WO2018221896A1 - 나노와이어 투명 전극 및 이의 제조 방법 - Google Patents

나노와이어 투명 전극 및 이의 제조 방법 Download PDF

Info

Publication number
WO2018221896A1
WO2018221896A1 PCT/KR2018/005969 KR2018005969W WO2018221896A1 WO 2018221896 A1 WO2018221896 A1 WO 2018221896A1 KR 2018005969 W KR2018005969 W KR 2018005969W WO 2018221896 A1 WO2018221896 A1 WO 2018221896A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanowire
light
transparent electrode
spectrum
transparent insulating
Prior art date
Application number
PCT/KR2018/005969
Other languages
English (en)
French (fr)
Other versions
WO2018221896A8 (ko
Inventor
김상호
서창우
이진이
Original Assignee
주식회사 앤앤비
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 앤앤비 filed Critical 주식회사 앤앤비
Priority to US16/071,403 priority Critical patent/US20210174986A1/en
Priority to JP2019532922A priority patent/JP2020503645A/ja
Priority to CN201880005256.8A priority patent/CN110100289B/zh
Publication of WO2018221896A1 publication Critical patent/WO2018221896A1/ko
Publication of WO2018221896A8 publication Critical patent/WO2018221896A8/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0036Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/026Nanotubes or nanowires

