WO2018225301A1 - 電力変換装置 - Google Patents
電力変換装置 Download PDFInfo
- Publication number
- WO2018225301A1 WO2018225301A1 PCT/JP2018/005519 JP2018005519W WO2018225301A1 WO 2018225301 A1 WO2018225301 A1 WO 2018225301A1 JP 2018005519 W JP2018005519 W JP 2018005519W WO 2018225301 A1 WO2018225301 A1 WO 2018225301A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- path
- power
- inductance
- terminal
- capacitor
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/505—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
- H02M7/515—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
- H02M7/523—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with LC-resonance circuit in the main circuit
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/007—Plural converter units in cascade
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/12—Arrangements for reducing harmonics from ac input or output
- H02M1/123—Suppression of common mode voltage or current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
Definitions
- the present invention relates to a power conversion device that performs power conversion between a DC power source and an AC load, and more specifically, a power conversion device that includes a converter including a reactor and performs power conversion between the DC power source and the AC load. Relates to the device.
- a power conversion device configured to perform power conversion between a DC power source and an AC load by switching control is known.
- switching control at a high frequency (for example, a frequency of 20 kHz or more), high-frequency noise (switching noise) may be generated due to switching of the switching element of the inverter in the power converter.
- the generation mechanism of this switching noise is explained as follows. That is, the neutral point potential of an AC load (for example, an AC motor) fluctuates due to switching of the inverter, thereby generating common mode noise.
- a power conversion device disclosed in Japanese Patent Application Laid-Open No. 2009-296756 includes first and second loop circuits.
- the first loop circuit includes a midpoint tap of a secondary coil, a capacitor, a high-potential side Y capacitor, a high-potential side wiring, and a high-potential side switching element.
- the second loop circuit includes a midpoint tap, a capacitor, a low potential side Y capacitor, a low potential side wiring, and a low potential side switching element.
- a midpoint tap is connected to a connection point between a high potential side Y capacitor and a low potential side Y capacitor.
- the power conversion device disclosed in Patent Document 1 steps down the voltage of a high-voltage battery (for example, several hundred volts) and outputs the voltage to a low-voltage battery (for example, a 12 V battery), and includes an insulating converter including a transformer. (See, for example, paragraphs [0028] to [0032] and FIG. 1 of Patent Document 1).
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a converter including a reactor, and suitable for switching noise in a power converter that performs power conversion between a DC power source and an AC load. It is to reduce to.
- a power converter includes a positive terminal and a negative terminal, first and second power lines, a smoothing capacitor, a converter, and an inverter.
- the positive terminal and the negative terminal receive power supplied from a DC power source.
- the first power line is configured to be electrically connectable with one of the positive terminal and the negative terminal.
- the second power line is configured to be electrically connectable to the other of the positive terminal and the negative terminal.
- the smoothing capacitor has a parasitic inductance component and is electrically connected between the first power line and the second power line.
- the converter includes a reactor provided on the first power line, and is configured to perform voltage conversion of a DC voltage smoothed by a smoothing capacitor.
- the inverter is configured to perform DC / AC conversion between the converter and the AC load by switching control.
- the inductance of the first path that connects the one of the positive terminal and the negative terminal of the first power line and the smoothing capacitor is the second inductance that connects the other of the positive terminal and the negative terminal of the second power line and the smoothing capacitor. Is smaller than the inductance of the path. The difference between the inductance of the second path and the inductance of the first path is less than twice the parasitic inductance component of the smoothing capacitor.
- the power conversion device further includes an inductor provided in the second path.
- the inductance of the inductor is less than twice the parasitic inductance component of the smoothing capacitor.
- the inductance of the second path is a parasitic inductance component of the second path.
- the parasitic inductance component of the second path is less than twice the parasitic inductance component of the smoothing capacitor.
- the power conversion device further includes a first inductor provided in the first path and a second inductor provided in the second path.
- the difference between the inductance of the second inductor and the inductance of the first inductor is less than twice the parasitic inductance component of the smoothing capacitor.
- a power converter includes a positive terminal and a negative terminal, first and second power lines, a smoothing capacitor, a converter, and an inverter.
- the positive terminal and the negative terminal receive power supplied from a DC power source.
- the first power line is configured to be electrically connectable with one of the positive terminal and the negative terminal.
- the second power line is configured to be electrically connectable to the other of the positive terminal and the negative terminal.
- the smoothing capacitor has a parasitic resistance component and is electrically connected between the first power line and the second power line.
- the converter includes a reactor provided on the first power line, and is configured to perform voltage conversion of a DC voltage smoothed by a smoothing capacitor.
- the inverter is configured to perform DC / AC conversion between the converter and the AC load by switching control.
- the resistance of the first path connecting the one of the positive terminal and the negative terminal of the first power line and the smoothing capacitor is the second resistance connecting the other of the positive terminal and the negative terminal of the second power line and the smoothing capacitor. Less than the resistance of the path.
- the difference between the resistance of the second path and the resistance of the first path is less than twice the parasitic resistance component of the smoothing capacitor.
- switching noise can be suitably reduced in a power conversion device that includes a converter including a reactor and performs power conversion between a DC power supply and an AC load.
- FIG. 1 is a circuit block diagram schematically showing a configuration of a power conversion device according to a first embodiment.
- 4 is a diagram for explaining a noise propagation path in the power conversion device according to Embodiment 1.
- FIG. It is a figure which shows an example of the correlation of the inductance of the inductor L, and a conversion rate. It is a figure which shows an example of the analysis result for demonstrating the noise reduction effect by the power converter device which concerns on Embodiment 1.
- FIG. FIG. 5 is a circuit block diagram schematically showing a configuration of a power conversion device according to a modification of the first embodiment.
- FIG. 3 is a circuit block diagram schematically showing a configuration of a power conversion device according to a second embodiment.
- Embodiment 1 FIG. Below, in order to make an understanding of the characteristic of the power converter device which concerns on Embodiment 1 easy, the structure of the power converter device which concerns on a comparative example is demonstrated first.
- FIG. 1 is a circuit block diagram schematically showing a configuration of a power converter according to a comparative example.
- power conversion device 9 includes positive terminal Tp and negative terminal Tn, positive line PL1, negative line NL, capacitor C1, converter 10, positive line PL2, capacitor C2, and inverter. 20, a U-phase terminal Tu, a V-phase terminal Tv, and a W-phase terminal Tw.
- the power converter 9 is configured to perform power conversion between DC power and AC power (DC AC conversion).
- DC power supply B is a power storage device, for example, a secondary battery such as a nickel metal hydride battery or a lithium ion secondary battery, or a capacitor such as an electric double layer capacitor.
- the DC power source B is not limited to a secondary battery, and may be a primary battery.
- the DC power source B may be a power source (for example, a stabilized power source) that generates a DC constant voltage, or may be a power generator (for example, a solar cell) configured to generate DC power.
- the AC motor M is an AC load that consumes AC power supplied from the DC power source B via the power converter 9 and generates desired power. More specifically, AC motor M is a Y-connected three-phase AC motor. AC motor M may be an induction motor, or may be a motor of another type (for example, a synchronous motor).
- the positive terminal Tp and the negative terminal Tn receive power supplied from the DC power source B.
- a positive electrode line PL1 (first power line) is electrically connected to the positive electrode terminal Tp.
- a negative electrode line NL (second power line) is electrically connected to the negative electrode terminal Tn.
- the capacitor (smoothing capacitor) C1 is electrically connected between the positive electrode line PL1 and the negative electrode line NL.
- Capacitor C ⁇ b> 1 smoothes the DC voltage from DC power supply B and supplies the smoothed DC voltage to converter 10.
- the capacitor C1 has a parasitic inductance component Lp.
- the parasitic inductance component Lp is represented as an inductor connected in series with the capacitor C1 (capacitance component) on the circuit block diagram.
- Converter 10 boosts the voltage between positive line PL1 and negative line NL based on signal PWC from control device 100, and outputs the boosted voltage between positive line PL2 and negative line NL.
- Converter 10 includes a reactor Lc, switching elements Q1, Q2, and diodes D1, D2.
