WO2018225418A1 - 発光素子および表示装置 - Google Patents

発光素子および表示装置 Download PDF

Info

Publication number
WO2018225418A1
WO2018225418A1 PCT/JP2018/016987 JP2018016987W WO2018225418A1 WO 2018225418 A1 WO2018225418 A1 WO 2018225418A1 JP 2018016987 W JP2018016987 W JP 2018016987W WO 2018225418 A1 WO2018225418 A1 WO 2018225418A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
electrode
conductive film
emitting element
light
Prior art date
Application number
PCT/JP2018/016987
Other languages
English (en)
French (fr)
Inventor
祐亮 片岡
達男 大橋
琵琶 剛志
暁 大前
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201880035294.8A priority Critical patent/CN110678992B/zh
Priority to US16/617,752 priority patent/US11411045B2/en
Publication of WO2018225418A1 publication Critical patent/WO2018225418A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/40Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character is selected from a number of characters arranged one beside the other, e.g. on a common carrier plate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • This technology relates to a light emitting element and a display device applicable to, for example, a tiling display.
  • a self-luminous display panel using a light emitting element such as a light emitting diode (LED) has been developed (for example, see Patent Document 1). It has been proposed to form a tiling display (display device) by connecting a plurality of such self-luminous display panels.
  • a light emitting element such as a light emitting diode (LED)
  • a light-emitting element includes a light-emitting layer provided between a first surface and a second surface, a first electrode provided on the first surface and electrically connected to the light-emitting layer, A second electrode provided on the second surface and electrically connected to the light-emitting layer, and a non-selective electrode provided on the first surface and not electrically connected to the potential supply source. .
  • a display device includes a light emitting element according to an embodiment of the present technology.
  • the first surface is provided with a plurality of conductive films that are electrically separated from each other, and a conductive material that is supplied with a potential according to the state of the light-emitting layer.
  • a membrane first electrode
  • a conductive film to which no potential is supplied becomes a non-selective electrode.
  • the first electrode is selected according to the state of the light emitting layer, and thus the wavelength of light emitted from the light emitting element can be adjusted. it can. Therefore, variation in wavelength of light emitted from a plurality of light emitting elements can be suppressed and image quality can be improved. Note that the effects described here are not necessarily limited, and may be any effects described in the present disclosure.
  • FIG. 2 is a perspective view illustrating a schematic configuration of an element substrate illustrated in FIG. 1.
  • FIG. 3 is a perspective view illustrating a schematic configuration of a unit illustrated in FIG. 2. It is a cross-sectional schematic diagram showing the schematic structure of the unit shown in FIG.
  • FIG. 4 is a schematic plan view (1) illustrating a schematic configuration of the display panel illustrated in FIG. 3.
  • FIG. 4 is a schematic plan view (2) illustrating a schematic configuration of the display panel illustrated in FIG. 3. It is a cross-sectional schematic diagram showing a structure common to the light emitting element shown to FIG. 5A and 5B.
  • FIG. 6B is a schematic plan view of the second surface of the light emitting element shown in FIG. 6A. It is a cross-sectional schematic diagram showing the structure of the light emitting element shown to FIG. 5A. It is a plane schematic diagram of the 1st surface of the light emitting element shown to FIG. 7A. It is a cross-sectional schematic diagram showing the structure of the light emitting element shown to FIG. 6A. It is a plane schematic diagram of the 1st surface of the light emitting element shown to FIG. 8A. It is a perspective view showing schematic structure of the unit which concerns on a comparative example.
  • FIG. 10 is a schematic plan view illustrating an example of a display state of the unit illustrated in FIG. 9. It is a plane schematic diagram showing the other example of the light emitting element shown to FIG. 5A and 5B. It is a figure for demonstrating the wavelength of the light which the light emitting element shown to FIG. 7B, 8B, and 12 each radiate
  • FIG. 6 is a schematic cross-sectional view illustrating a configuration of a light-emitting element according to Modification 1.
  • FIG. It is a plane schematic diagram of the 1st surface of the light emitting element shown to FIG. 15A.
  • 12 is a schematic cross-sectional view illustrating a configuration of a light-emitting element according to Modification 2.
  • FIG. It is a plane schematic diagram of the 1st surface of the light emitting element shown to FIG. 16A.
  • 12 is a schematic cross-sectional view illustrating a configuration of a light-emitting element according to Modification 3.
  • FIG. It is a plane schematic diagram of the 1st surface of the light emitting element shown to FIG. 17A.
  • FIG. 17B It is a plane schematic diagram showing the other example of a structure of the light emitting element shown to FIG. 17B.
  • 10 is a schematic plan view illustrating a configuration of a light emitting element according to Modification 4.
  • FIG. 10 is a schematic plan view illustrating a configuration of a display panel according to modification example 5.
  • FIG. It is a figure showing the structure of the electronic device (television apparatus) which concerns on an application example.
  • It is a plane schematic diagram showing other examples (1) of the structure of the light emitting element shown to FIG. 6B.
  • Embodiment display device having light-emitting element provided with non-selective electrode
  • Modification 1 example of light emitting element to which switching element is connected
  • Modification 2 Example of light-emitting element having a groove
  • Modification 3 Example of light-emitting element in which the first electrode or the non-selection electrode is composed of a plurality of conductive films
  • Modification 4 Example of light emitting element in which the planar shape of the first electrode or the non-selection electrode is a circle
  • Modification 5 Example of display panel having a light-emitting element in which the conductive film A functions as the first electrode and a light-emitting element in which the conductive film B functions as the first electrode
  • FIG. 1 schematically illustrates the overall configuration of a display device (display device 1) according to an embodiment of the present technology.
  • the display device 1 includes, for example, an element substrate 1A, a counter substrate 1B facing the element substrate 1A, and a control circuit 1C for driving the element substrate 1A.
  • the surface of the counter substrate 1B (the surface opposite to the surface facing the element substrate 1A) is a video display surface
  • the central portion of the video display surface is a display region
  • the periphery thereof is a non-display region.
  • the counter substrate 1B is configured to transmit light having a wavelength in the visible region.
  • the counter substrate 1B is made of a light transmissive material such as a glass substrate, a transparent resin substrate, and a transparent resin film.
  • FIG. 2 schematically shows an example of the configuration of the element substrate 1A shown in FIG.
  • the display device 1 is a so-called tiling display, and the element substrate 1A is configured by a plurality of units (units U) laid out in a tile shape.
  • FIG. 2 illustrates the case where the element substrate 1A is configured by nine units U, the number of units U may be 10 or more, or may be 8 or less.
  • FIG. 3 schematically shows an example of the configuration of the unit U.
  • the unit U includes, for example, a plurality of display panels (display panels 10A and 10B) laid out in a tile shape, and a support substrate (support substrate 20) for the display panels 10A and 10B.
  • the support substrate 20 is made of, for example, a metal plate.
  • FIG. 4 schematically illustrates an example of a configuration between the display panels 10A and 10B and the support substrate 20.
  • the display panels 10A and 10B are fixed to the support substrate 20 by, for example, a fixing member (fixing member 30).
  • FIG. 5A shows a schematic plan configuration of the display panel 10A
  • FIG. 5B shows a schematic plan configuration of the display panel 10B
  • the display panel 10A has a plurality of light emitting elements (light emitting elements 12A) on a mounting board (mounting board 11)
  • the display panel 10B has a plurality of light emitting elements (light emitting elements 12B) on the mounting board 11. is doing.
  • driving circuits are connected to the light emitting elements 12A and 12B.
  • 6A to 6C schematically show a configuration common to the light emitting element 12A and the light emitting element 12B.
  • 6A is a cross-sectional configuration of the light-emitting elements 12A and 12B
  • FIG. 6B is a planar configuration of one surface (first surface S1 described later) of the light-emitting elements 12A and 12B
  • FIG. Represents the planar configuration of the second surface S2).
  • the light emitting elements 12A and 12B have, for example, a first surface (first surface S1) and a second surface (second surface S2) facing each other, and in order from the position close to the first surface S1 between them.
  • the first semiconductor layer 122, the light emitting layer 123, and the second semiconductor layer 124 are examples of the first semiconductor layer 122, the light emitting layer 123, and the second semiconductor layer 124.
  • the shape of the first surface S1 and the second surface S2 is, for example, a square.
  • the shape of the first surface S1 and the shape of the second surface S2 may be different.
  • a conductive film A121A and a conductive film B121B are provided on the first surface S1 of the light emitting elements 12A and 12B, and a second electrode 125 is provided on the second surface S2.
  • one of the conductive film A121A and the conductive film B121B functions as the first electrode of the light emitting elements 12A and 12B.
  • light light LA and light LB in FIGS. 7A and 8A described later
  • Light may be extracted from the first surface S1.
  • the light emitting elements 12A and 12B emit, for example, light in the blue wavelength range or light in the green wavelength range.
  • the display panels 10A and 10B emit light in the red wavelength range together with the light emitting elements 12A and 12B.
  • a light emitting element is provided.
  • the conductive film A121A and the conductive film B121B are provided in different regions of the first surface S1, and are electrically separated.
  • the conductive film A121A and the conductive film B121B are different from each other in shape (including size), electrode area, constituent material, and the like.
  • the current density of the current flowing through the conductive film A121A and the conductive film B121B are different. This is different from the current density of the current flowing through.
  • the conductive films A121A and B121B preferably have a rotationally symmetric planar shape, and the center of symmetry is preferably located at the center of the first surface S1. Thereby, a light distribution characteristic can be improved.
  • the conductive film A121A is provided, for example, in the center of the first surface S1, and the planar shape thereof is a square (FIG. 6B).
  • the planar shape of the conductive film B121B is, for example, a frame-shaped square surrounding the conductive film A121A. That is, for example, the conductive film A121A and the conductive film B121B have a four-fold symmetrical planar shape.
  • the conductive films A121A and B121B may have a rectangular planar shape such as a rectangle.
  • the electrode area of the conductive film B121B is larger than the electrode area of the conductive film A121A, and the current density of the current flowing through the conductive film B121B is smaller than the current density of the current flowing through the conductive film A121A. .
  • FIGS. 8A and 8B schematically illustrate the configuration of the light emitting element 12B
