WO2018225409A1 - 表面処理銅箔及びその製造方法、並びに銅張積層板 - Google Patents

表面処理銅箔及びその製造方法、並びに銅張積層板 Download PDF

Info

Publication number
WO2018225409A1
WO2018225409A1 PCT/JP2018/016487 JP2018016487W WO2018225409A1 WO 2018225409 A1 WO2018225409 A1 WO 2018225409A1 JP 2018016487 W JP2018016487 W JP 2018016487W WO 2018225409 A1 WO2018225409 A1 WO 2018225409A1
Authority
WO
WIPO (PCT)
Prior art keywords
silane compound
group
copper foil
treated copper
silane
Prior art date
Application number
PCT/JP2018/016487
Other languages
English (en)
French (fr)
Inventor
友希 大理
敦史 三木
亮 福地
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=62238914&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018225409(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Publication of WO2018225409A1 publication Critical patent/WO2018225409A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Definitions

  • the present disclosure relates to a surface-treated copper foil, a manufacturing method thereof, and a copper-clad laminate. Specifically, the present disclosure manufactures a copper-clad laminate used for flexible printed wiring boards (FPC), rigid wiring boards, shield materials, RF-ID (radio-frequency identifiers), planar heating elements, radiators, etc.
  • the present invention relates to a surface-treated copper foil and a method for producing the same, and a copper-clad laminate using the surface-treated copper foil.
  • Copper clad laminates are widely used in various applications such as flexible printed wiring boards.
  • This flexible printed wiring board is formed by etching a copper foil of a copper-clad laminate to form a conductor pattern (also referred to as a “wiring pattern”), and connecting and mounting electronic components on the conductor pattern with solder. Manufactured.
  • the copper foil of the copper clad laminate is generally classified into an electrolytic copper foil and a rolled copper foil from the copper foil production method, and a rolled copper foil having excellent bending resistance is often used for the flexible printed wiring board.
  • the surface of the electrolytic copper foil is formed by electrodeposition of copper, and the surface of the rolled copper foil is formed by contact with a rolling roll. Therefore, the surface roughness of the rolled copper foil is generally smaller than the surface roughness of the electrolytic copper foil. Therefore, it can be said that the rolled copper foil is excellent as a copper foil for a high-frequency circuit.
  • the higher the frequency the greater the loss (attenuation) of signal power, making it easier to read data. Therefore, the circuit length of the flexible printed wiring board is limited.
  • the conductor side is shifted to a copper foil with a small surface roughness
  • the resin substrate side is shifted to a resin substrate formed of a low dielectric material. Tend to.
  • the most desirable from the viewpoint of the skin effect is a copper foil that does not undergo roughening and has a small surface roughness.
  • the loss (attenuation) of signal power in an electronic circuit can be roughly divided into two.
  • One is conductor loss, that is, loss due to copper foil
  • the second is dielectric loss, that is, loss due to resin substrate.
  • the conductor loss has a skin effect in a high frequency region and has a characteristic that the current flows on the surface of the conductor. Therefore, if the copper foil surface is rough, the current flows along a complicated path. Therefore, in order to reduce the conductor loss, it is desirable to use a rolled copper foil having a small surface roughness.
  • dielectric loss depends on the type of resin substrate, it is preferable to use a resin substrate formed of a low dielectric material (for example, a liquid crystal polymer or a low dielectric polyimide). Moreover, since dielectric loss is also influenced by the adhesive agent which adhere
  • a low dielectric material for example, a liquid crystal polymer or a low dielectric polyimide.
  • the roughened particles electrodeposited on the surface of the copper foil increase the conductor loss due to the skin effect, and cause the phenomenon that the roughened particles, which are called powder fall off, are peeled off. It is desirable to reduce the amount of roughened particles.
  • the number of roughened particles to be electrodeposited on the copper foil surface is reduced, the anchor effect due to the roughened particles is lowered, and sufficient adhesion between the copper foil and the resin base material cannot be obtained.
  • resin base materials formed from low dielectric materials such as liquid crystal polymers and low dielectric polyimides are less likely to adhere to copper foils than conventional resin base materials.
  • a silane treatment layer has the effect of improving the adhesiveness between copper foil and a resin base material, it cannot be said that the adhesive improvement effect is sufficient depending on the kind.
  • Some embodiments of the present invention have been made in order to solve the above-described problems, and are surfaces capable of enhancing adhesion to a resin substrate, particularly a resin substrate suitable for high-frequency applications. It is an object to provide a treated copper foil and a method for producing the same. In addition, some embodiments of the present invention provide a copper-clad laminate having excellent adhesion between a resin substrate, particularly a resin substrate suitable for high-frequency applications, and a surface-treated copper foil. To do.
  • the present inventors have selected and used a specific silane compound, and formed a silane-treated layer on the surface of the copper foil, thereby adhering to the resin base material.
  • the present inventors have found that a surface-treated copper foil capable of enhancing the properties can be obtained, and have completed several embodiments of the present invention.
  • the surface-treated copper foil according to the embodiment of the present invention includes a mixture containing a first silane compound and a second silane compound different from the first silane compound, a mixture containing two kinds of the first silane compounds, or 2 Having a silane-treated layer formed on the copper foil surface using a mixture containing the second silane compound of the type
  • the first silane compound is a silane compound having a reactive functional group having a terminal and at least one selected from an amino group and an epoxy group and a hydrolyzable group or a hydrocarbon group
  • the second silane compound is a silane compound having a reactive functional group having at least one selected from an epoxy group, a (meth) acryl group, a thiol group, and an amino group and a hydrolyzable group or a hydrocarbon group. Or a tetraalkoxysilane compound.
  • the surface-treated copper foil which concerns on another embodiment of this invention has the silane treatment layer formed using the 1st silane compound or the 2nd silane compound different from the said 1st silane compound on a copper foil surface.
  • the first silane compound is a silane compound having a reactive functional group having a terminal and at least one selected from an amino group and an epoxy group and a hydrolyzable group or a hydrocarbon group
  • the second silane compound is a silane compound having a reactive functional group having at least one selected from an epoxy group, a (meth) acryl group, a thiol group, and an amino group and a hydrolyzable group or a hydrocarbon group. Or it is a tetraalkoxysilane compound.
  • the copper clad laminate according to the embodiment of the present invention includes the surface-treated copper foil and a resin base material bonded onto the silane-treated layer of the surface-treated copper foil.
  • the method for producing a surface-treated copper foil according to an embodiment of the present invention includes a mixed solution containing a first silane compound and a second silane compound different from the first silane compound, and two types of the first silane compounds.
  • a silane treatment layer is formed by applying the mixed solution to a copper foil surface and drying it.
  • the first silane compound is a silane compound having a reactive functional group having a terminal and at least one selected from an amino group and an epoxy group and a hydrolyzable group or a hydrocarbon group
  • the second silane compound is a silane compound having a reactive functional group having at least one selected from an epoxy group, a (meth) acryl group, a thiol group, and an amino group and a hydrolyzable group or a hydrocarbon group. Or a tetraalkoxysilane compound.
  • a surface-treated copper foil capable of enhancing the adhesion to a resin substrate, particularly a resin substrate suitable for high frequency applications, and a method for producing the same.
  • a copper-clad laminate having excellent adhesion between a resin substrate, particularly a resin substrate suitable for high frequency applications, and a surface-treated copper foil. it can.
  • the surface-treated copper foil according to the embodiment of the present invention includes a first silane compound and a mixture containing a second silane compound different from the first silane compound, a mixture containing two kinds of first silane compounds, or two kinds of second silanes.
  • a silane treatment layer formed using a mixture containing a compound or a silane treatment layer formed using the first silane compound or the second silane compound is provided on the surface of the copper foil.
  • the “copper foil” includes not only a copper foil but also a copper alloy foil.
  • the “silane treatment layer” means a silane compound film (cured product) formed from a mixture containing a silane compound.
  • the first silane compound is a silane compound having a reactive functional group having a terminal and at least one selected from an amino group and an epoxy group and a hydrolyzable group.
  • the “reactive functional group” in this specification means a reactive group that can chemically bond to the resin substrate.
  • the “hydrolyzable group” means a reactive group that can be hydrolyzed by moisture and chemically bonded to the copper foil.
  • the first silane compound is not particularly limited as long as it has a functional group as described above, but can be represented by the following general formula (1).
  • X is a hydrolyzable group
  • Y is a functional group selected from an amino group or an epoxy group
  • R 1 is a hydrocarbon chain having 1 to 10 carbon atoms which may contain a hetero atom
  • R 2 is a hydrocarbon group having 1 to 15 carbon atoms
  • n is an integer of 0 to 3.
  • the “hydrocarbon group (chain)” is a concept including an aromatic hydrocarbon group (chain) as well as an aliphatic hydrocarbon group (chain).
  • the aliphatic hydrocarbon group may be linear or branched, may contain one or more unsaturated bonds, and may be cyclic.
  • Alkoxy groups such as a methoxy group, an ethoxy group, a propoxy group; An acyloxy group etc. are mentioned. Among them, an alkoxy group such as a methoxy group, an ethoxy group, or a propoxy group is preferable because an effect of improving the adhesion between the resin base material and the surface-treated copper foil is increased.
  • Y which is the terminal of the reactive functional group is preferably an amino group.
  • Y is an amino group, the effect of increasing the adhesion between the resin substrate and the surface-treated copper foil is particularly high.
  • the hetero atom which may be contained in R 1, but not limited to, oxygen atom, nitrogen atom and a sulfur atom.
  • R 1 is preferably an alkylene chain having 1 to 5 carbon atoms or an alkylene chain having 3 to 7 carbon atoms containing a nitrogen atom, and an alkylene chain having 2 to 4 carbon atoms or a carbon atom having 4 to 4 carbon atoms containing a nitrogen atom. More preferred is an alkylene chain of 6.
  • R ⁇ 1 > is these alkylene chains, the effect which improves the adhesiveness between a resin base material and surface-treated copper foil becomes high.
  • n is preferably 0. When n is 0, the effect which improves the adhesiveness between a resin base material and a surface treatment copper foil becomes high.
  • the first silane compound can be produced by a known method, but a commercially available product may be used.
  • Examples of commercially available products usable as the first silane compound include KBM603 (chemical name: N-2- (aminoethyl) -3-aminopropyltrimethoxysilane) and KBE903 (chemical name: manufactured by Shin-Etsu Chemical Co., Ltd.). 3-aminopropyltriethoxysilane), KBM4803 (chemical name: 8-glycidoxyoctyltrimethoxysilane), etc .; SH6040 (chemical name: glycidoxypropyltriethoxysilane) manufactured by Toray Dow Corning Co., Ltd. It is done.
  • preferable commercial products as the first silane compound are KBE603 and KBE903.
  • the second silane compound is a silane compound having a reactive functional group having at least one selected from an epoxy group, a (meth) acrylic group, a thiol group (mercapto group) and an amino group and a hydrolyzable group. is there. Although it will not specifically limit if a 2nd silane compound has the above functional groups, It can represent with following General formula (2).
