WO2018222003A1 - 다결정체 지르코니아 화합물 및 이의 제조 방법 - Google Patents

다결정체 지르코니아 화합물 및 이의 제조 방법 Download PDF

Info

Publication number
WO2018222003A1
WO2018222003A1 PCT/KR2018/006293 KR2018006293W WO2018222003A1 WO 2018222003 A1 WO2018222003 A1 WO 2018222003A1 KR 2018006293 W KR2018006293 W KR 2018006293W WO 2018222003 A1 WO2018222003 A1 WO 2018222003A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycrystalline
polycrystalline zirconia
zirconia
compound
alumina
Prior art date
Application number
PCT/KR2018/006293
Other languages
English (en)
French (fr)
Inventor
이희수
김부영
전설
류지승
조승현
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Publication of WO2018222003A1 publication Critical patent/WO2018222003A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/38Particle morphology extending in three dimensions cube-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a zirconia compound, and more particularly to a calcium oxide stabilized zirconia compound and a method for preparing the same.
  • Pure zirconia has a cubic fluorite structure at a temperature between about 2680 ° C. and 2370 ° C., and changes from a tetragonal phase to a tetragonal phase from about 2370 ° C. and a monoclinic phase from about 1170 ° C. Changes to
  • Yttrium ions (Y 3+ ), calcium ions (Ca 2+ ) And cations with less than four valence electrons, such as magnesium ions (Mg 2+ ), produce oxygen vacancies and high-temperature cubic phases of zirconia over all temperature ranges. Can be stabilized.
  • These stabilized zirconia exhibit excellent thermal shock resistance and ionic conductivity, so high temperature applications such as oxygen sensors, solid oxide fuel cells (SOFCs), and advanced structural ceramics It is widely used in.
  • calcium oxide-stabilized zirconia has a difference in atomic radius between Zr 4+ and Mg 2+ or Zr 4+ in atomic radius difference between zirconia ions (Zr 4+ ) and calcium ions (Ca 2+ ). And greater than the atomic radius difference of Y 3+ . Therefore, the difference in atomic radius is greater than that of other stabilized zirconia (MgO-ZrO 2 and Y 2 O 3 -ZrO 2, etc.), thereby having better thermal shock resistance.
  • the zirconia compounds of the present invention can solve the problem of calcium oxide stabilized zirconia, which expands in volume at high temperatures.
  • alumina is added to calcium oxide stabilized zirconia to increase phase stability and ionic conductivity, and to provide a polycrystalline zirconia compound and a method for preparing the same, which further reduce silica by adding silica.
  • Polycrystalline zirconia compound for one object of the present invention is a polycrystalline of calcium oxide stabilized zirconia (Calcia-stabilized zirconia); And an aluminum (Al) -calcium (Ca) -based oxide located in the polycrystal.
  • the aluminum may be included in less than 5.0 mol%.
  • the polycrystalline zirconia compound may have improved ion conductivity and thermal diffusivity at the same time, compared to calcium oxide stabilized zirconia that does not include the aluminum (Al) -calcium (Ca) -based oxide.
  • the polycrystalline zirconia compound may maintain a cubic phase at room temperature.
  • the polycrystalline zirconia compound may maintain phase stability even when repeatedly exposed to high temperature and room temperature of 1000 ° C. or higher.
  • the ionic conductivity of the polycrystalline zirconia compound may be 7.0 S / cm or more.
  • the thermal diffusivity of the polycrystalline zirconia compound may be 0.60 mm 2 / s or more.
  • the coefficient of expansion (coefficient of expansion) of the polycrystalline zirconia compound may be 8.0 ⁇ 10 -6 ⁇ °C -1 or less.
  • the aluminum (Al) -calcium (Ca) -based oxide may be aluminum (Al) -calcium (Ca) -silicon (Si) -based oxide.
  • the silicon may be included in less than 1.0 mol%.
  • the oxide may be CaAl 2 SiO 4 .
  • the thermal diffusivity of the polycrystalline zirconia compound may be 0.60 mm 2 / s or more.
  • the polycrystalline zirconia compound may be an increase in volume stability at a high temperature to 1000 °C or more.
  • the polycrystalline zirconia compound may be used as a solid electrolyte.
  • Polycrystalline zirconia compound production method for another object of the present invention comprises the steps of preparing a mixture of calcium oxide stabilized zirconia and alumina (Al 2 O 3 ); And sintering the mixture.
  • it may comprise a step of ball milling (ball milling) before the step of sintering the mixture.
  • the mixture may include silica (SiO 2 ).
  • alumina having an average particle size of 50 to 200 ⁇ m may be used.
  • the zirconia compounds of the present invention are calcium oxide stabilized zirconia using calcium oxide as a stabilizer, and can be added with alumina and silica to exhibit excellent thermal shock resistance, improved phase stability and reduced thermal expansion rate.
  • FIG. 1 is a view showing an embodiment of the present invention.
  • Example 2 is a view showing a phase analysis result of Example 1.
  • FIG. 3 is a diagram showing a result of thermal diffusion analysis of Example 1.
  • FIG. 4 is a view showing the results of conductivity analysis in Example 1.
  • Example 5 is a view showing the results of impedance analysis of Example 1.
  • FIG. 6 is a diagram illustrating a thermal diffusion analysis result of Example 2.
  • FIG. 7 is a diagram illustrating a SEM analysis result of Example 2.
  • FIG. 8 is a diagram illustrating a component analysis result of Example 2.
  • FIG. 9 is a diagram illustrating a TEM analysis result of Example 2.
  • Polycrystalline zirconia compounds of the present invention include a polycrystal of calcium oxide stabilized zirconia (Calcia-stabilized zirconia); And an aluminum (Al) -calcium (Ca) -based oxide located in the polycrystal.
  • the calcium oxide stabilized zirconia may be zirconia stabilized by mixing 15.0 mol% of calcium oxide as a stabilizer in zirconia.
  • the calcium oxide stabilized zirconia may be in a powder state.
  • the particle size of the calcium oxide stabilized zirconia may be 50 to 150 ⁇ m.
  • the particle size of the stabilized zirconia may be 75 + 30 ⁇ m.
  • the stabilized zirconia has and may contain impurities, the impurities may be such as silica (SiO 2), titanium dioxide (TiO 2).
  • the content of the silica may be 0.5% by weight or less, for example, 0.3% by weight or less of silica may be included in the stabilized zirconia.
  • the oxide may include aluminum, may include calcium or silicon, and may simultaneously include aluminum, calcium, and silicon.
  • the oxide may include an oxide such as alumina (Al 2 O 3 ) or silica (SiO 2 ).
  • the oxide may be located in the polycrystal.
  • it may be located inside the particles of the polycrystals, and may be located on the grain boundaries of the polycrystals.
  • the aluminum may be included in less than 5.0 mol%.
  • the aluminum may be included in an amount of 2.0 mol% or less, and preferably 1.0 mol%.
  • the aluminum may be included in the polycrystalline zirconia compound by adding alumina (Al 2 O 3 ) to the calcium oxide stabilized zirconia.
  • the aluminum concentration is less than about 0.1 mol%, thermal properties and ionic conductivity do not change, and thus thermal expansion and volume change may occur due to temperature change.
  • aluminum is contained about 5.0 mol% or more, calcium oxide stabilized zirconia The phase can change into a monoclinic phase, and monoclinic and cubic fluorite can be formed simultaneously, resulting in an unstable state.
  • Zirconia is an oxide of zirconium (Zr) may be unstable due to the monoclinic structure. Therefore, an oxide such as calcium oxide may be mixed with a stabilizer to form a stabilized zirconia to exhibit a tetragonal phase or a cubic phase structure. However, when about 5.0 mol% or more of alumina is added, a cubic phase may be formed into a monoclinic phase again by reaction of aluminum (Al) included in alumina and calcium (Ca) included in CSZ. It can be in an unstable state that exists at the same time.
  • Al aluminum
  • Ca calcium
  • the polycrystalline zirconia compound may have improved ion conductivity and thermal diffusivity at the same time, compared to calcium oxide stabilized zirconia that does not include the aluminum (Al) -calcium (Ca) -based oxide.
  • the ion conductivity of the calcium oxide stabilized zirconia that does not include the aluminum (Al) -calcium (Ca) -based oxide may be about 7.0 S / cm 1 , the thermal diffusion rate may be 0.5 mm / s 2 or less.
  • the ionic conductivity of the polycrystalline zirconia compound of the present invention may be about 7.1 S / cm 1 or more, for example, may be 7.15 S / cm 1 or more.
  • the thermal diffusion rate of the polycrystalline zirconia compound may be 0.60 mm / s 2 or more, for example, 0.65 mm / s 2 or more.
  • the polycrystalline zirconia compound In the polycrystalline zirconia compound, calcium ions included in calcium oxide stabilized zirconia may be substituted with aluminum ions to generate electrons. Therefore, the polycrystalline zirconia compound may increase thermal conductivity and ion conductivity due to electrons generated by ion substitution.
  • the polycrystalline zirconia compound may maintain a cubic phase at room temperature.
  • the polycrystalline zirconia compound may maintain phase stability even when repeatedly exposed to high temperature and room temperature of 1000 ° C. or higher.
  • the polycrystalline zirconia compound may maintain a cubic phase even after repeated exposure to high temperature and room temperature of 1000 ° C. or higher.
  • the ionic conductivity of the polycrystalline zirconia compound may be 7.0 S / cm or more.
  • the ion conductivity of the polycrystalline zirconia compound is 7.1 S / cm in the temperature range of 1500 °C or more. It may be abnormal.
  • the thermal diffusivity of the polycrystalline zirconia compound may be 0.60 mm 2 / s or more.
  • the coefficient of expansion (coefficient of expansion) of the polycrystalline zirconia compound may be 8.0 ⁇ 10 -6 ⁇ °C -1 or less.
  • the aluminum (Al) -calcium (Ca) -based oxide may be aluminum (Al) -calcium (Ca) -silicon (Si) -based oxide.
  • the silicon may be included in less than 1.0 mol%. Preferably 0.08 mol% may be included.
  • the silicon may be included by adding silica (SiO 2 ) to calcium oxide stabilized zirconia.
  • the concentration of silicon contained in the polycrystalline zirconia compound is 0.01 mol% or less, there may be no change in thermal characteristics and ionic conductivity, and when about 1.0 mol% or more is added, a secondary phase is formed as a film at grain boundaries. The problem may be that the conductivity is rather reduced.
  • the oxide may be CaAl 2 SiO 4 .
  • the oxide may be located in a polycrystal of the polycrystalline zirconia compound, and may be located on a grain boundary of the polycrystal.
  • the coefficient of thermal expansion of the polycrystalline zirconia oxide may be changed by the oxide.
  • the coefficient of thermal expansion may increase and the coefficient of thermal expansion may decrease. Therefore, the volume change rate of the polycrystalline zirconia oxide with temperature can be reduced.
  • the thermal diffusivity of the polycrystalline zirconia compound may be 0.60 mm 2 / s or more.
  • the polycrystalline zirconia compound may be an increase in volume stability at a high temperature to 1000 °C or more.
  • the rate of volume change occurring when repeated exposure to high temperature and room temperature may be reduced.
  • the polycrystalline zirconia compound may be used as a solid electrolyte and may be used in a high temperature oxygen sensor.
  • the zirconia compound may be used in a fuel cell as a high temperature solid electrolyte.
  • the high temperature oxygen sensor may be used as an oxygen sensor in a furnace, and is repeatedly exposed to a high temperature of about 1500 ° C. to about 1500 ° C., so that the contraction and expansion of volume due to temperature change may be repeated.