Definitions

  • the present invention relates to a nanowire transparent electrode and a method for manufacturing the same, and more particularly, to a nanowire transparent electrode based on conductive nanowires and having excellent commerciality.
  • nanowire transparent electrodes are thin coated on an insulating substrate with high light transmission
  • Nanowire transparent electrodes have proper optical transparency and surface conductivity. Nanowire transparent electrodes with surface conductivity are used for flat liquid crystal displays and touch panels. It is widely used as a transparent electrode in areas where transparency and conductivity are simultaneously required, such as electroluminescent devices, and photovoltaic cells, and are used as anti-static layers or electromagnetic wave shielding. commonly used as layers).
  • Metal oxides such as indium tin oxide (ITO) have excellent optical clarity and electrical conductivity, but are prone to physical damage and, with the disadvantages of physical deformation, are expensive to manufacture. In addition, there is a limit to requiring high temperature processes.
  • ITO indium tin oxide
  • nanowire transparent electrodes which have excellent electrical and optical properties, can maintain their properties stably over a long period of time, and that can physically deform is increasing.
  • a nanowire transparent electrode having a structure in which a network of metal nanowires such as silver nanowires is embedded in an organic matrix on an insulating substrate is developed, as in Korean Patent Publication No. 2013-0135186.
  • the present invention is to provide a nanowire transparent electrode having extremely high commercial properties with uniform electrical and optical characteristics even in an ultra large area having a width of at least 10 cm and a length of several tens of meters.
  • the present invention provides a method for manufacturing a nanowire transparent electrode, which is capable of rapidly manufacturing a nanowire transparent electrode having uniform and excellent electrical and optical characteristics in an extremely simple process, thereby enabling the construction of a commercial manufacturing process.
  • the nanowire transparent electrode according to the present invention includes a transparent insulating substrate and a metal nanowire network, and satisfies relations 1 and 2.
  • Equation 1 ⁇ Is the average surface resistance of a nanowire transparent electrode having a width of 10 cm and a length of 2 m.
  • R n is the average sheet resistance of the transparent nanowire electrode having a width of 10 cm and a length of 2 m
  • R loc is the average surface resistance of the same nanowire transparent electrode having a width of 10 cm and a length of 2 m
  • R loc is the width.
  • the total area of the same nano-wire transparent electrode having a size of 10 cm and a length of 2 m is equally divided into 2 cm x 2 cm to represent the surface resistance of the 500 divided areas
  • R loc (i) is 500 divided areas. Numbered sequentially, i.e., the sheet resistance of the division corresponding to i, i being a natural number of 1 500.
  • the refractive index of the transparent insulating substrate may be 1.45 to 2.00.
  • a nanowire transparent electrode according to an embodiment of the present invention is represented by Equation 3 below.
  • Equation 3 R is the average sheet resistance of the nanowire transparent electrode, and R 50000 is
  • the nanowire transparent electrode according to the embodiment of the present invention is more than 90%
  • the metal nanowire network includes a wire dispersion liquid containing the transparent insulating base metal nanowire, an organic binder, and a solvent for dissolving the organic binder.
  • the white light may be obtained by filtering white light and irradiating the filtered light so that the light corresponding to the center wavelength of the first peak, which is the absorption peak having the largest intensity, among the absorption peaks of the following third spectrum is removed.
  • Spectrum 1 spectrum UV-visible absorption spectrum of the above transparent insulating substrate
  • Second spectrum ultraviolet-visible light absorption of a reference body in which a solvent is volatilized after application of a wire dispersion liquid containing the transparent insulating base metal nanowire, an organic binder and a solvent for dissolving the organic binder spectrum
  • the nanowire transparent electrode according to an embodiment of the present invention is obtained by photosintering of the wire dispersion and the irradiation of filtered light, and satisfying Equation 4 and Equation 5 below.
  • H TCT is the haze (%) of the nanowire transparent electrode
  • H REF is the haze (%) of the reference body before the wire dispersion is applied and photosintered on the transparent insulating substrate.
  • is the light transmittance of the nanowire transparent electrode (%)
  • T REF is the light transmittance (%) of the reference body before the wire dispersion is applied and photosintered on the transparent insulating substrate.
  • a metal nanowire network includes an intersection region where two or more metal nanowires cross each other, and the height of the intersection region may satisfy the following Equation 6.
  • Equation 6 dl denotes the height of the metal-nanowire of two or more metal nanowires forming an intersecting area based on the surface of the transparent insulating substrate, and d2 is the same intersecting area based on the surface of the transparent insulating substrate.
  • the height of the other single metal nanowire among two or more metal nanowires, and he means the height of the intersecting area based on the surface of the transparent insulating substrate.
  • a metal nanowire network includes an intersection area where two or more metal nanowires cross each other, and a metal nanowire located at an upper portion of the intersection area You can satisfy relation 7.
  • do is a metal based on the surface of the transparent insulating substrate at the point where the metal nanowire located at the upper part of the intersecting region does not come into contact with other metal nanowires at least at least 100 in the length direction of the nanowire.
  • Dnc is the height of the nanowire, dnc is the same metal nanowire located at the top of the intersecting region, and within 50 nm of the region extending in the length direction of the metal nanowire at the edge of the intersecting region, relative to the surface of the transparent insulating substrate. The height of the metal nanowires.
  • a method of manufacturing a nanowire transparent electrode according to the present invention is directed to a transparent insulating substrate.
  • UV-visible spectrum of the body based on the second spectrum and the second spectrum obtained by removing the first spectrum from the second spectrum, after applying the wire dispersion on the transparent insulating substrate, the absorption peak of the third spectrum is relatively Filtering the white light to remove the light corresponding to the center wavelength of the first peak, which is the most intense absorption peak, and irradiating the filtered light to sinter the light.
  • the filtering may be performed so that light of a wavelength exceeding 1.3 times the center wavelength of the second peak is removed.
  • Filtering is band pass filtering, and the minimum wavelength of the filtered light can be located between the center wavelength of the first peak and the center wavelength of the second peak.
  • the bandwidth which is the difference between the maximum and minimum wavelengths of the filtered light, can be less than 150 nm.
  • the minimum wavelength of the pass band of the band pass filter based on the wavelength may be 380 to 410 nm, and the maximum wavelength may be 430 nm to 550 nm.
  • FIG. 5 is a method of manufacturing a nanowire transparent electrode according to an embodiment of the present invention.
  • the fluence of the filtered light irradiated onto the transparent insulating substrate coated with the wire dispersion can be 6 to 10 J / cm 2 .
  • the application and photosintering of the wire dispersion may be a continuous process.
  • a method for manufacturing a nanowire transparent electrode according to an embodiment of the present invention is in the form of
  • An unwinding step of unwinding the wound transparent insulating substrate a step of applying a wire dispersion to the unwrapped transparent insulating substrate; a light sintering step of irradiating the filtered light onto the transparent insulating substrate coated with the wire dispersion; And a rewinding step of washing the substrate and rolling it back into a roll form.
  • the present invention includes a nanowire transparent electrode manufactured by the above-mentioned manufacturing method. Effects of the Invention
  • the nanowire transparent electrode according to the present invention has an extremely large area of more than 10 cm in width and several m in length, and has excellent light transmittance and low haze, with remarkably low surface resistance and extremely large area of ultra large area.
  • the nanowire transparent electrode according to the present invention has a surface resistivity reduction rate of 3.0% or less, even after 500,000 repeated tests in extreme bending test conditions of 1 mm. Less than 2.0%, more specifically less than 1.5%, and the repetitive deformation has the advantage that the reduction of its electrical characteristics is remarkably suppressed.
  • the nanowire transparent electrode manufacturing method according to the present invention manufactures a nanowire transparent electrode having excellent electro-optical characteristics and uniform characteristics even in an ultra large area through a very simple process of applying a wire dispersion and irradiating filtered light. It is possible to produce large quantities of high quality nanowire transparent electrodes through continuous process such as roll-to-roll.
  • FIG. 1 is an optical photograph of a process of manufacturing a nanowire transparent electrode by a roll-to-roll process according to an embodiment of the present invention
  • FIG. 2 is a diagram illustrating a measurement of a first spectrum of ultraviolet-visible light absorption spectrum of a transparent insulating substrate according to an embodiment of the present invention.
  • FIG. 3 is a transparent insulating film coated with a wire dispersion according to an embodiment of the present invention.
  • Figure 2 shows the measurement of the ultraviolet-visible light absorption spectrum of the substrate 2 spectrum.
  • FIG. 4 is a view showing a third spectrum obtained by removing the first spectrum from the second spectrum according to one embodiment of the present invention.
  • FIG. 5 is a scanning electron micrograph of the manufactured nanowire transparent electrode
  • FIG. 6 is an optical picture of the bending test of the manufactured nanowire transparent electrode.
  • the present applicant is ideally suited for metal nanowire-based nanowire transparent electrodes. It is important to note that mass production through large area and rapid and simple continuous process is essential.
  • a metal nanowire dispersion containing organic binder should be used.
  • white light is irradiated on a transparent insulating base coated with metal nanowires
  • the light of the wavelength band corresponding to the highest intensity absorption peak among the absorption peaks was found to have an adverse effect on light sintering.
  • a band pass filter is used as a wavelength band of light corresponding to a specific peak on an ultraviolet-visible light (UV-Vis) absorption spectrum of a metal nanowire in a transparent insulating substrate.
  • UV-Vis ultraviolet-visible light
  • the present invention is filed with the finding that organic binders are decomposed even at extremely low light fluences and that the decomposition and sintering of organic binders occur simultaneously by a single light irradiation (irradiation of filtered light). It came to
  • the ultraviolet-visible absorption spectrum refers to the absorption of wavelengths of ultraviolet-visible light, and transmits the wavelength of the irradiated light along the x-axis, irradiated with respect to (1 irradiated dose (1 0 Is a spectrum with the y-axis of the absorbance, the logarithm of the ratio ().
  • the first spectrum is an ultraviolet-visible absorption spectrum of the transparent insulating substrate itself used for manufacturing nanowire transparent electrodes
  • the second spectrum is a metal on the same substrate as the transparent insulating substrate used in the measurement of the first spectrum.
  • the third spectrum is calculated by removing one spectrum from the second spectrum and is determined from the absorbance value of each wavelength of the second spectrum.
  • the third spectrum is y ⁇ y ⁇ yf ⁇ x xXx
  • the wavelength of the ultraviolet-visible light, y 3 can be expressed as the absorbance between the first and second spectra of each wavelength. Scattering or noise correction
  • the wavelength at the center of the absorption peak can mean the wavelength corresponding to the peak of the peak, that is, the point at zero when it changes from the positive differential spectrum positive value of the absorption spectrum to a negative value, and the center of the absorption peak.
  • the wavelength at is referred to as the center wavelength or the peak wavelength, and the absorbance value at the center of the absorption peak is referred to as the peak intensity or intensity.
  • the manufacturing method of the nano-wire transparent electrode according to the present invention is the ultraviolet-visible absorption spectrum of the transparent insulating substrate, one spectrum, the metal nanowire, the organic binder, and the organic binder generated from the transparent insulating substrate trademark plasmon.
  • the second spectrum which is the ultraviolet-visible absorption spectrum of the reference body after applying the wire dispersion containing the solvent dissolving the binder, in which the solvent is volatilized and
  • the first peak having the relatively highest intensity (peak intensity) among the absorption peaks of the third spectrum. Filtering the white light so that light corresponding to the center wavelength of the peak (hereinafter, ⁇ f pcak ) is removed, and irradiating the filtered light to sinter it.
  • the first spectrum and the second spectrum may be the spectrum measured with only the measurement object under the same conditions under which all conditions that can affect the absorption spectrum are different.
  • the third spectrum can be reflected on the absorption spectrum of the metal nanowire itself, which is also spread on the transparent insulating film and is not sintered.
  • the filtering be carried out so that light corresponding to the center wavelength of the second peak, which is a high absorption peak, has a large intensity (peak intensity). More specifically, in the wavelength range of 300 to 600 nm in the filtering reagent 3 spectrum, the light corresponding to the deep wavelength of the absorption peak having the largest intensity (peak intensity) is removed, and at the same time, the wavelength range of 300 to 600 nm. In this case, the white light can be filtered so that the light corresponding to the center wavelength of the absorption peak having a relatively second intensity (peak intensity) is passed.
  • the contact point (intersection) between nanowires can be reliably melt-bonded
  • Ultraviolet-visible absorption spectra of silver nanowires dispersed in a simple liquid phase have a single absorption peak and the absorption of the first peak, although the absorption by the substrate is eliminated as the silver nanowires are also included in the transparent insulating substrate.
  • the first and low 12 peaks can be interpreted as a result of the contact between the silver nanowires and the insulating transparent substrate and the contact between the silver nanowires.
  • the first and second peaks in the third spectrum are due to other plasmon resonances, such as local surface plasmon resonance (LSPR) and propagated plasmon resonance (PSPR), which occur at the junction between metal nanowires.
  • LSPR local surface plasmon resonance
  • PSPR propagated plasmon resonance
  • the local surface plasmon resonance generated at the hot spot which is the contact point between the metal nanowires, is the air, and the transparent insulating property
  • the refractive index of the medium other than the air in contact with the silver nanowire is larger than the air
  • the plasmon resonance wavelengths other than the local surface plasmon-resonance (LSPR) such as the propagation type plasmon resonance (PSPR) are the LSPR wavelength reference blue shift (blue). predictable.
  • the second peak is the contact between the nanowires (at least between
  • LSPR local surface plasmon resonance
  • PSPR radio wave plasmon resonance
  • the absorption of light by the local surface plasmon resonance (LSPR) plays a role by sintering (melting) the contacts between nanowires, but it is a radio wave generated by the action between the metal nanowires and the medium other than air.
  • plasmon resonance such as plasmon resonance (PSPR)
  • PSPR can act as a deterrent to uniform light junctions, indicating that it is advantageous to remove it.
  • the center wavelength of the first peak may be shorter than the center wavelength of the second peak, and advantageously, stable light sintering may be achieved by low fluence, and separate light irradiation such as ultraviolet irradiation may be used. and can rule out (light irradiation other than the filtered light), can be, filtering is performed such that the removal of the light having a wavelength greater than 1.3 times the filter tense second peak center wavelength (speak) in order to prevent such damage to the base material .
  • Filtering white light to remove light at a wavelength greater than 1.3 times the center wavelength of the second peak at the same time prevents the occurrence of plasmon resonance other than local surface plasmon resonance during light irradiation. This may mean that all of the energy of the irradiated light is concentrated in the local surface plasmon resonance wavelength band of the exposed metal nanowire junction in air, meaning that the light is sintered.
  • melt bonding can occur stably.
  • the glass than in [83], and substantially filtering the white light is the number of days the band-pass filter, can be positioned between the filtered light minimum wavelength (sswoeun to the center wavelength of the first peak ( ⁇ ⁇ center wavelength of the supracondylar base second peak (spcak) .
  • ⁇ f min may correspond to the high pass frequency (f H ) of the band pass filter
  • the wavelength band of the filtered light, i.e., imm to ) ⁇ may correspond to the bandwidth (B) of the band pass filter.
  • the bandwidth which is the difference between the minimum wavelength ( ⁇ ) and the maximum wavelength fmax ) of the bandpass filtered light, may be 150 nm or less, preferably 100 nm or less, and substantially 50 nm to 100 nm.
  • the minimum wavelength ( ⁇ ⁇ personally) of bandpass filtered light is 380 to 380.
  • the maximum wavelength ( max > 430 nm to 550 nm, more practical example, the minimum wavelength ( ⁇ ⁇ 390 to 410 nm, the maximum wavelength can be 430 to 520 nm).
  • a method of manufacturing a nanowire transparent electrode according to an embodiment of the present invention is
  • bandpass filtering selects and irradiates the light of the band acting to bond the metal nanowires at the intersection region (contact point) between the metal nanowires, and thus, of the irradiated light (filtered light). Even low fluence can lead to stable sintering.
  • the fluence of the filtered light irradiated on the transparent insulating substrate coated with the wire dispersion may be 6 to 10 J / cm 2 .
  • Low fluence can significantly reduce the adverse effects on metal nanowires and transparent insulating substrates (such as distortion or deformation of metal nanowires, reduction in partial shorter diameters, damage to substrates, etc.) at the time of mineral sintering.
  • light can be irradiated with a single pulse, i.e. only one (1) optical filament can be irradiated for sintering.
  • Light can be irradiated with a single pulse having a width of substantially 5 to 20 msec and more practically 5 to 15 msec.
  • the light sintering by such single pils irradiation is filtered light.
  • the present invention can be implemented by the technical superiority of the present invention of light sintering by low fluence, and the present invention cannot be limited to the light irradiation of a single pils.
  • the light can be irradiated with dapils to satisfy, and of course, the pulse width and the interval between pulses can be in the range of tens to hundreds of fisec, respectively.
  • the metal nanowires in the state described in the above are substantially the same as before the light irradiation. And melt bonding can occur at the junction between metal nanowires.
  • Photosintering can be a continuous process, i.e., a continuous manufacturing method in which the dispersion of the wire dispersion and each of the photocatalysts are performed successively.
  • a continuous manufacturing method is essential for mass production of nanowire transparent electrodes, but is conventionally used for electrical and Optical and, above all, uniformity of electrical properties was not guaranteed, making it difficult to continuously manufacture.
  • the manufacturing method according to an embodiment of the present invention is a separate light such as ultraviolet rays
  • Nanowire transparent electrodes which are suitable for continuous processes based on the process and have extremely uniform electrical and optical characteristics in large areas, can be manufactured.
  • the present invention cannot be limited to continuous processes. Batch processes are not excluded.
  • the application of wire dispersions may include printing, specifically inkjet printing, microcontact printing, imprinting, gravure printing, gravure-offset printing, flexographic printing, offset / reverse offset printing, slot die coating, bar Coating, blade coating, spray coating, dip coating, roll coating, etc. may be used for the application of dispersions containing one-dimensional nanostructures such as carbon nanotubes and nanowires. In this case, it is better to use a more favorable coating method for continuous cloth such as gravure printing, gravure-offset printing, flexographic printing, offset / reverse offset printing, slot die coating and bar coating.
  • a drying step may be carried out to volatilize the dispersion medium and the solvent which dissolves the organic binder, but if the printing step and the light irradiation step for sintering and the time-coated solvent are sufficient time for the volatilization to be removed, The drying step may not be performed.
  • the drying step may be selectively performed according to the process design, and the drying may be performed by using room temperature volatilization drying, hot air to cold wind drying, heat drying (such as thermal energy or infrared energy), or a combination thereof, and hot air or heating.
  • the drying can be carried out at a temperature at which the solvent can be volatilized (e.g. 40 to 80 ° C) without adversely affecting the drying material.