  • X is a hydrolyzable group
  • Y is a functional group selected from an epoxy group, a (meth) acryl group, a thiol group or an amino group
  • L is a direct bond or —OCO—.
  • R 1 is an alkylene chain having 1 to 10 carbon atoms which may contain a hetero atom
  • R 2 is a hydrocarbon group having 1 to 15 carbon atoms
  • n is an integer of 0 to 3.
  • (meth) acrylic group in the present specification means both an acrylic group and a methacrylic group.
  • Alkoxy groups such as a methoxy group, an ethoxy group, a propoxy group; An acyloxy group etc. are mentioned.
  • alkoxy groups such as a methoxy group, an ethoxy group, and a propoxy group are preferable because they have a high effect of improving the adhesion between the resin substrate and the surface-treated copper foil.
  • Y which is the terminal of the reactive functional group is preferably an epoxy group, a methacryl group or an amino group.
  • Y is these functional groups, the effect of improving the adhesiveness between the resin base material and the surface-treated copper foil is enhanced.
  • Y is an amino group, the solubility of the silane compound in a solvent such as water increases, so that it is easy to form a homogeneous silane treatment layer.
  • X is a methoxy group
  • Y is an epoxy group
  • L is a direct bond
  • R 1 is an alkylene having 2 to 6 carbon atoms including an oxygen atom.
  • the second silane compound can be produced by a known method, but a commercially available product may be used.
  • Examples of commercially available products usable as the second silane compound include KBE503 (chemical name: 3-methacryloxypropyltriethoxysilane) and KBE5803 (chemical name: 8-methacryloxyoctyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd.
  • KBM5103 chemical name: 3-acryloxypropyltrimethoxysilane
  • KBM4803 chemical name: 8-glycidoxyoctyltrimethoxysilane
  • KBM803 chemical name: 3-mercaptopropyltrimethoxysilane
  • Z6030 chemical name: 3-methacryloxypropyltrimethoxysilane
  • SH6040 chemical name: glycidoxypropyltriethoxysilane manufactured by Dow Corning Co., Ltd .
  • S00550 chemical name: 4 manufactured by Wako Pure Chemical Industries, Ltd.
  • S25035 chemical name: N-(6- aminohexyl) aminomethyl triethoxysilane
  • preferred commercial products as the second silane compound are SH6040, KBE503, S00550, and S25035.
  • the volume ratio is preferably 10:90 to 90:10.
  • the volume ratio of the first silane compound to the second silane compound is more preferably 25:75 to 90:10, and still more preferably 50:50. ⁇ 90: 10.
  • a rolled copper foil or an electrolytic copper foil can be used.
  • the rolled copper foil is preferable because the surface roughness is small and the conductor loss can be reduced.
  • middle layer may be sufficient as copper foil.
  • the carrier and the intermediate layer are not particularly limited, and known ones can be used.
  • a roughening treatment layer may be formed on the surface of the copper foil by subjecting it to a roughening treatment from the viewpoint of enhancing the adhesion to the resin base material.
  • the “roughening treatment layer” in this specification means a layer of roughening particles electrodeposited on a copper foil.
  • the roughened particles are not particularly limited, and are formed from copper, nickel, phosphorus, tungsten, arsenic, molybdenum, chromium, cobalt, zinc, or an alloy containing one or more of them, which is generally used for the roughening treatment. Fine particles can be used.
  • the roughened particles electrodeposited on the surface of the copper foil increase the conductor loss due to the skin effect, and cause the phenomenon that the roughened particles called powder fall off, so the copper foil is used as necessary. It is good also as an aspect which reduces the roughening particle
  • one or more layers selected from the group consisting of a heat resistant treatment layer, a rust prevention treatment layer and a chromate treatment layer may be provided from the viewpoint of improving various properties. These layers may be a single layer or a plurality of layers.
  • the surface-treated copper foil having a silane treatment layer formed using two types of silane compounds is prepared by preparing a mixed solution containing two types of silane compounds, applying the mixture to the copper foil surface, and drying the mixture. It can be manufactured by forming a treatment layer.
  • a surface-treated copper foil having a silane treatment layer formed using one type of silane compound is prepared by preparing a mixed solution containing one type of silane compound and then applying the mixture to the copper foil surface and drying it. Can be produced by forming a silane-treated layer.
  • the mixed solution can contain a solvent such as water in addition to the silane compound.
  • the concentration of the silane compound in the mixed solution is not particularly limited, but it is preferable that the silane concentration of the entire silane compound in the mixed solution is 0.5 volume% to 10 volume%. From the viewpoint of solubility in a solvent in the mixed solution, the silane concentration of the entire silane compound in the mixed solution is preferably 0.1% by volume to 5.0% by volume.
  • the mixed solution can be prepared, for example, by adding a silane compound to a solvent and mixing.
  • the conditions for the silane treatment are not particularly limited, and can be performed in the same manner as the known silane treatment.
  • the temperature of the mixed solution is 10 ° C. to 60 ° C.
  • the pH of the mixed solution is 2.0 to 14.0
  • the treatment time is 1 second to 10 seconds
  • the drying temperature is 80 ° C. to 150 ° C.
  • the drying time is 1 second to
  • a silane treatment layer can be formed by performing silane treatment for 10 seconds.
  • the pH of the mixed solution is preferably near neutral, that is, 3 to 10.
  • the pH of the mixed solution is preferably 6-14.
  • Identification of the compound contained in the silane-treated layer can be performed by a known method. For example, a sample may be taken from the silane treatment layer and analyzed by NMR, or by MS spectrum such as TOF-SIMS.
  • an electroplating method can be used.
  • the amount of electrodeposition of the roughened particles on the copper foil surface can be controlled by adjusting the current density.
  • the roughening treatment for example, the following roughening treatment method (1) or roughening treatment method (2) can be used.
  • the heat-treatment, rust-proof treatment or chromate treatment may be performed on the copper foil surface before the silane treatment.
  • These treatment methods are not particularly limited, and can be performed according to known methods.
  • the surface-treated copper foil produced as described above has increased adhesion by a silane-treated layer formed using a specific silane compound, the surface-treated copper foil is roughened by electrodeposition on the copper foil surface by a roughening treatment. Even when there are few particles or when a roughening process is not performed, the adhesiveness with respect to a resin base material can be improved. Therefore, this surface-treated copper foil is suitable not only for conventional resin base materials but also for resin base materials suitable for high frequency applications that are harder to adhere to copper foil than conventional resin base materials (liquid crystal polymers, low dielectric materials such as low dielectric polyimides). It can also be used for bonding to a resin base material formed from a material.
  • the copper clad laminated board which concerns on embodiment of this invention contains the above-mentioned surface treatment copper foil and the resin base material joined on the silane treatment layer of surface treatment copper foil.
  • the resin base material may be formed from a low dielectric material.
  • low dielectric in this specification means that the dielectric loss tangent (1 GHz) is 0.01 or less.
  • the low dielectric material include, but are not limited to, liquid crystal polymer (LCP), low dielectric polyimide, low dielectric epoxy resin, fluorine resin, polyphenylene ether resin, and the like.
  • liquid crystal polymer means an aromatic polyester that exhibits optical anisotropy in the liquid phase.
  • the liquid crystal polymer is generally commercially available, and for example, Vecstar (registered trademark) series manufactured by Kuraray Co., Ltd. can be used.
  • “low dielectric polyimide” means, for example, a polyimide having a relative dielectric constant (1 GHz) of 3.3 or less and a dielectric loss tangent (1 GHz) of 0.005 or less.
  • the low dielectric polyimide is generally commercially available, and for example, U varnish, Upilex (registered trademark) manufactured by Ube Industries, Ltd. can be used.
  • the fluororesin include PTFE.
  • Polyphenylene ether resins also include compounds with other resins such as polystyrene.
  • the copper-clad laminate having the above-described configuration is formed by placing a resin base material on the silane-treated layer of the surface-treated copper foil and then pressing and bonding between the surface-treated copper foil and the resin base material. Can be manufactured.
  • the applied pressure is not particularly limited, and may be appropriately set according to the type of the surface-treated copper foil and the resin base material to be used.
  • the copper clad laminate produced as described above includes a surface-treated copper foil whose adhesion is enhanced by a silane-treated layer formed using two types of specific silane compounds, the surface-treated copper foil Excellent adhesion between the resin and the resin substrate. Therefore, this copper-clad laminate is suitable for use in applications such as flexible wiring boards, rigid wiring boards, shield materials, RF-IDs, planar heating elements, and radiators.
  • silane compounds used in each example are as follows. ⁇ First silane compound> KBE903 (manufactured by Shin-Etsu Chemical Co., Ltd., 3-aminopropyltriethoxysilane, in general formula (1), X is an ethoxy group, Y is an amino group, R 1 is a propylene chain, and n is 0 Silane compound) KBM603 (manufactured by Shin-Etsu Chemical Co., Ltd., N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, in general formula (1), X is a methoxy group, Y is an amino group, R 1 Is a silane compound wherein — (CH 2 ) 3 NH (CH 2 ) 2 — and n is 0) SH6040 (manufactured by Dow Corning Toray Co
  • ⁇ Second silane compound> S00550 (Wako Pure Chemical Industries, Ltd., 4-aminobutyltriethoxysilane, in general formula (2), X is an ethoxy group, Y is an amino group, L is a direct bond, and R 1 is Silane compound which is a butylene chain and n is 0) S25035 (Wako Pure Chemical Industries, Ltd., N- (6-aminohexyl) aminomethyltriethoxysilane, in general formula (2), X is an ethoxy group, Y is an amino group, and L is a direct bond
  • Z6030 (manufactured by Dow Corning Toray, 3-methacryloxypropyltrimethoxysilane, in general formula (2), X is a methoxy group, Y is a methacryl group, L is —OCO—, R Silane compound in which 1 is a propylene chain and n is 0) KBM5803 (manufactured by Shin-Etsu Chemical Co., Ltd., 8-methacryloxyoctyltrimethoxysilane, in general formula (2), X is a methoxy group, Y is a methacryl group, L is a direct bond, and R 1 is Silane compound in which — (CH 2 ) 8 OCH 2 — and n is 0) KBM5103 (manufactured by Shin-Etsu Chemical Co., Ltd., 3-acryloxypropyltrimethoxysilane, in general formula (2), X is a methoxy group, Y is an acrylic group, L is —
  • Example 1 Roughening treatment was performed on the rolled copper foil having a thickness of 12 ⁇ m under the above-described roughening treatment method (2) condition.
  • KBE903 was selected as the first silane compound and S00550 was selected as the second silane compound, and these were added to water and mixed to prepare a mixed solution.
  • the silane concentration of the entire silane compound in the mixed solution was set to 1.2% by volume.
  • the volume ratio between KBE903 and S00550 was set to 90:10.
  • the surface-treated copper foil was obtained by using this mixture and silane-treating the surface of the roughened rolled copper foil to form a silane-treated layer.
  • the conditions for the silane treatment were as follows. Temperature: 10-30 ° C pH: 1-12 Processing time: 1-5 seconds Drying temperature: 100-120 ° C Drying time: 10 to 300 seconds
  • a resin substrate made of a liquid crystal polymer (Vecstar (registered trademark) CT-Z manufactured by Kuraray Co., Ltd.) having a thickness of 50 ⁇ m is disposed on the silane-treated layer of the surface-treated copper foil obtained as described above.
  • a copper clad laminate was obtained by pressing together. At this time, the applied pressure was set to 4 MPa.
  • Example 2 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 1 except that the volume ratio of KBE903 and S00550 was changed to 75:25.
  • Example 3 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 1 except that the volume ratio of KBE903 and S00550 was changed to 50:50.
  • Example 4 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 1 except that the volume ratio of KBE903 and S00550 was changed to 25:75.
  • Example 5 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 1 except that the volume ratio of KBE903 and S00550 was changed to 10:90.