- Each of the switching elements Q1, Q2 is, for example, an IGBT (Insulated Gate Bipolar Transistor) or a power MOS (Metal Oxide Semiconductor) transistor.
- Switching elements Q1, Q2 are connected in series between positive electrode line PL2 and negative electrode line NL.
- the collector of switching element Q1 is connected to positive electrode line PL2.
- the emitter of the switching element Q1 is connected to the collector of the switching element Q2.
- the emitter of the switching element Q2 is connected to the negative electrode line NL.
- Reactor Lc is provided on positive electrode line PL1. Specifically, one end of reactor Lc is electrically connected to positive electrode line PL1. The other end of reactor Lc is electrically connected to a connection point between the emitter of switching element Q1 and the collector of switching element Q2.
- Diodes D1 and D2 are connected in antiparallel to switching elements Q1 and Q2, respectively.
- the diodes D1, D2 are connected in parallel to the switching elements Q1, Q2, respectively, so that the direction from the emitter side to the collector side is the forward direction.
- converter 10 is not limited to the configuration shown in FIG. 1 as long as it includes a reactor and is in an unbalanced configuration (a configuration in which the positive electrode side and the negative electrode side are electrically asymmetric).
- Converter 10 may be, for example, another type of chopper circuit (for example, a non-insulated DC / DC converter).
- Capacitor C ⁇ b> 2 smoothes the DC voltage supplied from converter 10 and supplies the smoothed DC voltage to inverter 20.
- the inverter 20 converts the DC power supplied from the converter 10 into a three-phase AC based on the signal PWI from the control device 100 and outputs it to the AC motor M to drive the AC motor M.
- Inverter 20 includes a U-phase arm, a V-phase arm, and a W-phase arm (see FIG. 3) connected in parallel between positive electrode line PL2 and negative electrode line NL. Intermediate points between the U-phase arm and the W-phase arm are electrically connected to the U-phase terminal Tu, the V-phase terminal Tv, and the W-phase terminal Tw, respectively.
- the U-phase terminal Tu is configured to be connectable to the U-phase line of the AC motor M.
- the V-phase terminal Tv is configured to be connectable to the V-phase line of the AC motor M.
- W-phase terminal Tw is configured to be connectable to a W-phase line of AC motor M.
- the control device 100 is composed of an electronic control unit that includes a CPU (Central Processing Unit) and a memory (not shown). At least a part of the control device 100 may be configured to execute predetermined numerical / logical operation processing by hardware such as an electronic circuit. Control device 100 is configured to execute various processes for controlling converter 10 and inverter 20 based on a map and a program stored in a memory. More specifically, control device 100 generates a PWM (Pulse Width Modulation) signal for driving converter 10 using the pulse width modulation method, and outputs the generated PWM signal to converter 10 as signal PWC. To do. Further, control device 100 generates a PWM signal for driving AC motor M, and outputs the generated PWM signal to inverter 20 as signal PWI.
- PWM Pulse Width Modulation
- FIG. 2 is a diagram for explaining a noise generation mechanism and a conversion mechanism in the power conversion device 9 according to the comparative example.
- the common mode noise can be roughly explained.
- the common motor noise is returned to the AC motor M via the ground through the grounded electrostatic capacitance of the AC motor M ⁇ the inverter 20 ⁇ the converter 10 ⁇ the DC power source B. It flows in a loop shape (indicated by a thick line).
- the magnitude of the common mode noise generated by the switching control is determined by the positive path (the path that flows through the positive lines PL1 and PL2) and the negative path (the path that flows through the negative line NL) of the power converter 9.
- the impedance of the reactor in the boost converter is larger than the impedance of the wiring (positive electrode or negative electrode). Therefore, in the configuration in which the reactor Lc is provided in the positive path (positive line PL1) as in the power converter 9, the common mode noise is transmitted through the negative path (negative line NL) where the reactor Lc is not provided. Flowing.
- the common mode noise that has passed through the converter 10 in the negative electrode line NL passes through the path PATH1 (indicated by a dotted line) that reaches the positive electrode terminal Tp via the capacitor C1 and the capacitor C1 at the connection point between the capacitor C1 and the negative electrode line NL.
- the impedance of the path PATH1 is larger than the impedance of the path PATH2 by the amount that the path PATH1 includes the capacitor C1 and its parasitic inductance component Lp. Therefore, an impedance imbalance occurs between the path PATH1 and the path PATH2, thereby converting a part of the common mode noise into normal mode noise.
- the path PATH1 corresponds to a “first path” according to the present invention
- the path PATH2 corresponds to a “second path” according to the present invention.
- the current Ip that flows through the positive electrode line PL1 and the current In that flows through the negative electrode line NL are expressed by the following equations (1) and (2), respectively.
- the ground impedance of the DC power supply B is represented by Z.
- common mode noise flowing through the ground is represented by I common .
- the angular frequency of the common mode noise I common is ⁇ .
- conversion rate T the conversion rate from the common mode noise I common to the normal mode noise I normal may be abbreviated as “conversion rate T”.
- the impedance imbalance occurs between the path PATH1 and the path PATH2 due to the presence of the parasitic inductance component Lp of the capacitor C1.
- conversion from the common mode noise I common to the normal mode noise I normal is likely to occur, and switching noise may occur. Therefore, in the first embodiment, a configuration in which an inductor for balancing is further provided in the path PATH2.
- this configuration will be described in detail.
- FIG. 3 is a circuit block diagram schematically showing the configuration of the power conversion device according to the first embodiment.
- power conversion device 1 according to Embodiment 1 differs from power conversion device 9 according to the comparative example (see FIG. 1) in that inductor L is further provided.
- the inductor L is provided on the negative electrode line NL (second path) between the capacitor C1 and the negative electrode terminal Tn.
- the inductor L is electrically connected to a wiring (negative electrode line NL) different from the wiring (positive electrode line PL1) to which the reactor Lc of the converter 10 is connected.
- the inductance of the inductor L is L.
- the inductor L is configured by, for example, a discrete component (such as a coil), but an inductance corresponding to L may be formed by a parasitic inductance component of the negative electrode line NL. Further, the inductance L may be secured by combining the inductance of the discrete component and the parasitic inductance component of the negative electrode line NL.
- U-phase arm of inverter 20 includes switching elements Q3 and Q4 connected in series.
- V-phase arm includes switching elements Q5 and Q6 connected in series.
- W-phase arm includes switching elements Q7 and Q8 connected in series. Further, diodes D3 to D8 are connected in antiparallel to the switching elements Q3 to Q8, respectively.
- the intermediate point of each phase arm is connected to each phase coil of AC motor M, respectively.
- the power conversion device 1 further includes voltage sensors 31 and 32 and a current sensor 33.
- Voltage sensor 31 detects voltage V 1 across capacitor C 1 as an input voltage of converter 10, and outputs the detection result to control device 100.
- Voltage sensor 32 detects voltage V2 across capacitor C2 as the output voltage of converter 10 (input voltage of inverter 20), and outputs the detection result to control device 100.
- Current sensor 33 detects current I flowing through reactor Lc, and outputs the detection result to control device 100. Based on the signal from each sensor, control device 100 generates a PWM signal and outputs it to converter 10 as signal PWC, and generates another PWM signal and outputs it to inverter 20 as signal PWI.
- FIG. 4 is a diagram for explaining a noise propagation path in the power conversion device 1 according to the first embodiment.
- the noise propagation path in power converter 1 is qualitatively the same as the noise propagation path in the comparative example (see FIG. 2).
- the conversion rate T in the power conversion device 1 depends on the difference (Lp ⁇ L) between the parasitic inductance component Lp of the capacitor C1 and the inductance L of the inductor L instead of the parasitic inductance component Lp of the capacitor C1.
- FIG. 5 is a diagram illustrating an example of the correlation between the inductance L of the inductor L and the conversion rate T.
- the vertical axis represents the conversion rate T from the common mode noise I common to the normal mode noise I normal .
- the coefficient (absolute value) of the common mode noise I common on the right side of Equation (6) is the coefficient of the common mode noise I common on the right side of Equation (3). If the relationship is smaller than (absolute value), that is, if the relationship of 0 ⁇ L ⁇ 2Lp + ( ⁇ 2 Lp 3 / Z 2 ) is established when the equation is modified, by providing the inductor L, The conversion rate T is lower than when the inductor L is not provided.
