WO2018221709A1 - 非水系二次電池用セパレータに供される水酸化マグネシウム、非水系二次電池用セパレータおよび非水系二次電池 - Google Patents

非水系二次電池用セパレータに供される水酸化マグネシウム、非水系二次電池用セパレータおよび非水系二次電池 Download PDF

Info

Publication number
WO2018221709A1
WO2018221709A1 PCT/JP2018/021097 JP2018021097W WO2018221709A1 WO 2018221709 A1 WO2018221709 A1 WO 2018221709A1 JP 2018021097 W JP2018021097 W JP 2018021097W WO 2018221709 A1 WO2018221709 A1 WO 2018221709A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium hydroxide
secondary battery
separator
aqueous secondary
heat
Prior art date
Application number
PCT/JP2018/021097
Other languages
English (en)
French (fr)
Inventor
哲郎 亀田
茂男 宮田
Original Assignee
協和化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和化学工業株式会社 filed Critical 協和化学工業株式会社
Priority to KR1020197038373A priority Critical patent/KR20200006598A/ko
Priority to CN201880048921.1A priority patent/CN110959205A/zh
Priority to JP2019521336A priority patent/JPWO2018221709A1/ja
Priority to US16/617,876 priority patent/US20200194762A1/en
Publication of WO2018221709A1 publication Critical patent/WO2018221709A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • C01F5/22Magnesium hydroxide from magnesium compounds with alkali hydroxides or alkaline- earth oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to magnesium hydroxide suitable for a separator for a non-aqueous secondary battery, a separator for a non-aqueous secondary battery using the magnesium hydroxide, and a non-aqueous secondary battery using the separator.
  • the present invention relates to a technique for improving the safety and durability of a non-aqueous secondary battery.
  • Non-aqueous secondary batteries represented by lithium ion secondary batteries are widely used as main power sources for portable electronic devices such as mobile phones and laptop computers.
  • Lithium-ion secondary batteries have high energy density, high capacity, and high output, and this demand will continue to be strong. From the viewpoint of meeting such demands, ensuring safety is an important technical element.
  • a polyolefin microporous film made of polyethylene or polypropylene has been used for a separator of a lithium ion secondary battery.
  • a separator has a shutdown function (a function of blocking the current when the temperature of the battery rises and blocking the current), and plays a role in ensuring the safety of the lithium ion secondary battery.
  • the separator is melted (so-called meltdown).
  • meltdown a short circuit occurs between the positive and negative electrodes inside the battery, and the battery is exposed to dangers such as smoke, ignition, and explosion.
  • the separator is required to have sufficient heat resistance so that meltdown does not occur near the temperature at which the shutdown function operates.
  • Patent Document 1 discloses a separator having a configuration in which a heat-resistant porous layer including a heat-resistant resin such as an aramid resin and an inorganic filler made of a metal hydroxide is laminated on a polyolefin microporous film. ing.
  • a separator has excellent heat resistance since the polyolefin microporous membrane exhibits a shutdown function at high temperatures, and the heat-resistant porous layer exhibits sufficient heat resistance, and no meltdown occurs even at 200 ° C. or higher. And a shutdown function.
  • the dehydration reaction of the metal hydroxide occurs at a high temperature, an exothermic suppression function is exhibited, and safety at a high temperature can be further enhanced.
  • the separator for non-aqueous secondary batteries provided with the polyolefin porous base material and the heat resistant porous layer laminated
  • the inorganic filler is made of magnesium hydroxide powder having an average particle diameter of 0.01 to 3.0 ⁇ m and a specific surface area of 1.0 to 100 m 2 / g.
  • An aqueous secondary battery separator is disclosed.
  • magnesium hydroxide powder with a predetermined average particle size and specific surface area the activity of water and hydrogen fluoride present in a minute amount in the battery is remarkably reduced, and gas generation due to decomposition of the electrolyte is suppressed. ing. For this reason, it is said that durability of a battery can be improved significantly.
  • magnesium hydroxide having an average particle diameter of 0.8 ⁇ m is used.
  • Patent Documents 1 and 2 disclose a non-aqueous secondary battery separator that uses magnesium hydroxide as an inorganic filler and has improved heat resistance and battery durability.
  • the heat resistance and smoke suppression properties of conventional separators using magnesium hydroxide are still insufficient, and improvement of magnesium hydroxide has been demanded.
  • the problem to be solved by the present application is to improve the heat resistance and smoke suppression of the non-aqueous secondary battery.
  • magnesium hydroxide whose secondary particles have an average lateral width of about 0.8 ⁇ m has been used for the purpose of improving the heat resistance of the battery. Magnesium has been required.
  • conventional magnesium hydroxide with a small particle size has a strong cohesiveness when it is made into a suspension for application, so that uniform application to a polyolefin microporous film is impossible and heat resistance is lowered. there were.
  • the inventors of the present invention have provided a polyolefin porous substrate and a non-heat-resistant porous layer containing a heat-resistant resin and magnesium hydroxide laminated on one or both surfaces of the porous substrate. It has been found that the above problem can be solved by blending magnesium hydroxide having a specific structure in the heat-resistant porous layer in the separator for an aqueous secondary battery.
  • the present invention provides magnesium hydroxide satisfying the following (A) to (D) for use in a separator for a non-aqueous secondary battery that solves the above problems.
  • the average horizontal width of primary particles by SEM method is 0.1 ⁇ m or more and 0.7 ⁇ m or less;
  • the monodispersity represented by the following formula is 50% or more;
  • Monodispersity (%) (Average width of primary particles by SEM method / Average width of secondary particles by laser diffraction method) ⁇ 100
  • C Ratio of volume-based cumulative 10% particle diameter (D10) by laser diffraction method to volume-based cumulative 90% particle diameter (D90), D90 / D10 is 10 or less;
  • the lattice strain in the ⁇ 101> direction by X-ray diffraction is 3 ⁇ 10 ⁇ 3 or less;
  • the present invention also provides a separator for a non-aqueous secondary battery comprising the polyolefin porous substrate and the heat-resistant porous layer laminated on one or both surfaces of the porous substrate, which solves the above problems.
  • a separator for a non-aqueous secondary battery is provided that includes a heat resistant resin and the magnesium hydroxide in the heat resistant porous layer.
  • the present invention also provides a non-aqueous secondary battery that obtains an electromotive force by doping and dedoping lithium using the separator for non-aqueous secondary batteries.
  • the separator for non-aqueous secondary batteries using the magnesium hydroxide of the present invention contributes to improving the safety and durability of non-aqueous secondary batteries.
  • FIG. 2 is an SEM photograph of 20,000 times observing the magnesium hydroxide A of Example 1.
  • FIG. 2 is a SEM photograph of 20,000 times observing the magnesium hydroxide B of Example 2.
  • FIG. 4 is an SEM photograph of 20,000 times observing the magnesium hydroxide C of Example 3.
  • FIG. 2 is an SEM photograph of 20,000 times observing magnesium hydroxide D of Comparative Example 1.
  • 6 is a SEM photograph of 20,000 times observing the magnesium hydroxide F of Comparative Example 3.
  • the separator for non-aqueous secondary batteries of the present invention includes a polyolefin porous substrate and a heat-resistant porous layer laminated on one or both surfaces of the porous substrate.
  • the heat-resistant porous layer contains a heat-resistant resin and the magnesium hydroxide of the present invention.
  • the separator for a non-aqueous secondary battery of the present invention has a film thickness of 7 to 25 ⁇ m, preferably 10 to 20 ⁇ m.
  • a film thickness of less than 7 ⁇ m is not preferable because the mechanical strength decreases. Further, if it exceeds 25 ⁇ m, it is not preferable from the viewpoint of ion permeability, and it is also not preferable from the viewpoint that the volume occupied by the separator in the battery is increased and the energy density is lowered.
  • the porosity of the nonaqueous secondary battery separator of the present invention is 20 to 70%, preferably 30 to 60%. If the porosity is lower than 20%, it is difficult to maintain an amount of electrolyte sufficient for the operation of the battery, and the charge / discharge characteristics of the battery are remarkably deteriorated. If the porosity exceeds 70%, the shutdown characteristics are insufficient, and the mechanical strength and heat resistance are lowered, which is not preferable.
  • the puncture strength of the separator for a non-aqueous secondary battery of the present invention is 200 g or more, preferably 250 g or more, more preferably 300 g or more. If the piercing strength is lower than 200 g, the mechanical strength for preventing a short circuit between the positive and negative electrodes of the battery is insufficient, and the production yield is not increased, which is not preferable.
  • the Gurley value (JIS P8117) in the separator for a non-aqueous secondary battery of the present invention is 150 to 600 seconds / 100 cc, preferably 150 to 400 seconds / 100 cc.
  • the Gurley value is lower than 150 seconds / 100 cc, the ion permeability is excellent, but the shutdown characteristics and mechanical strength are lowered, which is not preferable.
  • the Gurley value is larger than 600 seconds / 100 cc, the ion permeability becomes insufficient, and the load characteristics of the battery may be deteriorated.
  • the value obtained by subtracting the Gurley value of the polyolefin porous substrate applied thereto from the Gurley value of the non-aqueous secondary battery separator of the present invention is 250 seconds / 100 cc or less, and preferably 200 seconds / 100 cc or less. A smaller value is preferable because shutdown characteristics are improved and ion permeability is excellent.
  • the polyolefin porous substrate in the present invention is configured to include polyolefin, has a large number of pores or voids therein, and has a porous structure in which these pores are connected to each other.
  • the base material structure include a microporous film, a nonwoven fabric, a paper-like sheet, and other sheets having a three-dimensional network structure.
  • a microporous film is preferable from the viewpoint of handling properties and strength.
  • a microporous membrane means a membrane that has a large number of micropores inside and has a structure in which these micropores are connected, allowing gas or liquid to pass from one surface to the other. To do.
  • polyolefin resin examples of the polyolefin resin constituting the porous substrate in the present invention include polyethylene, polypropylene, polymethylpentene, and the like. Among them, those containing 90% by weight or more of polyethylene are preferable from the viewpoint of obtaining good shutdown characteristics.
  • polyethylene low density polyethylene, high density polyethylene, ultra high molecular weight polyethylene, and the like are preferably used. Particularly, high density polyethylene and ultra high molecular weight polyethylene are preferable. From the viewpoint of strength and moldability, high density polyethylene and ultra high molecular weight polyethylene are preferable. Even more preferred are mixtures of high molecular weight polyethylene.
  • the molecular weight of polyethylene is preferably 100,000 to 10,000,000 in terms of weight average molecular weight, and particularly preferably a polyethylene composition containing at least 1% by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 1,000,000 or more.
  • the porous substrate in the present invention may be constituted by mixing other polyolefins such as polypropylene and polymethylpentene in addition to polyethylene, or two or more layers of a polyethylene microporous membrane and a polypropylene microporous membrane. You may comprise as a laminated body of.
  • the film thickness of the polyolefin porous substrate in the present invention is preferably 5 to 20 ⁇ m. If the film thickness is less than 5 ⁇ m, sufficient mechanical strength cannot be obtained, handling becomes difficult, and the yield of the battery is remarkably lowered. On the other hand, when the thickness is greater than 20 ⁇ m, movement of ions becomes difficult, or the volume occupied by the separator in the battery increases, and the energy density of the battery is lowered.
  • the porosity of the polyolefin porous substrate in the present invention is 10 to 60%, more preferably 20 to 50%.
