WO2018223853A1 - 压电陶瓷堆叠结构及压电式传感器 - Google Patents
压电陶瓷堆叠结构及压电式传感器 Download PDFInfo
- Publication number
- WO2018223853A1 WO2018223853A1 PCT/CN2018/088457 CN2018088457W WO2018223853A1 WO 2018223853 A1 WO2018223853 A1 WO 2018223853A1 CN 2018088457 W CN2018088457 W CN 2018088457W WO 2018223853 A1 WO2018223853 A1 WO 2018223853A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- piezoelectric ceramic
- stacked layers
- electrode lead
- stack structure
- adjacent
- Prior art date
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 251
- 238000003825 pressing Methods 0.000 claims description 22
- 230000002093 peripheral effect Effects 0.000 claims description 8
- 238000009413 insulation Methods 0.000 claims 1
- 230000004044 response Effects 0.000 abstract description 9
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical group [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 238000003698 laser cutting Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000002788 crimping Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/09—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/09—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up
- G01P15/0907—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up of the compression mode type
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/30—Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
- H10N30/302—Sensors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/50—Piezoelectric or electrostrictive devices having a stacked or multilayer structure
- H10N30/503—Piezoelectric or electrostrictive devices having a stacked or multilayer structure having a non-rectangular cross-section in a plane orthogonal to the stacking direction, e.g. polygonal or circular in top view
- H10N30/505—Piezoelectric or electrostrictive devices having a stacked or multilayer structure having a non-rectangular cross-section in a plane orthogonal to the stacking direction, e.g. polygonal or circular in top view the cross-section being annular
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/87—Electrodes or interconnections, e.g. leads or terminals
- H10N30/875—Further connection or lead arrangements, e.g. flexible wiring boards, terminal pins
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/88—Mounts; Supports; Enclosures; Casings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/05—Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
- H10N30/057—Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by stacking bulk piezoelectric or electrostrictive bodies and electrodes
Definitions
- the present invention relates to the field of detection equipment, and in particular to a piezoelectric ceramic stack structure and a piezoelectric sensor.
- Piezoelectric sensors are used more and more widely to measure the vibration of an object.
- a piezoelectric ceramic stack structure currently used as a piezoelectric element is often provided with a connection layer between piezoelectric ceramic sheets. Although the structure realizes the assembly of the piezoelectric element, the height of the piezoelectric ceramic stack structure is increased due to the cooperation between the connection layer and the piezoelectric ceramic sheet. When applied in a vibrating environment, the piezoelectric ceramic stack structure is deformed to absorb a part of the energy, thereby reducing the overall stiffness of the sensor and affecting the frequency response characteristics.
- the embodiment of the invention provides a piezoelectric ceramic stack structure and a piezoelectric sensor, which can improve the rigidity of the multilayer piezoelectric ceramic stack structure, thereby improving the frequency response characteristic, and also reducing the fluctuation of the stress value in a high temperature environment, and the structure is simple. Suitable for mass production.
- An embodiment of the present invention provides a piezoelectric ceramic stack structure including: a columnar piezoelectric ceramic body including first and second ends opposite to each other in the axial direction of the columnar piezoelectric ceramic body, and columnar pressure
- the electric ceramic body includes two or more piezoelectric ceramic stacked layers, and adjacent two electrodes of two adjacent piezoelectric ceramic stacked layers of two or more piezoelectric ceramic stacked layers have the same polarity; each piezoelectric ceramic stack An electrode lead terminal is disposed on a surface of the layer toward the first end portion; two of the two or more electrode lead terminals have opposite polarities and are staggered in the axial direction, in the columnar piezoelectric ceramic body
- the electrode lead terminals provided in each of the piezoelectric ceramic stacked layers are exposed to an external environment; and the connecting members, two or more piezoelectric ceramic stacked layers are connected by the connecting members.
- a piezoelectric ceramic stack structure includes two or more piezoelectric ceramic stacked structures.
- One of the two or more piezoelectric ceramic stacked layers is provided with one electrode lead terminal, and the external device can be directly electrically connected to the electrode lead terminal, so that between two adjacent piezoelectric ceramic stacked layers is not
- the electrode pads need to be separately provided, so that the piezoelectric ceramic stack structure is simplified and compact, and the rigidity of the multilayer piezoelectric ceramic stack structure is improved as a whole, and the frequency response characteristics are improved.
- Another aspect of an embodiment of the present invention provides a piezoelectric sensor comprising: the piezoelectric ceramic stack structure as described above.
- FIG. 1 is a schematic view showing the overall structure of a piezoelectric ceramic stack structure according to an embodiment of the present invention.
- FIG. 2 is a front elevational view showing the piezoelectric ceramic stack structure of the embodiment of the present invention.
- Fig. 3 is a schematic view showing the structure of a columnar piezoelectric ceramic body according to an embodiment of the present invention.
- Fig. 4 is a top plan view showing a columnar piezoelectric ceramic body according to another embodiment of the present invention.
- Fig. 5 is a schematic structural view of a piezoelectric ceramic sheet according to an embodiment of the present invention.
- Fig. 6 is a schematic structural view of a piezoelectric ceramic sheet according to another embodiment of the present invention.
- an embodiment of the present invention relates to a piezoelectric ceramic stack structure including a columnar piezoelectric ceramic body 10 and a connecting member 20 connected to the columnar piezoelectric ceramic body 10.
- the columnar piezoelectric ceramic body 10 includes a first end portion 101 and a second end portion 102 which are opposed in the axial direction thereof.
- the first end portion 101 and the second end portion 102 are merely for the purpose of describing the technical solutions of the embodiments of the present invention, and do not limit the technical solutions of the embodiments of the present invention.
- the columnar piezoelectric ceramic body 10 includes two or more piezoelectric ceramic stacked layers 103.
- Each of the piezoelectric ceramic stacked layers 103 of the present embodiment has a columnar structure.
- the adjacent two electrodes of the adjacent two piezoelectric ceramic stacked layers 103 of the two or more piezoelectric ceramic stacked layers 103 have the same polarity.
- each piezoelectric ceramic stacked layer 103 includes a positive electrode and a negative electrode.
- the positive electrode (or negative electrode) of one piezoelectric ceramic stacked layer 103 and the other piezoelectric ceramic stacked layer 103 are electrically connected to each other such that adjacent two piezoelectric ceramic stacked layers 103 are sequentially stacked in parallel.
- each of the piezoelectric ceramic stacked layers 103 of the embodiment of the present invention is provided with an electrode lead terminal 103a on the surface of the first end portion 101.
- the piezoelectric ceramic stacked layer 103 is electrically connected to an external device through the electrode lead terminal 103a.
