WO2018227346A1 - 一种综合接入系统、配置方法和基带处理单元 - Google Patents

一种综合接入系统、配置方法和基带处理单元 Download PDF

Info

Publication number
WO2018227346A1
WO2018227346A1 PCT/CN2017/087964 CN2017087964W WO2018227346A1 WO 2018227346 A1 WO2018227346 A1 WO 2018227346A1 CN 2017087964 W CN2017087964 W CN 2017087964W WO 2018227346 A1 WO2018227346 A1 WO 2018227346A1
Authority
WO
WIPO (PCT)
Prior art keywords
bbu
line rate
integrated access
access system
clock
Prior art date
Application number
PCT/CN2017/087964
Other languages
English (en)
French (fr)
Inventor
付维翔
吴兴国
莫利光
张巧明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2019568332A priority Critical patent/JP7002570B2/ja
Priority to PCT/CN2017/087964 priority patent/WO2018227346A1/zh
Priority to EP17913238.6A priority patent/EP3627963A4/en
Priority to CA3066912A priority patent/CA3066912C/en
Priority to CN201780089663.7A priority patent/CN110547040B/zh
Publication of WO2018227346A1 publication Critical patent/WO2018227346A1/zh
Priority to US16/712,096 priority patent/US11388779B2/en
Priority to US17/829,532 priority patent/US20220295596A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0008Synchronisation information channels, e.g. clock distribution lines
    • H04L7/0012Synchronisation information channels, e.g. clock distribution lines by comparing receiver clock with transmitter clock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/18Service support devices; Network management devices
    • H04W88/181Transcoding devices; Rate adaptation devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to an integrated access system, a configuration method, and a baseband processing unit.
  • Lampsite is an indoor coverage solution.
  • LampSite is mainly dedicated to the indoor coverage of mobile broadband data. Through the digitalization of indoor coverage, the indoor coverage construction and maintenance cost is greatly reduced, and the mobile broadband experience is promoted.
  • the integrated access system based on LampSite is a dedicated distributed system architecture supporting multi-standard multi-band.
  • the current integrated access system also includes multiple product functional modules, such as baseband processing unit (Base Band). Unit, BBU), data exchange unit (also known as RHUB), pico Remote Radio Unit (pRRU), base station network pipe system, etc.
  • BBU baseband processing unit
  • RHUB data exchange unit
  • PRRU pico Remote Radio Unit
  • the BBU is used as a sink node, the BBU is connected to the RHUB, the base station network pipe system is connected to the BBU, and the RHUB is connected to the pRRU.
  • the BBU is used to centrally control and manage the entire base station system, the RHUB implements communication between the BBU and the pRRU, and the pRRU implements radio frequency signal processing.
  • the BBU acts as a sink node to connect the RHUB and the base station network pipe system, and the operator can provide baseband resource configuration and management through the base station network pipe system.
  • the management of the radio resources and the baseband resources of the BBU are shared by the same base station network pipe system, so that the configuration and management of different resources cannot be decoupled, and the service provisioning and service upgrade cannot be decoupled.
  • the integrated access system in the technology has problems of low reliability and maintainability.
  • the embodiment of the present application provides an integrated access system, a configuration method, and a baseband processing unit, which are used to implement internal decoupling of the integrated access system, and provide reliability and maintainability of the integrated access system.
  • an embodiment of the present application provides an integrated access system, a first baseband processing unit BBU, a second BBU, a first data exchange unit, a first base station network pipe system, a second base station network pipe system, and a first micro a radio remote unit pRRU, wherein the first BBU and the first data exchange unit are connected, the first BBU and the first base station network pipe system are connected, the first BBU and the first Two BBUs are connected; the second BBU is connected to the second base station network pipe system; and the first pRRU is connected to the first data exchange unit.
  • the integrated access system includes two types of BBUs: a first BBU and a second BBU, and the first BBU and the second BBU are connected to each other to perform communication between the BBUs.
  • the first BBU is connected to the first base station network pipe system
  • the second BBU is connected to the second base station network pipe system. Therefore, the first base station network pipe system can separately configure and manage the radio resources of the first BBU.
  • the second base station network pipe system can separately configure and manage the baseband resources of the second BBU, so that the radio resources and the baseband resources can be independently managed, and the reliability and maintainability of the integrated access system are greatly improved.
  • the integrated access system further includes: a third BBU and a third base station network pipe system, wherein the first BBU and the third BBU are connected;
  • the third BBU is connected to the third base station network pipe system.
  • the first BBU is set as the primary BBU in the integrated access system, and the second BBU and the third BBU are both configured as the secondary BBU, and the second BBU and the third BBU are respectively connected with the respective BBUs.
  • the base station network pipe system for example, the second BBU and the second base station network pipe system are connected, and the third BBU and the third base station network pipe system are connected, so in a multi-operator co-construction sharing scenario, different operators can separately
  • the second base station network pipe system and the third base station network pipe system are used, thereby realizing asset decoupling, operation and maintenance decoupling, service opening and upgrading decoupling among multiple operators.
  • the integrated access system further includes: a fourth BBU, a second data exchange unit, a fourth base station network pipe system, and a second pRRU, wherein the fourth BBU Connected to the second data exchange unit, the fourth BBU and the fourth base station network pipe system are connected, the fourth BBU and the second BBU are connected; the second pRRU and the The second data exchange unit is connected.
  • the first BBU and the fourth BBU can be used as the main BBU.
  • the first BBU and the fourth BBU can be respectively set in different buildings, and the first BBU and the fourth BBU can respectively use different Fibre Channels.
  • the second BBU is connected to the second BBU.
  • the second BBU can be installed in the central office, so that multiple main BBUs can be connected to each other from the BBU to solve the problem that a central computer room covers multiple buildings in the surrounding area.
  • the embodiment of the present application further provides a configuration method based on an integrated access system, where the integrated access system includes: a first baseband processing unit BBU and a second BBU, the first BBU and the first The two BBUs are connected to each other, the method includes: the first BBU acquiring the first clock synchronization information, where the first clock synchronization information includes: a clock frequency and a clock phase of the first BBU; The second BBU sends the first clock synchronization information.
  • the first BBU may send the first clock synchronization information to the second BBU, so that the second BBU can configure the local clock information of the second BBU according to the first clock synchronization information, so that the inter-frame clock synchronization across the BBU can be implemented.
  • the first BBU can be configured as the primary BBU mode and the second BBU can be the secondary BBU mode by using the OM channel of the base station network pipe system.
  • Multi-operator BBU access is implemented to support multi-operator BBU access, which solves the problem of inter-operator operation and maintenance decoupling and future-oriented BBU access-based large-capacity evolution.
  • multiple primary BBUs are also connected to the inter-frames of multiple secondary BBUs to solve the problem that a central computer room covers multiple buildings in the surrounding area.
  • the integrated access system further includes: a third BBU, the third BBU and the first BBU are connected, the method further includes: the first The BBU sends the first clock synchronization information to the third BBU.
  • the first BBU may send the first clock synchronization information to the second BBU and the third BBU respectively after the first BBU obtains the first clock synchronization information, so that the third BBU sends the first BBU to the second BBU.
  • the first clock synchronization information of the first BBU may also be received, and the third BBU may use the first clock synchronization information to correct the local clock source of the third BBU, so that inter-frame clock synchronization across the BBU may be implemented.
  • the embodiment of the present application further provides a configuration method based on an integrated access system, where the integrated access system includes: a first baseband processing unit BBU and a second BBU, the first BBU and the second The BBU is connected, the method includes: the second BBU receives the first clock synchronization information sent by the first BBU, where the first clock synchronization information includes: a clock frequency and a clock phase of the first BBU; Said second BBU according to said first clock The synchronization information configures local clock information of the second BBU.
  • the first BBU may send the first clock synchronization information to the second BBU, so that the second BBU can configure the local clock information of the second BBU according to the first clock synchronization information, so that the inter-frame clock synchronization across the BBU can be implemented.
  • the integrated access system further includes: a fourth BBU, the fourth BBU and the second BBU are connected, the method further includes: the second BBU And receiving, by the fourth BBU, second clock synchronization information, where the second clock synchronization information includes: a clock frequency and a clock phase of the fourth BBU; and the second BBU is configured according to the first clock synchronization information.
  • the local clock information of the second BBU is configured to: the second BBU configures local clock information of the second BBU according to the first clock synchronization information and the second clock synchronization information.
  • the second BBU receives the second clock synchronization information of the fourth BBU, and the second BBU parses the second clock synchronization information to the clock frequency and clock phase of the fourth BBU.
  • the clock synchronization information may be sent to the second BBU as the secondary BBU, and the second BBU may acquire the clock frequency and clock phase of the first BBU and the fourth BBU, respectively. Clock frequency and clock phase.
  • the second BBU configures the local clock information of the second BBU according to the first clock synchronization information and the second clock synchronization information, including: the second The BBU selects clock synchronization information with a higher clock quality from the first clock synchronization information and the second clock synchronization information, and configures a local clock of the second BBU according to the clock synchronization information with higher clock quality. information.
  • the second BBU may select clock synchronization information with a higher clock quality, and configure the locality of the second BBU according to the clock synchronization information with higher clock quality.
  • the clock information ensures that the second BBU uses clock information with high clock quality.
  • the embodiment of the present application further provides a configuration method based on an integrated access system, where the integrated access system includes: a first baseband processing unit BBU and a second BBU, the first BBU and the second The BBU is connected, the method includes: the first BBU updates a first line rate, and sends a data frame to the second BBU at the updated first line rate after each update; the first BBU receives a data frame sent by the second BBU at the updated second line rate after each update of the second line rate; when the first line rate is equal to the second line rate, the first BBU uses the Sending, by the first line rate, the networking relationship information of the first BBU to the second BBU, and receiving the networking relationship information of the second BBU sent by the second BBU by using the second line rate; a BBU allocates a communication address to the second BBU according to the networking relationship information of the second BBU, and sends a communication address of the first BBU to the second BBU; the first BBU is according to the second The communication address of
  • a line rate auto-negotiation can be performed between the first BBU and the second BBU, the first BBU allocates a communication address to the second BBU, and the second BBU can obtain the communication address of the first BBU, and the first BBU is according to the second BBU.
  • the communication address establishes a bidirectional upper communication channel with the second BBU.
  • the auto-negotiation of the line rate, the exchange of the networking relationship information, and the allocation of the communication address between the first BBU and the second BBU can complete the automatic establishment of the upper communication channel without manual configuration, thereby reducing the labor cost and the probability of error.
  • the upper communication channel between the primary BBU and the secondary BBU is self-established, which reduces the configuration workload of the service personnel and the complexity of the open station.
  • the method when the first line rate is equal to the second line rate, the method further includes: the first BBU using the first line rate to the first Two BBUs send the first BBU Line rate capability information; the first BBU receives the line rate capability information of the second BBU by using the second line rate, and the first BBU is based on the line rate capability of the first BBU
  • the information and the line rate capability information of the second BBU determine a line rate used by the first BBU and the second BBU for physical layer communication.
  • the line rate capability information refers to the maximum transmission capability of the BBU on the physical layer channel.
  • the first BBU and the second BBU exchange their respective line rate capability information, and then according to the line rate capability information of the first BBU and the second BBU.
  • the line rate capability information determines a line rate used by the first BBU and the second BBU to perform physical layer communication, for example, a line rate capability information of the first BBU and a maximum line rate in the intersection of the line rate capability information of the second BBU may be selected.
  • a line rate capability information of the first BBU and a maximum line rate in the intersection of the line rate capability information of the second BBU may be selected.
  • the line rate auto-negotiation is realized, and manual configuration is not required to occupy manual resources.
  • the first BBU updates the first line rate, including: the first BBU updates the first line rate in a first cycle, the first period and the second The period is a period that is not the same, and the second period is a period in which the second BBU updates the second line rate.
  • the first BBU and the second BBU both update their respective line rate values in respective cycles.
  • the first period and the second period are different periods, so there must be a long period and a short period in the first period and the second period.
  • the line rate blind matching attempt between the first BBU and the second BBU can be implemented by periodically updating the respective line rates of the first BBU and the second BBU, thereby implementing line rate auto-negotiation without occupying artificial resources. Make manual configuration.
  • the embodiment of the present application further provides a configuration method based on an integrated access system, where the integrated access system includes: a first baseband processing unit BBU and a second BBU, the first BBU and the second The BBUs are connected, the method comprising: the second BBU updating the second line rate, and sending a data frame to the first BBU at the updated second line rate after each update; the second BBU receiving the a data frame transmitted by the first BBU at the updated first line rate after each update of the first line rate; when the second line rate is equal to the first line rate, the second BBU uses the Sending, by the second line rate, the networking relationship information of the second BBU to the first BBU, and receiving the networking relationship information of the first BBU sent by the first BBU by using the first line rate;
  • the second BBU acquires a communication address of the first BBU, and the second BBU establishes a bidirectional upper communication channel with the BBU according to the communication address of the first BBU.
  • a line rate auto-negotiation can be performed between the first BBU and the second BBU, the first BBU allocates a communication address to the second BBU, and the second BBU can obtain the communication address of the first BBU, and the first BBU is according to the second BBU.
  • the communication address establishes a bidirectional upper communication channel with the second BBU.
  • the method when the second line rate is equal to the first line rate, the method further includes: the second BBU using the second rate to the first
  • the BBU sends the line rate capability information of the second BBU; the second BBU receives the line rate capability information that the first BBU sends the first BBU by using the first line rate;
  • the line rate capability information of the second BBU and the line rate capability information of the first BBU determine a line rate used by the first BBU and the second BBU for physical layer communication.
  • the line rate capability information refers to the maximum transmission capability of the BBU on the physical layer channel.
  • the first BBU and the second BBU exchange their respective line rate capability information, and then according to the line rate capability information of the first BBU and the second BBU.
  • the line rate capability information determines a line rate used by the first BBU and the second BBU to perform physical layer communication, for example, a line rate capability information of the first BBU and a maximum line rate in the intersection of the line rate capability information of the second BBU may be selected. Make The line rate used for physical layer communication between the first BBU and the second BBU, thereby implementing line rate auto-negotiation, without manual resources for manual configuration.
  • the second BBU updates the second line rate, including: the second BBU updates the second line rate in a second period, where the second period and the first period are In a different period, the first period is a period in which the first BBU updates the first line rate.
  • the first BBU and the second BBU both update their respective line rate values in respective cycles.
  • the first period and the second period are different periods, so there must be a long period and a short period in the first period and the second period.
  • the line rate blind trial between the first BBU and the second BBU can be implemented by periodically updating the respective line rates of the first BBU and the second BBU, thereby implementing line rate auto-negotiation without occupying artificial resources. Manual configuration.
  • the embodiment of the present application further provides a configuration method based on an integrated access system, where the integrated access system includes: a first baseband processing unit BBU, a second BBU, a first data switching unit, and a second base station network.
  • the integrated access system includes: a first baseband processing unit BBU, a second BBU, a first data switching unit, and a second base station network.
  • the first BBU is respectively connected to the second BBU and the first data exchange unit, and the first data exchange unit is connected to the first pRRU
  • the second BBU is connected to the second base station network pipe system, and the method includes: the first BBU slices a resource corresponding to the first data switching unit and a resource corresponding to the first pRRU Processing, obtaining a plurality of sector device group object resources; the first BBU selecting a first sector device group from the plurality of sector device group object resources according to the resource configuration request of the second base station network pipe system An object resource; the first BBU notifying the first sector device group object resource to the second BBU.
  • the first BBU performs a slice process on the resource corresponding to the first data exchange unit and the resource corresponding to the first pRRU to obtain a plurality of sector device group object resources, and the first BBU is configured according to the resource configuration request of the second base station network pipe system.
  • the base station network pipe system allocates the first sector device group object resource, and realizes that the public resources such as RHUB and pRRU can be independently called by each operator device.
  • the integrated access system further includes: a third BBU and a third base station network pipe system
  • the first BBU and the third BBU are connected
  • the third BBU is connected to the third base station network pipe system
  • the method further includes: the first BBU requests the plurality of sector device group object resources according to the resource configuration request of the third base station network pipe system Selecting a second sector device group object resource; the first BBU notifying the second sector device group object resource to the third BBU.
  • the first BBU may further allocate the second sector device group object resource to the third base station network pipe system according to the resource configuration request of the third base station network pipe system.
  • the public resources such as RHUB and pRRU can be independently called by each carrier device.
  • the resources corresponding to the first data switching unit include: a radio frequency combining cell capability resource and a transmission channel bandwidth resource
  • the resource corresponding to the first pRRU includes: radio frequency resource
  • the embodiment of the present application further provides a configuration method based on an integrated access system, where the integrated access system includes: a first baseband processing unit BBU, a second BBU, a first data switching unit, and a second base station network.
  • the integrated access system includes: a first baseband processing unit BBU, a second BBU, a first data switching unit, and a second base station network.
  • the first BBU is respectively connected to the second BBU and the first data exchange unit, and the first data exchange unit is connected to the first pRRU
  • the second BBU is connected to the second base station network pipe system, and the method includes: the second BBU acquiring the first sector device group object resource notified by the first BBU; the second BBU Binding the first sector device group object resource and the baseband resource of the second BBU, and activating the physical cell corresponding to the first sector device group object resource.
  • the second BBU obtains the first The first sector device group object resource that is notified by the BBU, the second BBU binds the first sector device group object resource and the baseband resource of the second BBU, and activates the physical cell corresponding to the first sector device group object resource.
  • the public resources such as RHUB and pRRU can be independently called by each carrier device.
  • the embodiment of the present application further provides a BBU, where the BBU is specifically a first BBU, the first BBU belongs to an integrated access system, and the integrated access system further includes: a second BBU, where the A BBU is connected to the second BBU, and the first BBU includes: an acquiring module, configured to acquire first clock synchronization information, where the first clock synchronization information includes: a clock frequency and a clock phase of the first BBU And a sending module, configured to send the first clock synchronization information to the second BBU.
  • the first BBU may send the first clock synchronization information to the second BBU, so that the second BBU can configure the local clock information of the second BBU according to the first clock synchronization information, so that the inter-frame clock synchronization across the BBU can be implemented.
  • the first BBU can be configured as the primary BBU mode and the second BBU can be the secondary BBU mode by using the OM channel of the base station network pipe system.
  • Multi-operator BBU access is implemented to support multi-operator BBU access, which solves the problem of inter-operator operation and maintenance decoupling and future-oriented BBU access-based large-capacity evolution.
  • multiple primary BBUs are also connected to the inter-frames of multiple secondary BBUs to solve the problem that a central computer room covers multiple buildings in the surrounding area.
  • constituent modules of the first BBU may also perform the steps described in the foregoing second aspect and various possible implementations, as described in the foregoing for the second aspect and various possible implementations. instruction of.
  • the embodiment of the present application further provides a BBU, where the BBU is specifically a second BBU, and the second BBU belongs to an integrated access system, where the integrated access system further includes: a first BBU, where the A BBU is connected to the second BBU, and the second BBU includes: a receiving module, configured to receive first clock synchronization information sent by the first BBU, where the first clock synchronization information includes: the first a clock frequency and a clock phase of the BBU; and a configuration module, configured to configure local clock information of the second BBU according to the first clock synchronization information.
  • the first BBU may send the first clock synchronization information to the second BBU, so that the second BBU can configure the local clock information of the second BBU according to the first clock synchronization information, so that the inter-frame clock synchronization across the BBU can be implemented.
  • constituent modules of the second BBU may also perform the steps described in the foregoing third aspect and various possible implementations, as described in the foregoing for the third aspect and various possible implementations. instruction of.
  • the embodiment of the present application further provides a BBU, where the BBU is specifically a first BBU, the first BBU belongs to an integrated access system, and the integrated access system further includes: a second BBU, where the a BBU is connected to the second BBU, the first BBU includes: a line rate update module, configured to update the first line rate, and after the update, to the second line after the updated first line rate
  • the BBU sends a data frame
  • the receiving module is configured to receive, by the second BBU, a data frame that is sent by the updated second line rate after each second line rate is updated; and a sending module, configured to: when the first line rate is When the second line rate is equal, the network information of the first BBU is sent to the second BBU by using the first line rate, and the first line sent by the second BBU by using the second line rate is received.
  • the network connection information of the second BBU configured to allocate a communication address to the second BBU according to the networking relationship information of the second BBU, and send the communication of the first BBU to the second BBU Address; channel establishment module for Establishing a communication address of two BBU bidirectional communication channel with the second upper BBU.
  • a line rate auto-negotiation can be performed between the first BBU and the second BBU, the first BBU allocates a communication address to the second BBU, and the second BBU can obtain the communication address of the first BBU, and the first BBU is according to the second BBU.
  • the communication address establishes a bidirectional upper communication channel with the second BBU.
  • the line rate auto-negotiation and networking relationship between the first BBU and the second BBU The exchange of information and the allocation of communication addresses can complete the automatic establishment of the upper communication channel, without manual configuration, reducing the labor cost and the probability of error.
  • the upper communication channel between the primary BBU and the secondary BBU is self-established, which reduces the configuration workload of the service personnel and the complexity of the open station.
  • the constituent modules of the first BBU may also perform the steps described in the foregoing fourth aspect and various possible implementations, as described in the foregoing fourth aspect and various possible implementations. instruction of.
  • the embodiment of the present application further provides a BBU, where the BBU is specifically a second BBU, and the second BBU belongs to an integrated access system, where the integrated access system further includes: a first BBU, The first BBU is connected to the second BBU, and the second BBU includes: a line rate update module, configured to update the second line rate, and to the first BBU at the updated second line rate after each update.
  • a receiving module configured to receive a data frame that is sent by the first BBU at an updated first line rate after each updating the first line rate
  • a sending module configured to: when the second line rate is When the first line rate is equal, the second BBU sends the networking relationship information of the second BBU to the first BBU by using the second line rate, and receives the first line by using the first BBU.
  • a network relationship information of the first BBU sent by the rate an address obtaining module, configured to acquire a communication address of the first BBU; and a channel establishment module, configured to use the communication address of the first BBU and the BBU Establish a two-way upper communication channel.
  • a line rate auto-negotiation can be performed between the first BBU and the second BBU, the first BBU allocates a communication address to the second BBU, and the second BBU can obtain the communication address of the first BBU, and the first BBU is according to the second BBU.
  • the communication address establishes a bidirectional upper communication channel with the second BBU.
  • the constituent modules of the second BBU may also perform the steps described in the foregoing fifth aspect and various possible implementations, as described in the foregoing fifth aspect and various possible implementations. In the description.
  • the embodiment of the present application further provides a BBU, where the BBU is specifically a first BBU, and the first BBU belongs to an integrated access system, where the integrated access system further includes: a second BBU, a first a data exchange unit, a second base station network pipe system, and a first micro-radio remote unit pRRU, wherein the first BBU is respectively connected to the second BBU and the first data exchange unit, and the first data exchange unit Connected to the first pRRU, the second BBU is connected to the second base station network pipe system, and the first BBU includes: a slicing module, configured to use resources corresponding to the first data exchange unit, and The resources corresponding to the first pRRU are sliced to obtain a plurality of sector device group object resources, and the resource allocation module is configured to request, according to the resource configuration request of the second base station network pipe system, the plurality of sector device groups.
  • the integrated access system further includes: a second BBU, a first a data exchange unit, a second base
  • the first sector device group object resource is selected from the object resource; the notification module is configured to notify the second sector BBU of the first sector device group object resource.
  • the first BBU performs a slice process on the resource corresponding to the first data exchange unit and the resource corresponding to the first pRRU to obtain a plurality of sector device group object resources, and the first BBU is configured according to the resource configuration request of the second base station network pipe system.
  • the base station network pipe system allocates the first sector device group object resource, and realizes that the public resources such as RHUB and pRRU can be independently called by each operator device.
  • the constituent modules of the first BBU may also perform the steps described in the foregoing sixth aspect and various possible implementations, as described in the foregoing sixth aspect and various possible implementations. In the description.
  • the embodiment of the present application further provides a BBU, where the BBU is specifically a second BBU, and the second BBU belongs to the integrated access system, where the integrated access system further includes: a first BBU, a second a BBU, a first data exchange unit, a second base station network pipe system, a first micro-radio remote unit pRRU, the first BBU and the first Two BBUs, the first data exchange unit is connected, the first data exchange unit is connected to the first pRRU, and the second BBU is connected to the second base station network pipe system, the second The BBU includes: a resource acquiring module, configured to acquire a first sector device group object resource that is notified by the first BBU; and a resource usage module, configured to use the first sector device group object resource and the second BBU The baseband resource is bound, and the physical cell corresponding to the first sector device group object resource is activated.
  • the integrated access system further includes: a first BBU, a second a BBU, a first data exchange unit, a
  • the second BBU acquires the first sector device group object resource notified by the first BBU, and the second BBU binds the first sector device group object resource and the baseband resource of the second BBU, and activates the first sector device group object.
  • the physical resource corresponding to the resource realizes that the public resources such as RHUB and pRRU can be independently called by each operator device.
  • the constituent modules of the second BBU may also perform the steps described in the foregoing seventh aspect and various possible implementations, as described in the foregoing seventh aspect and various possible implementations. In the description.
  • a fourteenth aspect of the present application provides a computer readable storage medium having stored therein instructions that, when executed on a computer, cause the computer to perform the methods described in the above aspects.
  • a fifteenth aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the above aspects.
  • FIG. 1 is a schematic diagram of a networking architecture of a LampSite provided by the prior art