  • the porosity of the polyolefin porous substrate is lower than 10%, it is difficult to hold an amount of electrolyte sufficient for battery operation, and the charge / discharge characteristics of the battery are remarkably deteriorated.
  • the porosity exceeds 60%, the shutdown characteristics are insufficient and the mechanical strength is lowered, which is not preferable.
  • the puncture strength of the polyolefin porous substrate in the present invention is 200 g or more, preferably 250 g or more, more preferably 300 g or more. If the piercing strength is lower than 200 g, the mechanical strength for preventing a short circuit between the positive and negative electrodes of the battery is insufficient, and the production yield is not increased, which is not preferable.
  • Gurley value JIS P8117
  • Gurley value JIS P8117
  • the Gurley value (JIS P8117) of the polyolefin porous substrate in the present invention is 100 to 500 seconds / 100 cc, preferably 100 to 300 seconds / 100 cc.
  • the Gurley value is lower than 100 seconds / 100 cc, although the ion permeability is excellent, the shutdown characteristics and the mechanical strength are lowered, which is not preferable.
  • the Gurley value is greater than 500 seconds / 100 cc, the ion permeability becomes insufficient and the load characteristics of the battery deteriorate, which is not preferable.
  • the average pore size of the polyolefin porous substrate in the present invention is 10 to 100 nm. If the pores are smaller than 10 nm, it may be difficult to impregnate the electrolytic solution. Further, if the pores are larger than 100 nm, the interface may be clogged when the porous layer is formed, or the shutdown characteristics may be significantly reduced when the porous layer is formed. Absent.
  • the heat-resistant porous layer in the present invention is composed of a heat-resistant resin and magnesium hydroxide, and has a plurality of pores or voids therein, and these pores are connected to each other. It has a structure.
  • a heat-resistant porous layer is preferably in an aspect in which magnesium hydroxide is dispersed and bound in a heat-resistant resin and directly fixed on the polyolefin porous substrate from the viewpoint of handling properties and the like.
  • the porous layer of only the heat-resistant resin is formed on the polyolefin porous substrate, and then the pores or the surface of the heat-resistant resin layer are formed by a method such as applying and immersing a solution containing magnesium hydroxide later.
  • the heat-resistant porous layer may be configured as an independent porous sheet such as a microporous film, a nonwoven fabric, or a paper-like sheet, and the porous sheet may be bonded to a polyolefin porous substrate. .
  • magnesium hydroxide 10: 90 to 80:20 by weight ratio, and more preferably in the range of 10:90 to 50:50.
  • the content of magnesium hydroxide is less than 20% by weight, it becomes difficult to sufficiently obtain the characteristics of magnesium hydroxide.
  • the magnesium hydroxide content exceeds 90% by weight, molding becomes difficult, which is not preferable.
  • those containing 50% by weight or more of magnesium hydroxide are preferable because heat resistance characteristics such as an effect of suppressing thermal shrinkage are improved.
  • the heat-resistant porous layer may be formed on at least one surface of the polyolefin porous substrate, but it is more preferable to form the porous layer on both the front and back surfaces of the polyolefin porous substrate.
  • the handling property is improved without curling, the heat resistance such as dimensional stability at high temperature is improved, and the cycle characteristics of the battery are also significantly improved. Effects such as can be obtained.
  • the porosity of the heat resistant porous layer is 30 to 80%. Furthermore, the porosity of the heat resistant porous layer is preferably higher than the porosity of the polyolefin porous substrate. Such a configuration provides better shutdown characteristics and has advantages in characteristics such as excellent ion permeability.
  • the thickness of the heat-resistant porous layer is preferably 2 to 12 ⁇ m in total when the heat-resistant porous layer is formed on both surfaces of the polyolefin porous substrate. When the porous porous layer is formed only on one side, the thickness is preferably 4 to 24 ⁇ m.
  • the heat-resistant resin in the present invention is a resin having sufficient heat resistance that does not melt or thermally decompose even at a temperature exceeding the melting point of the polyolefin porous substrate.
  • a resin having a melting point of 200 ° C. or higher or a resin having substantially no melting point can be suitably used as long as its thermal decomposition temperature is 200 ° C. or higher.
  • Examples of such a heat resistant resin include aromatic polyamide, polyimide, polyamideimide, polysulfone, polyketone, polyetherketone, polyethersulfone, polyetherimide, cellulose, polyvinylidene fluoride, and combinations of two or more thereof. Is mentioned.
  • aromatic polyamides are preferable from the viewpoint of durability such as easy formation of the porous layer, binding property with magnesium hydroxide, strength of the porous layer and accompanying oxidation resistance.
  • aromatic polyamides meta-type aromatic polyamides are preferred, and metaphenylene isophthalamide is particularly preferred from the viewpoint that the meta-type is easier to mold than the para-type.
  • the magnesium hydroxide of the present invention is represented by the following formula (1).
  • FIG. 1 is a schematic diagram for explaining the width (W 1 ) of primary particles and the thickness (T 1 ) of primary particles used in the present invention.
  • the lateral width W 1 of the primary particles and the thickness T 1 of the primary particles are defined. That is, when the primary particle is a hexagonal plate surface, the major axis of the particle is “lateral width W 1 of the primary particle”, and the thickness of the plate surface is “primary particle thickness T 1 ”.
  • Secondary particles are particles in which a plurality of primary particles gather to form an aggregate.
  • FIG. 2 is a schematic diagram for explaining the lateral width (W 2 ) of the secondary particles used in the present invention. As shown in FIG. 2, define the width W 2 of the secondary particles. That is, the diameter of the sphere when the secondary particles are considered to be wrapped by the sphere is the “lateral width W 2 of the secondary particles”.
  • the average width of primary particles of the magnesium hydroxide of the present invention by SEM is 0.1 to 0.7 ⁇ m, preferably 0.15 to 0.65 ⁇ m, more preferably 0.2 to 0.6 ⁇ m. . If the average horizontal width of the primary particles is less than 0.1 ⁇ m, the pores of the heat resistant porous layer are blocked, and the porosity of the heat resistant porous layer is less than 30%, which is not preferable. On the other hand, if the average width of the primary particles is larger than 0.7 ⁇ m, the heat resistance and smoke suppression of the separator are lowered, which is not preferable.
  • the average lateral width of the primary particles is obtained from the arithmetic average of the measured lateral widths of any 100 crystals in the SEM photograph by the SEM method.
  • the lateral width of primary particles cannot be measured by laser diffraction in principle. Therefore, it confirms visually by SEM method.
  • the average thickness of the primary particles of the magnesium hydroxide of the present invention as measured by SEM is 20 to 100 nm, preferably 20 to 90 nm, more preferably 20 to 80 nm.
  • the smoke suppression property of the separator becomes insufficient, which is not preferable.
  • the average thickness of the primary particles is smaller than 20 nm, aggregation between the primary particles becomes strong, which is not preferable.
  • the average thickness of the primary particles is determined from the arithmetic average of the measured values of the thickness of arbitrary 100 crystals in the SEM photograph by the SEM method. The thickness of the primary particles cannot be measured by the laser diffraction method in principle. Therefore, it confirms visually by SEM method.
  • the monodispersity represented by the following formula of the magnesium hydroxide of the present invention is 50% or more, preferably 60% or more, more preferably 70% or more, and further preferably 80% or more.
  • the average lateral width of the secondary particles is measured by a laser diffraction method. This is because it is difficult for the SEM method to accurately measure the lateral width of the secondary particles.
  • Monodispersity (%) (Average width of primary particles by SEM method / Average width of secondary particles by laser diffraction method) ⁇ 100
  • the magnesium hydroxide of the present invention has a volume-based cumulative 90% particle diameter (D90) by laser diffraction method of 1 ⁇ m or less, preferably 0.9 ⁇ m or less.
  • D90 volume-based cumulative 90% particle diameter
  • D90 / D10 The ratio of the volume-based cumulative 10% particle diameter (D10) by the laser diffraction method of the magnesium hydroxide of the present invention to the volume-based cumulative 90% particle diameter (D90), D90 / D10 is 10 or less, preferably Is 8 or less, more preferably 6 or less, and most preferably 4 or less. The lower the value of D90 / D10, the sharper the particle size distribution and the more uniform particle size. When the value of D90 / D10 is larger than 10, it is not preferable because coarse particles and fine particles are caused and the heat resistance of the separator is lowered.
  • the lattice strain in the ⁇ 101> direction in the X-ray diffraction method of the magnesium hydroxide of the present invention is 3 ⁇ 10 ⁇ 3 or less, preferably 2.5 ⁇ 10 ⁇ 3 or less, more preferably 2 ⁇ 10 ⁇ 3 or less. More preferably, it is 1.5 ⁇ 10 ⁇ 3 or less.
  • the smaller the lattice strain the fewer lattice defects in the magnesium hydroxide crystal and the less the aggregation of primary particles. If the lattice strain is larger than 3 ⁇ 10 ⁇ 3, the dispersion of magnesium hydroxide in the heat resistant porous layer becomes insufficient due to the large number of lattice defects, which is not preferable.
  • the primary particle aspect ratio (average primary particle width by SEM method / average primary particle thickness by SEM method) is preferably 10 or more, more preferably 15 or more. is there. If the aspect ratio is 10 or more, the thickness of the heat-resistant porous layer can be reduced, and the smoke suppression property of the separator can be improved.
  • the absolute value of the zeta potential of the magnesium hydroxide of the present invention is 15 mV or more, preferably 20 mV or more, more preferably 25 mV or more, and further preferably 30 mV or more. If the absolute value of the zeta potential is lower than 15 mV, the electrostatic repulsion between the primary particles of magnesium hydroxide becomes weak, the dispersion in the heat-resistant porous layer becomes insufficient, and the heat resistance of the separator decreases. It is not preferable.
  • the total content of chromium compound, manganese compound, iron compound, cobalt compound, nickel compound, copper compound and zinc compound of the magnesium hydroxide of the present invention is metal (Cr, Mn, Fe, Co, Ni, Cu, Zn). In terms of conversion, it is 200 ppm or less, preferably 150 ppm or less, more preferably 100 ppm or less. If the total content of the impurities is more than 200 ppm, the durability of the non-aqueous secondary battery is lowered or a short circuit is caused, which is not preferable.
  • the particles are preferably surface-treated in order to improve the dispersibility in the heat-resistant porous layer.
  • Surface treatment agents include anionic surfactants, cationic surfactants, phosphate ester treatment agents, silane coupling agents, titanate coupling agents, aluminum coupling agents, silicone treatment agents, silicic acid and water glass.
  • the present invention is not limited to this.
  • at least one selected from the group consisting of octylic acid and octanoic acid is particularly preferable.
  • the total amount of the surface treatment agent is 0.01 to 20% by weight, preferably 0.1 to 15% by weight, based on magnesium hydroxide.
  • Non-aqueous secondary battery of the present invention uses the above-described separator for a non-aqueous secondary battery of the present invention in a non-aqueous secondary battery that obtains an electromotive force by doping or dedoping lithium. Next battery.
  • Such a non-aqueous secondary battery of the present invention is excellent in safety and durability at high temperatures, and is excellent in cycle characteristics and the like.
  • the type and configuration of the non-aqueous secondary battery of the present invention is not limited in any way, but a battery element in which a positive electrode, a separator, and a negative electrode are sequentially laminated is impregnated with an electrolytic solution, and this is enclosed in an exterior. Any configuration can be applied as long as it is configured.