  • desorption may occur between the sensor and the stabilized zirconia by volume change with temperature change.
  • the use of the zirconia compound of the present invention in which the coefficient of thermal expansion is reduced at high temperature can be solved by the conventional sensor.
  • Polycrystalline zirconia compound production method for another object of the present invention comprises the steps of preparing a mixture of calcium oxide stabilized zirconia and alumina (Al 2 O 3 ); And sintering the mixture.
  • it may comprise a step of ball milling (ball milling) before the step of sintering the mixture.
  • the ball mill step may use a zirconium ball.
  • the binder may be mixed in the ball mill step.
  • the binder may be polyvinyl alcohol.
  • the binder may be removed during the sintering process.
  • the pressing process may be performed before the step of sintering.
  • the pressurization process may be performed for 90 seconds at a uniaxial pressure of 20 MPa.
  • the sintering step may be performed in air at about 1600 ° C. for about 6 hours.
  • the mixture may include silica (SiO 2 ).
  • alumina having an average particle size of 50 to 200 ⁇ m may be used.
  • calcia stabilized zirconia (calcium oxide-stabilized zirconia) powder was used.
  • the CSZ used has a particle size of about 75 + 30 ⁇ m, and may include about 0.3 wt% of silica (SiO 2 ) as an impurity.
  • Zirconia balls were added to the CSZ powder by about 0.5 mol%, 1.0 mol% and 5.0 mol% of alumina (Al 2 O 3 ) having a particle size of about 90 + 25 ⁇ m for about 24 hours, respectively, to obtain a mixture.
  • the mixtures were pressurized to a uniaxial pressure of about 20 MPa using cylindrical (diameter about 20.0 mm) and bar-type (about 60.0 mm long, about 7.0 mm wide) molds.
  • the green body intermediate product before or after drying the molded product and after drying was sintered in air at about 1600 ° C. for about 6 hours to obtain samples.
  • Example 1 a polycrystalline zirconia compound including aluminum (Al) -calcium (Ca) -based oxide was prepared, and the prepared samples are shown in Table 2.
  • Example 2 1.0 mol% of alumina and 0.08 mol% of silica or 0.1 mol% of silica were mixed with calcium oxide stabilized zirconia (15 mol% CaO) and ball milling was carried out with zrconium balls to obtain a mixture. .
  • a binder was used as polyvinyl alcohol. The binder was removed during the sintering process. The mixtures were also used for 90 seconds at a uniaxial pressure of about 20 MPa using a cylindrical (diameter about 20.0 mm) and bar-type (about 60.0 mm long, about 7.0 mm wide) mold. Molded by pressing. The green body (intermediate product before or after drying the molded product and after drying) was sintered in air at about 1600 ° C. for about 6 hours to obtain samples.
  • Example 2 a polycrystalline zirconia oxide including an aluminum (Al) -calcium (Ca) -silicon (Si) -based oxide was prepared, and the prepared samples are shown in Table 2.
  • Example 2 shows a mixture of 15 mol% calcium oxide stabilized zirconia, alumina, silica, and a ball mill, followed by a drying and pressing process. Subsequently, sintering was performed to analyze thermal properties, morphology, and electronic properties of the resulting sample. evaluation
  • Thermal diffusivity was measured using ASTM E 1461 (Standard Test Method for Thermal Diffusivity by the Flash Method), and the porosity and relative density of each sample. ) Is represented by the Archimedes method.
  • the coefficient of thermal expansion (CTE) of the sintered samples was analyzed with a thermomechanical analyzer (TMA, TA Instruments, Q400) in a temperature range of about 100 to 1000 ° C. using a bar type specimen.
  • microstructure analysis After polishing a disc-shaped sample surface (about 20.0 mm in diameter, about 2.0 mm in height) coated with a thin layer for electron conduction, thermal corrosion at about 900 ° C. for about 1 hour. (Thermal etching) was performed. The microstructure of the sample was observed with a field emission scanning electron microscope (FE-SEM; Hitachi, S-4800).
  • FE-SEM field emission scanning electron microscope
  • FIG. 2 is a view showing a phase analysis result of Example 1. Specifically, FIG. 2 shows the X-ray diffraction pattern after sintering CSZ added with alumina. Referring to FIG. 2, first, a peak appearing at about 30.4 ° means a cubic phase, and peaks appearing at about 28.2 ° and 35.1 ° represent a monoclinic phase, and a secondary phase is detected in all samples. It wasn't. At room temperature, CSZ completely stabilized zirconia with about 15.0 mol% of calcium oxide, so CSZ without addition of alumina showed only cubic phase.
  • a cubic phase can be formed into a monoclinic phase by reaction of aluminum (Al) contained in alumina and calcium (Ca) contained in CSZ, and a cubic phase and a monoclinic phase simultaneously It can be an unstable state that exists.
  • CSZ added with 5.0 mol% of alumina may form a monoclinic phase and become unstable compared to the cubic phase of CSZ, and the bond length may be increased to further reduce thermal diffusivity.
  • FIG. 3 is a diagram showing a result of thermal diffusion analysis of Example 1.
  • FIG. Specifically, Figure 3 shows the thermal diffusivity value of each sample in the temperature range of about 100 °C to 1000 °C.
  • FIG. 3 it can be seen that the samples to which alumina is added exhibited a higher thermal diffusivity than the CSZ to which alumina was not added.
  • Ca 2+ of CSZ is substituted with Al 3+ to generate electrons, and the thermal conductivity is increased by the generated electrons, thereby exhibiting higher thermal diffusivity.
  • the thermal diffusivity of CSZ without alumina was about 0.499 mm 2 / s, while the samples with 0.5 and 1.0 mol% of alumina added were about 0.652 mm 2 / s and about respectively.
  • the thermal diffusivity increased relatively to 0.661 mm 2 / s, the sample with 5.0 mol% of alumina showed a thermal diffusivity of about 0.609 mm 2 / s.
  • FIG. 4 is a view showing the results of conductivity analysis in Example 1.
  • FIG. Specifically, Figure 4 shows an Arrhenius diagram of oxygen ion conductance (oxygen ion conductance) for the samples prepared by the preparation in the temperature range of about 1000 °C to 1500 °C. Ionic conductivity was calculated by the formula shown below.
  • the ion conductivity rapidly decreases in a temperature range of about 1200 to 1350 ° C. (about 0.6 to 0.7 K ⁇ 1 on the graph of FIG. 3).
  • Such a sharp decrease may be due to the monoclinic to tetragonal phase transformation occurring in a temperature range of about 1200 to 1350 ° C.
  • Table 3 shows the porosity (Porosity), relative density, and coefficient of expansion (CTEs) of CSZ added with alumina in the temperature range of about 25 ° C to 1000 ° C.
  • FIG. 5 is a diagram showing the results of impedance analysis of Example 1.
  • FIG. 5 is a diagram illustrating an ion conductivity analysis result of an inter-granular phase formed by adding alumina to CSZ, and illustrates an electrochemical impedance spectrum of CSZ in a temperature range of about 600 ° C.
  • FIG. 5 is a diagram illustrating an ion conductivity analysis result of an inter-granular phase formed by adding alumina to CSZ, and illustrates an electrochemical impedance spectrum of CSZ in a temperature range of about 600 ° C.
  • High-frequency semicircles in the figure are associated with intra-grains and low-frequency semicircles are represented by ⁇ gb as grain boundary resistance. Dominant low frequency and minor high frequncy semicircles appear in all specimens. Comparing the CSZ, CSZ_0.5Al, CSZ_1Al and CSZ_5Al of FIG. 6, the ion conductivity increases with the addition of alumina, and the intra-grain resistance of the particles is increased when the added alumina is 5.0 mol% or more. can do.
  • the conductivity may be increased by the reaction of the silica contained in the calcium oxide stabilized zirconia with the added alumina, and when about 5.0 mol% of the alumina is added, the grain boundary may be increased. Therefore, as the phase is formed, the conductivity may decrease.
  • the addition of a small amount of alumina when trivalent cation Al 3+ is substituted with tetravalent cation Zr 4+ , the same number of charges is comparable due to the charge compenscation similar to that of Y 3+ .
  • the oxygen vacancy O 2- oxygen vacancies O 2-
  • the substitution of Al 3+ can lead to an increase in defect association (dopant-vacancy interaction) energy, so that the particle resistance Can increase.
  • FIG. 6 is a view showing a thermal diffusion analysis result of Example 2 of the present invention. Specifically, Figure 6 shows the thermal diffusion degree of each sample in the temperature range of about 100 to 1000 °C. Referring to FIG. 6, it can be seen that the samples to which alumina and silica are added exhibited a higher thermal diffusivity than the CSZ to which alumina was not added within the above temperature range.
  • the alumina and silica can be reacted at the grain boundaries of calcium oxide stabilized zirconia.
  • the reaction of the alumina and silica may play a role in preventing film formation at the grain boundaries of the stabilized zirconia.
  • the CSZ without the addition of alumina and silica is about 0.5 mm 2 / s or less, while the sample CSZ_1Al_0.08Si has a relatively increased heat of about 0.6 to 0.8 mm 2 / s.
  • sample CSZ_1Al_0.1Si exhibited a thermal diffusion rate of about 0.5 mm 2 / s or more, it was confirmed that the sample CSZ_1Al_0.1Si exhibited a lower value than the sample CSZ_1Al_0.08Si.
  • FIG. 7 is a view showing the results of SEM analysis of Example 2
  • Figure 8 is a view showing the results of component analysis of Example 2.
  • (a) to (c) of Figure 7 shows the microstructure of the SEM (scanning electron microscope) after sintering each of the samples prepared by the manufacturing example at about 1600 °C for about 6 hours, respectively
  • Figure 8 (1) to (2) shows the results of EDS (Energy Dispersive X-ray Spectroscopy, energy dispersive spectroscopy), the analysis of the components of the A and B region shown in FIG.
  • EDS Energy Dispersive X-ray Spectroscopy, energy dispersive spectroscopy
  • Region B of FIG. 7 may be formed through the reaction of alumina and silica.
  • CSZ_1Al_0.1Si it can be seen that fine grains such as C regions are formed at grain boundaries. Therefore, when more than 1.0 mol% of silica is added, the alumina and silica may react with each other to form a secondary phase such as C region, rather than reacting to scavenging, thereby adversely affecting the thermal properties and conductivity of the stabilized zirconia.
  • region A of FIG. 3 includes oxygen, calcium, and zirconia
  • region B includes oxygen, aluminum, silicon, calcium, and zirconium.
  • the region A may be a portion representing calcium oxide stabilized zirconia
  • the region B may be a portion formed by the reaction of silica and alumina. It may also be an oxide and may represent CaAl 2 SiO 4 comprising oxygen, aluminum, silicon, calcium, zirconium.
  • FIG. 9 is a diagram illustrating a TEM analysis result of Example 2.
  • FIG. Specifically, Figure 5 shows the results of analyzing the CSZ_1Al_0.08Si by TEM, (a) is the result of the analysis of calcium oxide stabilized zirconia, (b) is 1.0 mole in the calcium oxide stabilized zirconia prepared through Example 2 Samples of polycrystalline zirconia compound added with% alumina and 0.08 mol% silica are shown. When comparing (a) and (b) of Figure 9, it can be seen that a black region appeared in the sample prepared in Example 2. Accordingly, it can be seen that the reaction has occurred in the polycrystalline zirconia compound of the present invention and that a new substance is formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