  • FIG. 2 is a schematic structural diagram of a structure of an integrated access system according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another integrated access system according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a system architecture deployment of an integrated access system according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of another integrated access system according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a system architecture deployment of another integrated access system according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic block diagram of a configuration method based on an integrated access system according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic block diagram of another configuration method based on an integrated access system according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic block diagram of another configuration method based on an integrated access system according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic block diagram of another configuration method based on an integrated access system according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of an application scenario of a resource slice based on an integrated access system according to an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram of a resource configuration scenario between a first BBU and a second BBU according to an embodiment of the present disclosure
  • FIG. 13 is a schematic block diagram of another configuration method based on an integrated access system according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic block diagram of another method for configuring an integrated access system according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram of a configuration scenario of an upper communication channel between a first BBU and a second BBU according to an embodiment of the present disclosure
  • FIG. 16 is a schematic structural diagram of a first BBU according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of a second BBU according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of another first BBU according to an embodiment of the present disclosure.
  • FIG. 18-b is a schematic structural diagram of another first BBU according to an embodiment of the present disclosure.
  • 19-a is a schematic structural diagram of another second BBU according to an embodiment of the present application.
  • 19-b is a schematic structural diagram of another second BBU according to an embodiment of the present disclosure.
  • FIG. 20 is a schematic structural diagram of another first BBU according to an embodiment of the present disclosure.
  • FIG. 21 is a schematic structural diagram of another second BBU according to an embodiment of the present disclosure.
  • FIG. 22 is a schematic structural diagram of another first BBU according to an embodiment of the present disclosure.
  • FIG. 23 is a schematic structural diagram of another second BBU according to an embodiment of the present disclosure.
  • the embodiments of the present application provide an integrated access system and a configuration method based on an integrated access system, which are used to implement internal decoupling of the integrated access system, and provide reliability and maintainability of the integrated access system.
  • the integrated access system provided by the embodiment of the present application is applicable to a scenario in which a single operator and a multi-operator operate in a unified manner, and the integrated access system can support a sub-operator independent radio frequency (RF) source feeding and support. Feeding digital signal sources for future high-capacity and fifth-generation mobile communication technologies (5th-Generation, 5G).
  • RF radio frequency
  • 5G fifth-generation mobile communication technologies
  • a distributed BBU is used, and at least two types of BBUs are used: a first BBU and a second BBU, so that a single BBU can be connected to the respective network pipe system to implement the integrated access system. Uncoupling. As shown in FIG.
  • an integrated access system 100 may include: a first BBU 101, a second BBU 102, a first data exchange unit 103, a first base station network pipe system 104, and a second a base station network pipe system 105, a first pRRU 106, wherein
  • the first BBU 101 is connected to the first data exchange unit 103, the first BBU 101 is connected to the first base station network pipe system 104, and the first BBU 101 and the second BBU 102 are connected;
  • the second BBU 102 is connected to the second base station network pipe system 105;
  • the first pRRU 106 is connected to the first data exchange unit 103.
  • the integrated access system uses at least two types of BBUs: a first BBU 101 and a second BBU 102.
  • the first BBU 101 and the second BBU 102 can be connected by using a Fibre Channel.
  • the Fibre Channel may specifically include : CPRI channel and Media Access Control (MAC) channel.
  • the first BBU 101 can be connected to the first base station network pipe system 104 through an operation management (OM) channel.
  • OM operation management
  • the first base station network pipe system 104 is a network pipe system for managing the first BBU, and the first base station network pipe system can provide The radio frequency feeding function provides a slicing function for the resource corresponding to the first data exchange unit and the resource corresponding to the first pRRU, and provides an inter-frame interconnection function between the first BBU and the second BBU.
  • the second BBU 102 is connected to the second base station network pipe system 105 through the OM channel, and the operator can configure and manage the baseband resources through the second base station network pipe system 105.
  • the first BBU 101 is configured as a primary BBU, and may be disposed in a building, and the second BBU 102 is used as a slave.
  • the BBU can be set in the central computer room, so the distributed design of the master-slave BBU can be realized.
  • the first BBU 101 is connected to the first base station network pipe system 104.
  • the first base station network pipe system 104 can implement configuration and management of radio frequency resources
  • the second BBU 102 is connected to the second base station network pipe system 105, so that the second base station network
  • the pipe system 105 can configure baseband resources as required by the operator.
  • the first BBU and the second BBU may be configured according to respective functions, and the first BBU may include: a radio frequency board, an interface board, a main control board, and a direct current (DC).
  • the second BBU may include: a baseband board, a main control board, and a DC.
  • the interface board of the first BBU can be connected to the baseband board of the first data exchange unit and the second BBU, and the main control board of the first BBU can be connected to the first base station network pipe system, and the main control board of the second BBU can be connected to the second base station. Net pipe system.
  • the second BBU may include an interface board in addition to the baseband board, the main control board, and the DC, and the interface board of the first BBU may be connected to the interface board of the second BBU.
  • the first BBU 101 and the first data exchange unit 103 may be connected by using a Fibre Channel, and the Fibre Channel may specifically include: a CPRI channel and a MAC channel, and the first data exchange.
  • Unit 103 may specifically be a remote CPRI data exchange unit, which may also be referred to as "RHUB" in subsequent embodiments.
  • the RHUB can implement communication between the first BBU 101 and the first pRRU 106, and the first pRRU 106 implements radio frequency signal processing functions.
  • the integrated access system 100 further includes: a third BBU 107 and a third base station network pipe system 108, wherein
  • the first BBU 101 and the third BBU 107 are connected;
  • the third BBU 107 is coupled to the third base station network pipe system 108.
  • the first BBU 101 and the third BBU 107 may be connected by a Fibre Channel.
  • the Fibre Channel may specifically include: a CPRI channel and a MAC channel.
  • the third BBU 107 can connect to the third base station network pipe system 108 through the OM channel, and the operator can configure and manage the baseband resources through the third base station network pipe system 108.
  • the first BBU 101 is disposed as the primary BBU in the integrated access system 100, and the second BBU 102 and the third BBU 107 are both configured as the secondary BBU, and the second BBU 102 and the third BBU 107 are respectively connected.
  • the respective base station network pipe systems for example, the second BBU 102 and the second base station network pipe system 105 are connected, and the third BBU 107 and the third base station network pipe system 108 are connected, so different operations are performed in a multi-operator co-construction sharing scenario.
  • the second base station network pipe system and the third base station network pipe system can be separately used, thereby realizing asset decoupling, operation and maintenance decoupling, service opening and upgrading decoupling among multiple operators.
  • the slave BBUs included in the integrated access system 100 may not be limited to the second BBU and the third BBU.
  • each Each BBU can be connected to a single base station network pipe system.
  • each operator can use a base station network pipe system.
  • Each carrier is mutually decoupled, so that operators do not put one's oar in.
  • FIG. 5 is a schematic diagram of a system architecture deployment of an integrated access system according to an embodiment of the present application.
  • the integrated access system is provided with one master BBU and three slave BBUs (from BBU1, slave BBU2, and slave BBU3).
  • the master BBU is set in the remote building, and three slave BBUs are installed in the central office at the near end.
  • the BBU includes an RF board R,
  • the interface board, the main control board, and the DC interface board of the main BBU are connected to the baseband boards of the three BBUs.
  • the interface board of the main BBU is also connected to the RHUB through the CPRI channel and the MAC channel.
  • the RHUB is connected to the electrical interface of the CPRI channel.
  • the main control board connection room of the main BBU is divided into a network unified management subsystem (abbreviated as BTS(R) in Fig. 5).
  • BTS(R) network unified management subsystem
  • the radio R boards of the main BBU are respectively connected to the Radio Radio Unit (RRU).
  • RRU Radio Radio Unit
  • the three RRUs are RRU-A and RRU-B.
  • RRU-C in which each RRU supports Global System for Mobile communication (GSM), Universal Mobile Telecommunications System (UMTS), Long Term Evolution (LTE), and multiple code divisions.
  • GSM Global System for Mobile communication
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • Each slave BBU includes a baseband board and a main control board, and the baseband board of the BBU is connected to the interface board of the main BBU, and the main control board of the BBU is respectively connected to the baseband network pipe system (abbreviated as BTS (UL) in FIG. 5), for example
  • BTS baseband network pipe system
  • a base station network pipe system is connected through the OM channel, and the operator A can configure and manage the baseband resources through the base station network pipe system.
  • a base station network pipe system is connected through the OM channel, and the operator B can configure and manage the baseband resources through the base station network pipe system.
  • the main control board of the BBU3 is connected to a base station network pipe system through the OM channel, and the operator C can configure and manage the baseband resources through the base station network pipe system.
  • a plurality of BBUs are aggregated to the main BBU to implement a single access of the multi-operator BBU, which solves the problem of inter-operator operation and maintenance decoupling, and is applicable to a scenario of future-oriented large-capacity evolution and 5G evolution.
  • the integrated access system further includes: a fourth BBU 109, a second data exchange unit 110, a fourth base station network pipe system 111, and a second pRRU 112, where
  • the fourth BBU 109 is connected to the second data exchange unit 110, the fourth BBU 109 is connected to the fourth base station network pipe system 111, and the fourth BBU 109 and the second BBU 102 are connected;
  • the second pRRU 112 is connected to the second data exchange unit 110.
  • the first BBU 101 and the fourth BBU 109 can be respectively configured as the main BBUs in the integrated access system.
  • the first BBU 101 and the fourth BBU 109 can be respectively set in different buildings, and the first BBU 101 and the fourth BBU 109 can use different ones respectively.
  • the Fibre Channel is connected to the second BBU 102, and the second BBU 102 can be disposed in the central equipment room, so that multiple main BBUs can be connected to each other from the BBU to solve the problem that a central computer room covers multiple buildings in the surrounding area.
  • each operator may use one slave BBU and one base station network pipe system. If there are multiple master BBUs, each Each of the master BBUs can be connected to all the slave BBUs. For details, refer to the manner in which the first BBU 101 and the fourth BBU 109 are connected to the second BBU 102, respectively.
  • FIG. 6 is a schematic diagram of a system architecture deployment of another integrated access system provided by an embodiment of the present application.
  • the main BBU0 is set in the remote building 0.
  • the main BBU1 is set in the remote building 1 and the main BBU2. Set in the building 2 at the far end.
  • Three BBUs are placed in the central office at the near end.
  • the main BBU of the main BBU includes the radio frequency board R, the interface board, the main control board, and the DC.
  • the interface boards of the main BBU are connected to the baseband boards of the three BBUs.
  • the interface board of the main BBU is also connected.
  • the RHUB is connected through the CPRI channel and the MAC channel.
  • the RHUB is connected to the pRRU through the CPRI-E interface or the electrical interface of the MAC channel.
  • the main control board of the main BBU is connected to the network to manage the subsystem ( Figure 5 The abbreviation is BTS(R)).
  • the RF boards R of the main BBU are connected to the RRUs.
  • Figure 6 shows three RRUs in the integrated access system.
  • the three RRUs are RRU-A, RRU-B, and RRU-C.
  • multiple primary BBUs can be set in the integrated access system, and multiple secondary BBUs can be set up. Therefore, multiple primary BBUs can be interconnected between the BBUs and the central office can cover multiple surrounding buildings. Building problems.
  • the integrated access system includes two types of BBUs: a first BBU and a second BBU, and the first BBU and the second BBU are connected. Thereby communication between BBUs is performed.
  • the first BBU is connected to the first base station network pipe system
  • the second BBU is connected to the second base station network pipe system. Therefore, the first base station network pipe system can separately configure and manage the radio resources of the first BBU.
  • the second base station network pipe system can separately configure and manage the baseband resources of the second BBU, so that the radio resources and the baseband resources can be independently managed, and the reliability and maintainability of the integrated access system are greatly improved.
  • the integrated access system includes: a first BBU and a second BBU, where the first BBU and the second BBU are connected, for example, the first The BBU and the second BBU are connected by a Fibre Channel.
  • the configuration method provided by the embodiment of the present application may include the following steps:
  • the first BBU acquires first clock synchronization information, where the first clock synchronization information includes: a clock frequency and a clock phase of the first BBU.
  • the first BBU sends the first clock synchronization information to the second BBU.
  • the first BBU is used as the primary BBU, and the first BBU needs to provide the reference clock to the second BBU.
  • the second BBU can correct the local clock of the second BBU according to the reference clock provided by the first BBU, so that the inter-frame clock across the BBU can be implemented. Synchronize.
  • the first BBU can obtain the clock frequency and the clock phase of the first BBU from the local clock source, and then the first BBU sends the first clock synchronization information to the second BBU.
  • the first BBU can also interact with the clock server to obtain the clock frequency and the clock phase from the clock server, and then the first BBU corrects the local clock source of the first BBU according to the clock frequency and the clock phase, for example, a phase locked loop can be used.
  • the first BBU and the second BBU may be connected by using a Fibre Channel.
  • the Fibre Channel may include: a CPRI channel and a MAC channel.
  • the first BBU may carry the first clock synchronization information on the CPRI frame, and then send the information to the CPRI channel.
  • the second BBU, or the first BBU may also carry the first clock synchronization information on the MAC frame, and then send the information to the second BBU through the MAC channel.
  • the integrated access system further includes: a third BBU, the third BBU is connected to the first BBU, and in this implementation scenario, the embodiment of the present application provides
  • the configuration method of the integrated access system may further include the following steps:
  • the first BBU sends the first clock synchronization information to the third BBU.
  • the first BBU may send the first clock synchronization information to the second BBU and the third BBU respectively after the first BBU obtains the first clock synchronization information.
  • the third BBU may also receive the first clock synchronization information of the first BBU, and the third BBU may use the first clock synchronization information to correct the local clock source of the third BBU, thereby implementing an inter-frame clock across the BBU. Synchronize.
  • the process of clock synchronization is described from the first BBU side. It can be understood that the method performed by the foregoing fourth BBU is similar to the method performed by the first BBU.
  • the fourth BBU may generate the second clock synchronization information, and then the fourth BBU sends the second clock synchronization information to the second BBU, where the second clock synchronization information includes: a clock frequency and a clock phase of the fourth BBU.
  • the first BBU can send the first clock synchronization information to the second BBU, so that the second BBU can configure the local clock information of the second BBU according to the first clock synchronization information.
  • inter-frame clock synchronization across BBUs can be achieved.
  • the first BBU can be configured as the primary BBU mode and the second BBU can be the secondary BBU mode by using the OM channel of the base station network pipe system.
  • Multi-operator BBU access is implemented to support multi-operator BBU access, which solves the problem of inter-operator operation and maintenance decoupling and future-oriented BBU access-based large-capacity evolution.
  • multiple primary BBUs are also connected to the inter-frames of multiple secondary BBUs to solve the problem that a central computer room covers multiple buildings in the surrounding area.
  • the foregoing embodiment introduces the configuration method based on the foregoing integrated access system from the first BBU side, and then introduces the configuration method based on the integrated access system provided by the embodiment of the present application from the second BBU side, and the method can implement Integrated clock configuration within the access system.
  • the configuration method provided by the embodiment of the present application is applicable to the integrated access system.
  • the integrated access system includes: a first BBU and a second BBU, where the first BBU and the second BBU are connected, for example, the first The BBU and the second BBU are connected by a Fibre Channel.
  • the configuration method provided by the embodiment of the present application may include the following steps:
  • the second BBU receives the first clock synchronization information sent by the first BBU, where the first clock synchronization information includes: a clock frequency and a clock phase of the first BBU.
  • the second BBU is connected to the first BBU through the Fibre Channel, and the first BBU sends the first clock synchronization information to the second BBU, and the second BBU can receive the first clock synchronization information through the Fibre Channel, and the second BBU parses.
  • the first clock synchronization information can go to the clock frequency and clock phase of the first BBU.
  • the second BBU configures local clock information of the second BBU according to the first clock synchronization information.
  • the second BBU After the second BBU acquires the first clock synchronization information from the first BBU, the second BBU corrects the local clock information of the second BBU by using the clock frequency and the clock phase of the first BBU as a reference clock source.
  • the second BBU can use the PLL for feedback control, and the frequency and phase of the loop internal clock signal are controlled by the external reference signal provided by the first BBU.
  • the integrated access system further includes: a fourth BBU, the fourth BBU and the second BBU are connected, and the method performed by the fourth BBU is described in the foregoing embodiment of the present application, and the fourth The BBU may generate second clock synchronization information, and then the fourth BBU sends the second clock synchronization information to the second BBU, where the second clock synchronization information includes: a clock frequency and a clock phase of the fourth BBU.
  • the configuration method provided by the embodiment of the present application includes:
  • the second BBU receives the second clock synchronization information sent by the fourth BBU, where the second clock synchronization information includes: a clock frequency and a clock phase of the fourth BBU.
  • the second BBU receives the second clock synchronization information of the fourth BBU, and the second BBU parses the second clock synchronization information to the clock frequency of the fourth BBU. Clock phase.
  • the clock synchronization information can be sent to the second BBU as the secondary BBU, and the second BBU can obtain the clock frequency and clock phase of the first BBU, and the fourth BBU. Clock frequency and clock phase.
  • the second BBU configures the local clock information of the second BBU according to the first clock synchronization information, including:
  • the second BBU configures local clock information of the second BBU according to the first clock synchronization information and the second clock synchronization information.
  • the second BBU can obtain the clock frequency and the clock phase of the first BBU, the clock frequency and the clock phase of the fourth BBU, and the second BBU.
  • the local clock information of the second BBU is determined by the clock synchronization information of the two main BBUs.
  • the second BBU can configure the local clock information in multiple manners. For example, the second BBU configures the local clock information of the second BBU according to the first clock synchronization information and the second clock synchronization information, including:
  • the second BBU selects clock synchronization information with higher clock quality from the first clock synchronization information and the second clock synchronization information, and configures local clock information of the second BBU according to clock synchronization information with higher clock quality.
  • the second BBU can select clock synchronization information with a higher clock quality and configure the second BBU according to the clock synchronization information with higher clock quality, for the clock synchronization information sent by the first BBU and the fourth BBU to the second BBU.
  • the clock quality refers to the quality of the clock signal of the time source.
  • the clock quality can be measured by the stability of the clock source, or by the accuracy of the clock source, or by the stability and accuracy of the clock source.
  • the clock source has two important indicators, one is stability and the other is accuracy. Accuracy is the deviation from the nominal value, which is the amount of change that occurs as a function of external factors. For example, the higher the stability and accuracy, the higher the clock quality of the clock source.
  • the second BBU configures the local clock information of the second BBU according to the first clock synchronization information and the second clock synchronization information.
  • the second BBU is also not limited.
  • the clock synchronization information with higher stability may be selected from the first clock synchronization information and the second clock synchronization information, and the local clock information of the second BBU may be configured according to the clock synchronization information with higher stability. Selecting the clock synchronization information with higher stability as the local clock information of the second BBU can ensure the clock stability of the second BBU.
  • the first BBU can send the first clock synchronization information to the second BBU, so that the second BBU can configure the local clock information of the second BBU according to the first clock synchronization information.
  • inter-frame clock synchronization across BBUs can be achieved.
  • the clock synchronization between the primary BBU and the secondary BBU is taken as an example.
  • the embodiment of the present application can implement a panel-based CPRI.
  • the interconnected inter-frame clocks are soft-synchronized, that is, the main BBU passes the fiber between the frames, and transmits the clock frequency and phase information of the main BBU to the slave BBU through the CPRI frame or the MAC frame.
  • the mode selection of the BBU is performed, and the mode of the first BBU is configured as the host (BBU) mode, and the mode of the second BBU is configured as the (Client) BBU mode.
  • the BBU is provided.
  • the OM channel of the base station network pipe system can be configured as the primary BBU or as the secondary BBU.
  • the main BBU is configured by the unified management subsystem of the room division network, and the clock is obtained from the local clock source of the main BBU, and the clock synchronization information is broadcasted to other slave BBUs through the interconnected fiber (ie, the CPRI channel or the MAC channel).
  • the clock is recovered from the interconnected fiber (CPRI channel or MAC channel), and the recovered clock from the BBU is used as the reference clock source of the slave BBU to implement clock synchronization across frames.
  • the integrated access system provided by the embodiment of the present application.
  • the configuration method based on the foregoing integrated access system is introduced, which can implement the establishment of an upper communication channel in the integrated access system.
  • the upper communication channel between the master and the slave BBU can be automatically established, and no manual configuration is required, thereby reducing the labor cost and the probability of error.
  • the configuration method provided by the embodiment of the present application is applicable to the integrated access system.
  • the integrated access system includes: a first BBU and a second BBU, where the first BBU and the second BBU are connected, for example, the first The BBU and the second BBU are connected by a Fibre Channel.
  • the configuration method provided by the embodiment of the present application may include the following steps:
  • the first BBU updates the first line rate, and sends a data frame to the second BBU at the updated first line rate after each update.
  • the line rate used by the first BBU is defined as “first line rate”
  • the line rate used by the second BBU is defined as “second line rate”
  • the line rate refers to the line rate of the physical layer channel.
  • the first BBU continuously updates the first line rate, that is, the rate at which the first BBU updates the first line rate, and sends a data frame to the second BBU at the updated first line rate after each update.
  • the second BBU continuously updates the second line rate, that is, the rate at which the second BBU updates the second line rate, and sends the updated second line rate based data frame to the first BBU after each update.
  • the first BBU updates the first line rate in step 901, including:
  • the first BBU updates the first line rate in a first cycle.
  • the first period and the second period are different periods, and the second period is a period in which the second BBU updates the second line rate.
  • the first BBU and the second BBU update their respective line rate values in respective periods.
  • the first period and the second period are different periods, so there must be a long period in the first period and the second period.
  • the line rate blind matching attempt between the first BBU and the second BBU can be implemented by periodically updating the respective line rates of the first BBU and the second BBU, thereby implementing line rate auto-negotiation without occupying labor. Resources are manually configured.
  • the first BBU receives a data frame that is sent by the second BBU at the updated second line rate after each update of the second line rate.
  • the second BBU sends the updated second line rate-based data frame to the first BBU after each update, and the second BBU continuously sends the second line rate-based data frame to the first BBU through the Fibre Channel.
  • a BBU receives a second line rate-based data frame that is continuously sent by the second BBU, and the first BBU needs to determine whether the first line rate sent and the received second line rate are equal. If the two are equal, the subsequent step 903 is triggered. If the two are not equal, step 901 and step 902 are continued.
  • the first BBU sends the network relationship information of the first BBU to the second BBU by using the first line rate, and receives the second BBU sent by the second line rate by using the second line rate. Networking relationship information.
  • the rate negotiation is completed between the first BBU and the second BBU, and the first BBU can use the first line rate to the second line.
  • the BBU sends the networking relationship information of the first BBU, and receives the networking relationship information of the second BBU sent by the second BBU using the second line rate.
  • the network relationship information of the first BBU refers to the number of BBUs connected to the first BBU and the ports on the connected interface board.
  • the networking information of the second BBU refers to the BBUs connected to the second BBU. Number, and the connected baseband board or port on the interface board.
  • the first BBU and the second BBU exchange their respective networking relationship information, so that the first BBU and the second BBU can generate a network topology map according to the networking relationship information of the two parties, and the network topology map is generated through the network.
  • the topology map can easily obtain the inter-frame interconnection relationship of multiple BBUs.
  • the method provided by the embodiment of the present application may further include:
  • the first BBU sends the line rate capability information of the first BBU to the second BBU by using the first line rate.
  • the first BBU receives the line rate capability information that the second BBU sends the second BBU by using the second line rate.
  • the first BBU determines, according to the line rate capability information of the first BBU and the line rate capability information of the second BBU, a line rate used by the first BBU and the second BBU to perform physical layer communication.
  • the line rate capability information refers to the maximum transmission capability of the BBU on the physical layer channel.
  • the first BBU and the second BBU exchange their respective line rate capability information, and then according to the line rate capability information of the first BBU and the second
  • the line rate capability information of the BBU determines the line rate used by the first BBU and the second BBU to perform physical layer communication, for example, the line rate capability information of the first BBU and the line rate capability information of the second BBU may be selected to be the largest in the intersection.
  • the line rate is used as the line rate used by the first BBU and the second BBU for physical layer communication, thereby implementing line rate auto-negotiation without manual resources for manual configuration.
  • the first BBU allocates a communication address to the second BBU according to the networking relationship information of the second BBU, and sends the communication address of the first BBU to the second BBU.
  • the first BBU allocates a communication address to the second BBU according to the networking relationship information of the second BBU, to the second
  • the BBU sends the communication address of the first BBU, so that the second BBU can obtain the communication address of the first BBU, where the communication address can be the location identifier of the location where the BBU is located.
  • the first BBU establishes a bidirectional upper layer communication channel with the second BBU according to the communication address of the second BBU.
  • the first BBU allocates a communication address to the second BBU
  • the first BBU can obtain the communication address of the second BBU
  • the second BBU can also obtain the communication address of the first BBU, so that two directions can be established between the two BBUs.
  • the upper communication channel is used for mutual communication between the first BBU and the second BBU, for example, the first BBU allocates resources to the second BBU based on the upper communication channel.
  • the line rate auto-negotiation can be performed between the first BBU and the second BBU, the first BBU allocates a communication address to the second BBU, and the second BBU
  • the communication address of the first BBU can be obtained, and the first BBU establishes a bidirectional upper communication channel with the second BBU according to the communication address of the second BBU.
  • the auto-negotiation of the line rate, the exchange of the networking relationship information, and the allocation of the communication address between the first BBU and the second BBU can complete the automatic establishment of the upper communication channel without manual configuration, thereby reducing the labor cost and the probability of error.
  • the upper communication channel between the primary BBU and the secondary BBU is self-established, which reduces the configuration workload of the service personnel and the complexity of the open station.
  • the foregoing embodiment introduces a configuration method based on the foregoing integrated access system from the first BBU side, and then introduces a configuration method based on the integrated access system from the second BBU side, and the method can implement the integrated access system.
  • the upper communication channel is established.
  • the upper communication channel between the master and the slave BBU can be automatically established, and no manual configuration is required, thereby reducing the labor cost and the probability of error.
  • the configuration method provided by the embodiment of the present application is applicable to the integrated access system.
  • the integrated access system includes: a first BBU and a second BBU, where the first BBU and the second BBU are connected, for example, the first The BBU and the second BBU are connected by a Fibre Channel.
  • the configuration method provided by the embodiment of the present application may include the following steps:
  • the second BBU updates the second line rate, and sends a data frame to the first BBU at the updated second line rate after each update.
  • the line rate used by the first BBU is defined as “first line rate”
  • the line rate used by the second BBU is defined as “second line rate”
  • the line rate refers to the line rate of the physical layer channel.
  • the first BBU continuously updates the first line rate, that is, the rate at which the first BBU updates the first line rate, and sends a data frame to the second BBU at the updated first line rate after each update.