- the electrode lead terminal 103a may be a part of the surface of the piezoelectric ceramic stacked layer 103, that is, a structural member that is not separately added, thereby reducing the separate processing of the electrode lead terminal on the piezoelectric ceramic stacked layer 103. Process of 103a.
- the electrode lead terminal 103a of the present embodiment may be a positive electrode of the piezoelectric ceramic stacked layer 103 or a negative electrode of the piezoelectric ceramic stacked layer 103.
- the columnar piezoelectric ceramic body 10 includes the same number of piezoelectric ceramic stacked layers 103 and the number of electrode lead terminals 103a.
- the two adjacent electrode lead terminals 103a of the two or more electrode lead terminals 103a have opposite polarities.
- the electrode lead terminal 103a of one piezoelectric ceramic stacked layer 103 is a positive electrode (or a negative electrode), and the other piezoelectric ceramic
- the electrode lead terminal 103a of the stacked layer 103 is a negative electrode (or a positive electrode).
- Two adjacent electrode lead terminals 103a of the two or more electrode lead terminals 103a are disposed to be shifted from each other in the axial direction of the columnar piezoelectric ceramic body 10, and each of the electrode lead terminals 103a is exposed to the external environment.
- One of the electrode lead terminals 103a is provided only on the surface of the corresponding one of the piezoelectric ceramic stacked layers 103, and is not in direct contact with the adjacent piezoelectric ceramic stacked layers 103.
- the two electrode lead terminals 103a are staggered in the axial direction of the columnar piezoelectric ceramic body 10 such that adjacent two electrode lead terminals 103a form a seating position with each other, and positional interference does not occur, facilitating subsequent follow-up at the electrode lead terminals 103a. Secure the connecting wires.
- the two or more piezoelectric ceramic stacked layers 103 of the present embodiment are stacked in a predetermined stacking manner to form the columnar piezoelectric ceramic body 10, two or more of the stacking operations are completed using the connecting member 20 of the present embodiment.
- the piezoelectric ceramic stacked layer 103 is tightly connected to avoid separation of two or more piezoelectric ceramic stacked layers 103 after completion of the stacking operation.
- one of the two or more piezoelectric ceramic stacked layers 103 is provided with one electrode lead terminal 103a, and the external device can be directly electrically connected to the electrode lead terminal 103a. Therefore, there is no need to separately provide an electrode sheet between the adjacent two piezoelectric ceramic stacked layers 103. Therefore, the piezoelectric ceramic stack structure is simplified and compact, and the rigidity of the multilayer piezoelectric ceramic stack structure is improved as a whole, and the frequency response characteristic is improved.
- the adjacent two piezoelectric ceramic stacked layers 103 of the embodiment of the present invention are directly in contact with each other.
- the piezoelectric ceramic stacked layer 103 is in direct contact with the end surface of the second end portion 102 and the end surface of the other piezoelectric ceramic stacked layer 103 toward the first end portion 101, thereby improving The connection rigidity of the adjacent two piezoelectric ceramic stacked layers 103.
- the connection between the two or more piezoelectric ceramic stacked layers 103 is the connection member 20 for locking.
- connection layer or adhesive or the like is required between the adjacent two piezoelectric ceramic stacked layers 103, so that the rigidity of the multilayer piezoelectric ceramic stack structure can be further improved, and the use in a high temperature environment is also greatly reduced.
- Each of the piezoelectric ceramic stacked layers 103 of the embodiment of the present invention is provided with an electrode lead terminal accommodating portion.
- the electrode lead terminal accommodating portions of the adjacent two piezoelectric ceramic stacked layers 103 are disposed to be shifted from each other in the axial direction of the columnar piezoelectric ceramic body 10.
- the electrode lead terminal accommodating portion of the embodiment of the present invention may be a through groove 104 extending in the axial direction of the columnar piezoelectric ceramic body 10 provided on the outer peripheral surface of each piezoelectric ceramic stacked layer 103.
- the through groove 104 penetrates the first end portion 101 and the second end portion 102.
- one of all the through grooves 104 provided on each of the piezoelectric ceramic stacked layers 103 and the electrode lead terminals 103a of the adjacent piezoelectric ceramic stacked layers 103 are mutually connected Align the settings.
- the through grooves 104 may be formed in a position such that the electrode lead terminals 103a disposed in alignment therewith are exposed to the external environment, facilitating subsequent fixing of the connecting wires on the electrode lead terminals 103a.
- the through groove 104 of this embodiment is a straight groove.
- the number of the through grooves 104 may be one or two or more. Further, the number of the through grooves 104 provided on the outer peripheral surface of each of the piezoelectric ceramic stacked layers 103 is one less than the number of the piezoelectric ceramic stacked layers 103 included in the cylindrical piezoelectric ceramic body 10.
- the two or more electrode lead terminals 103a can be spirally staggered along the axial direction of the columnar piezoelectric ceramic body 10, and the structure is more rational, so that the overall structure of the columnar piezoelectric ceramic body 10 is more compact.
- the outline of the cross section of the through groove 104 of the present embodiment is a polygon.
- the bottom contour of the cross section of the through groove 104 of the present embodiment is a circular arc shape, and the outline at the notch of the through groove 104 is set to be rounded.
- the electrode lead terminal accommodating portion of the embodiment of the present invention may further be a protrusion 105 provided on each piezoelectric ceramic stacked layer 103.
- the projections 105 extend in the radial direction of the columnar piezoelectric ceramic body 10.
- the electrode lead terminal 103a is provided on a surface of the protruding portion 105 facing the first end portion 101.
- the projections 105 respectively provided on the adjacent two piezoelectric ceramic stacked layers 103 are staggered along the axial direction of the columnar piezoelectric ceramic body 10, forming a position with each other to avoid interference of the position.
- Each of the piezoelectric ceramic stacked layers 103 of the present embodiment is provided with a projection 105.
- All of the projections 105 included in the columnar piezoelectric ceramic body 10 may be helically staggered along the axial direction of the columnar piezoelectric ceramic body 10, thereby facilitating the fixing of the connecting wires on the surface of the projections 105 toward the first end portion 101. .
- Each of the piezoelectric ceramic stacked layers 103 of the embodiment of the present invention includes one or two or more piezoelectric ceramic sheets 30 (as shown in FIG. 5 or FIG. 6).
- the upper surface and the lower surface of the piezoelectric ceramic sheet 30 are each provided with a conductive layer, for example, gold plating on the upper surface and the lower surface to form a conductive layer.
- the piezoelectric ceramic sheet 30 includes a positive electrode and a negative electrode.
- the thickness of the piezoelectric ceramic sheet 30 can be processed according to actual needs.