  • FIGS. 8A and 8B schematically illustrate the configuration of the light emitting element 12B
  • 7A and 8A show a cross-sectional configuration of the light emitting elements 12A and 12B
  • FIGS. 7B and 8B show a planar configuration of the first surface S1 of the light emitting elements 12A and 12B, respectively.
  • a wiring (wiring 126) for supplying a potential is connected to the conductive film A121A. That is, the conductive film A121A is electrically connected to the light emitting layer 123 through the first semiconductor layer 122, and functions as a first electrode.
  • the conductive film B121B becomes a non-selective electrode. That is, the conductive film B121B is not connected to the potential supply source.
  • the wiring 126 is connected to the conductive film B121B. That is, the conductive film B121B is electrically connected to the light emitting layer 123 through the first semiconductor layer 122, and functions as a first electrode.
  • the conductive film A121A becomes a non-selective electrode. That is, the conductive film A121A is not connected to the potential supply source.
  • the current density is lower than that of the light emitting element 12A (conductive film A121A).
  • a long wavelength light LB is generated.
  • the light-emitting element 12A and the light-emitting element 12B are different from each other in the conductive film (conductive film A121A and conductive film B121B) functioning as the first electrode.
  • a plurality of conductive films (conductive film A121A and conductive film B121B) that are electrically isolated from each other are provided on the first surface S1 in this way.
  • a conductive film functioning as one electrode can be selected. Thereby, the wavelength of the light (light LA, LB) generated in the light emitting layer 123 can be adjusted.
  • FIG. 3 illustrates the case where the display panel 10A (light emitting element 12A) and the display panel 10B (light emitting element 12B) are provided in one unit U
  • one unit U includes the display panel 10A and the display. You may be comprised only by either one of the panels 10B.
  • the conductive film A121A and the conductive film B121B are provided in contact with the first semiconductor layer 122.
  • the conductive film A121A and the conductive film B121B are made of, for example, a conductive metal material.
  • the conductive metal material include titanium (Ti), platinum (Pt), and gold (Au).
  • a laminated film of titanium (Ti) / platinum (Pt) / gold (Au) can be used.
  • the conductive film A121A and the conductive film B121B may be made of a conductive oxide such as indium tin oxide (ITO: Indium ⁇ ⁇ ⁇ ⁇ Tin Oxide) and indium zinc oxide (IZO).
  • a laminated film of ITO / IZO can be used for the conductive film A121A and the conductive film B121B.
  • the conductive film A121A and the conductive film B121B may be formed of a single film.
  • the constituent material of the conductive film A121A and the constituent material of the conductive film B121B may be different.
  • all the light emitting elements 12A have the first electrode (conductive film A121A) having the same shape and constituent material.
  • all the light emitting elements 12A have the same shape and first constituent material. It has an electrode (conductive film B121B).
  • the process of connecting the conductive film A121A and the wiring 126 is simultaneously performed in all the light emitting elements 12A, and in the display panel 10B, the conductive film B121B and the wiring 126 are connected in all the light emitting elements 12B. The process is performed simultaneously.
  • the first semiconductor layer 122 provided in the light emitting elements 12A and 12B is made of, for example, a p-type InGaN-based semiconductor material.
  • the first semiconductor layer 122 for example, p-type GaN can be used.
  • the first semiconductor layer 122 connected to the conductive films A121A and B121B preferably has a large resistance.
  • the planar shape of the first semiconductor layer 122 is, for example, a square, and the first surface S ⁇ b> 1 is configured by the surface of the first semiconductor layer 122 (the surface opposite to the surface facing the second semiconductor layer 124).
  • the light emitting layer 123 between the first semiconductor layer 122 and the second semiconductor layer 124 is made of, for example, an InGaN-based semiconductor material.
  • InGaN can be used for the light emitting layer 123.
  • the second semiconductor layer 124 faces the first semiconductor layer 122 with the light emitting layer 123 in between.
  • the second semiconductor layer 124 is made of, for example, an n-type InGaN-based semiconductor material.
  • n-type GaN can be used for the second semiconductor layer 124.
  • the planar shape of the second semiconductor layer 124 is, for example, a square, and the surface of the second semiconductor layer 124 forms the second surface S2.
  • the second electrode 125 is provided in contact with the second semiconductor layer 124, and is electrically connected to the light emitting layer 123 through the second semiconductor layer 124.
  • the second electrode 125 is provided, for example, at the center of the second surface S2, and has a quadrangular planar shape.
  • the second electrode 125 is made of, for example, a conductive metal material or an oxide, like the conductive films A121A and B121B.
  • a laminated film of titanium (Ti) / platinum (Pt) / gold (Au) can be used.
  • the second electrode 125 may be composed of a single film.
  • the light emitting elements 12A and 12B when a predetermined voltage is applied between the conductive film A121A or the conductive film B121B and the second electrode 125, electrons are transferred from the second electrode 125 side to the conductive film A121A or conductive film B121B side. Holes are injected into the light emitting layer 123 respectively. The electrons and holes injected into the light emitting layer 123 are recombined to generate photons, which are emitted from the second surface S2 as emitted light (lights LA and LB).
  • the light-emitting elements 12A and 12B are provided with a plurality of conductive films (conductive films A121A and B121B), a conductive film that functions as the first electrode is selected depending on the state of the light-emitting layer 123. Is possible. That is, the wavelength of the light beams LA and LB emitted from the light emitting elements 12A and 12B can be adjusted by selecting one of the conductive films A121A and B121B having different current densities. Accordingly, it is possible to select the display panel 10A or the display panel 10B and suppress the occurrence of a visual boundary between the plurality of display panels 10A and 10B. This will be described in detail below.
  • FIG. 9 shows a schematic configuration of a unit (unit U100) according to a comparative example.
  • this unit U100 a plurality of display panels (display panels 100) are laid out in a tile shape. All the display panels 100 have the same configuration.
  • the plurality of display panels 100 are provided on the support substrate 20.
  • FIG. 10A and 10B schematically show the configuration of the light-emitting element (light-emitting element 120) included in the display panel 100.
  • FIG. 10A illustrates a cross-sectional configuration of the light emitting element 120
  • FIG. 10B illustrates a planar configuration of the first surface S1 of the light emitting element 120.
  • a single conductive film (conductive film 1121) is provided on the first surface S1 of the light emitting element 120.
  • the light emitting element 120 is different from the light emitting elements 12A and 12B.
  • the current density cannot be changed.
  • the wavelength of light emitted from the light-emitting element 120 may vary greatly.
  • the light-emitting element 120 in which the light-emitting layer 123 is composed of an InGaN-based semiconductor material it is difficult to uniformly grow the semiconductor layers (for example, the first semiconductor layer 122, the light-emitting layer 123, and the second semiconductor layer 124).
  • the variation in wavelength of light emitted from the light emitting element 120 tends to increase.
  • FIG. 11 schematically shows the display state of the unit U100.
  • the light L100 is emitted from one of the adjacent display panels 100 and the light L101 having a wavelength significantly different from that of the light L100 is emitted from the other, there is a visual step due to the wavelength difference between the light L100 and the light L101. Arise. This visual step causes a visual boundary between the adjacent display panels 100, and the image quality is greatly reduced.
  • a method of selecting and using the light emitting element 120 according to the emission wavelength is also conceivable.
  • the sorting method includes binning.
  • the number of processes increases, and the light emitting elements 120 that cannot be used are discarded. For this reason, cost becomes high.
  • the plurality of conductive films (conductive film A121A and conductive film B121B) are provided on the first surface S1 of the light emitting elements 12A and 12B, depending on the state of the light emitting layer 123, A conductive film to function as the first electrode can be selected.
  • a current having a higher current density is injected into the light emitting layer 123
  • a current with a lower current density is injected into the light emitting layer 123.
  • the current density is changed in accordance with the state of the light emitting layer 123, and the variation in the wavelengths of the light LA and LB emitted between the light emitting elements 12A and 12B (display panels 10A and 10B) is within a predetermined range. Can fit in.
  • the display device 1 may include a light emitting element (light emitting element 12C) in which both the conductive film A121A and the conductive film B121B function as the first electrode.
  • the wiring 126 is connected to the conductive films A121A and B121B so that a potential is supplied to the conductive films A121A and B121B.
  • the current density of the current flowing through both the conductive films A121A and B121B is lower than the current density of the current flowing through either the conductive film A121A or the conductive film B121B. Therefore, by using the light emitting element 12C together with the light emitting elements 12A and 12B, the current density can be changed in a larger range.
  • FIG. 13 shows the relationship between the current density of the light emitting elements 12A, 12B, and 12C and the dominant wavelength.
  • the current density of the current injected from the first electrode is about 1.5 times that of the light emitting element 12B (conductive film B121B), and the light LA emitted from the light emitting element 12A.
  • the wavelength is about 2 nm shorter than the wavelength of the light LB emitted from the light emitting element 12B.
  • the current density can be changed and the wavelengths of the light LA and LB can be adjusted depending on which of the conductive films A121A and B121B functions as the first electrode. Therefore, the variation in the wavelengths of the light LA and LB is kept within a predetermined range, and the occurrence of a visual boundary between the plurality of display panels 10A and 10B can be suppressed.
  • the light emitting elements 12A and 12B satisfying the emission wavelength standard can be increased. Therefore, the manufacturing cost can be reduced.
  • FIG. 14 shows the relationship between the wavelength of light emitted from the manufactured light emitting element and the number of manufactured light emitting elements.
  • a light emitting element having a range of emission wavelengths after manufacture of a light emitting element in the range RS shorter than the allowable range R and a light emitting element in the range RL on the longer wavelength side is used, as described above, the image quality is greatly deteriorated. Further, when selecting only the light emitting elements within the allowable range R, the number of steps increases and the cost increases.
  • the display device 1 can reduce the cost. Furthermore, even if a light emitting element selection step is added, the reference can be set high, so that the image quality can be further improved.
  • the first electrode is selected from the conductive film A121A and the conductive film B121B according to the state of the light emitting layer 123, so that the light LA and LB emitted from the light emitting elements 12A and 12B. Can be adjusted. Therefore, it is possible to suppress variations in the wavelengths of the light beams LA and LB emitted from the plurality of light emitting elements 12A and 12B and improve the image quality.