  • the second BBU continuously updates the second line rate, that is, the rate at which the second BBU updates the second line rate, and sends the updated second line rate based data frame to the first BBU after each update.
  • the step 1001, the second BBU updates the second line rate including:
  • the second BBU updates the second line rate in a second period.
  • the second period and the first period are different periods.
  • the first period is a period in which the first BBU updates the first line rate.
  • the first BBU and the second BBU update their respective line rate values in respective periods.
  • the first period and the second period are different periods, so there must be a long period in the first period and the second period.
  • a short period by periodically updating the respective line rates of the first BBU and the second BBU, a line rate blind attempt between the first BBU and the second BBU can be implemented, thereby achieving line rate auto-negotiation without occupying artificial Resources are manually configured.
  • the second BBU receives the data frame sent by the first BBU at the updated first line rate after each update of the first line rate.
  • the first BBU sends a data frame to the second BBU at the updated first line rate after each update, and the first BBU continuously sends the first line rate data to the second BBU through the Fibre Channel.
  • the second BBU receives the first line rate-based data frame that is continuously sent by the first BBU, and the second BBU needs to determine whether the sent second line rate and the received first line rate are equal, and if the two are equal, trigger the subsequent Step 1003, if the two are not equal, continue to perform steps 1001 and 1002.
  • the second BBU sends the network relationship information of the second BBU to the first BBU by using the second line rate, and receives the first BBU sent by the first BBU by using the first line rate. Networking relationship information.
  • the rate negotiation is completed between the first BBU and the second BBU, and the second BBU can use the second line rate to the first BBU. And sending the networking relationship information of the second BBU, and receiving the networking relationship information of the first BBU sent by the first BBU by using the first line rate.
  • the network relationship information of the first BBU refers to the number of BBUs connected to the first BBU and the ports on the connected interface board.
  • the networking information of the second BBU refers to the BBUs connected to the second BBU. Number, and the connected baseband board or port on the interface board.
  • the first BBU and the second BBU exchange their respective networking relationship information, so that the first BBU and the second BBU can generate a network topology map according to the networking relationship information of the two parties, and the network topology map can be conveniently obtained.
  • Inter-frame interconnection of BBUs
  • the method provided by the embodiment of the present application may further include:
  • the second BBU sends the line rate capability information of the second BBU to the first BBU by using the second rate
  • the second BBU receives the line rate capability information of the first BBU by using the first line rate to send the first BBU.
  • the second BBU is determined according to the line rate capability information of the second BBU and the line rate capability information of the first BBU.
  • the line rate capability information refers to the maximum transmission capability of the BBU on the physical layer channel.
  • the first BBU and the second BBU exchange their respective line rate capability information, and then according to the line rate capability information of the first BBU and the second
  • the line rate capability information of the BBU determines the line rate used by the first BBU and the second BBU to perform physical layer communication, for example, the line rate capability information of the first BBU and the line rate capability information of the second BBU may be selected to be the largest in the intersection.
  • the line rate is used as the line rate used by the first BBU and the second BBU for physical layer communication, thereby implementing line rate auto-negotiation without manual resources for manual configuration.
  • the second BBU acquires a communication address of the first BBU.
  • the first BBU allocates a communication address to the second BBU according to the networking relationship information of the second BBU, to the second
  • the BBU sends the communication address of the first BBU, so that the second BBU can obtain the communication address of the first BBU, where the communication address can be the location identifier of the location where the BBU is located.
  • the second BBU establishes a bidirectional upper layer communication channel with a BBU according to the communication address of the first BBU.
  • the first BBU allocates a communication address to the second BBU
  • the first BBU can obtain the communication address of the second BBU
  • the second BBU can also obtain the communication address of the first BBU, so that two directions can be established between the two BBUs.
  • the upper communication channel is used for mutual communication between the first BBU and the second BBU, for example, the first BBU allocates resources to the second BBU based on the upper communication channel.
  • the line rate auto-negotiation can be performed between the first BBU and the second BBU, the first BBU allocates a communication address to the second BBU, and the second BBU
  • the communication address of the first BBU can be obtained, and the first BBU establishes a bidirectional upper communication channel with the second BBU according to the communication address of the second BBU.
  • the auto-negotiation of the line rate, the exchange of the networking relationship information, and the allocation of the communication address between the first BBU and the second BBU can complete the automatic establishment of the upper communication channel without manual configuration, thereby reducing the labor cost and the probability of error.
  • FIG. 11 the process of self-establishment of the upper layer communication channel between the master BBU and the slave BBU is shown.
  • the port mode of the master BBU is set to the master BBU mode
  • the port mode of the slave BBU is set to the slave BBU mode.
  • the primary BBU and the secondary BBU switch the line rate of the CPRI channel at different cycles to achieve line rate auto-negotiation, rate-free provisioning, and reduced labor cost and probability of error.
  • the master BBU and the slave BBU control the word exchange networking relationship information through the CPRI L1 to implement self-discovery of the Internet topology.
  • the primary BBU allocates a communication address from the BBU, and both parties establish a bidirectional upper communication channel on the discovered CPRI channel according to the given communication address, and the client interface channel is free of configuration.
  • the integrated access system includes: a first BBU, a second BBU, a first data exchange unit, and a second base station network pipe system.
  • the first pRRU is connected to the second BBU and the first data exchange unit
  • the first data exchange unit is connected to the first pRRU
  • the second BBU is connected to the second base station network pipe system.
  • the configuration method provided by the embodiment of the present application may include the following steps:
  • the first BBU slices the resource corresponding to the first data switching unit and the resource corresponding to the first pRRU. Processing, obtaining multiple sector device group object resources.
  • the first BBU is responsible for managing the data exchange unit (ie, the RHUB), the physical shared device such as the pRRU, and the first BBU may perform the slice processing on the resource corresponding to the first pRRU and the resource corresponding to the RHUB.
  • the first BBU virtualizes resources corresponding to the first pRRU and resources corresponding to the RHUB, abstracts the resources into resource objects, and then performs slice processing on the resource objects, and defines the slice resources obtained by the slice processing into multiple sectors.
  • Device object resource refers to that the one or more pRRUs in the indoor integrated access system transmit the same carrier signal by broadcasting when downlink transmission, or form the same carrier signal by radio frequency combining during uplink transmission. Resource object.
  • the first BBU is used as the primary BBU, and is used to manage the resources corresponding to the RHUB and the resources corresponding to the pRRU.
  • the first BBU divides the resources corresponding to the RHUB into three radio channel resource slices, and the first BBU uses the carrier corresponding to the pRRU.
  • the resource is divided into three carrier resource fragments, and a radio resource combining resource fragment of one RHUB and a corresponding carrier resource fragment on one or more pRRUs can be combined to form a sector device group object resource.
  • the first BBU can generate three sector device group object resources.
  • the resources corresponding to the first data exchange unit include: a radio frequency combining cell capability resource and a transmission channel bandwidth resource
  • the resource corresponding to the first pRRU includes: radio frequency resource. If the first BBU and the first data switching unit are connected through a CPRI channel, the bandwidth resource of the transmission channel is specifically a CPRI bandwidth resource.
  • the radio frequency resource may include: a network standard, a frequency band, a transmit power, and a bandwidth
  • the radio frequency combined cell capability resource refers to a resource such as the number of radio frequency combined cells.
  • the first BBU selects a first sector device group object resource from the plurality of sector device group object resources according to the resource configuration request of the second base station network pipe system.
  • the first BBU is connected to the second BBU, and the second BBU is connected to the second base station network pipe system.
  • the first BBU can obtain the resource configuration request of the second base station network pipe system through the second BBU, and then the first BBU.
  • a first sector device group object resource is selected from the plurality of sector device group object resources for the second base station network pipe system.
  • the first BBU performs unified resource allocation on the first BBU side according to the actual situation of each operator. For example, the operator adopts the LTE standard and the 20M bandwidth, and two 20M physical cells need to be established.
  • the first BBU can be based on the carrier. Resource configuration for which to allocate sector device group object resources
  • the first BBU notifies the second BBU of the first sector device group object resource.
  • the first BBU after the first BBU selects the first sector device group object resource by using the foregoing step 1202, the first BBU notifies the second BBU of the first sector device group object resource, for example, the first BBU and the first BBU.
  • a Fibre Channel is adopted between the two BBUs, and the first BBU can notify the second BBU through the Fibre Channel.
  • the second BBU invokes the allocated resources of the first BBU side and performs binding. For example, the radio resource allocated by the first BBU side and the baseband resource of the second BBU side are bound to activate the corresponding BBU cell and the corresponding service.
  • the first BBU implements the slicing process, so that common resources such as RHUB and pRRU can be independently invoked by each carrier device.
  • the integrated access system provided by the embodiment of the present application further includes: a third BBU and a third base station network pipe system, as shown in FIG. 5, the first The BBU is connected to the third BBU, and the third BBU is connected to the third base station network pipe system.
  • the method provided by the embodiment of the present application further includes:
  • the first BBU selects a second sector device group object resource from the plurality of sector device group object resources according to the resource configuration request of the third base station network pipe system.
  • the first BBU notifies the second BBU of the second sector device group object resource.
  • the first BBU may further allocate the second sector device group object to the third base station network pipe system according to the resource configuration request of the third base station network pipe system.
  • the resources realize that public resources such as RHUB and pRRU can be independently called by each operator's equipment.
  • the first BBU performs a slice process on the resource corresponding to the first data exchange unit and the resource corresponding to the first pRRU, to obtain a plurality of sector device group object resources, first, by using the foregoing description of the resource configuration process shown in FIG.
  • the BBU allocates the first sector device group object resource to the second base station network pipe system according to the resource configuration request of the second base station network pipe system, so that the public resources such as the RHUB and the pRRU can be independently called by the respective carrier devices.
  • the foregoing embodiment introduces the configuration method based on the foregoing integrated access system from the first BBU side, and then exemplifies from the second BBU side, which can implement resource configuration in the integrated access system.
  • the primary BBU may allocate resources to the secondary BBU.
  • the configuration method provided by the embodiment of the present application is applicable to the integrated access system.
  • the integrated access system includes: a first BBU, a second BBU, a first data exchange unit, and a second base station network pipe system.
  • the first pRRU is connected to the second BBU and the first data exchange unit
  • the first data exchange unit is connected to the first pRRU
  • the second BBU is connected to the second base station network pipe system.
  • the configuration method provided by the embodiment of the present application may include the following steps:
  • the second BBU acquires a first sector device group object resource that is notified by the first BBU.
  • the second BBU binds the first sector device group object resource and the baseband resource of the second BBU, and activates the physical cell corresponding to the first sector device group object resource.
  • a Fibre Channel is adopted between the first BBU and the second BBU, and the first BBU can notify the second BBU through the Fibre Channel.
  • the second BBU invokes the allocated resources of the first BBU side and performs binding, for example, the radio resource allocated by the first BBU side and the baseband resource of the second BBU side are bound to activate the corresponding BBU cell and the corresponding service.
  • the baseband resource here refers to a physical cell resource on the base station side.
  • the second BBU can use the corresponding sector device group object resource according to the allocation of the first first BBU, so that common resources such as RHUB and pRRU can be independently called by each operator device.
  • the second BBU acquires the first sector device group object resource notified by the first BBU, and the second BBU stores the first sector device group object resource and the second BBU.
  • the baseband resource is bound, and the physical cell corresponding to the first sector device group object resource is activated, so that common resources such as RHUB and pRRU can be independently called by each operator device.
  • the primary BBU is connected to the base station network pipe system, the RHUB, and the RHUB is connected to the pRRU.
  • the master BBU is connected to three slave BBUs, which are slave BBU A, slave BBU B, and slave BUB C. Each slave BBU is connected to a base station network pipe system.
  • the primary BBU is used to manage RHUB and pRRU physical devices.
  • the primary BBU first performs a slice processing on the resource corresponding to the RHUB and the resource corresponding to the pRRU, so that the sector device group object resource A (referred to as resource A in FIG. 14) and the sector device group object resource B (abbreviated as Resource B), sector device group object resource C (referred to as resource C in FIG. 14 for short).
  • the primary BBU can allocate the resource A to the slave BBU A, and then the resource A can be called from the BBU A, and then the BBU service management is performed based on the resource A.
  • the integrated access system can support resource pooling and virtualization management of the RHUB and pRRU connected to the primary BBU.
  • the primary BBU is responsible for managing the physical devices of the RHUB and the PRRU, and virtualizing and slicing the resource objects of the pRRU and the RHUB.
  • the primary BBU performs unified resources on the BBU side according to the resource requests of the operators.
  • each BBU calls the allocated resources on the primary BBU side and binds them.
  • the radio resources allocated on the primary BBU side are bound to the baseband resources on the BBU side to activate the corresponding BBU cells.
  • the corresponding business Through virtualization and slicing, common resources such as RHUB and pRRU can be independently called by each carrier device.
  • the main construction party collects the network construction appeal of each operator's target office. Then, according to the operator's network construction appeal and the actual site survey output resource allocation results. For example, first collect physical device information such as the number of pRRUs, RHUBs, and main BBUs. And the specific pRRU physical point, and the resource requirements of each operator's network construction corresponding to the physical point requirements, such as the network standard, frequency, bandwidth, transmit power, and RF combined cell requirements, according to resources Design and planning, configure the main BBU.
  • the resource slice of the operator is performed by the sector device group object (including the standard, the frequency, the bandwidth, the transmit power, and the pRRU radio combiner information).
  • Each BBU calls the slice resource allocated by the primary BBU (that is, the sector device group object resource), and binds to the baseband resource of the BBU, establishes and activates the corresponding physical cell, and activates the service.
  • the primary BBU first sends the resource status of the pRRU and the RHUB to the BBU, and the BBU sends the resource request to the primary BBU.
  • the primary BBU performs resource quota control.
  • the primary BBU allocates resources to the secondary BBU, and the BBU uses the resources allocated by the primary BBU to perform resource binding. For details, refer to the description of resource binding in the foregoing embodiment.
  • the primary BBU allocates resources corresponding to the available pRRUs and resources corresponding to the RHUBs to the authenticated secondary BBUs based on the resource authorization configuration of the secondary BBUs.
  • the primary BBU allocates radio resources and network resources to the secondary BBU, where the network resources include a CPRI bandwidth capability, a radio frequency combined cell capability, and the like.
  • the embodiment of the present application supports the flexible use of resources by the BBU according to the service expansion, and the configuration of the primary BBU limits and limits the maximum usage of resources from the BBU to implement management and control of shared resource quotas.
  • the embodiment of the present application can solve the problem that the main constructor (the main BBU is configured through the base station network pipe system of the main BBU) and the operator (by the BBU from the base station network pipe system of the BBU) And the problem of operation and maintenance decoupling between operators and operators.
  • the main construction party is mainly responsible for the construction of the indoor hardware network, focusing on the construction of the pRRU, RHUB and the main BBU, and does not involve the specific services of the baseband community.
  • the operators manage their respective slave BBUs and focus on their respective BBU services and operation and maintenance.
  • the embodiment of the present application realizes the unified construction of the public system of the room division, the unified operation and maintenance, and the decoupling of the respective differentiated service solutions provided by the operators, and the business development between the operators also realizes the decoupling, that is, the independence can be realized.
  • the BBU version, cell, and service features are enabled.
  • a baseband processing unit BBU is provided in the embodiment of the present application.
  • the BBU is specifically a first BBU, and the first BBU belongs to an integrated access system, and the integrated access system further includes:
  • the first BBU is connected to the second BBU, and the first BBU 1600 includes:
  • the acquiring module 1601 is configured to acquire first clock synchronization information, where the first clock synchronization information includes: the first BBU clock frequency and clock phase;
  • the sending module 1602 is configured to send the first clock synchronization information to the second BBU.
  • the integrated access system further includes: a third BBU, the third BBU is connected to the first BBU, and the sending module 1602 is further configured to The three BBUs send the first clock synchronization information.
  • a baseband processing unit BBU is provided in the embodiment of the present application.
  • the BBU is specifically a second BBU 1700, and the second BBU belongs to an integrated access system, and the integrated access system further includes: a BBU, the first BBU and the second BBU are connected, and the second BBU 1700 includes:
  • the receiving module 1701 is configured to receive first clock synchronization information that is sent by the first BBU, where the first clock synchronization information includes: a clock frequency and a clock phase of the first BBU;
  • the configuration module 1702 is configured to configure local clock information of the second BBU according to the first clock synchronization information.
  • the integrated access system further includes: a fourth BBU, the fourth BBU and the second BBU are connected, and the receiving module 1701 is further configured to receive the fourth a second clock synchronization information sent by the BBU, where the second clock synchronization information includes: a clock frequency and a clock phase of the fourth BBU;
  • the configuration module 1702 is configured to configure local clock information of the second BBU according to the first clock synchronization information and the second clock synchronization information.
  • the configuration module 1702 is specifically configured to select clock synchronization information with higher clock quality from the first clock synchronization information and the second clock synchronization information, and And configuring local clock information of the second BBU according to the clock synchronization information with high clock quality.
  • a baseband processing unit BBU is provided in the embodiment of the present application.
  • the BBU is specifically a first BBU 1800, and the first BBU belongs to an integrated access system, and the integrated access system further includes
  • the second BBU is connected to the second BBU, and the first BBU 1800 includes:
  • a line rate update module 1801 configured to update a first line rate, and send a data frame to the second BBU at the updated first line rate after each update;
  • the receiving module 1802 is configured to receive a data frame that is sent by the second BBU at an updated second line rate after each update of the second line rate.
  • the sending module 1803 is configured to: when the first line rate is equal to the second line rate, use the first line rate to send the network relationship information of the first BBU to the second BBU, and the receiving station The networking relationship information of the second BBU that is sent by the second BBU by using the second line rate;
  • the address allocation module 1804 is configured to allocate a communication address to the second BBU according to the networking relationship information of the second BBU, and send a communication address of the first BBU to the second BBU.
  • the channel establishing module 1805 is configured to establish a bidirectional upper layer communication channel with the second BBU according to the communication address of the second BBU.
  • the first BBU 1800 when the first line rate is equal to the second line rate, the first BBU 1800 further includes: a line rate determining module 1806, where
  • the sending module 1803 is further configured to send the line rate capability information of the first BBU to the second BBU by using the first line rate;
  • the receiving module 1802 is further configured to receive, by the second BBU, the second BBU by using the second line rate.
  • Line rate capability information
  • the line rate determining module 1806 is configured to determine, according to the line rate capability information of the first BBU and the line rate capability information of the second BBU, that the first BBU and the second BBU are used for physical layer communication. Line rate.
  • a baseband processing unit BBU is provided in the embodiment of the present application.
  • the BBU is specifically a second BBU 1900, and the second BBU belongs to an integrated access system, and the integrated access system further includes The first BBU is connected to the second BBU, and the second BBU 1900 includes:
  • a line rate update module 1901 configured to update a second line rate, and send a data frame to the first BBU at the updated second line rate after each update;
  • the receiving module 1902 is configured to receive a data frame that is sent by the first BBU at the updated first line rate after each updating the first line rate;
  • the sending module 1903 is configured to: when the second line rate is equal to the first line rate, the second BBU sends the network relationship information of the second BBU to the first BBU by using the second line rate. And receiving the networking relationship information of the first BBU that is sent by the first BBU by using the first line rate;
  • An address obtaining module 1904 configured to acquire a communication address of the first BBU
  • the channel establishing module 1905 is configured to establish a bidirectional upper layer communication channel with the BBU according to the communication address of the first BBU.
  • the second BBU 1900 when the second line rate is equal to the first line rate, the second BBU 1900 further includes: a line rate determining module 1906, where
  • the sending module 1903 is further configured to send the line rate capability information of the second BBU to the first BBU by using the second rate;
  • the receiving module 1902 is further configured to receive, by the first BBU, the line rate capability information of the first BBU by using the first line rate.
  • the line rate determining module 1906 is configured to determine, according to the line rate capability information of the second BBU and the line rate capability information of the first BBU, that the first BBU and the second BBU are used for physical layer communication. Line rate.
  • a baseband processing unit BBU is provided in the embodiment of the present application.
  • the BBU is specifically a first BBU 2000, and the first BBU belongs to an integrated access system, and the integrated access system further includes: a second BBU, a first data exchange unit, a second base station network pipe system, and a first micro-radio remote unit pRRU, wherein the first BBU is respectively connected to the second BBU and the first data exchange unit, The first data exchange unit is connected to the first pRRU, and the second BBU is connected to the second base station network pipe system, and the first BBU 2000 includes:
  • the sharding module 2001 is configured to perform a singulation process on the resource corresponding to the first data switching unit and the resource corresponding to the first pRRU, to obtain a plurality of sector device group object resources;
  • the resource allocation module 2002 is configured to select, according to the resource configuration request of the second base station network pipe system, the first sector device group object resource from the plurality of sector device group object resources;
  • the notification module 2003 is configured to notify the first sector device group object resource to the second BBU.
  • the integrated access system further includes: a third BBU and a third base station network pipe system, the first BBU and the third BBU are connected, and the third BBU is Connected to the third base station network pipe system,
  • the resource allocation module 2002 is further configured to select, according to the resource configuration request of the third base station network pipe system, a second sector device group object resource from the plurality of sector device group object resources;
  • the notification module 2003 is further configured to notify the third BBU of the second sector device group object resource.
  • a baseband processing unit BBU is provided in the embodiment of the present application.
  • the BBU is specifically a second BBU 2100, and the second BBU belongs to an integrated access system, and the integrated access system further includes: a BBU, a second BBU, a first data exchange unit, a second base station network pipe system, and a first micro-radio remote unit pRRU, wherein the first BBU is respectively associated with the second BBU and the first data exchange unit Connected, the first data exchange unit is connected to the first pRRU, the second BBU is connected to the second base station network pipe system, and the second BBU 2100 includes:
  • the resource obtaining module 2101 is configured to acquire, by the first BBU, the first sector device group object resource;
  • the resource usage module 2102 is configured to bind the first sector device group object resource and the baseband resource of the second BBU, and activate the physical cell corresponding to the first sector device group object resource.
  • the embodiment of the present application further provides a computer storage medium, wherein the computer storage medium stores a program, and the program executes some or all of the steps described in the foregoing method embodiments.
  • the first BBU 2200 includes:
  • the receiver 2201, the transmitter 2202, the processor 2203, and the memory 2204 (wherein the number of processors 2203 in the first BBU 2200 may be one or more, and one processor in FIG. 22 is taken as an example).
  • the receiver 2201, the transmitter 2202, the processor 2203, and the memory 2204 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • Memory 2204 can include read only memory and random access memory and provides instructions and data to processor 2203. A portion of the memory 2204 may also include a non-volatile random access memory (English name: Non-Volatile Random Access Memory, English abbreviation: NVRAM).
  • the memory 2204 stores operating systems and operational instructions, executable modules or data structures, or a subset thereof, or an extended set thereof, wherein the operational instructions can include various operational instructions for implementing various operations.
  • the operating system can include a variety of system programs for implementing various basic services and handling hardware-based tasks.
  • the processor 2203 controls the operation of the first BBU, and the processor 2203 may also be referred to as a central processing unit (English: Central Processing Unit, English abbreviation: CPU).
  • the components of the first BBU are coupled together by a bus system.
  • the bus system may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the various buses are referred to as bus systems in the figures.
  • the method disclosed in the foregoing embodiment of the present application may be applied to the processor 2203 or implemented by the processor 2203.
  • the processor 2203 can be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 2203 or an instruction in a form of software.
  • the processor 2203 can be a general-purpose processor, a digital signal processor (English name: digital signal processing, English abbreviation: DSP), and an application-specific integrated circuit (English full name: Application Specific Integrated Circuit, English abbreviation: ASIC), Field Programmable Gate Array (English name: Field-Programmable Gate Array, English abbreviation: FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 2204, and the processor 2203 reads the information in the memory 2204 and, in conjunction with its hardware, performs the steps of the above method.
  • the processor 2203 is configured to perform the foregoing method steps performed by the first BBU.
  • the second BBU 2300 includes:
  • the receiver 2301, the transmitter 2302, the processor 2303, and the memory 2304 (wherein the number of the processors 2303 in the second BBU 2300 may be one or more, and one processor in FIG. 23 is taken as an example).
  • the receiver 2301, the transmitter 2302, the processor 2303, and the memory 2304 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • Memory 2304 can include read only memory and random access memory and provides instructions and data to processor 2303. A portion of the memory 2304 can also include an NVRAM.
  • the memory 2304 stores operating systems and operational instructions, executable modules or data structures, or a subset thereof, or an extended set thereof, wherein the operational instructions can include various operational instructions for implementing various operations.
  • the operating system can include a variety of system programs for implementing various basic services and handling hardware-based tasks.
  • the processor 2303 controls the operation of the second BBU, which may also be referred to as a CPU.
  • the components of the second BBU are coupled together by a bus system.
  • the bus system may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the various buses are referred to as bus systems in the figures.
  • the method disclosed in the foregoing embodiment of the present invention may be applied to the processor 2303 or implemented by the processor 2303.
  • the processor 2303 can be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 2303 or an instruction in a form of software.
  • the processor 2303 described above may be a general purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, discrete hardware component.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 2304, and the processor 2303 reads the information in the memory 2304 and performs the steps of the above method in combination with its hardware.
  • the processor 2303 is configured to perform the foregoing method steps performed by the second BBU.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be It is not a physical unit, it can be located in one place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the connection relationship between the modules indicates that there is a communication connection between them, and specifically may be implemented as one or more communication buses or signal lines.
  • U disk mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), disk or optical disk, etc., including a number of instructions to make a computer device (may be A personal computer, server, or network device, etc.) performs the methods described in various embodiments of the present application.
  • a computer device may be A personal computer, server, or network device, etc.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • wire eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be stored by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种综合接入系统、配置方法和基带处理单元,本申请实施例提供一种综合接入系统,第一基带处理单元BBU、第二BBU、第一数据交换单元、第一基站网管子系统、第二基站网管子系统、第一微射频拉远单元pRRU,其中,所述第一BBU和所述第一数据交换单元相连接,所述第一BBU和所述第一基站网管子系统相连接,所述第一BBU和所述第二BBU相连接;所述第二BBU和所述第二基站网管子系统相连接;所述第一pRRU和所述第一数据交换单元相连接。