산화칼슘 안정화된 지르코니아(Calcia-stabilized zirconia)에 알루미나(Al2O3) 및 실리카(SiO2)를 첨가하는 단계를 포함하는 본 발명의 제조방법을 통해서, 산화칼슘 안정화된 지르코니아 및 상기 산화칼슘 안정화 지르코니아 내에 형성된 CaAl2SiO4를 포함하는 다결정체 지르코니아 화합물을 제조할 수 있다.

Description

다결정체 지르코니아 화합물 및 이의 제조 방법
본 발명은 지르코니아 화합물에 관한 것으로, 보다 구체적으로는 산화칼슘 안정화된 지르코니아 화합물 및 이의 제조방법에 관한 것이다.
순수한 지르코니아(ZrO2)는 약 2680 ℃ 내지 2370 ℃ 사이의 온도에서 입방형석(cubic fluorite) 구조를 가지며, 약 2370 ℃부터 정방정상(tetragonal phase)으로 변하고, 약 1170 ℃부터 단사정상(monoclinic phase)으로 변한다.
이트륨 이온(Y3+), 칼슘 이온(Ca2+) 및 마그네슘 이온(Mg2+)과 같은 원자가 전자(valence electrons)가 4 개 미만인 양이온(Cations)들은 산소 결손(oxygen vacancies)을 생성하며 모든 온도 범위에서 지르코니아의 고온 입방정상(high-temperature cubic phases)을 안정화시킬 수 있다.
이러한 안정화 지르코니아는 우수한 내열 충격성(thermal shock resistance) 및 이온 전도성(ionic conductivity)을 나타내기 때문에 산소 센서, SOFC(고체 산화물 연료전지, Solid Oxide Fuel Cell) 및 첨단 구조 세라믹(Ceramics)과 같은 고온 응용 분야에 널리 사용하고 있다.
안정화 지르코니아 중에서도 산화칼슘-안정화된 지르코니아(CaO-stabilized zirconia)는 지르코니아 이온(Zr4+) 및 칼슘 이온(Ca2+) 간의 원자 반경 차이가 Zr4+ 및 Mg2+ 간의 원자 반경 또는 Zr4+ 및 Y3+의 원자 반경 차이보다 크다. 따라서, 다른 안정화 지르코니아(MgO-ZrO2 및 Y2O3-ZrO2 등)보다 원자 반경의 차이가 크기 때문에 더 우수한 내열 충격성을 갖는다.
그러나 CSZ와 안정화제의 원자 반지름 차이가 클수록 다른 안정화 지르코니아 보다 낮은 열전도도가 나타나며 열팽창(thermal expansion)이 증가한다. 이와같은 CSZ와 전극 사이의 열팽창 차이(thermal expansion mismatch)는 CSZ의 고온 응용에 있어서 부피 안정성이 떨어지고, 탈리 현상이 발생할 수 있어, 고체 전해질로서의 지르코니아가 가진 문제점으로 지적되었다.
본 발명의 지르코니아 화합물은 고온에서 부피가 팽창되는 산화칼슘 안정화된 지르코니아의 문제를 해결할 수 있다. 본 발명을 통해서, 산화칼슘 안정화된 지르코니아에 알루미나를 첨가하여 상 안정성(phase stability) 및 이온전도도를 높일 수 있고 실리카를 더 첨가하여 열팽창율을 감소시킨 다결정체 지르코니아 화합물 및 이의 제조방법을 제공한다.
본 발명의 일 목적을 위한 다결정체 지르코니아 화합물은 산화칼슘 안정화된 지르코니아(Calcia-stabilized zirconia)의 다결정체; 및 상기 다결정체 내에 위치한 알루미늄(Al)-칼슘(Ca)계 산화물;을 포함한다.
일 실시예에서 상기 알루미늄은 5.0 몰% 이하로 포함될 수 있다.
일 실시예에서 상기 다결정체 지르코니아 화합물은, 상기 알루미늄(Al)-칼슘(Ca)계 산화물을 포함하지 않는 산화칼슘 안정화된 지르코니아에 비해, 이온전도도 및 열확산율이 동시에 향상된 것일 수 있다.
일 실시예에서 상기 다결정체 지르코니아 화합물은 상온에서 입방정상(cubic phase)을 유지할 수 있다.
일 실시예에서 상기 다결정체 지르코니아 화합물은 1000 ℃ 이상의 고온과 상온에 반복되어 노출되어도 상안정성을 유지할 수 있다.
일 실시예에서 상기 다결정체 지르코니아 화합물의 이온전도도는 7.0 S/cm 이상일 수 있다.
일 실시예에서 1000 ℃ 이상에서, 상기 다결정체 지르코니아 화합물의 열확산율(Thermal diffusivity)은 0.60 mm2/s 이상일 수 있다.
일 실시예에서 25 ℃ 내지 1000 ℃의 온도 범위에서, 상기 다결정체 지르코니아 화합물의 열팽창계수(coefficient of expansion)는 8.0 × 10-6·℃-1 이하일 수 있다.
일 실시예에서 상기 알루미늄(Al)-칼슘(Ca)계 산화물은 알루미늄(Al)-칼슘(Ca)-규소(Si)계 산화물일 수 있다.
일 실시예에서 상기 규소는 1.0 몰% 이하로 포함될 수 있다.
일 실시예에서 상기 산화물은 CaAl2SiO4일 수 있다.
일 실시예에서 1000 ℃ 이상에서, 상기 다결정체 지르코니아 화합물의 열확산율(Thermal diffusivity)은 0.60 mm2/s 이상일 수 있다.
일 실시예에서 상기 다결정체 지르코니아 화합물은 1000 ℃ 이상의 고온 내지 상온에서 부피안정성이 증가된 것일 수 있다.
일 실시예에서 다결정체 지르코니아 화합물은 고체전해질로 사용될 수 있다.
본 발명의 다른 목적을 위한 다결정체 지르코니아 화합물 제조방법은 산화칼슘 안정화된 지르코니아 및 알루미나(Al2O3)의 혼합물을 준비하는 단계; 및 상기 혼합물을 소결하는 단계;를 포함한다.
일 실시예에서 상기 혼합물을 소결하는 단계 전에 볼밀(ball milling)하는 단계를 포함할 수 있다.
일 실시예에서 상기 혼합물은 실리카(SiO2)를 포함할 수 있다.
일 실시예에서 평균 입자 크기가 50 내지 200 ㎛인 알루미나를 사용할 수 있다.
본 발명의 지르코니아 화합물은 산화칼슘을 안정화제로 사용하여 산화칼슘 안정화된 지르코니아로서, 알루미나 및 실리카를 첨가하여 우수한 내열 충격성, 향상된 상 안정성 및 감소된 열팽창율을 나타낼 수 있다.
도 1은 본 발명의 일 실시예를 나타낸 도면이다.
도 2는 실시예 1의 상 분석 결과를 나타낸 도면이다.
도 3은 실시예 1의 열확산 분석 결과를 나타낸 도면이다.
도 4는 실시예 1의 전도도 분석 결과를 나타낸 도면이다.
도 5는 실시예 1의 임피던스 분석 결과를 나타낸 도면이다.
도 6은 실시예 2의 열확산 분석 결과를 나타낸 도면이다.
도 7은 실시예 2의 SEM 분석 결과를 나타낸 도면이다.
도 8은 실시예 2의 성분 분석 결과를 나타낸 도면이다.
도 9는 실시예 2의 TEM 분석 결과를 나타낸 도면이다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로서 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
본 발명의 다결정체 지르코니아 화합물은 산화칼슘 안정화된 지르코니아(Calcia-stabilized zirconia)의 다결정체; 및 상기 다결정체 내에 위치한 알루미늄(Al)-칼슘(Ca)계 산화물;을 포함한다.
상기 산화칼슘 안정화된 지르코니아는 지르코니아에 안정화제로 산화칼슘 15.0 몰%가 혼합되어 안정화된 지르코니아 일 수 있다.
상기 산화칼슘 안정화된 지르코니아는 분말(powder) 상태일 수 있다.
상기 산화칼슘 안정화된 지르코니아의 입자크기는 50 내지 150 ㎛ 일 수 있다. 예를들어 상기 안정화된 지르코니아의 입자 크기는 75 + 30 ㎛ 일 수 있다.
상기 안정화된 지르코니아에는 불순물이 포함되어 있을 수 있고, 상기 불순물은 실리카(SiO2), 이산화티타늄(TiO2) 등 일 수 있다. 상기 실리카의 함량은 0.5 중량% 이하 일 수 있고, 예를들어 0.3 중량% 이하의 실리카가 안정화된 지르코니아에 포함될 수 있다.
상기 산화물은 알루미늄을 포함할 수 있고, 칼슘 또는 규소 등을 포함할 수 있으며, 알루미늄, 칼슘, 규소를 동시에 포함할 수 있다. 또한, 상기 산화물은 알루미나(Al2O3) 또는 실리카(SiO2)등의 산화물을 포함할 수 있다.