  • the conductive films A121A and B121B have a rotationally symmetric planar shape, light distribution characteristics can be improved.
  • the same conductive film A121A (or conductive film B121B) is connected to the wiring 126 in all the light emitting elements 12A (or light emitting elements 12B).
  • the connecting step can be performed simultaneously on all the light emitting elements 12A (or the light emitting elements 12B). Therefore, the display device 1 can be easily manufactured.
  • 15A and 15B schematically show the configuration of the light emitting elements 12A and 12B according to the first modification of the above embodiment.
  • 15A shows a cross-sectional configuration of the light emitting elements 12A and 12B
  • FIG. 15B shows a planar configuration of the light emitting elements 12A and 12B.
  • the switching element switching element SW
  • the light emitting elements 12A and 12B of the first modification have the same configuration and effects as the light emitting elements 12A and 12B of the above embodiment.
  • the wiring 126 is connected to the conductive film A121A and the conductive film B121B, and the conductive film A121A and the conductive film B121B to which a potential is supplied are selected by switching the switching element SW. That is, the conductive film A121A and the conductive film B121B functioning as the first electrode are selected by switching the switching element SW.
  • 16A and 16B schematically show the configuration of the light emitting elements 12A and 12B according to the second modification of the above embodiment.
  • 16A shows a cross-sectional configuration of the light emitting elements 12A and 12B
  • FIG. 16B shows a planar configuration of the light emitting elements 12A and 12B.
  • the semiconductor layer (first semiconductor layer 122A and light emitting layer 123A) that overlaps the conductive film A121A in plan view, and the semiconductor layer (first semiconductor layer 122B) and light emitting layer 123B that overlaps the conductive film B121B). May be separated.
  • the light emitting elements 12A and 12B of the second modification have the same configuration and effects as the light emitting elements 12A and 12B of the above embodiment.
  • the light emitting elements 12A and 12B have a groove (groove G) provided perpendicularly from the first surface S1.
  • the groove G is provided between the conductive film A121A and the conductive film B121B and has a quadrangular shape in plan view.
  • the groove G extends from the first surface S ⁇ b> 1 through the first semiconductor layer 122 and the light emitting layer 123 in the thickness direction, for example, to a part of the second semiconductor layer 124.
  • a portion of the first semiconductor layer 122A and the light emitting layer 123A that overlap with the conductive film A121A in a plan view and a portion of the first semiconductor layer 122B and the light emitting layer 123B that overlap with the conductive film B121B are electrically connected. Separated.
  • the first semiconductor layer 122A and the first semiconductor layer 122B are electrically separated, so that current diffusion from the conductive films A121A and B121B to the light emitting layers 123A and 123B can be suppressed. Accordingly, the first semiconductor layer 122 having a lower resistance value can be used.
  • the semiconductor layer may be electrically separated between a portion overlapping the conductive film A121A and a portion overlapping the conductive film B121B in plan view. Also in this case, the same effect as the above embodiment can be obtained. In addition, since current diffusion from the conductive films A121A and B121B to the light emitting layers 123A and 123B can be suppressed, the first semiconductor layer 122 having a lower resistance value can be used.
  • FIG. 17A and 17B schematically show the configuration of a light emitting element 12A according to Modification 3 of the above embodiment.
  • FIG. 17A illustrates a cross-sectional configuration of the light emitting element 12A
  • FIG. 17B illustrates a planar configuration of the light emitting element 12A.
  • three or more conductive films conductive film A121A, conductive film B121B, and conductive film C121C
  • the light emitting element 12A of Modification 3 has the same configuration and effects as the light emitting element 12A of the above embodiment.
  • This light emitting element 12A has a conductive film A121A at the center of the first surface S1, and has a frame-shaped conductive film B121B and a conductive film C121C in this order around the conductive film A121A.
  • the conductive film A121A, the conductive film B121B, and the conductive film C121C are arranged in order from the inside of the first surface.
  • the current density of the current flowing through the light emitting layer 123 through the conductive film A121A, the conductive film B121B, and the conductive film C121C is the highest in the conductive film A121A, and decreases in the order of the conductive film B121B and the conductive film C121C.
  • the wiring 126 is connected to the conductive film A121A, and the conductive film A121A functions as a first electrode.
  • the plurality of conductive films serve as non-selective electrodes.
  • the light-emitting element 12B may be configured by connecting the wiring 126 to the conductive film B121B among the conductive films A121A, B121B, and C121C.
  • the light-emitting element may be formed by connecting the wiring 126 to the conductive film C121C among the conductive films A121A, B121B, and C121C.
  • a light-emitting element in which the wiring 126 is connected to two conductive films among the conductive films A121A, B121B, and C121C is used. May be.
  • FIG. 18 illustrates an example of a schematic planar configuration of the light emitting element 12D.
  • the wiring 126 is connected to the conductive film A121A and the conductive film B121B so that a potential is supplied. That is, the conductive film A121A and the conductive film B121B function as the first electrode, and the conductive film C121 becomes a non-selective electrode.
  • the conductive film A121A and the conductive film C121 may function as the first electrode, or the conductive film B121B and the conductive film C121 may function as the first electrode.
  • a plurality of conductive films may function as the first electrode.
  • conductive film A121A, conductive film B121B, and conductive film C121C may be provided on the first surface S1 of the light emitting element 12A. Also in this case, the same effect as the above embodiment can be obtained. Further, by providing the conductive film C121C in addition to the conductive film A121A and the conductive film B121B, the current density can be adjusted more finely.
  • FIG. 19 schematically illustrates a planar configuration of a light emitting element 12A according to Modification 4 of the above embodiment.
  • the planar shape of the conductive film A121A and the conductive film B121B may be a circle.
  • the light emitting element 12A of the modified example 4 has the same configuration and effects as the light emitting element 12A of the above embodiment.
  • the conductive film A121A is provided, for example, at the center of the first surface S1, and its planar shape is a circle.
  • the planar shape of the conductive film B121B is, for example, a frame-shaped circle surrounding the conductive film A121A.
  • the centers of the conductive film A121A and the conductive film B121B are, for example, arranged at the center of the first surface S1. That is, the conductive film A121A and the conductive film B121B have higher symmetry. This makes it possible to obtain higher light distribution characteristics.
  • the electrode area of the conductive film B121B is larger than the electrode area of the conductive film A121A, and the current density of the current flowing through the conductive film B121B is smaller than the current density of the current flowing through the conductive film A121A. .
  • the planar shape of the conductive film A121A and the conductive film B121B may be a circle. Also in this case, the same effect as the above embodiment can be obtained. In addition, the light distribution characteristics can be further improved by increasing the symmetry of the planar shapes of the conductive films A121A and B121B.
  • FIG. 20 schematically illustrates a planar configuration of a display panel (display panel 10C) according to Modification 5 of the above embodiment.
  • the display panel 10C includes both the light emitting element 12A and the light emitting element 12B.
  • the light emitting element 12A and the light emitting element 12B may be mixed in one display panel 10C.
  • the display panel 10C may include a light emitting element 12C (FIG. 12) or a light emitting element 12D (FIG. 18).
  • the shape or constituent material of the first electrode (conductive film A121A) of a part of the light emitting elements (for example, the light emitting element 12A) provided in the display panel 10C is the same as that of the other light emitting elements (for example, the light emitting element 12B). It may be different from the shape or constituent material of one electrode (conductive film B121B). Also in this case, the same effect as the above embodiment can be obtained.
  • the display device 1 described in the above-described embodiment or the like is generated from an externally input video signal or internally such as a television device, a digital camera, a notebook personal computer, a mobile terminal device such as a mobile phone, or a video camera.
  • This video signal can be applied to electronic devices in all fields that display images or videos. An example is shown below.
  • FIG. 21 shows an appearance of a television device to which the display device 1 of the above embodiment is applied.
  • This television device has, for example, a video display screen unit 300 including a front panel 310 and a filter glass 320, and the display device 1 is used for the video display screen unit 300.
  • each side of the first surface S1 may be opposed to each vertex of the conductive film A121A and the conductive film B121B in plan view.
  • planar shape of the conductive film B121B may not be a frame shape.
  • a conductive film A121A may be provided between a plurality of conductive films B121B (two conductive films B121B in FIG. 23).
  • the light emitting elements 12A, 12B, 12C, and 12D may be light emitting elements that emit light in a red wavelength region, for example.
  • the display device 1 may be configured by one display panel (display panels 10A, 10B, and 10C).
  • this technique can also take the following structures.
  • a light emitting layer provided between the first surface and the second surface; A first electrode provided on the first surface and electrically connected to the light emitting layer; A second electrode provided on the second surface and electrically connected to the light emitting layer; And a non-selective electrode provided on the first surface and not electrically connected to the potential supply source.
  • the light emitting element according to (1), wherein the first electrode and the non-selective electrode have different planar shapes.
  • the light emitting element according to (1), wherein the first electrode and the non-selective electrode are different in constituent material.
  • a display panel including a mounting substrate and a plurality of light emitting elements provided on the mounting substrate;
  • the light emitting element is A light emitting layer provided between the first surface and the second surface;
  • a first electrode provided on the first surface and electrically connected to the light emitting layer;
  • a second electrode provided on the second surface and electrically connected to the light emitting layer;
  • a display device provided on the first surface, including a potential supply source and a non-selection electrode that is not electrically connected.
  • All the said light emitting elements provided on the said mounting substrate have the said 1st electrode of the same shape.
  • All the said light emitting elements provided on the said mounting substrate have the said 1st electrode which consists of the same structural material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Devices (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Device Packages (AREA)