  • the negative electrode has a structure in which a negative electrode mixture containing a negative electrode active material, a conductive additive, and a binder is formed on a current collector (copper foil, stainless steel foil, nickel foil, etc.).
  • a material capable of electrochemically doping lithium for example, a carbon material, silicone, aluminum, or tin is used.
  • the positive electrode has a structure in which a positive electrode mixture containing a positive electrode active material, a conductive additive, and a binder is formed on a current collector.
  • the positive electrode active material include lithium-containing transition metal oxides such as LiCoO 2 , LiNiO 2 , LiMn 0.5 Ni 0.5 O 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiMn 2 O. 4 and LiFePO 4 are used.
  • the electrolytic solution has a configuration in which a lithium salt, for example, LiPF 6 , LiBF 4 , or LiClO 4 is dissolved in a non-aqueous solvent.
  • a lithium salt for example, LiPF 6 , LiBF 4 , or LiClO 4
  • the non-aqueous solvent include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, ⁇ -butyrolactone, and vinylene carbonate.
  • Examples of the exterior material include a metal can or an aluminum laminate pack.
  • the shape of the battery includes a square shape, a cylindrical shape, a coin shape, and the like, but the separator of the present invention can be suitably applied to any shape.
  • the method for producing magnesium hydroxide of the present invention includes the following steps (1) to (4). That is, (1) a step of preparing a water-soluble magnesium salt aqueous solution and a water-soluble alkali salt aqueous solution, and (2) the obtained water-soluble magnesium salt aqueous solution and water-soluble alkali salt aqueous solution were reacted at a reaction temperature of 0 to 60 ° C.
  • examples of the water-soluble magnesium salt include, but are not limited to, magnesium chloride, magnesium nitrate, magnesium acetate, magnesium sulfate and the like.
  • magnesium chloride, magnesium nitrate, or magnesium acetate containing a monovalent anion examples include, but are not limited to, sodium hydroxide, potassium hydroxide, ammonium hydroxide and the like.
  • examples of monovalent organic acids and monovalent organic acid salts include, but are not limited to, acetic acid, sodium acetate, propionic acid, sodium propionate, butyric acid, sodium butyrate, and the like.
  • the concentration of the magnesium salt aqueous solution is 0.1 to 5 mol / L, preferably 0.5 to 4 mol / L as magnesium ions.
  • the concentration of the aqueous alkali salt solution is 0.1 to 20 mol / L, preferably 0.5 to 15 mol / L as hydroxide ions.
  • the concentration of the aqueous solution of the monovalent organic acid and / or monovalent organic acid salt is 0.01 to 1 mol / L.
  • the total content of chromium compound, manganese compound, iron compound, cobalt compound, nickel compound, copper compound and zinc compound contained in each raw material is converted to metal (Cr, Mn, Fe, Co, Ni, Cu, Zn). 200 ppm or less, preferably 150 ppm or less, more preferably 100 ppm or less.
  • the reaction method uses a continuous reaction in consideration of productivity and reaction uniformity.
  • the pH during the reaction is adjusted to 9.2 to 11.0, preferably 9.4 to 10.8.
  • productivity is low, which is not preferable for economic reasons.
  • the reaction pH is higher than 11.0, it is not preferable because impurities derived from the raw material are likely to precipitate and for economic reasons.
  • the concentration during the reaction is 0.1 to 300 g / L in terms of magnesium hydroxide, preferably 1 to 250 g / L, more preferably 5 to 200 g / L.
  • the reaction temperature is 0 to 60 ° C., preferably 10 to 50 ° C., more preferably 20 to 40 ° C.
  • the reaction temperature is higher than 60 ° C., the lattice strain in the ⁇ 101> direction increases and the primary particles aggregate, which is not preferable.
  • the reaction temperature is less than 0 ° C., the reaction solution freezes, which is not preferable.
  • the suspension containing magnesium hydroxide prepared in the step (2) is dehydrated and then washed with deionized water having a weight 20 times that of magnesium hydroxide to obtain water and / or organic. Resuspend in solvent. Through this step, impurities such as sodium can be removed, and aggregation of primary particles of magnesium hydroxide can be prevented.
  • step (4) the suspension containing magnesium hydroxide prepared in step (3) is stirred and held at 50 to 150 ° C. for 1 to 60 hours. By passing through this step, aggregation of primary particles can be relaxed and a suspension in which primary particles are sufficiently dispersed can be obtained. If the aging time is less than 1 hour, it is not sufficient as a time for relaxing aggregation of primary particles. Aging for longer than 60 hours does not make sense because there is no change in the aggregated state. A preferred aging time is 2 to 30 hours, and more preferably 4 to 24 hours. If the aging temperature is higher than 150 ° C., the primary particles grow larger than 0.7 ⁇ m, which is not preferable. An aging temperature of less than 50 ° C.
  • a preferable aging temperature is 60 to 140 ° C, more preferably 70 to 130 ° C.
  • the concentration at the time of aging is 0.1 to 300 g / L in terms of magnesium hydroxide, preferably 0.5 to 250 g / L, more preferably 1 to 200 g / L.
  • concentration at the time of aging is lower than 0.1 g / L, the productivity is low, and when it is higher than 300 g / L, the primary particles are aggregated, which is not preferable.
  • the surface treatment of the magnesium hydroxide particles obtained in step (4) can improve the dispersibility in the resin when added, kneaded, and dispersed in the resin.
  • a wet method or a dry method can be used. In consideration of processing uniformity, a wet method is preferably used.
  • the suspension after wet pulverization is temperature-controlled, and a surface treatment agent dissolved under stirring is added. The temperature during the surface treatment is appropriately adjusted to a temperature at which the surface treatment agent is dissolved.
  • the surface treatment agent examples include an anionic surfactant, a cationic surfactant, a phosphate ester treatment agent, a silane coupling agent, a titanate coupling agent, an aluminum coupling agent, a silicone treatment agent, silicic acid, and water. At least one selected from the group consisting of glass and the like can be used. In order to improve the dispersibility of magnesium hydroxide in the heat-resistant porous layer, at least one surface treatment agent selected from the group consisting of octylic acid and octanoic acid is particularly preferable.
  • the total amount of the surface treatment agent is preferably 0.01 to 20% by weight, more preferably 0.1 to 15% by weight, based on the weight of magnesium hydroxide.
  • the suspension after the surface treatment is dehydrated and washed with deionized water having a weight 20 times the solid content to obtain magnesium hydroxide of the present invention.
  • the drying method can be hot air drying, vacuum drying, or the like, but is not particularly limited.
  • the method for producing a separator for a non-aqueous secondary battery of the present invention includes the following steps (1) to (4). That is, (1) a step of preparing a coating suspension containing a heat-resistant resin, magnesium hydroxide and a water-soluble organic solvent, and (2) the obtained coating suspension is made of a polyolefin porous substrate. A step of coating on one or both sides, (3) a step of solidifying the heat-resistant resin in the applied suspension, and (4) a step of washing and drying the sheet after the solidification step.
  • the water-soluble organic solvent is not particularly limited as long as it is a good solvent for the heat-resistant resin.
  • N-methylpyrrolidone, dimethylacetamide, dimethylformamide, dimethyl Polar solvents such as sulfoxide can be used.
  • a solvent that becomes a poor solvent for the heat-resistant resin can be partially mixed and used. By applying such a poor solvent, a microphase separation structure is induced and the formation of a heat-resistant porous layer is facilitated.
  • the poor solvent alcohols are preferred, and polyhydric alcohols such as glycol are particularly preferred.
  • the coating amount of the suspension on the polyolefin porous substrate is preferably about 2 to 3 g / m 2 .
  • the coating method include a knife coater method, a gravure coater method, a screen printing method, a Meyer bar method, a die coater method, a reverse roll coater method, an ink jet method, a spray method, and a roll coater method.
  • the reverse roll coater method is preferable from the viewpoint of uniformly applying the coating film.
  • a method of coagulating the heat-resistant resin in the suspension a method of spraying a coagulating liquid on the polyolefin porous substrate after coating or a bath containing the coagulating liquid ( And a method of immersing the substrate in a coagulation bath).
  • the coagulation liquid is not particularly limited as long as it can coagulate the heat-resistant resin, but water or a mixed liquid in which an appropriate amount of water is contained in both solvents used for the suspension is preferable.
  • the mixing amount of water is preferably 40 to 80% by weight with respect to the coagulating liquid.
  • the drying method is not particularly limited, but the drying temperature is suitably 50 to 80 ° C. In the case of applying a high drying temperature, it is preferable to apply a method of contacting the roll in order to prevent dimensional change due to heat shrinkage.
  • a polyolefin microporous membrane can be produced as follows. That is, a gel-like mixture of polyolefin and liquid paraffin is extruded from a die and then cooled to produce a base tape, which is stretched and heat-set. Thereafter, liquid paraffin can be extracted by dipping in an extraction solvent such as methylene chloride, and then the extraction solvent can be dried.
  • an extraction solvent such as methylene chloride
  • MT3300 laser diffraction / scattering particle size distribution analyzer
  • Measurement conditions are 10 ° / min at gonio speed, slit width in order of divergence slit, receiving slit, and scattering slit.
  • (101) surface is 1 ° -0.3mm-1 °
  • the width (B 0 ) at (1/2) of the height from the background to the diffraction peak is measured. From the relationship between the split width ( ⁇ ) of K ⁇ 1 and K ⁇ 2 with respect to 2 ⁇ , ⁇ with respect to 2 ⁇ on the (101) plane and (202) plane is read.
  • B is obtained from the relationship between ( ⁇ / B 0 ) and (B / B 0 ) based on the values of B 0 and ⁇ .
  • each diffraction profile is measured at a slit width (1/2) ° ⁇ 0.3 mm ⁇ (1/2) ° to obtain a half width (b).
  • This is plotted against 2 ⁇ to create a graph showing the relationship between b and 2 ⁇ .
  • (B / ⁇ ) is obtained from b corresponding to 2 ⁇ of the (101) plane and the (202) plane.
  • is obtained from the relationship between (b / B) and ( ⁇ / B).
  • Gurley value The Gurley value (second / 100 cc) was measured using a Gurley type densometer (G-B2C, manufactured by Toyo Seiki Co.) according to JIS P8117.
  • the cell resistance was measured by raising the temperature at a rate of temperature increase of 1.6 ° C./min and simultaneously applying alternating current with an amplitude of 10 mV and a frequency of 1 kHz.
  • the resistance value was 10 3 ohm ⁇ cm 2 or more in the range of 135 to 150 ° C., the SD characteristic was judged as good ( ⁇ ), and otherwise it was judged as poor ( ⁇ ).
  • a magnesium chloride aqueous solution and a sodium hydroxide aqueous solution were continuously supplied to the reaction vessel at 120 mL / min using a metering pump to cause coprecipitation reaction.
  • the reaction tank is made of stainless steel and overflows with a capacity of 240 mL. 100 mL of deionized water is previously added to the reaction tank, the temperature is adjusted to 30 ° C., and the mixture is stirred at 500 rpm using a stirrer. Similarly, the raw material whose temperature was adjusted to 30 ° C. was supplied to the reaction vessel, and the flow rate was adjusted so that the reaction pH was 9.6.