- the conversion rate T is 0 as shown in FIG. That is, when the inductance L of the inductor L is equal to the parasitic inductance component Lp of the capacitor C1, the normal mode noise I normal is minimized.
- ( ⁇ 2 Lp 3 / Z 2 ) is negligibly small as compared to 2 Lp, and can be expressed as ( ⁇ 2 Lp 3 / Z 2 ) ⁇ 2Lp.
- the above-described condition for reducing the conversion rate T can be approximated as 0 ⁇ L ⁇ 2Lp.
- FIG. 6 is a diagram illustrating an example of an analysis result for explaining a noise reduction effect (normal mode noise reduction effect) by the power conversion device 1 according to the first embodiment.
- the horizontal axis indicates the frequency on a logarithmic scale.
- the vertical axis represents “normal mode noise voltage” which means a voltage applied to the ground impedance Z of the DC power supply B.
- the parasitic inductance component Lp of the capacitor C1 and the inductance L of the inductor L are both set to 30 nH.
- the ground impedance Z of the DC power source B was set to 50 ⁇ .
- the inductance of the reactor Lc was set to 60 ⁇ H.
- a power supply impedance stabilization network (LISN) was used to make the impedance of the DC power supply B as seen from the noise source constant.
- the inductor L is provided on the negative line NL between the capacitor C1 and the negative terminal Tn, and the inductance L of the inductor L satisfies the relationship 0 ⁇ L ⁇ 2Lp.
- the difference between the impedance of the path PATH1 and the impedance of the path PATH2 becomes smaller than in the case where the inductor L is not provided.
- the inductance L of the inductor L equal to the parasitic inductance component Lp of the capacitor C1, the impedance of the path PATH1 and the impedance of the path PATH2 become equal.
- reactor Lc is provided on the negative electrode line NL side (not shown), it is between capacitor C1 and positive electrode terminal Tp.
- the inductor L may be provided on the positive line PL1.
- FIG. 7 is a circuit block diagram schematically showing the configuration of the power conversion device according to the modification of the first embodiment.
- power conversion device 1 ⁇ / b> A differs from power conversion device 1 according to the first embodiment (see FIG. 3) in that it includes an inductor La and an inductor Lb instead of inductor L.
- the inductor La (inductance: La) is provided on the positive electrode line PL1 between the capacitor C1 and the positive electrode terminal Tp.
- the inductor Lb (inductance: Lb) is provided on the negative electrode line NL between the capacitor C1 and the negative electrode terminal Tn.
- Each of the inductors La and Lb is composed of, for example, discrete components (coils, etc.). Note that at least one of the inductors La and Lb may be formed by adjusting the parasitic inductance component of the wiring (positive line PL1 or negative line NL). Alternatively, the inductors La and Lb may be configured by a normal mode choke coil having an asymmetric shape between the positive electrode side and the negative electrode side. In addition, since the noise propagation path
- Equation (3) Comparing Equation (3) and Equation (9), the coefficient (absolute value) of the common mode noise I common on the right side of Equation (9) is the coefficient of the common mode noise I common on the right side of Equation (3). If the relationship is smaller than (absolute value), that is, if the equation is modified and arranged, if the relationship 0 ⁇ Lb ⁇ La ⁇ 2Lp + ( ⁇ 2 Lp 3 / Z 2 ) holds, inductors La and Lb are By providing, conversion rate T becomes low compared with the case where inductor La, Lb is not provided.
- the inductor La is provided in the positive line PL1 between the capacitor C1 and the positive terminal Tp, and the negative line between the capacitor C1 and the negative terminal Tn.
- the inductances of the inductors La and Lb are set so that the relationship 0 ⁇ Lb ⁇ La ⁇ 2Lp is established.
- the inductance (Lb) of the path PATH2 and the inductance (La) of the path PATH1 are set so that the difference (Lb ⁇ La) is less than twice the parasitic inductance component Lp of the capacitor C1.
- the difference between the impedance of the path PATH1 and the impedance of the path PATH2 is reduced as compared with the case where the inductors La and Lb are not provided. Thereby, conversion from the common mode noise I common to the normal mode noise I normal can be suppressed, and the switching noise can be reduced.
- another inductor may be provided in place of the inductor L in the configuration of the first embodiment shown in FIG. That is, although not shown, an inductor having an inductance comparable to that of the reactor Lc provided on the positive electrode line PL1 can be provided on the negative electrode line NL between the capacitor C1 and the switching element Q2.
- an inductor larger than the inductor L in the first embodiment is required in order to obtain an unbalance reduction effect equivalent to that in the first embodiment.
- a larger inductor is required than the inductors La and Lb (see FIG. 5) in the modification. That is, according to Embodiment 1 and the modification, switching noise can be reduced by installing a small inductor.
- Embodiment 2 the configuration in which the inductor is provided in one or both of the path PATH1 and the path PATH2 has been described. However, if the impedance difference between the path PATH1 and the path PATH2 is reduced and the unbalance is eliminated (reduced), the circuit component provided in the path (at least one of the path PATH1 and the path PATH2) is not limited to the inductor. . In the second embodiment, a configuration in which a resistor is provided in the path PATH2 will be described.
- FIG. 8 is a circuit block diagram schematically showing the configuration of the power conversion device according to the second embodiment.
- capacitor C1 has a parasitic resistance component Rp.
- the parasitic resistance component Rp is represented as a resistor connected in series with the capacitor C1 (capacitance component) on the circuit block diagram.
- the power conversion device 2 is different from the power conversion device 1 according to the first embodiment (see FIG. 3) in that a resistor R is provided instead of the inductor L.
- the resistor R is electrically connected to the negative electrode line NL between the capacitor C1 and the negative electrode terminal Tn.
- the resistor R is constituted by, for example, a discrete component (chip resistor or the like), but may be formed by a wiring resistance (parasitic resistance) of the negative electrode line NL.
- the resistance R may be secured by combining the chip resistance and the wiring resistance of the negative electrode line NL.
- the other structure of the power converter device 2 is equivalent to the corresponding structure of the power converter device 1 (refer FIG. 3) which concerns on Embodiment 1.
- FIG. 3 the noise propagation path in the power converter 2 is also equivalent to the noise propagation path shown in FIG. Therefore, detailed description will not be repeated.
- the current Ip flowing through the positive electrode line PL1 the current In flowing through the negative electrode line NL, and the normal mode noise I normal are expressed by the following equations (10) to (12), respectively. From Expression (12), it can be seen that the conversion rate T depends on (Rp ⁇ R).
- the resistor R is electrically connected to the negative electrode line NL between the capacitor C1 and the negative electrode terminal Tn.
- the resistance R is set so that the difference between the resistance of the path PATH2 and the resistance of the path PATH1 is less than twice the parasitic resistance component Rp of the capacitor C1, that is, the relationship 0 ⁇ Rp ⁇ R ⁇ 2Rp is established.