Abstract

第1面および第2面の間に設けられた発光層と、前記第1面に設けられ、前記発光層に電気的に接続された第1電極と、前記第2面に設けられ、前記発光層に電気的に接続された第2電極と、前記第1面に設けられ、電位供給源と電気的に非接続状態の非選択電極とを備えた発光素子。

Description

発光素子および表示装置
 本技術は、例えばタイリングディスプレイ等に適用可能な発光素子および表示装置に関する。
 発光ダイオード(LED:Light Emitting Diode)等の発光素子を使用した自発光型の表示パネルが開発されている(例えば、特許文献1参照)。このような自発光型の表示パネルを複数繋ぎ合わせて、タイリングディスプレイ(表示装置)を構成することが提案されている。
特開2015-92529号公報
 このような表示装置では、画質を向上させることが望まれている。
 したがって、画質を向上させることが可能な発光素子および表示装置を提供することが望ましい。
 本技術の一実施の形態に係る発光素子は、第1面および第2面の間に設けられた発光層と、第1面に設けられ、発光層に電気的に接続された第1電極と、第2面に設けられ、発光層に電気的に接続された第2電極と、第1面に設けられ、電位供給源と電気的に非接続状態の非選択電極とを備えたものである。
 本技術の一実施の形態に係る表示装置は、本技術の一実施の形態に係る発光素子を備えたものである。
 本技術の一実施の形態に係る発光素子または表示装置では、第1面に、互いに電気的に分離された複数の導電膜が設けられ、発光層の状態に応じて、電位が供給される導電膜(第1電極)が選択される。複数の導電膜のうち、電位が供給されない導電膜が非選択電極となる。
 本技術の一実施の形態に係る発光素子および表示装置によれば、発光層の状態に応じて第1電極を選択するようにしたので、発光素子から出射される光の波長を調整することができる。よって、複数の発光素子から出射される光の波長のばらつきを抑え、画質を向上させることが可能となる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれの効果であってもよい。
本技術の一実施の形態に係る表示装置の概略構成を表す分解斜視図である。 図1に示した素子基板の概略構成を表す斜視図である。 図2に示したユニットの概略構成を表す斜視図である。 図3に示したユニットの概略構成を表す断面模式図である。 図3に示した表示パネルの概略構成を表す平面模式図(1)である。 図3に示した表示パネルの概略構成を表す平面模式図(2)である。 図5A,5Bに示した発光素子に共通の構成を表す断面模式図である。 図6Aに示した発光素子の第1面の平面模式図である。 図6Aに示した発光素子の第2面の平面模式図である。 図5Aに示した発光素子の構成を表す断面模式図である。 図7Aに示した発光素子の第1面の平面模式図である。 図6Aに示した発光素子の構成を表す断面模式図である。 図8Aに示した発光素子の第1面の平面模式図である。 比較例に係るユニットの概略構成を表す斜視図である。 図9に示した表示パネルの発光素子の構成を表す断面模式図である。 図10Aに示した発光素子の第1面の平面模式図である。 図9に示したユニットの表示状態の一例を表す平面模式図である。 図5A,5Bに示した発光素子の他の例を表す平面模式図である。 図7B,8B,12各々に示した発光素子が出射する光の波長について説明するための図である。 発光素子の製造数と、製造された発光素子の発光波長との関係の一例を表す図である。 変形例1に係る発光素子の構成を表す断面模式図である。 図15Aに示した発光素子の第1面の平面模式図である。 変形例2に係る発光素子の構成を表す断面模式図である。 図16Aに示した発光素子の第1面の平面模式図である。 変形例3に係る発光素子の構成を表す断面模式図である。 図17Aに示した発光素子の第1面の平面模式図である。 図17Bに示した発光素子の構成の他の例を表す平面模式図である。 変形例4に係る発光素子の構成を表す平面模式図である。 変形例5に係る表示パネルの構成を表す平面模式図である。 適用例に係る電子機器(テレビジョン装置)の構成を表す図である。 図6Bに示した発光素子の構成の他の例(1)を表す平面模式図である。 図6Bに示した発光素子の構成の他の例(2)を表す平面模式図である。
 以下、本技術の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.実施の形態(非選択電極が設けられた発光素子を有する表示装置)
2.変形例1(スイッチング素子が接続された発光素子の例)
3.変形例2(溝を有する発光素子の例)
4.変形例3(第1電極または非選択電極が複数の導電膜により構成された発光素子の例)
5.変形例4(第1電極または非選択電極の平面形状が円である発光素子の例)
6.変形例5(導電膜Aが第1電極として機能する発光素子と、導電膜Bが第1電極として機  能する発光素子とを有する表示パネルの例)
<実施の形態>
 図1は、本技術の一実施の形態に係る表示装置(表示装置1)の全体構成を模式的に表したものである。この表示装置1は、例えば素子基板1Aと、素子基板1Aに対向する対向基板1Bと、素子基板1Aを駆動するための制御回路1Cを備えている。例えば、対向基板1Bの表面(素子基板1Aとの対向面と反対面)が映像表示面であり、この映像表示面の中央部が表示領域、その周囲が非表示領域である。対向基板1Bは、可視領域の波長の光を透過するように構成されている。対向基板1Bは、例えばガラス基板,透明樹脂基板,および透明樹脂フィルム等の光透過性材料により構成されている。
 図2は、図1に示した素子基板1Aの構成の一例を模式的に表している。表示装置1は、いわゆるタイリングディスプレイであり、素子基板1Aが、タイル状に敷き詰められた複数のユニット(ユニットU)により構成されている。図2には、9つのユニットUにより、素子基板1Aが構成される場合を例示したが、ユニットUの数は、10以上であってもよく、8以下であってもよい。
 図3は、ユニットUの構成の一例を模式的に表している。ユニットUは、例えば、タイル状に敷き詰められた複数の表示パネル(表示パネル10A,10B)と、この表示パネル10A,10Bの支持基板(支持基板20)とを有している。各々の表示パネル10A,10Bの表示面と反対面が、支持基板20に対向している。支持基板20は、例えば、金属板により構成されている。
 図4は、表示パネル10A,10Bと支持基板20との間の構成の一例を模式的に表している。表示パネル10A,10Bは、例えば固定部材(固定部材30)により支持基板20に固定されている。
 図5Aは表示パネル10A、図5Bは表示パネル10Bの模式的な平面構成をそれぞれ表している。表示パネル10Aは、実装基板(実装基板11)上に複数の発光素子(発光素子12A)を有しており、表示パネル10Bは、実装基板11上に複数の発光素子(発光素子12B)を有している。表示パネル10A,10Bでは、各々の発光素子12A,12Bに駆動回路が接続されている。
 図6A~6Cは、発光素子12Aおよび発光素子12Bに共通する構成を模式的に表したものである。図6Aは発光素子12A,12Bの断面構成、図6Bは発光素子12A,12Bの一方の面(後述の第1面S1)の平面構成、図6Cは発光素子12A,12Bの他方の面(後述の第2面S2)の平面構成をそれぞれ表している。発光素子12A,12Bは、例えば、対向する第1面(第1面S1)および第2面(第2面S2)を有しており、これらの間に、第1面S1に近い位置から順に、第1半導体層122、発光層123および第2半導体層124を有している。第1面S1および第2面S2の形状は、例えば正方形である。第1面S1の形状と第2面S2の形状とが異なっていてもよい。発光素子12A,12Bの第1面S1には、導電膜A121Aおよび導電膜B121Bが設けられ、第2面S2には第2電極125が設けられている。後述するように、導電膜A121Aおよび導電膜B121Bのいずれか一方が発光素子12A,12Bの第1電極として機能する。発光素子12A,12Bでは、例えば第2面S2から光(後述の図7A,8Aの光LA,光LB)が取り出されるようになっている。第1面S1から光を取り出すようにしてもよい。発光素子12A,12Bは、例えば、青色波長域の光または緑色波長域の光を出射するものであり、表示パネル10A,10Bには、発光素子12A,12Bとともに、赤色波長域の光を出射する発光素子が設けられている。
 導電膜A121Aと導電膜B121Bとは、第1面S1の互いに異なる領域に設けられ、電気的に分離されている。導電膜A121Aと導電膜B121Bとは、互いの形状(大きさも含む),電極面積および構成材料等のうちの少なくとも1つが異なっており、導電膜A121Aを介して流れる電流の電流密度と導電膜B121Bを介して流れる電流の電流密度とは異なっている。導電膜A121A,導電膜B121Bは、回転対称の平面形状を有していることが好ましく、対称の中心は、第1面S1の中心に配置されていることが好ましい。これにより、配光特性を向上させることができる。導電膜A121Aは、例えば第1面S1の中央部に設けられ、その平面形状は正方形である(図6B)。導電膜B121Bの平面形状は、例えば、この導電膜A121Aの周囲を囲む枠状の正方形である。即ち、例えば導電膜A121A,導電膜B121Bは4回対称の平面形状を有している。導電膜A121A,導電膜B121Bは、長方形等の四角形の平面形状を有していてもよい。例えば、導電膜B121Bの電極面積は、導電膜A121Aの電極面積よりも大きくなっており、導電膜B121Bを介して流れる電流の電流密度は、導電膜A121Aを介して流れる電流の電流密度よりも小さい。
 図7A,7Bは発光素子12Aの構成、図8A,8Bは発光素子12Bの構成をそれぞれ模式的に表したものである。図7A,8Aは、発光素子12A,12Bの断面構成、図7B,8Bは、発光素子12A,12Bの第1面S1の平面構成をそれぞれ表している。発光素子12Aでは、導電膜A121Aに、電位を供給するための配線(配線126)が接続されている。即ち、導電膜A121Aが第1半導体層122を介して発光層123に電気的に接続され、第1電極として機能する。このとき、導電膜B121Bには電位が供給されず、導電膜B121Bは非選択電極となる。即ち、導電膜B121Bは、電位供給源と非接続状態となっている。発光素子12Aの発光層123では、導電膜A121Aと第2電極125との間に所定の電圧が印加されると光LAが発生する。発光素子12Bでは、導電膜B121Bに配線126が接続されている。即ち、導電膜B121Bが第1半導体層122を介して発光層123に電気的に接続され、第1電極として機能する。このとき、導電膜A121Aには電位が供給されず、導電膜A121Aは非選択電極となる。即ち、導電膜A121Aは、電位供給源と非接続状態となっている。発光素子12Bの発光層123では、導電膜B121Bと第2電極125との間に所定の電圧が印加されると、発光素子12A(導電膜A121A)よりも電流密度が低くなるので、光LAよりも長波長の光LBが発生する。このように発光素子12Aと発光素子12Bとは、第1電極として機能する導電膜(導電膜A121A,導電膜B121B)が異なっている。
 詳細は後述するが、本実施の形態では、このように、第1面S1に、互いに電気的に分離された複数の導電膜(導電膜A121A,導電膜B121B)が設けられているので、第1電極として機能する導電膜を選択することが可能となる。これにより、発光層123で発生する光(光LA,LB)の波長を調整することができる。
 図3には、1つのユニットUに、表示パネル10A(発光素子12A)と表示パネル10B(発光素子12B)とが設けられている場合を例示したが、1つのユニットUが表示パネル10Aおよび表示パネル10Bのどちらか一方のみにより構成されていてもよい。