  • the obtained suspension containing magnesium hydroxide was subjected to suction filtration, and washed with deionized water having a solid content of magnesium hydroxide of 20 mass times. Deionized water was added to the cake after washing with water so that the magnesium hydroxide concentration was 30 g / L, and the mixture was stirred with a homomixer to obtain a suspension.
  • the temperature of the suspension after washing was adjusted to 80 ° C. and aged for 4 hours while stirring at 300 rpm.
  • magnesium hydroxide A for a separator for a non-aqueous secondary battery of the present invention.
  • the experimental conditions of magnesium hydroxide A are shown in Table 1. Average width of primary particles, average width of secondary particles, monodispersity, D90 / D10, crystal strain in ⁇ 101> direction, aspect ratio of primary particles, impurities The amounts are shown in Table 2.
  • a SEM photograph of 20,000 times the magnesium hydroxide A is shown in FIG.
  • This polyethylene solution was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape).
  • the base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and the base tape was biaxially stretched by successively performing longitudinal stretching and transverse stretching.
  • the longitudinal stretching was performed at a stretching ratio of 5.5 times and a stretching temperature of 90 ° C.
  • the transverse stretching was performed at a stretching ratio of 11.0 times
  • the stretching temperature was 105 ° C.
  • heat setting was performed at 125 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin.
  • the obtained polyethylene microporous membrane had a basis weight of 4.5 g / m 2 , a film thickness of 8 ⁇ m, a porosity of 46%, a Gurley value of 152 seconds / 100 cc, and a puncture strength of 310 g.
  • MCMB Mesophase carbon microbeads
  • acetylene black Denki Kagaku Kogyo
  • polyvinylidene fluoride manufactured by Kureha Chemical
  • the positive electrode and the negative electrode were opposed to each other through the separator. This was impregnated with an electrolytic solution and sealed in an outer package containing an aluminum laminate film to obtain a non-aqueous secondary battery of the present invention.
  • 1 mol / L LiPF 6 ethylene carbonate / ethyl methyl carbonate (3/7 weight ratio) was used as the electrolytic solution.
  • Table 3 shows the durability of the obtained non-aqueous secondary battery.
  • a magnesium chloride aqueous solution and a sodium hydroxide aqueous solution were continuously supplied to the reaction vessel at 120 mL / min using a metering pump to cause coprecipitation reaction.
  • the reaction tank is made of stainless steel and overflows with a capacity of 240 mL. 100 mL of deionized water is previously added to the reaction tank, the temperature is adjusted to 30 ° C., and the mixture is stirred at 500 rpm using a stirrer. Similarly, the raw material whose temperature was adjusted to 30 ° C. was supplied to the reaction vessel, and the flow rate was adjusted so that the reaction pH was 9.6.
  • the obtained suspension containing magnesium hydroxide was subjected to suction filtration, and washed with deionized water having a solid content of magnesium hydroxide of 20 mass times. Deionized water was added to the cake after washing with water so that the magnesium hydroxide concentration was 30 g / L, and the mixture was stirred with a homomixer to obtain a suspension.
  • the suspension after washing was put into an autoclave and subjected to hydrothermal treatment at 120 ° C. for 4 hours while stirring at 300 rpm.
  • magnesium hydroxide B for a separator for a non-aqueous secondary battery of the present invention.
  • the experimental conditions of magnesium hydroxide B are shown in Table 1. Average width of primary particles, average width of secondary particles, monodispersity, D90 / D10, crystal strain in ⁇ 101> direction, aspect ratio of primary particles, impurities The amounts are shown in Table 2.
  • a SEM photograph of 20,000 times that of magnesium hydroxide B is shown in FIG.
  • Example 1 A sample was prepared in the same manner except that magnesium hydroxide B was used in place of magnesium hydroxide A to obtain a separator for a non-aqueous secondary battery.
  • Table 3 shows the characteristics of the obtained non-aqueous secondary battery separator.
  • a non-aqueous secondary battery was produced in the same manner as in Example 1 to obtain a non-aqueous secondary battery of the present invention.
  • Table 3 shows the durability of the obtained non-aqueous secondary battery.
  • a magnesium chloride + sodium acetate mixed aqueous solution and a sodium hydroxide aqueous solution were continuously supplied to the reaction tank at 120 mL / min using a metering pump, respectively, to cause a coprecipitation reaction.
  • the reaction tank is made of stainless steel and overflows with a capacity of 240 mL. 100 mL of deionized water is previously added to the reaction tank, the temperature is adjusted to 30 ° C., and the mixture is stirred at 500 rpm using a stirrer. Similarly, the raw material whose temperature was adjusted to 30 ° C. was supplied to the reaction vessel, and the flow rate was adjusted so that the reaction pH was 9.6.
  • the obtained suspension containing magnesium hydroxide was subjected to suction filtration, and washed with deionized water having a solid content of magnesium hydroxide of 20 mass times. Deionized water was added to the cake after washing with water so that the magnesium hydroxide concentration was 30 g / L, and the mixture was stirred with a homomixer to obtain a suspension.
  • the temperature of the suspension after washing was adjusted to 120 ° C. and aged for 4 hours while stirring at 300 rpm.
  • magnesium hydroxide C for a separator for a non-aqueous secondary battery of the present invention.
  • the experimental conditions of magnesium hydroxide C are shown in Table 1. Average width of primary particles, average width of secondary particles, monodispersity, D90 / D10, crystal strain in ⁇ 101> direction, aspect ratio of primary particles, impurities The amounts are shown in Table 2. An SEM photograph of 20,000 times the magnesium hydroxide C is shown in FIG.
  • Example 1 A sample was prepared in the same manner except that magnesium hydroxide C was used in place of magnesium hydroxide A to obtain a separator for a non-aqueous secondary battery.
  • Table 3 shows the characteristics of the obtained non-aqueous secondary battery separator.
  • a non-aqueous secondary battery was produced in the same manner as in Example 1 to obtain a non-aqueous secondary battery of the present invention.
  • Table 3 shows the durability of the obtained non-aqueous secondary battery.
  • a magnesium chloride aqueous solution and a sodium hydroxide aqueous solution were continuously supplied to the reaction vessel at 120 mL / min using a metering pump to cause coprecipitation reaction.
  • the reaction tank is made of stainless steel and overflows with a capacity of 240 mL. 100 mL of deionized water is previously added to the reaction tank, the temperature is adjusted to 30 ° C., and the mixture is stirred at 500 rpm using a stirrer. Similarly, the raw material whose temperature was adjusted to 30 ° C. was supplied to the reaction vessel, and the flow rate was adjusted so that the reaction pH was 9.6.
  • the obtained suspension containing magnesium hydroxide was subjected to suction filtration, and washed with deionized water having a solid content of magnesium hydroxide of 20 mass times. Deionized water was added to the cake after washing with water so that the magnesium hydroxide concentration was 30 g / L, and the mixture was stirred with a homomixer to obtain a suspension.
  • the suspension after washing was put into an autoclave and subjected to hydrothermal treatment at 170 ° C. for 4 hours while stirring at 300 rpm.
  • magnesium hydroxide D The cake after washing was put in a hot air dryer, dried at 110 ° C. for 12 hours, and then pulverized to obtain magnesium hydroxide D.
  • the experimental conditions of magnesium hydroxide D are shown in Table 1. Average width of primary particles, average width of secondary particles, monodispersity, D90 / D10, crystal strain in ⁇ 101> direction, aspect ratio of primary particles, impurities The amounts are shown in Table 2.
  • An SEM photograph of 20,000 times that of magnesium hydroxide D is shown in FIG.
  • Example 1 A sample was prepared in the same manner except that magnesium hydroxide D was used in place of magnesium hydroxide A to obtain a separator for a non-aqueous secondary battery.
  • Table 3 shows the characteristics of the obtained non-aqueous secondary battery separator.
  • a non-aqueous secondary battery was produced in the same manner as in Example 1.
  • Table 3 shows the durability of the obtained non-aqueous secondary battery.
  • the obtained suspension containing magnesium hydroxide was subjected to suction filtration, and washed with deionized water having a solid content of magnesium hydroxide of 20 mass times. Deionized water was added to the cake after washing with water so that the magnesium hydroxide concentration was 30 g / L, and the mixture was stirred with a homomixer to obtain a suspension.
  • the suspension after washing was put into an autoclave and hydrothermally treated at 80 ° C. for 4 hours while stirring at 300 rpm.
  • magnesium hydroxide E The cake after washing was put in a hot air dryer, dried at 110 ° C. for 12 hours, and then pulverized to obtain magnesium hydroxide E.
  • the experimental conditions of magnesium hydroxide E are shown in Table 1. Average width of primary particles, average width of secondary particles, monodispersity, D90 / D10, crystal strain in ⁇ 101> direction, aspect ratio of primary particles, impurities The amounts are shown in Table 2.
  • Example 1 A sample was prepared in the same manner except that magnesium hydroxide E was used in place of magnesium hydroxide A to obtain a separator for a non-aqueous secondary battery.
  • Table 3 shows the characteristics of the obtained non-aqueous secondary battery separator.
  • a non-aqueous secondary battery was produced in the same manner as in Example 1.
  • Table 3 shows the durability of the obtained non-aqueous secondary battery.
  • a magnesium chloride aqueous solution and a sodium hydroxide aqueous solution were continuously supplied to the reaction vessel at 120 mL / min using a metering pump to cause coprecipitation reaction.
  • the reaction tank is made of stainless steel and overflows with a capacity of 240 mL. 100 mL of deionized water is previously added to the reaction tank, the temperature is adjusted to 30 ° C., and the mixture is stirred at 500 rpm using a stirrer. Similarly, the raw material whose temperature was adjusted to 30 ° C. was supplied to the reaction vessel, and the flow rate was adjusted so that the reaction pH was 9.6.
  • the obtained suspension containing magnesium hydroxide was subjected to suction filtration, and washed with deionized water having a solid content of magnesium hydroxide of 20 mass times. Deionized water was added to the cake after washing with water so that the magnesium hydroxide concentration was 30 g / L, and the mixture was stirred with a homomixer to obtain a suspension.
  • magnesium hydroxide F The washed cake was put into a hot air dryer, dried at 110 ° C. for 12 hours, and then pulverized to obtain magnesium hydroxide F.
  • the experimental conditions of magnesium hydroxide E are shown in Table 1. Average width of primary particles, average width of secondary particles, monodispersity, D90 / D10, crystal strain in ⁇ 101> direction, aspect ratio of primary particles, impurities The amounts are shown in Table 2.
  • An SEM photograph of 20,000 times the magnesium hydroxide F is shown in FIG.
  • Example 1 A sample was prepared in the same manner except that magnesium hydroxide F was used in place of magnesium hydroxide A to obtain a separator for a non-aqueous secondary battery.
  • Table 3 shows the characteristics of the obtained non-aqueous secondary battery separator.
  • a non-aqueous secondary battery was produced in the same manner as in Example 1.
  • Table 3 shows the durability of the obtained non-aqueous secondary battery.
  • the magnesium hydroxide of the present invention has an average primary particle width in the range of 0.1 to 0.7 ⁇ m, an absolute value of zeta potential of 15 mV or more, and a monodispersity of 50%. That's it. Further, since the crystal strain in the ⁇ 101> direction is 3 ⁇ 10 ⁇ 3 or less, it can be seen that the crystal has few lattice defects. Moreover, it turns out that the aspect ratio of the primary particle is improving the magnesium hydroxide C of Example 3 by the addition effect of sodium acetate.