상기 산화물은 상기 다결정체 내에 위치할 수 있다. 예를들어 상기 다결정체의 입자 내부에 위치 할 수 있으며, 상기 다결정체의 입계 상에 위치 할 수 있다.
일 실시예에서 상기 알루미늄은 5.0 몰% 이하로 포함될 수 있다. 예를들어 상기 알루미늄은 2.0 몰% 이하로 포함될 수 있고, 바람직하게는 1.0 몰% 포함될 수 있다. 상기 알루미늄은 산화칼슘 안정화된 지르코니아에 알루미나(Al2O3)를 첨가하므로서 다결정체 지르코니아 화합물에 포함될 수 있다.
상기 알루미늄의 농도가 약 0.1 몰% 이하인 경우에는 열특성 및 이온전도도 변화가 나타나지 않으므로 온도 변화에 따른 열팽창 및 부피 변화가 발생할 수 있고, 약 5.0 몰% 이상의 알루미늄이 포함된 경우에는 산화칼슘 안정화된 지르코니아의 상이 단사정상(monoclinic phase)으로 변화할 수 있고, 단사정상 및 입방정상(cubic fluorite)이 동시에 형성될 수 있어, 불안정한 상태가 될 수 있다.
지르코니아는 지르코늄(Zr)의 산화물로 단사정상 구조로 인해 불안정한 상태일 수 있다. 따라서 정방정상(tetragonal phase) 또는 입방정상 구조를 나타낼 수 있도록 산화칼슘과 같은 산화물을 안정화제로 혼합하여 안정화된 지르코니아를 형성할 수 있다. 그러나 약 5.0 몰% 이상의 알루미나를 첨가하면, 알루미나에 포함된 알루미늄(Al) 및 CSZ에 포함된 칼슘(Ca)의 반응에 의해 입방정상이 다시 단사정상으로 형성될 수 있고, 입방정상과 단사정상이 동시에 존재하는 불안정한 상태가 될 수 있다.
일 실시예에서 상기 다결정체 지르코니아 화합물은, 상기 알루미늄(Al)-칼슘(Ca)계 산화물을 포함하지 않는 산화칼슘 안정화된 지르코니아에 비해, 이온전도도 및 열확산율이 동시에 향상된 것일 수 있다.
상기 알루미늄(Al)-칼슘(Ca)계 산화물을 포함하지 않는 산화칼슘 안정화된 지르코니아의 이온전도도는 약 7.0 S/cm1 일 수 있고, 열확산율은 0.5 mm/s2 이하 일 수 있다. 그러나 본 발명의 다결정체 지르코니아 화합물의 이온전도도는 약 7.1 S/cm1 이상 일 수 있고, 예를들어 7.15 S/cm1 이상 일 수 있다. 또한 상기 다결정체 지르코니아 화합물의 열확산율은 0.60 mm/s2 이상일 수 있고, 예를들어 0.65 mm/s2 이상일 수 있다.
상기 다결정체 지르코니아 화합물은 산화칼슘 안정화된 지르코니아에 포함된 칼슘 이온이 알루미늄 이온으로 치환되어 전자를 생성할 수 있다. 따라서 상기 다결정체 지르코니아 화합물은 이온 치환에 의해 생성되는 전자로 인해 열전도도 및 이온전도도가 증가할 수 있다.
일 실시예에서 상기 다결정체 지르코니아 화합물은 상온에서 입방정상(cubic phase)을 유지할 수 있다.
일 실시예에서 상기 다결정체 지르코니아 화합물은 1000 ℃ 이상의 고온과 상온에 반복되어 노출되어도 상안정성을 유지할 수 있다. 예를들어 상기 다결정체 지르코니아 화합물은 1000 ℃ 이상의 고온과 상온에 반복되어 노출되어도 입방정상(cubic phase)을 유지할 수 있다.
일 실시예에서 상기 다결정체 지르코니아 화합물의 이온전도도는 7.0 S/cm 이상일 수 있다. 예를들어 상기 다결정체 지르코니아 화합물의 이온전도도는 1500 ℃ 이상의 온도 범위에서 7.1 S/cm 이상일 수 있다.
일 실시예에서 1000 ℃ 이상에서, 상기 다결정체 지르코니아 화합물의 열확산율(Thermal diffusivity)은 0.60 mm2/s 이상일 수 있다.
일 실시예에서 25 ℃ 내지 1000 ℃의 온도 범위에서, 상기 다결정체 지르코니아 화합물의 열팽창계수(coefficient of expansion)는 8.0×10-6·℃-1 이하일 수 있다.
일 실시예에서 상기 알루미늄(Al)-칼슘(Ca)계 산화물은 알루미늄(Al)-칼슘(Ca)-규소(Si)계 산화물일 수 있다.
일 실시예에서 상기 규소는 1.0 몰% 이하로 포함될 수 있다. 바람직하게는 0.08 몰%가 포함될 수 있다. 상기 규소는 산화칼슘 안정화된 지르코니아에 실리카(SiO2)를 첨가하므로서 포함될 수 있다.
상기 다결정체 지르코니아 화합물에 포함된 규소의 농도가 0.01 몰% 이하인 경우에는 열특성 및 이온 전도도의 변화가 나타나지 않을 수 있고, 약 1.0 몰% 이상이 첨가된 경우에는 입계에 2 차 상이 막처럼 형성되어 전도도가 오히려 감소하는 문제점이 발생할 수 있다.
일 실시예에서 상기 산화물은 CaAl2SiO4일 수 있다.
상기 산화물은 상기 다결정체 지르코니아 화합물의 다결정체 내에 위치할 수 있고, 상기 다결정체의 입계(Grain Boundary) 상에 위치할 수 있다.
상기 산화물에 의해 상기 다결정체 지르코니아 산화물의 열팽창계수가 변할 수 있다. 예를들어 열팽창율은 증가하고 열팽창계수는 감소할 수 있다. 따라서 온도에 따른 상기 다결정체 지르코니아 산화물의 부피 변화율이 감소될 수 있다.
일 실시예에서 1000 ℃ 이상에서, 상기 다결정체 지르코니아 화합물의 열확산율(Thermal diffusivity)은 0.60 mm2/s 이상일 수 있다.
일 실시예에서 상기 다결정체 지르코니아 화합물은 1000 ℃ 이상의 고온 내지 상온에서 부피안정성이 증가된 것일 수 있다.
상기 다결정체 지르코니아 화합물은 부피안정성이 증가하였으므로, 고온과 상온에 반복되어 노출되는 경우에 발생하는 부피 변화율이 감소될 수 있다.
일 실시예에서 다결정체 지르코니아 화합물은 고체전해질로 사용될 수 있고, 고온 산소 센서에 사용될 수 있다. 또한 상기 지르코니아 화합물은 고온 고체전해질로써 연료전지에 사용될 수 있다. 상기 고온 산소 센서는 용광로 내 산소 센서로 이용될 수 있고, 상온 내지 약 1500 ℃ 정도의 고온에 반복되어 노출되므로, 온도 변화에 의한 부피의 수축 및 팽창이 반복될 수 있다. 종래의 안정화된 지르코니아를 사용한 산소 센서는 온도 변화에 따른 부피 변화에 의해 센서와 안정화된 지르코니아 사이에 탈리 현상이 나타날 수 있다. 고온에서 열팽창율이 감소된 본 발명의 지르코니아 화합물을 고온 산소 센서에 사용하면 종래 센서의 이러한 문제점을 해결할 수 있다.
본 발명의 다른 목적을 위한 다결정체 지르코니아 화합물 제조방법은 산화칼슘 안정화된 지르코니아 및 알루미나(Al2O3)의 혼합물을 준비하는 단계; 및 상기 혼합물을 소결하는 단계;를 포함한다.
일 실시예에서 상기 혼합물을 소결하는 단계 전에 볼밀(ball milling)하는 단계를 포함할 수 있다.
상기 볼밀 단계는 지르코늄 볼을 이용할 수 있다. 상기 볼밀 단계에서 바인더를 혼합할 수 있다. 상기 바인더는 폴리비닐 알코올(Polyvinyl alcohol)을 사용할 수 있다. 상기 바인더는 소결과정에서 제거할 수 있다.
상기 소결하는 단계 이전에 가압공정을 수행할 수 있다. 상기 가압공정은 20 MPa의 단축(uniaxial) 압력으로 90초 동안 수행할 수 있다.
상기 소결하는 단계는 약 1600 ℃에서 약 6 시간 동안 공기 중에서 수행될 수 있다.
일 실시예에서 상기 혼합물은 실리카(SiO2)를 포함할 수 있다.
일 실시예에서 평균 입자 크기가 50 내지 200 ㎛인 알루미나를 사용할 수 있다.
이하 본 발명의 실시예들에 대해 상술한다. 다만, 하기 실시예들은 본 발명의 일부 실시 형태에 불과한 것으로서, 본 발명이 하기 실시예들에 한정되는 것으로 해석되어서는 아니된다.
실시예 1