Description

一种综合接入系统、配置方法和基带处理单元 技术领域
本申请实施例涉及通信领域,尤其涉及一种综合接入系统、配置方法和基带处理单元。
背景技术
无线点系统(Lampsite)是一种室内覆盖解决方案,LampSite主要致力于移动宽带数据的室内覆盖,通过室内覆盖的数字化,大幅度降低室内覆盖建设和维护成本,促进移动宽带体验的提升。
随着移动通信市场的迅猛发展,用户越来越希望能随时随地接入高质量通信网络。为此,移动通信服务商开始在室外、建筑物内部及地下等电波难以覆盖的盲区设置直放站,以最大限度地满足用户对于通话服务的需求。基于LampSite实现的综合接入系统是专用的支持多制式多频段的分布式系统架构,如图1所示,目前的综合接入系统中还包括多种产品功能模块,例如基带处理单元(Base Band Unit,BBU)、数据交换单元(也称为RHUB)、微射频拉远单元(pico Remote Radio Unit,pRRU)、基站网管子系统等。
其中,BBU作为汇聚节点,BBU连接RHUB,基站网管子系统和BBU连接,RHUB连接pRRU。BBU用于集中控制管理整个基站系统,RHUB实现BBU与pRRU之间的通信,pRRU实现射频信号处理功能。
在目前的综合接入系统中,至少存在如下技术问题:随着BBU小区能力不断提升,BBU作为汇聚节点连接RHUB和基站网管子系统,运营商可以通过基站网管子系统提供基带资源的配置和管理。现有技术中对BBU的射频资源和基带资源的管理都是共用同一个基站网管子系统,从而不同资源之间的配置和管理无法解耦,导致业务开通和业务升级也无法解耦,使得现有技术中的综合接入系统存在可靠性和可维护性都很低的问题。
发明内容
本申请实施例提供了一种综合接入系统、配置方法和基带处理单元,用于实现综合接入系统的内部解耦合,提供综合接入系统的可靠性和可维护性。
第一方面,本申请实施例提供一种综合接入系统,第一基带处理单元BBU、第二BBU、第一数据交换单元、第一基站网管子系统、第二基站网管子系统、第一微射频拉远单元pRRU,其中,所述第一BBU和所述第一数据交换单元相连接,所述第一BBU和所述第一基站网管子系统相连接,所述第一BBU和所述第二BBU相连接;所述第二BBU和所述第二基站网管子系统相连接;所述第一pRRU和所述第一数据交换单元相连接。
本申请实施例中,综合接入系统内包括有两类BBU:第一BBU和第二BBU,第一BBU和第二BBU之间相连接,从而进行BBU间的通信。另外第一BBU和第一基站网管子系统相连接,第二BBU和第二基站网管子系统相连接,因此可以通过第一基站网管子系统可以对第一BBU进行射频资源的单独配置和管理,通过第二基站网管子系统可以对第二BBU进行基带资源的单独配置和管理,因此可以实现射频资源和基带资源的独立管理,综合接入系统的可靠性和可维护性得到很大提高。
在本申请实施例的一个可能的设计中,所述综合接入系统,还包括:第三BBU和第三基站网管子系统,其中,所述第一BBU和所述第三BBU相连接;所述第三BBU和所述第三基站网管子系统相连接。在本申请的上述实施例中,综合接入系统内设置有第一BBU作为主BBU,还设置有第二BBU和第三BBU均作为从BBU,并且第二BBU和第三BBU分别连接有各自的基站网管子系统,例如第二BBU和第二基站网管子系统相连接,第三BBU和第三基站网管子系统相连接,因此在多运营商共建共享场景下,不同的运营商可以分别使用第二基站网管子系统和第三基站网管子系统,从而可以实现多运营商之间的资产解耦,运营维护解耦,业务开通和升级解耦。
在本申请实施例的一个可能的设计中,所述综合接入系统,还包括:第四BBU、第二数据交换单元、第四基站网管子系统、第二pRRU,其中,所述第四BBU和所述第二数据交换单元相连接,所述第四BBU和所述第四基站网管子系统相连接,所述第四BBU和所述第二BBU相连接;所述第二pRRU和所述第二数据交换单元相连接。综合接入系统中可以采用第一BBU和第四BBU都作为主BBU,例如第一BBU和第四BBU可以分别设置在不同的楼宇内,第一BBU和第四BBU可以分别使用不同的光纤通道连接第二BBU,第二BBU可以设置在中心机房内,从而可以支持多个主BBU对从BBU的框间互联,解决一个中心机房覆盖周边多栋楼宇的问题。
第二方面,本申请实施例还提供一种基于综合接入系统的配置方法,所述综合接入系统,包括:第一基带处理单元BBU和第二BBU,所述第一BBU和所述第二BBU相连接,所述方法包括:所述第一BBU获取第一时钟同步信息,所述第一时钟同步信息包括:所述第一BBU的时钟频率和时钟相位;所述第一BBU向所述第二BBU发送所述第一时钟同步信息。第一BBU可以向第二BBU发送第一时钟同步信息,使得第二BBU能够根据该第一时钟同步信息配置第二BBU的本地时钟信息,从而可以实现跨BBU的框间时钟同步。举例说明,通过对BBU模式的配置,通过基站网管子系统的OM通道可以配置第一BBU为主BBU模式,配置第二BBU为从BBU模式。通过支持多BBU的框间汇聚,实现多运营商分BBU接入,解决运营商间运维解耦问题,以及面向未来的基于BBU接入的大容量演进。另外,本申请实施例中还支持多个主BBU对多个从BBU的框间互联,解决一个中心机房覆盖周边多栋楼宇的问题。
在本申请实施例的一个可能的设计中,所述综合接入系统,还包括:第三BBU,所述第三BBU和所述第一BBU相连接,所述方法还包括:所述第一BBU向所述第三BBU发送所述第一时钟同步信息。第一BBU作为主BBU连接两个从BBU时,第一BBU在获取到第一时钟同步信息之后,第一BBU可以向第二BBU、第三BBU分别发送第一时钟同步信息,使得第三BBU作为从BBU,也可以收到第一BBU的第一时钟同步信息,该第三BBU可以使用该第一时钟同步信息校正第三BBU的本地时钟源,从而可以实现跨BBU的框间时钟同步。
第三面,本申请实施例还提供一种基于综合接入系统的配置方法,所述综合接入系统包括:第一基带处理单元BBU和第二BBU,所述第一BBU和所述第二BBU相连接,所述方法包括:所述第二BBU接收所述第一BBU发送的第一时钟同步信息,所述第一时钟同步信息包括:所述第一BBU的时钟频率和时钟相位;所述第二BBU根据所述第一时钟 同步信息配置所述第二BBU的本地时钟信息。第一BBU可以向第二BBU发送第一时钟同步信息,使得第二BBU能够根据该第一时钟同步信息配置第二BBU的本地时钟信息,从而可以实现跨BBU的框间时钟同步。
在本申请实施例的一个可能的设计中,所述综合接入系统还包括:第四BBU,所述第四BBU和所述第二BBU相连接,所述方法还包括:所述第二BBU接收所述第四BBU发送的第二时钟同步信息,所述第二时钟同步信息包括:所述第四BBU的时钟频率和时钟相位;所述第二BBU根据所述第一时钟同步信息配置所述第二BBU的本地时钟信息,包括:所述第二BBU根据所述第一时钟同步信息、所述第二时钟同步信息配置所述第二BBU的本地时钟信息。第二BBU除了接收到第一时钟同步信息,第二BBU还接收到第四BBU的第二时钟同步信息,第二BBU解析该第二时钟同步信息,可以到第四BBU的时钟频率和时钟相位。第二BBU和第四BBU都作为主BBU时,可以分别向作为从BBU的第二BBU发送时钟同步信息,则第二BBU可以分别获取到第一BBU的时钟频率和时钟相位、第四BBU的时钟频率和时钟相位。
在本申请实施例的一个可能的设计中,所述第二BBU根据所述第一时钟同步信息、所述第二时钟同步信息配置所述第二BBU的本地时钟信息,包括:所述第二BBU从所述第一时钟同步信息和所述第二时钟同步信息中选择出时钟质量较高的时钟同步信息,并根据所述时钟质量较高的时钟同步信息配置所述第二BBU的本地时钟信息。对于第一BBU和第四BBU分别发送给第二BBU的时钟同步信息,第二BBU可以选择出时钟质量较高的时钟同步信息,并根据时钟质量较高的时钟同步信息配置第二BBU的本地时钟信息,从而可以保证第二BBU使用时钟质量高的时钟信息。
第四方面,本申请实施例还提供一种基于综合接入系统的配置方法,所述综合接入系统包括:第一基带处理单元BBU和第二BBU,所述第一BBU和所述第二BBU相连接,所述方法包括:所述第一BBU更新第一线速率,并在每次更新之后以更新后的第一线速率向所述第二BBU发送数据帧;所述第一BBU接收所述第二BBU在每次更新第二线速率之后以更新后的第二线速率发送的数据帧;当所述第一线速率与所述第二线速率相等时,所述第一BBU使用所述第一线速率向所述第二BBU发送所述第一BBU的组网关系信息,以及接收所述第二BBU使用所述第二线速率发送的所述第二BBU的组网关系信息;所述第一BBU根据所述第二BBU的组网关系信息为所述第二BBU分配通信地址,以及向所述第二BBU发送所述第一BBU的通信地址;所述第一BBU根据所述第二BBU的通信地址与所述第二BBU建立双向的上层通信通道。第一BBU和第二BBU之间可以进行线速率的自协商,第一BBU向第二BBU分配通信地址,并且第二BBU可以获取到第一BBU的通信地址,第一BBU根据第二BBU的通信地址与第二BBU建立双向的上层通信通道。第一BBU和第二BBU之间通过线速率的自协商、组网关系信息的交换以及通信地址的分配,可以完成上层通信通道的自动建立,不需要人工配置,减少人工成本以及出错的概率。举例说明,主BBU和从BBU之间的上层通信通道自建立,减少了服务人员的配置工作量以及开站的复杂度。
在本申请实施例的一个可能的设计中,当所述第一线速率与所述第二线速率相等时,所述方法还包括:所述第一BBU使用所述第一线速率向所述第二BBU发送所述第一BBU 的线速率能力信息;所述第一BBU接收所述第二BBU使用所述第二线速率发送所述第二BBU的线速率能力信息;所述第一BBU根据所述第一BBU的线速率能力信息和所述第二BBU的线速率能力信息确定所述第一BBU和所述第二BBU进行物理层通信所使用的线速率。线速率能力信息是指BBU在物理层通道上的最大传输能力,第一BBU和第二BBU之间相互交换各自的线速率能力信息,然后根据第一BBU的线速率能力信息和第二BBU的线速率能力信息确定第一BBU和第二BBU进行物理层通信所使用的线速率,例如可以选择第一BBU的线速率能力信息和第二BBU的线速率能力信息中的交集中的最大线速率作为第一BBU和第二BBU进行物理层通信所使用的线速率,从而实现线速率的自协商,无需占用人工的资源进行手动配置。
在本申请实施例的一个可能的设计中,所述第一BBU更新第一线速率,包括:所述第一BBU以第一周期更新所述第一线速率,所述第一周期和第二周期是不相同的周期,所述第二周期是所述第二BBU更新所述第二线速率的周期。第一BBU和第二BBU都以各自的周期来更新各自的线速率值,第一周期和第二周期是不相同的周期,因此第一周期和第二周期中必定有一个长周期、一个短周期,通过第一BBU和第二BBU的周期性更新各自的线速率,可以实现第一BBU和第二BBU之间的线速率盲匹配尝试,从而实现线速率的自协商,无需占用人工的资源进行手动配置。
第五方面,本申请实施例还提供一种基于综合接入系统的配置方法,所述综合接入系统包括:第一基带处理单元BBU和第二BBU,所述第一BBU和所述第二BBU相连接,所述方法包括:所述第二BBU更新第二线速率,并在每次更新之后以更新后的第二线速率向所述第一BBU发送数据帧;所述第二BBU接收所述第一BBU在每次更新第一线速率之后以更新后的第一线速率发送的数据帧;当所述第二线速率与所述第一线速率相等时,所述第二BBU使用所述第二线速率向所述第一BBU发送所述第二BBU的组网关系信息,以及接收所述第一BBU使用所述第一线速率发送的所述第一BBU的组网关系信息;所述第二BBU获取所述第一BBU的通信地址;所述第二BBU根据所述第一BBU的通信地址与所述一BBU建立双向的上层通信通道。第一BBU和第二BBU之间可以进行线速率的自协商,第一BBU向第二BBU分配通信地址,并且第二BBU可以获取到第一BBU的通信地址,第一BBU根据第二BBU的通信地址与第二BBU建立双向的上层通信通道。第一BBU和第二BBU之间通过线速率的自协商、组网关系信息的交换以及通信地址的分配,可以完成上层通信通道的自动建立,不需要人工配置,减少人工成本以及出错的概率。
在本申请实施例的一个可能的设计中,当所述第二线速率与所述第一线速率相等时,所述方法还包括:所述第二BBU使用所述第二速率向所述第一BBU发送所述第二BBU的线速率能力信息;所述第二BBU接收所述第一BBU使用所述第一线速率发送所述第一BBU的线速率能力信息;所述第二BBU根据所述第二BBU的线速率能力信息和所述第一BBU的线速率能力信息确定所述第一BBU和所述第二BBU进行物理层通信所使用的线速率。线速率能力信息是指BBU在物理层通道上的最大传输能力,第一BBU和第二BBU之间相互交换各自的线速率能力信息,然后根据第一BBU的线速率能力信息和第二BBU的线速率能力信息确定第一BBU和第二BBU进行物理层通信所使用的线速率,例如可以选择第一BBU的线速率能力信息和第二BBU的线速率能力信息中的交集中的最大线速率作 为第一BBU和第二BBU进行物理层通信所使用的线速率,从而实现线速率的自协商,无需占用人工的资源进行手动配置。
在本申请实施例的一个可能的设计中,所述第二BBU更新第二线速率,包括:所述第二BBU以第二周期更新所述第二线速率,所述第二周期和第一周期是不相同的周期,所述第一周期是所述第一BBU更新第一线速率的周期。第一BBU和第二BBU都以各自的周期来更新各自的线速率值,第一周期和第二周期是不相同的周期,因此第一周期和第二周期中必定有一个长周期、一个短周期,通过第一BBU和第二BBU的周期性更新各自的线速率,可以实现第一BBU和第二BBU之间的线速率盲尝试,从而实现线速率的自协商,无需占用人工的资源进行手动配置。
第六方面,本申请实施例还提供一种基于综合接入系统的配置方法,所述综合接入系统包括:第一基带处理单元BBU、第二BBU、第一数据交换单元、第二基站网管子系统、第一微射频拉远单元pRRU,所述第一BBU分别和所述第二BBU、所述第一数据交换单元相连接,所述第一数据交换单元和所述第一pRRU相连接,所述第二BBU和所述第二基站网管子系统相连接,所述方法包括:所述第一BBU对所述第一数据交换单元对应的资源以及所述第一pRRU对应的资源进行切片处理,得到多个扇区设备组对象资源;所述第一BBU根据所述第二基站网管子系统的资源配置请求从所述多个扇区设备组对象资源中选择出第一扇区设备组对象资源;所述第一BBU将所述第一扇区设备组对象资源通知给所述第二BBU。第一BBU对第一数据交换单元对应的资源以及第一pRRU对应的资源进行切片处理,得到多个扇区设备组对象资源,第一BBU根据第二基站网管子系统的资源配置请求为第二基站网管子系统分配第一扇区设备组对象资源,实现了RHUB、pRRU等公共资源能够被各运营商设备的独立调用。
在本申请实施例的一个可能的设计中,若所述综合接入系统,还包括:第三BBU和第三基站网管子系统,所述第一BBU和所述第三BBU相连接,所述第三BBU和所述第三基站网管子系统相连接,所述方法还包括:所述第一BBU根据所述第三基站网管子系统的资源配置请求从所述多个扇区设备组对象资源中选择出第二扇区设备组对象资源;所述第一BBU将所述第二扇区设备组对象资源通知给所述第三BBU。若第一BBU通过光纤通道连接第二BBU和第三BBU,则第一BBU还可以根据第三基站网管子系统的资源配置请求为第三基站网管子系统分配第二扇区设备组对象资源,实现了RHUB、pRRU等公共资源能够被各运营商设备的独立调用。
在本申请实施例的一个可能的设计中,所述第一数据交换单元对应的资源包括:射频合路小区能力资源和传输通道带宽资源,所述第一pRRU对应的资源包括:射频资源。
第七方面,本申请实施例还提供一种基于综合接入系统的配置方法,所述综合接入系统包括:第一基带处理单元BBU、第二BBU、第一数据交换单元、第二基站网管子系统、第一微射频拉远单元pRRU,所述第一BBU分别和所述第二BBU、所述第一数据交换单元相连接,所述第一数据交换单元和所述第一pRRU相连接,所述第二BBU和所述第二基站网管子系统相连接,所述方法包括:所述第二BBU获取所述第一BBU通知的第一扇区设备组对象资源;所述第二BBU将所述第一扇区设备组对象资源和所述第二BBU的基带资源进行绑定,并激活所述第一扇区设备组对象资源对应的物理小区。第二BBU获取第一 BBU通知的第一扇区设备组对象资源,第二BBU将第一扇区设备组对象资源和第二BBU的基带资源进行绑定,并激活第一扇区设备组对象资源对应的物理小区,实现了RHUB、pRRU等公共资源能够被各运营商设备的独立调用。
第八方面,本申请实施例还提供一种BBU,所述BBU具体为第一BBU,所述第一BBU属于综合接入系统,所述综合接入系统还包括:第二BBU,所述第一BBU和所述第二BBU相连接,所述第一BBU包括:获取模块,用于获取第一时钟同步信息,所述第一时钟同步信息包括:所述第一BBU的时钟频率和时钟相位;发送模块,用于向所述第二BBU发送所述第一时钟同步信息。第一BBU可以向第二BBU发送第一时钟同步信息,使得第二BBU能够根据该第一时钟同步信息配置第二BBU的本地时钟信息,从而可以实现跨BBU的框间时钟同步。举例说明,通过对BBU模式的配置,通过基站网管子系统的OM通道可以配置第一BBU为主BBU模式,配置第二BBU为从BBU模式。通过支持多BBU的框间汇聚,实现多运营商分BBU接入,解决运营商间运维解耦问题,以及面向未来的基于BBU接入的大容量演进。另外,本申请实施例中还支持多个主BBU对多个从BBU的框间互联,解决一个中心机房覆盖周边多栋楼宇的问题。
在本申请的第八方面中,第一BBU的组成模块还可以执行前述第二方面以及各种可能的实现方式中所描述的步骤,详见前述对第二方面以及各种可能的实现方式中的说明。
第九方面,本申请实施例还提供一种BBU,所述BBU具体为第二BBU,所述第二BBU属于综合接入系统,所述综合接入系统还包括:第一BBU,所述第一BBU和所述第二BBU相连接,所述第二BBU包括:接收模块,用于接收所述第一BBU发送的第一时钟同步信息,所述第一时钟同步信息包括:所述第一BBU的时钟频率和时钟相位;配置模块,用于根据所述第一时钟同步信息配置所述第二BBU的本地时钟信息。第一BBU可以向第二BBU发送第一时钟同步信息,使得第二BBU能够根据该第一时钟同步信息配置第二BBU的本地时钟信息,从而可以实现跨BBU的框间时钟同步。
在本申请的第九方面中,第二BBU的组成模块还可以执行前述第三方面以及各种可能的实现方式中所描述的步骤,详见前述对第三方面以及各种可能的实现方式中的说明。
第十方面,本申请实施例还提供一种BBU,所述BBU具体为第一BBU,所述第一BBU属于综合接入系统,所述综合接入系统还包括:第二BBU,所述第一BBU和所述第二BBU相连接,所述第一BBU包括:线速率更新模块,用于更新第一线速率,并在每次更新之后以更新后的第一线速率向所述第二BBU发送数据帧;接收模块,用于接收所述第二BBU在每次更新第二线速率之后以更新后的第二线速率发送的数据帧;发送模块,用于当所述第一线速率与所述第二线速率相等时,使用所述第一线速率向所述第二BBU发送所述第一BBU的组网关系信息,以及接收所述第二BBU使用所述第二线速率发送的所述第二BBU的组网关系信息;地址分配模块,用于根据所述第二BBU的组网关系信息为所述第二BBU分配通信地址,以及向所述第二BBU发送所述第一BBU的通信地址;通道建立模块,用于根据所述第二BBU的通信地址与所述第二BBU建立双向的上层通信通道。第一BBU和第二BBU之间可以进行线速率的自协商,第一BBU向第二BBU分配通信地址,并且第二BBU可以获取到第一BBU的通信地址,第一BBU根据第二BBU的通信地址与第二BBU建立双向的上层通信通道。第一BBU和第二BBU之间通过线速率的自协商、组网关系信 息的交换以及通信地址的分配,可以完成上层通信通道的自动建立,不需要人工配置,减少人工成本以及出错的概率。举例说明,主BBU和从BBU之间的上层通信通道自建立,减少了服务人员的配置工作量以及开站的复杂度。
在本申请的第十方面中,第一BBU的组成模块还可以执行前述第四方面以及各种可能的实现方式中所描述的步骤,详见前述对第四方面以及各种可能的实现方式中的说明。
第十一方面,本申请实施例还提供一种BBU,所述BBU具体为第二BBU,所述第二BBU属于综合接入系统,所述综合接入系统还包括:第一BBU,所述第一BBU和所述第二BBU相连接,所述第二BBU包括:线速率更新模块,用于更新第二线速率,并在每次更新之后以更新后的第二线速率向所述第一BBU发送数据帧;接收模块,用于接收所述第一BBU在每次更新第一线速率之后以更新后的第一线速率发送的数据帧;发送模块,用于当所述第二线速率与所述第一线速率相等时,所述第二BBU使用所述第二线速率向所述第一BBU发送所述第二BBU的组网关系信息,以及接收所述第一BBU使用所述第一线速率发送的所述第一BBU的组网关系信息;地址获取模块,用于获取所述第一BBU的通信地址;通道建立模块,用于根据所述第一BBU的通信地址与所述一BBU建立双向的上层通信通道。第一BBU和第二BBU之间可以进行线速率的自协商,第一BBU向第二BBU分配通信地址,并且第二BBU可以获取到第一BBU的通信地址,第一BBU根据第二BBU的通信地址与第二BBU建立双向的上层通信通道。第一BBU和第二BBU之间通过线速率的自协商、组网关系信息的交换以及通信地址的分配,可以完成上层通信通道的自动建立,不需要人工配置,减少人工成本以及出错的概率。
在本申请的第十一方面中,第二BBU的组成模块还可以执行前述第五方面以及各种可能的实现方式中所描述的步骤,详见前述对第五方面以及各种可能的实现方式中的说明。
第十二方面,本申请实施例还提供一种BBU,所述BBU具体为第一BBU,所述第一BBU属于综合接入系统,所述综合接入系统还包括:第二BBU、第一数据交换单元、第二基站网管子系统、第一微射频拉远单元pRRU,所述第一BBU分别和所述第二BBU、所述第一数据交换单元相连接,所述第一数据交换单元和所述第一pRRU相连接,所述第二BBU和所述第二基站网管子系统相连接,所述第一BBU包括:切片模块,用于对所述第一数据交换单元对应的资源以及所述第一pRRU对应的资源进行切片处理,得到多个扇区设备组对象资源;资源分配模块,用于根据所述第二基站网管子系统的资源配置请求从所述多个扇区设备组对象资源中选择出第一扇区设备组对象资源;通知模块,用于将所述第一扇区设备组对象资源通知给所述第二BBU。第一BBU对第一数据交换单元对应的资源以及第一pRRU对应的资源进行切片处理,得到多个扇区设备组对象资源,第一BBU根据第二基站网管子系统的资源配置请求为第二基站网管子系统分配第一扇区设备组对象资源,实现了RHUB、pRRU等公共资源能够被各运营商设备的独立调用。
在本申请的第十二方面中,第一BBU的组成模块还可以执行前述第六方面以及各种可能的实现方式中所描述的步骤,详见前述对第六方面以及各种可能的实现方式中的说明。
第十三方面,本申请实施例还提供一种BBU,所述BBU具体为第二BBU,所述第二BBU属于综合接入系统,所述综合接入系统还包括:第一BBU、第二BBU、第一数据交换单元、第二基站网管子系统、第一微射频拉远单元pRRU,所述第一BBU分别和所述第 二BBU、所述第一数据交换单元相连接,所述第一数据交换单元和所述第一pRRU相连接,所述第二BBU和所述第二基站网管子系统相连接,所述第二BBU包括:资源获取模块,用于获取所述第一BBU通知的第一扇区设备组对象资源;资源使用模块,用于将所述第一扇区设备组对象资源和所述第二BBU的基带资源进行绑定,并激活所述第一扇区设备组对象资源对应的物理小区。第二BBU获取第一BBU通知的第一扇区设备组对象资源,第二BBU将第一扇区设备组对象资源和第二BBU的基带资源进行绑定,并激活第一扇区设备组对象资源对应的物理小区,实现了RHUB、pRRU等公共资源能够被各运营商设备的独立调用。
在本申请的第十三方面中,第二BBU的组成模块还可以执行前述第七方面以及各种可能的实现方式中所描述的步骤,详见前述对第七方面以及各种可能的实现方式中的说明。
本申请的第十四方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请的第十五方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
图1为现有技术提供的一种LampSite的组网架构示意图;
图2为本申请实施例提供的一种综合接入系统的组成结构示意图;
图3为本申请实施例提供的另一种综合接入系统的组成结构示意图;
图4为本申请实施例提供的一种综合接入系统的系统架构部署示意图;
图5为本申请实施例提供的另一种综合接入系统的组成结构示意图;
图6为本申请实施例提供的另一种综合接入系统的系统架构部署示意图;
图7为本申请实施例提供的一种基于综合接入系统的配置方法的流程方框示意图;
图8为本申请实施例提供的另一种基于综合接入系统的配置方法的流程方框示意图;
图9为本申请实施例提供的另一种基于综合接入系统的配置方法的流程方框示意图;
图10为本申请实施例提供的另一种基于综合接入系统的配置方法的流程方框示意图;
图11为本申请实施例提供的基于综合接入系统的资源切片的一种应用场景示意图;
图12为本申请实施例提供的第一BBU和第二BBU之间的资源配置场景示意图;
图13为本申请实施例提供的另一种基于综合接入系统的配置方法的流程方框示意图;
图14为本申请实施例提供的另一种基于综合接入系统的配置方法的流程方框示意图;
图15为本申请实施例提供的第一BBU和第二BBU之间的上层通信通道的配置场景示意图;
图16为本申请实施例提供的一种第一BBU的组成结构示意图;
图17为本申请实施例提供的一种第二BBU的组成结构示意图;
图18-a为本申请实施例提供的另一种第一BBU的组成结构示意图;
图18-b为本申请实施例提供的另一种第一BBU的组成结构示意图;
图19-a为本申请实施例提供的另一种第二BBU的组成结构示意图;
图19-b为本申请实施例提供的另一种第二BBU的组成结构示意图;
图20为本申请实施例提供的另一种第一BBU的组成结构示意图;
图21为本申请实施例提供的另一种第二BBU的组成结构示意图;
图22为本申请实施例提供的另一种第一BBU的组成结构示意图;
图23为本申请实施例提供的另一种第二BBU的组成结构示意图。
具体实施方式
本申请实施例提供了一种综合接入系统和基于综合接入系统的配置方法,用于实现综合接入系统的内部解耦合,提供综合接入系统的可靠性和可维护性。