  • Magnesium hydroxide D of Comparative Example 1 has an average primary particle width greater than 0.7 ⁇ m.
  • Magnesium hydroxide E of Comparative Example 2 and Magnesium Hydroxide F of Comparative Example 3 have a crystal strain in the ⁇ 101> direction larger than 3 ⁇ 10 ⁇ 3 , and the primary particles are aggregated. The absolute value of is low.
  • the nonaqueous secondary battery of the present invention is good in all items of shutdown characteristics, film test, and heat generation suppression function.
  • the gas generation amount of the separator of the present invention is smaller than that of the comparative example, and in particular, Example 3 using magnesium hydroxide having a high aspect ratio is remarkably small.
  • the separator for a non-aqueous secondary battery using the magnesium hydroxide of the present invention contributes to improving the safety and durability and reducing the size of the non-aqueous secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本発明の課題は、非水系二次電池の耐熱性および抑煙性の向上である。非水系二次電池用セパレータに供される、以下の(A)~(D)を満たす水酸化マグネシウム、該水酸化マグネシウムを使用した非水系二次電池用セパレータおよび、該セパレータを使用した非水系二次電池を提供する。 (A)SEM法による1次粒子の平均横幅が0.1μm以上0.7μm以下; (B)下記式で表される単分散度が50%以上; 単分散度(%)=(SEM法による1次粒子の平均横幅/レーザー回折法による2次粒子の平均横幅)×100 (C)レーザー回折法による体積基準の累積10%粒子径(D10)と体積基準の累積90%粒子径(D90)との比、D90/D10が10以下; (D)X線回折法による<101>方向の格子歪が3×10-3以下;

Description

非水系二次電池用セパレータに供される水酸化マグネシウム、非水系二次電池用セパレータおよび非水系二次電池
 本発明は、非水系二次電池用セパレータに適した水酸化マグネシウム、該水酸化マグネシウムを使用した非水系二次電池用セパレータおよび、該セパレータを使用した非水系二次電池に関するものである。特に、非水系二次電池の安全性と耐久性を向上させる技術に関するものである。
 リチウムイオン二次電池に代表される非水系二次電池は、携帯電話・ノートパソコンといった携帯用電子機器の主電源として広範に普及している。リチウムイオン二次電池は高エネルギー密度化・高容量化・高出力化がなされ、今後もこの要求が強い。このような要求に応えていくという観点から、安全性の確保は重要な技術要素となっている。
 従来、リチウムイオン二次電池のセパレータにはポリエチレンまたはポリプロピレンからなるポリオレフィン微多孔膜が用いられている。このようなセパレータは、シャットダウン機能(電池の温度が上昇したときに微多孔膜の孔が閉塞し、電流を遮断する機能)を有し、リチウムイオン二次電池の安全性確保の一翼を担っている。しかしながら、ポリオレフィン微多孔膜は、シャットダウン機能が発現した後、さらに電池温度が上昇した場合に、セパレータの溶融(いわゆるメルトダウン)が進行してしまう。その結果、電池内部で正負極間の短絡が生じ、電池は発煙・発火・爆発といった危険に曝されることになる。このため、セパレータにはシャットダウン機能に加えて、シャットダウン機能が作動する温度近傍でメルトダウンが生じない程度の、十分な耐熱性が要求されている。
 セパレータに耐熱性を付加する方法は、種々提案されてきた。例えば特許文献1では、アラミド樹脂等の耐熱性樹脂と金属水酸化物からなる無機フィラーとを含んで構成された耐熱性多孔質層を、ポリオレフィン微多孔膜上に積層した構成のセパレータが開示されている。このようなセパレータは、高温下においてポリオレフィン微多孔膜がシャットダウン機能を発現すると共に、耐熱性多孔質層が十分な耐熱性を示して200℃以上においてもメルトダウンが発生しないため、優れた耐熱性及びシャットダウン機能を得られる。また、高温下において金属水酸化物の脱水反応が生じるため、発熱抑制機能が発現され、高温下での安全性をさらに高めることができる。
 特許文献2では、ポリオレフィン多孔質基材と、この多孔質基材の片面または両面に積層された、耐熱性樹脂および無機フィラーを含む耐熱性多孔質層とを備えた非水系二次電池用セパレータであって、前記無機フィラーは、平均粒子径が0.01~3.0μmであり、かつ、比表面積が1.0~100m/gである水酸化マグネシウム粉末からなることを特徴とする非水系二次電池用セパレータが開示されている。所定の平均粒径および比表面積を有した水酸化マグネシウム粉末を適用することで、電池内に微量に存在する水分やフッ化水素の活性を著しく低下させ、電解質の分解等によるガス発生を抑制させている。このため、電池の耐久性を大幅に改善することができるとされている。実施例1~3では、平均粒子径0.8μmの水酸化マグネシウムが使用されている。
 特許文献1および2では、無機フィラーとして水酸化マグネシウムを使用し、耐熱性および電池の耐久性を改善した非水系二次電池用セパレータが開示されている。しかし、従来の水酸化マグネシウムを使用したセパレータの耐熱性および抑煙性は未だに不十分であり、水酸化マグネシウムの改良が求められていた。
WO2008/156033 特開2011-108444
 本願で解決する課題は、非水系二次電池の耐熱性および抑煙性の向上である。従来、電池の耐熱性向上を目的として、2次粒子の平均横幅が0.8μm程度の水酸化マグネシウムが使用されてきたが、セパレータの薄膜化の要求に伴い、さらに小さい粒子径をもつ水酸化マグネシウムが要求されてきた。しかし、従来の粒子径が小さい水酸化マグネシウムは、塗布するために懸濁液とした際の凝集性が強いため、ポリオレフィン微多孔膜に対し均一な塗布ができず、耐熱性が下がるという問題があった。また、更なる安全性強化のため、高温での抑煙性向上が求められていた。
 本発明者らは、鋭意研究の結果、ポリオレフィン多孔質基材と、この多孔質基材の片面または両面に積層された耐熱性樹脂および水酸化マグネシウムを含む耐熱性多孔質層とを備えた非水系二次電池用セパレータにおいて、前記耐熱性多孔質層に特定の構造をもつ水酸化マグネシウムを配合することにより、上記問題を解決できることを発見した。
 本発明は、上記問題を解決した、非水系二次電池用セパレータに供される、以下の(A)~(D)を満たす水酸化マグネシウムを提供する。
(A)SEM法による1次粒子の平均横幅が0.1μm以上0.7μm以下;
(B)下記式で表される単分散度が50%以上;
単分散度(%)=(SEM法による1次粒子の平均横幅/レーザー回折法による2次粒子の平均横幅)×100
(C)レーザー回折法による体積基準の累積10%粒子径(D10)と体積基準の累積90%粒子径(D90)との比、D90/D10が10以下;
(D)X線回折法による<101>方向の格子歪が3×10-3以下;
 本発明はまた、上記問題を解決した、ポリオレフィン多孔質基材と、該多孔質基材の片面または両面に積層された耐熱性多孔質層とを備えた非水系二次電池用セパレータであって、前記耐熱性多孔質層に、耐熱性樹脂および、上記水酸化マグネシウムを含む、非水系二次電池用セパレータを提供する。
 本発明はまた、上記非水系二次電池用セパレータを用いた、リチウムのドープ・脱ドープにより起電力を得る非水系二次電池を提供する。
 本発明の水酸化マグネシウムを使用した非水系二次電池用セパレータは、非水系二次電池の安全性と耐久性の向上に寄与する。
本発明の水酸化マグネシウムの1次粒子について、横幅および厚みを説明する模式図である。 本発明の水酸化マグネシウムの2次粒子について、横幅を説明する模式図である。 実施例1の水酸化マグネシウムAを観察した20,000倍のSEM写真である。 実施例2の水酸化マグネシウムBを観察した20,000倍のSEM写真である。 実施例3の水酸化マグネシウムCを観察した20,000倍のSEM写真である。 比較例1の水酸化マグネシウムDを観察した20,000倍のSEM写真である。 比較例3の水酸化マグネシウムFを観察した20,000倍のSEM写真である。
 以下、本発明について具体的に説明する。
<非水系二次電池用セパレータ>
(構成)
 本発明の非水系二次電池用セパレータは、ポリオレフィン多孔質基材と、この多孔質基材の片面または両面に積層された耐熱性多孔質層を含む。前記耐熱性多孔質層は、耐熱性樹脂および、本発明の水酸化マグネシウムを含む。
(膜厚)
 本発明の非水系二次電池用セパレータは、膜厚が7~25μmであり、好ましくは10~20μmである。膜厚が7μmより薄くなると機械的強度が低下するため好ましくない。また、25μmを超えるとイオン透過性の観点から好ましくなく、また電池内でセパレータが占める体積が大きくなりエネルギー密度の低下を招くという観点からも好ましくない。
(空孔率)
 本発明の非水系二次電池用セパレータの空孔率は20~70%であり、好ましくは30~60%である。空孔率が20%より低くなると電池の作動に十分な量の電解液を保持することが困難となり、電池の充放電特性が著しく低下するため好ましくない。空孔率が70%を超えるとシャットダウン特性が不十分となったり、機械的強度や耐熱性が低下したりして好ましくない。
(突刺強度)
 本発明の非水系二次電池用セパレータの突刺強度は200g以上であり、好ましくは250g以上、より好ましくは300g以上である。突刺強度が200gより低いと電池の正負極間の短絡を防止するための機械的強度が不十分であり、製造歩留まりが上がらないため好ましくない。
(ガーレ値)
 本発明の非水系二次電池用セパレータにおけるガーレ値(JIS P8117)は150~600秒/100ccであり、好ましくは150~400秒/100ccである。ガーレ値が150秒/100ccより低くなるとイオン透過性には優れるものの、シャットダウン特性や機械的強度が低下し好ましくない。さらに、該多孔質層を成形する際にポリオレフィン多孔質基材と耐熱性多孔質層との界面において目詰まりを生じるような不具合も発生することがあり好ましくない。また、ガーレ値が600秒/100ccより大きくなるとイオン透過性が不十分となり、電池の負荷特性が悪化する恐れがあるため好ましくない。