원료로 15 몰% CSZ(calcia stabilized zirconia, 산화칼슘-안정화 지르코니아) 분말을 사용하였다. 사용된 CSZ는 입자 크기가 약 75 + 30 ㎛이며, 불순물로 실리카(SiO2)가 약 0.3 중량% 포함될 수 있다. 지르코니아 볼(ball)로 약 24 시간 동안 입자 크기가 약 90 + 25 ㎛인 알루미나(Al2O3) 약 0.5 몰%, 1.0 몰% 및 5.0 몰%를 CSZ 분말에 각각 첨가하여 혼합물을 얻었다. 상기 혼합물들을 원통형(cylindrical)(직경 약 20.0 mm) 및 막대형(bar-type)(길이 약 60.0 mm, 폭 약 7.0 mm) 몰드를 사용하여 약 20 MPa의 단축(uniaxial) 압력으로 가압하였다. 생소지(green body, 성형품의 건조 전 혹은 건조를 끝내고 소성 전의 중간 제품)는 약 1600 ℃에서 약 6 시간 동안 공기 중에서 소결하여 시료들을 얻었다.
상기 실시예 1을 통해서 알루미늄(Al)-칼슘(Ca)계 산화물을 포함하는 다결정체 지르코니아 화합물을 제조하였고, 제조된 시료들을 표 2에 나타내었다.
구분 첨가된 알루미나(몰%) 원료
CSZ 0 15 몰% 산화칼슘 안정화 지르코니아(CSZ)
CSZ_0.5Al 0.5
CSZ_1Al 1.0
CSZ_5Al 5.0
실시예 2산화칼슘 안정화된 지르코니아(15 몰% CaO)에 알루미나 1.0 몰% 및 실리카 0.08 몰% 또는 실리카 0.1 몰%을 혼합하고 지르코늄 볼(Zr ball)로 볼밀(ball milling)을 수행하여 혼합물을 얻었다. 이때 바인더(binder)는 폴리비닐 알코올(Polyvinyl alcohol)을 사용하였다. 상기 바인더는 소결 과정에서 제거되었다. 상기 혼합물들 또한 원통형(cylindrical)(직경 약 20.0 mm) 및 막대형(bar-type)(길이 약 60.0 mm, 폭 약 7.0 mm) 몰드를 사용하여 약 20 MPa의 단축(uniaxial) 압력으로 90초 동안 가압하여 성형하였다. 생소지(green body, 성형품의 건조 전 혹은 건조를 끝내고 소성 전의 중간 제품)는 약 1600 ℃에서 약 6 시간 동안 공기 중에서 소결하여 시료들을 얻었다.
상기 실시예 2를 통해서 알루미늄(Al)-칼슘(Ca)-규소(Si)계 산화물을 포함하는 다결정체 지르코니아 산화물을 제조하였고, 제조된 시료들을 표 2에 나타내었다.
구분 첨가된 알루미나(몰%) 첨가된 실리카(몰%) 원료
CSZ 0 0 15 몰% 산화칼슘 안정화 지르코니아(CSZ)
CSZ_1Al_0.08Si 0.5 0.08
CSZ_1Al_0.1Si 1.0 0.1
도 1은 본 발명의 일 실시예를 나타낸 도면이다. 도 1을 보면 실시예 2를 나타낸 도면으로, 15 몰% 산화칼슘 안정화된 지르코니아 및 알루미나와 실리카를 혼합하고 볼밀한 후, 건조 및 가압 공정을 수행하였다. 이어서 소결시켜, 생성된 시료의 열특성, 형태, 전자 특성 구조 분석 등을 수행하였다.평가
열 확산율은 ASTM E 1461(플래시 방법에 의한 열 확산에 대한 표준 테스트 방법)(Standard Test Method for Thermal Diffusivity by the Flash Method)을 사용하여 측정하였고, 각 시료들의 다공성(Porosity)과 상대 밀도(relative density)는 아르키메데스 법(Archimedes method)으로 나타내었다. 상기 소결된 시료의 열팽창계수(CTE)는 바 타입의 시편을 사용하여 약 100 내지 1000 ℃의 온도 범위에서 열 기계 분석기(TMA, TA Instruments, Q400)로 분석하였다.
미세구조(microstructure) 분석을 위해, 전자 전도를 위한 얇은 층으로 코팅된 디스크 형 시료 표면(직경 약 20.0 mm, 높이 약 2.0 mm)을 연마(polishing)후, 약 900 ℃에서 약 1 시간 동안 열부식(Thermal etching)을 수행하였다. 상기 시료의 미세구조는 전계 방출 주사 전자 현미경(field emission scanning electron microscope)(FE-SEM; Hitachi, S-4800)으로 관찰하였다.
도 2는 실시예 1의 상 분석결과를 나타낸 도면이다. 구체적으로, 도 2는 알루미나가 첨가된 CSZ를 소결시킨 후, X-선 회절 패턴을 나타낸 것이다. 도 2를 참조하면, 먼저 약 30.4 ° 정도에 나타나는 피크는 입방정상을 의미하고, 약 28.2 ° 및 35.1 ° 정도에 나타나는 피크는 단사정상을 나타내는 것으로, 2 차 상(secondary phase)은 모든 시료에서 검출되지 않았다. 실온에서 CSZ는 지르코니아를 약 15.0 몰%의 산화칼슘으로 완전히 안정화시킨 것이므로, 알루미나를 첨가하지 않은 CSZ는 입방정상만을 나타냈다. 또한, CSZ_0.5Al 및 CSZ_1Al의 경우에도 입방정상 피크만 확인되었고, CSZ_5Al의 경우에만 단사정상을 나타내는 약 28.2 ㅀ및 35.1 ㅀ피크가 확인되었다. 도 1의 피크를 비교해보면, 첨가된 알루미나 함량이 증가함에 따라 입방정상의 피크 세기가 감소되는 것을 알 수 있고, CSZ_5Al의 경우에만 단사정상이 형성되었다. 따라서, CSZ에 알루미나가 일정량 이상 첨가되면, 알루미나에 포함된 알루미늄(Al) 및 CSZ에 포함된 칼슘(Ca)의 반응에 의해 입방정상이 단사정상으로 형성될 수 있고, 입방정상과 단사정상이 동시에 존재하는 불안정한 상태가 될 수 있다. 5.0 몰%의 알루미나를 첨가한 CSZ는 단사정상이 형성되어 CSZ의 입방정상에 비해 불안정한 상태가 되고, 결합 길이가 증가하여 열확산율이 보다 감소될 수 있다.
도 3은 실시예 1의 열확산 분석 결과를 나타낸 도면이다. 구체적으로 도 3은 약 100 ℃ 내지 1000 ℃의 온도 범위에서 각 시료의 열확산계수 값을 나타낸 것이다. 도 3을 참조하면, 알루미나가 첨가된 시료들은 상기 온도 범위 내에서 알루미나가 첨가되지 않은 CSZ 보다 전체적으로 더 높은 열확산도를 나타낸 것을 확인할 수 있다. 알루미나를 첨가함에 따라 CSZ의 Ca2+이 Al3+으로 치환되어 전자가 생성되고, 생성된 전자에 의해 열전도가 증가되어 보다 높은 열확산도를 나타낼 수 있다. 그러나 구체적인 열확산율을 비교해보면, 알루미나가 첨가되지 않은 CSZ의 열확산율은 약 0.499 mm2/s인 것에 비해 0.5 몰% 및 1.0 몰%의 알루미나가 첨가된 시료는 각각 약 0.652 mm2/s 및 약 0.661 mm2/s로 열확산율이 비교적 증가했지만, 5.0 몰%의 알루미나를 첨가한 시료는 열 확산율이 약 0.609 mm2/s로 나타났다.
도 4는 실시예 1의 전도도 분석 결과를 나타낸 도면이다. 구체적으로 도 4는 약 1000 ℃ 내지 1500 ℃의 온도 범위에서 제조예를 통해 제조된 시료들에 대한 산소 이온 전도도(oxygen ion conductance)의 아레니우스(Arrhenius) 도표를 나타낸 것이다. 이온전도도는 아래에 나타낸 식에 의해 계산하였다.
Figure PCTKR2018006293-appb-I000001
위의 식에서 C는 지수 함수 이전의 계수, T는 절대 온도, EA는 활성화 에너지, K는 볼츠만 정수를 나타낸 것이다. 이온전도도는 온도 상승에 따라 증가하였으며, 각 시료 CSZ, CSZ_0.5Al, CSZ_1Al 및 CSZ_5Al의 이온전도도는 약 1500 ℃에서 약 7.062, 7.156, 7.324 및 5.183 S/cm1로 나타났다. CSZ에 첨가된 알루미나의 양이 1.0 몰% 이하인 경우는 알루미나를 첨가함에 따라 CSZ의 이온 전도도가 증가하였고, 그 이상의 알루미나를 첨가하는 경우는 이온전도도가 감소하였다. 특히, CSZ_5Al의 경우, 약 1200 내지 1350 ℃의 온도 범위(도 3의 그래프 상 약 0.6 내지 0.7 K-1 범위)에서 이온전도도가 급격히 감소하는 것을 확인할 수 있다. 이와 같은 급격한 감소는 약 1200 내지 1350 ℃의 온도 범위에서 발생하는 단사정상에서 정방결정상으로의 변환(monoclinic to tetragonal phase transformation)때문일 수 있다.
약 25 ℃ 내지 1000 ℃의 온도 범위에서 알루미나가 첨가된 CSZ의 다공성(공극율, Porosity), 상대밀도(Relative density) 및 열팽창 계수(CTEs, coefficient of expansion)를 표 3에 나타내었다.