- each piezoelectric ceramic stacked layer 103 includes two or more piezoelectric ceramic sheets 30, the adjacent two electrodes of the adjacent two piezoelectric ceramic sheets 30 have opposite polarities, that is, adjacent two piezoelectric ceramic sheets.
- the polarity of the two electrodes of one piezoelectric ceramic sheet 30 opposite to the other piezoelectric ceramic sheet 30 is opposite, so that two or more piezoelectric ceramic sheets 30 are stacked in series to form one piezoelectric
- a concave portion 301 is provided on the outer peripheral surface of the single piezoelectric ceramic sheet 30.
- the recesses 301 provided on each of the piezoelectric ceramic sheets 30 included in each of the piezoelectric ceramic stacked layers 103 form the through grooves 104.
- the concave portion 301 on the piezoelectric ceramic sheet 30 of the present embodiment can be processed by a laser cutting process, and can also be formed by a mold molding process.
- the outer peripheral surface of the individual piezoelectric ceramic sheets 30 is provided with projections 303, each of which is disposed on each of the piezoelectric ceramic sheets 30 included in each of the piezoelectric ceramic stacked layers 103.
- the projection 303 forms a projection 105.
- the piezoelectric ceramic sheet 30 provided with the protrusions 303 in this embodiment can be integrally formed by a mold molding process.
- the piezoelectric ceramic stacked layer 103 includes two or more piezoelectric ceramic sheets 30, and the piezoelectric ceramic sheets 30 are provided with protrusions 303, the piezoelectric ceramic sheets near the first end portion 101 are provided.
- An electrode lead terminal 103a is provided on the surface of the protrusion 303 provided on the 30.
- each piezoelectric ceramic stack layer 103 in the columnar piezoelectric ceramic body 10 includes a piezoelectric ceramic sheet 30.
- the electrodes of the adjacent two piezoelectric ceramic sheets 30 have the same polarity, so that the respective piezoelectric ceramic sheets 30 are stacked in parallel to form the columnar piezoelectric ceramic body 10.
- the projections 303 provided on all of the piezoelectric ceramic sheets 30 may be spirally staggered along the axial direction of the cylindrical piezoelectric ceramic body 10, thereby facilitating the fixing of the connecting wires on the surface of the projections 303 toward the first end portion 101.
- the number of piezoelectric ceramic sheets 30 included in two adjacent piezoelectric ceramic stacked layers 103 is different.
- one of the adjacent two piezoelectric ceramic stacked layers 103 includes one piezoelectric ceramic stacked layer 103.
- Three piezoelectric ceramic sheets 30, and the other piezoelectric ceramic stacked layer 103 includes a piezoelectric ceramic sheet 30.
- the number of piezoelectric ceramic sheets 30 included in each of the piezoelectric ceramic stacked layers 103 can be flexibly configured as needed.
- the piezoelectric ceramic stacked structure of the embodiment of the present invention further includes the connecting member 20 for fixing the respective piezoelectric ceramic stacked layers 103.
- the connecting member 20 of the embodiment of the present invention includes a first pressing portion and a second pressing portion. The first pressing portion and the second pressing portion are respectively used to apply a pressing force to the end surface of the first end portion 101 and the end surface of the second end portion 102, thereby locking the respective piezoelectric ceramic stack layers 103 to avoid various pressures.
- the electric ceramic stack layer 103 is loosely separated.
- the direction of the pressing force is along the axial direction of the columnar piezoelectric ceramic body 10.
- a first insulating member 40 is disposed between the first pressing portion of the connecting member 20 of the embodiment of the present invention and the piezoelectric ceramic stack layer 103 disposed at the first end portion 101 of the columnar piezoelectric ceramic body 10, so that the connecting member The first pressing portion of 20 and the electrode of the piezoelectric ceramic stack layer 103 are kept in an insulated state.
- the first insulating member 40 is a sheet-like structure.
- the outer peripheral surface of the first insulating member 40 of the sheet-like structure may be provided with a depressed portion having the same cross-sectional shape as that of the through groove 104.
- the material of the first insulating member 40 of the present embodiment is alumina ceramic or mica or the like.
- the second pressing portion of the connecting member 20 of the embodiment of the present invention and the piezoelectric ceramic stack layer 103 provided at the second end portion 102 of the columnar piezoelectric ceramic body 10 are provided with a positive The electrode sheet 50 and the negative electrode sheet 70.
- the positive electrode sheet 50 and the negative electrode sheet 70 of the present embodiment are stacked in the axial direction of the columnar piezoelectric ceramic body 10.
- Each of the electrode lead terminals 103a is electrically connected to the positive electrode tab 50 or the negative electrode tab 70, respectively.
- the electrode lead terminal 103a provided on the positive electrode of the piezoelectric ceramic stacked layer 103 is electrically connected to the positive electrode tab 50 through a wire.
- the electrode lead terminal 103a provided on the negative electrode of the piezoelectric ceramic stacked layer 103 is electrically connected to the negative electrode tab 70 through a wire.
- the wire of this embodiment may be a gold wire.
- a second insulating member 60 is disposed between the positive electrode sheet 50 and the negative electrode sheet 70 of the present embodiment to keep the positive electrode sheet 50 and the negative electrode sheet 70 in an insulated state.
- a third insulating member 80 is disposed between the positive electrode tab 50 or the negative electrode tab 70 and the second pressing portion to maintain an insulating state between the positive electrode tab 50 or the negative electrode tab 70 and the second crimping portion.
- the material of the second insulating member 60 and the third insulating member 80 of the present embodiment is alumina ceramic or mica or the like.
- the positive electrode sheet 50, the second insulating member 60, the negative electrode sheet 70, and the third insulating member 80 of the present embodiment are each stacked in the axial direction of the columnar piezoelectric ceramic body 10.
- the positions of both the positive electrode sheet 50 and the negative electrode sheet 70 are determined by the polarity of the electrodes of the piezoelectric ceramic stack layer 103 provided at the second end portion 102 of the columnar piezoelectric ceramic body 10.
- the positive electrode sheet 50 is directly electrically connected to the piezoelectric ceramic stack layer 103 of the second end portion 102.
- the negative electrode sheet 70 is directly electrically connected to the piezoelectric ceramic stack layer 103 of the second end portion 102.
- each piezoelectric ceramic stacked layer 103 includes a central through hole 106.
- a central aperture 302 is formed in each piezoelectric ceramic sheet 30 by a laser cutting process.
- the respective piezoelectric ceramic sheets 30 are coaxially stacked, and the central holes 302 of the respective piezoelectric ceramic sheets 30 form a central through hole 106.
- Each piezoelectric ceramic stacked layer 103 is sleeved on the stud of the bolt 201.