 本発明の非水系二次電池用セパレータのガーレ値から、これに適用したポリオレフィン多孔質基材のガーレ値を引いた値は250秒/100cc以下であり、好ましくは200秒/100cc以下である。この値が小さい方が、シャットダウン特性が良好になったり、イオン透過性に優れたりするため好ましい。
<ポリオレフィン多孔質基材>
(構成)
 本発明におけるポリオレフィン多孔質基材は、ポリオレフィンを含んで構成され、内部に多数の空孔ないし空隙を有し、かつ、これら空孔等が互いに連結された多孔質構造となっている。基材構成としては、例えば微多孔膜、不織布、紙状シート、その他三次元ネットワーク構造を有するシート等が挙げられるが、ハンドリング性や強度の観点から微多孔膜が好ましい。微多孔膜とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった膜を意味する。
(ポリオレフィン樹脂)
 本発明における多孔質基材を構成するポリオレフィン樹脂としては、例えばポリエチレン、ポリプロピレン、ポリメチルペンテン等が挙げられる。中でも良好なシャットダウン特性が得られるという観点で、ポリエチレンを90重量%以上含むものが好適である。ポリエチレンは、低密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレンなどが好適に用いられ、特に、高密度ポリエチレン、超高分子量ポリエチレンが好適であり、強度と成形性の観点において、高密度ポリエチレンと超高分子量ポリエチレンの混合物がさらに好ましい。ポリエチレンの分子量は、重量平均分子量で10万~1000万のものが好適であり、特に重量平均分子量100万以上の超高分子量ポリエチレンを少なくとも1重量%以上含むポリエチレン組成物が好ましい。その他、本発明における多孔質基材は、ポリエチレン以外にもポリプロピレン、ポリメチルペンテン等の他のポリオレフィンを混合して構成しても良く、また、ポリエチレン微多孔膜とポリプロピレン微多孔膜の2層以上の積層体として構成しても良い。
(膜厚)
 本発明におけるポリオレフィン多孔質基材の膜厚は、5~20μmが好適である。膜厚が5μmより薄いと十分な機械的強度が得られずハンドリングが困難となったり、電池の歩留まりが著しく低下したりするため好ましくない。また、20μmより厚くなるとイオンの移動が困難となったり、電池内でセパレータが占める容積が増加し電池のエネルギー密度を低下させたりするため好ましくない。
(空孔率)
 本発明におけるポリオレフィン多孔質基材の空孔率は10~60%であり、より好ましくは20~50%である。ポリオレフィン多孔質基材の空孔率が10%より低くなると、電池の作動に十分な量の電解液を保持することが困難となり、電池の充放電特性が著しく低下するため好ましくない。また、空孔率が60%を超えると、シャットダウン特性が不十分となったり、機械的強度が低下したりして好ましくない。
(突刺強度)
 本発明におけるポリオレフィン多孔質基材の突刺強度は200g以上であり、好ましくは250g以上、さらに好ましくは300g以上である。突刺強度が200gより低いと電池の正負極間の短絡を防止するための機械的強度が不十分であり、製造歩留まりが上がらないため好ましくない。
(ガーレ値)
 本発明におけるポリオレフィン多孔質基材のガーレ値(JIS P8117)は100~500秒/100ccであり、好ましくは100~300秒/100ccである。ガーレ値が100秒/100ccより低くなると、イオン透過性には優れるものの、シャットダウン特性や機械強度が低下し好ましくない。また、ガーレ値が500秒/100ccより大きくなるとイオン透過性が不十分となり、電池の負荷特性が悪化するため好ましくない。
(平均孔径)
 本発明におけるポリオレフィン多孔質基材の平均孔径は10~100nmである。10nmより孔が小さいと、電解液を含浸するのが困難になるといった不具合が生じる場合がある。また、100nmより孔が大きくなると、該多孔質層を成形したとき界面に目詰まりが生じることがあったり、該多孔質層を形成した場合にシャットダウン特性が著しく低下したりする場合があるため好ましくない。
<耐熱性多孔質層>
(構成)
 本発明における耐熱性多孔質層は、耐熱性樹脂と水酸化マグネシウムを含んで構成されており、内部に多数の空孔ないし空隙を有し、かつ、これら空孔等が互いに連結された多孔質構造となっている。かかる耐熱性多孔質層は、水酸化マグネシウムが耐熱性樹脂中に分散・結着した状態で、ポリオレフィン多孔質基材上に直接固着された態様であることが、ハンドリング性等の観点から好ましい。なお、耐熱性樹脂のみの多孔質層をポリオレフィン多孔質基材上に形成しておき、後から水酸化マグネシウムを含む溶液を塗布・浸漬する等の方法によって、耐熱性樹脂層の孔内あるいは表面に水酸化マグネシウムが付着したような態様であってもよい。また、耐熱性多孔質層を微多孔膜や不織布、紙状シート等の独立した多孔性シートとして構成し、この多孔性シートをポリオレフィン多孔質基材上に接着したような構成であってもよい。
 本発明において、耐熱性多孔質層の構成は、重量比で耐熱性樹脂:水酸化マグネシウム=10:90~80:20であり、さらに10:90~50:50の範囲が好適である。水酸化マグネシウムの含有量が20重量%より少なくなると、水酸化マグネシウムの特徴を十分に得ることが困難となる。また、水酸化マグネシウムの含有量が90重量%を超えると、成形が困難となり好ましくない。一方、水酸化マグネシウムが50重量%以上含まれるものは熱収縮の抑制効果などの耐熱特性が向上するため好適である。
 本発明において耐熱性多孔質層はポリオレフィン多孔質基材の少なくとも一方の面に成形すればよいが、ポリオレフィン多孔質基材の表裏両面に該多孔質層を成形する方がさらに好ましい。ポリオレフィン多孔質基材の表裏両面に該多孔質層を成形することによって、カールすることなくハンドリング性が良好となり、高温時の寸法安定性といった耐熱性も向上し、電池のサイクル特性も著しく向上するなどの効果が得られる。
(空孔率)
 耐熱性多孔質層の空孔率は30~80%である。さらに耐熱性多孔質層の空孔率は、ポリオレフィン多孔質基材の空孔率より高い方が好ましい。このような構成の方が良好なシャットダウン特性が得られ、イオン透過性に優れるなど特性上のメリットが生じる。
(厚み)
 耐熱性多孔質層の厚みは、耐熱性多孔質層がポリオレフィン多孔質基材の両面に形成されている場合は該耐熱性多孔質層の厚みの合計が2~12μmであることが好ましく、耐熱性多孔質層が片面にのみ形成されている場合は4~24μmであることが好ましい。
<耐熱性樹脂>
 本発明における耐熱性樹脂は、ポリオレフィン多孔質基材の融点を超える温度においても溶融・熱分解しない程度の十分な耐熱性を有した樹脂である。例えば、融点が200℃以上の樹脂、あるいは、実質的に融点が存在しない樹脂については、その熱分解温度が200℃以上の樹脂であれば好適に用いることができる。このような耐熱性樹脂としては、例えば、芳香族ポリアミド、ポリイミド、ポリアミドイミド、ポリスルホン、ポリケトン、ポリエーテルケトン、ポリエーテルスルホン、ポリエーテルイミド、セルロース、ポリフッ化ビニリデン、これらの2種以上の組合せ等が挙げられる。中でも、多孔質層の形成しやすさ、水酸化マグネシウムとの結着性、それに伴う多孔質層の強度、耐酸化性など耐久性の観点において、芳香族ポリアミドが好ましい。また、芳香族ポリアミドにおいても、パラ型に比べメタ型は成形が容易という観点で、メタ型芳香族ポリアミドが好適であり、特にメタフェニレンイソフタルアミドが好適である。
<水酸化マグネシウム>
(化学式)
 本発明の水酸化マグネシウムは、下記式(1)で表される。
Mg(OH)     (1)
(1次粒子の定義)
 1次粒子とは、幾何学的にそれ以上分割できない明確な境界を持った粒子である。図1は、本発明で用いた1次粒子の横幅(W)および1次粒子の厚み(T)を説明する模式図である。図1に示すように、1次粒子の横幅Wおよび1次粒子の厚みTを規定する。すなわち、1次粒子が六角板状の板面としたときの粒子の長径が「1次粒子の横幅W」であり、板面の厚さが「1次粒子の厚みT」である。
(2次粒子の定義)
 2次粒子とは、1次粒子が複数個集まり、凝集体となった粒子である。図2は、本発明で用いた2次粒子の横幅(W)を説明する模式図である。図2に示すように、2次粒子の横幅Wを規定する。すなわち、2次粒子が球体に包まれると考えたときの球体の直径が「2次粒子の横幅W」である。
(1次粒子の平均横幅)
 本発明の水酸化マグネシウムの、SEM法による1次粒子の平均横幅は0.1~0.7μmであり、好ましくは0.15~0.65μm、より好ましくは0.2~0.6μmである。1次粒子の平均横幅が0.1μm未満では、耐熱性多孔質層の孔が閉塞し、耐熱性多孔質層の空孔率が30%未満となるため好ましくない。また、1次粒子の平均横幅が0.7μmより大きくなると、セパレータの耐熱性や抑煙性が低下するため好ましくない。1次粒子の平均横幅は、SEM法によりSEM写真中の任意の100個の結晶の横幅の測定値の算術平均から求める。1次粒子の横幅は、原理上レーザー回折法では測定することができない。したがって、SEM法により目視で確認する。
(1次粒子の平均厚み)
 本発明の水酸化マグネシウムの、SEM法による1次粒子の平均厚みは20~100nmであり、好ましくは20~90nm、より好ましくは20~80nmである。1次粒子の平均厚みが100nmより大きいと、セパレータの抑煙性が不十分となるため好ましくない。1次粒子の平均厚みが20nmより小さいと、1次粒子間の凝集が強くなるため好ましくない。1次粒子の平均厚みは、SEM法によりSEM写真中の任意の100個の結晶の厚みの測定値の算術平均から求める。1次粒子の厚みは、原理上レーザー回折法では測定することができない。したがって、SEM法により目視で確認する。
(単分散度)
 本発明の水酸化マグネシウムの、下記式で表わされる単分散度は50%以上であり、好ましくは60%以上、より好ましくは70%以上、さらに好ましくは80%以上である。単分散度が50%未満であると、耐熱性多孔質層内の水酸化マグネシウムの分散が不十分となり、セパレータの耐熱性が低下するため好ましくない。2次粒子の平均横幅は、レーザー回折法により測定する。SEM法では、2次粒子の横幅を正確に測定することが困難なためである。
単分散度(%)=(SEM法よる1次粒子の平均横幅/レーザー回折法による2次粒子の平均横幅)×100
(D90)
 本発明の水酸化マグネシウムの、レーザー回折法による体積基準の累積90%粒子径(D90)は1μm以下であり、好ましくは0.9μm以下である。D90が1μmより大きいと、セパレータの耐久性が低下するため好ましくない。
(D90/D10)
 本発明の水酸化マグネシウムの、レーザー回折法による体積基準の累積10%粒子径(D10)と、体積基準の累積90%粒子径(D90)との比、D90/D10は10以下であり、好ましくは8以下、さらに好ましくは6以下、最も好ましくは4以下である。D90/D10の値が低いほど、粒度分布がシャープで、粒子径が均一であり好ましい。D90/D10の値が10より大きいと、粗大粒子や微小粒子が原因となり、セパレータの耐熱性が低下するため好ましくない。
(<101>方向の格子歪)