- the difference between the impedance of the path PATH1 and the impedance of the path PATH2 becomes smaller than in the case where the resistor R is not provided. Thereby, conversion from the common mode noise I common to the normal mode noise I normal can be suppressed, and the switching noise can be reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
コンデンサ(C)は、寄生インダクタンス成分(Lp)を有し、正極線(PL1)と負極線(NL)との間に電気的に接続される。コンバータ(10)は、正極線(PL1)に設けられたリアクトル(Lc)を含み、コンデンサ(C1)により平滑化された直流電圧の電圧変換を行なうように構成される。インバータ(20)は、コンバータ(10)と交流モータ(M)との間での直流交流変換をスイッチング制御により行なうように構成される。正極線(PL1)のうち直流電源(B)とコンデンサ(C)とを結ぶ経路(PATH1)のインダクタンスは、負極線(NL)のうち直流電源(B)とコンデンサ(C)とを結ぶ経路(PATH2)のインダクタンスよりも小さい。経路(PATH2)のインダクタンスと経路(PATH1)のインダクタンスとの差は、寄生インダクタンス成分(Lp)の2倍未満である。
Description
この発明は、直流電源と交流負荷との間で電力変換を行なう電力変換装置に関し、より特定的には、リアクトルを含むコンバータを備え、直流電源と交流負荷との間で電力変換を行なう電力変換装置に関する。
直流電源と交流負荷との間での電力変換をスイッチング制御により行なうように構成された電力変換装置が公知である。高周波(たとえば20kHz以上の周波数)でのスイッチング制御では、電力変換装置内のインバータのスイッチング素子のスイッチングに起因して、高周波のノイズ(スイッチングノイズ)が発生し得る。このスイッチングノイズの発生メカニズムは、以下のように説明される。すなわち、インバータのスイッチングにより交流負荷(たとえば交流モータ)の中性点電位が変動し、それによりコモンモードノイズが発生する。
電力変換装置の回路構成が正極側とで負極側で不平衡である場合、コモンモードノイズとノーマルモードノイズとの間でのモード変換が起こり得る。すなわち、コモンモードノイズがノーマルモードノイズに変換されたり、ノーマルモードノイズがコモンモードノイズに変換されたりする可能性がある。そのため、モード変換を防止することによってスイッチングノイズを低減する技術が提案されている。
たとえば特開2009-296756号公報(特許文献1)に開示された電力変換装置は、第1および第2のループ回路を備える。第1のループ回路は、2次側コイルの中点タップ、コンデンサ、高電位側のYコンデンサ、高電位側配線および高電位側スイッチング素子を含む。一方、第2のループ回路は、中点タップ、コンデンサ、低電位側のYコンデンサ、低電位側配線および低電位側スイッチング素子を含む。特許文献1に開示の電力変換装置では、高電位側のYコンデンサと低電位側のYコンデンサとの接続点に中点タップが接続されている。これにより、第1のループ回路のインピーダンスと第2のループ回路のインピーダンスとが等しくなる。その結果、電力変換装置の不平衡が解消されるので、モード変換を防止することができる(たとえば特許文献1の段落[0038]参照)。
特許文献1に開示された電力変換装置は、高圧バッテリの電圧(たとえば数百ボルト)を降圧して低圧バッテリ(たとえば12Vのバッテリ)に出力するものであり、トランスを含む絶縁型コンバータを備えた構成を有する(たとえば特許文献1の段落[0028]~[0032]および図1参照)。
一方、電力変換装置においては、リアクトルを含むコンバータを備えた構成のものが広く実用化されている。このようなコンバータを備えた構成については特許文献1では特に言及されておらず、当該構成におけるスイッチングノイズの低減については何ら検討されていない。リアクトルを含むコンバータを備えた構成の電力変換装置においてもスイッチングノイズを好適に低減することが望ましい。
この発明は上記課題を解決するためになされたものであって、その目的は、リアクトルを含むコンバータを備え、直流電源と交流負荷との間で電力変換を行なう電力変換装置において、スイッチングノイズを好適に低減することである。
(1)この発明のある局面に従う電力変換装置は、正極端子および負極端子と、第1および第2の電力線と、平滑コンデンサと、コンバータと、インバータとを備える。正極端子および負極端子は、直流電源から供給される電力を受ける。第1の電力線は、正極端子および負極端子のうちの一方と電気的に接続可能に構成される。第2の電力線は、正極端子および負極端子のうちの他方と電気的に接続可能に構成される。平滑コンデンサは、寄生インダクタンス成分を有し、第1の電力線と第2の電力線との間に電気的に接続される。コンバータは、第1の電力線に設けられたリアクトルを含み、平滑コンデンサにより平滑化された直流電圧の電圧変換を行なうように構成される。インバータは、コンバータと交流負荷との間での直流交流変換をスイッチング制御により行なうように構成される。第1の電力線のうち正極端子および負極端子の上記一方と平滑コンデンサとを結ぶ第1の経路のインダクタンスは、第2の電力線のうち正極端子および負極端子の上記他方と平滑コンデンサとを結ぶ第2の経路のインダクタンスよりも小さい。第2の経路のインダクタンスと第1の経路のインダクタンスとの差は、平滑コンデンサの寄生インダクタンス成分の2倍未満である。
(2)好ましくは、電力変換装置は、第2の経路に設けられたインダクタをさらに備える。インダクタのインダクタンスは、平滑コンデンサの寄生インダクタンス成分の2倍未満である。
(3)好ましくは、第2の経路のインダクタンスは、第2の経路の寄生インダクタンス成分である。第2の経路の寄生インダクタンス成分は、平滑コンデンサの寄生インダクタンス成分の2倍未満である。
(4)好ましくは、電力変換装置は、第1の経路に設けられた第1のインダクタと、第2の経路に設けられた第2のインダクタとをさらに備える。第2のインダクタのインダクタンスと第1のインダクタのインダクタンスとの差は、平滑コンデンサの寄生インダクタンス成分の2倍未満である。
(5)この発明のある局面に従う電力変換装置は、電力変換装置は、正極端子および負極端子と、第1および第2の電力線と、平滑コンデンサと、コンバータと、インバータとを備える。正極端子および負極端子は、直流電源から供給される電力を受ける。第1の電力線は、正極端子および負極端子のうちの一方と電気的に接続可能に構成される。第2の電力線は、正極端子および負極端子のうちの他方と電気的に接続可能に構成される。平滑コンデンサは、寄生抵抗成分を有し、第1の電力線と第2の電力線との間に電気的に接続される。コンバータは、第1の電力線に設けられたリアクトルを含み、平滑コンデンサにより平滑化された直流電圧の電圧変換を行なうように構成される。インバータは、コンバータと交流負荷との間での直流交流変換をスイッチング制御により行なうように構成される。第1の電力線のうち正極端子および負極端子の上記一方と平滑コンデンサとを結ぶ第1の経路の抵抗は、第2の電力線のうち正極端子および負極端子の上記他方と平滑コンデンサとを結ぶ第2の経路の抵抗よりも小さい。第2の経路の抵抗と第1の経路の抵抗との差は、平滑コンデンサの寄生抵抗成分の2倍未満である。
この発明によれば、リアクトルを含むコンバータを備え、直流電源と交流負荷との間で電力変換を行なう電力変換装置において、スイッチングノイズを好適に低減することができる。
以下、この発明を実施するための実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
実施の形態1.