- An insulating or gap fit is provided between the hole wall of the center through hole 106 of each piezoelectric ceramic stacked layer 103 and the outer peripheral surface of the stud.
- a rigid insulating member may be disposed between the stud and the bore wall to effect an insulative fit therebetween.
- the diameter of the stud is smaller than the diameter of the central through hole 106 such that a gap is formed between the hole wall of the center through hole 106 of the piezoelectric ceramic stacked layer 103 and the outer peripheral surface of the stud.
- the first insulating member 40, the positive electrode tab 50, the second insulating member 60, the negative electrode tab 70, and the third insulating member 80 are all annular structures.
- the third insulating member 80, the positive electrode tab 50 (or the negative electrode tab 70), the second insulating member 60, and the negative electrode tab are sequentially sleeved on the stud of the bolt 201.
- the piezoelectric ceramic stack structure of the embodiment of the invention has a simple overall structure and is suitable for mass production.
- One of the two or more piezoelectric ceramic stacked layers 103 in the piezoelectric ceramic stacked structure is provided with one electrode lead terminal 103a. Since the electrode lead terminal 103a is exposed to the external environment, the external device can be directly electrically connected to the electrode lead terminal 103a, thereby solving the problem that the adjacent two piezoelectric ceramic stacked layers 103 cannot be leaded when they are directly in contact with each other.
- the adjacent two piezoelectric ceramic stacked layers 103 do not need to separately provide the electrode sheets, and the direct stacking forms the piezoelectric ceramic stacked structure, thereby improving the rigidity of the piezoelectric ceramic stacked structure as a whole and improving the frequency response characteristics.
- the connection between the two or more piezoelectric ceramic stacked layers 103 is the connection member 20 for locking. It is not necessary to provide a connection layer or an adhesive between the adjacent two piezoelectric ceramic stacked layers 103, so that the rigidity of the multilayer piezoelectric ceramic stack structure can be further improved.
- the columnar piezoelectric ceramic body 10 is formed by stacking piezoelectric ceramic stacked layers 103 having the same expansion coefficient, thereby also reducing the influence of stress fluctuations in use in a high temperature environment, and improving the frequency response characteristics in a high temperature environment.
- Embodiments of the present invention also include a piezoelectric sensor including the piezoelectric ceramic stack structure of the above embodiment.
- the piezoelectric sensor of the present embodiment In the normal temperature state, the piezoelectric sensor of the present embodiment has good frequency response characteristics. In a high temperature environment, the piezoelectric sensor of the present embodiment is less affected by the fluctuation of the stress value when the piezoelectric ceramic stack structure is subjected to thermal expansion, and the high frequency response characteristic is good. Thus, the piezoelectric sensor of the present embodiment has high detection accuracy.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