  • the sintering step is performed by light irradiation with bandpass filtered white light.
  • similar to the drying step of course, more washing steps can be carried out using water, if necessary.
  • the manufacturing method according to an embodiment of the present invention may be a roll-to-roll continuous process, that is, an unwinding step of releasing a transparent insulating substrate wound in a roll form; a coating step of applying a wire dispersion to the released transparent insulating substrate.
  • the process speed of the roll-to-roll continuous process ie, the unwinding and spreading step and the sintering step being performed and rewound
  • the process speed of the roll-to-roll continuous process is 10 mm / sec, specific.
  • it may be 50 mm / sec or more.
  • the metal nanowire may refer to a nanowire of a metal where surface plasmon is generated.
  • Specific examples of the conductive nanowire having a surface plasmon are gold and silver.
  • the aspect ratio and shorter diameter (average) of metal nanowires minimize aspect ratio (light transmittance) lowering, while the aspect ratio and shortening are advantageous for forming a conductive network in which nanowires contact each other to provide a stable current path.
  • the aspect ratio of metal nanowires can range from 50 to 20000, and the average short axis diameter can range from 5 to 100 nm, but the invention is not limited thereto.
  • the white light to be filtered may be Xenon Lamp light, but is not limited thereto, and may use any light source known as a conventional white light source similar to the Xenon Lamp.
  • Xenon flash lamps may have a cylinder shape. It consists of a composition containing xenon gas injected in a sealed quartz tube. The xenon gas outputs light energy from the input electrical energy, and has an energy conversion ratio of more than 50%. A metal electrode such as tungsten is formed to form a cathode.
  • the organic binder contained in the wire dispersion may be a low molecular weight natural polymer or a low molecular weight synthetic polymer having a molecular weight (weight average molecular weight) of 5x10 5 or less, specifically 2xl0 5 or less. Although the molecular weight may be 3,000 or more, of course, the present invention cannot be limited by the lower molecular weight limit of the organic binder.
  • the organic binder may be selected from one or more from polyethylene glycol (PEG), polyvinylpyridone (PVP), polyvinyl alcohol (PVA), polysaccharides and polysaccharide derivatives.
  • PEG polyethylene glycol
  • PVP polyvinylpyridone
  • PVA polyvinyl alcohol
  • organic binders have low molecular weight polyethylene glycol (PEG) with molecular weights of 3,000 to 50,000, preferably 3,000 to 20,000, and low molecular weight polyvinylpyridone (PVP) with molecular weights of 3,000 to 60,000.
  • PEG polyethylene glycol
  • PVP low molecular weight polyvinylpyridone
  • Low molecular weight polyvinyl alcohol (PVA) with molecular weights of 3,000 to 50,000, low molecular weight polysaccharides with molecular weights of 3,000 to 200,000, preferably 3,000 to 100,000, and low molecular weight polysaccharide derivatives with molecular weights of 3,000 to 200,000, preferably 3,000 to 100,000 One or more can be selected.
  • Low molecular weight polysaccharides are glycogen, amylose, amylopectin, calose, agar, alginate, pectin, carrageenan, cellulose, chitin, chitosan, curdlan, dextran, fructan, collagen, gellan gum. (gellan gum), gum arabic, starch, xanthan, gum tragacanth, carayan, carabean, glucomannan, or combinations thereof.
  • the cell may contain a loss ether.
  • the organic binder may be a low molecular weight cellulose ether, and the cellulose ether may be a carboxy-C1-C3-alkylcell, carboxy-C1-C3-alkylhydroxy-C1-C3-alkyl cellulose, C1-C3. -Alkyl saloses, C1-C3-alkylhydroxy -C1-C3-alkylsallos, hydroxy-C1-C3-alkylcells, mixed hydroxy-C1-C3-alkylcells or mixtures thereof can do.
  • carboxy-C1-C3-alkyl salose may include carboxymethyl salose and the like, and carboxy-C1-C3-alkyl hydroxy-C1-C3-alkyl salose is a carboxymethyl hydroxyethyl cell.
  • C1-C3-alkyl cellulose may include methylcellulose
  • C1-C3-alkyl hydroxy-C1-C3-alkyl cellulose may include hydroxyethyl methyl salose, hydroxy, and the like.
  • Hydroxy-C1-C3-alkyl salose is hydroxyethyl cellulose
  • Cellulose or alkoxy hydroxyethyl hydroxypropyl cellulose, wherein the alkoxy group is straight or branched and contains 2 to 8 carbon atoms.
  • the wire dispersion may contain an organic binder of 0.1 to 5% by weight, preferably from 0. 0 to 0.7% by weight of ⁇ to 1% by weight.
  • the content of such an organic binder may include metal nanoparticles upon application of the wire dispersion. While the wires can be uniformly and homogeneously spreading and sticking to the substrate, the organic binders between the metal nanowires can be minimized.
  • the content of the metal nanowires in the wire dispersion can be appropriately adjusted depending on the intended use. Specifically, 0.01 to 70 parts by weight, more specifically 0.01 to 10 parts by weight, more specifically, 100 parts by weight of the solvent. It may contain 0.05 to 5 parts by weight, and more specifically 0.05 to 0.5 parts by weight of metal nanowires, but is not limited thereto and can be properly adjusted in consideration of the application method or application.
  • the solvent contained in the wire dispersion may be dissolved in an organic binder.
  • any solvent capable of acting as a dispersion medium of the nanowire and easily volatilizing can be used.
  • the solvent is 2-butoxyethyl acetate, propylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, ethylene. Glycol butyl ether, cyclonucleanone, cyclonucleanol,
  • the substrate may be physically rigid or flexible.
  • a rigid transparent insulating substrate or a transparent insulating base film glass, polycarbonate, acrylic polyethylene
  • Terephthalates and the like examples of flexible transparent insulating substrates, transparent insulating base films or transparent insulating coating layers, such as polyesters, phthalates and polycarbonates; linear, branched, and cyclic polyolefins Polyolefins such as; polyvinyl chloride, polyvinylidene chloride, polyvinyl acetal, polystyrene and polyacrylic such as polyacryl; cellulose
  • Cellulose ester salt machines such as cellulose triacetate or cellulose acetate
  • polysulfone systems such as polyethersulfone
  • the surface (coating layer or transparent insulating substrate itself) region of the transparent insulating substrate in contact with the metal nanowire may have a refractive index of 1.45 to 2.00. This refractive index is spaced apart from the first peak by 2 peaks to filter white light band pass. The wavelength band belonging to the first peak and the wavelength band belonging to the second peak can be stably separated and filtered.
  • the present invention includes a nanowire transparent electrode manufactured by the above-described manufacturing method.
  • the nanowire transparent electrode according to the present invention will be described above. Since the nanowire transparent electrode is described above, the metal nanowire, the transparent insulating base, and the manufacturing method thereof are described above in the manufacturing method of the nanowire transparent electrode. Similar to Hanba.
  • the nanowire transparent electrode according to the present invention includes a transparent insulating substrate and a metal nanowire network, and satisfies relation 1 and relation 2.
  • Equation 1 ⁇ is the average surface resistance of a nanowire transparent electrode with a width of 10 cm and a length of 2 m. It can be equally divided into 500 divided regions, and the average surface resistance obtained by averaging the surface resistance in each divided region.
  • R loc (i) sequentially numbers the 500 divisions and means the surface resistance of the division area corresponding to i.
  • i is a natural number from 1-500.
  • the nanowire transparent electrode according to the present invention is 55 Q / sq.
  • R m characteristically R m, a very excellent electrical characteristics than characteristically with R m, more characteristic than below 45 ⁇ / sq with a ⁇ of less than 40 ⁇ / sq or less 50 ⁇ / sq or less (lower surface resistance)
  • the surface resistance measured in all divisions is between 0.5R m and 1.5R m , characteristically between 0.6R m and 1.4R m .
  • the refractive index of the transparent insulating base material may be 1.45 to 2.00, and the transparent insulating base material is applied to the transparent insulating base film and the base film.
  • the refractive index of the transparent insulating coating layer may be 1.45 to 2.00.
  • a nanowire transparent electrode according to an embodiment of the present invention is represented by the following Equation 3.
  • Equation 3 Ro is the average surface resistance of the nanowire transparent electrode, and R 5000 () .
  • Equation 3 The characteristic that satisfies Equation 3 is that the contact between the metal nanowires in the nanowire transparent electrode is melt-bonded to each other to form a stable one, and in the fusion process
  • the metal nanowires forming the metal nanowire network forming a continuous current path in the direction across the nanowire transparent electrode are practically intact, i.e., the metal nanowires forming the metal nanowire network.
  • the metal nanowires while maintaining their electrical and physical properties as they are fabricated during the sintering process, which is carried out for melt bonding at the metal nanowire junction, without being partially reversed, curved or shortened in diameter. It is a property that can be brought about by the stable melt bonding at the contact point.
  • nanowire transparent electrode relation 3 according to an embodiment of the present invention
  • the specified sheet resistivity change rate ((R 5000 ⁇ -R 0 ) / R 0 X 100) can be less than 3.0%, more specifically less than 2.0%, and even more specifically less than 1.5%.
  • the nanowire transparent electrode may have a thickness of 90%
  • the entire area of the nanowire transparent electrode having a size of 10 cm and a length of 2 m is equally divided into areas of 2 cm x 2 cm to be divided into 500 divided areas, and the average light transmittance or average haze days averaged by light transmittance or haze in each divided area.
  • these light transmittances and hazes may be light transmittances and hazes that satisfy each of the 500 partitions that equally divide the entire area of the nanowire transparent electrode having a size of 10 cm and a length of 2 m into an area of 2 cm x 2 cni.
  • a metal nanowire In the nanowire transparent electrode according to an embodiment of the present invention, a metal nanowire
  • the center of the first peak which is the relatively strongest absorption peak among the three spectra, is It can be obtained by filtering the white light to remove the light corresponding to the wavelength, and irradiating the filtered light.
  • Second spectrum Ultraviolet-visible light absorption of a reference body in which a solvent is volatilized after application of a wire dispersion liquid containing the transparent insulating base metal nanowire, an organic binder, and a solvent for dissolving the organic binder spectrum
  • the filtered light is advantageously band pass filtering, and the conditions of the band pass filtering and the light irradiation conditions are similar to or the same as those described above in the manufacturing method of the nanowire transparent electrode, and the method of manufacturing the nanowire transparent electrode is described above. D- containing all related content.
  • the electrical characteristics are hardly deteriorated under extreme bending test conditions of up to 1 mm, which is considered to be the radius when the paper is folded, and the electrical characteristics are extremely uniform in the large area.
  • the exceptionally low sheet resistance of the metal nanowires coated on the transparent insulating substrate does not cause warping, bending, or shortening of the short diameter of the metal nanowires during the photosintering process, and as-fabricated metal nanowires are produced. It is a characteristic that can be retained as it is applied and stable molten bond is formed at the contact point of the metal nanowire.
  • the characteristics of the nanowire transparent electrode according to one embodiment of the present invention which are kept as it is and are sintered may be defined by the parameters of the following Equations 4 and 5.
  • Equation 5 H TCF is the haze ( ⁇ 3 ⁇ 4) of the nanowire transparent electrode, and H REF is the haze (%) of the reference body before the wire dispersion is applied and photosintered on the transparent insulating substrate. . [136] (Equation 5)
  • T TCF is the light transmittance of the nanowire transparent electrode (%)
  • T REF is the light transmittance (%) of the reference body before the wire dispersion is applied and sintered on the transparent insulating substrate. to be.
  • the reference body is a state in which a wire dispersion including a solvent dissolving a transparent insulating base metal nanowire, an organic binder and an organic binder in the manufacturing process of the nanowire transparent electrode is applied. It can mean the state just before sintering.
  • Equation 4 and Equation 5 show that the haze ( ⁇ 3 ⁇ 4) and light transmittance (%) before and after calcination
  • a metal nanowire network includes an intersection region where two or more metal nanowires cross each other, and the height of the intersection region may satisfy the following Equation 6.
  • the cross section may be a state in which two or more metal nanowires forming a cross region are melt-bonded, that is, the cross section may be a region in which two or more metal nano wires cross each other and are melt-bonded.
  • Equation 6 dl denotes the height of two or more metal nanowires that form an intersecting area based on the surface of the transparent insulating substrate, and d2 denotes the same intersecting area based on the surface of the transparent insulating substrate.
  • the height of the other single metal nanowire of two or more metal nanowires, and he means the height of the intersecting area based on the surface of the transparent insulating substrate.
  • dl and d2 are the heights of the metal nanowires based on the surface of the transparent insulating substrate at the point where they are not in contact with other metal nanowires at least 100 nm in the length direction of the corresponding metal nanowires (shortening of the nanowires). Diameter, thickness) and the height measured experimentally by scanning electron microscopy.
  • Equation 6 is a parameter representing the degree of melt bonding in the cross section. If hc / (dl + d2) is less than 0.5 in Equation 6, damage is caused to the metal nanowires extended by the cross section due to excessive melting. Deformation, such as falling or rolling), and surface resistance may increase due to incomplete melt bonding. More particularly, for a nanowire transparent electrode according to one embodiment of the present invention, a metal nanowire network may satisfy a hc / (dl + d2) of 0.5 to 0.6.
  • a metal nanowire network includes an intersecting area where two or more metal nanowires cross each other, and a metal nanowire located at an upper portion of the intersecting area Equation 7 can be satisfied, where the metal nanowire network can satisfy Equation 7 , with or without Equation 6.
  • do is a metal nanowire based on the surface of a transparent insulating substrate in a metal nanowire located at an upper portion of an intersecting region, at least not in contact with other metal nanowires of at least 100 nm in the length direction of the nanowire.
  • Dnc is the height of the wire
  • dnc is the same metal nanowire located at the top of the intersecting area, and is within 50 nm (hereinafter, adjacent to the contact area) extending from the edge of the intersecting area in the length direction of the metal nanowire, the transparent insulating substrate
  • the height of the metal nanowires with respect to the surface of, where do and dnc may be the heights of the metal nanowires (short diameter and thickness of the nanowires) with respect to the surface of the transparent insulating substrate, respectively, and the scanning electron microscope It can be the height measured via.
  • the edges of the intersecting zones are not located at the point where other metal nanowires are located above or below the metal nanowires in the direction of the length of the metal nanowires in the intersecting region. It can mean the boundary between points.
  • Equation 7 is a characteristic condition that, as described above through Equation 3, even in extreme bending test conditions up to 1 mm, there is little deterioration of the electrical characteristics and can have low surface resistance. If it is less than 0.6do, the metal nanowire height (thickness) in the area near the contact is remarkably small, so that the area near the contact at the time of repeated deformation may be first destroyed (cut by fatigue). Also, as in Equation 7, dnc Is less than 0.6do, the current movement path in the area near the contact can be suddenly narrowed to increase the resistance.
  • the metal nanowire network has a dnc of 0.7 do to ldo, more specifically dnc 0.8do to ldo, more specifically dnc 0.85do to ldo, more specifically dnc 0.9do to ldo.
  • Equation 7 The characteristic of simultaneously satisfying Equation 7 while having extremely low surface resistance as shown in Equation 1 can be realized by the above-described manufacturing method feature of irradiating the filtered light with a very low fluence as described above. to be.
  • the present invention relates to an antistatic material, an electromagnetic wave shield, an electromagnetic wave absorber, comprising the nanowire transparent electrode described above or a nanowire transparent electrode manufactured by the above-mentioned manufacturing method.
  • Personal terminal personal terminal part
  • PDA personal terminal part
  • PSP PSP part
  • game machine game part
  • display device field emission display, BLU; back light unit
  • Liquid crystal display LCD
  • plasma display panel includes light emitting devices, medical devices, building materials, wallpaper, light source parts, touch panels, billboards, billboards, optical devices or military supplies. Electrode or as described above
  • FIG. 1 is an optical photograph of a process of manufacturing a nanowire transparent electrode by a manufacturing method according to the present invention using a roll-to-roll process.
  • PET polyethylene terephthalate
  • a wire dispersion containing 0.138% by weight Ross (HPMC) and the balance of water was used. The wire dispersion was applied to the substrate using a slot die.
  • 3 is the UV-Vis absorption spectrum (second spectrum) of the reference body in which the wire dispersion is spread on the PET film and the solvent is volatilized (photodeficient state) through the slot die .
  • 4 is a third spectrum obtained by removing the spectrum of 2 in the absorption spectrum of FIG.
  • the center wavelength of the relatively strong peak is weak.
  • the center wavelength of the second strongest peak was about 420 nm. Based on this, Xenon lamp (350 ⁇ 950nm wavelength) is used as the white light source,
  • Filtering was performed using a bandpass filter passing wavelengths from 400 nm to 500 nm (400-500 nm).
  • An optical system including a light source and a filter was constructed to irradiate filtered light. Wire dispersion through slot die in the roll-to-roll process described above.
  • a nanowire transparent electrode was continuously produced using the intention cloth as the first stage, and the light sintering to irradiate light filtered under conditions of 8J / cm 2 fluence and 10msec single pulse: condition.
  • FIG. 5 is a scanning electron micrograph of the manufactured nanowire transparent electrode. As shown in FIG. 5, it can be seen that the cross-sections intersecting the nanowires are stably melt-bonded, based on the PET film surface. The height of the intersection
  • the height of each of the two nanowires forming the cross section is 36.2 nm and 34.5 nm It can be seen that hc / (dl + d2) is 0.56.
  • the height and practicality of the silver nanowire in the region within 50 nm of the edge of the intersecting region do not come into contact with other metal nanowires at least 100 nm in the direction of the nanowire.
  • the surface resistance of each of the 500 divided areas was measured and averaged.
  • the average surface resistance of the nanowire transparent electrode was 35.2Q / sq. All sheet resistances measured in the area were 34.5 to 36.
  • the light transmittance of the manufactured nanowire transparent electrode was 90.33%, and the haze was 1.30 (%).
  • the divided area defined by equally dividing into the area of 2cmx2cm was observed. As a result of measuring the light transmittance and the haze, the light transmittance of all divided regions
  • FIG. 6 shows a cut nanowire transparent electrode cut into 50 mm x 50 mm at two edges.
  • the white light generated in the xenon lamp is filtered with a low pass filter that is cut off at 500 nm instead of the bend pass filter, thereby filtering the light filtered by low pass filtering.
  • Photosintering was performed under conditions of fluence of 8 J / cm 2 and a single unfolding condition of 10 msec.
  • the average sheet resistance of the films obtained by photosintering was found to be 58Q / sq., Which was not significant.
  • the average surface resistance of the film obtained by sintering was about 46 Q / sq when the sintering of the low pass filtered light with 500 nm cutoff was performed under fluence of 28 J / cm 2 and a single pill condition of 10 msec.
  • the surface resistance of each of the 500 divided areas defined by equal division of 2 C mx2 cm was in the range of 39.1 to 57.3 Q / sq. Confirmed.
  • the light filtered by high pass filtering was irradiated with a fluence of 8 J / cm 2 and a single pulse condition of 10 msec to perform light sintering. It was confirmed that the average film resistance of the obtained film was higher than that of the low pass filter with 500 nm cutoff, and that the sheet resistance similar to the reference body was obtained.
  • the white light generated in the xenon lamp is filtered using a low pass filter that is cut off at 400 nm instead of a band pass filter, thereby filtering the light filtered by low pass filtering.
  • Photosintering was performed under conditions of fluctuations of 8 J / cm 2 and a single pulse of 10 msec. The average sheet resistance of the film obtained by sintering increased more than the result of the low pass filter with 500 nm cut-off. This was confirmed.
  • the bandpass filtered light was manufactured in the same manner as the sample of FIG. 5, but with 6J / cm 2 or 10 J / cm 2 fluence instead of 8J / cm 2 fluence. Although the average surface resistance is slightly higher than the sample of 5, the electrical, optical and
  • the mechanical (bending test) also confirmed that nanowire transparent electrodes were produced, which had almost the same physical properties and uniformity as the sample of 5. However, less than 6 J / cm 2 was produced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Powder Metallurgy (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