 導電膜A121A,導電膜B121Bは、第1半導体層122に接して設けられている。導電膜A121A,導電膜B121Bは、例えば、導電性の金属材料により構成されている。導電性の金属材料としては、例えば、チタン(Ti),白金(Pt)および金(Au)等が挙げられる。導電膜A121A,導電膜B121Bには、例えば、チタン(Ti)/白金(Pt)/金(Au)の積層膜を用いることができる。導電膜A121A,導電膜B121Bは、例えば、酸化インジウム錫(ITO:Indium Tin Oxide)および酸化インジウム亜鉛(IZO:Indium Zinc Oxide)等の導電性の酸化物により構成されていてもよい。導電膜A121A,導電膜B121Bには、例えば、ITO/IZOの積層膜を用いることができる。導電膜A121A,導電膜B121Bを単膜により構成するようにしてもよい。導電膜A121Aの構成材料と導電膜B121Bの構成材料とが異なっていてもよい。表示パネル10Aでは、全ての発光素子12Aが同一の形状および構成材料の第1電極(導電膜A121A)を有し、表示パネル10Bでは、全ての発光素子12Aが同一の形状および構成材料の第1電極(導電膜B121B)を有している。したがって、表示パネル10Aでは全ての発光素子12Aで、導電膜A121Aと配線126とを接続する工程が同時に行われ、表示パネル10Bでは全ての発光素子12Bで、導電膜B121Bと配線126とを接続する工程が同時に行われる。
 発光素子12A,12Bに設けられた第1半導体層122は、例えばp型のInGaN系半導体材料により構成されている。第1半導体層122には、例えばp型のGaNを用いることができる。導電膜A121A,導電膜B121Bに接続された第1半導体層122は、大きな抵抗を有することが好ましい。例えばp型のGaN等の、大きな抵抗値を有する第1半導体層122を用いることにより、導電膜A121A,導電膜B121Bから発光層123に流れる電流の拡散が抑えられる。第1半導体層122の平面形状は、例えば正方形であり、第1半導体層122の表面(第2半導体層124との対向面と反対面)により、第1面S1が構成されている。
 第1半導体層122と第2半導体層124との間の発光層123は、例えば、InGaN系半導体材料により構成されている。発光層123には、例えば、InGaNを用いることができる。
 第2半導体層124は、発光層123を間にして、第1半導体層122に対向している。この第2半導体層124は、例えばn型のInGaN系半導体材料により構成されている。第2半導体層124には、例えばn型のGaNを用いることができる。第2半導体層124の平面形状は、例えば正方形であり、第2半導体層124の表面により、第2面S2が構成されている。
 第2電極125は、第2半導体層124に接して設けられ、第2半導体層124を介して発光層123に電気的に接続されている。第2電極125は、例えば第2面S2の中央部に設けられ、四角形の平面形状を有している。第2電極125は、導電膜A121A,導電膜B121Bと同様に、例えば、導電性の金属材料または酸化物により構成されている。第2電極125には、例えば、チタン(Ti)/白金(Pt)/金(Au)の積層膜を用いることができる。第2電極125を単膜により構成するようにしてもよい。
 この発光素子12A,12Bでは、導電膜A121Aまたは導電膜B121Bと第2電極125との間に所定の電圧が印加されると、第2電極125側から電子が、導電膜A121Aまたは導電膜B121B側から正孔が発光層123にそれぞれ注入される。この発光層123に注入された電子と正孔とが再結合することにより光子が発生し、出射光(光LA,LB)となって第2面S2から取り出される。ここでは、発光素子12A,12Bに複数の導電膜(導電膜A121A,導電膜B121B)が設けられているので、発光層123の状態に応じて、第1電極として機能させる導電膜を選択することが可能となる。即ち、電流密度の異なる導電膜A121A,導電膜B121Bのいずれかを選択することにより、発光素子12A,12Bから出射される光LA,LBの波長を調整することができる。したがって、表示パネル10Aまたは表示パネル10Bを選択し、複数の表示パネル10A,10B間での視覚的な境界の発生を抑えることが可能となる。以下、これについて詳細に説明する。
 図9は比較例に係るユニット(ユニットU100)の模式的な構成を表したものである。このユニットU100では、複数の表示パネル(表示パネル100)がタイル状に敷き詰められている。全ての表示パネル100が、同一の構成を有している。複数の表示パネル100は、支持基板20上に設けられている。
 図10A,10Bは、表示パネル100の有する発光素子(発光素子120)の構成を模式的に表している。図10Aは発光素子120の断面構成、図10Bは発光素子120の第1面S1の平面構成をそれぞれ表している。この発光素子120の第1面S1には、単一の導電膜(導電膜1121)が設けられている。この点において、発光素子120は発光素子12A,12Bと異なっている。発光素子120では、この導電膜1121のみが第1電極として機能するので、電流密度を変えることができない。したがって、発光層123の状態に起因して、発光素子120から出射される光(後述の図11の光L100,L101)の波長が大きくばらつくおそれがある。特に、発光層123がInGaN系の半導体材料により構成される発光素子120では、半導体層(例えば、第1半導体層122,発光層123および第2半導体層124)を均一に成長させることが困難であり、発光素子120から出射される光の波長のばらつきが大きくなりやすい。
 図11は、ユニットU100の表示状態を模式的に表したものである。隣り合う表示パネル100の一方からは光L100が出射され、他方からは光L100と大きく波長の異なる光L101が出射されると、光L100と光L101との波長差に起因して、視認段差が生じる。この視認段差により、隣り合う表示パネル100の間に視覚的な境界が発生して、画質を大きく低下させる。
 発光素子120を発光波長に応じて選別して用いる方法も考え得る。例えば、選別方法としてはビン(bin)分けが挙げられる。しかしながら、発光素子120を選別して用いると工程数が増え、また、使用できない発光素子120を廃棄することになる。このため、コストが高くなる。
 これに対して、表示装置1では、発光素子12A,12Bの第1面S1に複数の導電膜(導電膜A121A,導電膜B121B)を設けるようにしたので、発光層123の状態に応じて、第1電極として機能させる導電膜を選択することができる。導電膜A121Aが第1電極として機能する発光素子12Aでは、より電流密度の高い電流が発光層123に注入され、導電膜B121Bが第1電極として機能する発光素子12Bでは、より電流密度の低い電流が発光層123に注入される。したがって、発光層123の状態に合わせて、電流密度を変化させ、複数の発光素子12A,12B(表示パネル10A,10B)の間で出射される光LA,LBの波長のばらつきを所定の範囲内に収めることができる。
 表示装置1は、図12に示したように、導電膜A121Aおよび導電膜B121Bの両方が第1電極として機能する発光素子(発光素子12C)を有していてもよい。発光素子12Cでは、配線126が導電膜A121Aおよび導電膜B121Bに接続され、導電膜A121Aおよび導電膜B121Bに電位が供給されるようになっている。導電膜A121Aおよび導電膜B121Bの両方を介して流れる電流の電流密度は、導電膜A121Aまたは導電膜B121Bのどちらかを介して流れる電流の電流密度よりも低くなる。したがって、発光素子12A,12Bと合わせて発光素子12Cを用いることにより、より大きな範囲で電流密度を変化させることが可能となる。
 図13は、発光素子12A,12B,12Cの電流密度と、ドミナント波長との関係を表している。発光素子12Aでは、第1電極(導電膜A121A)から注入される電流の電流密度が、発光素子12B(導電膜B121B)の約1.5倍であり、発光素子12Aから出射される光LAの波長は、発光素子12Bから出射される光LBの波長よりも約2nm短くなる。このように、導電膜A121A,導電膜B121Bのいずれを第1電極として機能させるかにより、電流密度を変化させ、光LA,LBの波長を調整することができる。したがって、光LA,LBの波長のばらつきを所定の範囲内に収めて、複数の表示パネル10A,10Bの間での視覚的な境界の発生が抑えられる。
 また、光LA,LBの波長を調整することにより、発光波長の基準を満たす発光素子12A,12Bを増加させることができる。よって、製造コストを下げることが可能となる。
 図14は、製造後の発光素子から出射される光の波長と、発光素子の製造数との関係を表している。製造後の発光波長の範囲が、許容範囲Rよりも短波長側の範囲RSの発光素子および長波長側の範囲RLの発光素子を使用すると、前述のように、画質が大きく低下する。また、許容範囲Rの発光素子のみを選別する場合には、工程数が増し、コストが高くなる。これに対し、導電膜A121A,導電膜B121Bのいずれを第1電極として機能させるかを選択することで、範囲RSおよび範囲RLの発光素子の発光波長を許容範囲Rに収めることが可能となる。したがって、表示装置1ではコストを抑えることが可能となる。更に、発光素子の選別工程を加えたとしても、その基準を高く設定することができるので、より画質を向上させることが可能となる。
 このように本実施の形態では、発光層123の状態に応じて、導電膜A121Aおよび導電膜B121Bから第1電極を選択するようにしたので、発光素子12A,12Bから出射される光LA,LBの波長を調整することができる。よって、複数の発光素子12A,12Bから出射される光LA,LBの波長のばらつきを抑え、画質を向上させることが可能となる。
 また、導電膜A121Aおよび導電膜B121Bが、回転対称の平面形状を有することにより、配光特性を向上させることができる。
 更に、表示パネル10A内(または表示パネル10B内)では、全ての発光素子12A(または発光素子12B)で同一の導電膜A121A(または導電膜B121B)が配線126に接続されているので、これらの接続工程を全ての発光素子12A(または発光素子12B)で同時に行うことができる。よって、簡便に表示装置1を製造することができる。
 以下、上記実施の形態の変形例について説明するが、以降の説明において上記実施の形態と同一構成部分については同一符号を付してその説明は適宜省略する。
<変形例1>
 図15A,15Bは、上記実施の形態の変形例1に係る発光素子12A,12Bの構成を模式的に表したものである。図15Aは発光素子12A,12Bの断面構成、図15Bは発光素子12A,12Bの平面構成をそれぞれ表している。このように導電膜A121A,導電膜B121Bにスイッチング素子(スイッチング素子SW)を接続するようにしてもよい。この点を除き、変形例1の発光素子12A,12Bは上記実施の形態の発光素子12A,12Bと同様の構成および効果を有している。
 配線126は、導電膜A121Aおよび導電膜B121Bに接続されており、スイッチング素子SWの切り替えを行うことにより、電位が供給される導電膜A121A,導電膜B121Bが選択されるようになっている。即ち、スイッチング素子SWの切り替えにより、第1電極として機能する導電膜A121A,導電膜B121Bが選択される。
<変形例2>
 図16A,16Bは、上記実施の形態の変形例2に係る発光素子12A,12Bの構成を模式的に表したものである。図16Aは発光素子12A,12Bの断面構成、図16Bは発光素子12A,12Bの平面構成をそれぞれ表している。このように、平面視で導電膜A121Aに重なる部分の半導体層(第1半導体層122Aおよび発光層123A)と、導電膜B121Bに重なる部分の半導体層(第1半導体層122B)および発光層123B)とを分離するようにしてもよい。この点を除き、変形例2の発光素子12A,12Bは上記実施の形態の発光素子12A,12Bと同様の構成および効果を有している。