一种压电陶瓷堆叠结构及压电式传感器。压电陶瓷堆叠结构包括:柱状压电陶瓷体(10),包括轴向上相对的第一端部(101)和第二端部(102),柱状压电陶瓷体(10)包括两个以上的压电陶瓷堆叠层(103),两个以上的压电陶瓷堆叠层(103)中相邻两个压电陶瓷堆叠层(103)的相邻的两个电极极性相同;每个压电陶瓷堆叠层(103)朝向第一端部(101)的表面上设置电极引线端子(103a);相邻两个电极引线端子(103a)的极性相反且在轴向方向上错开设置,柱状压电陶瓷体(10)中每个压电陶瓷堆叠层(103)设置的电极引线端子(103a)暴露于外部环境;连接部件(20),两个以上的压电陶瓷堆叠层(103)通过连接部件(20)相连接。此压电陶瓷堆叠结构能够提高自身整体刚性,从而改善频响特性,减少高温环境下的应力值波动,结构简单,适于批量生产。
Description
相关申请的交叉引用
本申请要求享有于2017年06月9日提交的名称为“压电陶瓷堆叠结构及压电式传感器”的中国专利申请201710434219.6的优先权,该申请的全部内容通过引用并入本文中。
本发明涉及检测设备技术领域,特别是涉及一种压电陶瓷堆叠结构及压电式传感器。
压电式传感器应用越来越广泛,用于测量物体的振动情况。目前作为压电元件使用的压电陶瓷堆叠结构常为在压电陶瓷片之间设置连接层。该结构虽然实现了压电元件装配,但是由于连接层和压电陶瓷片之间配合后会增加压电陶瓷堆叠结构的高度。在振动环境中应用时,上述压电陶瓷堆叠结构会产生变形,进而吸收一部分的能量,从而使传感器整体刚度降低,影响频响特性。
发明内容
本发明实施例提供一种压电陶瓷堆叠结构及压电式传感器,能够提高多层压电陶瓷堆叠结构的刚性,从而改善频响特性,也能够减少高温环境下的应力值波动,结构简单,适于批量生产。
本发明实施例一方面提出了一种压电陶瓷堆叠结构,其包括:柱状压电陶瓷体,包括在柱状压电陶瓷体的轴向上相对的第一端部和第二端部,柱状压电陶瓷体包括两个以上的压电陶瓷堆叠层,两个以上的压电陶瓷堆叠层中相邻两个压电陶瓷堆叠层的相邻的两个电极极性相同;每个压电陶 瓷堆叠层朝向第一端部的表面上设置一个电极引线端子;两个以上的电极引线端子中相邻两个电极引线端子的极性相反且在轴向方向上错开设置,柱状压电陶瓷体中的每个压电陶瓷堆叠层设置的电极引线端子暴露于外部环境;连接部件,两个以上的压电陶瓷堆叠层通过连接部件相连接。
根据本发明实施例提供的压电陶瓷堆叠结构,其包括两个以上的压电陶瓷堆叠结构。两个以上的压电陶瓷堆叠层中每个压电陶瓷堆叠上设置有一个电极引线端子,且外部设备可以直接与该电极引线端子电气连接,因此相邻两个压电陶瓷堆叠层之间不需要额外单独设置电极片,因此压电陶瓷堆叠结构简化紧凑,整体提高了多层压电陶瓷堆叠结构的刚性,提升了频响特性。
本发明实施例的另一个方面提供一种压电式传感器,其包括:如上述的压电陶瓷堆叠结构。
下面将参考附图来描述本发明示例性实施例的特征、优点和技术效果。
图1是本发明实施例的压电陶瓷堆叠结构的整体结构示意图。
图2是本发明实施例的压电陶瓷堆叠结构的正视结构示意图。
图3是本发明一实施例的柱状压电陶瓷体的结构示意图。
图4是本发明另一实施例的柱状压电陶瓷体的俯视结构示意图。
图5是本发明一实施例的压电陶瓷片的结构示意图。
图6是本发明另一实施例的压电陶瓷片的结构示意图。
在附图中,附图并未按照实际的比例绘制。
下面结合附图和实施例对本发明的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本发明的原理,但不能用来限制本发明的范围,即本发明不限于所描述的实施例。
在本发明的描述中,需要说明的是,除非另有说明,“多个”的含义是两个或两个以上;术语“上”、“下”、“内”、“外”等指示的方位 或位置关系仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。下述描述中出现的方位词均为图中示出的方向,并不是对本发明的具体结构进行限定。在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,对于本领域的普通技术人员而言,可视具体情况理解上述术语在本发明中的具体含义。
为了更好地理解本发明,下面结合图1至6根据本发明实施例的压电陶瓷堆叠结构进行详细描述。
如图1所示,本发明实施例涉及一种压电陶瓷堆叠结构,其包括柱状压电陶瓷体10以及与柱状压电陶瓷体10相连接的连接部件20。结合图3,柱状压电陶瓷体10包括在自身的轴向上相对的第一端部101和第二端部102。这里的第一端部101和第二端部102仅是为了便于描述本发明实施例的技术方案,并不限定本发明实施例的技术方案。柱状压电陶瓷体10包括两个以上的压电陶瓷堆叠层103。本实施例的每个压电陶瓷堆叠层103为柱状结构。两个以上的压电陶瓷堆叠层103中相邻两个压电陶瓷堆叠层103的相邻的两个电极极性相同。如图2所示,每个压电陶瓷堆叠层103包括正电极和负电极。沿第一端部101至第二端部102,相邻两个压电陶瓷堆叠层103中,一个压电陶瓷堆叠层103的正电极(或负电极)与另一个压电陶瓷堆叠层103的正电极(或负电极)相互电气连接,以使相邻两个压电陶瓷堆叠层103依次以并联方式堆叠。
如图3所示,本发明实施例的每个压电陶瓷堆叠层103朝向第一端部101的表面上设置有一个电极引线端子103a。压电陶瓷堆叠层103通过电极引线端子103a与外部设备电气连接。在一个实施例中,电极引线端子103a可以是压电陶瓷堆叠层103的表面上的一部分,即:不是单独增加的结构件,从而减少了在压电陶瓷堆叠层103上单独加工制造电极引线端子103a的工序。对于每个压电陶瓷堆叠层103而言,本实施例的电极引线端子103a可以是压电陶瓷堆叠层103的正电极,也可以是压电陶瓷堆叠层 103的负电极。柱状压电陶瓷体10包括的压电陶瓷堆叠层103的数量和电极引线端子103a的数量相等。两个以上的电极引线端子103a中相邻的两个电极引线端子103a的极性相反。沿第一端部101至第二端部102,相邻两个压电陶瓷堆叠层103中,一个压电陶瓷堆叠层103的电极引线端子103a是正电极(或负电极),另一个压电陶瓷堆叠层103的电极引线端子103a是负电极(或正电极)。
两个以上的电极引线端子103a中相邻的两个电极引线端子103a在柱状压电陶瓷体10的轴向方向上彼此错开设置,并且每个电极引线端子103a暴露于外部环境。一个电极引线端子103a仅设置于对应的一个压电陶瓷堆叠层103的表面上,不与相邻的压电陶瓷堆叠层103直接接触。两个电极引线端子103a在柱状压电陶瓷体10的轴向方向上错开设置的方式,使得相邻两个电极引线端子103a彼此形成让位,不会发生位置干涉,方便后续在电极引线端子103a上固定连接导线。
当将本实施例的两个以上的压电陶瓷堆叠层103按照预定的堆叠方式堆叠到形成柱状压电陶瓷体10后,使用本实施例的连接部件20将完成堆叠工作后的两个以上的压电陶瓷堆叠层103紧固连接,避免完成堆叠工作后的两个以上的压电陶瓷堆叠层103发生分离。
本发明实施例的压电陶瓷堆叠结构,两个以上的压电陶瓷堆叠层103中每个压电陶瓷堆叠上设置有一个电极引线端子103a,且外部设备可以直接与该电极引线端子103a电气连接,因此相邻两个压电陶瓷堆叠层103之间不需要额外单独设置电极片,因此压电陶瓷堆叠结构简化紧凑,整体提高了多层压电陶瓷堆叠结构的刚性,提升了频响特性。
本发明实施例的相邻两个压电陶瓷堆叠层103直接接触设置。相邻两个压电陶瓷堆叠层103中,一个压电陶瓷堆叠层103朝向第二端部102的端面与另一个压电陶瓷堆叠层103朝向第一端部101的端面之间直接接触,提高相邻两个压电陶瓷堆叠层103的连接刚性。两个以上的压电陶瓷堆叠层103之间的连接是连接部件20实现锁紧。这样,相邻两个压电陶瓷堆叠层103之间不需要设置连接层或粘接剂等,因此能够进一步提高了多层压电陶瓷堆叠结构的刚性,也大大减小了在高温环境下使用时应力波动的 问题。