  • Example 6 A surface-treated copper foil and a copper clad laminate were prepared in the same manner as in Example 1 except that S25035 was used as the second silane compound.
  • Example 7 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 6 except that the volume ratio of KBE903 and S25035 was changed to 75:25.
  • Example 8) A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 6 except that the volume ratio of KBE903 and S25035 was changed to 50:50.
  • Example 9 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 6 except that the volume ratio of KBE903 and S25035 was changed to 25:75.
  • Example 10 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 6 except that the volume ratio of KBE903 and S25035 was changed to 10:90.
  • Example 11 A surface-treated copper foil and a copper clad laminate were prepared in the same manner as in Example 1 except that SH6040 was used as the second silane compound.
  • Example 12 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 11 except that the volume ratio of KBE903 and SH6040 was changed to 75:25.
  • Example 13 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 11 except that the volume ratio of KBE903 and SH6040 was changed to 50:50.
  • Example 14 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 11 except that the volume ratio of KBE903 and SH6040 was changed to 25:75.
  • Example 15 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 11 except that the volume ratio of KBE903 and SH6040 was changed to 10:90.
  • Example 16 A surface-treated copper foil and a copper clad laminate were prepared in the same manner as in Example 1 except that KBE503 was used as the second silane compound.
  • Example 17 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 16 except that the volume ratio of KBE903 and KBE503 was changed to 75:25.
  • Example 18 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 16 except that the volume ratio of KBE903 and KBE503 was changed to 50:50.
  • Example 19 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 16 except that the volume ratio of KBE903 and KBE503 was changed to 25:75.
  • Example 20 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 16 except that the volume ratio of KBE903 and KBE503 was changed to 10:90.
  • Example 21 A surface-treated copper foil and a copper clad laminate were prepared in the same manner as in Example 1 except that Z6030 was used as the second silane compound.
  • Example 22 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 21 except that the volume ratio of KBE903 and Z6030 was changed to 75:25.
  • Example 23 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 21 except that the volume ratio of KBE903 and Z6030 was changed to 50:50.
  • Example 24 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 21 except that the volume ratio of KBE903 and Z6030 was changed to 25:75.
  • Example 25 A surface-treated copper foil and a copper clad laminate were prepared in the same manner as in Example 1 except that KBM5803 was used as the second silane compound.
  • Example 26 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 25 except that the volume ratio of KBE903 and KBM5803 was changed to 75:25.
  • Example 27 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 25 except that the volume ratio of KBE903 and KBM5803 was changed to 50:50.
  • Example 28 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 25 except that the volume ratio of KBE903 and KBM5803 was changed to 25:75.
  • Example 29 A surface-treated copper foil and a copper clad laminate were prepared in the same manner as in Example 1 except that KBM5103 was used as the second silane compound.
  • Example 30 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 29 except that the volume ratio of KBE903 and KBM5103 was 75:25.
  • Example 31 A surface-treated copper foil and a copper clad laminate were prepared in the same manner as in Example 1 except that KBM803 was used as the second silane compound.
  • Example 32 A surface-treated copper foil and a copper clad laminate were prepared in the same manner as in Example 1 except that KBM4803 was used as the second silane compound.
  • Example 33 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 2 except that TEOS was used as the second silane compound.
  • Example 34 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 33 except that the volume ratio of KBE903 and TEOS was 50:50.
  • Example 35 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 33 except that the volume ratio of KBE903 and TEOS was 25:75.
  • Example 36 A surface-treated copper foil and a copper clad laminate were prepared in the same manner as in Example 1 except that KBM603 was used as the first silane compound.
  • Example 37 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 36 except that the volume ratio of KBM603 and S00550 was changed to 75:25.
  • Example 38 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 36 except that the volume ratio of KBM603 and S00550 was changed to 50:50.
  • Example 39 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 36 except that the volume ratio of KBM603 and S00550 was changed to 25:75.
  • Example 40 A surface-treated copper foil and a copper clad laminate were prepared in the same manner as in Example 6 except that KBM603 was used as the first silane compound.
  • Example 41 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 40 except that the volume ratio of KBM603 and S25035 was changed to 75:25.
  • Example 42 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 40 except that the volume ratio of KBM603 and S25035 was changed to 50:50.
  • Example 43 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 40 except that the volume ratio of KBM603 and S25035 was changed to 25:75.
  • Example 44 A surface-treated copper foil and a copper clad laminate were prepared in the same manner as in Example 11 except that KBM603 was used as the first silane compound.
  • Example 45 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 44 except that the volume ratio of KBM603 and SH6040 was changed to 75:25.
  • Example 46 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 44 except that the volume ratio of KBM603 and SH6040 was changed to 50:50.
  • Example 47 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 44 except that the volume ratio of KBM603 and SH6040 was changed to 25:75.
  • Example 48 A surface-treated copper foil and a copper clad laminate were prepared in the same manner as in Example 16 except that KBM603 was used as the first silane compound.
  • Example 49 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 48 except that the volume ratio of KBM603 and KBE503 was changed to 75:25.
  • Example 50 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 48 except that the volume ratio of KBM603 and KBE503 was changed to 50:50.
  • Example 51 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 48 except that the volume ratio of KBM603 and KBE503 was changed to 25:75.
  • Example 52 A surface-treated copper foil and a copper clad laminate were prepared in the same manner as in Example 32 except that KBM603 was used as the first silane compound.
  • Example 53 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 52 except that the volume ratio of KBM603 and KBM4803 was changed to 75:25.
  • Example 54 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 52 except that the volume ratio of KBM603 and KBM4803 was changed to 50:50.
  • Example 55 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 52 except that the volume ratio of KBM603 and KBM4803 was changed to 25:75.
  • Example 56 A surface-treated copper foil and a copper clad laminate were prepared in the same manner as in Example 33 except that KBM603 was used as the first silane compound and the volume ratio of KBM603 to TEOS was changed to 90:10.
  • Example 57 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 56 except that the volume ratio of KBM603 and TEOS was changed to 75:25.
  • Example 58 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 56 except that the volume ratio of KBM603 and TEOS was changed to 50:50.
  • Example 59 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 56 except that the volume ratio of KBM603 and TEOS was changed to 25:75.
  • Example 60 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 56 except that SH6040 was used as the first silane compound.
  • Example 61 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 60 except that the volume ratio of SH6040 and TEOS was changed to 75:25.
  • Example 62 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 60 except that the volume ratio of SH6040 and TEOS was changed to 50:50.
  • Example 63 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 60 except that the volume ratio of SH6040 and TEOS was changed to 25:75.
  • Example 64 A surface-treated copper foil and a copper-clad laminate were prepared in the same manner as in Example 1 except that only a KBE903 as a silane compound was added to water and mixed to prepare a mixed solution.
  • Example 65 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 1 except that only a KBM603 as a silane compound was added to water and mixed to prepare a mixed solution.
  • Example 66 A surface-treated copper foil and a copper clad laminate were prepared in the same manner as in Example 1 except that only a SH6040 as a silane compound was added to water and mixed to prepare a mixed solution.
  • Example 67 A surface-treated copper foil and a copper clad laminate were prepared in the same manner as in Example 1 except that a mixed solution was prepared by adding and mixing only KBE503 as water as a silane compound.
  • Example 68 A surface-treated copper foil and a copper clad laminate were prepared in the same manner as in Example 1 except that a mixed solution was prepared by adding only Z6030 as a silane compound to water and mixing.
  • Example 69 A surface-treated copper foil and a copper clad laminate were prepared in the same manner as in Example 1 except that only a KBM5803 as a silane compound was added to water and mixed to prepare a mixed solution.
  • Example 70 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 1 except that only a KBM5103 as a silane compound was added to water and mixed to prepare a mixed solution.
  • Example 71 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 1 except that only a KBM803 as a silane compound was added to water and mixed to prepare a mixed solution.
  • Example 72 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 1 except that only a KBM4803 as a silane compound was added to water and mixed to prepare a mixed solution.
  • Example 73 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 1 except that a mixed solution was prepared by adding only S00550 as a silane compound to water and mixing.
  • Example 74 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 1 except that a mixed solution was prepared by adding only S25035 as a silane compound to water and mixing.
  • Example 75 A surface-treated copper foil and a copper clad laminate were produced in the same manner as in Example 1 except that a mixed solution was prepared by adding only TEOS as water to the silane compound and mixing.
  • the 90-degree peel strength was measured for the copper-clad laminate obtained in the above example.
  • the 90 degree peel strength was measured in accordance with JIS C6471: 1995. Specifically, the strength when the width of the conductor (surface-treated copper foil) was 3 mm and the resin base material and the surface-treated copper foil were peeled off at an angle of 90 degrees at a speed of 50 mm / min was measured. The measurement was performed twice, and the average value was taken as the result of 90 degree peel strength.
  • the 90-degree peel strength was 0.25 kg / cm or more.
  • the 90 degree peel strength is preferably 0.60 kg / cm or more, more preferably 0.80 kg / cm or more, and further preferably 1.00 kg / cm or more.
  • a surface-treated copper foil capable of enhancing the adhesion to a resin substrate, particularly a resin substrate suitable for high-frequency applications, and a method for producing the same are provided. can do.
  • the copper clad laminated board excellent in the adhesiveness between a resin base material, especially the resin base material suitable for a high frequency use, and surface-treated copper foil can be provided.
  • the surface-treated copper foil according to the embodiment of the present invention has a silane-treated layer formed using a specific silane compound on the surface of the copper foil, the roughened particles are electrodeposited on the surface of the copper foil by the roughening treatment. Even when there is little or a roughening process is not performed, adhesiveness with a resin substrate is high. Therefore, the surface-treated copper foil which concerns on embodiment of this invention can be utilized for manufacture of a copper clad laminated board. Further, since the copper clad laminate according to the embodiment of the present invention is excellent in adhesiveness with the resin base material, a flexible wiring board, a rigid wiring board, a shielding material, an RF-ID, a planar heating element, It can be used for applications such as radiators.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