 発光素子12A,12Bは、第1面S1から垂直に設けられた溝(溝G)を有している。この溝Gは、導電膜A121Aと導電膜B121Bとの間に設けられ、平面視で、四角形の形状を有している。溝Gは、第1面S1から、第1半導体層122および発光層123を厚み方向に貫通し、例えば第2半導体層124の一部まで延びている。このような溝Gを設けることにより、平面視で導電膜A121Aに重なる部分の第1半導体層122Aおよび発光層123Aと、導電膜B121Bに重なる部分の第1半導体層122Bおよび発光層123Bとが電気的に分離される。
 溝Gを有する発光素子12Aでは、導電膜A121Aから第1半導体層122Aを介して発光層123Aに電流が注入される。溝Gを有する発光素子12Bでは、導電膜B121Bから第1半導体層122Bを介して発光層123Bに電流が注入される。溝Gを設けることにより、第1半導体層122Aと第1半導体層122Bとが電気的に分離されるので、導電膜A121A,導電膜B121Bから発光層123A,123Bまでの電流の拡散が抑えられる。したがって、より低い抵抗値の第1半導体層122を用いることが可能となる。
 本変形例のように、平面視で導電膜A121Aに重なる部分と導電膜B121Bに重なる部分とで、半導体層を電気的に分離するようにしてもよい。この場合にも、上記実施の形態と同等の効果を得ることができる。また、導電膜A121A,導電膜B121Bから発光層123A,123Bまでの電流の拡散が抑えられるので、より低い抵抗値の第1半導体層122を用いることが可能となる。
<変形例3>
 図17A,17Bは、上記実施の形態の変形例3に係る発光素子12Aの構成を模式的に表したものである。図17Aは発光素子12Aの断面構成、図17Bは発光素子12Aの平面構成をそれぞれ表している。このように、発光素子12Aの第1面S1に互いに電気的に分離された導電膜(導電膜A121A,導電膜B121B,導電膜C121C)を3つ以上設けるようにしてもよい。この点を除き、変形例3の発光素子12Aは上記実施の形態の発光素子12Aと同様の構成および効果を有している。
 この発光素子12Aでは、第1面S1の中央部に導電膜A121Aを有しており、この導電膜A121Aの周囲に枠状の導電膜B121Bおよび導電膜C121Cをこの順に有している。換言すれば、第1面の内側から順に、導電膜A121A、導電膜B121Bおよび導電膜C121Cが配置されている。このとき、導電膜A121A,導電膜B121B,導電膜C121Cを介して発光層123に流れる電流の電流密度は、導電膜A121Aが最も大きく、導電膜B121Bおよび導電膜C121Cの順に小さくなる。このように、第1面S1に設ける導電膜の数を増やすことにより、より細かく電流密度の大きさを変化させることが可能となる。発光素子12Aでは、導電膜A121Aに配線126が接続され、導電膜A121Aが第1電極として機能する。このとき、複数の導電膜(導電膜B121Bおよび導電膜C121C)が非選択電極となる。
 導電膜A121A,導電膜B121B,導電膜C121Cのうち、導電膜B121Bに配線126を接続して発光素子12Bを構成するようにしてもよい。あるいは、導電膜A121A,導電膜B121B,導電膜C121Cのうち、導電膜C121Cに配線126を接続して発光素子を構成するようにしてもよい。
 上記実施の形態で説明した発光素子12A,12Bの他、導電膜A121A,導電膜B121B,導電膜C121Cのうち、2つの導電膜に配線126を接続した発光素子(発光素子12D)を用いるようにしてもよい。
 図18は、発光素子12Dの模式的な平面構成の一例を表している。例えば、発光素子12Dでは、導電膜A121Aおよび導電膜B121Bに配線126が接続され、電位が供給されるようになっている。即ち、導電膜A121Aおよび導電膜B121Bが第1電極として機能し、導電膜C121が非選択電極となる。導電膜A121Aおよび導電膜C121が第1電極として機能するようにしてもよく、あるいは導電膜B121Bおよび導電膜C121が第1電極として機能するようにしてもよい。このように、複数の導電膜(導電膜A121A,導電膜B121B,導電膜C121C)が第1電極として機能するようにしてもよい。
 本変形例のように、発光素子12Aの第1面S1に、互いに電気的に分離された導電膜(導電膜A121A,導電膜B121B,導電膜C121C)を3つ以上設けるようにしてもよい。この場合にも、上記実施の形態と同等の効果を得ることができる。また、導電膜A121Aおよび導電膜B121Bに加えて、導電膜C121Cを設けることにより、より細かく電流密度の大きさを調整することが可能となる。
<変形例4>
 図19は、上記実施の形態の変形例4に係る発光素子12Aの平面構成を模式的に表したものである。このように、導電膜A121Aおよび導電膜B121Bの平面形状が円であってもよい。この点を除き、変形例4の発光素子12Aは上記実施の形態の発光素子12Aと同様の構成および効果を有している。
 導電膜A121Aは、例えば第1面S1の中央部に設けられ、その平面形状は円である。導電膜B121Bの平面形状は、例えば、この導電膜A121Aの周囲を囲む枠状の円である。平面視で、導電膜A121Aおよび導電膜B121Bの中心は例えば、第1面S1の中心に配置されている。即ち、導電膜A121A,導電膜B121Bはより高い対称性を有している。これにより、より高い配光特性を得ることが可能となる。例えば、導電膜B121Bの電極面積は、導電膜A121Aの電極面積よりも大きくなっており、導電膜B121Bを介して流れる電流の電流密度は、導電膜A121Aを介して流れる電流の電流密度よりも小さい。
 本変形例のように、導電膜A121Aおよび導電膜B121Bの平面形状が円であってもよい。この場合にも、上記実施の形態と同等の効果を得ることができる。また、導電膜A121Aおよび導電膜B121Bの平面形状の対称性を高めることにより、配光特性をより高めることが可能となる。
<変形例5>
 図20は、上記実施の形態の変形例5に係る表示パネル(表示パネル10C)の平面構成を模式的に表したものである。表示パネル10Cは、発光素子12Aおよび発光素子12Bの両方を含んでいる。このように、発光素子12Aおよび発光素子12Bが一つの表示パネル10Cに混在していてもよい。表示パネル10Cは、発光素子12C(図12)または発光素子12D(図18)を含んでいてもよい。このように、表示パネル10Cに設けられた発光素子の一部(例えば発光素子12A)の第1電極(導電膜A121A)の形状または構成材料が、他の発光素子(例えば発光素子12B)の第1電極(導電膜B121B)の形状または構成材料と異なっていてもよい。この場合にも、上記実施の形態と同等の効果を得ることができる。
<適用例>
 上記実施の形態等において説明した表示装置1は、例えば、テレビジョン装置,デジタルカメラ,ノート型パーソナルコンピュータ、携帯電話等の携帯端末装置あるいはビデオカメラなど、外部から入力された映像信号あるいは内部で生成した映像信号を、画像あるいは映像として表示するあらゆる分野の電子機器に適用することが可能である。以下にその一例を示す。
 図21は、上記実施の形態の表示装置1が適用されるテレビジョン装置の外観を表したものである。このテレビジョン装置は、例えば、フロントパネル310およびフィルターガラス320を含む映像表示画面部300を有しており、映像表示画面部300に、上記表示装置1が用いられている。
 以上、実施の形態および変形例を挙げて本技術を説明したが、本技術はこれら実施の形態等に限定されるものではなく、種々変形が可能である。例えば、上記実施の形態等において説明した各部の材料および厚みなどは限定されるものではなく、他の材料および厚みとしてもよい。
 また、第1面S1に対する導電膜A121A,導電膜B121Bの配置は、図6B等に例示したものに限定されない。例えば、図22に示したように、平面視で、第1面S1の各辺と導電膜A121A,導電膜B121Bの各頂点が対向するようにしてもよい。
 更に、導電膜B121Bの平面形状は枠状でなくてもよい。例えば、図23に示したように、複数の導電膜B121B(図23では2つの導電膜B121B)の間に導電膜A121Aを設けるようにしてもよい。
 また、発光素子12A,12B,12C,12Dが、例えば赤色波長域の光を出射する発光素子であってもよい。
 加えて、1つの表示パネル(表示パネル10A,10B,10C)により表示装置1が構成されていてもよい。
 なお、本明細書に記載された効果はあくまで例示であってこれに限定されるものではなく、また他の効果があってもよい。
 なお、本技術は以下のような構成も取ることができる。
(1)
 第1面および第2面の間に設けられた発光層と、
 前記第1面に設けられ、前記発光層に電気的に接続された第1電極と、
 前記第2面に設けられ、前記発光層に電気的に接続された第2電極と、
 前記第1面に設けられ、電位供給源と電気的に非接続状態の非選択電極と
 を備えた発光素子。
(2)
 第1電極と非選択電極とは、互いに電極面積が異なっている
 前記(1)に記載の発光素子。
(3)
 第1電極と非選択電極とは、互いに平面形状が異なっている
 前記(1)に記載の発光素子。
(4)
 第1電極と非選択電極とは、互いに構成材料が異なっている
 前記(1)に記載の発光素子。
(5)
 更に、前記第1電極と前記発光層との間の第1半導体層と、
 前記第2電極と前記発光層との間の第2半導体層とを含む
 前記(1)ないし(4)のうちいずれか1つに記載の発光素子。
(6)
 前記第1電極および前記非選択電極は、前記第1面の互いに異なる領域に配置されている
 前記(5)に記載の発光素子。
(7)
 前記発光層および前記第1半導体層は、前記第1電極に重なる部分と、前記非選択電極に重なる部分とが電気的に分離されている
 前記(6)に記載の発光素子。
(8)
 前記第1電極および前記非選択電極は、平面視で回転対称の形状を有している
 前記(1)ないし(7)のうちいずれか1つに記載の発光素子。
(9)
 前記第1電極および前記非選択電極の一方の平面形状が四角形である
 前記(1)ないし(8)のうちいずれか1つに記載の発光素子。
(10)
 前記第1電極および前記非選択電極の他方が、前記四角形を囲んでいる
 前記(9)に記載の発光素子。
(11)
 前記第1電極および前記非選択電極の一方の平面形状が円である
 前記(1)ないし(8)のうちいずれか1つに記載の発光素子。
(12)
 前記発光層はInGaNを含む
 前記(1)ないし(11)のうちいずれか1つに記載の発光素子。
(13)
 更に、前記第1電極および前記非選択電極に接続されたスイッチング素子を有し、
 前記スイッチング素子により、前記第1電極に電位が供給されるように構成されている
 前記(1)ないし(12)のうちいずれか1つに記載の発光素子。
(14)
 前記第1電極および前記非選択電極の少なくとも一方が、複数の導電膜により構成されている
 前記(1)ないし(13)のうちいずれか1つに記載の発光素子。
(15)
 実装基板と、前記実装基板上に設けられた複数の発光素子とを含む表示パネルを備え、
 前記発光素子は、
 第1面および第2面の間に設けられた発光層と、
 前記第1面に設けられ、前記発光層に電気的に接続された第1電極と、
 前記第2面に設けられ、前記発光層に電気的に接続された第2電極と、
 前記第1面に設けられ、電位供給源と電気的に非接続状態の非選択電極とを含む
 表示装置。
(16)
 前記実装基板上に設けられた全ての前記発光素子が、同一の形状の前記第1電極を有する
 前記(15)に記載の表示装置。
(17)
 前記実装基板上に設けられた全ての前記発光素子が、同一の構成材料からなる前記第1電極を有する
 前記(15)に記載の表示装置。
(18)
 前記実装基板上に設けられた前記複数の発光素子の一部では、前記第1電極の形状が他の発光素子の前記第1電極の形状と異なっている
 前記(15)に記載の表示装置。
(19)
 複数の前記表示パネルがタイル状に敷き詰められている
 前記(15)ないし(18)のうちいずれか1つに記載の表示装置。
 本出願は、日本国特許庁において2017年6月6日に出願された日本特許出願番号第2017-111525号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (19)