以下では、実施の形態1に係る電力変換装置の特徴の理解を容易にするために、まず、比較例に係る電力変換装置の構成について説明する。
以下では、実施の形態1に係る電力変換装置の特徴の理解を容易にするために、まず、比較例に係る電力変換装置の構成について説明する。
<比較例>
図1は、比較例に係る電力変換装置の構成を概略的に示す回路ブロック図である。図1を参照して、電力変換装置9は、正極端子Tpおよび負極端子Tnと、正極線PL1と、負極線NLと、コンデンサC1と、コンバータ10と、正極線PL2と、コンデンサC2と、インバータ20と、U相端子Tuと、V相端子Tvと、W相端子Twとを備える。電力変換装置9は、直流電力と交流電力との電力変換(直流交流変換)を行なうように構成されている。
図1は、比較例に係る電力変換装置の構成を概略的に示す回路ブロック図である。図1を参照して、電力変換装置9は、正極端子Tpおよび負極端子Tnと、正極線PL1と、負極線NLと、コンデンサC1と、コンバータ10と、正極線PL2と、コンデンサC2と、インバータ20と、U相端子Tuと、V相端子Tvと、W相端子Twとを備える。電力変換装置9は、直流電力と交流電力との電力変換(直流交流変換)を行なうように構成されている。
直流電源Bは、たとえば蓄電装置であり、ニッケル水素電池もしくはリチウムイオン二次電池等の二次電池または電気二重層キャパシタ等のキャパシタである。なお、直流電源Bは、二次電池に限られず、一次電池であってもよい。また、直流電源Bは、直流定電圧を発生させる電源(たとえば安定化電源)であってもよいし、直流電力を発電するように構成された発電装置(たとえば太陽電池)であってもよい。
交流モータMは、直流電源Bから電力変換装置9を介して供給された交流電力を消費して所望の動力を発生させる交流負荷である。より具体的には、交流モータMは、Y結線の三相交流モータである。交流モータMは、誘導モータであってもよいし、他の方式のモータ(たとえば同期モータ)であってもよい。
正極端子Tpおよび負極端子Tnは、直流電源Bから供給される電力を受ける。正極端子Tpには、正極線PL1(第1の電力線)が電気的に接続されている。負極端子Tnには、負極線NL(第2の電力線)が電気的に接続されている。
コンデンサ(平滑コンデンサ)C1は、正極線PL1と負極線NLとの間に電気的に接続されている。コンデンサC1は、直流電源Bからの直流電圧を平滑化し、平滑化された直流電圧をコンバータ10に供給する。コンデンサC1は、寄生インダクタンス成分Lpを有する。寄生インダクタンス成分Lpは、回路ブロック図上では、コンデンサC1(容量成分)に直列に接続されたインダクタとして表される。
コンバータ10は、制御装置100からの信号PWCに基づいて、正極線PL1と負極線NLとの間の電圧を昇圧し、昇圧された電圧を正極線PL2と負極線NLとの間に出力する。コンバータ10は、リアクトルLcと、スイッチング素子Q1,Q2と、ダイオードD1,D2とを含む。
スイッチング素子Q1,Q2の各々は、たとえば、IGBT(Insulated Gate Bipolar Transistor)または電力用MOS(Metal Oxide Semiconductor)トランジスタである。スイッチング素子Q1,Q2は、正極線PL2と負極線NLとの間に直列に接続されている。具体的には、スイッチング素子Q1のコレクタは、正極線PL2に接続されている。スイッチング素子Q1のエミッタは、スイッチング素子Q2のコレクタに接続されている。スイッチング素子Q2のエミッタは、負極線NLに接続されている。
リアクトルLcは、正極線PL1に設けられている。具体的には、リアクトルLcの一方端は、正極線PL1に電気的に接続されている。リアクトルLcの他方端は、スイッチング素子Q1のエミッタとスイッチング素子Q2のコレクタとの接続点に電気的に接続されている。
ダイオードD1,D2は、スイッチング素子Q1,Q2にそれぞれ逆並列に接続されている。言い換えると、ダイオードD1,D2は、エミッタ側からコレクタ側へと向かう方向が順方向となるように、スイッチング素子Q1,Q2にそれぞれ並列に接続されている。
なお、コンバータ10の構成は、リアクトルを含み、かつ不平衡な構成(正極側と負極側とが電気的に非対称な構成)であれば、図1に示した構成に限定されない。コンバータ10は、たとえば他の方式のチョッパ回路(たとえば非絶縁型のDC/DCコンバータ)であってもよい。
コンデンサC2は、正極線PL2と負極線NLとの間に電気的に接続されている。コンデンサC2は、コンバータ10から供給された直流電圧を平滑化し、平滑化された直流電圧をインバータ20に供給する。
インバータ20は、制御装置100からの信号PWIに基づいて、コンバータ10から供給された直流電力を三相交流に変換して交流モータMに出力し、交流モータMを駆動する。インバータ20は、正極線PL2と負極線NLとの間に並列に接続されたU相アームと、V相アームと、W相アーム(いずれも図3参照)とを含む。U相アーム~W相アームの中間点は、U相端子Tu、V相端子TvおよびW相端子Twにそれぞれ電気的に接続されている。
U相端子Tuは、交流モータMのU相ラインに接続可能に構成されている。V相端子Tvは、交流モータMのV相ラインに接続可能に構成されている。W相端子Twは、交流モータMのW相ラインに接続可能に構成されている。
制御装置100は、図示しないCPU(Central Processing Unit)およびメモリを内蔵した電子制御ユニットにより構成される。制御装置100の少なくとも一部は、電子回路等のハードウェアにより所定の数値・論理演算処理を実行するように構成されてもよい。制御装置100は、メモリに記憶されたマップおよびプログラムに基づいて、コンバータ10およびインバータ20を制御するための各種処理を実行するように構成されている。より具体的には、制御装置100は、パルス幅変調法を用いて、コンバータ10を駆動するためのPWM(Pulse Width Modulation)信号を生成し、その生成したPWM信号を信号PWCとしてコンバータ10に出力する。また、制御装置100は、交流モータMを駆動するためのPWM信号を生成し、その生成したPWM信号を信号PWIとしてインバータ20に出力する。
<ノイズの発生メカニズムおよび変換メカニズム>
以上のように構成された電力変換装置9では、インバータ20のスイッチング制御により交流モータMの中性点電位が変動することによって、コモンモードノイズが発生する。以下、コモンモードノイズの伝搬経路、および、コモンモードノイズがノーマルモードノイズに変換されるメカニズムについて説明する。
以上のように構成された電力変換装置9では、インバータ20のスイッチング制御により交流モータMの中性点電位が変動することによって、コモンモードノイズが発生する。以下、コモンモードノイズの伝搬経路、および、コモンモードノイズがノーマルモードノイズに変換されるメカニズムについて説明する。
図2は、比較例に係る電力変換装置9におけるノイズの発生メカニズムおよび変換メカニズムを説明するための図である。図2を参照して、コモンモードノイズは、概略的に説明すると、交流モータMの対地浮遊静電容量-インバータ20-コンバータ10-直流電源Bを通り、グラウンドを介して交流モータMへと帰還するようにループ状に流れる(太線で示す)。
より詳細に説明すると、スイッチング制御により発生するコモンモードノイズの大きさは、電力変換装置9の正極側の経路(正極線PL1,PL2を流れる経路)と負極側の経路(負極線NLを流れる経路)との間で等しいが、一般に、昇圧コンバータ内のリアクトルのインピーダンスは、配線(正極線または負極線)のインピーダンスよりも大きい。そのため、電力変換装置9のようにリアクトルLcが正極側の経路(正極線PL1)に設けられた構成では、コモンモードノイズは、リアクトルLcが設けられていない負極側の経路(負極線NL)を流れる。
負極線NLにおいてコンバータ10を通ったコモンモードノイズは、コンデンサC1と負極線NLとの接続点において、コンデンサC1を経由して正極端子Tpに至る経路PATH1(点線で示す)と、コンデンサC1を経由せずに負極端子Tnに至る経路PATH2(1点鎖線で示す)とに分岐する。経路PATH1のインピーダンスは、経路PATH1がコンデンサC1およびその寄生インダクタンス成分Lpを含む分だけ、経路PATH2のインピーダンスよりも大きい。したがって、経路PATH1と経路PATH2との間でインピーダンスの不平衡が生じ、それによりコモンモードノイズの一部がノーマルモードノイズに変換される。なお、経路PATH1は、この発明に係る「第1の経路」に相当し、経路PATH2は、この発明に係る「第2の経路」に相当する。