第1シラン化合物及び第1シラン化合物とは異なる第2シラン化合物を含む混合物、2種類の第1シラン化合物を含む混合物、又は2種類の第2シラン化合物を含む混合物を用いて形成されたシラン処理層を銅箔表面上に有する表面処理銅箔である。第1シラン化合物は、アミノ基及びエポキシ基から選択される少なくとも1種を末端に有する反応性官能基と加水分解性基又は炭化水素基とを有するシラン化合物であり、第2シラン化合物は、エポキシ基、(メタ)アクリル基、チオール基及びアミノ基から選択される少なくとも1種を末端に有する反応性官能基と加水分解性基若しくは炭化水素基とを有するシラン化合物、又はテトラアルコキシシラン化合物である。

Description

表面処理銅箔及びその製造方法、並びに銅張積層板
 本開示は、表面処理銅箔及びその製造方法、並びに銅張積層板に関する。詳細には、本開示は、フレキシブルプリント配線板(FPC)、リジッド配線板、シールド材、RF-ID(radio-frequency identifier)、面状発熱体、放熱体などに用いられる銅張積層板を製造するための表面処理銅箔及びその製造方法、並びに該表面処理銅箔を用いた銅張積層板に関する。
 銅張積層板は、フレキシブルプリント配線板などの各種用途において広く用いられている。このフレキシブルプリント配線板は、銅張積層板の銅箔をエッチングして導体パターン(「配線パターン」とも称される)を形成し、導体パターン上に電子部品を半田で接続して実装することによって製造される。
 近年、パソコン、モバイル端末などの電子機器では、通信の高速化及び大容量化に伴い、電気信号の高周波化が進んでおり、これに対応可能なフレキシブルプリント配線板が求められている。電気信号の周波数が高周波、例えば1GHz以上になると、電流が導体パターンの表面にだけ流れる表皮効果の影響が顕著になり、導体パターンの表面の凹凸によって電流伝送経路が変化して導体損失が増大する影響が無視できなくなる。そのため、導体パターンとなる銅箔の表面粗さを小さくすることが必要である。
 銅張積層板の銅箔としては、銅箔の製造方法から電解銅箔と圧延銅箔とに一般に分類され、フレキシブルプリント配線板には、耐屈曲性に優れる圧延銅箔が用いられることが多い。ここで、電解銅箔の表面は銅の電着粒によって形成され、圧延銅箔の表面は圧延ロールとの接触によって形成される。そのため、圧延銅箔の表面粗さは電解銅箔の表面粗さよりも一般的に小さい。そのため、圧延銅箔は高周波回路用の銅箔として優れていると言える。
 一方、高周波になるほど、信号電力の損失(減衰)も大きくなり、データが読み取れなくなり易い。そのため、フレキシブルプリント配線板の回路長さが制限される。このような信号電力の損失(減衰)を減らすために、導体側は、銅箔の表面粗さが小さいものへ、また、樹脂基板側としては、低誘電材料から形成される樹脂基板へと移行する傾向にある。なお、表皮効果の観点から最も望ましいのは、粗化処理を行わない、表面粗さが小さい銅箔であると考えられる。
 電子回路における信号電力の損失(減衰)は大きく二つに分けることができる。その一は、導体損失、すなわち銅箔による損失であり、その二は、誘電体損失、すなわち樹脂基板による損失である。
 導体損失は、高周波域では表皮効果があり、電流は導体の表面を流れるという特性を有するため、銅箔表面が粗いと複雑な経路を辿って、電流が流れることになる。したがって、導体損失を少なくするためには、表面粗さが小さい圧延銅箔を用いることが望ましい。
 他方、誘電体損失は、樹脂基材の種類に依存するため、低誘電材料(例えば、液晶ポリマー、低誘電ポリイミド)から形成された樹脂基材を用いることが好ましい。また、誘電体損失は、銅箔と樹脂基材との間を接着する接着剤によっても影響を受けるため、銅箔と樹脂基材との間は接着剤を用いずに接着することが望ましい。
 そこで、銅箔と樹脂基材との間を接着剤なしに接着するために、銅箔に粗化処理を施すと共に、銅箔と樹脂基材との間にシラン処理層を設ける方法が提案されている(例えば、特許文献1)。銅箔の粗化処理は、銅箔表面に粗化粒子が樹木状に形成されるため、アンカー効果によって銅箔と樹脂基材との間の接着性を高めることができる。
特開2012-112009号公報
 しかしながら、銅箔表面に電着した粗化粒子は、表皮効果によって導体損失を増大させると共に、粉落ちと称される粗化粒子が剥がれ落ちる現象を引き起こす原因となるため、銅箔表面に電着させる粗化粒子を少なくすることが望ましい。他方、銅箔表面に電着させる粗化粒子を少なくすると、粗化粒子によるアンカー効果が低下してしまい、銅箔と樹脂基材との接着性が十分に得られない。特に、液晶ポリマー、低誘電ポリイミドなどの低誘電材料から形成された樹脂基材は、従来の樹脂基材よりも銅箔と接着し難いため、銅箔と樹脂基材との間の接着性を高める別の手段が要求されている。
 また、シラン処理層は、銅箔と樹脂基材との間の接着性を向上させる効果を有するものの、その種類によっては、接着性の向上効果が十分とは言えない状況である。
 本発明の幾つかの実施形態は、上記のような問題を解決するためになされたものであり、樹脂基材、特に高周波用途に好適な樹脂基材との接着性を高めることが可能な表面処理銅箔及びその製造方法を提供することを課題とする。
 また、本発明の幾つかの実施形態は、樹脂基材、特に高周波用途に好適な樹脂基材と表面処理銅箔との間の接着性に優れた銅張積層板を提供することを課題とする。
 本発明者らは、上記のような問題を解決すべく鋭意研究した結果、特定のシラン化合物を選択して用い、シラン処理層を銅箔表面上に形成することにより、樹脂基材との接着性を高めることが可能な表面処理銅箔が得られることを見出し、本発明の幾つかの実施形態を完成するに至った。
 すなわち、本発明の実施形態に係る表面処理銅箔は、第1シラン化合物及び前記第1シラン化合物とは異なる第2シラン化合物を含む混合物、2種類の前記第1シラン化合物を含む混合物、又は2種類の前記第2シラン化合物を含む混合物を用いて形成されたシラン処理層を銅箔表面上に有し、
 前記第1シラン化合物は、アミノ基及びエポキシ基から選択される少なくとも1種を末端に有する反応性官能基と加水分解性基又は炭化水素基とを有するシラン化合物であり、
 前記第2シラン化合物は、エポキシ基、(メタ)アクリル基、チオール基及びアミノ基から選択される少なくとも1種を末端に有する反応性官能基と加水分解性基若しくは炭化水素基とを有するシラン化合物、又はテトラアルコキシシラン化合物である。
 また、本発明の別の実施形態に係る表面処理銅箔は、第1シラン化合物、又は前記第1シラン化合物とは異なる第2シラン化合物を用いて形成されたシラン処理層を銅箔表面上に有し、
 前記第1シラン化合物は、アミノ基及びエポキシ基から選択される少なくとも1種を末端に有する反応性官能基と加水分解性基又は炭化水素基とを有するシラン化合物であり、
 前記第2シラン化合物は、エポキシ基、(メタ)アクリル基、チオール基及びアミノ基から選択される少なくとも1種を末端に有する反応性官能基と加水分解性基若しくは炭化水素基とを有するシラン化合物又はテトラアルコキシシラン化合物である。
 また、本発明の実施形態に係る銅張積層板は、前記表面処理銅箔と、前記表面処理銅箔の前記シラン処理層上に接合された樹脂基材とを含む。
 さらに、本発明の実施形態に係る表面処理銅箔の製造方法は、第1シラン化合物及び前記第1シラン化合物とは異なる第2シラン化合物を含む混合溶液、2種類の前記第1シラン化合物を含む混合溶液、又は2種類の前記第2シラン化合物を含む混合溶液を調製した後、銅箔表面に前記混合溶液を塗布して乾燥させることでシラン処理層を形成し、
 前記第1シラン化合物は、アミノ基及びエポキシ基から選択される少なくとも1種を末端に有する反応性官能基と加水分解性基又は炭化水素基とを有するシラン化合物であり、
 前記第2シラン化合物は、エポキシ基、(メタ)アクリル基、チオール基及びアミノ基から選択される少なくとも1種を末端に有する反応性官能基と加水分解性基若しくは炭化水素基とを有するシラン化合物、又はテトラアルコキシシラン化合物である。
 本発明の幾つかの実施形態によれば、樹脂基材、特に高周波用途に好適な樹脂基材との接着性を高めることが可能な表面処理銅箔及びその製造方法を提供することができる。
 また、本発明の幾つかの実施形態によれば、樹脂基材、特に高周波用途に好適な樹脂基材と表面処理銅箔との間の接着性に優れた銅張積層板を提供することができる。
 本発明の実施形態に係る表面処理銅箔は、第1シラン化合物及び第1シラン化合物とは異なる第2シラン化合物を含む混合物、2種類の第1シラン化合物を含む混合物若しくは2種類の第2シラン化合物を含む混合物を用いて形成されたシラン処理層、又は第1シラン化合物若しくは第2シラン化合物を用いて形成されたシラン処理層を銅箔表面上に有する。このような特定のシラン化合物を選択して用い、シラン処理層を銅箔表面上に形成することにより、粗化処理で銅箔表面に電着させた粗化粒子が少ない場合又は粗化処理を行わない場合であっても、樹脂基板との接着性に優れる表面処理銅箔とすることができる。
 ここで、本明細書において「銅箔」とは、銅箔だけでなく銅合金箔を含む。また、「シラン処理層」とは、シラン化合物を含む混合物から形成されたシラン化合物の皮膜(硬化物)のことを意味する。
 第1シラン化合物は、アミノ基及びエポキシ基から選択される少なくとも1種を末端に有する反応性官能基と加水分解性基とを有するシラン化合物である。
 ここで、本明細書において「反応性官能基」とは、樹脂基材と化学結合し得る反応基を意味する。また、「加水分解性基」とは、水分によって加水分解され、銅箔と化学結合し得る反応基を意味する。
 第1シラン化合物は、上記のような官能基を有するものであれば特に限定されないが、下記の一般式(1)によって表すことができる。
Figure JPOXMLDOC01-appb-C000003
 一般式(1)中、Xは加水分解性基であり、Yはアミノ基又はエポキシ基から選択される官能基であり、R1はヘテロ原子を含んでもよい炭素数1~10の炭化水素鎖であり、R2は炭素数1~15の炭化水素基であり、nは0~3の整数である。ここで、本明細書において「炭化水素基(鎖)」とは、脂肪族炭化水素基(鎖)の他、芳香族炭化水素基(鎖)をも含む概念である。脂肪族炭化水素基は、直鎖であっても分岐していてもよく、不飽和結合を1又は2以上含んでいてもよく、また環状であってもよい。
 加水分解性基としては、特に限定されないが、メトキシ基、エトキシ基、プロポキシ基などのアルコキシ基;アシロキシ基などが挙げられる。その中でも、メトキシ基、エトキシ基、プロポキシ基などのアルコキシ基は、樹脂基材と表面処理銅箔との間の接着性を高める効果が高くなるため好ましい。
 反応性官能基の末端であるYは、アミノ基であることが好ましい。Yがアミノ基の場合、樹脂基材と表面処理銅箔との間の接着性を高める効果が特に高くなる。また、水などの溶媒に対するシラン化合物の溶解性が高くなるため、均質なシラン処理層を形成することが容易になる。
 R1に含まれていてもよいヘテロ原子としては、特に限定されないが、酸素原子、窒素原子、硫黄原子などが挙げられる。
 R1は、炭素数1~5のアルキレン鎖、又は窒素原子を含む炭素数3~7のアルキレン鎖であることが好ましく、炭素数2~4のアルキレン鎖、又は窒素原子を含む炭素数4~6のアルキレン鎖であることがより好ましい。R1が、これらのアルキレン鎖である場合、樹脂基材と表面処理銅箔との間の接着性を高める効果が高くなる。
 nは、0であることが好ましい。nが0である場合、樹脂基材と表面処理銅箔との間の接着性を高める効果が高くなる。