본 발명은 초대면적 나노와이어 투명 전극에 관한것으로,본발명에 따른 나노와이어 투명전극은투명절연성기재및금속나노와이어네트워크를포함하며,폭 10cm 및 길이 2m 크기를 갖는 나노와이어 투명 전극의 평균 면저항인 Rm이 55 Ω/sq.이하이며,폭 10cm 및 길이 2m 크기를 갖는 동일한 나노와이어 투명전극의 전영역을 2cm x 2cm의면적으로 균등분할하여 규정된 500개의 분할영역 각각의면저항이 0.5Rm 내지 1.5Rm을 만족한다.

Description

명세서
발명의명칭:나노와이어투명전극및이의제조방법 기술분야
[1] 본발명은나노와이어투명전극및이의제조방법에관한것으로,상세하게, 전도성나노와이어에기반하며,뛰어난상업성을갖는나노와이어투명전극및 이의제조방법에관한것이다.
배경기술
[2] 나노와이어투명전극은높은광투과율의절연기재상에코팅된얇은
도전막을의미한다.나노와이어투명전극은적절한광학적투명성을가지며 표면도전성 (surface conductivity)을갖는다.표면도전성을갖는나노와이어투명 전극은평판액정표시장치 (flat liquid crystal displays),터치패널 (touch panel), 전자발광장치 (electroluminescent devices),및태양전지 (photovoltaic cells)등, 투명성과도전성이동시에요구되는분야에서투명전극으로널리사용되고 있으며,대전방지층 (anti-static layers)이나전자기파차폐층 (electromagnetic wave shielding layers)로도널리사용되고있다.
[3] 인듐주석산화물 (indium tin oxide; ITO)과같은금속산화물은우수한광학적 투명성및전기적도전성을가지나,물리적충격에의해손상되기쉽고, 물리적인변형이불가한단점과함께,제조시고비용이소모될뿐만아니라, 고온공정을요구하는한계가있다.
[4] 도전성폴리머의경우,그전기적특성및광학적특성이떨어질뿐만아니라, 화학적및장기적안정성이떨어지는문제가있다.
[5] 이에,우수한전기적,광학적특성을가지고,장기간안정적으로그물성을 유지할수있으며,물리적변형이가능한나노와이어투명전극에대한요구가 지속적으로증가하고있다.
[6] 이러한요구에따라,대한민국공개특허제 2013-0135186호과같이,절연성 기재상,은나노와이어와같은금속나노와이어의네트워크가유기매트릭스에 함입되어있는구조의나노와이어투명전극이개발되고있다.
[7] 그러나,이러한금속나노와이어기반나노와이어투명전극의경우,
대면적화시균일한전기적특성을얻기어렵고,연속공정을이용한대량생산에 적합한제조공정이확립되지않아상업화에어려운한계가있다.
[8]
발명의상세한설명
기술적과제
[9] 본발명은적어도 10cm이상의폭을가지며수내지수십미터에이르는길이를 갖는초대면적에서도균일한전기적,광학적특성을가져,상업성이극히 우수한나노와이어투명전극을제공하는것이다. [1이 본발명은균일하고우수한전기적,광학적특성을갖는나노와이어투명 전극을극히간단한공정으로신속하게제조할수있어,상업적제조공정의 구축이가능한나노와이어투명전극의제조방법을제공하는것이다.
[1 1]
과제해결수단
[12] 본발명에따른나노와이어투명전극은투명절연성기재및금속나노와이어 네트워크를포함하며,관계식 1및관계식 2를만족한다.
[13] (관계식 1)
[14] Rm < 55 Ω/sq.
[15] 관계식 1에서,!^은폭 10cm및길이 2m크기를갖는나노와이어투명전극의 평균면저항이다.
[16] (관계식 2)
[17] 0.5Rm≤Rloc(i) < 1.5Rm
[18] 관계식 2에서, Rn,은폭 10cm및길이 2m크기를갖는나노와이어투명전극의 평균면저항이며, Rloc는폭 10cm및길이 2m크기를갖는동일한나노와이어 투명전극의평균면저항이며 , Rloc는폭 10cm및길이 2m크기를갖는동일한 나노와이어투명전극의전영역을 2cmx2cm의면적으로균등분할하여규정된 500개의분할영역중,일분할영역에서의면저항을의미하며 , Rloc(i)는 500개의 분할영역에순차적으로번호를부여하되, i번에해당하는분할영역의면저항을 의미하고, i는 1 500의자연수이다.
[19] 본발명의일실시예에따른나노와이어투명전극에있어,투명절연성기재의 굴절률은 1.45내지 2.00일수있다.
[20] 본발명의일실시예에따른나노와이어투명전극은하기관계식 3을더
만족할수있다.
[21] (관계식 3)
[22] (R5( xrR0)/R0 X 100 < 3.0 (%)
[23] 관계식 3에서, R。은나노와이어투명전극의평균면저항이며, R50000。은
5cmx5cm크기의나노와이어투명전극을대상으로 1mm곡률반경하
500,000회의굽힘시험을수행한후의평균면저항이다.
[24] 본발명의일실시예에따른나노와이어투명전극은 90%이상의
광투과율 (Transmittance)및 1.5%이하의헤이즈 (Haze)를가질수있다.
[25] 본발명의일실시예에따른나노와이어투명전극에있어,금속나노와이어 네트워크는상기투명절연성기재상금속나노와이어,유기바인더및상기 유기바인더를용해하는용매를포함하는와이어분산액을도포한후,하기 제 3스펙트럼의흡광피크중상대적으로가장강도가큰흡광피크인제 1피크의 중심파장에해당하는광이제거되도록백색광을필터링하고,필터링된광을 조사하여수득될수있다. [26] 계 1스펙트럼 :상기투명절연성기재의자외선 -가시광흡광스펙트럼
[27] 제 2스펙트럼:상기투명절연성기재상금속나노와이어,유기바인더및상기 유기바인더를용해하는용매를포함하는와이어분산액을도포한후,용매가 휘발제거된상태인기준체의자외선-가시광흡광스펙트럼
[28] 제 3스펙트럼:상기제 2스펙트럼에서제 1스펙트럼을제거하여수득되는
: 3fl E
一— 1 ~ - ᄆ
[29] 본발명의일실시예에따른나노와이어투명전극은상술한와이어분산액의 도포및필터링된광을조사하는광소결로수득되며,하기관계식 4및관계식 5를더만족할수있다.
[30] (관계식 4)
[31] 0.95 < HTCF/HREF < 1.05
[32] 관계식 4에서 HTCT는나노와이어투명전극의헤이즈 (%)이며 , HREF는상기투명 절연성기재에상기와이어분산액이도포되고광소결되기전상태인기준체의 헤이즈 (%)이다.
[33] (관계식 5)
[34] 0.95 < TTCF TREF < 1.05
[35] 관계식 5에서 ^„는나노와이어투명전극의광투과율 (%)이며 , TREF는상기 투명절연성기재에상기와이어분산액이도포되고광소결되기전상태인 기준체의광투과율 (%)이다.
[36] 본발명의일실시예에따른나노와이어투명전극에 있어,금속나노와이어 네트워크는둘이상의금속나노와이어가서로교차하는교차영역을포함하며, 교차영역의높이는하기관계식 6을만족할수있다.
[37] (관계식 6)
[38] 0.5 < hc/(dl + d2) < 0.7
[39] 관계식 6에서 dl은투명절연성기재의표면을기준으로교차영역을이루는둘 이상의금속나노와이어중일금속나노와이어의높이를의미하며 , d2는투명 절연성기재의표면을기준으로동일교차영역을이루는둘이상의금속 나노와이어중다른일금속나노와이어의높이를의미하며, he는투명절연성 기재의표면을기준으로한교차영역의높이를의미한다.
[40] 본발명의일실시예에따른나노와이어투명 전극에있어,금속나노와이어 네트워크는둘이상의금속나노와이어가서로교차하는교차영역을포함하며, 교차영역에서상부에위치하는금속나노와이어는하기관계식 7을만족할수 있다.
[41] (관계식 7)
[42] 0.6do < dnc < ldo
[43] 관계식 7에서 do는교차영역에서상부에위치하는금속나노와이어에서, 나노와이어의길이방향으로적어도 lOOrnn이상다른금속나노와이어와 접하지않는지점에서의투명절연성기재의표면을기준으로한금속 나노와이어의높이이며, dnc는교차영역에서상부에위치하는동일금속 나노와이어에서,교차영역의가장자리에서금속나노와이어의길이방향으로 연장되는 50nm이내의영역에서,투명절연성기재의표면을기준으로한금속 나노와이어의높이이다.
[44] 본발명에따른나노와이어투명전극의제조방법은투명절연성기재의
자외선-가시광흡광스펙트럼인제 1스펙트럼,상기투명절연성기재상표면 플라즈몬이발생하는금속나노와이어,유기바인더및유기바인더를용해하는 용매를포함하는와이어분산액을도포한후,용매가휘발제거된상태인 기준체의자외선 -가시광흡광스펙트럼인제 2스펙트럼및제 2스펙트럼에서 제 1스펙트럼을제거하여수득된제 3스펙트럼을기준으로,투명절연성기재상 와이어분산액을도포한후,제 3스펙트럼의흡광피크중상대적으로가장 강도가큰흡광피크인제 1피크의중심파장에해당하는광이제거되도록 백색광을필터링하고,필터링된광을조사하여광소결하는단계를포함한다.
[45] 본발명의일실시예에따른나노와이어투명 전극의제조방법에있어,필터링 시,제 3스펙트럼의흡광피크중상대적으로두번째로강도가큰흡광피크인 제 2피크의중심파장에해당하는광이통과되도록필터링이수행될수있다.
[46] 본발명의일실시예에따른나노와이어투명전극의제조방법에있어,필터링 시,계 2피크의중심파장의 1.3배를초과하는파장의광이제거되도록필터링이 수행될수있다.
[47] 본발명의일실시예에따른나노와이어투명전극의제조방법에있어,
필터링은밴드패스필터링이며,필터링된광의최소파장은제 1피크의중심 파장과제 2피크의중심파장사이에위치할수있다.
[48] 본발명의일실시예에따른나노와이어투명전극의제조방법에있어,
필터링된광의최대파장과최소파장간의차인대역폭은 150nm이하일수있다.
[49] 본발명의일실시예에따른나노와이어투명 전극의제조방법에있어,파장을 기준한밴드패스필터의통과대역의최소파장은 380내지 410nm이며,최대 파장은 430nm내지 550nm일수있다.
[5이 본발명의일실시예에따른나노와이어투명 전극의제조방법에있어,
필터링된광을이용한광소결시,와이어분산액이도포된투명절연성기재에 조사되는필터링된광의플루언스 (fluence)는 6내지 10J/cm2일수있다.
[51] 본발명의일실시예에따른나노와이어투명 전극의제조방법에있어,와이어 분산액의도포및광소결은연속공정일수있다.
[52] 본발명의일실시예에따른나노와이어투명전극의제조방법은형태로
권취된투명절연성기재를풀어주는언와인딩단계;풀어진투명절연성기재에 와이어분산액의도포하는도포단계;와이어분산액이도포된투명절연성 기재에필터링된광을조사하는광소결단계;광이조사된투명절연성기재를 세척하고다시롤형태로감아주는리와인딩단계;를포함할수있다.
[53] 본발명은상술한제조방법으로제조된나노와이어투명전극을포함한다. 발명의효과
[54] 본발명에따른나노와이어투명전극은, 10cm이상의폭및수 m에이르는 길이에이르는초대면적을가짐에도,우수한광투과율,낮은헤이즈와함께 현저하게낮은면저항과함께초대면적전영역에서극히균일한면저항을가져 상업성이매우우수한장점이있다.또한,본발명에따른나노와이어투명 전극은 1mm에이르는극한의굽힘시험조건에서 500,000회에이르는반복 시험에도면저항감소율이 3.0%이하,구체적으로는 2.0%이하,보다더 구체적으로는 1.5%이하로,반복적변형에도그전기적특성감소가현저하게 억제된장점이있다.
[55] 본발명에따른나노와이어투명전극의제조방법은와이어분산액의도포및 필터링된광의조사라는극히간단한공정을통해전기적광학적특성이매우 뛰어나고초대면적에서도균일한특상을갖는나노와이어투명전극을제조할 수있어,롤투롤등연속공정올통해고품질의나노와이어투명 전극을대량 생산할수있어상업성이극히뛰어난장점이있다.
도면의간단한설명
[56] 도 1은본발명의일실시예에따라롤투를공정으로나노와이어투명전극을 제조하는공정을관찰한광학사진이며,
[57] 도 2는본발명의일실시예에따라,투명절연성기재의자외선 -가시광흡광 스펙트럼인제 1스펙트럼을측정도시한도면이며,
[58] 도 3은본발명의일실시예에따라,와이어분산액이도포된투명절연성
기재의자외선ᅳ가시광흡광스펙트럼인계 2스펙트럼을측정도시한도면이며,
[59] 도 4는본발명의일실시예에따라,제 2스펙트럼에서제 1스펙트럼을제거하여 수득된제 3스펙트럼을도시한도면이며,
[60] 도 5는제조된나노와이어투명전극을관찰한주사전자현미경사진이며, [61] 도 6은제조된나노와이어투명전극의굽힘시험을관찰한광학사진이다.
[62]
발명의실시를위한형태
[63] 이하첨부한도면들을참조하여본발명에따른나노와이어투명전극및이의 제조방법을상세히설명한다.다음에소개되는도면들은당업자에게본발명의 사상이충분히전달될수있도록하기위해예로서제공되는것이다.따라서,본 발명은이하제시되는도면들에한정되지않고다른형태로구체화될수도 있으며,이하제시되는도면들은본발명의사상을명확히하기위해과장되어 도시될수있다.이때,사용되는기술용어및과학용어에있어서다른정의가 없다면,이발명이속하는기술분야에서통상의지식을가진자가통상적으로 이해하고있는의미를가지며,하기의설명및첨부도면에서본발명의요지를 불필요하게흐릴수있는공지기능및구성에대한설명은생략한다.
[64] 본출원인은금속나노와이어기반나노와이어투명전극이상용화되기 위해서는,대면적화및신속하고간단한연속공정을통한대량생산화가 필수적으로선결되어야함을주목하고,이에대한연구를지속적으로
수행하였다.
[65] 그결과,금속나노와이어의도포균질성을확보하기위해서는유기바인더를 함유하는금속나노와이어분산액을사용하여야하며,금속나노와이어가 도포된투명절연성기재에백색광을조사할때,투명절연성기재에도포된 상태의금속나노와이어흡광스펙트럼에서흡광피크중상대적으로가장 강도가큰흡광피크에해당하는파장대역의광이광소결에오히려악영향을 미침을발견하였다.
[66] 이러한발견에기반하여,연구를보다심화한결과,투명절연성기재에도포된 상태의금속나노와이어의자외선-가시광 (UV- Vis)흡광스펙트럼에서일특정 피크에해당하는파장의광은제거하되,다른일특정피크에해당하는파장의 광은통과하도록백색광을필터링하여광을조사하는경우,현저하게낮은 플루언스로도,나노와이어나투명절연성기재가손상되지않으면서도, 현저하게낮은면저항을갖는나노와이어투명 전극이제조되며,또한,초 대면적에서도실질적으로거의동일한면저항을갖는극히균일한특성의 나노와이어투명전극이제조됨을확인하였다.