구분 공극율(%)(Porosity) 상대밀도(g/mm3)(Relative density) 열팽창계수(X10-6-1)(CTEs)
CSZ 2.693 4.754 8.719
CSZ_0.5Al 0.409 5.115 7.919
CSZ_1Al 0.135 5.177 7.313
CSZ_5Al 2.930 4.065 8.233
표 3을 보면, CSZ에서 알루미나를 약 1.0 몰% 정도 첨가하면, 다공성이 감소하고 상대밀도가 증가하는 것을 알 수 있다. 약 1.0 몰% 정도까지의 알루미나를 첨가하는 것이 CSZ의 소결 보조제(sintering aids)로서 작용하는 것일 수 있다. 열팽창계수는 열확산도와 CSZ의 밀도를 증가시키기 때문에, 첨가하는 알루미나의 양이 증가함에 따라 열팽창계수는 감소할 수 있다.도 5는 실시예 1의 임피던스 분석 결과를 나타낸 도면이다. 구체적으로 도 5는 CSZ에 알루미나를 첨가하여 형성된 입자간 상(inter - granular phase)의 이온전도도 분석 결과를 나타낸 도면으로, 약 600 ℃의 온도 범위에서 CSZ의 전기화학적 임피던스 스펙트럼을 나타낸 것이다. 도면 상에 고주파 반원(high-frequency semicircles)은 내부 입자(intra-grain)와 관련이 있으며 저주파 반원(low-frequency semicircles)은 결정립 경계 저항(grain boundary resistance)으로 ρgb로 나타낸다. 지배적인 저주파(dominant low frequency)와 소수 고주파 반원(minor high frequncy semicircles)이 모든 시료(all specimens)에서 나타난다. 도 6의 CSZ, CSZ_0.5Al, CSZ_1Al 와 CSZ_5Al를 비교해보면, 알루미나를 첨가할수록 이온전도도가 증가하다가, 첨가되는 알루미나가 5.0 몰% 이상인 경우 입자의 내부 저항(Intra-grain resistance)이 증가된 것을 확인 할 수 있다. 첨가한 알루미나가 약 1.0 몰% 정도인 경우, 산화칼슘 안정화된 지르코니아에 포함된 실리카와 첨가한 알루미나의 반응에 의해 전도도가 증가될 수 있고, 약 5.0 몰% 정도의 알루미나가 첨가되는 경우, 입계를 따라 상이 형성되면서 전도도가 감소할 수 있다. 소량의 알루미나를 첨가한 경우, 3 가 양이온(trivalent cation) Al3+이 4가(tetravalent) 양이온 Zr4+로 치환될 때, Y3+의 치환과 유사한 전하 보상(charge compenscation)때문에 동일한 수의 산소 빈자리 O2-(oxygen vacancies O2-)가 도입되므로 전도도가 증가될 수 있다. 그러나, 첨가한 알루미나가 5.0 몰% 이상인 경우에는 Al3+의 치환은 결함 결합(defect association)(도펀트-공극 상호작용)(dopant-vacancy interaction) 에너지의 증가로 이어질 수 있고, 따라서 입자의 저항이 증가할 수 있다.
도 6는 본 발명의 실시예 2의 열확산 분석 결과를 나타낸 도면이다. 구체적으로 도 6은 약 100 내지 1000 ℃의 온도 범위에서 각 시료의 열확산 정도를 나타낸 것이다. 도 6을 참조하면, 알루미나 및 실리카가 첨가된 시료들은 상기 온도 범위 내에서 알루미나가 첨가되지 않은 CSZ 보다 전체적으로 더 높은 열확산도를 나타낸 것을 확인할 수 있다. 알루미나와 실리카를 동시에 첨가하므로써, 산화칼슘 안정화된 지르코니아의 입계에서 알루미나와 실리카를 반응시킬 수 있다. 상기 알루미나 및 실리카의 반응이, 안정화된 지르코니아의 입계에 막 형성을 방해하는 역할을 할 수 있다. 따라서, 종래의 산화칼슘 안정화된 지르코니아의 입계에 막이 형성되어 열특성 및 전도도에 악영향이 발생하는 문제점을 해결할 수 있다. 그러나 구체적인 열확산율을 비교해보면, 알루미나 및 실리카가 첨가되지 않은 CSZ의 열확산율은 대략 0.5 mm2/s 이하 인 것에 비해, 시료 CSZ_1Al_0.08Si는 약 0.6 내지 0.8 mm2/s 정도의 비교적 증가된 열확산율을 나타내고, 시료 CSZ_1Al_0.1Si는 열 확산율이 약 0.5 mm2/s 이상의 값을 나타내기는 하지만, 시료 CSZ_1Al_0.08Si보다는 낮은 값을 나타내는 것을 확인할 수 있었다.
도 3 및 도 6을 비교해보면 산화칼슘 안정화된 지르코니아에 알루미나만 첨가한 시료보다 알루미나 및 실리카를 동시에 첨가한 경우 열확산도가 더 증가한 것을 확인할 수 있다.
도 7은 실시예 2의 SEM 분석 결과를 나타낸 도면이고, 도 8는 실시예 2의 성분 분석 결과를 나타낸 도면이다. 구체적으로, 도 7의 (a) 내지 (c)는 제조예를 통해서 제조된 시료들을 각각 약 6 시간 동안 약 1600 ℃에서 소결한 후, 미세구조를 SEM(scanning electron microscope)으로 나타낸 것이고, 도 8의 (1) 내지 (2)는 EDS(Energy Dispersive X-ray Spectroscopy, 에너지 분산형 분광분석법) 결과를 나타낸 것으로, 도 3에 나타낸 A 및 B 영역의 성분을 분석하여 나타낸 것이다.
도 7을 참조하면, CSZ에서는 안정화에 의한 입방정상의 결정립(Grain)만 나타났고, CSZ_1Al_0.08Si에서는 B 영역이 추가적으로 관찰되었다. 도 7의 B 영역은 알루미나와 실리카의 반응을 통해 형성된 것 일 수 있다. 또한, CSZ_1Al_0.1Si에서는 입계에 C 영역과 같은 미세한 입자(fine grains)가 형성된 것을 확인 할 수 있다. 따라서 실리카를 1.0 몰% 이상 첨가하는 경우에는 알루미나와 실리카가 반응하여 소거(scavenging) 작용을 하기보다는 C 영역과 같은 2 차 상을 형성함으로써 안정화된 지르코니아의 열특성 및 전도도에 악영향을 줄 수 있다.
도 8를 보면, 도 3의 A 영역은 산소, 칼슘 및 지르코니아를 포함하고, B 영역은 산소, 알루미늄, 규소, 칼슘 및 지르코늄을 포함하는 것을 확인할 수 있다. A 영역은 산화칼슘 안정화 지르코니아를 나타내는 부분일 수 있으며, B 영역은 실리카와 알루미나의 반응으로 형성된 부분일 수 있다. 또한 산화물일 수 있고, 산소, 알루미늄, 규소, 칼슘, 지르코늄을 포함하는 CaAl2SiO4을 나타내는 것 일 수 있다.
도 9는 실시예 2의 TEM 분석 결과를 나타낸 도면이다. 구체적으로 도 5는 CSZ_1Al_0.08Si을 TEM으로 분석한 결과를 나타낸 것으로, (a)는 산화칼슘 안정화된 지르코니아의 분석 결과이고, (b)는 실시예 2를 통해 제조된 산화칼슘 안정화 지르코니아에 1.0 몰% 알루미나 및 0.08 몰%의 실리카를 첨가한 다결정체 지르코니아 화합물 시료를 분석한 결과를 나타낸 것이다. 도 9의 (a)와 (b)를 비교해보면, 실시예 2를 통해 제조된 시료에 검은색 영역이 나타난 것을 알 수 있다. 따라서, 본 발명의 다결정체 지르코니아 화합물 내에 반응이 일어난 것을 알 수 있고 새로운 물질이 형성된 것을 알 수 있다.
도 7 내지 9를 통해서 본 발명의 다결정체 지르코니아 화합물 내에 산소, 알루미늄, 규소, 칼슘 및 지르코니아를 포함하는 물질이 위치하는 것을 알 수 있고, 본 발명의 다결정체 지르코니아 화합물 내에 CaAl2SiO4 가 위치하는 것을 확인 할 수 있다.
본 발명의 일 실시예를 통해 제조된 시료들을 평가한 결과, 산화칼슘 안정화된 지르코니아와 알루미나를 혼합하면 이온전도도, 상안정성, 열 특성 및 부피 안정성이 우수해지는 것을 알 수 있고, 실리카를 더 혼합하는 경우 다결정체 지르코니아 화합물의 다결정체 내에 CaAl2SiO4가 위치하는 것을 알 수 있고, 열 특성이 더욱 향상되어 부피 안정성이 보다 우수해지는 것을 확인 할 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (18)