下面结合附图,对本申请的实施例进行描述。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
以下分别进行详细说明。
本申请实施例提供的综合接入系统适用于在单运营商和多运营商统一运维的场景,该综合接入系统可以支持分运营商独立射频(Radio Frequency,RF)信源馈入,支持面向未来大容量及第五代移动通信技术(5th-Generation,5G)场景下的数字信号源的馈入。本申请实施例提供的综合接入系统中使用分布式BBU,至少采用两类BBU:第一BBU和第二BBU,从而使得单个的BBU可以连接各自的网管子系统,实现综合接入系统内的解耦合。请参阅如图2所示,本申请实施例提供的一种综合接入系统100,可以包括:第一BBU101、第二BBU102、第一数据交换单元103、第一基站网管子系统104、第二基站网管子系统105、第一pRRU106,其中,
第一BBU101和第一数据交换单元103相连接,第一BBU101和第一基站网管子系统104相连接,第一BBU101和第二BBU102相连接;
第二BBU102和第二基站网管子系统105相连接;
第一pRRU106和第一数据交换单元103相连接。
其中,本申请实施例提供的综合接入系统中采用至少两类BBU:第一BBU101和第二BBU102,第一BBU101和第二BBU102之间可以通过光纤通道连接,例如,该光纤通道具体可以包括:CPRI通道和媒体访问控制(Media Access Control,MAC)通道。第一BBU101可以通过操作管理(Operate Management,OM)通道连接第一基站网管子系统104,第一基站网管子系统104是用于管理第一BBU的网管子系统,第一基站网管子系统可提供射频馈入功能,提供对第一数据交换单元对应的资源、第一pRRU对应的资源的切片功能,提供第一BBU和第二BBU之间的框间互联功能。第二BBU102通过OM通道和第二基站网管子系统105相连接,运营商可以通过第二基站网管子系统105对基带资源进行配置和管理。
本申请实施例中第一BBU101作为主BBU,可以设置在楼宇内,第二BBU102作为从 BBU,可以设置在中心机房内,因此可以实现主从BBU的分布式设计。第一BBU101连接有第一基站网管子系统104,通过该第一基站网管子系统104可以实现对射频资源的配置和管理,第二BBU102连接有第二基站网管子系统105,从而第二基站网管子系统105可以根据运营商的要求配置基带资源。通过主从BBU的分布式设计,可以实现综合接入系统内的解耦合,运营商的运营维护只需要通过基站网管子系统就可以完成,提高了综合接入系统的可靠性和可维护性。
在本申请的一些实施例中,第一BBU和第二BBU根据各自的功能需要使用的组成结构,第一BBU可以包括:射频板、接口板、主控板和直流电源(Direct Current,DC),第二BBU可以包括:基带板、主控板、DC。第一BBU的接口板可以分别连接第一数据交换单元、第二BBU的基带板,第一BBU的主控板可以连接第一基站网管子系统,第二BBU的主控板可以连接第二基站网管子系统。在本申请的另一些实施例中,第二BBU除了包括基带板、主控板、DC之外,还可以包括接口板,则第一BBU的接口板可以连接第二BBU的接口板。
需要说明的是,在本申请的一些实施例中,第一BBU101和第一数据交换单元103之间可以采用光纤通道相连接,该光纤通道具体可以包括:CPRI通道和MAC通道,第一数据交换单元103具体可以为远端CPRI数据交换单元,在后续实施例中也可以称为“RHUB”。RHUB可以实现第一BBU101与第一pRRU106之间的通信,第一pRRU106实现射频信号处理功能。
在本申请的一些实施例中,请参阅如图3所示,综合接入系统100,还包括:第三BBU107和第三基站网管子系统108,其中,
第一BBU101和第三BBU107相连接;
第三BBU107和第三基站网管子系统108相连接。
其中,第一BBU101和第三BBU107之间可以通过光纤通道连接,例如,该光纤通道具体可以包括:CPRI通道和MAC通道。第三BBU107可以通过OM通道连接第三基站网管子系统108,运营商可以通过第三基站网管子系统108对基带资源进行配置和管理。
在本申请的上述实施例中,综合接入系统100内设置有第一BBU101作为主BBU,还设置有第二BBU102和第三BBU107均作为从BBU,并且第二BBU102和第三BBU107分别连接有各自的基站网管子系统,例如第二BBU102和第二基站网管子系统105相连接,第三BBU107和第三基站网管子系统108相连接,因此在多运营商共建共享场景下,不同的运营商可以分别使用第二基站网管子系统和第三基站网管子系统,从而可以实现多运营商之间的资产解耦,运营维护解耦,业务开通和升级解耦。其中,综合接入系统100内包括的从BBU可以不局限于第二BBU和第三BBU,当综合接入系统内与第一BBU(即主BBU)通过光纤通道连接多个从BBU时,每个从BBU都可以单独连接一个基站网管子系统,对于不同的运营商,每个运营商可以分别使用一个基站网管子系统,各个运营商之间是相互解耦的,从而运营商之间互不干涉。
如图5所示,为本申请实施例提供的一种综合接入系统的系统架构部署示意图。综合接入系统内设置有一个主BBU和三个从BBU(从BBU1、从BBU2和从BBU3),主BBU设置在远端的楼宇内,三个从BBU设置在近端的中心机房内,主BBU包括有射频板R、 接口板、主控板、DC,主BBU的接口板分别连接从三个从BBU的基带板,主BBU的接口板还通过CPRI通道和MAC通道连接RHUB,RHUB通过CPRI通道的电接口(也称为CPRI-E)连接pRRU,或者RHUB也可以通过MAC通道的电接口连接pRRU。主BBU的主控板连接室分网络统一管理子系统(图5中缩写为BTS(R))。主BBU的射频板R分别连接射频拉远单元(Remote Radio Unit,RRU),图5中以综合接入系统内设置还有三个RRU为例,三个RRU分别为RRU-A、RRU-B和RRU-C,其中每个RRU都支持全球移动通信系统(Global System for Mobile communication,GSM)、通用移动通信系统(Universal Mobile Telecommunications System,UMTS)、长期演进(Long Term Evolution,LTE)、码分多址(CodeDivisionMultipleAccess,CDMA),即图5中所示的“G/U/L/C”。每个从BBU包括有基带板和主控板,从BBU的基带板连接主BBU的接口板,从BBU的主控板分别连接基带网管子系统(图5中缩写为BTS(UL)),例如从BBU1的主控板通过OM通道连接一个基站网管子系统,运营商A可以通过该基站网管子系统对基带资源进行配置和管理。从BBU2的主控板通过OM通道连接一个基站网管子系统,运营商B可以通过该基站网管子系统对基带资源进行配置和管理。从BBU3的主控板通过OM通道连接一个基站网管子系统,运营商C可以通过该基站网管子系统对基带资源进行配置和管理。本申请实施例通过支持多个从BBU汇聚到主BBU,实现多运营商分BBU的单个接入,解决运营商间运维解耦问题,适用于面向未来的大容量演进和5G演进的场景。
在本申请的一些实施例中,请参阅如图5所示,综合接入系统,还包括:第四BBU109、第二数据交换单元110、第四基站网管子系统111、第二pRRU112,其中,
第四BBU109和第二数据交换单元110相连接,第四BBU109和第四基站网管子系统111相连接,第四BBU109和第二BBU102相连接;
第二pRRU112和第二数据交换单元110相连接。
其中,综合接入系统中可以采用第一BBU101和第四BBU109都作为主BBU,例如第一BBU101和第四BBU109可以分别设置在不同的楼宇内,第一BBU101和第四BBU109可以分别使用不同的光纤通道连接第二BBU102,第二BBU102可以设置在中心机房内,从而可以支持多个主BBU对从BBU的框间互联,解决一个中心机房覆盖周边多栋楼宇的问题。
需要说明的是,在本申请的上述实施例中,若需要接入多个运营商,则每个运营商都可以使用一个从BBU和一个基站网管子系统,若有多个主BBU时,每个主BBU都可以使用分别连接所有的从BBU,连接方式详见前述第一BBU101和第四BBU109分别与第二BBU102的连接方式。
如图6所示,为本申请实施例提供的另一种综合接入系统的系统架构部署示意图。综合接入系统内设置有三个主BBU和三个从BBU(从BBU1、从BBU2和从BBU3),主BBU0设置在远端的楼宇0内,主BBU1设置在远端的楼宇1内,主BBU2设置在远端的楼宇2内。三个从BBU设置在近端的中心机房内。以楼宇0内设置的主BBU为例,主BBU包括有射频板R、接口板、主控板、DC,主BBU的接口板分别连接从三个从BBU的基带板,主BBU的接口板还通过CPRI通道和MAC通道连接RHUB,RHUB通过CPRI-E接口或者MAC通道的电接口连接pRRU,主BBU的主控板连接室分网络统一管理子系统(图5 中缩写为BTS(R))。主BBU的射频板R分别连接RRU,图6中以综合接入系统内设置还有三个RRU为例,三个RRU分别为RRU-A、RRU-B和RRU-C。通过图6所示,在综合接入系统内可以设置多个主BBU,也可以设置多个从BBU,因此可以支持多个主BBU对从BBU的框间互联,解决一个中心机房覆盖周边多栋楼宇的问题。
通过前述对本申请实施例提供的综合接入系统的组成结构的说明可知,综合接入系统内包括有两类BBU:第一BBU和第二BBU,第一BBU和第二BBU之间相连接,从而进行BBU间的通信。另外第一BBU和第一基站网管子系统相连接,第二BBU和第二基站网管子系统相连接,因此可以通过第一基站网管子系统可以对第一BBU进行射频资源的单独配置和管理,通过第二基站网管子系统可以对第二BBU进行基带资源的单独配置和管理,因此可以实现射频资源和基带资源的独立管理,综合接入系统的可靠性和可维护性得到很大提高。
前述实施例介绍本申请实施例提供的综合接入系统,接下来介绍基于前述的综合接入系统的配置方法,该方法可以实现综合接入系统内的时钟配置。本申请实施例提供的配置方法适用于综合接入系统,如图2所示,该综合接入系统,包括:第一BBU和第二BBU,第一BBU和第二BBU相连接,例如第一BBU和第二BBU之间通过光纤通道连接,如图7所示,本申请实施例提供的配置方法可以包括如下步骤:
701、第一BBU获取第一时钟同步信息,第一时钟同步信息包括:第一BBU的时钟频率和时钟相位。
702、第一BBU向第二BBU发送第一时钟同步信息。
其中,第一BBU作为主BBU,第一BBU需要向第二BBU提供参考时钟,第二BBU根据第一BBU提供的参考时钟可以校正第二BBU的本地时钟,从而可以实现跨BBU的框间时钟同步。其中,第一BBU可以从本地时钟源获取到第一BBU的时钟频率和时钟相位,然后第一BBU向第二BBU发送第一时钟同步信息。另外,第一BBU还可以与时钟服务器交互,从时钟服务器获取到时钟频率和时钟相位,然后第一BBU根据该时钟频率和时钟相位校正第一BBU的本地时钟源,例如可以使用锁相环路(Phase-Locked Loop,PLL)进行反馈控制,利用时钟服务器提供的外部参考信号控制环路内部时钟信号的频率和相位。第一BBU和第二BBU之间可以通过光纤通道连接,该光纤通道具体可以包括:CPRI通道和MAC通道,第一BBU可以将第一时钟同步信息携带在CPRI帧上,然后通过CPRI通道发送给第二BBU,或者第一BBU也可以将第一时钟同步信息携带在MAC帧上,然后通过MAC通道发送给第二BBU。
在本申请的一些实施例中,结合图3所示,若综合接入系统,还包括:第三BBU,第三BBU和第一BBU相连接,在这种实现场景下,本申请实施例提供的综合接入系统的配置方法,还可以包括如下步骤:
A1、第一BBU向第三BBU发送第一时钟同步信息。
其中,第一BBU作为主BBU连接两个从BBU时,第一BBU在获取到第一时钟同步信息之后,第一BBU可以向第二BBU、第三BBU分别发送第一时钟同步信息,使得第三BBU作为从BBU,也可以收到第一BBU的第一时钟同步信息,该第三BBU可以使用该第一时钟同步信息校正第三BBU的本地时钟源,从而可以实现跨BBU的框间时钟同步。
需要说明的是,在本申请的前述实施例中从第一BBU侧描述了时钟同步的过程,可以理解的是,前述第四BBU所执行的方法与第一BBU所执行的方法相类似,第四BBU可以生成第二时钟同步信息,然后第四BBU向第二BBU发送该第二时钟同步信息,该第二时钟同步信息包括:第四BBU的时钟频率和时钟相位。
通过前述图7所示的时钟配置过程的举例说明可知,第一BBU可以向第二BBU发送第一时钟同步信息,使得第二BBU能够根据该第一时钟同步信息配置第二BBU的本地时钟信息,从而可以实现跨BBU的框间时钟同步。举例说明,通过对BBU模式的配置,通过基站网管子系统的OM通道可以配置第一BBU为主BBU模式,配置第二BBU为从BBU模式。通过支持多BBU的框间汇聚,实现多运营商分BBU接入,解决运营商间运维解耦问题,以及面向未来的基于BBU接入的大容量演进。另外,本申请实施例中还支持多个主BBU对多个从BBU的框间互联,解决一个中心机房覆盖周边多栋楼宇的问题。
前述实施例从第一BBU一侧介绍了基于前述的综合接入系统的配置方法,接下来从第二BBU一侧介绍本申请实施例提供的基于综合接入系统的配置方法,该方法可以实现综合接入系统内的时钟配置。本申请实施例提供的配置方法适用于综合接入系统,如图2所示,该综合接入系统,包括:第一BBU和第二BBU,第一BBU和第二BBU相连接,例如第一BBU和第二BBU之间通过光纤通道连接,如图8所示,本申请实施例提供的配置方法可以包括如下步骤:
801、第二BBU接收第一BBU发送的第一时钟同步信息,第一时钟同步信息包括:第一BBU的时钟频率和时钟相位。
其中,第二BBU和第一BBU之间通过光纤通道连接,第一BBU向第二BBU发送第一时钟同步信息,第二BBU可以通过该光纤通道接收到第一时钟同步信息,第二BBU解析该第一时钟同步信息,可以到第一BBU的时钟频率和时钟相位。
802、第二BBU根据第一时钟同步信息配置第二BBU的本地时钟信息。
其中,第二BBU从第一BBU获取到第一时钟同步信息之后,第二BBU以第一BBU的时钟频率和时钟相位作为参考时钟源,校正第二BBU的本地时钟信息。举例说明,第二BBU可以使用PLL进行反馈控制,利用第一BBU提供的外部参考信号控制环路内部时钟信号的频率和相位。
在本申请的一些实施例中,综合接入系统还包括:第四BBU,第四BBU和第二BBU相连接,在本申请的前述实施例中描述了第四BBU所执行的方法,第四BBU可以生成第二时钟同步信息,然后第四BBU向第二BBU发送该第二时钟同步信息,该第二时钟同步信息包括:第四BBU的时钟频率和时钟相位。在这种场景下,本申请实施例提供的配置方法除了执行前述步骤之外,还包括:
B1、第二BBU接收第四BBU发送的第二时钟同步信息,第二时钟同步信息包括:第四BBU的时钟频率和时钟相位。
其中,第二BBU除了接收到第一时钟同步信息,第二BBU还接收到第四BBU的第二时钟同步信息,第二BBU解析该第二时钟同步信息,可以到第四BBU的时钟频率和时钟相位。第二BBU和第四BBU都作为主BBU时,可以分别向作为从BBU的第二BBU发送时钟同步信息,则第二BBU可以分别获取到第一BBU的时钟频率和时钟相位、第四BBU 的时钟频率和时钟相位。
在前述执行步骤B1的实现场景下,步骤802第二BBU根据第一时钟同步信息配置第二BBU的本地时钟信息,包括:
C1、第二BBU根据第一时钟同步信息、第二时钟同步信息配置第二BBU的本地时钟信息。
其中,第二BBU分别获取到第一时钟同步信息和第二时钟同步新增时,第二BBU可以得到第一BBU的时钟频率和时钟相位、第四BBU的时钟频率和时钟相位,第二BBU通过这两个主BBU的时钟同步信息确定第二BBU的本地时钟信息。其中,第二BBU配置本地时钟信息的方式可以有多种,举例说明如下,步骤C1第二BBU根据第一时钟同步信息、第二时钟同步信息配置第二BBU的本地时钟信息,包括:
C11、第二BBU从第一时钟同步信息和第二时钟同步信息中选择出时钟质量较高的时钟同步信息,并根据时钟质量较高的时钟同步信息配置第二BBU的本地时钟信息。
其中,对于第一BBU和第四BBU分别发送给第二BBU的时钟同步信息,第二BBU可以选择出时钟质量较高的时钟同步信息,并根据时钟质量较高的时钟同步信息配置第二BBU的本地时钟信息。其中,时钟质量是指时间源的时钟信号质量,时钟质量可以通过时钟源的稳定度来衡量,也可以通过时钟源的准确度来衡量,或者通过时钟源的稳定度和准确度来衡量,其中,时钟源有两个重要指标,一个是稳定度,一个是准确度。准确度是指与标称值的偏差,稳定度是指随外部因素变化而产生的变化量。举例说明,稳定度和准确度越高,时钟源具有越高的时钟质量。不限定的是,在本申请的一些实施例中,第二BBU根据第一时钟同步信息、第二时钟同步信息配置第二BBU的本地时钟信息,除了前述的举例说明之外,第二BBU还可以从第一时钟同步信息和第二时钟同步信息中选择出稳定度较高的时钟同步信息,并根据稳定度较高的时钟同步信息配置第二BBU的本地时钟信息。选择稳定度较高的时钟同步信息作为第二BBU的本地时钟信息,可以保证第二BBU的时钟稳定度。
通过前述图8所示的时钟配置过程的举例说明可知,第一BBU可以向第二BBU发送第一时钟同步信息,使得第二BBU能够根据该第一时钟同步信息配置第二BBU的本地时钟信息,从而可以实现跨BBU的框间时钟同步。
接下来对图7和图8所示的时钟配置过程进行举例说明,请参阅图4所示,以主BBU和从BBU之间的时钟同步为例进行说明,本申请实施例可以实现基于面板CPRI互联的框间时钟软同步,即主BBU通过框间的光纤,通过CPRI帧或者MAC帧,把主BBU的时钟频率和相位信息传递给从BBU。首先对BBU进行模式选择,将第一BBU的模式配置为主(Host)BBU模式,将第二BBU的模式配置为从(Client)BBU模式,对于本申请实施例提供的综合接入系统,BBU通过基站网管子系统的OM通道,可以配置为主BBU,或者配置为从BBU。
通过室分网络统一管理子系统对主BBU进行配置,从主BBU的本地时钟源获取时钟,并把时钟同步信息,通过互联的光纤(即CPRI通道或者MAC通道)广播给其他的从BBU。当BBU配置为从BBU时,从互联的光纤(CPRI通道或者MAC通道)恢复出时钟,从BBU将恢复出的时钟作为从BBU的参考时钟源,实现跨框的时钟同步。
前述实施例介绍本申请实施例提供的综合接入系统,接下来介绍基于前述的综合接入系统的配置方法,该方法可以实现综合接入系统内的上层通信通道建立。本申请实施例中主从BBU之间的上层通信通道可以自动建立,不需要人工配置,减少人工成本以及出错的概率。本申请实施例提供的配置方法适用于综合接入系统,如图2所示,该综合接入系统,包括:第一BBU和第二BBU,第一BBU和第二BBU相连接,例如第一BBU和第二BBU之间通过光纤通道连接,如图9所示,本申请实施例提供的配置方法可以包括如下步骤:
901、第一BBU更新第一线速率,并在每次更新之后以更新后的第一线速率向所述第二BBU发送数据帧。
其中,第一BBU使用的线速率定义为“第一线速率”,第二BBU使用的线速率定义为“第二线速率”,其中,线速率是指物理层通道的线路速率。第一BBU不断的更新第一线速率,即第一BBU更新第一线速率的速率取值,并且在每次更新之后都以更新后的第一线速率向所述第二BBU发送数据帧。同样的,第二BBU不断的更新第二线速率,即第二BBU更新第二线速率的速率取值,并且在每次更新之后都向第一BBU发送更新后的基于第二线速率的数据帧。
在本申请的一些实施例中,步骤901第一BBU更新第一线速率,包括:
D1、第一BBU以第一周期更新第一线速率,第一周期和第二周期是不相同的周期,第二周期是第二BBU更新第二线速率的周期。
其中,第一BBU和第二BBU都以各自的周期来更新各自的线速率值,第一周期和第二周期是不相同的周期,因此第一周期和第二周期中必定有一个长周期、一个短周期,通过第一BBU和第二BBU的周期性更新各自的线速率,可以实现第一BBU和第二BBU之间的线速率盲匹配尝试,从而实现线速率的自协商,无需占用人工的资源进行手动配置。
902、第一BBU接收第二BBU在每次更新第二线速率之后以更新后的第二线速率发送的数据帧。
其中,第二BBU在每次更新之后都向第一BBU发送更新后的基于第二线速率的数据帧,则第二BBU通过光纤通道不断的向第一BBU发送基于第二线速率的数据帧,第一BBU接收第二BBU不断发送的基于第二线速率的数据帧,第一BBU需要判断发送出去的第一线速率和接收到的第二线速率是否相等,若两者相等时触发后续步骤903,若两者不相等时继续执行步骤901和步骤902。
903、当第一线速率与第二线速率相等时,第一BBU使用第一线速率向第二BBU发送第一BBU的组网关系信息,以及接收第二BBU使用第二线速率发送的第二BBU的组网关系信息。
其中,在第一BBU发送的第一线速率和接收到的第二线速率相等时,说明第一BBU和第二BBU之间完成速率协商,此时第一BBU可以使用第一线速率向第二BBU发送第一BBU的组网关系信息,以及接收第二BBU使用第二线速率发送的第二BBU的组网关系信息。其中,第一BBU的组网关系信息是指第一BBU连接的BBU的个数,以及所连接的接口板上的端口,第二BBU的组网关系信息是指第二BBU连接的BBU的个数,以及所连接的基带板或者接口板上的端口。第一BBU和第二BBU之间相互交换各自的组网关系信息,使得第一BBU和第二BBU都可以根据双方的组网关系信息生成网络拓扑图,通过该网络 拓扑图可以方便的获取多BBU的框间互联关系。
在本申请的一些实施例中,当第一线速率与第二线速率相等时,除了执行前述步骤903,本申请实施例提供的方法还可以包括:
E1、第一BBU使用第一线速率向第二BBU发送第一BBU的线速率能力信息;
E2、第一BBU接收第二BBU使用第二线速率发送第二BBU的线速率能力信息;
E3、第一BBU根据第一BBU的线速率能力信息和第二BBU的线速率能力信息确定第一BBU和第二BBU进行物理层通信所使用的线速率。
其中,线速率能力信息是指BBU在物理层通道上的最大传输能力,第一BBU和第二BBU之间相互交换各自的线速率能力信息,然后根据第一BBU的线速率能力信息和第二BBU的线速率能力信息确定第一BBU和第二BBU进行物理层通信所使用的线速率,例如可以选择第一BBU的线速率能力信息和第二BBU的线速率能力信息中的交集中的最大线速率作为第一BBU和第二BBU进行物理层通信所使用的线速率,从而实现线速率的自协商,无需占用人工的资源进行手动配置。
904、第一BBU根据第二BBU的组网关系信息为第二BBU分配通信地址,以及向第二BBU发送第一BBU的通信地址。
在本申请的实施例中,第一BBU和第二BBU之间相互交换各自的组网关系信息之后,第一BBU根据第二BBU的组网关系信息为第二BBU分配通信地址,向第二BBU发送第一BBU的通信地址,使得第二BBU能够获取到第一BBU的通信地址,其中,通信地址可以是BBU所在位置的位置标识符。
905、第一BBU根据第二BBU的通信地址与第二BBU建立双向的上层通信通道。
其中,第一BBU为第二BBU分配通信地址,第一BBU可以获取到该第二BBU的通信地址,第二BBU也可以获取到第一BBU的通信地址,从而两个BBU之间可以建立双向的上层通信通道,该上层通信通道可用于第一BBU和第二BBU之间的相互通信,例如第一BBU基于该上层通信通道向第二BBU分配资源。
通过前述图9所示的上层通信通道的建立过程的举例说明可知,第一BBU和第二BBU之间可以进行线速率的自协商,第一BBU向第二BBU分配通信地址,并且第二BBU可以获取到第一BBU的通信地址,第一BBU根据第二BBU的通信地址与第二BBU建立双向的上层通信通道。第一BBU和第二BBU之间通过线速率的自协商、组网关系信息的交换以及通信地址的分配,可以完成上层通信通道的自动建立,不需要人工配置,减少人工成本以及出错的概率。举例说明,主BBU和从BBU之间的上层通信通道自建立,减少了服务人员的配置工作量以及开站的复杂度。
前述实施例从第一BBU一侧介绍了基于前述的综合接入系统的配置方法,接下来从第二BBU一侧介绍基于综合接入系统的配置方法,该方法可以实现综合接入系统内的上层通信通道建立。本申请实施例中主从BBU之间的上层通信通道可以自动建立,不需要人工配置,减少人工成本以及出错的概率。本申请实施例提供的配置方法适用于综合接入系统,如图2所示,该综合接入系统,包括:第一BBU和第二BBU,第一BBU和第二BBU相连接,例如第一BBU和第二BBU之间通过光纤通道连接,如图10所示,本申请实施例提供的配置方法可以包括如下步骤:
1001、第二BBU更新第二线速率,并在每次更新之后以更新后的第二线速率向第一BBU发送数据帧。
其中,第一BBU使用的线速率定义为“第一线速率”,第二BBU使用的线速率定义为“第二线速率”,其中,线速率是指物理层通道的线路速率。第一BBU不断的更新第一线速率,即第一BBU更新第一线速率的速率取值,并且在每次更新之后都以更新后的第一线速率向所述第二BBU发送数据帧。同样的,第二BBU不断的更新第二线速率,即第二BBU更新第二线速率的速率取值,并且在每次更新之后都向第一BBU发送更新后的基于第二线速率的数据帧。
在本申请的一些实施例中,步骤1001第二BBU更新第二线速率,包括:
F1、第二BBU以第二周期更新第二线速率,第二周期和第一周期是不相同的周期,第一周期是第一BBU更新第一线速率的周期。
其中,第一BBU和第二BBU都以各自的周期来更新各自的线速率值,第一周期和第二周期是不相同的周期,因此第一周期和第二周期中必定有一个长周期、一个短周期,通过第一BBU和第二BBU的周期性更新各自的线速率,可以实现第一BBU和第二BBU之间的线速率盲尝试,从而实现线速率的自协商,无需占用人工的资源进行手动配置。
1002、第二BBU接收第一BBU在每次更新第一线速率之后以更新后的第一线速率发送的数据帧。
其中,第一BBU在每次更新之后都以更新后的第一线速率向所述第二BBU发送数据帧,则第一BBU通过光纤通道不断的向第二BBU发送基于第一线速率的数据帧,第二BBU接收第一BBU不断发送的基于第一线速率的数据帧,第二BBU需要判断发送出去的第二线速率和接收到的第一线速率是否相等,若两者相等时触发后续步骤1003,若两者不相等时继续执行步骤1001和步骤1002。