ここで、正極線PL1を流れる電流Ipと、負極線NLを流れる電流Inとは、下記式(1)および式(2)のようにそれぞれ表される。式(1)および式(2)(ならびに後述する各式)では、直流電源Bの対地インピーダンスをZで表す。また、グラウンドを流れるコモンモードノイズをIcommonで表わす。コモンモードノイズIcommonの角周波数はωである。
ノーマルモードノイズInormalは、電流Inと電流Ipとの差分(In-Ip)により算出され、上記式(3)に示すように表される。式(3)より、コモンモードノイズIcommonからノーマルモードノイズInormalへの変換率T(T=Inormal/Icommon)がコンデンサC1の寄生インダクタンス成分Lpに依存することが分かる。なお、以下では、コモンモードノイズIcommonからノーマルモードノイズInormalへの変換率Tを「変換率T」と略す場合がある。
このように、比較例では、コンデンサC1の寄生インダクタンス成分Lpの存在により、経路PATH1と経路PATH2との間でインピーダンスの不平衡が生じる。その結果、コモンモードノイズIcommonからノーマルモードノイズInormalへの変換が起こりやすくなり、スイッチングノイズが発生してしまう可能性がある。そこで、実施の形態1においては、経路PATH2に平衡化のためのインダクタをさらに設ける構成を採用する。以下、この構成について詳細に説明する。
<本実施の形態>
図3は、実施の形態1に係る電力変換装置の構成を概略的に示す回路ブロック図である。図3を参照して、実施の形態1に係る電力変換装置1は、インダクタLをさらに備える点において、比較例に係る電力変換装置9(図1参照)と異なる。
図3は、実施の形態1に係る電力変換装置の構成を概略的に示す回路ブロック図である。図3を参照して、実施の形態1に係る電力変換装置1は、インダクタLをさらに備える点において、比較例に係る電力変換装置9(図1参照)と異なる。
インダクタLは、コンデンサC1と負極端子Tnとの間の負極線NL(第2の経路)に設けられている。このように、インダクタLは、コンバータ10のリアクトルLcが接続された配線(正極線PL1)とは異なる配線(負極線NL)に電気的に接続されている。
インダクタLのインダクタンスはLである。インダクタLは、たとえばディスクリート部品(コイルなど)により構成されるが、負極線NLの寄生インダクタンス成分によりLに相当するインダクタンスを形成してもよい。また、ディスクリート部品のインダクタンスと負極線NLの寄生インダクタンス成分との合成により、インダクタンスLを確保してもよい。
電力変換装置1の具体的な構成についてさらに説明する。インバータ20のU相アームは、直列に接続されたスイッチング素子Q3,Q4を含む。V相アームは、直列に接続されたスイッチング素子Q5,Q6を含む。W相アームは、直列に接続されたスイッチング素子Q7,Q8を含む。また、スイッチング素子Q3~Q8には、ダイオードD3~D8がそれぞれ逆並列に接続されている。そして、各相アームの中間点は、交流モータMの各相コイルにそれぞれ接続されている。
電力変換装置1は、電圧センサ31,32と、電流センサ33とをさらに備える。電圧センサ31は、コンデンサC1の両端の電圧V1をコンバータ10の入力電圧として検出し、その検出結果を制御装置100に出力する。電圧センサ32は、コンデンサC2の両端の電圧V2をコンバータ10の出力電圧(インバータ20の入力電圧)として検出し、その検出結果を制御装置100に出力する。電流センサ33は、リアクトルLcを流れる電流Iを検出し、その検出結果を制御装置100に出力する。制御装置100は、各センサからの信号に基づいて、PWM信号を生成して信号PWCとしてコンバータ10に出力するとともに、他のPWM信号を生成して信号PWIとしてインバータ20に出力する。
電力変換装置1の他の構成は、比較例に係る電力変換装置9の対応する構成と同等であるため、詳細な説明は繰り返さない。なお、コンバータ10およびインバータ20の具体的な構成は、図3に示した例に限定されるものではない。また、電圧センサ31,32および電流センサ33は、本発明において必須の構成要素ではない。
図4は、実施の形態1に係る電力変換装置1におけるノイズ伝搬経路を説明するための図である。図4を参照して、電力変換装置1におけるノイズ伝播経路は、比較例におけるノイズ伝播経路(図2参照)と定性的には同様である。
しかしながら、電力変換装置1においては、インダクタLを設けたことで、経路PATH1のインピーダンスと経路PATH2のインピーダンスとの比が変化する。その結果、電力変換装置1における変換率Tが、コンデンサC1の寄生インダクタンス成分Lpに代えて、コンデンサC1の寄生インダクタンス成分LpとインダクタLのインダクタンスLとの差(Lp-L)に依存するようになる(下記式(4)~(6)参照)。
図5は、インダクタLのインダクタンスLと変換率Tとの相関関係の一例を示す図である。図5において、横軸は、コンデンサC1の寄生インダクタンス成分Lpに対するインダクタLのインダクタンスLの比(=L/Lp)を示す。縦軸は、コモンモードノイズIcommonからノーマルモードノイズInormalへの変換率Tを示す。
上記式(3)と式(6)とを比較すると、式(6)の右辺のコモンモードノイズIcommonの係数(絶対値)の方が式(3)の右辺のコモンモードノイズIcommonの係数(絶対値)よりも小さい場合、すなわち、式変形をして整理すると、0<L<2Lp+(ω2Lp3/Z2)との関係が成立する場合には、インダクタLを設けることで、インダクタLが設けられていないときと比べて、変換率Tが低くなる。
たとえば、インダクタLのインダクタンスLとコンデンサC1の寄生インダクタンス成分Lpとが等しい場合(L/Lp=1の場合)には、図5に示すように、変換率Tが0となる。つまり、インダクタLのインダクタンスLがコンデンサC1の寄生インダクタンス成分Lpと等しい場合にノーマルモードノイズInormalは最小になる。
多くの場合、(ω2Lp3/Z2)は2Lpと比べて無視できるほど小さいので、(ω2Lp3/Z2)≪2Lpと表すことができる。このような場合には、変換率Tが低減される上述の条件を0<L<2Lpと近似することができる。
図6は、実施の形態1に係る電力変換装置1によるノイズ低減効果(ノーマルモードノイズの低減効果)を説明するための解析結果の一例を示す図である。図6において、横軸は周波数を対数目盛りで示す。縦軸は、直流電源Bの対地インピーダンスZに印加される電圧を意味する「ノーマルモードノイズ電圧」を示す。
図6に示す解析例では、コンデンサC1の寄生インダクタンス成分Lpと、インダクタLのインダクタンスLとを、いずれも30nHに設定した。また、直流電源Bの対地インピーダンスZを50Ωに設定した。リアクトルLcのインダクタンスを60μHに設定した。なお、この解析では、ノイズ源から見た直流電源Bのインピーダンスを一定にするために、電源インピーダンス安定回路網(LISN:Line Impedance Stabilization Network)を用いた。
図6に示すように、適切なインダクタンス(ここでは、コンデンサC1の寄生インダクタンス成分Lpと等しいインダクタンス)を有するインダクタLを設けることで、幅広い周波数域にわたってノーマルモードノイズを低減可能であることが分かる。
以上のように、実施の形態1によれば、コンデンサC1と負極端子Tnとの間の負極線NLにインダクタLを設け、このインダクタLのインダクタンスLを0<L<2Lpとの関係が成立するように設定することで、インダクタLが設けられていない場合と比べて、経路PATH1のインピーダンスと経路PATH2のインピーダンスとの差が小さくなる。特に、インダクタLのインダクタンスLをコンデンサC1の寄生インダクタンス成分Lpと等しく設定することで、経路PATH1のインピーダンスと経路PATH2のインピーダンスとが等しくなる。これにより、経路PATH1と経路PATH2との間でインピーダンスの不平衡が低減(解消)されるので、コモンモードノイズIcommonからノーマルモードノイズInormalへの変換が抑制される。その結果、スイッチングノイズを低減することができる。
なお、コンバータ10の構成が図3および図4に示した構成と異なり、リアクトルLcが負極線NL側に設けられている場合(図示せず)には、コンデンサC1と正極端子Tpとの間において、正極線PL1にインダクタLを設ければよい。
実施の形態1の変形例.