 本発明の水酸化マグネシウムの、X線回折法における<101>方向の格子歪は3×10-3以下であり、好ましくは2.5×10-3以下、より好ましくは2×10-3以下、さらに好ましくは1.5×10-3以下である。格子歪が小さいほど、水酸化マグネシウムの結晶中の格子欠陥が少なく、1次粒子の凝集が少なくなる。格子歪が3×10-3より大きければ、格子欠陥の多さにより耐熱性多孔質層内の水酸化マグネシウムの分散が不十分となり、セパレータの耐熱性が低下するため好ましくない。
(1次粒子のアスペクト比)
 本発明の水酸化マグネシウムの、1次粒子のアスペクト比(SEM法による1次粒子の平均横幅/SEM法による1次粒子の平均厚み)は10以上であることが好ましく、より好ましくは15以上である。アスペクト比が10以上であれば、耐熱性多孔質層の厚みを薄くすることができ、セパレータの抑煙性を高めることができる。
(ゼータ電位)
 本発明の水酸化マグネシウムの、ゼータ電位の絶対値は15mV以上であり、好ましくは20mV以上、より好ましくは25mV以上、さらに好ましくは30mV以上である。ゼータ電位の絶対値が15mVより低ければ、水酸化マグネシウムの1次粒子間の静電的反発が弱くなり、耐熱性多孔質層内での分散が不十分となり、セパレータの耐熱性が低下するため好ましくない。
(不純物量)
 本発明の水酸化マグネシウムの、クロム化合物、マンガン化合物、鉄化合物、コバルト化合物、ニッケル化合物、銅化合物および亜鉛化合物の合計含有量は金属(Cr、Mn、Fe、Co、Ni、Cu、Zn)に換算して200ppm以下であり、好ましくは150ppm以下、より好ましくは100ppm以下である。前記不純物の合計含有量が200ppmより多ければ、非水系二次電池の耐久性が低下したり、短絡の原因になったりするため好ましくない。
(表面処理)
 本発明の水酸化マグネシウムにおいて、耐熱性多孔質層内の分散性を向上させるため、粒子を表面処理することが好ましい。表面処理剤としては、アニオン系界面活性剤、カチオン系界面活性剤、リン酸エステル類処理剤、シランカップリング剤、チタネートカップリング剤、アルミニウムカップリング剤、シリコーン系処理剤、ケイ酸及び水ガラス等を例示することができるが、この限りではない。耐熱性多孔質層内での水酸化マグネシウムの分散性を考慮すると、オクチル酸およびオクタン酸からなる群より選ばれる少なくとも1種以上が特に好ましい。表面処理剤の合計量は、水酸化マグネシウムに対して、0.01~20重量%、好ましくは0.1~15重量%である。
<非水系二次電池>
 本発明の非水系二次電池は、リチウムのドープ・脱ドープにより起電力を得る非水系二次電池において、上述した本発明の非水系二次電池用セパレータを用いることを特徴とする非水系二次電池である。かかる本発明の非水系二次電池は、高温時における安全性や耐久性に優れ、サイクル特性等にも優れている。
(構成)
 本発明の非水系二次電池の種類や構成は、何ら限定されるものではないが、正極とセパレータと負極が順に積層された電池要素に電解液が含浸され、これが外装に封入された構造となった構成であれば、いずれにも適用可能である。
(負極)
 負極は、負極活物質、導電助剤、バインダーを含む負極合剤が集電体(銅箔、ステンレス箔、ニッケル箔等)上に成形された構造となっている。負極活物質としては、リチウムを電気化学的にドープすることが可能な材料、例えば、炭素材料、シリコーン、アルミニウム、スズが用いられる。
(正極)
 正極は、正極活物質、導電助剤、バインダーを含む正極合剤が集電体上に成形された構造となっている。正極活物質としては、リチウム含有遷移金属酸化物、例えば、LiCoO、LiNiO、LiMn0.5Ni0.5、LiCo1/3Ni1/3Mn1/3、LiMn、LiFePOが用いられる。
(電解液)
 電解液は、リチウム塩、例えば、LiPF、LiBF、LiClOを非水系溶媒に溶解した構成である。非水系溶媒としては、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ-ブチロラクトン、ビニレンカーボネートなどが挙げられる。
(外装材)
 外装材は金属缶またはアルミラミネートパック等が挙げられる。電池の形状は角型、円筒型、コイン型などがあるが、本発明のセパレータはいずれの形状においても好適に適用することが可能である。
<水酸化マグネシウムの製造方法>
 本発明の水酸化マグネシウムの製造方法は、以下の(1)~(4)の工程を含む。即ち、(1)水溶性マグネシウム塩水溶液及び、水溶性アルカリ塩水溶液を調製する工程と、(2)得られた水溶性マグネシウム塩水溶液及び、水溶性アルカリ塩水溶液を、反応温度0~60℃、反応pH9.2~11.0で連続反応させ、水酸化マグネシウムを含む懸濁液を得る工程と、(3)得られた水酸化マグネシウムを含む懸濁液を脱水後、水洗浄を行い、水及び/又は有機溶媒に懸濁させる工程と、(4)得られた洗浄後の水酸化マグネシウムを含む懸濁液を、50~150℃で1~60時間攪拌保持する工程である。
(工程1)
 前記工程(1)において、水溶性マグネシウム塩としては、例えば塩化マグネシウム、硝酸マグネシウム、酢酸マグネシウム、硫酸マグネシウム等が挙げられるが、この限りではない。1次粒子の凝集を防ぐため、1価のアニオンを含む塩化マグネシウム、硝酸マグネシウム、酢酸マグネシウムを用いるのが好ましい。水溶性アルカリ塩としては、例えば水酸化ナトリウム、水酸化カリウム、水酸化アンモニウム等が挙げられるが、この限りではない。原料としてさらに1価の有機酸および/または1価の有機酸塩を用いることで、水酸化マグネシウムの1次粒子の厚みを抑制し、1次粒子のアスペクト比を高めることができる。1価の有機酸および1価の有機酸塩としては、酢酸、酢酸ナトリウム、プロピオン酸、プロピオン酸ナトリウム、酪酸、酪酸ナトリウム等が挙げられるが、この限りではない。
 マグネシウム塩水溶液の濃度は、マグネシウムイオンとして0.1~5mol/L、好ましくは0.5~4mol/Lである。アルカリ塩水溶液の濃度は、水酸化物イオンとして0.1~20mol/Lであり、好ましくは0.5~15mol/Lである。1価の有機酸およびまたは1価の有機酸塩の水溶液の濃度は、0.01~1mol/Lである。各原料中に含まれるクロム化合物、マンガン化合物、鉄化合物、コバルト化合物、ニッケル化合物、銅化合物及び亜鉛化合物の合計含有量は金属(Cr、Mn、Fe、Co、Ni、Cu、Zn)に換算して200ppm以下であり、好ましくは150ppm以下、さらに好ましくは100ppm以下である。
(工程2)
 前記工程(2)において、反応方法は、生産性と反応の均一性を考慮し連続反応を用いる。反応時のpHは、9.2~11.0、好ましくは9.4~10.8に調製する。反応pHが9.2より低い場合は、生産性が低いため、経済上の理由から好ましくない。反応pHが11.0より高い場合は、原料由来の不純物が沈殿しやすくなることや、経済上の理由から好ましくない。反応時の濃度は、水酸化マグネシウム換算で0.1~300g/Lであり、好ましくは1~250g/L、さらに好ましくは5~200g/Lである。反応時の濃度が0.1g/Lより低い場合は生産性が低く、300g/Lより高い場合は1次粒子が凝集するため好ましくない。反応温度は0~60℃であり、好ましくは10~50℃、さらに好ましくは20~40℃である。反応温度が60℃より高い場合は、<101>方向の格子歪が大きくなり、1次粒子が凝集するため好ましくない。反応温度が0℃未満の場合は、反応液が凍ってしまうため好ましくない。
(工程3)
 前記工程(3)において、工程(2)で作製した水酸化マグネシウムを含む懸濁液を、脱水した後、水酸化マグネシウムの20倍の重量の脱イオン水で水洗浄し、水及び/又は有機溶媒に再懸濁させる。この工程を経ることによって、ナトリウム等の不純物を取り除き、水酸化マグネシウムの1次粒子の凝集を防ぐことができる。
(工程4)
 前記工程(4)において、工程(3)で作製した水酸化マグネシウムを含んだ懸濁液を、1~60時間、50~150℃で、攪拌保持する。この工程を経ることにより、1次粒子の凝集を緩和し、1次粒子が十分に分散した懸濁液を得ることができる。熟成時間が1時間未満では、1次粒子の凝集を緩和するための時間として十分ではない。60時間より長く熟成しても、凝集状態に変化がないため意味をなさない。好ましい熟成時間は2~30時間であり、さらに好ましくは4~24時間である。熟成温度が150℃より高ければ、1次粒子が0.7μmより大きく成長してしまうため好ましくない。熟成温度が50℃未満では、1次粒子が0.1μmより小さくなるため好ましくない。好ましい熟成温度は60~140℃であり、さらに好ましくは70~130℃である。熟成時の濃度は水酸化マグネシウム換算で0.1~300g/Lであり、好ましくは0.5~250g/L、さらに好ましくは1~200g/Lである。熟成時の濃度が0.1g/Lより低い場合は生産性が低く、300g/Lより高い場合は1次粒子が凝集するため好ましくない。
 工程(4)で得られた水酸化マグネシウム粒子を表面処理することで、樹脂に添加、混練、分散する場合の、樹脂中での分散性を改善できる。表面処理は、湿式法又は乾式法を用いることができる。処理の均一性を考慮した場合、湿式法が好適に用いられる。湿式粉砕後の懸濁液を温調し、撹拌下に溶解させた表面処理剤を添加する。表面処理時の温度は表面処理剤が溶解する温度に適宜調整する。
 表面処理剤としては、例えばアニオン系界面活性剤、カチオン系界面活性剤、リン酸エステル類処理剤、シランカップリング剤、チタネートカップリング剤、アルミニウムカップリング剤、シリコーン系処理剤、ケイ酸及び水ガラス等からなる群より選ばれる少なくとも1種以上を用いることができる。耐熱性多孔質層内での水酸化マグネシウムの分散性を向上させるため、オクチル酸およびオクタン酸からなる群より選ばれる少なくとも1種以上の表面処理剤が特に好ましい。表面処理剤の合計量は、水酸化マグネシウムの重量に対して、好ましくは0.01~20重量%、より好ましくは0.1~15重量%である。
 表面処理後の懸濁液を脱水し、固形分に対して20倍の重量の脱イオン水にて水洗浄した後、本発明の水酸化マグネシウムを得る。乾燥方法は、熱風乾燥、真空乾燥等を用いることができるが、特に制限されるものではない。
<非水系二次電池用セパレータの製造方法>
 本発明の非水系二次電池用セパレータの製造方法は、以下の(1)~(4)の工程を含む。即ち、(1)耐熱性樹脂、水酸化マグネシウムおよび水溶性有機溶剤を含む塗工用懸濁液を作製する工程と、(2)得られた塗工用懸濁液をポリオレフィン多孔質基材の片面又は両面に塗工する工程と、(3)塗工された懸濁液中の耐熱性樹脂を凝固させる工程と、(4)凝固工程後のシートを水洗および乾燥する工程である。
(工程1)
 前記工程(1)において、水溶性有機溶剤としては、耐熱性樹脂に対して良溶媒である溶剤であれば特に限定されないが、具体的には例えばN-メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシドなどの極性溶剤を使用することができる。また、懸濁液中には、さらに耐熱性樹脂に対して貧溶媒となる溶剤も、一部混合して用いることもできる。このような貧溶媒を適用することでミクロ相分離構造が誘発され、耐熱性多孔質層を形成する上で多孔化が容易となる。貧溶媒としては、アルコールの類が好適であり、特にグリコールのような多価アルコールが好適である。