  1.  第1面および第2面の間に設けられた発光層と、
     前記第1面に設けられ、前記発光層に電気的に接続された第1電極と、
     前記第2面に設けられ、前記発光層に電気的に接続された第2電極と、
     前記第1面に設けられ、電位供給源と電気的に非接続状態の非選択電極と
     を備えた発光素子。
  2.  第1電極と非選択電極とは、互いに電極面積が異なっている
     請求項1に記載の発光素子。
  3.  第1電極と非選択電極とは、互いに平面形状が異なっている
     請求項1に記載の発光素子。
  4.  第1電極と非選択電極とは、互いに構成材料が異なっている
     請求項1に記載の発光素子。
  5.  更に、前記第1電極と前記発光層との間の第1半導体層と、
     前記第2電極と前記発光層との間の第2半導体層とを含む
     請求項1に記載の発光素子。
  6.  前記第1電極および前記非選択電極は、前記第1面の互いに異なる領域に配置されている
     請求項5に記載の発光素子。
  7.  前記発光層および前記第1半導体層は、前記第1電極に重なる部分と、前記非選択電極に重なる部分とが電気的に分離されている
     請求項6に記載の発光素子。
  8.  前記第1電極および前記非選択電極は、平面視で回転対称の形状を有している
     請求項1に記載の発光素子。
  9.  前記第1電極および前記非選択電極の一方の平面形状が四角形である
     請求項1に記載の発光素子。
  10.  前記第1電極および前記非選択電極の他方が、前記四角形を囲んでいる
     請求項9に記載の発光素子。
  11.  前記第1電極および前記非選択電極の一方の平面形状が円である
     請求項1に記載の発光素子。
  12.  前記発光層はInGaNを含む
     請求項1に記載の発光素子。
  13.  更に、前記第1電極および前記非選択電極に接続されたスイッチング素子を有し、
     前記スイッチング素子により、前記第1電極に電位が供給されるように構成されている
     請求項1に記載の発光素子。
  14.  前記第1電極および前記非選択電極の少なくとも一方が、複数の導電膜により構成されている
     請求項1に記載の発光素子。
  15.  実装基板と、前記実装基板上に設けられた複数の発光素子とを含む表示パネルを備え、
     前記発光素子は、
     第1面および第2面の間に設けられた発光層と、
     前記第1面に設けられ、前記発光層に電気的に接続された第1電極と、
     前記第2面に設けられ、前記発光層に電気的に接続された第2電極と、
     前記第1面に設けられ、電位供給源と電気的に非接続状態の非選択電極とを含む
     表示装置。
  16.  前記実装基板上に設けられた全ての前記発光素子が、同一の形状の前記第1電極を有する
     請求項15に記載の表示装置。
  17.  前記実装基板上に設けられた全ての前記発光素子が、同一の構成材料からなる前記第1電極を有する
     請求項15に記載の表示装置。
  18.  前記実装基板上に設けられた前記複数の発光素子の一部では、前記第1電極の形状が他の発光素子の前記第1電極の形状と異なっている
     請求項15に記載の表示装置。
  19.  複数の前記表示パネルがタイル状に敷き詰められている
     請求項15に記載の表示装置。
PCT/JP2018/016987 2017-06-06 2018-04-26 発光素子および表示装置 WO2018225418A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880035294.8A CN110678992B (zh) 2017-06-06 2018-04-26 发光装置和显示器
US16/617,752 US11411045B2 (en) 2017-06-06 2018-04-26 Light emitting device and display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-111525 2017-06-06
JP2017111525A JP2018206986A (ja) 2017-06-06 2017-06-06 発光素子および表示装置