実施の形態1では、インダクタLが経路PATH2にのみ設けられた構成について説明したが、以下に説明するように、経路PATH1および経路PATH2の両方にインダクタが設けられた構成も採用可能である。
実施の形態1では、インダクタLが経路PATH2にのみ設けられた構成について説明したが、以下に説明するように、経路PATH1および経路PATH2の両方にインダクタが設けられた構成も採用可能である。
図7は、実施の形態1の変形例に係る電力変換装置の構成を概略的に示す回路ブロック図である。図7を参照して、電力変換装置1Aは、インダクタLに代えて、インダクタLaおよびインダクタLbを備える点において、実施の形態1に係る電力変換装置1(図3参照)と異なる。
インダクタLa(インダクタンス:La)は、コンデンサC1と正極端子Tpとの間において、正極線PL1に設けられている。一方、インダクタLb(インダクタンス:Lb)は、コンデンサC1と負極端子Tnとの間において、負極線NLに設けられている。
インダクタLa,Lbの各々は、たとえばディスクリート部品(コイルなど)により構成されている。なお、インダクタLa,Lbの少なくとも一方は、配線(正極線PL1または負極線NL)の寄生インダクタンス成分を調整することで形成してもよい。あるいは、インダクタLa,Lbは、正極側と負極側とが非対称な形状を有するノーマルモードチョークコイルにより構成されてもよい。なお、電力変換装置1Aにおけるノイズ伝搬経路は、図4に示したノイズ伝播経路と同等であるため、図示しての詳細な説明は繰り返さない。
正極線PL1を流れる電流Ip、負極線NLを流れる電流InおよびノーマルモードノイズInormalは、下記式(7)~(9)のようにそれぞれ表される。式(9)より、変換率Tが(Lp+La-Lb)に依存することが分かる。
上記式(3)と式(9)とを比較すると、式(9)の右辺のコモンモードノイズIcommonの係数(絶対値)の方が式(3)の右辺のコモンモードノイズIcommonの係数(絶対値)よりも小さい場合、すなわち、式変形をして整理すると、0<Lb-La<2Lp+(ω2Lp3/Z2)との関係が成立する場合には、インダクタLa,Lbを設けることで、インダクタLa,Lbが設けられていないときと比べて、変換率Tが低くなる。
また、(ω2Lp3/Z2)が2Lpと比べて無視できるほど小さく、(ω2Lp3/Z2)≪2Lpと表すことができる場合には、変換率Tが低減される上述の条件を0<Lb-La<2Lpと近似することができる。
なお、実施の形態1と同様に、Lb-La=Lpとの関係が成立する場合には変換率Tが0となるため、ノーマルモードノイズInormalが最小となる。
以上のように、実施の形態1の変形例によれば、コンデンサC1と正極端子Tpとの間の正極線PL1にインダクタLaが設けられ、かつ、コンデンサC1と負極端子Tnとの間の負極線NLにインダクタLbが設けられた構成においても、インダクタLa,Lbのインダクタンスを0<Lb-La<2Lpとの関係が成立するように設定する。このように、経路PATH2のインダクタンス(Lb)および経路PATH1のインダクタンス(La)は、その差(Lb-La)がコンデンサC1の寄生インダクタンス成分Lpの2倍未満となるように設定される。そうすることで、インダクタLa,Lbが設けられていない場合と比べて、経路PATH1のインピーダンスと経路PATH2のインピーダンスとの差が小さくなる。これにより、コモンモードノイズIcommonからノーマルモードノイズInormalへの変換を抑制し、スイッチングノイズを低減することができる。
なお、経路PATH1と経路PATH2との間のインピーダンスの不平衡を低減する観点からは、図3に示した実施の形態1の構成において、インダクタLに代えて、別のインダクタを設けてもよい。すなわち、図示しないが、正極線PL1に設けられたリアクトルLcと同程度のインダクタンスを有するインダクタをコンデンサC1とスイッチング素子Q2との間の負極線NLに設けることも可能である。しかしながら、このような構成を採用する場合、実施の形態1の構成と同等の不平衡の低減効果を得るためには、実施の形態1におけるインダクタLよりも大型のインダクタが必要となる。また、変形例におけるインダクタLa,Lb(図5参照)と比べても、より大型のインダクタが必要となる。つまり、実施の形態1および変形例によれば、小型のインダクタの設置によりスイッチングノイズを低減することができる。
実施の形態2.
実施の形態1およびその変形例では、経路PATH1および経路PATH2の一方または両方にインダクタが設けられた構成について説明した。しかし、経路PATH1と経路PATH2とのインピーダンス差が小さくなり、不平衡が解消(低減)されるのであれば、経路(経路PATH1および経路PATH2の少なくとも一方)に設けられる回路部品は、インダクタに限定されない。実施の形態2においては、経路PATH2に抵抗が設けられた構成について説明する。
実施の形態1およびその変形例では、経路PATH1および経路PATH2の一方または両方にインダクタが設けられた構成について説明した。しかし、経路PATH1と経路PATH2とのインピーダンス差が小さくなり、不平衡が解消(低減)されるのであれば、経路(経路PATH1および経路PATH2の少なくとも一方)に設けられる回路部品は、インダクタに限定されない。実施の形態2においては、経路PATH2に抵抗が設けられた構成について説明する。
図8は、実施の形態2に係る電力変換装置の構成を概略的に示す回路ブロック図である。図8を参照して、コンデンサC1は、寄生抵抗成分Rpを有する。寄生抵抗成分Rpは、回路ブロック図上では、コンデンサC1(容量成分)に直列に接続された抵抗として表される。
電力変換装置2は、インダクタLに代えて抵抗Rを備える点において、実施の形態1に係る電力変換装置1(図3参照)と異なる。抵抗Rは、コンデンサC1と負極端子Tnとの間において、負極線NLに電気的に接続されている。抵抗Rは、たとえばディスクリート部品(チップ抵抗など)により構成されるが、負極線NLの配線抵抗(寄生抵抗)により形成されてもよい。また、たとえばチップ抵抗と負極線NLの配線抵抗との合成により、抵抗Rを確保してもよい。
なお、電力変換装置2の他の構成は、実施の形態1に係る電力変換装置1(図3参照)の対応する構成と同等である。また、電力変換装置2におけるノイズ伝搬経路も、図4に示したノイズ伝播経路と同等である。よって、詳細な説明は繰り返さない。
実施の形態2では、正極線PL1を流れる電流Ip、負極線NLを流れる電流InおよびノーマルモードノイズInormalは、下記式(10)~(12)のようにそれぞれ表される。式(12)より、変換率Tが(Rp-R)に依存することが分かる。
実施の形態1と同様に、上記式(3)と式(12)とを比較して式変形により整理すると、0<Rp-R<2Rp+(Rp3/Z2)との関係が成立する場合に、抵抗Rを設けることで、抵抗Rが設けられていないときと比べて、変換率Tが低くなる。(Rp3/Z2)が2Lpと比べて無視できるほど小さい場合((Rp3/Z2)≪2Lpと表される場合)には、変換率Tが低減される条件を0<Rp-R<2Rpと近似することができる。また、R=Rpの場合には変換率Tが0となるため、ノーマルモードノイズInormalが最小となる。
以上のように、実施の形態2によれば、コンデンサC1と負極端子Tnとの間の負極線NLに抵抗Rが電気的に接続される。経路PATH2の抵抗と経路PATH1の抵抗との差がコンデンサC1の寄生抵抗成分Rpの2倍未満となるように、すなわち、0<Rp-R<2Rpとの関係が成立するように抵抗Rを設定することで、抵抗Rが設けられていない場合と比べて、経路PATH1のインピーダンスと経路PATH2のインピーダンスとの差が小さくなる。これにより、コモンモードノイズIcommonからノーマルモードノイズInormalへの変換を抑制し、スイッチングノイズを低減することができる。
なお、詳細な説明は繰り返さないが、実施の形態2においても実施の形態1の変形例と同様に、経路PATH1および経路PATH2の両方に抵抗が設けられた構成を採用することができる。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1,1A,2,9 電力変換装置、10 コンバータ、20 インバータ、31,32 電圧センサ、33 電流センサ、100 制御装置、B 直流電源、C1,C2 コンデンサ、D1~D8 ダイオード、I,In,Ip 電流、L,La,Lb インダクタ、Lc リアクトル、Lp 寄生インダクタンス成分、M 交流モータ、PL1,PL2 正極線、NL 負極線、Q1~Q8 スイッチング素子、R 抵抗、Rp 寄生抵抗成分、Tn 負極端子、Tp 正極端子、Tu U相端子、Tv V相端子、Tw W相端子。
Claims (5)
- 直流電源から供給される電力を受ける正極端子および負極端子と、
前記正極端子および前記負極端子のうちの一方と電気的に接続可能に構成された第1の電力線と、
前記正極端子および前記負極端子のうちの他方と電気的に接続可能に構成された第2の電力線と、
寄生インダクタンス成分を有し、前記第1の電力線と前記第2の電力線との間に電気的に接続された平滑コンデンサと、
前記第1の電力線に設けられたリアクトルを含み、前記平滑コンデンサにより平滑化された直流電圧の電圧変換を行なうように構成されたコンバータと、
前記コンバータと交流負荷との間での直流交流変換をスイッチング制御により行なうように構成されたインバータとを備え、
前記第1の電力線のうち前記正極端子および前記負極端子の前記一方と前記平滑コンデンサとを結ぶ第1の経路のインダクタンスは、前記第2の電力線のうち前記正極端子および前記負極端子の前記他方と前記平滑コンデンサとを結ぶ第2の経路のインダクタンスよりも小さく、
前記第2の経路のインダクタンスと前記第1の経路のインダクタンスとの差は、前記平滑コンデンサの寄生インダクタンス成分の2倍未満である、電力変換装置。 - 前記第2の経路に設けられたインダクタをさらに備え、
前記インダクタのインダクタンスは、前記平滑コンデンサの寄生インダクタンス成分の2倍未満である、請求項1に記載の電力変換装置。 - 前記第2の経路のインダクタンスは、前記第2の経路の寄生インダクタンス成分であり、
前記第2の経路の寄生インダクタンス成分は、前記平滑コンデンサの寄生インダクタンス成分の2倍未満である、請求項1に記載の電力変換装置。 - 前記第1の経路に設けられた第1のインダクタと、
前記第2の経路に設けられた第2のインダクタとをさらに備え、
前記第2のインダクタのインダクタンスと前記第1のインダクタのインダクタンスとの差は、前記平滑コンデンサの寄生インダクタンス成分の2倍未満である、請求項1に記載の電力変換装置。 - 直流電源から供給される電力を受ける正極端子および負極端子と、
前記正極端子および前記負極端子のうちの一方と電気的に接続可能に構成された第1の電力線と、
前記正極端子および前記負極端子のうちの他方と電気的に接続可能に構成された第2の電力線と、