 第1シラン化合物は、公知の方法によって製造することができるが、市販品を用いてもよい。第1シラン化合物として利用可能な市販品の例としては、信越化学工業株式会社製のKBM603(化学名:N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン)、KBE903(化学名:3-アミノプロピルトリエトキシシラン)、KBM4803(化学名:8-グリシドオキシオクチルトリメトキシシラン)など;東レ・ダウコーニング株式会社製のSH6040(化学名:グリシドキシプロピルトリエトキシシラン)などが挙げられる。これらの中でも、第1シラン化合物として好ましい市販品は、KBE603及びKBE903である。
 第2シラン化合物は、エポキシ基、(メタ)アクリル基、チオール基(メルカプト基)及びアミノ基から選択される少なくとも1種を末端に有する反応性官能基と加水分解性基とを有するシラン化合物である。
 第2シラン化合物は、上記のような官能基を有するものであれば特に限定されないが、下記の一般式(2)によって表すことができる。
Figure JPOXMLDOC01-appb-C000004
 一般式(2)中、Xは加水分解性基であり、Yはエポキシ基、(メタ)アクリル基、チオール基又はアミノ基から選択される官能基であり、Lは直接結合又は-OCO-であり、R1は、ヘテロ原子を含んでもよい炭素数1~10のアルキレン鎖であり、R2は炭素数1~15の炭化水素基であり、nは0~3の整数である。
 ここで、本明細書において「(メタ)アクリル基」とは、アクリル基及びメタクリル基の両方を意味する。
 加水分解性基としては、特に限定されないが、メトキシ基、エトキシ基、プロポキシ基などのアルコキシ基;アシロキシ基などが挙げられる。その中でも、メトキシ基、エトキシ基、プロポキシ基などのアルコキシ基は、樹脂基材と表面処理銅箔との間の接着性を高める効果が高いため好ましい。
 反応性官能基の末端であるYは、エポキシ基、メタクリル基又はアミノ基であることが好ましい。Yがこれらの官能基である場合、樹脂基材と表面処理銅箔との間の接着性を高める効果が高くなる。また、Yがアミノ基である場合、水などの溶媒に対するシラン化合物の溶解性が高くなるため、均質なシラン処理層を形成することが容易になる。
 第2シラン化合物の中でも、一般式(2)において、Xがメトキシ基であり、Yがエポキシ基であり、Lが直接結合であり、R1が、酸素原子を含む炭素数2~6のアルキレン鎖であり、nが0であるシラン化合物;Xがエトキシ基であり、Yがメタクリル基であり、Lが直接結合であり、R1が炭素数1~5のアルキレン鎖であり、nが0であるシラン化合物;Xがエトキシ基であり、Yがアミノ基であり、Lが直接結合であり、R1が炭素数2~6のアルキレン鎖であり、nが0であるシラン化合物;及びXがメトキシ基であり、Yがアミノ基であり、Lが直接結合であり、R1が窒素原子を含む炭素数5~9のアルキレン鎖であり、nが0であるシラン化合物は、樹脂基材と表面処理銅箔との間の接着性を高める効果が特に高いため好ましい。
 第2シラン化合物は、公知の方法によって製造することができるが、市販品を用いてもよい。第2シラン化合物として利用可能な市販品の例としては、信越化学工業株式会社製のKBE503(化学名:3-メタクリロキシプロピルトリエトキシシラン)、KBE5803(化学名:8-メタクリロキシオクチルトリメトキシシラン)、KBM5103(化学名:3-アクリロキシプロピルトリメトキシシラン)、KBM4803(化学名:8-グリシドオキシオクチルトリメトキシシラン)、KBM803(化学名:3-メルカプトプロピルトリメトキシシラン)など;東レ・ダウコーニング株式会社製のZ6030(化学名:3-メタクリロキシプロピルトリメトキシシラン)、SH6040(化学名:グリシドキシプロピルトリエトキシシラン)など;和光純薬工業株式会社製のS00550(化学名:4-アミノブチルトリエトキシシラン)、S25035(化学名:N-(6-アミノヘキシル)アミノメチルトリエトキシシラン)などが挙げられる。これらの中でも、第2シラン化合物として好ましい市販品は、SH6040、KBE503、S00550及びS25035である。
 第1シラン化合物と第2シラン化合物とを組み合わせて用いる場合、2種類の第1シラン化合物又は第2シラン化合物を組み合わせて用いる場合、その体積比は、好ましくは10:90~90:10である。特に、第1シラン化合物と第2シラン化合物とを組み合わせて用いる場合、第1シラン化合物と第2シラン化合物との体積比は、より好ましくは25:75~90:10、さらに好ましくは50:50~90:10である。体積比を上記範囲内とすることにより、樹脂基材と表面処理銅箔との間の接着性を高める効果を安定して高めることができる。
 銅箔としては、特に限定されず、圧延銅箔又は電解銅箔を用いることができる。その中でも圧延銅箔は、表面粗さが小さく、導体損失を低減させることができるため好ましい。また、銅箔は、キャリアと、キャリア上に積層された中間層と、中間層上に積層された銅箔とを備えたキャリア付き銅箔であってもよい。キャリア及び中間層としては、特に限定されず、公知のものを用いることができる。
 銅箔の表面には、樹脂基材との接着性を高めるなどの観点から、粗化処理を施すことによって粗化処理層を形成してもよい。ここで、本明細書において「粗化処理層」とは、銅箔上に電着した粗化粒子の層を意味する。
 粗化粒子としては、特に限定されず、粗化処理に一般的に用いられる銅、ニッケル、リン、タングステン、ヒ素、モリブデン、クロム、コバルト、亜鉛、又はそれらの1種以上を含む合金から形成された微粒子を用いることができる。
 ただし、銅箔表面に電着した粗化粒子は、表皮効果によって導体損失を増大させると共に、粉落ちと称される粗化粒子が剥がれ落ちる現象を引き起こす原因となるため、必要に応じて銅箔表面に電着させる粗化粒子を少なくするか、又は粗化処理を行わない態様としてもよい。
 銅箔とシラン処理層との間には、各種特性を向上させる観点から、耐熱処理層、防錆処理層及びクロメート処理層からなる群から選択される1種以上の層を設けてもよい。これらの層は、単層であってもよいが、複数層であってもかまわない。
 2種類のシラン化合物を用いて形成されるシラン処理層を有する表面処理銅箔は、2種類のシラン化合物を含む混合溶液を調製した後、銅箔表面に混合物を塗布して乾燥させることでシラン処理層を形成することによって製造することができる。また、1種類のシラン化合物を用いて形成されるシラン処理層を有する表面処理銅箔は、1種類のシラン化合物を含む混合溶液を調製した後、銅箔表面に混合物を塗布して乾燥させることでシラン処理層を形成することによって製造することができる。
 混合溶液は、シラン化合物以外に水などの溶媒を含むことができる。混合溶液中のシラン化合物の濃度としては、特に限定されないが、混合溶液中のシラン化合物全体のシラン濃度が0.5体積%~10体積%となるようにすることが好ましい。また、混合溶液中の溶媒に対する溶解性などの観点からは、混合溶液中のシラン化合物全体のシラン濃度は、好ましくは0.1体積%~5.0体積%である。
 混合溶液は、例えば、シラン化合物を溶媒に加えて混合することによって調製することができる。
 シラン処理の条件は、特に限定されず、公知のシラン処理と同様にして行うことができる。例えば、混合溶液の温度を10℃~60℃、混合溶液のpHを2.0~14.0、処理時間を1秒~10秒、乾燥温度を80℃~150℃、乾燥時間を1秒~10秒としてシラン処理を行うことによってシラン処理層を形成することができる。混合溶液のpHは中性付近、すなわち3~10とすることが好ましい。シラン処理に用いるシラン化合物がアミノ基を含む場合、混合溶液のpHを6~14とすることが好ましい。
 シラン処理層に含まれる化合物の同定は既知の方法によって行うことができる。例えばシラン処理層からサンプルを採取し、NMRによる解析を行ったり、TOF-SIMS等のMSスペクトルによる解析を行ったりすればよい。
 シラン処理を行う前に銅箔表面に粗化処理を施す場合、電気めっき法を用いることができる。粗化粒子の銅箔表面に対する電着量は、電流密度を調製することによって制御することができる。
 粗化処理としては、例えば、以下の粗化処理方法(1)又は粗化処理方法(2)を用いることができる。
 (粗化処理方法(1))
  液組成:銅10~20g/L、ニッケル7~10g/L、コバルト7~10g/L
  液温:30~60℃
  電流密度:1~50A/dm2
  pH:2.0~3.0
  時間:0.12~1.15秒
  粗化処理によって付着する1dm2当たりの各金属量は、銅15~40mg、ニッケル100~1500μg、コバルト700~2500μgが好ましい。
 (粗化処理方法(2))
  1次粒子めっき(1)
   組成:銅10~15g/L、ニッケル0~10g/L、コバルト0~20g/L、硫酸10~60g/L
   液温:30~40℃
   電流密度:10~30A/dm2
   時間:0.2~5秒
  1次粒子めっき(2)
   組成:銅20~30g/L、硫酸70~90g/L
   液温:30~50℃
   電流密度:10~30A/dm2
   時間:0.2~5秒
  2次粒子めっき
   組成:銅10~20g/L、ニッケル0~10g/L、コバルト0~10g/L
   液温:30~40℃
   電流密度:10~30A/dm2
   時間:0.2~5秒
 銅箔とシラン処理層との間に耐熱処理層、防錆処理層又はクロメート処理層を設ける場合、シラン処理を行う前に、耐熱処理、防錆処理又はクロメート処理を銅箔表面に行えばよい。これらの処理方法としては、特に限定されず、公知の方法に準じて行うことができる。
 上記のようにして製造される表面処理銅箔は、特定のシラン化合物を用いて形成されたシラン処理層によって接着力を高めているため、粗化処理で銅箔表面に電着させた粗化粒子が少ない場合又は粗化処理を行わない場合であっても、樹脂基材に対する接着性を高めることができる。したがって、この表面処理銅箔は、従来の樹脂基材だけでなく、従来の樹脂基材よりも銅箔と接着し難い高周波用途に好適な樹脂基材(液晶ポリマー、低誘電ポリイミドなどの低誘電材料から形成された樹脂基材)等に接合するためにも用いることができる。
 本発明の実施形態に係る銅張積層板は、上記のような表面処理銅箔と、表面処理銅箔のシラン処理層上に接合された樹脂基材とを含む。樹脂基材は、低誘電材料から形成されていてよい。
 ここで、本明細書において「低誘電」とは、誘電正接(1GHz)が0.01以下であることを意味する。
 低誘電材料としては、特に限定されないが、液晶ポリマー(LCP)、低誘電ポリイミド、低誘電エポキシ樹脂、フッ素樹脂、ポリフェニレンエーテル樹脂などが挙げられる。
 ここで、本明細書において「液晶ポリマー」とは、液相で光学的な異方性を示す芳香族ポリエステルを意味する。液晶ポリマーは、一般に市販されており、例えば、クラレ株式会社製のVecstar(登録商標)シリーズなどを用いることができる。
 また、本明細書において「低誘電ポリイミド」とは、例えば、比誘電率(1GHz)が3.3以下、誘電正接(1GHz)が0.005以下のポリイミドを意味する。低誘電ポリイミドは、一般に市販されており、例えば、宇部興産株式会社製のUワニス、ユーピレックス(登録商標)などを用いることができる。
 フッ素樹脂としては、例えば、PTFEなどが挙げられる。
 ポリフェニレンエーテル樹脂は、ポリスチレンなどの他の樹脂とのコンパウンドも含む。
 上記のような構成を有する銅張積層板は、表面処理銅箔のシラン処理層上に樹脂基材を配置した後、表面処理銅箔と樹脂基材との間を加圧して貼り合わせることによって製造することができる。
 加圧力としては、特に限定されず、使用する表面処理銅箔及び樹脂基材の種類に応じて適宜設定すればよい。
 上記のようにして製造される銅張積層板は、2種類の特定のシラン化合物を用いて形成されたシラン処理層によって接着力を高めた表面処理銅箔を備えているため、表面処理銅箔と樹脂基材との間の接着性に優れている。したがって、この銅張積層板は、フレキシブル配線板、リジッド配線板、シールド材、RF-ID、面状発熱体、放熱体などの用途に用いるのに適している。