1003、当第二线速率与第一线速率相等时,第二BBU使用第二线速率向第一BBU发送第二BBU的组网关系信息,以及接收第一BBU使用第一线速率发送的第一BBU的组网关系信息。
其中,在第二BBU发送的第二线速率和接收到的第一线速率相等时,说明第一BBU和第二BBU之间完成速率协商,此时第二BBU可以使用第二线速率向第一BBU发送第二BBU的组网关系信息,以及接收第一BBU使用第一线速率发送的第一BBU的组网关系信息。其中,第一BBU的组网关系信息是指第一BBU连接的BBU的个数,以及所连接的接口板上的端口,第二BBU的组网关系信息是指第二BBU连接的BBU的个数,以及所连接的基带板或者接口板上的端口。第一BBU和第二BBU之间相互交换各自的组网关系信息,使得第一BBU和第二BBU都可以根据双方的组网关系信息生成网络拓扑图,通过该网络拓扑图可以方便的获取多BBU的框间互联关系。
在本申请的一些实施例中,当第一线速率与第二线速率相等时,除了执行前述步骤1003,本申请实施例提供的方法还可以包括:
G1、第二BBU使用第二速率向第一BBU发送第二BBU的线速率能力信息;
G2、第二BBU接收第一BBU使用第一线速率发送第一BBU的线速率能力信息;
G3、第二BBU根据第二BBU的线速率能力信息和第一BBU的线速率能力信息确定 第一BBU和第二BBU进行物理层通信所使用的线速率。
其中,线速率能力信息是指BBU在物理层通道上的最大传输能力,第一BBU和第二BBU之间相互交换各自的线速率能力信息,然后根据第一BBU的线速率能力信息和第二BBU的线速率能力信息确定第一BBU和第二BBU进行物理层通信所使用的线速率,例如可以选择第一BBU的线速率能力信息和第二BBU的线速率能力信息中的交集中的最大线速率作为第一BBU和第二BBU进行物理层通信所使用的线速率,从而实现线速率的自协商,无需占用人工的资源进行手动配置。
1004、第二BBU获取第一BBU的通信地址。
在本申请的实施例中,第一BBU和第二BBU之间相互交换各自的组网关系信息之后,第一BBU根据第二BBU的组网关系信息为第二BBU分配通信地址,向第二BBU发送第一BBU的通信地址,使得第二BBU能够获取到第一BBU的通信地址,其中,通信地址可以是BBU所在位置的位置标识符。
1005、第二BBU根据第一BBU的通信地址与一BBU建立双向的上层通信通道。
其中,第一BBU为第二BBU分配通信地址,第一BBU可以获取到该第二BBU的通信地址,第二BBU也可以获取到第一BBU的通信地址,从而两个BBU之间可以建立双向的上层通信通道,该上层通信通道可用于第一BBU和第二BBU之间的相互通信,例如第一BBU基于该上层通信通道向第二BBU分配资源。
通过前述图10所示的上层通信通道的建立过程的举例说明可知,第一BBU和第二BBU之间可以进行线速率的自协商,第一BBU向第二BBU分配通信地址,并且第二BBU可以获取到第一BBU的通信地址,第一BBU根据第二BBU的通信地址与第二BBU建立双向的上层通信通道。第一BBU和第二BBU之间通过线速率的自协商、组网关系信息的交换以及通信地址的分配,可以完成上层通信通道的自动建立,不需要人工配置,减少人工成本以及出错的概率。
接下来对图9和图10所示的上层通信通道的建立过程进行举例说明,请参阅图11所示,为主BBU和从BBU之间的上层通信通道自建立的过程。主BBU的端口模式设置为主BBU模式,从BBU的端口模式设置为从BBU模式。以主BBU和从BBU之间采用CPRI通道为例,主BBU和从BBU以不同的周期切换CPRI通道的线速率,达成线速率自协商,速率免配,减少人工成本及出错的概率。主BBU和从BBU通过CPRI L1控制字交换组网关系信息,实现互联网络拓扑自发现。主BBU对从BBU分配通信地址,双方按给定的通信地址,在发现的CPRI通道上建立双向的上层通信通道,客户界面通道免配置。
前述实施例介绍本申请实施例提供的综合接入系统,接下来介绍基于前述的综合接入系统的配置方法,该方法可以实现综合接入系统内的资源配置。本申请实施例中主BBU可以向从BBU分配资源。本申请实施例提供的配置方法适用于综合接入系统,如图2所示,该综合接入系统,包括:第一BBU、第二BBU、第一数据交换单元、第二基站网管子系统、第一pRRU,第一BBU分别和第二BBU、第一数据交换单元相连接,第一数据交换单元和第一pRRU相连接,第二BBU和第二基站网管子系统相连接。如图12所示,本申请实施例提供的配置方法可以包括如下步骤:
1201、第一BBU对第一数据交换单元对应的资源以及第一pRRU对应的资源进行切片 处理,得到多个扇区设备组对象资源。
其中,第一BBU负责管理数据交换单元(即RHUB),pRRU等物理共享设备,第一BBU可以对第一pRRU对应的资源和RHUB对应的资源进行切片处理。例如第一BBU对第一pRRU对应的资源和RHUB对应的资源进行虚拟化,将这些资源抽象为资源对象,然后对这些资源对象进行切片处理,将切片处理得到的切片资源定义为多个扇区设备对象资源。其中,扇区设备对象资源是指在室分综合接入系统内一个或多个pRRU在下行传输时采用广播方式发送同一个载波信号,或在上行传输时通过射频合路形成同一个载波信号的资源对象。举例说明,第一BBU作为主BBU,用于管理RHUB对应的资源和pRRU对应的资源,第一BBU将RHUB对应的资源切分为3个射频合路资源切片,第一BBU将pRRU对应的载波资源切分为3个载波资源分片,则一个RHUB的射频合路资源分片和对应的1个或多个pRRU上的载波资源分片组合起来就可以构成一个扇区设备组对象资源,在上述举例场景下,第一BBU可以生成3个扇区设备组对象资源。
在本申请的一些实施例中,第一数据交换单元对应的资源包括:射频合路小区能力资源和传输通道带宽资源,第一pRRU对应的资源包括:射频资源。其中,若第一BBU和第一数据交换单元之间通过CPRI通道连接,则该传输通道带宽资源具体为CPRI带宽资源。其中,射频资源可以包括:网络制式、频段、发射功率、带宽,射频合路小区能力资源是指射频合路小区个数等资源。
1202、第一BBU根据第二基站网管子系统的资源配置请求从多个扇区设备组对象资源中选择出第一扇区设备组对象资源。
其中,第一BBU和第二BBU相连接,第二BBU和第二基站网管子系统相连接,第一BBU可以通过第二BBU获取到第二基站网管子系统的资源配置请求,然后第一BBU从多个扇区设备组对象资源中为第二基站网管子系统选择出第一扇区设备组对象资源。举例说明,第一BBU按各运营商的实际情况在第一BBU侧进行统一的资源分配,例如运营商采用LTE制式、20M带宽,需要建立两个20M物理小区,第一BBU可以根据此运营商的资源配置为其分配扇区设备组对象资源
1203、第一BBU将第一扇区设备组对象资源通知给第二BBU。
在本申请的实施例中,第一BBU通过前述步骤1202选择出第一扇区设备组对象资源之后,第一BBU向第二BBU通知第一扇区设备组对象资源,例如第一BBU和第二BBU之间采用光纤通道,第一BBU可以通过该光纤通道通知第二BBU。第二BBU调用第一BBU侧分配好的资源并进行绑定,例如第一BBU侧分配的射频资源和第二BBU侧的基带资源进行绑定,用以激活对应的BBU小区及相应的业务。第一BBU通过切片处理,实现了RHUB、pRRU等公共资源能够被各运营商设备的独立调用。
在本申请的一些实施例中,除了执行前述的步骤之外,本申请实施例提供的综合接入系统,还包括:第三BBU和第三基站网管子系统,如图5所示,第一BBU和第三BBU相连接,第三BBU和第三基站网管子系统相连接,本申请实施例提供的方法还包括:
H1、第一BBU根据第三基站网管子系统的资源配置请求从多个扇区设备组对象资源中选择出第二扇区设备组对象资源;
H2、第一BBU将第二扇区设备组对象资源通知给第三BBU。
其中,若第一BBU通过光纤通道连接第二BBU和第三BBU,则第一BBU还可以根据第三基站网管子系统的资源配置请求为第三基站网管子系统分配第二扇区设备组对象资源,实现了RHUB、pRRU等公共资源能够被各运营商设备的独立调用。
通过前述图12所示的资源配置过程的举例说明可知,第一BBU对第一数据交换单元对应的资源以及第一pRRU对应的资源进行切片处理,得到多个扇区设备组对象资源,第一BBU根据第二基站网管子系统的资源配置请求为第二基站网管子系统分配第一扇区设备组对象资源,实现了RHUB、pRRU等公共资源能够被各运营商设备的独立调用。
前述实施例从第一BBU一侧介绍了基于前述的综合接入系统的配置方法,接下来从第二BBU一侧进行举例说明,该方法可以实现综合接入系统内的资源配置。本申请实施例中主BBU可以向从BBU分配资源。本申请实施例提供的配置方法适用于综合接入系统,如图2所示,该综合接入系统,包括:第一BBU、第二BBU、第一数据交换单元、第二基站网管子系统、第一pRRU,第一BBU分别和第二BBU、第一数据交换单元相连接,第一数据交换单元和第一pRRU相连接,第二BBU和第二基站网管子系统相连接。如图13所示,本申请实施例提供的配置方法可以包括如下步骤:
1301、第二BBU获取第一BBU通知的第一扇区设备组对象资源。
1302、第二BBU将第一扇区设备组对象资源和第二BBU的基带资源进行绑定,并激活第一扇区设备组对象资源对应的物理小区。
其中,第一BBU和第二BBU之间采用光纤通道,第一BBU可以通过该光纤通道通知第二BBU。第二BBU调用第一BBU侧分配好的资源并进行绑定,例如第一BBU侧分配的射频资源和第二BBU侧的基带资源进行绑定,用以激活对应的BBU小区及相应的业务,这里的基带资源是指基站侧的物理小区资源。第二BBU可以根据第一第一BBU的分配使用相应的扇区设备组对象资源,实现了RHUB、pRRU等公共资源能够被各运营商设备的独立调用。
通过前述图13所示的资源配置过程的举例说明可知,第二BBU获取第一BBU通知的第一扇区设备组对象资源,第二BBU将第一扇区设备组对象资源和第二BBU的基带资源进行绑定,并激活第一扇区设备组对象资源对应的物理小区,实现了RHUB、pRRU等公共资源能够被各运营商设备的独立调用。
接下来对图12和图13所示的资源分配过程进行举例说明,请参阅图14所示,为主BBU和从BBU之间的资源分配过程的一种举例说明。主BBU连接基站网管子系统、RHUB,RHUB连接pRRU。主BBU连接有3个从BBU,分别为从BBU A、从BBU B、从BBU C,每个从BBU分别连接一个基站网管子系统。主BBU用于对RHUB、pRRU物理设备管理。主BBU首先对RHUB对应的资源、pRRU对应的资源进行切片处理,从而可以得到扇区设备组对象资源A(图14中简称为资源A)、扇区设备组对象资源B(图14中简称为资源B)、扇区设备组对象资源C(图14中简称为资源C)。主BBU可以将资源A分配给从BBU A使用,则从BBU A可以进行资源A调用,然后基于该资源A进行BBU业务管理。
本申请实施例提供的综合接入系统可以支持对主BBU连接的RHUB、pRRU的资源池化和虚拟化管理。主BBU负责管理RHUB、PRRU的物理设备,对pRRU和RHUB的资源对象进行虚拟化和切片。主BBU按各运营商的资源请求,在从BBU侧进行统一的资源 分配,在从BBU侧,各从BBU调用主BBU侧分配好的资源并进行绑定,例如主BBU侧分配的射频资源和从BBU侧的基带资源进行绑定,用以激活对应的BBU小区及相应的业务。通过虚拟化和切片,实现了RHUB、pRRU等公共资源能够被各运营商设备的独立调用。
接下来对资源切片的流程进行举例说明,首先通过主建方(主BBU)收集各运营商目标局点的建网诉求。然后根据各运营商建网诉求和实际局点勘测输出资源的分配结果。举例说明首先收集pRRU、RHUB、主BBU个数等物理设备信息。以及具体的pRRU物理点位,以及个物理点位对应的各运营商建网要求统一规划的资源要求,例如对网络制式、频点、带宽、发射功率,以及射频合路小区的要求,根据资源的设计与规划,配置主BBU。通过扇区设备组对象(含制式、频点、带宽、发射功率、pRRU射频合路信息)进行分运营商的资源切片。各从BBU调用主BBU分配的切片资源(即扇区设备组对象资源),并和本BBU的基带资源进行绑定,建立并激活对应的物理小区,开通业务。
请参阅图15所示,接下来对主BBU向从BBU分配资源的过程进行举例说明。主BBU首先向从BBU发送pRRU和RHUB的资源状态,从BBU向主BBU发送资源申请,主BBU进行资源配额控制,主BBU向从BBU分配资源,从BBU使用主BBU分配的资源进行资源绑定操作,详见前述实施例中资源绑定的说明。主BBU基于对从BBU的资源授权配置,通过上层通信通道对认证的从BBU指派其可用的pRRU对应的资源和RHUB对应的资源。例如,主BBU向从BBU分配射频资源和网络资源,其中,网络资源包括CPRI带宽能力,射频合路小区能力等。本申请实施例支持BBU按业务扩展所需灵活使用资源,主BBU配置和限制从BBU对资源最大使用量,实现共享资源配额管控。
通过前述对资源配置过程的举例说明可知,本申请实施例可以解决主建方(通过主BBU的基站网管子系统配置主BBU)和运营商(通过从BBU的基站网管子系统配置从BBU)之间,以及运营商和运营商间的运维解耦的问题。主建方主要负责室内硬件网络的建设,聚焦在pRRU、RHUB和主BBU的建设,不涉及基带小区的具体业务。运营商分别管理各自的从BBU,聚焦于各自的BBU业务及运维。因此本申请实施例实现了室分公共系统的统一建设,统一运维和各运营商提供各自差异化业务解决方案的解耦,各运营商间的业务开展也实现了解耦,即可以实现独立的BBU版本、小区、业务特性开通等。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
为便于更好的实施本申请实施例的上述方案,下面还提供用于实施上述方案的相关装置。
请参阅图16所示,本申请实施例提供的一种基带处理单元BBU,该BBU具体为第一BBU,所述第一BBU属于综合接入系统,所述综合接入系统还包括:第二BBU,所述第一BBU和所述第二BBU相连接,所述第一BBU1600包括:
获取模块1601,用于获取第一时钟同步信息,所述第一时钟同步信息包括:所述第一 BBU的时钟频率和时钟相位;
发送模块1602,用于向所述第二BBU发送所述第一时钟同步信息。
在本申请的一些实施例中,所述综合接入系统,还包括:第三BBU,所述第三BBU和所述第一BBU相连接,所述发送模块1602,还用于向所述第三BBU发送所述第一时钟同步信息。
请参阅图17所示,本申请实施例提供的一种基带处理单元BBU,所述BBU具体为第二BBU1700,所述第二BBU属于综合接入系统,所述综合接入系统还包括:第一BBU,所述第一BBU和所述第二BBU相连接,所述第二BBU1700包括:
接收模块1701,用于接收所述第一BBU发送的第一时钟同步信息,所述第一时钟同步信息包括:所述第一BBU的时钟频率和时钟相位;
配置模块1702,用于根据所述第一时钟同步信息配置所述第二BBU的本地时钟信息。
在本申请的一些实施例中,所述综合接入系统还包括:第四BBU,所述第四BBU和所述第二BBU相连接,所述接收模块1701,还用于接收所述第四BBU发送的第二时钟同步信息,所述第二时钟同步信息包括:所述第四BBU的时钟频率和时钟相位;
所述配置模块1702,具体用于根据所述第一时钟同步信息、所述第二时钟同步信息配置所述第二BBU的本地时钟信息。
进一步的,在本申请的一些实施例中,所述配置模块1702,具体用于从所述第一时钟同步信息和所述第二时钟同步信息中选择出时钟质量较高的时钟同步信息,并根据所述时钟质量较高的时钟同步信息配置所述第二BBU的本地时钟信息。
请参阅图18-a所示,本申请实施例提供的一种基带处理单元BBU,所述BBU具体为第一BBU1800,所述第一BBU属于综合接入系统,所述综合接入系统还包括:第二BBU,所述第一BBU和所述第二BBU相连接,所述第一BBU1800包括:
线速率更新模块1801,用于更新第一线速率,并在每次更新之后以更新后的第一线速率向所述第二BBU发送数据帧;
接收模块1802,用于接收所述第二BBU在每次更新第二线速率之后以更新后的第二线速率发送的数据帧;
发送模块1803,用于当所述第一线速率与所述第二线速率相等时,使用所述第一线速率向所述第二BBU发送所述第一BBU的组网关系信息,以及接收所述第二BBU使用所述第二线速率发送的所述第二BBU的组网关系信息;
地址分配模块1804,用于根据所述第二BBU的组网关系信息为所述第二BBU分配通信地址,以及向所述第二BBU发送所述第一BBU的通信地址;
通道建立模块1805,用于根据所述第二BBU的通信地址与所述第二BBU建立双向的上层通信通道。
在本申请的一些实施例中,如图18-b所示,当所述第一线速率与所述第二线速率相等时,所述第一BBU1800,还包括:线速率确定模块1806,其中,
所述发送模块1803,还用于使用所述第一线速率向所述第二BBU发送所述第一BBU的线速率能力信息;
所述接收模块1802,还用于接收所述第二BBU使用所述第二线速率发送所述第二BBU 的线速率能力信息;
所述线速率确定模块1806,用于根据所述第一BBU的线速率能力信息和所述第二BBU的线速率能力信息确定所述第一BBU和所述第二BBU进行物理层通信所使用的线速率。
请参阅图19-a所示,本申请实施例提供的一种基带处理单元BBU,所述BBU具体为第二BBU1900,所述第二BBU属于综合接入系统,所述综合接入系统还包括:第一BBU,所述第一BBU和所述第二BBU相连接,所述第二BBU1900包括:
线速率更新模块1901,用于更新第二线速率,并在每次更新之后以更新后的第二线速率向所述第一BBU发送数据帧;
接收模块1902,用于接收所述第一BBU在每次更新第一线速率之后以更新后的第一线速率发送的数据帧;
发送模块1903,用于当所述第二线速率与所述第一线速率相等时,所述第二BBU使用所述第二线速率向所述第一BBU发送所述第二BBU的组网关系信息,以及接收所述第一BBU使用所述第一线速率发送的所述第一BBU的组网关系信息;
地址获取模块1904,用于获取所述第一BBU的通信地址;
通道建立模块1905,用于根据所述第一BBU的通信地址与所述一BBU建立双向的上层通信通道。
在本申请的一些实施例中,如图19-b所示,当所述第二线速率与所述第一线速率相等时,所述第二BBU1900,还包括:线速率确定模块1906,其中,
所述发送模块1903,还用于使用所述第二速率向所述第一BBU发送所述第二BBU的线速率能力信息;
所述接收模块1902,还用于接收所述第一BBU使用所述第一线速率发送所述第一BBU的线速率能力信息;
所述线速率确定模块1906,用于根据所述第二BBU的线速率能力信息和所述第一BBU的线速率能力信息确定所述第一BBU和所述第二BBU进行物理层通信所使用的线速率。
请参阅图20所示,本申请实施例提供的一种基带处理单元BBU,所述BBU具体为第一BBU2000,所述第一BBU属于综合接入系统,所述综合接入系统还包括:第二BBU、第一数据交换单元、第二基站网管子系统、第一微射频拉远单元pRRU,所述第一BBU分别和所述第二BBU、所述第一数据交换单元相连接,所述第一数据交换单元和所述第一pRRU相连接,所述第二BBU和所述第二基站网管子系统相连接,所述第一BBU2000包括:
切片模块2001,用于对所述第一数据交换单元对应的资源以及所述第一pRRU对应的资源进行切片处理,得到多个扇区设备组对象资源;
资源分配模块2002,用于根据所述第二基站网管子系统的资源配置请求从所述多个扇区设备组对象资源中选择出第一扇区设备组对象资源;
通知模块2003,用于将所述第一扇区设备组对象资源通知给所述第二BBU。
在本申请的一些实施例中,若所述综合接入系统,还包括:第三BBU和第三基站网管子系统,所述第一BBU和所述第三BBU相连接,所述第三BBU和所述第三基站网管子系统相连接,
所述资源分配模块2002,还用于根据所述第三基站网管子系统的资源配置请求从所述多个扇区设备组对象资源中选择出第二扇区设备组对象资源;
所述通知模块2003,还用于将所述第二扇区设备组对象资源通知给所述第三BBU。
请参阅图21所示,本申请实施例提供的一种基带处理单元BBU,所述BBU具体为第二BBU2100,所述第二BBU属于综合接入系统,所述综合接入系统还包括:第一BBU、第二BBU、第一数据交换单元、第二基站网管子系统、第一微射频拉远单元pRRU,所述第一BBU分别和所述第二BBU、所述第一数据交换单元相连接,所述第一数据交换单元和所述第一pRRU相连接,所述第二BBU和所述第二基站网管子系统相连接,所述第二BBU2100包括:
资源获取模块2101,用于获取所述第一BBU通知的第一扇区设备组对象资源;
资源使用模块2102,用于将所述第一扇区设备组对象资源和所述第二BBU的基带资源进行绑定,并激活所述第一扇区设备组对象资源对应的物理小区。
需要说明的是,上述装置各模块/单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其带来的技术效果与本申请方法实施例相同,具体内容可参见本申请前述所示的方法实施例中的叙述,此处不再赘述。
本申请实施例还提供一种计算机存储介质,其中,该计算机存储介质存储有程序,该程序执行包括上述方法实施例中记载的部分或全部步骤。
接下来介绍本申请实施例提供的另一种第一BBU,请参阅图22所示,第一BBU2200包括:
接收器2201、发射器2202、处理器2203和存储器2204(其中第一BBU2200中的处理器2203的数量可以一个或多个,图22中以一个处理器为例)。在本申请的一些实施例中,接收器2201、发射器2202、处理器2203和存储器2204可通过总线或其它方式连接,其中,图22中以通过总线连接为例。
存储器2204可以包括只读存储器和随机存取存储器,并向处理器2203提供指令和数据。存储器2204的一部分还可以包括非易失性随机存取存储器(英文全称:Non-Volatile Random Access Memory,英文缩写:NVRAM)。存储器2204存储有操作系统和操作指令、可执行模块或者数据结构,或者它们的子集,或者它们的扩展集,其中,操作指令可包括各种操作指令,用于实现各种操作。操作系统可包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
处理器2203控制第一BBU的操作,处理器2203还可以称为中央处理单元(英文全称:Central Processing Unit,英文简称:CPU)。具体的应用中,第一BBU的各个组件通过总线系统耦合在一起,其中总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都称为总线系统。
上述本申请实施例揭示的方法可以应用于处理器2203中,或者由处理器2203实现。处理器2203可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器2203中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器2203可以是通用处理器、数字信号处理器(英文全称:digital signal processing,英文缩写:DSP)、专用集成电路(英文全称:Application Specific Integrated Circuit,英文缩写: ASIC)、现场可编程门阵列(英文全称:Field-Programmable Gate Array,英文缩写:FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器2204,处理器2203读取存储器2204中的信息,结合其硬件完成上述方法的步骤。
本申请实施例中,处理器2203,用于执行前述由第一BBU所执行的方法步骤。
接下来介绍本发明实施例提供的另一种第二BBU,请参阅图23所示,第二BBU2300包括:
接收器2301、发射器2302、处理器2303和存储器2304(其中第二BBU2300中的处理器2303的数量可以一个或多个,图23中以一个处理器为例)。在本发明的一些实施例中,接收器2301、发射器2302、处理器2303和存储器2304可通过总线或其它方式连接,其中,图23中以通过总线连接为例。
存储器2304可以包括只读存储器和随机存取存储器,并向处理器2303提供指令和数据。存储器2304的一部分还可以包括NVRAM。存储器2304存储有操作系统和操作指令、可执行模块或者数据结构,或者它们的子集,或者它们的扩展集,其中,操作指令可包括各种操作指令,用于实现各种操作。操作系统可包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
处理器2303控制第二BBU的操作,处理器2303还可以称为CPU。具体的应用中,第二BBU的各个组件通过总线系统耦合在一起,其中总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都称为总线系统。
上述本发明实施例揭示的方法可以应用于处理器2303中,或者由处理器2303实现。处理器2303可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器2303中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器2303可以是通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器2304,处理器2303读取存储器2304中的信息,结合其硬件完成上述方法的步骤。
本发明实施例中,处理器2303,用于执行前述由第二BBU所执行的方法步骤。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以 不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本申请提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本申请而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (32)

