-22 武汉科华高新材料发展有限公司 新型相变-保温复合墙体结构
CN101476357A (zh) * 2009-01-13 2009-07-08 成都川雅木业有限公司 一种保温节能墙体结构
DE102014011705A1 (de) * 2014-08-07 2016-02-11 Jasmin Fischer Photovoltaik (PV)-Fassadenkonstruktionen mit Phasenwechselmaterialien (PCM) - PV-PCM-Fassaden
CN205935385U (zh) * 2016-07-26 2017-02-08 四川建科智慧节能科技有限公司 装配式太阳能温度调节复合墙板
CN106753254A (zh) * 2016-11-18 2017-05-31 青海大学 一种无机水合盐复合相变储热材料及其制备和应用
CN107227807A (zh) * 2017-06-13 2017-10-03 华南理工大学 一种相变储能建筑保温结构

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4259401A (en) * 1976-08-10 1981-03-31 The Southwall Corporation Methods, apparatus, and compositions for storing heat for the heating and cooling of buildings
US4572864A (en) * 1985-01-04 1986-02-25 The United States Of America As Represented By The United States Department Of Energy Composite materials for thermal energy storage
US5087508A (en) * 1990-05-30 1992-02-11 Minnesota Mining And Manufacturing Company Dew and frost resistant signs
US5532039A (en) * 1994-04-25 1996-07-02 Gateway Technologies, Inc. Thermal barriers for buildings, appliances and textiles
US5755216A (en) * 1995-06-06 1998-05-26 The University Of Dayton Building products incorporating phase change materials and method of making same
ATE281635T1 (de) * 2000-01-20 2004-11-15 Glassx Ag Latentspeicher-bauelement für gebäude
US20060272281A1 (en) * 2002-04-02 2006-12-07 Allan Marshall Wall lining
US20050055982A1 (en) * 2003-08-13 2005-03-17 Medina Mario A. Phase-change structural insulated panels and walls
US7735327B2 (en) * 2006-07-19 2010-06-15 Neal Energy Management Llc Active thermal insulation system utilizing phase change material and a cool air source
US7797950B2 (en) * 2006-07-19 2010-09-21 Neal Energy Management Llc Active thermal insulation system utilizing phase change material and a cool air source
FR2911353B1 (fr) * 2007-01-17 2013-07-05 Thomas Fischer Procede de cloisonnement et/ou contre-cloisonnement avec chauffage et/ou refroidissement integre
WO2011075541A1 (en) * 2009-12-15 2011-06-23 Pcm Innovations Llc Phase change material fire resistant blanket and method of making
US8308861B2 (en) * 2010-05-13 2012-11-13 E I Du Pont De Nemours And Company Phase change material compositions
US20120196040A1 (en) * 2011-02-01 2012-08-02 Wilk Jr Richard Refractory material impregnated with phase change material, method for making the same, and temperature controlled chamber formed by the same
CA2772874A1 (en) * 2011-04-21 2012-10-21 Certainteed Corporation System, method and apparatus for thermal energy management in a roof
US8359750B2 (en) * 2011-12-28 2013-01-29 Tran Bao Q Smart building systems and methods
DE102012218378A1 (de) * 2012-10-09 2014-04-10 Wacker Chemie Ag Flächengebilde oder Formkörper enthaltend latente Wärmespeicher
ES2480765B1 (es) * 2012-12-27 2015-05-08 Universitat Politècnica De Catalunya Sistema de almacenamiento de energía térmica combinando material sólido de calor sensible y material de cambio de fase
US9499986B2 (en) * 2013-09-24 2016-11-22 Certainteed Corporation System, method and apparatus for thermal energy management in a roof
US10113094B2 (en) * 2014-10-30 2018-10-30 Henry Company, Llc Phase-change materials from wax-based colloidal dispersions and their process of making
WO2016094719A1 (en) * 2014-12-11 2016-06-16 Henry Company, Llc Phase-change materials from wax-based colloidal dispersions and their process of making
US10829939B2 (en) * 2017-03-29 2020-11-10 Johns Manville Thermal insulation properties of polyiso foams