 以下、実施例により本発明の実施形態を詳細に説明するが、これらによって本発明が限定されるものではない。
 各実施例で使用したシラン化合物は以下の通りである。
 <第1シラン化合物>
 ・KBE903(信越化学工業株式会社製,3-アミノプロピルトリエトキシシラン,一般式(1)において、Xがエトキシ基であり、Yがアミノ基であり、R1がプロピレン鎖であり、nが0であるシラン化合物)
 ・KBM603(信越化学工業株式会社製,N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン,一般式(1)において、Xがメトキシ基であり、Yがアミノ基であり、R1が-(CH23NH(CH22-であり、nが0であるシラン化合物)
 ・SH6040(東レ・ダウコーニング株式会社製,グリシドキシプロピルトリエトキシシラン,一般式(1)において、Xがエトキシ基であり、Yがエポキシ基であり、R1が-(CH23OCH2-であり、nが0であるシラン化合物)
 ・KBM4803(信越化学工業株式会社製,8-グリシドオキシオクチルトリメトキシシラン,一般式(2)において、Xがメトキシ基であり、Yがエポキシ基であり、Lが直接結合であり、R1が-(CH28OCH2-であり、nが0であるシラン化合物)
 <第2シラン化合物>
 ・S00550(和光純薬工業株式会社製,4-アミノブチルトリエトキシシラン,一般式(2)において、Xがエトキシ基であり、Yがアミノ基であり、Lが直接結合であり、R1がブチレン鎖であり、nが0であるシラン化合物)
 ・S25035(和光純薬工業株式会社製,N-(6-アミノヘキシル)アミノメチルトリエトキシシラン,一般式(2)において、Xがエトキシ基であり、Yがアミノ基であり、Lが直接結合であり、R1が-CH2NH(CH26-であり、nが0であるシラン化合物)
 ・SH6040(東レ・ダウコーニング株式会社製,グリシドキシプロピルトリエトキシシラン,一般式(2)において、Xがエトキシ基であり、Yがエポキシ基であり、Lが直接結合であり、R1が-(CH23OCH2-であり、nが0であるシラン化合物)
 ・KBE503(信越化学工業株式会社製,3-メタクリロキシプロピルトリエトキシシラン,一般式(2)において、Xがエトキシ基であり、Yがメタクリル基であり、Lが-OCO-であり、R1がプロピレン鎖であり、nが0であるシラン化合物)
 ・Z6030(東レ・ダウコーニング株式会社製,3-メタクリロキシプロピルトリメトキシシラン,一般式(2)において、Xがメトキシ基であり、Yがメタクリル基であり、Lが-OCO-であり、R1がプロピレン鎖であり、nが0であるシラン化合物)
 ・KBM5803(信越化学工業株式会社製,8-メタクリロキシオクチルトリメトキシシラン,一般式(2)において、Xがメトキシ基であり、Yがメタクリル基であり、Lが直接結合であり、R1が-(CH28OCH2-であり、nが0であるシラン化合物)
 ・KBM5103(信越化学工業株式会社製,3-アクリロキシプロピルトリメトキシシラン,一般式(2)において、Xがメトキシ基であり、Yがアクリル基であり、Lが-OCO-であり、R1がプロピレン鎖であるシラン化合物)
 ・KBM4803(信越化学工業株式会社製,8-グリシドオキシオクチルトリメトキシシラン,一般式(2)において、Xがメトキシ基であり、Yがエポキシ基であり、Lが直接結合であり、R1が-(CH28OCH2-であり、nが0であるシラン化合物)
 ・KBM803(信越化学工業株式会社製,3-メルカプトプロピルトリメトキシシラン,一般式(2)において、Xがメトキシ基であり、Yがチオール(メルカプト)基であり、Lが直接結合であり、R1がプロピレン鎖であり、nが0であるシラン化合物)
 ・TEOS(信越化学株式会社製,テトラエトキシシラン,テトラアルコキシシラン化合物)
 (実施例1)
 厚さ12μmの圧延銅箔に対し、上述した粗化処理方法(2)条件で粗化処理を行った。
 次に、第1シラン化合物としてKBE903、第2シラン化合物としてS00550を選択し、これらを水に加えて混合することによって混合溶液を調製した。このとき、混合溶液中のシラン化合物全体のシラン濃度は1.2体積%に設定した。また、KBE903とS00550との体積比は90:10に設定した。
 次に、この混合物を用い、粗化処理を行った圧延銅箔の表面をシラン処理してシラン処理層を形成することにより、表面処理銅箔を得た。シラン処理の条件は以下の通りとした。
 温度:10~30℃
 pH:1~12
 処理時間:1~5秒
 乾燥温度:100~120℃
 乾燥時間:10~300秒
 次に、上記で得られた表面処理銅箔のシラン処理層上に、厚さ50μmの液晶ポリマー(クラレ株式会社製Vecstar(登録商標)CT-Z)からなる樹脂基材を配置した後、加圧して張り合わせることによって銅張積層板を得た。このとき、加圧力は4MPaに設定した。
 (実施例2)
 KBE903とS00550との体積比を75:25に変更したこと以外は実施例1と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例3)
 KBE903とS00550との体積比を50:50に変更したこと以外は実施例1と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例4)
 KBE903とS00550との体積比を25:75に変更したこと以外は実施例1と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例5)
 KBE903とS00550との体積比を10:90に変更したこと以外は実施例1と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例6)
 第2シラン化合物としてS25035を用いたこと以外は実施例1と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例7)
 KBE903とS25035との体積比を75:25に変更したこと以外は実施例6と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例8)
 KBE903とS25035との体積比を50:50に変更したこと以外は実施例6と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例9)
 KBE903とS25035との体積比を25:75に変更したこと以外は実施例6と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例10)
 KBE903とS25035との体積比を10:90に変更したこと以外は実施例6と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例11)
 第2シラン化合物としてSH6040を用いたこと以外は実施例1と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例12)
 KBE903とSH6040との体積比を75:25に変更したこと以外は実施例11と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例13)
 KBE903とSH6040との体積比を50:50に変更したこと以外は実施例11と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例14)
 KBE903とSH6040との体積比を25:75に変更したこと以外は実施例11と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例15)
 KBE903とSH6040との体積比を10:90に変更したこと以外は実施例11と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例16)
 第2シラン化合物としてKBE503を用いたこと以外は実施例1と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例17)
 KBE903とKBE503との体積比を75:25に変更したこと以外は実施例16と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例18)
 KBE903とKBE503との体積比を50:50に変更したこと以外は実施例16と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例19)
 KBE903とKBE503との体積比を25:75に変更したこと以外は実施例16と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例20)
 KBE903とKBE503との体積比を10:90に変更したこと以外は実施例16と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例21)
 第2シラン化合物としてZ6030を用いたこと以外は実施例1と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例22)
 KBE903とZ6030との体積比を75:25に変更したこと以外は実施例21と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例23)
 KBE903とZ6030との体積比を50:50に変更したこと以外は実施例21と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例24)
 KBE903とZ6030との体積比を25:75に変更したこと以外は実施例21と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例25)
 第2シラン化合物としてKBM5803を用いたこと以外は実施例1と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例26)
 KBE903とKBM5803との体積比を75:25に変更したこと以外は実施例25と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例27)
 KBE903とKBM5803との体積比を50:50に変更したこと以外は実施例25と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例28)
 KBE903とKBM5803との体積比を25:75に変更したこと以外は実施例25と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例29)
 第2シラン化合物としてKBM5103を用いたこと以外は実施例1と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例30)
 KBE903とKBM5103との体積比を75:25にしたこと以外は実施例29と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例31)
 第2シラン化合物としてKBM803を用いたこと以外は実施例1と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例32)
 第2シラン化合物としてKBM4803を用いたこと以外は実施例1と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例33)
 第2シラン化合物としてTEOSを用いたこと以外は実施例2と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例34)