  1. 산화칼슘 안정화된 지르코니아(Calcia-stabilized zirconia)의 다결정체; 및
    상기 다결정체 내에 위치한 알루미늄(Al)-칼슘(Ca)계 산화물;을 포함하는,
    다결정체 지르코니아 화합물.
  2. 제1항에 있어서,
    상기 알루미늄은 5.0 몰% 이하로 포함된 것을 특징으로 하는,
    다결정체 지르코니아 화합물.
  3. 제1항에 있어서,
    상기 다결정체 지르코니아 화합물은, 상기 알루미늄(Al)-칼슘(Ca)계 산화물을 포함하지 않는 산화칼슘 안정화된 지르코니아에 비해, 이온전도도 및 열확산율이 동시에 향상된 것을 특징으로 하는,
    다결정체 지르코니아 화합물.
  4. 제1항에 있어서,
    상기 다결정체 지르코니아 화합물은 상온에서 입방정상(the cubic phases)을 유지하는 것을 특징으로 하는,
    다결정체 지르코니아 화합물.
  5. 제4항에 있어서,
    상기 다결정체 지르코니아 화합물은 1000 ℃ 이상의 고온과 상온에 반복되어 노출되어도 상안정성을 유지하는 것을 특징으로 하는,
    다결정체 지르코니아 화합물.
  6. 제1항에 있어서,
    상기 다결정체 지르코니아 화합물의 이온전도도는 7.0 S/cm 이상인 것을 특징으로 하는,
    다결정체 지르코니아 화합물.
  7. 제1항에 있어서,
    1000 ℃ 이상에서, 상기 다결정체 지르코니아 화합물의 열확산율(Thermal diffusivity)은 0.60 mm2/s 이상인 것을 특징으로 하는,
    다결정체 지르코니아 화합물.
  8. 제 1항에 있어서,
    25 ℃ 내지 1000 ℃의 온도 범위에서, 상기 다결정체 지르코니아 화합물의 열팽창계수(coefficient of expansion)는 8.0×10-6·℃-1 이하인 것을 특징으로 하는,
    다결정체 지르코니아 화합물.
  9. 제 1항에 있어서,
    상기 알루미늄(Al)-칼슘(Ca)계 산화물은 알루미늄(Al)-칼슘(Ca)-규소(Si)계 산화물임을 특징으로 하는,
    다결정체 지르코니아 화합물.
  10. 제9항에 있어서,
    상기 규소는 1.0 몰% 이하로 포함된 것을 특징으로 하는,
    다결정체 지르코니아 화합물.
  11. 제9항에 있어서,
    상기 산화물은 CaAl2SiO4인 것을 특징으로 하는,
    다결정체 지르코니아 화합물.
  12. 제9항에 있어서,
    1000 ℃ 이상에서, 상기 다결정체 지르코니아 화합물의 열확산율(Thermal diffusivity)은 0.60 mm2/s 이상인 것을 특징으로 하는,
    다결정체 지르코니아 화합물.
  13. 제9항에 있어서,
    상기 다결정체 지르코니아 화합물은 1000 ℃ 이상의 고온 내지 상온에서 부피안정성이 증가된 것을 특징으로 하는,
    다결정체 지르코니아 화합물.
  14. 제1항에 있어서,
    고체전해질로 사용되는 것을 특징으로 하는,
    다결정체 지르코니아 화합물.
  15. 산화칼슘 안정화된 지르코니아 및 알루미나(Al2O3)의 혼합물을 준비하는 단계; 및
    상기 혼합물을 소결하는 단계;를 포함하는,
    다결정체 지르코니아 화합물 제조방법.
  16. 제15항에 있어서,
    상기 혼합물을 소결하는 단계 전에, 상기 혼합물을 볼밀(ball milling)하는 단계를 포함하는,
    다결정체 지르코니아 화합물 제조방법.
  17. 제15항에 있어서,
    상기 혼합물은 실리카(SiO2)를 포함하는,
    다결정체 지르코니아 화합물 제조방법.
  18. 제15항에 있어서,
    평균 입자 크기가 50 내지 200 ㎛인 알루미나를 사용하는 것을 특징으로 하는,
    다결정체 지르코니아 화합물 제조방법.
PCT/KR2018/006293 2017-06-02 2018-06-01 다결정체 지르코니아 화합물 및 이의 제조 방법 WO2018222003A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0069032 2017-06-02
KR1020170069032A KR101925215B1 (ko) 2017-06-02 2017-06-02 다결정체 지르코니아 화합물 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2018222003A1 true WO2018222003A1 (ko) 2018-12-06