Publications (1)

Publication Number Publication Date
WO2018225418A1 true WO2018225418A1 (ja) 2018-12-13

Family

ID=64566673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016987 WO2018225418A1 (ja) 2017-06-06 2018-04-26 発光素子および表示装置

Country Status (4)

Country Link
US (1) US11411045B2 (ja)
JP (1) JP2018206986A (ja)
CN (1) CN110678992B (ja)
WO (1) WO2018225418A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP1738844S (ja) * 2022-06-30 2023-03-13 発光ダイオード
JP1738843S (ja) * 2022-06-30 2023-03-13 発光ダイオードチップ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54123884A (en) * 1978-03-17 1979-09-26 Hitachi Ltd Light emission diode of multi-color and its manufacture
US4199385A (en) * 1977-09-21 1980-04-22 International Business Machines Corporation Method of making an optically isolated monolithic light emitting diode array utilizing epitaxial deposition of graded layers and selective diffusion
JPH05347432A (ja) * 1992-06-15 1993-12-27 Sharp Corp 半導体発光素子
JP2007207977A (ja) * 2006-02-01 2007-08-16 Canon Inc 発光素子及び発光素子アレイ
JP2009027077A (ja) * 2007-07-23 2009-02-05 Toyota Motor Corp 少なくとも2波長の光を発光する素子と、その製造方法
WO2011104948A1 (ja) * 2010-02-24 2011-09-01 シャープ株式会社 画像表示用発光装置および画像表示装置
JP2016186649A (ja) * 2012-10-30 2016-10-27 シャープ株式会社 アクティブマトリクス基板、表示パネル及びそれを備えた表示装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4066654B2 (ja) * 2001-12-19 2008-03-26 富士ゼロックス株式会社 面発光型半導体レーザ装置及びその製造方法
KR100568502B1 (ko) * 2004-08-11 2006-04-07 한국전자통신연구원 반도체 발광소자
JP2008047871A (ja) * 2006-07-18 2008-02-28 Mitsubishi Electric Corp 半導体発光ダイオード
TWI493748B (zh) * 2008-08-29 2015-07-21 Nichia Corp Semiconductor light emitting elements and semiconductor light emitting devices
TWI470832B (zh) * 2010-03-08 2015-01-21 Lg Innotek Co Ltd 發光裝置
KR101125335B1 (ko) * 2010-04-15 2012-03-27 엘지이노텍 주식회사 발광소자, 발광소자 제조방법 및 발광소자 패키지
EP2660855A4 (en) * 2010-12-28 2014-07-02 Dowa Electronics Materials Co Ltd SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREFOR
JP2013140942A (ja) * 2011-12-07 2013-07-18 Toshiba Corp 半導体発光装置
CN103378233B (zh) * 2012-04-16 2016-02-10 展晶科技(深圳)有限公司 发光二极管晶粒及使用该晶粒的发光二极管封装结构
KR101983774B1 (ko) * 2012-09-20 2019-05-29 엘지이노텍 주식회사 발광 소자
TW201511362A (zh) * 2013-09-09 2015-03-16 Lextar Electronics Corp 發光二極體晶片
TW201511328A (zh) * 2013-09-13 2015-03-16 Lextar Electronics Corp 發光二極體
JP2015092529A (ja) 2013-10-01 2015-05-14 ソニー株式会社 発光装置、発光ユニット、表示装置、電子機器、および発光素子
JP6393529B2 (ja) * 2014-06-18 2018-09-19 株式会社ジャパンディスプレイ 液晶表示装置
WO2017150280A1 (ja) * 2016-03-01 2017-09-08 スタンレー電気株式会社 縦型紫外発光ダイオード

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4199385A (en) * 1977-09-21 1980-04-22 International Business Machines Corporation Method of making an optically isolated monolithic light emitting diode array utilizing epitaxial deposition of graded layers and selective diffusion
JPS54123884A (en) * 1978-03-17 1979-09-26 Hitachi Ltd Light emission diode of multi-color and its manufacture
JPH05347432A (ja) * 1992-06-15 1993-12-27 Sharp Corp 半導体発光素子
JP2007207977A (ja) * 2006-02-01 2007-08-16 Canon Inc 発光素子及び発光素子アレイ
JP2009027077A (ja) * 2007-07-23 2009-02-05 Toyota Motor Corp 少なくとも2波長の光を発光する素子と、その製造方法
WO2011104948A1 (ja) * 2010-02-24 2011-09-01 シャープ株式会社 画像表示用発光装置および画像表示装置
JP2016186649A (ja) * 2012-10-30 2016-10-27 シャープ株式会社 アクティブマトリクス基板、表示パネル及びそれを備えた表示装置

Also Published As

Publication number Publication date
US11411045B2 (en) 2022-08-09
JP2018206986A (ja) 2018-12-27
CN110678992A (zh) 2020-01-10
CN110678992B (zh) 2023-11-14
US20200194494A1 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
JP7130827B2 (ja) 表示装置、表示モジュールおよび電子機器
US8780023B2 (en) Pixel chip, display panel, lighting panel, display unit, and lighting unit
US10078158B2 (en) Manufacturing display panels with integrated micro lens array
JP2023002591A (ja) 表示システム
KR102473326B1 (ko) 실리콘 상의 컬러 iled 디스플레이
US8624274B2 (en) Methods for forming a pixel of a micro-chip light-emitting diode light source and a plurality of light-emitting diode pixels arranged in a two-dimensional array
WO2018010213A1 (zh) 折叠式oled显示器
US20160329381A1 (en) Display panel, display method thereof and display device
KR20220024706A (ko) 동축 다색 led를 위한 시스템들 및 방법들
WO2019000930A1 (zh) 显示面板及其制作方法、维修方法以及显示装置
CN111048569B (zh) 一种显示面板及显示装置
TWI693708B (zh) 透明顯示面板
WO2015139421A1 (zh) 显示面板及显示装置
CN111681610A (zh) 一种显示装置及其制作方法
CN111489658A (zh) 双面显示面板及其制作方法、双面显示装置
US20200083280A1 (en) Top emission microled display and bottom emission microled display and a method of forming the same
WO2020189131A1 (ja) 表示装置
TW202016632A (zh) 顯示裝置
US11289463B2 (en) Display panel
WO2018225418A1 (ja) 発光素子および表示装置
WO2021195818A1 (zh) 背光模组和显示装置
CN114864797B (zh) 发光面板和显示装置
US11721717B2 (en) Optical system
WO2018225432A1 (ja) 表示装置および電子機器
US20190179191A1 (en) Display device including a light-emitting diode package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18813626

Country of ref document: EP

Kind code of ref document: A1