寄生抵抗成分を有し、前記第1の電力線と前記第2の電力線との間に電気的に接続された平滑コンデンサと、
前記第1の電力線に電気的に接続されたリアクトルを含み、電圧変換を行なうように構成されたコンバータと、
前記コンバータと交流負荷との間での直流交流変換をスイッチング制御により行なうように構成されたインバータとを備え、
前記第1の電力線のうち前記正極端子および前記負極端子の前記一方と前記平滑コンデンサとを結ぶ第1の経路の抵抗は、前記第2の電力線のうち前記正極端子および前記負極端子の前記他方と前記平滑コンデンサとを結ぶ第2の経路の抵抗よりも小さく、
前記第2の経路の抵抗と前記第1の経路の抵抗との差は、前記平滑コンデンサの寄生抵抗成分の2倍未満である、電力変換装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018526820A JP6385626B1 (ja) | 2017-06-08 | 2018-02-16 | 電力変換装置 |
EP18813865.5A EP3637604A4 (en) | 2017-06-08 | 2018-02-16 | ENERGY CONVERSION DEVICE |
US16/609,251 US10804814B2 (en) | 2017-06-08 | 2018-02-16 | Power converter |
CN201880035628.1A CN110692186B (zh) | 2017-06-08 | 2018-02-16 | 电力变换装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017113073 | 2017-06-08 | ||
JP2017-113073 | 2017-06-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018225301A1 true WO2018225301A1 (ja) | 2018-12-13 |
Family
ID=64566697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/005519 WO2018225301A1 (ja) | 2017-06-08 | 2018-02-16 | 電力変換装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10804814B2 (ja) |
EP (1) | EP3637604A4 (ja) |
WO (1) | WO2018225301A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007202342A (ja) * | 2006-01-27 | 2007-08-09 | Diamond Electric Mfg Co Ltd | デジタルコンバータ及びその制御方法 |
JP2009296756A (ja) | 2008-06-04 | 2009-12-17 | Denso Corp | 電力変換装置 |
JP2012029404A (ja) | 2010-07-21 | 2012-02-09 | Canon Inc | 電源回路 |
WO2013099540A1 (ja) | 2011-12-27 | 2013-07-04 | 株式会社村田製作所 | 積層型コモンモードチョークコイル |
JP2014081837A (ja) * | 2012-10-17 | 2014-05-08 | Sanyo Denki Co Ltd | 系統連系電源システム |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7589605B2 (en) * | 2006-02-15 | 2009-09-15 | Massachusetts Institute Of Technology | Method and apparatus to provide compensation for parasitic inductance of multiple capacitors |
TWI454028B (zh) * | 2010-01-13 | 2014-09-21 | Toshiba Kk | System interconnection converter |
EP2525491B1 (en) * | 2011-05-16 | 2021-03-10 | Vincotech GmbH | Switching loss reduction in converter modules |
EP2824815B1 (en) * | 2012-03-05 | 2020-09-16 | Fuji Electric Co., Ltd. | Power conversion device |
JP2014042410A (ja) * | 2012-08-23 | 2014-03-06 | Toyota Motor Corp | 多相コンバータシステム |
JP6416250B2 (ja) * | 2014-06-06 | 2018-10-31 | 日立オートモティブシステムズ株式会社 | 電力変換装置 |
EP3512085A1 (de) * | 2018-01-12 | 2019-07-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Gleichspannungswandler mit parasitären resonanzkreisen und ultra-steilen schaltflanken |
-
2018
- 2018-02-16 EP EP18813865.5A patent/EP3637604A4/en active Pending
- 2018-02-16 US US16/609,251 patent/US10804814B2/en active Active
- 2018-02-16 WO PCT/JP2018/005519 patent/WO2018225301A1/ja unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007202342A (ja) * | 2006-01-27 | 2007-08-09 | Diamond Electric Mfg Co Ltd | デジタルコンバータ及びその制御方法 |
JP2009296756A (ja) | 2008-06-04 | 2009-12-17 | Denso Corp | 電力変換装置 |
JP2012029404A (ja) | 2010-07-21 | 2012-02-09 | Canon Inc | 電源回路 |
WO2013099540A1 (ja) | 2011-12-27 | 2013-07-04 | 株式会社村田製作所 | 積層型コモンモードチョークコイル |
JP2014081837A (ja) * | 2012-10-17 | 2014-05-08 | Sanyo Denki Co Ltd | 系統連系電源システム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3637604A4 |
Also Published As
Publication number | Publication date |
---|---|
US10804814B2 (en) | 2020-10-13 |
US20200099314A1 (en) | 2020-03-26 |
EP3637604A4 (en) | 2020-05-20 |
EP3637604A1 (en) | 2020-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100982124B1 (ko) | 정류 회로 및 3상 정류 장치 | |
JP4910078B1 (ja) | Dc/dc変換器およびac/dc変換器 | |
JP6206502B2 (ja) | 電力変換装置及び電力変換方法 | |
US10050560B1 (en) | Inverter circuit with current detection circuitry | |
US7433216B2 (en) | Voltage control and harmonic minimization of multi-level converter | |
WO2015056491A1 (ja) | 電力変換装置及び電力変換方法 | |
WO2021038823A1 (ja) | 電力変換装置 | |
US20150016167A1 (en) | Multilevel Converter | |
JP6385626B1 (ja) | 電力変換装置 | |
CN115836469A (zh) | 电力转换装置及电力系统 | |
US20080130337A1 (en) | Voltage Generating Circuit | |
JP2020102933A (ja) | スイッチング電源装置及びその制御方法 | |
CN110546874A (zh) | 电力转换系统 | |
JP6523592B1 (ja) | 電力変換装置 | |
WO2018225301A1 (ja) | 電力変換装置 | |
CN110581581A (zh) | 能够减少低频泄漏电流的充电装置 | |
JP2022169772A (ja) | 電力調整回路 | |
US20150070943A1 (en) | High efficiency zero-voltage switching (zvs) assistance circuit for power converter | |
JPH11122953A (ja) | 電圧形インバータ | |
JP6191542B2 (ja) | 電力変換装置 | |
JP6461439B1 (ja) | Dc/dcコンバータ | |
JP2020115727A (ja) | 電力変換装置の制御装置 | |
JP7325347B2 (ja) | スイッチング電源装置及びその制御方法 | |
JP6775441B2 (ja) | 電源装置 | |
Zhang et al. | Si/WBG Hybrid Half-Bridge Converter Using Coupled Inductors for Power Quality Improvement and Control Simplification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018526820 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18813865 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018813865 Country of ref document: EP Effective date: 20200108 |