本发明实施例的每个压电陶瓷堆叠层103设置有电极引线端子容置部。相邻两个压电陶瓷堆叠层103的电极引线端子容置部在柱状压电陶瓷体10的轴向上彼此错开设置。
如图3所示,本发明实施例的电极引线端子容置部可以为每个压电陶瓷堆叠层103的外周表面上设置的沿柱状压电陶瓷体10的轴向延伸的通槽104。通槽104贯穿第一端部101和第二端部102。沿第一端部101至第二端部102,每个压电陶瓷堆叠层103上设置的所有通槽104中的一个通槽104与相邻的压电陶瓷堆叠层103的电极引线端子103a彼此对准设置。通槽104可以形成让位,使得与其对准设置的电极引线端子103a暴露于外部环境,方便后续在电极引线端子103a上固定连接导线。本实施例的通槽104为直槽。通槽104的数量可以是一个或者两个以上。进一步地,每个压电陶瓷堆叠层103的外周表面上设置的通槽104的数量比柱状压电陶瓷体10包括的压电陶瓷堆叠层103的数量少一个。这样,两个以上的电极引线端子103a可以沿柱状压电陶瓷体10的轴向呈螺旋状错开设置,结构更加合理,使得柱状压电陶瓷体10整体结构更加紧凑。
在一个实施例中,本实施例的通槽104的横截面的轮廓线为多边形。在另一个实施例中,本实施例的通槽104的横截面的底部轮廓线为圆弧形,通槽104的槽口处的轮廓线设置为倒圆角。这样,压电陶瓷堆叠层103与通槽104相对应的部分过渡光滑平缓,避免出现应力集中的尖状区域,从而使得压电陶瓷堆叠层103的整体结构刚性好,不易产生裂纹而发生破碎。
如图4所示,本发明实施例的电极引线端子容置部还可以为每个压电陶瓷堆叠层103上设置的凸出部105。本实施例中,凸出部105沿柱状压电陶瓷体10的径向延伸。电极引线端子103a设置于该凸出部105朝向第一端部101的表面上。相邻两个压电陶瓷堆叠层103上各自设置的凸出部105沿柱状压电陶瓷体10的轴向错开设置,彼此形成让位,避免位置发生干涉。本实施例的每个压电陶瓷堆叠层103上设置有一个凸出部105。柱状压电陶瓷体10中包括的所有凸出部105可以沿柱状压电陶瓷体10的轴向呈螺旋状错开设置,从而方便在凸出部105朝向第一端部101的表面上 固定连接导线。
本发明实施例的每个压电陶瓷堆叠层103包括一个或者两个以上的压电陶瓷片30(如图5或图6所示)。压电陶瓷片30的上表面和下表面均设置有导电层,例如在上表面和下表面上镀金形成导电层。压电陶瓷片30包括正电极和负电极。压电陶瓷片30的厚度可以根据实际需要加工制造。每个压电陶瓷堆叠层103包括两个以上的压电陶瓷片30时,相邻两个压电陶瓷片30的相邻的两个电极极性相反,也即相邻两个压电陶瓷片30中的一个压电陶瓷片30与另一个压电陶瓷片30相对的两个电极的极性相反,从而两个以上的压电陶瓷片30以串联方式堆叠形成一个压电陶瓷堆叠层103。
在一个实施例中,如图5所示,单个压电陶瓷片30的外周表面上设置有凹部301。每个压电陶瓷堆叠层103中包括的所有压电陶瓷片30上各自设置的凹部301形成通槽104。本实施例压电陶瓷片30上的凹部301可采用激光切割工艺加工制造成型,也可采用模具模压工艺加工制造成型。
在一个实施例中,如图6所示,单个的压电陶瓷片30的外周表面上设置有凸起303,每个压电陶瓷堆叠层103中包括的所有压电陶瓷片30上各自设置的凸起303形成凸出部105。本实施例设置有凸起303的压电陶瓷片30整体可以采用模具模压工艺加工制造成型。本实施例中,当一个压电陶瓷堆叠层103包括两个以上的压电陶瓷片30,且该压电陶瓷片30上设置有凸起303时,靠近第一端部101的压电陶瓷片30上设置的凸起303的表面上设置有电极引线端子103a。
本发明实施例的相邻两个压电陶瓷堆叠层103各自包括的压电陶瓷片30的数量可以相同,也可以不同。在一个实施例中,柱状压电陶瓷体10中的每个压电陶瓷堆叠层103包括一个压电陶瓷片30。相邻两个压电陶瓷片30的电极极性相同,从而各个压电陶瓷片30以并联的方式堆叠形成柱状压电陶瓷体10。所有压电陶瓷片30上设置的凸起303可以沿柱状压电陶瓷体10的轴向呈螺旋状错开设置,从而方便在凸起303朝向第一端部101的表面上固定连接导线。在一个实施例中,相邻两个压电陶瓷堆叠层103所包括的压电陶瓷片30的数量不同,例如,相邻两个压电陶瓷堆叠层 103中的一个压电陶瓷堆叠层103包括三个压电陶瓷片30,另一个压电陶瓷堆叠层103包括一个压电陶瓷片30。这样,可以根据实际情况需要,对每个压电陶瓷堆叠层103所包括的压电陶瓷片30的数量进行灵活配置。
由于本发明实施例的各个压电陶瓷堆叠层103之间为直接接触连接,因此本发明实施例的压电陶瓷堆叠结构还包括用于固定各个压电陶瓷堆叠层103的连接部件20。本发明实施例的连接部件20包括第一压紧部和第二压紧部。第一压紧部和第二压紧部分别用于对第一端部101的端面和第二端部102的端面施加压紧力,从而将各个压电陶瓷堆叠层103锁紧,避免各个压电陶瓷堆叠层103松散分离。本实施例中,该压紧力的方向沿柱状压电陶瓷体10的轴向。
本发明实施例的连接部件20的第一压紧部与设置于柱状压电陶瓷体10的第一端部101的压电陶瓷堆叠层103之间设置有第一绝缘部件40,以使连接部件20的第一压紧部和压电陶瓷堆叠层103的电极之间保持绝缘状态。在一个实施例中,第一绝缘部件40为片状结构。片状结构的第一绝缘部件40的外周表面可以设置与通槽104的横截面形状相同的凹陷部。本实施例的第一绝缘部件40的材料为氧化铝陶瓷或云母等。
如图1、图2所示,本发明实施例的连接部件20的第二压紧部与设置于柱状压电陶瓷体10的第二端部102的压电陶瓷堆叠层103之间设置有正电极片50和负电极片70。本实施例的正电极片50和负电极片70沿柱状压电陶瓷体10的轴向堆叠。每个电极引线端子103a分别与正电极片50或负电极片70电气连接。设置于压电陶瓷堆叠层103的正电极的电极引线端子103a通过导线与正电极片50电气连接。设置于压电陶瓷堆叠层103的负电极的电极引线端子103a通过导线与负电极片70电气连接。这样,方便通过正电极片50和负电极片70将所有正电极的电极引线端子103a和负电极的电极引线端子103a统一汇集到一起,避免从各个电极引线端子103a上引出的导线出现搭接或缠绕的情况。本实施例的导线可以是金线。
本实施例的正电极片50和负电极片70之间设置有第二绝缘部件60,以使正电极片50和负电极片70保持绝缘状态。正电极片50或者负电极片70与第二压紧部之间设置有第三绝缘部件80,以使正电极片50或负电极 片70与第二压紧部之间保持绝缘状态。本实施例的第二绝缘部件60和第三绝缘部件80的材料为氧化铝陶瓷或云母等。本实施例的正电极片50、第二绝缘部件60、负电极片70和第三绝缘部件80各自沿柱状压电陶瓷体10的轴向堆叠。
正电极片50和负电极片70两者的位置由设置于柱状压电陶瓷体10的第二端部102的压电陶瓷堆叠层103的电极极性决定。柱状压电陶瓷体10的第二端部102的压电陶瓷堆叠层103的电极为正电极时,正电极片50与第二端部102的压电陶瓷堆叠层103直接电气连接。柱状压电陶瓷体10的第二端部102的压电陶瓷堆叠层103的电极为负电极时,负电极片70与第二端部102的压电陶瓷堆叠层103直接电气连接。
本发明实施例中,第一压紧部为螺栓201的螺帽,第二压紧部螺母202,这样可使连接部件20的结构简单,且连接状态稳定。如图3所示,每个压电陶瓷堆叠层103包括中心通孔106。在一个实施例中,采用激光切割工艺在每个压电陶瓷片30上切割形成一个中心孔302。各个压电陶瓷片30同轴堆叠,各个压电陶瓷片30的中心孔302形成中心通孔106。每个压电陶瓷堆叠层103套接到螺栓201的螺柱上。每个压电陶瓷堆叠层103的中心通孔106的孔壁与螺柱的外周表面之间绝缘设置或间隙配合。在一个实施例中,螺柱与孔壁之间可以设置刚性绝缘件以实现两者绝缘配合。在一个实施例中,螺柱的直径小于中心通孔106的直径,从而压电陶瓷堆叠层103的中心通孔106的孔壁与螺柱的外周表面之间形成间隙。