[67] 또한,일특정피크에해당하는파장의광은제거하되 ,다른일특정피크에 해당하는파장의광은통과하도록백색광을필터링함과동시에,열선에가까운 장파장의광들을제거하여,조사되는광의모든에너지를통과는일특정피크에 해당하는파장대역으로집중시켜광소결을하는경우,나노와이어의접점에 . 위치하는유기바인더가분해되며극히효과적으^광소결됨을발견하였다.즉, 필터링되지않은백색광을조사하는경우광의플루언스를증가시키는경우 유기바인더의분해전나노와이어나투명기재의손상이발생하여자외선과 같은유기바인더분해공정이요구된다.그러나,밴드패스필터를이용하여 투명절연성기재에도포된상태의금속나노와이어의자외선-가시광 (UV- Vis) 흡광스펙트럼상특정피크에해당하는광의파장대역으로모든광에너지를 집중시키는경우,현저하게낮은광플루언스에서도유기바인더가분해되며 유기바인더의분해및광소결이단일한광조사 (필터링된광의조사)에의해 동시발생함을발견하여,본발명을출원하기에이르렀다.
[68] 알려진바와같이,자외선-가시광흡광스펙트럼은자외선-가시광의파장별 흡광도 (absorbance)를의미하는것으로,조사되는광의파장을 x축으로,투과하는 복사량 (1 에대한조사된복사량 (10)의비율 ( 의로그 (log)값인흡광도를 y축으로갖는스펙트럼이다.
[69] 본발명에있어,제 1스펙트럼은나노와이어투명전극제조에사용되는투명 절연성기재자체의자외선 -가시광흡광스펙트럼이며,게 2스펙트럼은 제 1스펙트럼측정시사용된투명절연성기재와동일한기재에금속
나노와이어,유기바인더및유기바인더를용해하는용매를포함하는와이어 분산액을도포한후용매가휘발제거되어수득된기준체의자외선 -가시광흡광 스펙트럼이다.제 3스펙트럼은제 2스펙트럼에서게 1스펙트럼을제거하여 산출된것으로,제 2스펙트럼의파장별흡광도값에서제 1스펙트럼의동일 파장에서의흡광도값을뺀흡광도차를 y축의값으로갖는스펙트럼이다.즉, 제 1스펙트럼이 ^= (χ)(χ=자외선-가시광의파장, y,=흡광도 )의함수로
표현되고,제 2스펙트럼이 y2=f2(X)(x=자외선-가시광의파장, y2=흡광도)의함수로 표현된다가정할때,제 3스펙트럼은 y^y^y f^x xXx 자외선-가시광의파장, y3=파장별제 1스펙트럼과제 2스펙트럼간의흡광도 로표현될수있다.이때, 거 1 1스펙트럼또는계 2스펙트럼은종래자외선-가시광흡광스펙트럼측정시 사용되는상용프로그램등을통해,산란이나노이즈보정,
평활화 (smoothing)등의데이터처리가수행된것일수있음은물론이다.
[70] 또한,일흡광스펙트럼 (제 1스펙트럼,계 2스펙트럼또는제 3스펙트럼)에서
파장에따른흡광도가연속적으로증가하며정점에이른후다시연속적으로 감소하는 (흡광스펙트럼의 1차미분스펙트럼상연속적으로양의값에서 0을 거쳐음의값으로변화되는)경우일흡광피크로인식될수있다.흡광피크의 중심에서의파장은피크의정점에해당하는파장,즉,흡광스팩트럼의 1차미분 스펙트럼상양의값에서음의값으로변화될때 0인지점의파장을의미할수 있으며,흡광피크의중심에서의파장을중심파장또는피크파장으로,흡광 피크의중심에서의흡광도값을피크 (의 )강도또는강도로지칭한다.
[71] 상술한바와같이,본발명에따른나노와이어투명전극의제조방법은투명 절연성기재의자외선-가시광흡광스펙트럼인게 1스펙트럼,투명절연성기재 상표면플라즈몬이발생하는금속나노와이어,유기바인더및유기바인더를 용해하는용매를포함하는와이어분산액을도포한후,용매가휘발제거된 상태인기준체의자외선 -가시광흡광스펙트럼인제 2스펙트럼및
제 2스펙트럼에서계 1스펙트럼을제거하여수득된제 3스펙트럼을기준으로, 투명절연성기재상와이어분산액을도포한후,제 3스펙트럼의흡광피크중 상대적으로가장강도 (피크강도)가큰흡광피크인제 1피크의중심파장 (이하, λ fpcak)에해당하는광이제거되도록백색광을필터링하고,필터링된광을조사하여 광소결하는단계를포함한다.
[72] 이때,제 1스팩트럼및계 2스펙트럼은흡광스펙트럼에영향을미칠수있는 모든조건이서로동일한상태에서측정대상물만이달라진상태로측정된 스펙트럼일수있음은물론이다.게 2스펙트럼에서제 1스펙트럼을제거하여 저 13스펙트럼을수득함에따라,제 3스펙트럼은투명절연성필름상에도포되고 광소결되지않은상태의금속나노와이어들자체의흡광스펙트럼에상웅할수 있다.
[73] 백색광의필터링시,계 3스펙트럼의흡광피크중상대적으로두번째로
강도 (피크강도)가큰흡광피크인제 2피크의중심파장에해당하는광이 통과되도록필터링이수행되는것이유리하다. [74] 보다구체적으로상술하면,필터링 시제 3스펙트럼에서 300내지 600nm의 파장범위에서상대적으로가장강도 (피크강도)가큰흡광피크의증심파장에 해당하는광은제거됨과동시에, 300내지 600nm의파장범위에서상대적으로 두번째강도 (피크강도)가큰흡광피크의중심파장에해당하는광은 통과되도록백색광의필터링이수행될수있다.
[75] 제 1피크의중심파장 (이하, λίρκΛ)에해당하는광은제거되며제 2피크의중심 파장 (이하, speak)에해당하는광은통과시키는필터링에의해,금속나노와이어 및투명절연성기재의손상이나변형없이,도포된상태그대로금속
나노와이어간의접촉 (교차)점이안정적으로용융결착될수있으며,
대면적에서도모든접촉 (교차)점이균일하고동등하게용융결착될수있다.
[76] 다양한크기의은나노와이어및다양한종류의투명절연성기재를대상으로 한선행실험을통해,제 3스펙트럼에서제 1피크와저 12피크가 300내지 600nm, 구체적으로 350내지 450ηπι의파장범위에위치함을확인하였으며,모든 경우에서제 1피크의중심파장이제 2피크의중심파장보다단파장임올 확인하였다.
[77] 단순액상에분산된은나노와이어의자외선-가시광흡광스펙트럼의경우 단일한흡광피크를갖는점및은나노와이어가투명절연성기재에도포됨에 따라기재에의한흡광은제거되었음에도불구하고제 1피크와제 2피크를 포함하는적어도둘이상의흡광피크가형성되는점을고려하면,제 1피크와 저 12피크는은나노와이어와절연성투명기재의접촉및은나노와이어간의 접촉으로부터기인한것으로해석할수있다.이러한측면에서이러한해석에 한정되는것은아니나,제 3스펙트럼에서의제 1피크와제 2피크는금속 나노와이어간의접점에서발생하는국부표면플라즈몬공명 (LSPR)과전파형 플라즈몬공명 (PSPR)같은그이외의플라즈몬공명에기인한피크로해석할수 있으며,금속나노와이어간의접점인핫스팟에서발생하는국부표면플라즈몬 공명은그매질이공기이며,투명절연성기재와같이은나노와이어와접촉하는 공기이외의매질의굴절률은공기보다큼에따라,전파형플라즈몬공명 (PSPR) 같은국부표면플라즈몬 -공명 (LSPR)이외의플라즈몬공명파장은 LSPR파장 기준청색이동 (blue-shift)할것으로예측가능하다.
[78] 이에,제 2피크는나노와이어간의접점 (적어도공기를사이에둔
나노와이어간의접점)에서흡수되는국부표면플라즈몬공명에의한광흡수로 해석할수있으며,제 1피크는전파형플라즈몬공명 (PSPR)같은국부표면 플라즈몬공명 (LSPR)이외의플라즈몬공명에의한광흡수로해석할수있다. 즉,국부표면플라즈몬공명 (LSPR)에의한광흡수 (제 2피크)는나노와이어간의 접점올광소결 (용융결착)시켜역할을수행하나,금속나노와이어와공기이외의 매질간의작용에의해발생하는전파형플라즈몬공명 (PSPR)과같은또다른 형태의플라즈몬공명은오히려균일한광접합을저해하는요소로작용하여, 이를제거하는것이유리함을지시할수있다. [79] 상술한바와같이,제 1피크의중심파장이제 2피크의중심파장보다단파장일 수있고,유리하게는,낮은플루언스에의해안정적인광소결이이루어질수 있으며,자외선조사와같은별도의광조사 (필터링된광이외의광조사)를 배제할수있고,기재의손상등을방지하기위해,필터링시제 2피크의중심 파장 ( speak)의 1.3배를초과하는파장의광이제거되도록필터링이수행될수 있다.
[80] 이러한해석에제한되는것은아니나,필터링시계 1피크의중심파장이
제거되고동시에제 2피크의중심파장 ( speak)의 1.3배를초과하는파장의광이 제거되도록백색광을필터링한다함은,광조사시,국부표면플라즈몬공명 이외의플라즈몬공명발생을원천적으로차단하는것이며,조사되는광의모든 에너지를대기중노출된상태의금속나노와이어간접점의국부표면플라즈몬 공명파장대역으로집중시켜광소결을수행함을의미하는것일수있다.
[81] 선행된실험을통해,필터링되지않은백색광을조사하는경우광의
플루언스가증가함에따라유기바인더의분해전나노와이어나투명기재의 손상이발생하여자외선조사에의한유기바인더선제거공정이요구됨을 확인한바있다.그러나,광을필터링하여국부표면플라즈몬공명파장 대역으로모든광에너지를집중시키는경우현저하게낮은광플루언스에서도 나노와이어간접점영역에위치하는유기바인더가분해되며유기바인더의 분해및광소결이단일한광조사 (밴드패스필터링된광의조사)에의해동시 발생함을확인하였다.
[82] 또한,제 1피크의중심파장 ( ak)에해당하는광은제거되며제 2피크의중심 파장 speak)에해당하는광은통과시키며,제 2피크의중심파장 speak)의 1.3배를 초과하는파장의광이제거되는필터링에의해,금속나노와이어간의다양한 형태의접점및일정크기분포 (단축직경의크기분포)를갖는금속
나노와이어간의접점에서안정적으로용융결착이발생할수있다.
[83] 보다유리하고실질적으로,백색광의필터링은밴드패스필터링일수있으며, 필터링된광의최소파장 (쒀은게 1피크의중심파장 (λφΜ 과상기제 2피크의 중심파장 ( spcak)사이에위치할수있다.
[84] 이를수식으로나타내면, Xfpeak < λωπ < speak를만족할수있으며,밴드패스
필터링된광의최대파장을 ^匪로표기할때, sped.k < λ^χ < 1.3 ^를만족할수 있다.이때,주파수와파장은역수의관계를가짐에따라, > 는백색광을 필터링에사용되는밴드패스필터의저역차단주파수 ( 에상웅할수있으며, λ fmin는밴드패스필터의고역차단주파수 (fH)에상웅할수있고,필터링된광의 파장대역,즉, imm내지 )^의파장대역은밴드패스필터의대역폭 (B)에 상응할수있다.
[85] 실질적인일예로,밴드패스필터링된광의최소파장 ( ^)과최대파장 fmax) 간의차인대역폭은 150nm이하,좋게는 lOOnm이하,실질적으로는 50nm내지 lOOnm일수있다. [86] 실질적인일예로,밴드패스필터링된광의최소파장 (λΜ„)은 380내지
410nm이며,최대파장 ( max> 430nm내지 550nm일수있고,보다실질적인예로, 최소파장 (λ η 390내지 410nm이며,최대파장쑤)은 430내지 520nm일수 있다.
[87] 본발명의일실시예에따른나노와이어투명 전극의제조방법은
제 3스펙트럼을기반으로,밴드패스필터링에의해금속나노와이어간의 교차영역 (접점)에서금속나노와이어를접합시키는작용을하는대역의광을 선별하여조사함에따라,조사되는광 (필터링된광)의플루언스가현저히낮아도 안정적인광소결이발생할수있다.
[88] 구체적인일예로,필터링된광을이용한광소결시,와이어분산액이도포된 투명절연성기재에조사되는필터링된광의플루언스 (fluence)는 6내지 10J/cm2 일수있다.필터링된광및이러한낮은플루언스는광소결시금속나노와이어 및투명절연성기재에미치는악영향 (금속나노와이어의뒤틀림이나변형, 부분적단축직경의감소,기재의손상등)을현저하게감소시킬수있다.나아가, 필터링된광을이용한광소결시,단일펄스로광조사가이루어질수있다.즉, 광소결을위해 1회 (1개의)광필스만이조사될수있다.이는극히낮은
플루언스로광소결이이루어짐으로써가능한조건이다.실질적으로 5내지 20msec,보다실질적으로 5내지 15msec의폭을갖는단일펄스로광이조사될수 있다.그러나,이러한단일필스조사에의한광소결은필터링된광및낮은 플루언스에의한광소결이라는본발명의기술적우수함에의해구현가능한 것으로,본발명이단일필스의광조사로한정될수없음은물론이다.필요시, 상술한플루언스 (총조사된플루언스)를만족하도록다필스로광이조사될수 있음은물론이며,다펄스조사시펄스폭및펄스간간격은각각수십내지수백 fisec수준일수있음은물론이다.
[89] 구체적으로,제 3스펙트럼을기반으로,밴드패스필터링에의해
금속나노와이어를접합시키는작용을하는대역의광이선별되어조사됨과 동시에현저하게낮은플루언스로광이조사됨에따라,기재에도포된상태의 금속나노와이어들이그배열및형상이광조사전과실질적으로동일하게 유지되며금속나노와이어간의접점에서용융결착이이루어질수있다.
[9이 본발명의일실시예에따른제조방법에있어,와이어분산액의도포및
광소결은연속공정일수있다.즉,와이어분산액의도포및광소결각각이 연속적으로수행되는연속적제조방법일수있다.이러한연속적제조방법은 나노와이어투명전극의대량생산을위해필수적이나,종래에는전기적및 광학적특성,무엇보다전기적특성의균일성이담보되지않아연속적제조에 어려움이있었다.
[91] 그러나,본발명의일실시예에따른제조방법은자외선과같은별도의광
조사가불필요하며,상술한바에따라필터링된 (밴드패스필터된)백색광을면 형태로조사하여광소결이수행됨에따라,극히신속하고간단하며대면적 공정에기반하여연속공정에적합하며,대면적에서도전기적및광학적특성이 극히균일한나노와이어투명전극이제조될수있다.그러나,본발명이연속식 공정으로한정될수없음은물론이며,불연속적공정으로이루어지는배치식 공정이배제되는것은아니다.
[92] 와이어분산액의도포는인쇄를포함할수있으며,구체적으로잉크젯프린팅, 미세접촉프린팅,임프린팅,그라비아프린팅,그라비아 -옵셋프린팅, 플렉소그래피프린팅,오프셋 /리버스오프셋프린팅,술롯다이코팅,바코팅, 블레이드코팅,스프레이코팅,딥코팅,롤코팅등탄소나노튜브나나노와이어와 같은 1차원나노구조를함유하는분산액의도포에사용되는것으로알려진 어떠한방법을사용하여도무방하다.다만,연속식공정인경우,그라비아 프린팅,그라비아 -옵셋프린팅,플렉소그래피프린팅,오프셋 /리버스오프셋 프린팅,슬롯다이코팅,바코팅등연속도포에보다유리한도포방법을 사용하는것이좋다.
[93] 상술한도포가수행된후와이어분산액내용매 (금속나노와이어이
분산매이자유기바인더를용해하는용매)를휘발제거하기위한건조단계가더 수행될수있으나,인쇄단계와광소결을위한광조사단계와시간간격이 도포된용매가휘발제거되기에충분한시간인경우,별도의건조단계가 수행되지않을수도있다.
[94] 즉,건조단계는공정설계에따라선택적으로수행될수있으며,건조는상온 휘발건조,열풍내지냉풍건조,가열건조 (열에너지또는적외선에너지등) 또는이들의조합을이용할수있으며,열풍이나가열건조시기재에악영향을 미치지않으며용매를휘발제거할수있는온도 (일예로, 40내지 80°C)로건조가 수행될수있음은물론이다.또한,밴드패스필터링된백색광의광조사에의한 소결단계가수행된후,건조단계와유사하게,필요시물등을이용한세척 단계가더수행될수있음은물론이다.