 KBE903とTEOSとの体積比を50:50にしたこと以外は実施例33と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例35)
 KBE903とTEOSとの体積比を25:75にしたこと以外は実施例33と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例36)
 第1シラン化合物としてKBM603を用いたこと以外は実施例1と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例37)
 KBM603とS00550との体積比を75:25に変更したこと以外は実施例36と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例38)
 KBM603とS00550との体積比を50:50に変更したこと以外は実施例36と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例39)
 KBM603とS00550との体積比を25:75に変更したこと以外は実施例36と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例40)
 第1シラン化合物としてKBM603を用いたこと以外は実施例6と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例41)
 KBM603とS25035との体積比を75:25に変更したこと以外は実施例40と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例42)
 KBM603とS25035との体積比を50:50に変更したこと以外は実施例40と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例43)
 KBM603とS25035との体積比を25:75に変更したこと以外は実施例40と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例44)
 第1シラン化合物としてKBM603を用いたこと以外は実施例11と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例45)
 KBM603とSH6040との体積比を75:25に変更したこと以外は実施例44と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例46)
 KBM603とSH6040との体積比を50:50に変更したこと以外は実施例44と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例47)
 KBM603とSH6040との体積比を25:75に変更したこと以外は実施例44と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例48)
 第1シラン化合物としてKBM603を用いたこと以外は実施例16と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例49)
 KBM603とKBE503との体積比を75:25に変更したこと以外は実施例48と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例50)
 KBM603とKBE503との体積比を50:50に変更したこと以外は実施例48と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例51)
 KBM603とKBE503との体積比を25:75に変更したこと以外は実施例48と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例52)
 第1シラン化合物としてKBM603を用いたこと以外は実施例32と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例53)
 KBM603とKBM4803との体積比を75:25に変更したこと以外は実施例52と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例54)
 KBM603とKBM4803との体積比を50:50に変更したこと以外は実施例52と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例55)
 KBM603とKBM4803との体積比を25:75に変更したこと以外は実施例52と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例56)
 第1シラン化合物としてKBM603を用い、KBM603とTEOSとの体積比を90:10に変更したこと以外は実施例33と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例57)
 KBM603とTEOSとの体積比を75:25に変更したこと以外は実施例56と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例58)
 KBM603とTEOSとの体積比を50:50に変更したこと以外は実施例56と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例59)
 KBM603とTEOSとの体積比を25:75に変更したこと以外は実施例56と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例60)
 第1シラン化合物としてSH6040を用いたこと以外は実施例56と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例61)
 SH6040とTEOSとの体積比を75:25に変更したこと以外は実施例60と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例62)
 SH6040とTEOSとの体積比を50:50に変更したこと以外は実施例60と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例63)
 SH6040とTEOSとの体積比を25:75に変更したこと以外は実施例60と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例64)
 シラン化合物としてKBE903のみを水に加えて混合することによって混合溶液を調製したこと以外は実施例1と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例65)
 シラン化合物としてKBM603のみを水に加えて混合することによって混合溶液を調製したこと以外は実施例1と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例66)
 シラン化合物としてSH6040のみを水に加えて混合することによって混合溶液を調製したこと以外は実施例1と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例67)
 シラン化合物としてKBE503のみを水に加えて混合することによって混合溶液を調製したこと以外は実施例1と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例68)
 シラン化合物としてZ6030のみを水に加えて混合することによって混合溶液を調製したこと以外は実施例1と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例69)
 シラン化合物としてKBM5803のみを水に加えて混合することによって混合溶液を調製したこと以外は実施例1と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例70)
 シラン化合物としてKBM5103のみを水に加えて混合することによって混合溶液を調製したこと以外は実施例1と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例71)
 シラン化合物としてKBM803のみを水に加えて混合することによって混合溶液を調製したこと以外は実施例1と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例72)
 シラン化合物としてKBM4803のみを水に加えて混合することによって混合溶液を調製したこと以外は実施例1と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例73)
 シラン化合物としてS00550のみを水に加えて混合することによって混合溶液を調製したこと以外は実施例1と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例74)
 シラン化合物としてS25035のみを水に加えて混合することによって混合溶液を調製したこと以外は実施例1と同様にして表面処理銅箔及び銅張積層板を作製した。
 (実施例75)
 シラン化合物としてTEOSのみを水に加えて混合することによって混合溶液を調製したこと以外は実施例1と同様にして表面処理銅箔及び銅張積層板を作製した。
 上記の実施例で得られた銅張積層板について90度ピール強度を測定した。90度ピール強度の測定は、JIS C6471:1995に準拠して行った。具体的には、導体(表面処理銅箔)幅を3mmとし、90度の角度で50mm/分の速度で樹脂基材と表面処理銅箔とを引き剥がしたときの強度を測定した。測定は2回行い、その平均値を90度ピール強度の結果とした。90度ピール強度は、0.25kg/cm以上を合格とした。90度ピール強度は、0.60kg/cm以上が好ましく、0.80kg/cm以上がより好ましく、1.00kg/cm以上がさらに好ましい。
 また、上記の実施例のシラン処理で用いた混合物について、シラン化合物の溶媒に対する溶解性を目視観察によって評価した。溶解性の評価では、混合物に白濁及び/又は沈殿が発生しなかったものを〇、白濁及び/又は沈殿が発生したものを△と表す。
 これらの結果を表1~3に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表1~3に示されるように、実施例1~75の銅張積層板は、特定のシラン化合物を用いてシラン処理層を形成したため、90度ピール強度が0.25kg/cm以上となり、表面処理銅箔と樹脂基材との間の接着性が高くなった。
 以上の結果からわかるように、本発明の実施形態によれば、樹脂基材、特に高周波用途に好適な樹脂基材との接着性を高めることが可能な表面処理銅箔及びその製造方法を提供することができる。また、本発明の実施形態によれば、樹脂基材、特に高周波用途に好適な樹脂基材と表面処理銅箔との間の接着性に優れた銅張積層板を提供することができる。
 本発明の実施形態に係る表面処理銅箔は、特定のシラン化合物を用いて形成されたシラン処理層を銅箔表面上に有するため、粗化処理で銅箔表面に電着させた粗化粒子が少ない場合又は粗化処理を行わない場合であっても、樹脂基板との接着性が高い。よって、本発明の実施形態に係る表面処理銅箔は、銅張積層板の製造に利用することができる。また、本発明の実施形態に係る銅張積層板は、樹脂基材との間の接着性に優れているため、フレキシブル配線板、リジッド配線板、シールド材、RF-ID、面状発熱体、放熱体などの用途に利用することができる。