  1. 一种综合接入系统,其特征在于,包括:第一基带处理单元BBU、第二BBU、第一数据交换单元、第一基站网管子系统、第二基站网管子系统、第一微射频拉远单元pRRU,其中,
    所述第一BBU和所述第一数据交换单元相连接,所述第一BBU和所述第一基站网管子系统相连接,所述第一BBU和所述第二BBU相连接;
    所述第二BBU和所述第二基站网管子系统相连接;
    所述第一pRRU和所述第一数据交换单元相连接。
  2. 根据权利要求1所述的综合接入系统,其特征在于,所述综合接入系统,还包括:第三BBU和第三基站网管子系统,其中,
    所述第一BBU和所述第三BBU相连接;
    所述第三BBU和所述第三基站网管子系统相连接。
  3. 根据权利要求1或2所述的综合接入系统,其特征在于,所述综合接入系统,还包括:第四BBU、第二数据交换单元、第四基站网管子系统、第二pRRU,其中,
    所述第四BBU和所述第二数据交换单元相连接,所述第四BBU和所述第四基站网管子系统相连接,所述第四BBU和所述第二BBU相连接;
    所述第二pRRU和所述第二数据交换单元相连接。
  4. 一种基于综合接入系统的配置方法,其特征在于,所述综合接入系统,包括:第一基带处理单元BBU和第二BBU,所述第一BBU和所述第二BBU相连接,所述方法包括:
    所述第一BBU获取第一时钟同步信息,所述第一时钟同步信息包括:所述第一BBU的时钟频率和时钟相位;
    所述第一BBU向所述第二BBU发送所述第一时钟同步信息。
  5. 根据权利要求4所述的方法,其特征在于,所述综合接入系统,还包括:第三BBU,所述第三BBU和所述第一BBU相连接,所述方法还包括:
    所述第一BBU向所述第三BBU发送所述第一时钟同步信息。
  6. 一种基于综合接入系统的配置方法,其特征在于,所述综合接入系统包括:第一基带处理单元BBU和第二BBU,所述第一BBU和所述第二BBU相连接,所述方法包括:
    所述第二BBU接收所述第一BBU发送的第一时钟同步信息,所述第一时钟同步信息包括:所述第一BBU的时钟频率和时钟相位;
    所述第二BBU根据所述第一时钟同步信息配置所述第二BBU的本地时钟信息。
  7. 根据权利要求6所述的方法,其特征在于,所述综合接入系统还包括:第四BBU,所述第四BBU和所述第二BBU相连接,所述方法还包括:
    所述第二BBU接收所述第四BBU发送的第二时钟同步信息,所述第二时钟同步信息包括:所述第四BBU的时钟频率和时钟相位;
    所述第二BBU根据所述第一时钟同步信息配置所述第二BBU的本地时钟信息,包括:
    所述第二BBU根据所述第一时钟同步信息、所述第二时钟同步信息配置所述第二BBU的本地时钟信息。
  8. 根据权利要求7所述的方法,其特征在于,所述第二BBU根据所述第一时钟同步 信息、所述第二时钟同步信息配置所述第二BBU的本地时钟信息,包括:
    所述第二BBU从所述第一时钟同步信息和所述第二时钟同步信息中选择出时钟质量较高的时钟同步信息,并根据所述时钟质量较高的时钟同步信息配置所述第二BBU的本地时钟信息。
  9. 一种基于综合接入系统的配置方法,其特征在于,所述综合接入系统包括:第一基带处理单元BBU和第二BBU,所述第一BBU和所述第二BBU相连接,所述方法包括:
    所述第一BBU更新第一线速率,并在每次更新之后以更新后的第一线速率向所述第二BBU发送数据帧;
    所述第一BBU接收所述第二BBU在每次更新第二线速率之后以更新后的第二线速率发送的数据帧;
    当所述第一线速率与所述第二线速率相等时,所述第一BBU使用所述第一线速率向所述第二BBU发送所述第一BBU的组网关系信息,以及接收所述第二BBU使用所述第二线速率发送的所述第二BBU的组网关系信息;
    所述第一BBU根据所述第二BBU的组网关系信息为所述第二BBU分配通信地址,以及向所述第二BBU发送所述第一BBU的通信地址;
    所述第一BBU根据所述第二BBU的通信地址与所述第二BBU建立双向的上层通信通道。
  10. 根据权利要求9所述的方法,其特征在于,当所述第一线速率与所述第二线速率相等时,所述方法还包括:
    所述第一BBU使用所述第一线速率向所述第二BBU发送所述第一BBU的线速率能力信息;
    所述第一BBU接收所述第二BBU使用所述第二线速率发送所述第二BBU的线速率能力信息;
    所述第一BBU根据所述第一BBU的线速率能力信息和所述第二BBU的线速率能力信息确定所述第一BBU和所述第二BBU进行物理层通信所使用的线速率。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第一BBU更新第一线速率,包括:
    所述第一BBU以第一周期更新所述第一线速率,所述第一周期和第二周期是不相同的周期,所述第二周期是所述第二BBU更新所述第二线速率的周期。
  12. 一种基于综合接入系统的配置方法,其特征在于,所述综合接入系统包括:第一基带处理单元BBU和第二BBU,所述第一BBU和所述第二BBU相连接,所述方法包括:
    所述第二BBU更新第二线速率,并在每次更新之后以更新后的第二线速率向所述第一BBU发送数据帧;
    所述第二BBU接收所述第一BBU在每次更新第一线速率之后以更新后的第一线速率发送的数据帧;
    当所述第二线速率与所述第一线速率相等时,所述第二BBU使用所述第二线速率向所述第一BBU发送所述第二BBU的组网关系信息,以及接收所述第一BBU使用所述第一线速率发送的所述第一BBU的组网关系信息;
    所述第二BBU获取所述第一BBU的通信地址;
    所述第二BBU根据所述第一BBU的通信地址与所述一BBU建立双向的上层通信通道。
  13. 根据权利要求12所述的方法,其特征在于,当所述第二线速率与所述第一线速率相等时,所述方法还包括:
    所述第二BBU使用所述第二速率向所述第一BBU发送所述第二BBU的线速率能力信息;
    所述第二BBU接收所述第一BBU使用所述第一线速率发送所述第一BBU的线速率能力信息;
    所述第二BBU根据所述第二BBU的线速率能力信息和所述第一BBU的线速率能力信息确定所述第一BBU和所述第二BBU进行物理层通信所使用的线速率。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第二BBU更新第二线速率,包括:
    所述第二BBU以第二周期更新所述第二线速率,所述第二周期和第一周期是不相同的周期,所述第一周期是所述第一BBU更新第一线速率的周期。
  15. 一种基于综合接入系统的配置方法,其特征在于,所述综合接入系统包括:第一基带处理单元BBU、第二BBU、第一数据交换单元、第二基站网管子系统、第一微射频拉远单元pRRU,所述第一BBU分别和所述第二BBU、所述第一数据交换单元相连接,所述第一数据交换单元和所述第一pRRU相连接,所述第二BBU和所述第二基站网管子系统相连接,所述方法包括:
    所述第一BBU对所述第一数据交换单元对应的资源以及所述第一pRRU对应的资源进行切片处理,得到多个扇区设备组对象资源;
    所述第一BBU根据所述第二基站网管子系统的资源配置请求从所述多个扇区设备组对象资源中选择出第一扇区设备组对象资源;
    所述第一BBU将所述第一扇区设备组对象资源通知给所述第二BBU。
  16. 根据权利要求15所述的方法,其特征在于,若所述综合接入系统,还包括:第三BBU和第三基站网管子系统,所述第一BBU和所述第三BBU相连接,所述第三BBU和所述第三基站网管子系统相连接,所述方法还包括:
    所述第一BBU根据所述第三基站网管子系统的资源配置请求从所述多个扇区设备组对象资源中选择出第二扇区设备组对象资源;
    所述第一BBU将所述第二扇区设备组对象资源通知给所述第三BBU。
  17. 根据权利要求15或16所述的方法,其特征在于,所述第一数据交换单元对应的资源包括:射频合路小区能力资源和传输通道带宽资源,所述第一pRRU对应的资源包括:射频资源。
  18. 一种基于综合接入系统的配置方法,其特征在于,所述综合接入系统包括:第一基带处理单元BBU、第二BBU、第一数据交换单元、第二基站网管子系统、第一微射频拉远单元pRRU,所述第一BBU分别和所述第二BBU、所述第一数据交换单元相连接,所述第一数据交换单元和所述第一pRRU相连接,所述第二BBU和所述第二基站网管子系统相 连接,所述方法包括:
    所述第二BBU获取所述第一BBU通知的第一扇区设备组对象资源;
    所述第二BBU将所述第一扇区设备组对象资源和所述第二BBU的基带资源进行绑定,并激活所述第一扇区设备组对象资源对应的物理小区。
  19. 一种基带处理单元BBU,其特征在于,所述BBU具体为第一BBU,所述第一BBU属于综合接入系统,所述综合接入系统还包括:第二BBU,所述第一BBU和所述第二BBU相连接,所述第一BBU包括:
    获取模块,用于获取第一时钟同步信息,所述第一时钟同步信息包括:所述第一BBU的时钟频率和时钟相位;
    发送模块,用于向所述第二BBU发送所述第一时钟同步信息。
  20. 根据权利要求19所述的BBU,其特征在于,所述综合接入系统,还包括:第三BBU,所述第三BBU和所述第一BBU相连接,所述发送模块,还用于向所述第三BBU发送所述第一时钟同步信息。
  21. 一种基带处理单元BBU,其特征在于,所述BBU具体为第二BBU,所述第二BBU属于综合接入系统,所述综合接入系统还包括:第一BBU,所述第一BBU和所述第二BBU相连接,所述第二BBU包括:
    接收模块,用于接收所述第一BBU发送的第一时钟同步信息,所述第一时钟同步信息包括:所述第一BBU的时钟频率和时钟相位;
    配置模块,用于根据所述第一时钟同步信息配置所述第二BBU的本地时钟信息。
  22. 根据权利要求21所述的BBU,其特征在于,所述综合接入系统还包括:第四BBU,所述第四BBU和所述第二BBU相连接,所述接收模块,还用于接收所述第四BBU发送的第二时钟同步信息,所述第二时钟同步信息包括:所述第四BBU的时钟频率和时钟相位;
    所述配置模块,具体用于根据所述第一时钟同步信息、所述第二时钟同步信息配置所述第二BBU的本地时钟信息。
  23. 根据权利要求22所述的BBU,其特征在于,所述配置模块,具体用于从所述第一时钟同步信息和所述第二时钟同步信息中选择出时钟质量较高的时钟同步信息,并根据所述时钟质量较高的时钟同步信息配置所述第二BBU的本地时钟信息。
  24. 一种基带处理单元BBU,其特征在于,所述BBU具体为第一BBU,所述第一BBU属于综合接入系统,所述综合接入系统还包括:第二BBU,所述第一BBU和所述第二BBU相连接,所述第一BBU包括:
    线速率更新模块,用于更新第一线速率,并在每次更新之后以更新后的第一线速率向所述第二BBU发送数据帧;
    接收模块,用于接收所述第二BBU在每次更新第二线速率之后以更新后的第二线速率发送的数据帧;
    发送模块,用于当所述第一线速率与所述第二线速率相等时,使用所述第一线速率向所述第二BBU发送所述第一BBU的组网关系信息,以及接收所述第二BBU使用所述第二线速率发送的所述第二BBU的组网关系信息;
    地址分配模块,用于根据所述第二BBU的组网关系信息为所述第二BBU分配通信地 址,以及向所述第二BBU发送所述第一BBU的通信地址;
    通道建立模块,用于根据所述第二BBU的通信地址与所述第二BBU建立双向的上层通信通道。
  25. 根据权利要求24所述的BBU,其特征在于,当所述第一线速率与所述第二线速率相等时,所述第一BBU,还包括:线速率确定模块,其中,
    所述发送模块,还用于使用所述第一线速率向所述第二BBU发送所述第一BBU的线速率能力信息;
    所述接收模块,还用于接收所述第二BBU使用所述第二线速率发送所述第二BBU的线速率能力信息;
    所述线速率确定模块,用于根据所述第一BBU的线速率能力信息和所述第二BBU的线速率能力信息确定所述第一BBU和所述第二BBU进行物理层通信所使用的线速率。
  26. 一种基带处理单元BBU,其特征在于,所述BBU具体为第二BBU,所述第二BBU属于综合接入系统,所述综合接入系统还包括:第一BBU,所述第一BBU和所述第二BBU相连接,所述第二BBU包括:
    线速率更新模块,用于更新第二线速率,并在每次更新之后以更新后的第二线速率向所述第一BBU发送数据帧;
    接收模块,用于接收所述第一BBU在每次更新第一线速率之后以更新后的第一线速率发送的数据帧;
    发送模块,用于当所述第二线速率与所述第一线速率相等时,所述第二BBU使用所述第二线速率向所述第一BBU发送所述第二BBU的组网关系信息,以及接收所述第一BBU使用所述第一线速率发送的所述第一BBU的组网关系信息;
    地址获取模块,用于获取所述第一BBU的通信地址;
    通道建立模块,用于根据所述第一BBU的通信地址与所述一BBU建立双向的上层通信通道。
  27. 根据权利要求26所述的BBU,其特征在于,当所述第二线速率与所述第一线速率相等时,所述第二BBU,还包括:线速率确定模块,其中,
    所述发送模块,还用于使用所述第二速率向所述第一BBU发送所述第二BBU的线速率能力信息;
    所述接收模块,还用于接收所述第一BBU使用所述第一线速率发送所述第一BBU的线速率能力信息;
    所述线速率确定模块,用于根据所述第二BBU的线速率能力信息和所述第一BBU的线速率能力信息确定所述第一BBU和所述第二BBU进行物理层通信所使用的线速率。
  28. 一种基带处理单元BBU,其特征在于,所述BBU具体为第一BBU,所述第一BBU属于综合接入系统,所述综合接入系统还包括:第二BBU、第一数据交换单元、第二基站网管子系统、第一微射频拉远单元pRRU,所述第一BBU分别和所述第二BBU、所述第一数据交换单元相连接,所述第一数据交换单元和所述第一pRRU相连接,所述第二BBU和所述第二基站网管子系统相连接,所述第一BBU包括:
    切片模块,用于对所述第一数据交换单元对应的资源以及所述第一pRRU对应的资源 进行切片处理,得到多个扇区设备组对象资源;
    资源分配模块,用于根据所述第二基站网管子系统的资源配置请求从所述多个扇区设备组对象资源中选择出第一扇区设备组对象资源;
    通知模块,用于将所述第一扇区设备组对象资源通知给所述第二BBU。
  29. 根据权利要求28所述的BBU,其特征在于,若所述综合接入系统,还包括:第三BBU和第三基站网管子系统,所述第一BBU和所述第三BBU相连接,所述第三BBU和所述第三基站网管子系统相连接,
    所述资源分配模块,还用于根据所述第三基站网管子系统的资源配置请求从所述多个扇区设备组对象资源中选择出第二扇区设备组对象资源;
    所述通知模块,还用于将所述第二扇区设备组对象资源通知给所述第三BBU。
  30. 一种基带处理单元BBU,其特征在于,所述BBU具体为第二BBU,所述第二BBU属于综合接入系统,所述综合接入系统还包括:第一BBU、第二BBU、第一数据交换单元、第二基站网管子系统、第一微射频拉远单元pRRU,所述第一BBU分别和所述第二BBU、所述第一数据交换单元相连接,所述第一数据交换单元和所述第一pRRU相连接,所述第二BBU和所述第二基站网管子系统相连接,所述第二BBU包括:
    资源获取模块,用于获取所述第一BBU通知的第一扇区设备组对象资源;
    资源使用模块,用于将所述第一扇区设备组对象资源和所述第二BBU的基带资源进行绑定,并激活所述第一扇区设备组对象资源对应的物理小区。
  31. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求4-18任意一项所述的方法。
  32. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求4-18任意一项所述的方法。
PCT/CN2017/087964 2017-06-12 2017-06-12 一种综合接入系统、配置方法和基带处理单元 WO2018227346A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2019568332A JP7002570B2 (ja) 2017-06-12 2017-06-12 統合アクセスシステム、構成方法、およびベースバンドユニット
PCT/CN2017/087964 WO2018227346A1 (zh) 2017-06-12 2017-06-12 一种综合接入系统、配置方法和基带处理单元
EP17913238.6A EP3627963A4 (en) 2017-06-12 2017-06-12 INTEGRATED ACCESS SYSTEM, CONFIGURATION PROCEDURES AND BASE TAPE PROCESSING UNIT
CA3066912A CA3066912C (en) 2017-06-12 2017-06-12 Integrated access system, configuration method, and baseband unit
CN201780089663.7A CN110547040B (zh) 2017-06-12 2017-06-12 一种综合接入系统、配置方法和基带处理单元
US16/712,096 US11388779B2 (en) 2017-06-12 2019-12-12 Integrated access system, configuration method, and baseband unit
US17/829,532 US20220295596A1 (en) 2017-06-12 2022-06-01 Integrated access system, configuration method, and baseband unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/087964 WO2018227346A1 (zh) 2017-06-12 2017-06-12 一种综合接入系统、配置方法和基带处理单元