Family

ID=64454838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006293 WO2018222003A1 (ko) 2017-06-02 2018-06-01 다결정체 지르코니아 화합물 및 이의 제조 방법

Country Status (2)

Country Link
KR (1) KR101925215B1 (ko)
WO (1) WO2018222003A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102317016B1 (ko) 2020-02-03 2021-10-22 박민우 화이트색상을 갖는 지르코니아 파우더와 그 파우더를 이용한 라미네이트 패턴 세라믹 소결체 및 그 제조방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2941038B2 (ja) * 1990-10-31 1999-08-25 東燃株式会社 多結晶焼結体固体電解質

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2941038B2 (ja) * 1990-10-31 1999-08-25 東燃株式会社 多結晶焼結体固体電解質

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JUNG, JOUNG-SOO ET AL.: "Improvement of grain-boundary conduction in 15 mol% calcia stabilized zirconia by postsintering heat-treatment", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 150, no. 10, 2003, pages j49 - j53, XP055638460, DOI: 10.1149/1.1604117 *
KIM, BUYOUNG ET AL.: "Thermal stability and ionic conductivity of calcia-stabilized zirconia with alumina addition", INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, vol. 13, no. 4, 4 June 2016 (2016-06-04), pages 697 - 701, XP055638477, DOI: 10.1111/ijac.12539 *
LEE, JONG-HEUN: "Effect of Alumina addition on the distribution of intergranular-liquid phase during sintering of 15-mol%-Calcia-stabilized zirconia", JOURNAL OF THE AMERICAN CERAMIC SOCIETY, vol. 86, no. 9, 20 December 2004 (2004-12-20), pages 1518 - 1521, XP055601365, DOI: 10.1111/j.1151-2916.2003.tb03507.x *

Also Published As

Publication number Publication date
KR101925215B1 (ko) 2018-12-04

Similar Documents

Publication Publication Date Title
Mecartney Influence of an amorphous second phase on the properties of yttria‐stabilized tetragonal zirconia polycrystals (Y‐TZP)
US9902889B2 (en) Alumina composite ceramic composition and method of manufacturing the same
Zhong Stability and conductivity study of the BaCe0. 9− xZrxY0. 1O2. 95 systems
JPS6324951B2 (ko)
JPH07277814A (ja) アルミナ基セラミックス焼結体
JPS6116125B2 (ko)
JP2005314215A (ja) 緻密質コーディエライト焼結体及びその製造方法
WO2019004589A1 (ko) 질화 알루미늄 소결체 및 이를 포함하는 반도체 제조 장치용 부재
US7915189B2 (en) Yttrium oxide material, member for semiconductor-manufacturing apparatus, and method for producing yttrium oxide material
WO2014103465A1 (ja) アルミナ質基板及び半導体装置用基板
WO2021060731A1 (ko) 질화알루미늄 소결체 및 질화알루미늄 소결체의 제조방법
WO2018222003A1 (ko) 다결정체 지르코니아 화합물 및 이의 제조 방법
US20160104551A1 (en) Yttria based conductive plasma-resistant member and methods thereof
KR20210119009A (ko) 세라믹 복합체 및 그 제조방법
US4774211A (en) Methods for predicting and controlling the shrinkage of ceramic oxides during sintering
JPS61101462A (ja) ジルコニア磁器
WO2020122684A1 (ko) 마그네시아 및 그 제조 방법, 및 고열전도성 마그네시아 조성물, 이를 이용한 마그네시아 세라믹스
KR101961836B1 (ko) 순수 단사정계 지르코니아 소결체 및 이의 제조방법
JP4368975B2 (ja) 高耐電圧性アルミナ基焼結体およびその製造方法
EP0133509A2 (en) Methods for predicting and controlling the shrinkage of aluminaceramic articles during sintering
WO2019231045A1 (ko) 내 산화층이 형성된 탄화규소 소결체 및 이의 제조방법
WO2019093781A1 (ko) 고열전도성 마그네시아 조성물 및 마그네시아 세라믹스
WO2022080668A1 (ko) 루테튬-안정화 지르코니아, 이의 제조 방법, 및 이를 포함하는 고체 전해질
WO2022154148A1 (ko) 고순도 및 고밀도 이트륨 알루미늄 가넷 소결체 및 이의 제조방법
CN113135746B (zh) 一种高绝缘低导热高抗压强度陶瓷材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809232

Country of ref document: EP

Kind code of ref document: A1