在一个实施例中,第一绝缘部件40、正电极片50、第二绝缘部件60、负电极片70和第三绝缘部件80均为环状结构。组装本发明实施例的压电陶瓷堆叠结构时,依次在螺栓201的螺柱上套接第三绝缘部件80、正电极片50(或负电极片70)、第二绝缘部件60、负电极片70(或正电极片50)、各个压电陶瓷堆叠层103以及第一绝缘部件40,然后在螺柱上旋拧螺母202,直至螺母202将各个结构件沿柱状压电陶瓷体10的轴向锁紧,完成压电陶瓷堆叠结构的组装工作。
本发明实施例的压电陶瓷堆叠结构整体结构简单,适用于批量生产。压电陶瓷堆叠结构中的两个以上的压电陶瓷堆叠层103中每个压电陶瓷堆 叠上设置有一个电极引线端子103a。由于电极引线端子103a暴露于外部环境,因此外部设备可以直接与该电极引线端子103a电气连接,从而解决了相邻两个压电陶瓷堆叠层103直接接触设置时无法引线的问题。这样,相邻两个压电陶瓷堆叠层103不需要额外单独设置电极片,直接堆叠形成压电陶瓷堆叠结构的方式,从整体上提高了压电陶瓷堆叠结构的刚性,提升了频响特性。另外,两个以上的压电陶瓷堆叠层103之间的连接是连接部件20实现锁紧。相邻两个压电陶瓷堆叠层103之间不需要设置连接层或粘接剂等,因此能够进一步提高了多层压电陶瓷堆叠结构的刚性。柱状压电陶瓷体10采用膨胀系数相同的压电陶瓷堆叠层103堆叠形成,从而也降低了在高温环境下使用时应力波动的影响,提升了高温环境下的频响特性。
本发明实施例还包括一种压电式传感器,其包括上述实施例的压电陶瓷堆叠结构。常温状态下,本实施例的压电式传感器的频响特性好。在高温环境下,本实施例的压电式传感器受到压电陶瓷堆叠结构受热膨胀时的应力值波动影响较小,高温频响特性好。这样,本实施例的压电式传感器检测精度高。
虽然已经参考优选实施例对本发明进行了描述,但在不脱离本发明的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。
Claims (13)
- 一种压电陶瓷堆叠结构,其特征在于,包括:柱状压电陶瓷体,包括在所述柱状压电陶瓷体的轴向上相对的第一端部和第二端部,所述柱状压电陶瓷体包括两个以上的压电陶瓷堆叠层,两个以上的所述压电陶瓷堆叠层中,相邻两个所述压电陶瓷堆叠层的相邻的两个电极极性相同;每个所述压电陶瓷堆叠层朝向所述第一端部的表面上设置一个电极引线端子;两个以上的所述电极引线端子中相邻两个所述电极引线端子的极性相反,且在所述轴向方向上错开设置,所述柱状压电陶瓷体中的每个所述压电陶瓷堆叠层设置的所述电极引线端子暴露于外部环境;连接部件,两个以上的所述压电陶瓷堆叠层通过所述连接部件相连接。
- 根据权利要求1所述的压电陶瓷堆叠结构,其特征在于,相邻两个所述压电陶瓷堆叠层直接接触设置。
- 根据权利要求1或2所述的压电陶瓷堆叠结构,其特征在于,每个所述压电陶瓷堆叠层设置有电极引线端子容置部,相邻两个所述压电陶瓷堆叠层的所述电极引线端子容置部在所述轴向上彼此错开设置。
- 根据权利要求3所述的压电陶瓷堆叠结构,其特征在于,所述电极引线端子容置部为每个所述压电陶瓷堆叠层的外周表面上设置的沿所述轴向延伸的通槽,从所述第一端部至所述第二端部,每个所述压电陶瓷堆叠层上设置的所有所述通槽中的一个所述通槽与相邻的所述压电陶瓷堆叠层的所述电极引线端子彼此对准设置。
- 根据权利要求4所述的压电陶瓷堆叠结构,其特征在于,每个所述压电陶瓷堆叠层上设置的所述通槽的数量比所述柱状压电陶瓷体包括的所述压电陶瓷堆叠层的数量少一个。
- 根据权利要求4所述的压电陶瓷堆叠结构,其特征在于,所述通槽的横截面的底部轮廓线为圆弧形,槽口处的轮廓线设置为倒圆角;或者,所述通槽的横截面的轮廓线为多边形。
- 根据权利要求3所述的压电陶瓷堆叠结构,其特征在于,所述电极引线端子容置部为每个所述压电陶瓷堆叠层上设置的沿所述柱状压电陶瓷体的径向延伸形成的凸出部,所述电极引线端子设置于所述凸出部朝向所述第一端部的表面上。
- 根据权利要求1至2、4至7任一项所述的压电陶瓷堆叠结构,其特征在于,每个所述压电陶瓷堆叠层包括一个或者两个以上的压电陶瓷片,相邻两个所述压电陶瓷堆叠层各自包括的所述压电陶瓷片的数量相同或不同,每个所述压电陶瓷堆叠层包括两个以上的所述压电陶瓷片时,相邻两个所述压电陶瓷片的相邻的两个电极极性相反。
- 根据权利要求1至2、4至7任一项所述的压电陶瓷堆叠结构,其特征在于,所述连接部件包括第一压紧部和第二压紧部,所述第一压紧部和第二压紧部分别用于对所述第一端部的端面和所述第二端部的端面施加压紧力。
- 根据权利要求9所述的压电陶瓷堆叠结构,其特征在于,还包括:设置在位于所述第一端部的所述压电陶瓷堆叠层与所述第一压紧部之间的第一绝缘部件。
- 根据权利要求9所述的压电陶瓷堆叠结构,其特征在于,还包括:设置在所述第二端部的所述压电陶瓷堆叠层与所述第二压紧部之间的正电极片和负电极片,每个所述电极引线端子分别与所述正电极片或所述负电极片电气连接,所述正电极片和所述负电极片之间设置有第二绝缘部件,所述正电极片或所述负电极片与所述第二压紧部之间设置有第三绝缘部件。
- 根据权利要求9所述的压电陶瓷堆叠结构,其特征在于,所述第一压紧部为所述螺栓的螺帽,所述第二压紧部为螺母,每个所述压电陶瓷堆叠层包括中心通孔,每个所述压电陶瓷堆叠层套接到所述螺栓的螺柱上,所述中心通孔的孔壁与所述螺柱之间绝缘设置或间隙配合。
- 一种压电式传感器,其特征在于,包括:如权利要求1至12任一项所述的压电陶瓷堆叠结构。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/617,818 US20200111948A1 (en) | 2017-06-09 | 2018-05-25 | Piezoelectric ceramic stacked structure and piezoelectric accelerometer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710434219.6A CN107180912B (zh) | 2017-06-09 | 2017-06-09 | 压电陶瓷堆叠结构及压电式传感器 |
CN201710434219.6 | 2017-06-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018223853A1 true WO2018223853A1 (zh) | 2018-12-13 |
Family
ID=59835387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/088457 WO2018223853A1 (zh) | 2017-06-09 | 2018-05-25 | 压电陶瓷堆叠结构及压电式传感器 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20200111948A1 (zh) |
CN (1) | CN107180912B (zh) |
WO (1) | WO2018223853A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107180912B (zh) * | 2017-06-09 | 2019-08-20 | 西人马联合测控(泉州)科技有限公司 | 压电陶瓷堆叠结构及压电式传感器 |
CN114793316A (zh) * | 2021-01-26 | 2022-07-26 | 北京小米移动软件有限公司 | 发声模组和电子设备 |