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101413299A (zh) * 2008-09-05 2009-04-22 武汉科华高新材料发展有限公司 新型相变-保温复合墙体结构
CN101476357A (zh) * 2009-01-13 2009-07-08 成都川雅木业有限公司 一种保温节能墙体结构
DE102014011705A1 (de) * 2014-08-07 2016-02-11 Jasmin Fischer Photovoltaik (PV)-Fassadenkonstruktionen mit Phasenwechselmaterialien (PCM) - PV-PCM-Fassaden
CN205935385U (zh) * 2016-07-26 2017-02-08 四川建科智慧节能科技有限公司 装配式太阳能温度调节复合墙板
CN106753254A (zh) * 2016-11-18 2017-05-31 青海大学 一种无机水合盐复合相变储热材料及其制备和应用
CN107227807A (zh) * 2017-06-13 2017-10-03 华南理工大学 一种相变储能建筑保温结构

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111779156A (zh) * 2019-08-31 2020-10-16 江龙 绿色建筑墙体结构施工方法
CN111779156B (zh) * 2019-08-31 2022-06-21 中海建筑有限公司 绿色建筑墙体结构施工方法
CN110594851A (zh) * 2019-09-30 2019-12-20 天津和汇能源科技发展有限公司 基于地道风、空气源热泵及太阳能转轮除湿的相变房屋
CN113443852A (zh) * 2021-07-21 2021-09-28 江西宏柏新材料股份有限公司 一种纳米保温材料及其制备方法和应用
CN113443852B (zh) * 2021-07-21 2022-11-22 江西宏柏新材料股份有限公司 一种纳米保温材料及其制备方法和应用

Also Published As

Publication number Publication date
US20200408471A1 (en) 2020-12-31
US11530880B2 (en) 2022-12-20
CN107227807A (zh) 2017-10-03

Similar Documents

Publication Publication Date Title
WO2018227879A1 (zh) 一种相变储能建筑保温结构
CN107419819A (zh) 一种含有双层相变材料板的储能建筑墙体结构
CN105272098B (zh) 复合无机水合盐相变材料及无机复合相变板的制备方法
CN1303182C (zh) 相变储能陶粒及其制备方法
CN101832001A (zh) 自调温相变储能板
CN102677860B (zh) 相变蓄能调温节能地板
CN101413299A (zh) 新型相变-保温复合墙体结构
CN111779156B (zh) 绿色建筑墙体结构施工方法
CN107574982A (zh) 一种复合相变天面隔热砖
CN205637192U (zh) 一种节能建筑
CN204626828U (zh) 相变储能内装饰板
CN105399385A (zh) 复合无机水合盐相变材料及无机复合蓄热面板的制备方法
CN112812748A (zh) 一种储能控温材料及其制备方法和作为房屋建筑保温层的应用
CN103589081A (zh) 一种新型发泡聚苯乙烯树脂
CN102476936A (zh) 建筑保温用相变蓄能材料
CN203361379U (zh) 一种内包覆相变材料型硬泡聚氨酯复合板
CN105441032B (zh) 一种复合无机水合盐相变材料
CN110847415A (zh) 一种可全年发挥节能作用的建筑围护墙体
JP2008239860A (ja) 蓄熱体
CN203361381U (zh) 一种内嵌微胶囊相变材料型硬泡聚氨酯复合板
CN204006444U (zh) 一种蓄能空调模块
CN210263488U (zh) 一种墙体相变隔热结构
CN104594588A (zh) 一种新型复合保温薄壁外墙板
CN208106229U (zh) 一种防火隔热自储能气凝胶玻璃
CN105753392A (zh) 一种节能板材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30.03.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17913834

Country of ref document: EP

Kind code of ref document: A1