[95] 본발명의일실시예에따른제조방법은롤투롤연속공정일수있다.즉,롤 형태로권취된투명절연성기재를풀어주는언와인딩단계;풀어진투명절연성 기재에와이어분산액을도포하는도포단계;와이어분산액이도포된투명 절연성기재에필터링된광을조사하는광소결단계;광이조사된투명절연성 기재를세척하고다시롤형태로감아주는리와인딩단계;를포함할수있다. 광소결단계가밴드패스필터링된광의단일필스조사일수있음에따라, 롤투롤연속공정의공정속도 (즉,언와인딩되어도포단계및광소결단계가 수행되고리와인딩되는속도)는 10mm/sec,구체적으로 30mm/sec,보다
구체적으로 50mm/sec이상일수있다.
[96] 상술한제조방법및후술하는나노와이어투명전극에서,금속나노와이어는 표면플라즈몬이발생하는금속의나노와이어를의미할수있다.구체적인일 예로,표면플라즈몬을갖는전도성나노와이어는,금,은,리튬,알루미늄및 이들의합금등에서하나또는둘이상선택되는물질의나노와이어일수있으나, 본발명이이에한정되는것은아니다.금속나노와이어의종횡비및단축 직경 (평균)은투명도 (광투과율)저하를최소화하면서도나노와이어들이서로 접하여안정적인전류이동경로를제공하는전도성네트워크형성에유리한 종횡비및단축직경이면무방하다.실질적인일예로,금속나노와이어의 종횡비는 50내지 20000일수있으며,단축평균직경이 5내지 100 nm일수 있으나,본발명이이에한정되는것은아니다.
[97] 필터링되는대상인백색광은제논램프 (Xenon Lamp)광일수있으나,이에 한정되는것은아니며,제논램프와유사하게종래백색광의광원으로알려진 어떠한광원을사용하여도무방하다.제논플래시 램프는실린더형상의밀봉된 석영튜브안에주입된제논가스를포함하는구성으로이루어진다.이러한제논 가스는입력받은전기에너지로부터광에너지를출력하여 , 50%가넘는에너지 변환율을갖는다.또한,제논램프는내부양쪽에양극및음극형성을위해 텅스텐과같은금속전극이형성된다.이러한구성으로이루어진램프에 전원부로부터발생된높은전원및전류를인가받으면,내부에주입된제논 가스가이온화되고,양극과음극사이로스파크가발생된다.이때,램프 내부에서발생한스파크를통해램프내부에는아크플라즈마형상이발생하고, 강한세기의광이발생된다.여기서발생된광은 160nm내지 2.5mm사이의 자외선부터적외선까지의넓은파장대역의광스펙트럼을내장하고있기 때문에제논램프는백색광원의일종으로잘알려져있다.
[98] 와이어분산액에함유되는유기바인더는분자량 (중량평균분자량)이 5x105 이하,구체적으로는 2xl05이하인저분자량의천연폴리머또는저분자량의합성 폴리머일수있다.이때실질적인일예로,유기바인더는분자량이 3,000이상일 수있으나,본발명이유기바인더의분자량하한에의해한정될수없음은 물론이다.
[99] 실질적으로,유기바인더는폴리에틸렌글리콜 (PEG),폴리비닐피를리돈 (PVP), 폴리비닐알콜 (PVA),다당류및다당류유도체에서하나또는둘이상선택될수 있다.
[10이 보다실질적으로,유기바인더는분자량이 3,000내지 50,000,좋게는 3,000내지 20,000인저분자량의폴리에틸렌글리콜 (PEG),분자량이 3,000내지 60,000인 저분자량의폴리비닐피를리돈 (PVP),분자량이 3,000내지 50,000인저분자량의 폴리비닐알콜 (PVA),분자량이 3,000내지 200,000,좋게는 3,000내지 100,000인 저분자량의다당류및분자량이 3,000내지 200,000,좋게는 3,000내지 100,000인 저분자량의다당류유도체에서하나또는둘이상선택될수있다.
[101] 저분자량의다당류는글리코겐,아밀로오스,아밀로펙틴,칼로오스,아가,알긴 알지네이트,펙틴,카라기난,셀를로오스,키틴,키토산,커드란,덱스트란, 프럭탄 (fructane),콜라겐,젤란검 (gellan gum),검아라빅,전분,잔탄,검 트래거캔스 (gum tragacanth),카라얀 (carayan),카라빈 (carabean),글루코만난또는 이들의조합을포함할수있다.다당류유도체는샐를로스에스테르또는 셀를로스에테르를포함할수있다.
[102] 유기바인더는저분자량의셀를로스에테르일수있으며,셀롤로스에테르는 카복시 -C1-C3-알킬셀를로스,카복시 -C1-C3-알킬하이드록시 -C1-C3-알킬 셀를로스, C1 -C3-알킬샐를로스, C1-C3-알킬하이드록시 -C1 -C3-알킬샐를로스, 하이드록시 -C1 -C3-알킬셀를로스,흔합된하이드록시 -C1-C3-알킬셀를로스 또는이들의혼합물을포함할수있다.
[103] 일예로,카복시 -C1 -C3-알킬샐를로스는카복시메틸샐를로스등을포함할수 있고,카복시 -C1-C3-알킬하이드록시 -C1-C3-알킬샐를로스는카복시메틸 하이드록시에틸셀를로스등을포함할수있으마, C1-C3-알킬셀를로스는 메틸셀롤로스등을포함할수있고, C1 -C3-알킬하이드록시 -C1-C3-알킬 셀를로스는하이드록시에틸메틸샐를로스,하이드록시프로필메틸샐를로스, 에틸하이드록시에틸셀를로스또는이들의조합둥을포함할수있고,
하이드록시 -C1-C3-알킬샐를로스는하이드록시에틸셀를로스,
하이드록시프로필샐를로스또는이들의조합을포함할수있으며,흔합된 하이드록시 -C1-C3-알킬썰를로스는하이드록시에틸하이드록시프로필
셀롤로스,또는알콕시하이드록시에틸하이드록시프로필셀를로스 (상기 알콕시그룹은직쇄또는분지쇄이고 2내지 8개의탄소원자를함유한다)등을 포함할수있다.
[104] 와이어분산액은 0.1내지 5중량 %,좋게는 αι내지 1중량 보다좋게는 0.】 내지 0.7중량 %의유기바인더를함유할수있다.이러한유기바인더의함량은 와이어분산액의도포시,금속나노와이어가기재상균일하고균질하게도포및 고착시킬수있으면서도금속나노와이어사이에존재하는유기바인더를 최소화할수있는함량이다.
[105] 와이어분산액내금속나노와이어의함량은목적하는용도에따라적절히 조절될수있다.구체적으로,용매 100중량부를기준으로 0.01내지 70중량부, 보다구체적으로 0.01내지 10중량부,보다더구체적으로 0.05내지 5중량부, 더욱더구체적으로 0.05내지 0.5중량부의금속나노와이어를함유할수 있으나,이에한정되는것은아니며,도포방법이나용도를고려하여적절히 조절될수있음은물론이다.
[106] 와이어분산액에함유된용매는유기바인더를용해할수있으며금속
나노와이어의분산매로작용가능하고,용이하게휘발제거될수있는용매이면 사용가능하다.구체적인일예로,용매는 2-부톡시에틸아세테이트,프로필렌 글리콜모노메틸에테르아세테이트,디에틸렌글리콜모노에틸에테르 아세테이트,에틸렌글리콜부틸에테르,시클로핵사논,시클로핵사놀,
2-에톡시에틸아세테이트,에틸렌글리콜디아세테이트,테르피네올 (terpineol), 이소부틸알코올,물또는이들의혼합용액을들수있으나,본발명이와이어 분산액에함유된용매의종류에의해한정될수없음은물론이다.
[107] 투명절연성기재,또는투명절연성기재가투명 절연성베이스필름및투명 절연성코팅층을포함하는적층기재일때,기재는물성적으로딱딱한 (rigid) 또는플렉시블 (flexible)할수있다.딱딱한투명절연성기재또는투명절연성 베이스필름의일예로,유리,폴리카보네이트,아크릴폴리에틸렌
테레프탈레이트등을들수있으며,플렉시블한투명절연성기재,투명절연성 베이스필름또는투명절연성코팅층의일예로,폴리에스테르나프탈레이트및 폴리카보네이트와같은폴리에스테르계;선형,분지 (brancned),및환형 폴리을레핀과같은폴리올레핀계;폴리염화비닐,폴리염화비닐리덴,폴리비닐 아세탈,폴리스티렌및폴리아크릴과같은폴리비닐계;셀를로오스
트리아세테이트 (cellulose triacetate)나셀를로오스아세테이트 (cellulose acetate)와 같은셀를로오스에스테르염기계;폴리에테르설폰과같은폴리설폰계;
폴리이미드계또는실리콘계등을들수있으나,이에한정되는것은아니다. 다만,금속나노와이어와접하는투명절연성기재의표면 (코팅층또는투명 절연성기재자체)영역은그굴절률이 1.45내지 2.00일수있다.이러한 굴절률은제 1피크와게 2피크를이격시켜백색광의밴드패스필터링시 제 1피크에속하는광파장대역과제 2피크에속하는파장대역이안정적으로 분리되어필터링될수있다.
[108] 본발명은상술한제조방법으로제조된나노와이어투명전극을포함한다.
[109] 이하,본발명에따른나노와이어투명전극을상술한다.나노와이어투명 전극을상술함이있어,금속나노와이어,투명절연성기재,그제조방법등은 앞서나노와이어투명전극의제조방법에서상술한바와유사내지동일하다.
[110] 본발명에따른나노와이어투명전극은투명절연성기재및금속나노와이어 네트워크를포함하며,관계식 1및관계식 2를만족한다.
[111] (관계식 1)
[112] Rm≤ 55 Ω/sq.
[1 13] 관계식 1에서, ^은폭 10cm및길이 2m크기를갖는나노와이어투명전극의 평균면저항이다.구체적으로,관계식 1은 lOcffl및길이 2m크기를갖는 나노와이어투명전극의전영역을 2cmx2cm의면적으로균등분할하여 500개의 분할영역으로구획하고,각분할영역에서의면저항을평균한평균면저항일 수있다.
[114] (관계식 2)
[1 15] 0.5Rm < R,oc(i) < 1.5Rm
[116] 관계식 2에서, Rm은폭 10cm및길이 2m크기를갖는나노와이어투명전극의 평균면저항이며, Rloc는폭 10cm및길이 2m크기를갖는동일한나노와이어 투명전극의전영역을 2cmx2Cm의면적으로균등분할하여규정된 500개의분할 영역중,일분할영역에서의면저항을의미하며, Rloc(i)는 500개의분할영역에 순차적으로번호를부여하되, i번에해당하는분할영역의면저항을의미하고, i는 1-500의자연수이다.
[117] 관계식 1에제시된바와같이,본발명에따른나노와이어투명전극은 55 Q/sq 이하의 Rm,특징적으로 50 Ω/sq이하의 Rm,보다특징적으로 45 Ω/sq이하의 Rm, 보다더특징적으로 40 Ω/sq이하의 ^을갖는매우우수한전기적특성 (낮은 면저항)을가질수있다.이와함께,폭 10cm및길이 2m크기를갖는초 대면적에서,모든분할영역에서측정된면저항이 0.5Rm내지 1.5Rm사이값, 특징적으로, 0.6Rm내지 1.4Rm사이값,보다특징적으로 0.7Rm내지 1.3Rm사이값, 보다더특징적으로 0.8R,n내지 1.2Rm사이값,더욱더특징적으로 0.85Rm내지 1.15Rm사이값,더더욱특징적으로 0.95Rm내지 1 .05Rm사이값을만족하는,극히 균일한전기적특성을가질수있다.금속나노와이어기반나노와이어투명 전극에서,이러한초대면적에서관계식 1과같은낮은면저항및관계식 2와 같은극히우수한전기적특성의균일성은일찍이보고된바없다.
[118] 나노와이어투명전극의제조방법에서상술한바와같이,투명절연성기재가 단일층인경우,투명절연성기재의굴절률은 1.45내지 2.00일수있으며,투명 절연성기재가투명절연성베이스필름및상기베이스필름에코팅된투명 절연성코팅층을포함하는경우,투명절연성코팅층의굴절률은 1.45내지 2.00일수있다.
[119] 본발명의일실시예에따른나노와이어투명 전극은하기관계식 3을더
만족할수있다.
[120] (관계식 3)
[121] (R50oooo- o) Ro X 100 < 3.0 ( )
[122] 관계식 3에서, Ro은나노와이어투명전극의평균면저항이며, R5000()。은
5cmx5cm크기의나노와이어투명전극을대상으로 1mm곡률반경하
500,000회의굽힘시험을수행한후의평균면저항이다.
[123] 관계식 3을만족하는특성은,나노와이어투명전극에서금속나노와이어간의 접점이서로용융결착하여안정적으로일체를이루며 ,융착과정에서
나노와이어투명전극을가로지르는방향으로연속적인전류이동경로를 형성하는금속나노와이어네트워크를이루는금속나노와이어가실질적으로 전혀손상되지않은상태임을의미하는것이다.즉,금속나노와이어네트워크를 이루는금속나노와이어들이금속나노와이어접점에서의용융결착을위해 수행되는광소결중,뒤를리거나휘어지거나단축직경이부분적으로변화되지 않고,제조된상태 (as-fabricated)그대로의전기적,물리적특성을유지하면서 금속나노와이어의접점에서안정적인용융결착이이루어짐에따라가질수 있는물성이다.
[124] 상세하게,본발명의일실시예에따른나노와이어투명전극관계식 3으로
규정된면저항변화율 ((R5000∞-R0)/R0 X 100)이 3.0%이하,보다특징적으로는 2.0% 이하,보다더특징적으로는 1.5%이하일수있다.
[125] 본발명의일실시예에따른나노와이어투명 전극은 90%이상의
광투과율 (Transmittance)및 1.5%이하의헤이즈 (Haze),보다구체적으로 90% 이상의광투과율및 1.35%이하의헤이즈를가질수있다.이러한광투과율및 헤이즈또한, 10cm및길이 2m크기를갖는나노와이어투명전극의전영역을 2cmx2cm의면적으로균등분할하여 500개의분할영역으로구획하고,각분할 영역에서의광투과율또는헤이즈를평균한평균광투과율또는평균헤이즈일 수있다.나아가,이러한광투과율및헤이즈는 10cm및길이 2m크기를갖는 나노와이어투명전극의전영역을 2cmx2cni의면적으로균등분할한 500개의 분할영역각각이모두만족하는광투과율및헤이즈일수있다.
[126] 본발명의일실시예에따른나노와이어투명전극에서,금속나노와이어
네트워크는투명절연성기재상금속나노와이어,유기바인더및유기 바인더를용해하는용매를포함하는와이어분산액을도포한후,하기 게 3스펙트럼의흡광피크중상대적으로가장강도가큰흡광피크인제 1피크의 중심파장에해당하는광이제거되도록백색광을필터링하고,필터링된광을 조사하여수득될수있다.
[127] 제 1스펙트럼:상기투명절연성기재의자외선-가시광흡광스펙트럼,
[128] 제 2스펙트럼:상기투명절연성기재상금속나노와이어,유기바인더및상기 유기바인더를용해하는용매를포함하는와이어분산액을도포한후,용매가 휘발제거된상태인기준체의자외선 -가시광흡광스펙트럼,
[129] 게 3스펙트럼:상기제 2스펙트럼에서제 1스펙트럼을제거하여수득되는
人 3S1ᄐ
ᄆ -
[130] 이때,필터링된광은유리하게밴드패스필터링이며밴드패스필터링의조건 및광조사조건은앞서나노와이어투명전극의제조방법에서상술한바와유사 내지동일하며,나노와이어투명전극의제조방법에서상술한관련내용을모두 포함한디-.
[131] 관계식 3을통해상술한바와같이,종이가접힐때의반경에상웅하는 1mm에 이르는극한의굽힘테스트조건에서도전기적특성의저하가거의발생하지 않고,초대면적에서도극히균일한전기적특성을가지며,현저하게낮은 면저항을갖는특성은투명절연성기재상도포된금속나노와이어들이광소결 과정에서뒤틀리거나휘어지거나단축직경이부분적으로변화되지않고, 제조된상태 (as-fabricated)그대로의금속나노와이어들이도포된상태를그대로 유지하며금속나노와이어의접점에서안정적인용융결착이이루어짐에따라 가질수있는특성이다.
[132] 제조된상태 (as-fabricated)그대로의금속나노와이어들이도포된상태를