Claims (27)

  1.  第1シラン化合物及び前記第1シラン化合物とは異なる第2シラン化合物を含む混合物、2種類の前記第1シラン化合物を含む混合物、又は2種類の前記第2シラン化合物を含む混合物を用いて形成されたシラン処理層を銅箔表面上に有する表面処理銅箔であって、
     前記第1シラン化合物は、アミノ基及びエポキシ基から選択される少なくとも1種を末端に有する反応性官能基と加水分解性基又は炭化水素基とを有するシラン化合物であり、
     前記第2シラン化合物は、エポキシ基、(メタ)アクリル基、チオール基及びアミノ基から選択される少なくとも1種を末端に有する反応性官能基と加水分解性基若しくは炭化水素基とを有するシラン化合物、又はテトラアルコキシシラン化合物である表面処理銅箔。
  2.  第1シラン化合物、又は前記第1シラン化合物とは異なる第2シラン化合物を用いて形成されたシラン処理層を銅箔表面上に有する表面処理銅箔であって、
     前記第1シラン化合物は、アミノ基及びエポキシ基から選択される少なくとも1種を末端に有する反応性官能基と加水分解性基又は炭化水素基とを有するシラン化合物であり、
     前記第2シラン化合物は、エポキシ基、(メタ)アクリル基、チオール基及びアミノ基から選択される少なくとも1種を末端に有する反応性官能基と加水分解性基若しくは炭化水素基とを有するシラン化合物又はテトラアルコキシシラン化合物である表面処理銅箔。
  3.  前記第1シラン化合物は、一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xは加水分解性基であり、Yはアミノ基又はエポキシ基から選択される官能基であり、R1はヘテロ原子を含んでもよい炭素数1~10の炭化水素鎖であり、R2は炭素数1~15の炭化水素基であり、nは0~3の整数である)によって表されるシラン化合物である、請求項1又は2に記載の表面処理銅箔。
  4.  前記第2シラン化合物は、一般式(2):
    Figure JPOXMLDOC01-appb-C000002
    (式中、Xは加水分解性基であり、Yはエポキシ基、(メタ)アクリル基、チオール基又はアミノ基から選択される官能基であり、Lは直接結合又は-OCO-であり、R1は、ヘテロ原子を含んでもよい炭素数1~10のアルキレン鎖であり、R2は炭素数1~15の炭化水素基であり、nは0~3の整数である)によって表されるシラン化合物である、請求項1~3のいずれか一項に記載の表面処理銅箔。
  5.  前記第1シラン化合物及び前記第2シラン化合物の前記加水分解性基が、メトキシ基、エトキシ基又はプロポキシ基である、請求項1~4のいずれか一項に記載の表面処理銅箔。
  6.  前記第1シラン化合物の反応性官能基の末端がアミノ基である、請求項1~5のいずれか一項に記載の表面処理銅箔。
  7.  前記一般式(1)において、R1が、炭素数1~5のアルキレン鎖、又は窒素原子を含む炭素数3~7のアルキレン鎖であり、nが0である、請求項3~6のいずれか一項に記載の表面処理銅箔。
  8.  前記第2シラン化合物の反応性官能基の末端が、エポキシ基、メタクリル基又はアミノ基である、請求項1~7のいずれか一項に記載の表面処理銅箔。
  9.  前記一般式(2)において、Xがメトキシ基であり、Yがエポキシ基であり、Lが直接結合であり、R1が、酸素原子を含む炭素数2~6のアルキレン鎖であり、nが0である、請求項4~8のいずれか一項に記載の表面処理銅箔。
  10.  前記一般式(2)において、Xがエトキシ基であり、Yがメタクリル基であり、Lが直接結合であり、R1が炭素数1~5のアルキレン鎖であり、nが0である、請求項4~8のいずれか一項に記載の表面処理銅箔。
  11.  前記一般式(2)において、Xがエトキシ基であり、Yがアミノ基であり、Lが直接結合であり、R1が炭素数2~6のアルキレン鎖であり、nが0である、請求項4~8のいずれか一項に記載の表面処理銅箔。
  12.  前記一般式(2)において、Xがメトキシ基であり、Yがアミノ基であり、Lが直接結合であり、R1が窒素原子を含む炭素数5~9のアルキレン鎖であり、nが0である、請求項4~8のいずれか一項に記載の表面処理銅箔。
  13.  前記第1シラン化合物が3-アミノプロピルトリエトキシシラン又はN-2-(アミノエチル)-3-アミノプロピルトリメトキシシランであり、前記第2シラン化合物がグリシドキシプロピルトリエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、4-アミノブチルトリエトキシシラン又はN-(6-アミノヘキシル)アミノメチルトリエトキシシランである、請求項1~12のいずれか一項に記載の表面処理銅箔。
  14.  前記第1シラン化合物と前記第2シラン化合物との体積比、2種類の前記第1シラン化合物の体積比、又は2種類の前記第2シラン化合物の体積比が10:90~90:10である、請求項1及び3~13のいずれか一項に記載の表面処理銅箔。
  15.  前記第1シラン化合物と前記第2シラン化合物との体積比が25:75~90:10である、請求項1及び3~14のいずれか一項に記載の表面処理銅箔。
  16.  前記第1シラン化合物がN-2-(アミノエチル)-3-アミノプロピルトリメトキシシランであり、前記第2シラン化合物が4-アミノブチルトリエトキシシランであり、前記第1シラン化合物と前記第2シラン化合物との体積比が50:75~90:10である、請求項1及び3~15のいずれか一項に記載の表面処理銅箔。
  17.  前記第1シラン化合物がN-2-(アミノエチル)-3-アミノプロピルトリメトキシシランであり、前記第2シラン化合物がN-(6-アミノヘキシル)アミノメチルトリエトキシシランであり、前記第1シラン化合物と前記第2シラン化合物との体積比が90:10である請求項1及び3~15のいずれか一項に記載の表面処理銅箔。
  18.  前記第1シラン化合物がN-2-(アミノエチル)-3-アミノプロピルトリメトキシシランであり、前記第2シラン化合物がグリシドキシプロピルトリエトキシシラン又は3-メタクリロキシプロピルトリエトキシシランであり、前記第1シラン化合物と前記第2シラン化合物との体積比が75:25である請求項1及び3~15のいずれか一項に記載の表面処理銅箔。
  19.  前記第1シラン化合物が3-アミノプロピルトリエトキシシランであり、前記第2シラン化合物がN-(6-アミノヘキシル)アミノメチルトリエトキシシランであり、前記第1シラン化合物と前記第2シラン化合物との体積比が50:50である請求項1及び3~15のいずれか一項に記載の表面処理銅箔。
  20.  前記銅箔と前記シラン処理層との間に、耐熱処理層、防錆処理層及びクロメート処理層からなる群から選択される1種以上の層を有する、請求項1~19のいずれか一項に記載の表面処理銅箔。
  21.  樹脂基材に接合される、請求項1~20のいずれか一項に記載の表面処理銅箔。
  22.  前記樹脂基材が低誘電材料である、請求項21に記載の表面処理銅箔。
  23.  前記低誘電材料が、液晶ポリマー、低誘電ポリイミド、低誘電エポキシ樹脂、フッ素樹脂又はポリフェニレンエーテル樹脂である、請求項22に記載の表面処理銅箔。
  24.  請求項1~23のいずれか一項に記載の表面処理銅箔と、前記表面処理銅箔の前記シラン処理層上に接合された樹脂基材とを含む銅張積層板。
  25.  前記樹脂基材が、液晶ポリマー、低誘電ポリイミド、低誘電エポキシ樹脂、フッ素樹脂又はポリフェニレンエーテル樹脂である、請求項24に記載の銅張積層板。
  26.  フレキシブル配線板、リジッド配線板、シールド材、RF-ID、面状発熱体又は放熱体に用いられる、請求項24又は25に記載の銅張積層板。
  27.  第1シラン化合物及び前記第1シラン化合物とは異なる第2シラン化合物を含む混合溶液、2種類の前記第1シラン化合物を含む混合溶液、又は2種類の前記第2シラン化合物を含む混合溶液を調製した後、銅箔表面に前記混合溶液を塗布して乾燥させることでシラン処理層を形成する表面処理銅箔の製造方法であって、
     前記第1シラン化合物は、アミノ基及びエポキシ基から選択される少なくとも1種を末端に有する反応性官能基と加水分解性基又は炭化水素基とを有するシラン化合物であり、
     前記第2シラン化合物は、エポキシ基、(メタ)アクリル基、チオール基及びアミノ基から選択される少なくとも1種を末端に有する反応性官能基と加水分解性基若しくは炭化水素基とを有するシラン化合物、又はテトラアルコキシシラン化合物である、表面処理銅箔の製造方法。
PCT/JP2018/016487 2017-06-09 2018-04-23 表面処理銅箔及びその製造方法、並びに銅張積層板 WO2018225409A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017113917A JP6334034B1 (ja) 2017-06-09 2017-06-09 表面処理銅箔及びその製造方法、並びに銅張積層板
JP2017-113917 2017-06-09

Publications (1)

Publication Number Publication Date
WO2018225409A1 true WO2018225409A1 (ja) 2018-12-13

Family

ID=62238914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016487 WO2018225409A1 (ja) 2017-06-09 2018-04-23 表面処理銅箔及びその製造方法、並びに銅張積層板

Country Status (3)

Country Link
JP (1) JP6334034B1 (ja)
TW (1) TWI668337B (ja)
WO (1) WO2018225409A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131093A1 (ja) * 2017-12-26 2019-07-04 Jx金属株式会社 放熱用銅箔及び放熱部材

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6413039B1 (ja) * 2018-03-29 2018-10-24 Jx金属株式会社 表面処理銅箔及び銅張積層板

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112009A (ja) * 2010-11-26 2012-06-14 Hitachi Cable Ltd 銅箔、及び銅箔の製造方法
JP2017034216A (ja) * 2015-08-03 2017-02-09 Jx金属株式会社 プリント配線板の製造方法、表面処理銅箔、積層体、プリント配線板、半導体パッケージ及び電子機器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10257938B2 (en) * 2013-07-24 2019-04-09 Jx Nippon Mining & Metals Corporation Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed wiring board, copper clad laminate and method for producing printed wiring board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112009A (ja) * 2010-11-26 2012-06-14 Hitachi Cable Ltd 銅箔、及び銅箔の製造方法
JP2017034216A (ja) * 2015-08-03 2017-02-09 Jx金属株式会社 プリント配線板の製造方法、表面処理銅箔、積層体、プリント配線板、半導体パッケージ及び電子機器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131093A1 (ja) * 2017-12-26 2019-07-04 Jx金属株式会社 放熱用銅箔及び放熱部材

Also Published As

Publication number Publication date
TWI668337B (zh) 2019-08-11
TW201903214A (zh) 2019-01-16
JP6334034B1 (ja) 2018-05-30
JP2018204089A (ja) 2018-12-27

Similar Documents

Publication Publication Date Title
JP6149066B2 (ja) 表面処理銅箔
EP0637902B1 (en) Metallic foil with adhesion promoting layer
TWI780176B (zh) 銅箔基板和包含它的印刷電路板
US10070521B2 (en) Surface-treated copper foil
KR101998923B1 (ko) 저유전성 수지 기재용 처리 동박 및 그 처리 동박을 사용한 구리 피복 적층판 그리고 프린트 배선판
JP5971934B2 (ja) 高周波基板用銅張り積層板及びそれに用いる表面処理銅箔
JP6334034B1 (ja) 表面処理銅箔及びその製造方法、並びに銅張積層板
US20090038828A1 (en) Flexible printed circuit board substrate and flexible printed circuit board fabricated using the same
KR102054044B1 (ko) 표면처리 동박
CN111655900B (zh) 表面处理铜箔及覆铜积层板
JP2019019414A (ja) 表面処理銅箔、積層体及びプリント配線板
JP2019049017A (ja) 表面処理銅箔及び銅張積層板
JP2005064110A (ja) 電子部品用部材並びにこれを用いた電子部品
TW202403111A (zh) 粗化處理銅箔、附載體銅箔、銅箔積層板及印刷配線板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18813035

Country of ref document: EP

Kind code of ref document: A1