CN114624468B (zh) * | 2022-05-17 | 2022-09-02 | 山东利恩斯智能科技有限公司 | 一种防水型六维振动传感器及其测量方法 |
CN115236187A (zh) * | 2022-07-27 | 2022-10-25 | 同济大学 | 一种基于pzt嵌入式的木结构健康监测装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006066878A (ja) * | 2004-07-27 | 2006-03-09 | Denso Corp | 積層型圧電体素子及び、これを用いたインジェクタ |
US7567020B2 (en) * | 2007-03-07 | 2009-07-28 | Denso Corporation | Laminated piezoelectric element including adhesive layers having small thickness and high adhesive strength |
CN101552319A (zh) * | 2008-03-31 | 2009-10-07 | 株式会社电装 | 压电叠置体器件的制造方法 |
CN103155192A (zh) * | 2010-10-19 | 2013-06-12 | 埃普科斯股份有限公司 | 可堆叠压电执行器构件 |
CN107180912A (zh) * | 2017-06-09 | 2017-09-19 | 西人马(厦门)科技有限公司 | 压电陶瓷堆叠结构及压电式传感器 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19928181A1 (de) * | 1999-06-19 | 2001-01-11 | Bosch Gmbh Robert | Piezoelement mit einem Mehrschichtaufbau von Piezolagen und ein Verfahren zu dessen Herstellung |
CN104126234A (zh) * | 2012-02-24 | 2014-10-29 | 埃普科斯股份有限公司 | 制造多层器件的电接触的方法和具有电接触的多层器件 |
-
2017
- 2017-06-09 CN CN201710434219.6A patent/CN107180912B/zh not_active Expired - Fee Related
-
2018
- 2018-05-25 US US16/617,818 patent/US20200111948A1/en not_active Abandoned
- 2018-05-25 WO PCT/CN2018/088457 patent/WO2018223853A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006066878A (ja) * | 2004-07-27 | 2006-03-09 | Denso Corp | 積層型圧電体素子及び、これを用いたインジェクタ |
US7567020B2 (en) * | 2007-03-07 | 2009-07-28 | Denso Corporation | Laminated piezoelectric element including adhesive layers having small thickness and high adhesive strength |
CN101552319A (zh) * | 2008-03-31 | 2009-10-07 | 株式会社电装 | 压电叠置体器件的制造方法 |
CN103155192A (zh) * | 2010-10-19 | 2013-06-12 | 埃普科斯股份有限公司 | 可堆叠压电执行器构件 |
CN107180912A (zh) * | 2017-06-09 | 2017-09-19 | 西人马(厦门)科技有限公司 | 压电陶瓷堆叠结构及压电式传感器 |
Also Published As
Publication number | Publication date |
---|---|
US20200111948A1 (en) | 2020-04-09 |
CN107180912A (zh) | 2017-09-19 |
CN107180912B (zh) | 2019-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018223853A1 (zh) | 压电陶瓷堆叠结构及压电式传感器 | |
WO2016206094A1 (zh) | 剪切型压电传感器 | |
JP6425960B2 (ja) | 積層型のガスセンサ素子、ガスセンサ、及びその製造方法 | |
JP2020016512A (ja) | 圧力センサ | |
JP2007227872A (ja) | 圧電/電歪アクチュエータ | |
WO2011046043A1 (ja) | ガスセンサ用のコンタクト部材、ガスセンサ、拘束部材、ガスセンサのセンサ素子とコンタクト部材との接続方法、および、ガスセンサの製造方法 | |
JP2015152450A (ja) | 静電容量型圧力センサ及び入力装置 | |
IT201800010522A1 (it) | Dispositivo di rilevazione per cuscinetti | |
CN107532950B (zh) | 接触力测试装置,这种接触力测试装置的应用以及用于制造这种接触力测试装置的方法 | |
CN110168335B (zh) | 压力传感器 | |
JP2013064623A (ja) | 力センサー、力検出装置、ロボットハンド、ロボット、および力センサーの製造方法 | |
JP5255076B2 (ja) | ガスセンサ | |
JP2008185414A (ja) | ノックセンサ | |
JP6268077B2 (ja) | ガスセンサ | |
CN206907793U (zh) | 压电陶瓷堆叠结构及压电式传感器 | |
US20200381611A1 (en) | Piezoelectric sensor | |
JP7240281B2 (ja) | セラミック構造体及び半導体製造用装置 | |
JP2016186954A (ja) | 圧電素子および圧力センサ | |
US20210091297A1 (en) | Piezoelectric sensor | |
US20200303617A1 (en) | Charge output device, assembly method and piezoelectric acceleration sensor | |
US10801908B2 (en) | Diaphragm suppressing pressure sensor | |
JP2009031048A (ja) | 圧電型加速度センサ | |
JP6300479B2 (ja) | 圧電素子ユニットおよび圧電アクチュエータ | |
US9404938B2 (en) | Acceleration sensor | |
JP2020148494A (ja) | ロードセル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18813077 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18813077 Country of ref document: EP Kind code of ref document: A1 |