그대로유지하며광소결되는본발명의일실시예에따른나노와이어투명 전극의특징은하기관계식 4및관계식 5의파라메타로규정될수있다.
[133] (관계식 4)
[134] 0.95 < HTCF/HREF < 1.05
[135] 관계식 4에서, HTCF는나노와이어투명전극의헤이즈 (<¾)이며, HREF는상기 투명절연성기재에상기와이어분산액이도포되고광소결되기전상태인 기준체의헤이즈 (%)이다. [136] (관계식 5)
[137] 0.95 < TTCF/TREF < 1.05
[138] 관계식 5에서, TTCF는나노와이어투명전극의광투과율(%)이며, TREF는상기 투명절연성기재에상기와이어분산액이도포되고광소결되기전상태인 기준체의광투과율 (%)이다.
[139] 관계식 4및관계식 5에서의기준체는,나노와이어투명전극의제조공정에서 투명절연성기재상금속나노와이어,유기바인더및유기바인더를용해하는 용매를포함하는와이어분산액이도포된상태,즉,광소결되기직전의상태를 의미할수있다.
[140] 관계식 4및관계식 5는,광소결전후의헤이즈 (<¾)및광투과율 (%)이
실질적으로동일함을의미하는것이며,이는,금속나노와이어들이광소결 과정에서뒤를리거나휘어지거나단축직경이부분적으로변화되지않고, 제조된상태그대로의금속나노와이어들이도포된상태를그대로유지하며 광소결됨을지시하는것이다.
[141] 본발명의일실시예에따른나노와이어투명전극에있어,금속나노와이어 네트워크는둘이상의금속나노와이어가서로교차하는교차영역을포함하며, 교차영역의높이는하기관계식 6을만족할수있다.이때,교차영역은 교차영역을이루는둘이상의금속나노와이어가용융결착된상태일수있음은 물론이다.즉,교차영역은둘이상의금속나노와이어가서로교차하며용융 결착된영역일수있다.
[142] (관계식 6)
[143] 0.5 < hc/(dl + d2) < 0.7
[144] 관계식 6에서 dl은투명절연성기재의표면을기준으로교차영역을이루는둘 이상의금속나노와이어중일금속나노와이어의높이를의미하며 , d2는투명 절연성기재의표면을기준으로동일교차영역을이루는둘이상의금속 나노와이어중다른일금속나노와이어의높이를의미하며, he는투명절연성 기재의표면을기준으로한교차영역의높이를의미한다.
[145] 이때, dl및 d2는각각해당금속나노와이어의길이방향으로적어도 lOOnm 이상다른금속나노와이어와접하지않는지점에서투명절연성기재의표면을 기준으로한금속나노와이어의높이 (나노와이어의단축직경,두께)일수 있으며,실험적으로주사전자현미경관찰을통해측정된높이일수있다.
주사전자현미경에서관찰시편을회전이나틸트 (tilt)시켜관찰하고이러한 각도들을고려하여나노와이어와같은표면구조물의높이 (두께)를측정하는 것은주지관용의기술이다.
[146] 관계식 6은교차영역에서용융결착된정도를나타내는파라메타이다.관계식 6에서 hc/(dl + d2)가 0.5미만인경우과도한용융에의해교차영역과연장되는 금속나노와이어에손상 (두께가얇아지거나뒤를리는등의변형)이발생할수 있으며 , 0.7을초과하는경우불완전한용융결착에의해면저항이증가할 위험이있다.보다특징적으로,본발명의일실시예에따른나노와이어투명 전극에있어,금속나노와이어네트워크는 hc/(dl + d2)가 0.5내지 0.6을만족할 수있다.
[147] 본발명의일실시예에따른나노와이어투명 전극에있어,금속나노와이어 네트워크는둘이상의금속나노와이어가서로교차하는교차영역을포함하며 , 교차영역에서상부에위치하는금속나노와이어는하기관계식 7을만족할수 있다.이때,금속나노와이어네트워크는관계식 6과함께,또는관계식 6과 독립적으로,관계식 7을만족할수있다.
[148] (관계식 7)
[149] 0.6do < dnc < ldo
[150] 관계식 7에서 do는교차영역에서상부에위치하는금속나노와이어에서, 나노와이어의길이방향으로적어도 lOOnm이상다른금속나노와이어와 접하지않는지점에서의투명절연성기재의표면을기준으로한금속 나노와이어의높이이며, dnc는교차영역에서상부에위치하는동일금속 나노와이어에서,교차영역의가장자리에서금속나노와이어의길이방향으로 연장되는 50nm이내의영역 (이하,접점인근영역)에서,투명절연성기재의 표면을기준으로한금속나노와이어의높이이다.이때, do및 dnc는각각투명 절연성기재의표면을기준으로한금속나노와이어의높이 (나노와이어의단축 직경,두께)일수있으며,주사전자현미경관찰을통해측정된높이일수있다. 또한교차영역의가장자리는교차영역에서금속나노와이어 (교차영역을 이루는둘이상의금속나노와이어중일금속나노와이어)의길이방향으로 금속나노와이어의상부또는하부에다른금속나노와이어가위치하는지점과 위치하지않는지점간의경계를의미할수있다.
[151] 관계식 7은관계식 3을통해상술한바와같이 , 1mm에이르는극한의굽힘 테스트조건에서도전기적특성의저하가거의발생하지않으며낮은면저항을 가질수있는특징적인조건이다.관계식 7과같이 , dnc가 0.6do미만인경우,접점 인근영역에서의금속나노와이어의높이 (두께)가현저하게작아져반복적인 변형시접점인근영역이우선적으로파괴 (피로에의한절단)될수있다.또한, 관계식 7과같이, dnc가 0.6do미만인경우,접점인근영역에서전류이동경로가 갑자기좁아져저항을증가시킬수있다.보다특징적으로,본발명의일 실시예에따른나노와이어투명 전극에있어,금속나노와이어네트워크는 dnc가 0.7do내지 ldo,보다더특징적으로 dnc가 0.8do내지 ldo,보다더특징적으로 dnc가 0.85do내지 ldo,더욱더특징적으로 dnc가 0.9do내지 ldo일수있다.
[152] 관계식 1과같은극히낮은면저항을가지면서도관계식 7을동시만족하는 특성은,상술한바와같이필터링된광을현저하게낮은플루언스로조사하는 상술한제조방법적특징에의해구현될수있는특성이다.
[153] 본발명은상술한나노와이어투명전극또는상술한제조방법으로제조된 나노와이어투명전극을포함하는대전방지물,전자파차폐물,전자파흡수물, 태양전지,연료전지,전기전자소자,전기화학소자,이차전지,메모리소자, 반도체소자,광전소자,노트북 (노트북부품),컴퓨터 (컴퓨터부품),
개인단말기 (개인단말기부품), PDA(PDA부품), PSP(PSP부품),게임기 (게임기 부품),디스플레이장치 (FED;field emission display, BLU;back light unit,
LCD;liquid crystal display, PDP;plasma display panel)발광장치,의료기기, 건축재,벽지,광원부품,터치패널,전광판,광고판,광학기기또는군수품등을 포함한다.특히,본발명은상술한나노와이어투명전극또는상술한
제조방법으로제조된나노와이어투명전극을포함하는평판액정표시장치 (flat liquid crystal displays),터치패널 (touch panel),전자발광장치 (electroluminescent devices),또는태양전지 (photovoltaic cells)를포함한다.
[154] 도 1은롤투롤공정을이용하여본발명에따른제조방법으로나노와이어투명 전극을제조하는과정을관찰한광학사진이다.
[155] 상세하게,폴리에틸렌테레프탈레이트 (PET,굴절률 L55)필름 (폭 1.0cm)을
투명절연성기재로사용하였으며,은나노와이어 (평균직경 35nm,평균길이 25 βΆ,흡광피크증심파장 =415nm) 0.142중량 %,중량평균분자량이 2xl05(g/mol) 이하인저분자량의하이드록시프로필메틸셀를로스 (HPMC) 0.138중량 %및 잔량의물을함유하는와이어분산액을사용하였다.슬롯다이를이용하여 기재에와이어분산액을도포하였다.롤투롤공정의라인스피드는
40mm/sec였고,슬롯다이코팅두께는 50μπι였으며,토출양은 0.25ml/s였고,다이 갭 (die gap)은 80μπι,다이심 (die shim)은 ΙΟΟμιη였다.
[156] 도 2는투명절연성기재인 PET필름자체의 UV-Vis흡광
스펙트럼 (제 1스펙트럼)이며,도 3은슬롯다이를통해와이어분산액이 PET 필름상도포되고용매가휘발제거된상태 (광소결전상태)인기준체의 UV-Vis 흡광스펙트럼 (제 2스펙트럼)이며.,도 4는도 3의흡광스펙트럼에서도 2의 스팩트럼을제거하여수득된제 3스펙트럼이다.
[157] 도 4에서알수있듯이,상대적으로가장강한피크의중심파장은약
373nm이었으며,상대적으로두번째강한피크의중심파장은약 420nm이었다. 이를기반으로백색광원으로제논렘프 (350~950nm파장)를사용하고,
400nm에서 500nm까지의파장 (400-500nm)을통과시키는밴드패스필터를 사용하여필터링을하였다.필터링된광이면조사되도록광원및필터를포함한 광학계를구성하였다.상술한롤투롤공정에서슬롯다이를통한와이어 분산액의도포를제 1스테이지로하고, 8J/cm2의플루언스및 10msec의단일펄스 : 조건으로필터링된광을조사하는광소결을제 2스테이지로하여나노와이어 투명전극을연속적으로제조하였다.
[158] 도 5는제조된나노와이어투명 전극을관찰한주사전자현미경사진이다.도 5에서알수있듯이나노와이어간서로교차하는교차영역이안정적으로용융 결착된것을알수있으며, PET필름표면을기준으로교차영역의높이가
40.2nm,교차영역을형성하는두나노와이어각각의높이가 36.2nm및 34.5nm로 hc/(dl + d2)가 0.56임을알수있다.또한,교차영역가장자리에서 50nm이내의 영역에서의은나노와이어의높이가나노와이어의길이방향으로적어도 lOOnm 이상다른금속나노와이어와접하지않는지점에서의높이와실질적으로 동일함을알수있다.또한도 5에서알수있듯이,광소결에의해교차영역의 가장자리를포함하여실질적으로모든나노와이어들이필름표면에접하여 위치함을알수있다.이는교차에의해공중에떠있던나노와이어영역들이 광소결시용융결착되며 PET필름으로내려앉은것을알수있다.
[159] 10cm의폭및 2m의길이로자른나노와이어투명전극을대상으로하여,
나노와이어투명전극의전영역을 2Cmx2cm의면적으로균등분할하여규정된 500개의분할영역각각의면저항을측정하고평균을취한결과,나노와이어 투명전극의평균면저항은 35.2Q/sq.였으며,분할영역에서측정된모든 면저항이 34.5~36. 2/sq.의범주에속하는것을확인하였다.제조된나노와이어 투명전극의광투과율은 90.33%였으며,헤이즈는 1.30(%)이었다.면저항과 마찬가지로, 2cmx2cm의면적으로균등분할하여규정된분할영역각각의 광투과율과헤이즈를측정한결과,모든분할영역의광투과율은
90.31-90.37%에속했으며,모든분할영역의헤이즈는 1.27~1.32%에속함을 확인하였다.도 5와동일한조건에서광소결전상태 (기준체)의평균면저항, 투과율및헤이즈를측정한결과,기준체의평균면저항은 60Q/sq.였고,투과율은 90.34(%)였으며 ,헤이즈는 1.29(%)였다.
[160] 도 6은제조된나노와이어투명전극을 50mmx50mm로잘라두가장자리에
구리테잎을붙여시행한굽힘시험 (in-folding test)을관찰한광학사진이다. lmm의반경으로 500,000회의굽힘시험을수행한결과,관계식 3으로규정된 저항증가율이 1.4%에불과함을확인하였다.
[161] 도 5의샘플과동일하게제조하되,다만,제논램프에서발생한백색광을벤드 패스필터가아닌 500nm컷오프되는로패스필터 (low pass filter)로필터링하여, 로패스필터링에의해필터링된광을 8J/cm2의플루언스및 10msec의단일펼스 조건으로조사하여광소결을수행하였다.광소결에의해수득된필름의평균 면저항은 58Q/sq.로유의미한광소결자체가이루어지지않음을확인하였다. 플루언스를증가시켜, 500nm컷오프되는로패스필터링된광을 28J/cm2의 플루언스및 10msec의단일필스조건으로광소결을수행하였을때에광소결에 의해수득된필름의평균면저항이약 46Q/sq.로광소결이어느정도이루어짐을 확인하였으나, 2Cmx2cm의면적으로균등분할하여규정된 500개의분할영역 각각의면저항이 39.1~57.3Q/sq.범위로,불완전한소결과함께면저항균일도 또한현저하게떨어지는것을확인하였다.
[162] 도 5의샘플과동일하게제조하되 ,다만,제논램프에서발생한백색광을밴드 패스필터가아닌 430nm컷오프되는하이패스필터 (high pass filter)로
필터링하여,하이패스필터링에의해필터링된광을 8J/cm2의플루언스및 10msec의단일펄스조건으로조사하여광소결을수행하였다.광소결에의해 수득된필름의평균면저항이 500nm컷오프되는로패스필터의결과보다도 증가하며기준체와유사한면저항이얻어짐을확인하였으며,광소결이 실질적으로발생하지않은것을확인하였다.
[163] 도 5의샘플과동일하게제조하되,다만,제논램프에서발생한백색광을밴드 패스필터가아닌 400nm컷오프되는로패스필터 (low pass filter)로필터링하여, 로패스필터링에의해필터링된광을 8J/cm2의플루언스및 10msec의단일펄스 조건으로조사하여광소결을수행하였다.광소결에의해수득된필름의평균 면저항이 500nm컷오프되는로패스필터의결과보다도증가하며기준체와 ^사한면저항이얻어짐을확인하였다.
[164] 또한,도 5의샘플과동일하게제조하되, 8J/cm2의플루언스대신 6J/cm2또는 10 J/cm2의플루언스로밴드패스필터링된광을조사하였다.그결과,도 5의 샘플보다약간평균면저항이증가하긴하였으나,전기적,광학적및
기계적 (굽힘테스트)으로도 5의샘플과거의유사한물성과균일성을갖는 나노와이어투명전극이제조됨을확인하였다.그러나 , 6J/cm2미만의
플루언스로광조사를하는경우층분한용융결착이이루어지지않아면저항이 급격히증가 (약 53.2Q/sq.)함을확인하였으며, 12 J/cm2의플루언스로밴드패스 필터링된광을조사하는경우투명기재의손상및금속나노와이어의손상, 특히교차영역과인접한부분에서의금속나노와이어의두께 (높이)가현저하게 감소함을확인하였으며,특히 1mm반경의굽힘시험시저항증가가 100,000회에 이미 17%에이르러,반복된물리적변형에급격히취약해짐을확인할수있었다.
[165] 이상과같이본발명에서는특정된사항들과한정된실시예및도면에의해 설명되었으나이는본발명의보다전반적인이해를돕기위해서제공된것일 뿐,본발명은상기의실시예에한정되는것은아니며,본발명이속하는 분야에서통상의지식을가진자라면이러한기재로부터다양한수정및변형이 가능하다.
[166] 따라서,본발명의사상은설명된실시예에국한되어정해져서는아니되며, 후술하는특허청구범위뿐아니라이특허청구범위와균등하거나등가적변형이 있는모든것들은본발명사상의범주에속한다고할것이다.
[167]