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/712,096 Continuation US11388779B2 (en) 2017-06-12 2019-12-12 Integrated access system, configuration method, and baseband unit

Publications (1)

Publication Number Publication Date
WO2018227346A1 true WO2018227346A1 (zh) 2018-12-20

Family

ID=64660281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087964 WO2018227346A1 (zh) 2017-06-12 2017-06-12 一种综合接入系统、配置方法和基带处理单元

Country Status (6)

Country Link
US (2) US11388779B2 (zh)
EP (1) EP3627963A4 (zh)
JP (1) JP7002570B2 (zh)
CN (1) CN110547040B (zh)
CA (1) CA3066912C (zh)
WO (1) WO2018227346A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114631334A (zh) * 2019-12-04 2022-06-14 华为技术有限公司 一种数据处理方法及装置
EP4040914A4 (en) * 2019-10-24 2023-02-22 Huawei Technologies Co., Ltd. COMMUNICATION PROCESSING PROCEDURES, BBU, RHUB AND SECOND PRRU

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112601231B (zh) * 2020-11-03 2023-01-13 中国飞机强度研究所 一种复杂试验环境下5g网络深度覆盖方法
CN114666286A (zh) * 2020-12-22 2022-06-24 中兴通讯股份有限公司 数据传输方法、第一基站、第二基站和系统
CN114827098A (zh) * 2021-01-28 2022-07-29 华为技术有限公司 合拍的方法、装置、电子设备和可读存储介质
CN117156499B (zh) * 2023-10-30 2024-01-02 中国移动紫金(江苏)创新研究院有限公司 分布式小区频率资源管理方法、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040185907A1 (en) * 2003-02-14 2004-09-23 Evolium S.A.S. Mobile communication base station apparatus and a baseband processing section
CN101150348A (zh) * 2006-03-28 2008-03-26 华为技术有限公司 一种室内分布系统及其组网方法
CN101257339A (zh) * 2007-03-01 2008-09-03 华为技术有限公司 广播网络、基站及广播网络盲区定位方法
CN102264161A (zh) * 2006-11-16 2011-11-30 华为技术有限公司 基站、基站中基带信号处理方法及无线通信系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101159933B (zh) * 2005-05-19 2010-09-08 华为技术有限公司 分体式基站系统及其组网方法和基带单元
EP2512202B1 (en) * 2011-04-12 2013-11-20 Alcatel Lucent Load balancing in a radio access network
US9106352B2 (en) * 2012-02-27 2015-08-11 Telefonaktiebolaget L M Ericsson (Publ) Frequency distribution using precision time protocol
CN102781090B (zh) * 2012-06-28 2015-01-21 华为技术有限公司 一种多模基站及其实现方法
CN103582186B (zh) 2012-08-09 2018-05-01 中兴通讯股份有限公司 一种无线软基站中bbu框间数据交互的方法及装置
US9172445B2 (en) * 2012-08-13 2015-10-27 Telefonaktiebolaget L M Ericsson (Publ) Multi-user multiple input multiple output radio communications
CN104426829B (zh) * 2013-08-30 2018-03-16 华为技术有限公司 一种基站回传方法、相关设备及基站回传系统
WO2015069057A1 (ko) * 2013-11-07 2015-05-14 엘지전자 주식회사 단말 중심의 커버리지 갱신 방법
US9197401B2 (en) * 2013-11-19 2015-11-24 Electronics And Telecommunications Research Institute Multi-band receiver
EP3107326B1 (en) 2014-02-14 2020-01-15 Nec Corporation Configuration of radio access network based on status of backhaul networks
US9369995B2 (en) * 2014-02-21 2016-06-14 Telefonaktiebolaget Lm Ericsson (Publ) Systems, methods, apparatuses, devices and associated computer-readable media for providing 6LoWPAN data access
JP2015170872A (ja) * 2014-03-05 2015-09-28 株式会社日立製作所 基地局及び無線通信方法
WO2017070635A1 (en) 2015-10-22 2017-04-27 Phluido, Inc. Virtualization and orchestration of a radio access network
JP2018037953A (ja) * 2016-09-01 2018-03-08 富士通株式会社 無線通信装置、及び時刻同期方法
US10944668B2 (en) * 2017-02-27 2021-03-09 Mavenir Networks, Inc. System and method for supporting low latency applications in a cloud radio access network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040185907A1 (en) * 2003-02-14 2004-09-23 Evolium S.A.S. Mobile communication base station apparatus and a baseband processing section
CN101150348A (zh) * 2006-03-28 2008-03-26 华为技术有限公司 一种室内分布系统及其组网方法
CN102264161A (zh) * 2006-11-16 2011-11-30 华为技术有限公司 基站、基站中基带信号处理方法及无线通信系统
CN101257339A (zh) * 2007-03-01 2008-09-03 华为技术有限公司 广播网络、基站及广播网络盲区定位方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4040914A4 (en) * 2019-10-24 2023-02-22 Huawei Technologies Co., Ltd. COMMUNICATION PROCESSING PROCEDURES, BBU, RHUB AND SECOND PRRU
CN114631334A (zh) * 2019-12-04 2022-06-14 华为技术有限公司 一种数据处理方法及装置
CN114631334B (zh) * 2019-12-04 2023-07-07 华为技术有限公司 一种数据处理方法及装置

Also Published As

Publication number Publication date
EP3627963A4 (en) 2020-09-09
US20200120754A1 (en) 2020-04-16
CN110547040A (zh) 2019-12-06
US20220295596A1 (en) 2022-09-15
US11388779B2 (en) 2022-07-12
CA3066912C (en) 2023-10-10
CA3066912A1 (en) 2018-12-20
CN110547040B (zh) 2022-04-12
JP7002570B2 (ja) 2022-01-20
EP3627963A1 (en) 2020-03-25
JP2020523854A (ja) 2020-08-06

Similar Documents

Publication Publication Date Title
WO2018227346A1 (zh) 一种综合接入系统、配置方法和基带处理单元
TWI785185B (zh) 傳輸配置方法及相關產品
WO2019119424A1 (zh) 一种非授权载波的处理方法和装置以及系统
RU2569323C1 (ru) Сетевой узел и способ в узле, обеспечивающий возможность первому блоку подключаться или быть подключенным ко второму блоку в режиме самоорганизующейся сети
JP2020529784A (ja) 端末によるコアネットワークアクセス方法、基地局および端末
JP6944041B2 (ja) 接続方法、構成更新方法、制御プレーンデバイス、およびユーザプレーンデバイス
WO2018135992A1 (en) Systems and methods of mapping a network slice
US10979920B2 (en) Integrated access system with baseband unit and base station network management
KR101954226B1 (ko) 기지국 장비, 자원 관리 방법 및 데이터 처리 방법
US11184054B2 (en) Distributed antenna system using reconfigurable frame structure and method of operation thereof
WO2012097630A1 (zh) 环网配置方法和装置
CN110769428B (zh) 一种虚拟基站构建的方法、装置、基站及无线网络系统
JP2017511094A (ja) 方法、装置及びシステム
US20240176670A1 (en) Virtual distributed antenna system enhanced hyperscale virtualization
WO2023082087A1 (zh) 一种控制信令传输方法、通信节点和基站
US20240015815A1 (en) Communication method, communication apparatus, and base station
EP4369826A1 (en) Signal transmission method and communication apparatus
CN108141479A (zh) 一种云无线接入网系统、数据处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913238

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3066912

Country of ref document: CA

Ref document number: 2019568332

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017913238

Country of ref document: EP

Effective date: 20191220