Claims

청구범위
[청구항 1] 투명절연성기재및금속나노와이어네트워크를포함하며,관계식 1및 관계식 2를만족하는나노와이어투명전극.
(관계식 1)
Rm < 55 Ω/sq.
(관계식 1에서, Rm은폭 10cm및길이 2m크기를갖는나노와이어투명 전극의평균면저항이다)
(관계식 2)
0.5Rm < Rloc(i) < 1.5Rm
(관계식 2에서, Rloc는폭 10cm및길이 2m크기를갖는나노와이어투명 전극의전영역을 2cmx2cm의면적으로균등분할하여규정된 500개의 분할영역중,일분할영역에서의면저항을의미하며, Rloc(i)는 500개의 분할영역에순차적으로번호를부여하되, i번에해당하는분할영역의 면저항을의미하고, i는 1~500의자연수이다)
[청구항 2] 제 1항에있어서,
하기관계식 3을더만족하는나노와이어투명전극.
(관계식 3)
(R50oooo-Ro) Ro 100 < 3.0 (%)
(관계식 3에서, R。은나노와이어투명전극의평균면저항이며, R50000。은 5cmx5cm크기의나노와이어투명전극을대상으로 1mm곡를반경하 500,000회의굽힘시험을수행한후의평균면저항이다)
[청구항 3] 제 1항에있어서,
상기나노와이어투명전극은 90%이상의광투과율 (Transmittance)및 1.5%이하의헤이즈 (Haze)를갖는나노와이어투명전극.
[청구항 4] 제 1항에있어서,
상기금속나노와이어네트워크는상기투명절연성기재상금속 나노와이어,유기바인더및상기유기바인더를용해하는용매를 포함하는와이어분산액을도포한후,하기제 3스펙트럼의흡광피크중 상대적으로가장강도가큰흡광피크인제 1피크의중심파장에해당하는 광이제거되도록백색광을필터링하고,필터링된광을조사하여 수득되는나노와이어투명전극.
제 1스펙트럼:상기투명절연성기재의자외선-가시광흡광스펙트럼 계 2스펙트럼:상기투명절연성기재상금속나노와이어,유기바인더및 상기유기바인더를용해하는용매를포함하는와이어분산액을도포한 후,용매가휘발제거된상태인기준체의자외선 -가시광흡광스펙트럼 제 3스펙트럼:상기제 2스펙트럼에서제 1스펙트럼을제거하여수득되는 入 3 Ι1 E 5
ᄆ [청구항 5] 제 4항에있어서,
관계식 4및관계식 5를더만족하는나노와이어투명전극.
(관계식 4)
0.95 < HTCF HREF < 1.05
(관계식 4에서, HTCF는나노와이어투명전극의헤이즈 (%)이며, HREF는 상기투명절연성기재에상기와이어분산액이도포되고광소결되기전 상태인기준체의헤이즈 (%)이다)
(관계식 5)
0.95 < TTCF/TREF < 1.05
(관계식 5에서, 1\„는나노와이어투명전극의광투과율 (%)이며 , TREF는 상기투명절연성기재에상기와이어분산액이도포되고광소결되기전 상태인기준체의광투과율 (%)이다)
[청구항 6] 제 1항에있어서,
상기금속나노와이어네트워크는둘이상의금속나노와이어가서로 교차하는교차영역을포함하며,교차영역의높이는하기관계식 6을 만족하는나노와이어투명전극.
(관계식 6)
0.5 < hc/(dl + d2) < 0.7
(관계식 6에서 dl은투명절연성기재의표면을기준으로교차영역을 이루는둘이상의금속나노와이어중일금속나노와이어의높이를 의미하며, d2는투명절연성기재의표면을기준으로동일교차영역을 이루는둘이상의금속나노와이어중다른일금속나노와이어의높이를 의미하며, he는투명절연성기재의표면을기준으로한교차영역의 높이를의미한다)
[청구항 7] 제 1항에있어서,
상기금속나노와이어네트워크는둘이상의금속나노와이어가서로 교차하는교차영역을포함하며 ,상기교차영역에서상부에위치하는 금속나노와이어는하기관계식 7을만족하는나노와이어투명전극. (관계식 7)
0.6do < dnc < ldo
(관계식 7에서 do는교차영역에서상부에위치하는금속나노와이어에서, 나노와이어의길이방향으로적어도 lOOnm이상다른금속나노와이어와 접하지않는지점에서의투명절연성기재의표면을기준으로한금속 나노와이어의높이이며, dnc는교차영역에서상부에위치하는동일금속 나노와이어에서,교차영역의가장자리에서금속나노와이어의길이 방향으로연장되는 50nm이내의영역에서,투명절연성기재의표면을 기준으로한금속나노와이어의높이이다)
[청구항 8] 투명절연성기재의자외선-가시광흡광스펙트럼인제 1스펙트럼,상기 투명절연성기재상표면플라즈몬이발생하는금속나노와이어,유기 바인더및상기유기바인더를용해하는용매를포함하는와이어 분산액을도포한후,용매가휘발제거된상태인기준체의자외선-가시광 흡광스펙트럼인제 2스펙트럼및상기저 12스펙트럼에서제 1스펙트럼을 제거하여수득된제 3스펙트럼을기준으로,
상기투명절연성기재상상기와이어분산액을도포한후,상기 게 3스펙트럼의흡광피크중상대적으로가장강도가큰흡광피크인 제 1피크의중심파장에해당하는광이제거되도록백색광을필터링하고, 필터링된광을조사하여광소결하는단계를포함하는나노와이어투명 전극의제조방법.
[청구항 9] 제 8항에있어서,
상기필터링시,상기계 3스펙트럼의흡광피크중상대적으로두번째로 강도가큰흡광피크인제 2피크의중심파장에해당하는광이통과되도록 필터링이수행되는나노와이어투명전극의제조방법.
[청구항 10] 제 9항에있어서,
상기필터링시,상기제 2피크의중심파장의 1 .3배를초과하는파장의 광이제거되도록필터링이수행되는나노와이어투명전극의제조방법.
[청구항 11] 제 9항에있어서,
상기필터링은밴드패스필터링이며,필터링된광의최소파장은상기 거 1 1피크의중심파장과상기제 2피크의중심파장사이에위치하는 나노와이어투명전극의제조방법.
[청구항 12] 제 1 1항에있어서,
상기필터링된광의최대파장과최소파장간의차인대역폭은 150nm 이하인나노와이어투명전극의제조방법.
[청구항 13] 제 1 1항에있어서,
파장을기준한상기밴드패스필터링의통과대역의최소파장은 380 내지 410nm이며,최대파장은 430nm내지 550nm인나노와이어투명 전극의제조방법.
[청구항 14] 제 8항에있어서,
상기필터링된광을이용한광소결시,상기필터링된광의 폴루언스 (fluence)는 6내지 10J/cm2인나노와이어투명전극의제조방법. [청구항 15] 제 8항에있어서,
상기와이어분산액의도포및광소결은연속공정인나노와이어투명 전극의제조방법.
[청구항 I6] 제 8항에있어서,
롤형태로권취된투명절연성기재를풀어주는언와인딩단계;
풀어진투명절연성기재에와이어분산액의도포하는도포단계;
와이어분산액이도포된투명절연성기재에필터링된광을조사하는 광소결단계;
광이조사된투명절연성기재를세척하고다시롤형태로감아주는 리와인딩단계;
를포함하는나노와이어투명전극의제조방법.
[청구항 17] 제 8항내지제 16항중선택되는어느한항에따른제조방법으로제조된 나노와이어투명전극.
PCT/KR2018/005969 2017-05-29 2018-05-25 나노와이어 투명 전극 및 이의 제조 방법 WO2018221896A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/071,403 US20210174986A1 (en) 2017-05-29 2018-05-25 Transparent conductive film and the fabrication method thereof
JP2019532922A JP2020503645A (ja) 2017-05-29 2018-05-25 ナノワイヤ透明電極およびその製造方法
CN201880005256.8A CN110100289B (zh) 2017-05-29 2018-05-25 纳米线透明电极及其制造方法

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
KR20170066414 2017-05-29
KR10-2017-0066418 2017-05-29
KR1-2017-0066418 2017-05-29
KR10-2017-0066414 2017-05-29
KR20170066418 2017-05-29
KR10-2018-0058430 2018-05-23
KR1020180058430A KR102234230B1 (ko) 2017-05-29 2018-05-23 나노와이어 투명 전극 및 이의 제조방법

Publications (2)

Publication Number Publication Date
WO2018221896A1 true WO2018221896A1 (ko) 2018-12-06
WO2018221896A8 WO2018221896A8 (ko) 2019-05-02

Family

ID=64456550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/005969 WO2018221896A1 (ko) 2017-05-29 2018-05-25 나노와이어 투명 전극 및 이의 제조 방법

Country Status (5)

Country Link
US (1) US20210174986A1 (ko)
JP (1) JP2020503645A (ko)
KR (1) KR102234230B1 (ko)
CN (1) CN110100289B (ko)
WO (1) WO2018221896A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102464594B1 (ko) * 2019-09-09 2022-11-11 주식회사 에스지플렉시오 전도성 광학 필름 및 이의 제조방법
KR20210091555A (ko) * 2020-01-14 2021-07-22 에스케이이노베이션 주식회사 패턴화된 유연 전극의 제조방법
CN111755600B (zh) * 2020-06-17 2022-03-15 北京航空航天大学 一种基于复合纳米线网络结构的忆阻器
CN113744927A (zh) * 2021-08-03 2021-12-03 暨南大学 一种金属纳米线的光熔接方法、金属透明导电电极及金属纳米线油墨

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120092294A (ko) * 2011-02-11 2012-08-21 한국과학기술원 은 나노 와이어를 이용한 투명전극 및 그 제조 방법
KR20150109222A (ko) * 2014-03-19 2015-10-01 제일모직주식회사 투명 도전체, 이의 제조방법 및 이를 포함하는 광학표시장치
KR20160014703A (ko) * 2013-08-22 2016-02-11 쇼와 덴코 가부시키가이샤 투명 전극 및 그 제조 방법
KR20160019388A (ko) * 2014-08-11 2016-02-19 주식회사 엔앤비 다단 광조사를 이용한 투명 전도성 막의 제조방법
KR20160050002A (ko) * 2014-10-28 2016-05-10 주식회사 엔앤비 투명 전도체 및 이의 제조방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015710A2 (en) * 2004-11-09 2007-02-08 Board Of Regents, The University Of Texas System The fabrication and application of nanofiber ribbons and sheets and twisted and non-twisted nanofiber yarns
EP2353188A4 (en) * 2008-10-30 2015-04-08 Hak Fei Poon HYBRID, TRANSPARENT, CONDUCTIVE ELECTRODES
EP2539943B1 (en) * 2010-02-24 2021-01-06 Cambrios Film Solutions Corporation Nanowire-based transparent conductors and methods of patterning same
KR20130135186A (ko) 2012-05-31 2013-12-10 주식회사 엘지화학 플렉서블 전극 및 이의 제조방법
JP6144548B2 (ja) * 2012-08-01 2017-06-07 日東電工株式会社 透明導電性積層フィルム、その製造方法及びタッチパネル
JP2015125962A (ja) * 2013-12-27 2015-07-06 大倉工業株式会社 透明導電フィルムの製造方法
WO2016024793A2 (ko) * 2014-08-11 2016-02-18 주식회사 엔앤비 다단 광조사를 이용한 투명 전도성 막의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120092294A (ko) * 2011-02-11 2012-08-21 한국과학기술원 은 나노 와이어를 이용한 투명전극 및 그 제조 방법
KR20160014703A (ko) * 2013-08-22 2016-02-11 쇼와 덴코 가부시키가이샤 투명 전극 및 그 제조 방법
KR20150109222A (ko) * 2014-03-19 2015-10-01 제일모직주식회사 투명 도전체, 이의 제조방법 및 이를 포함하는 광학표시장치
KR20160019388A (ko) * 2014-08-11 2016-02-19 주식회사 엔앤비 다단 광조사를 이용한 투명 전도성 막의 제조방법
KR20160050002A (ko) * 2014-10-28 2016-05-10 주식회사 엔앤비 투명 전도체 및 이의 제조방법

Also Published As

Publication number Publication date
JP2020503645A (ja) 2020-01-30
CN110100289A (zh) 2019-08-06
US20210174986A1 (en) 2021-06-10
CN110100289B (zh) 2021-10-29
WO2018221896A8 (ko) 2019-05-02
KR102234230B1 (ko) 2021-04-01
KR20180130448A (ko) 2018-12-07

Similar Documents

Publication Publication Date Title
WO2018221896A1 (ko) 나노와이어 투명 전극 및 이의 제조 방법
US10580549B2 (en) Nanowires-based transparent conductors
JP6716637B2 (ja) 透明導電体およびその製造方法
US10270004B2 (en) Production method for transparent electrically-conductive film using multistage light irradiation
EP1947702B1 (en) Method of fabricating nanowire based transparent conductors
KR101305710B1 (ko) 나노 와이어 조성물 및 투명전극 제조 방법
CN104412335B (zh) 利用银纳米线及石墨烯的混合电极及其制备方法
Sun et al. Optimization of TiO2/Cu/TiO2 multilayers as a transparent composite electrode deposited by electron-beam evaporation at room temperature
Joshi et al. Facile one-pot synthesis of multi-shaped silver nanoparticles with tunable ultra-broadband absorption for efficient light harvesting in dye-sensitized solar cells
Kumar et al. Fabrication of plasmonic gold-nanoparticle-transition metal oxides thin films for optoelectronic applications
Nian et al. Large scale laser crystallization of solution-based alumina-doped zinc oxide (AZO) Nanoinks for highly transparent conductive electrode
Yang et al. Enhanced electrochromic properties of nanorod based WO3 thin films with inverse opal structure
KR102293035B1 (ko) 나노와이어 투명 전극 및 이의 제조방법
Nikraz et al. Dye sensitized solar cells prepared by flames stabilized on a rotating surface
TW201740175A (zh) 電致變色裝置
Lee et al. Enhanced efficiency of the honeycomb-structured film WO3 composed of nanorods for electrochromic properties
Joshi et al. One-pot controlled microwave synthesis of Broadband-light absorbing irregular gold nanoparticles for solar cell application
Cheng et al. Highly conductive and transparent electrospun indium tin oxide nanofibers calcined by microwave plasma
WO2016024793A2 (ko) 다단 광조사를 이용한 투명 전도성 막의 제조방법
Oh et al. Vertical Growth of Cupric Oxide Nanorods for Photoelectrode Using a Modified Chemical Bath Deposition Method
US20150111336A1 (en) Photovoltaic device and method of manufacture
JP2007087866A (ja) 透明導電性基板及びその製造方法並びに光電変換素子
Jung et al. Correlation between dispersion properties of TiO2 colloidal sols and photoelectric characteristics of TiO2 films
KR20190132129A (ko) 전도성 잉크 및 이를 이용한 전도성 필름의 제조방법
KR101660434B1 (ko) 플라즈마 광폭 전기전도성막 식각 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532922

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809175

Country of ref document: EP

Kind code of ref document: A1