(工程2)
 前記工程(2)において、ポリオレフィン多孔質基材への懸濁液の塗工量は2~3g/m程度が好ましい。塗工方法は、ナイフコーター法、グラビアコーター法、スクリーン印刷法、マイヤーバー法、ダイコーター法、リバースロールコーター法、インクジェット法、スプレー法、ロールコーター法などが挙げられる。中でも、塗膜を均一に塗布するという観点において、リバースロールコーター法が好適である。
(工程3)
 前記工程(3)において、懸濁液中の耐熱性樹脂を凝固させる方法としては、塗工後のポリオレフィン多孔質基材に対して凝固液をスプレーで吹き付ける方法や、凝固液の入った浴(凝固浴)中に当該基材を浸漬する方法などが挙げられる。凝固液は、耐熱性樹脂を凝固できるものであれば特に限定されないが、水、又は懸濁液に用いた両溶媒に水を適当量含ませた混合液が好ましい。ここで、水の混合量は凝固液に対して40~80重量%が好適である。
(工程4)
 前記工程(4)において、乾燥方法は特に限定されないが、乾燥温度は50~80℃が適当である。高い乾燥温度を適用する場合は、熱収縮による寸法変化が起こらないようにするためにロールに接触させるような方法を適用することが好ましい。
 なお、本発明において、ポリオレフィン多孔質基材の製造方法についても特に限定されるものではないが、例えば次のようにしてポリオレフィン微多孔膜を製造することができる。すなわち、ポリオレフィンと流動パラフィンのゲル状混合物をダイから押出し、次いで冷却することでベーステープを作製し、このベーステープを延伸し、これを熱固定する。その後、流動パラフィンを塩化メチレン等の抽出溶剤中に浸漬することで抽出し、次いで抽出溶剤を乾燥することで得ることができる。
 以下実施例により本発明を詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。実施例において、各物性は以下の方法で測定した。
(a)1次粒子の平均横幅および平均厚み
 サンプルをエタノールに加え、超音波処理を5分間行った後、走査型電子顕微鏡(SEM)(JSM-7600F、日本電子製)を用い、任意の100個の結晶の1次粒子の横幅および厚みを測定し、その算術平均をもって1次粒子の平均横幅および平均厚みとした。
(b)2次粒子の平均横幅、D90/D10
 サンプルをエタノールに加え、超音波処理を5分間行った後、レーザー回折散乱式粒度分布測定装置(MT3300、マイクロトラック・ベル製)を使用して、体積基準の累積10%粒子径(D10)、体積基準の累積50%粒子径(D50)及び体積基準の累積90%粒子径(D90)を測定した。D50を2次粒子の平均横幅とし、D10とD90の値から、D90/D10を求めた。
(c)単分散度
 以下の式に基づいて、(a)及び(b)の値から単分散度を算出した。
単分散度(%)=(1次粒子の平均横幅/2次粒子の平均横幅)×100
(d)1次粒子のアスペクト比
 以下の式に基づいて、(a)の値から1次粒子のアスペクト比を算出した。
1次粒子のアスペクト比=1次粒子の平均横幅/1次粒子の平均厚み
(e)<101>方向の結晶歪
 次の関係式により、横軸に(sinθ/λ)、縦軸に(βcosθ/λ)をプロットし、切片の逆数から結晶粒子径(g)と、勾配に(1/2)を乗じて結晶歪(η)を求める。
(βcosθ/λ)=(1/g)+2η×(sinθ/λ)
(ただし、λは使用したX線の波長を表し、Cu-Kα線で1.542Åである。θはブラッグ角、βは真の半値幅(単位:ラジアン)を表す。)
 上記βは以下の方法により求める。
 X線回折装置(Empyrean、パナリティカル製)を用い、(101)面と(202)面の回折プロファイルを、X線源として45KV、40mAの条件で発生させたCu-Kα線を用いて測定する。測定条件はゴニオスピードで10°/min、スリット幅を、ダイバージェンススリット、レシービングスリット、スキャタリングスリットの順で、(101)面については、1°―0.3mm―1°、(202)面については2°―0.3mm-2°の条件で測定する。得られたプロファイルにつき、バックグラウンドから回折ピークまでの高さの(1/2)における幅(B)を測定する。2θに対するKα1、Kα2のスプリット幅(δ)の関係から、(101)面、(202)面の2θに対するδを読み取る。次いで、上記B及びδの値に基づいて、(δ/B)と(B/B)の関係からBを求める。続いて、高純度シリコン(純度99.999%)について、スリット幅(1/2)°―0.3mm-(1/2)°で各回折プロファイルを測定し、半値幅(b)を求める。これを2θに対してプロットし、bと2θの関係を示すグラフを作成する。(101)面、(202)面の2θに相当するbから(b/β)を求める。(b/B)と(β/B)の関係から、βを求める。
(f)ゼータ電位
 サンプルをエタノールに加え、超音波処理を5分間行った後、動的光散乱法粒度測定機(ELSZ-2、大塚電子製)を用いて測定した。
(g)不純物の定量
 サンプルを硝酸に加熱・溶解させた後、ICP発光分光分析装置(PS3520VDD2、日立ハイテクサイエンス製)を使用して、Cr、Mn、Fe、Co、Ni、Cu、Znの各元素の含有量を測定した。
(h)表面処理量の定量
 エーテル抽出法により、サンプルの重量に対するオクチル酸の被覆量を算出した。
(i)耐熱性多孔質層およびセパレータの膜厚
 接触式の膜厚計(ミツトヨ製)にて各サンプル20点測定し、これの算術平均から算出した。ここで接触端子は底面が直径0.5cmの円柱状のものを用いた。
(j)空孔率
 それぞれの構成材料の重量(Wi:g/m)を真密度(di:g/cm)で割り、これらの和(Σ(Wi/di))を求める。これを膜厚(μm)で割り、1から引いた値に100をかけることで空孔率(%)を算出した。
(k)ガーレ値
 ガーレ値(秒/100cc)は、JIS P8117に従い、ガーレ式デンソメータ(G-B2C、東洋精機製)を用いて測定した。
(l)突刺強度
 ハンディー圧縮試験器(KES-G5、カトーテック製)を用いて、針先端の曲率半径0.5mm、突刺速度2mm/秒の条件で突刺試験を行い、最大突刺荷重(g)を突刺強度とした。ここでサンプルは直径11.3mmの穴があいた金枠(サンプルホルダー)に挟み固定した。
(m)シャットダウン特性(SD特性)
 セパレータを直径19mmに打ち抜き、非イオン性界面活性剤(エマルゲン210P、花王製)の3重量%メタノール溶液中に浸漬して風乾した。セパレータに電解液を含浸させ、SUS板(Φ15.5mm)に挟んだ。ここで電解液は1mol/LのLiBFプロピレンカーボネート/エチレンカーボネート(1/1重量比)を用いた。これを2032型コインセルに封入した。コインセルからリード線をとり、熱電対を付けてオーブンの中に入れた。昇温速度1.6℃/分で昇温させ、同時に振幅10mV、1kHzの周波数の交流を印加することでセルの抵抗を測定した。上記測定で135~150℃の範囲で抵抗値が10ohm・cm以上となった場合はSD特性を良好(○)と判断し、そうでなかった場合は不良(×)と判断した。
(n)破膜テスト
 セパレータサンプルを縦6.5cm、横4.5cmの金枠に固定した。オーブンの温度を175℃として、金枠に固定したサンプルをオーブンに入れ、1時間保持した。このとき膜の破断等なく形状を維持できたものを○、そうでないものを×として評価した。
(o)発熱抑制機能の有無
 発熱抑制機能の有無は、DSC測定装置(DSC2920、TAインスツルメントジャパン製)を用い、TADSC(示差走査熱量測定)により分析した。測定サンプルは、実施例および比較例で作製したセパレータを5.5mg秤量し、これをアルミパンに入れてかしめることにより作製した。測定は、窒素ガス雰囲気下で、昇温速度5℃/min、温度範囲30~500℃で行った。200℃以上において有意な吸熱ピークが観察された場合は発熱抑制機能がある(○)と判断し、観察されなかった場合は発熱抑制機能がない(×)と判断した。
(p)ガス発生量
 セパレータサンプルを110cm切り出し、これを85℃で16時間真空乾燥した。これを露点-60℃以下の環境でアルミパックに入れ、さらに電解液を注入し、アルミパックを真空シーラーで封止し、測定セルを作製した。ここで電解液は1mol/LのLiPFエチレンカーボネート(EC)/エチルメチルカーボネート(EMC)=3/7(重量比)とした。測定セルを85℃にて3日間保存し、保存前後の測定セルを測定した。保存後の測定セルの体積から保存前の測定セルの体積を引いた値をガス発生量とした。ここで、測定セルの体積測定は23℃で行い、アルキメデスの原理に従い電子比重計(EW-300SG、アルファミラージュ製)を用いて行った。
(q)電池の耐久性
 非水系二次電池サンプルについて0.2C、4.2V、8時間の定電流・定電圧充電、0.2C、2.75Vカットオフの定電流放電を行った。5サイクル目に得られた放電容量をこのセルの初期容量とした。その後、0.2C、4.2V、8時間の定電流・定電圧充電を行い、85℃にて3日間保存した。そして、0.2C、2.75Vカットオフの定電流放電を行い、85℃、3日間保存における残存容量を求めた。残存容量を初期容量で割り、100を乗じた値を容量維持率(%)とし、この容量維持率を電池の耐久性の指標とした。
(水酸化マグネシウムAの作製)
 塩化マグネシウム6水和物(試薬1級、和光純薬製)を脱イオン水に溶解させ、Mg=1.5mol/Lの塩化マグネシウム水溶液を作製した。水酸化ナトリウム(試薬1級、和光純薬製)を脱イオン水に溶解させ、Na=2.4mol/Lの水酸化ナトリウム水溶液を作製した。
 塩化マグネシウム水溶液と水酸化ナトリウム水溶液を、計量ポンプを用いてそれぞれ120mL/minで連続的に反応槽に供給し、共沈反応をさせた。反応槽はステンレス製、容量240mLでオーバーフローする構造となっており、この反応槽にあらかじめ100mLの脱イオン水を入れ、30℃に温度調整し、攪拌機を用い500rpmで撹拌をしておく。同じく30℃に温度調整した原料を反応槽に供給し、反応pHが9.6となるように流量を調整した。
 得られた水酸化マグネシウムを含む懸濁液を、吸引濾過し、水酸化マグネシウムの固形分の20質量倍の脱イオン水を用いて水洗浄した。水洗浄後のケーキに対し、水酸化マグネシウム濃度が30g/Lとなるように脱イオン水を加え、ホモミキサーにて攪拌し、懸濁液を得た。
 洗浄後の懸濁液を80℃に温調し、300rpmで攪拌しながら、4時間熟成させた。
 水酸化マグネシウムの固形分に対して2wt%のオクチル酸(和光一級、和光純薬製)を測りとり、これに1当量分の水酸化ナトリウム(試薬1級、和光純薬製)を加え、80℃に加熱攪拌し、オクチル酸処理液とした。同じく熟成後の懸濁液を80℃に昇温し、前記オクチル酸処理液を加え、80℃で20分間撹拌保持し、表面処理を行った。表面処理後の懸濁液を30℃まで冷却した後、吸引濾過、脱イオン洗浄を行った。洗浄後のケーキを熱風乾燥器に入れ、110℃で12時間乾燥させた後、粉砕し、本発明の非水系二次電池用セパレータ用水酸化マグネシウムAを得た。水酸化マグネシウムAの実験条件を表1に、1次粒子の平均横幅、2次粒子の平均横幅、単分散度、D90/D10、<101>方向の結晶歪、1次粒子のアスペクト比、不純物量を表2に示す。水酸化マグネシウムAの20,000倍のSEM写真を図3に示す。
(ポリエチレン微多孔膜の作製)
 ポリエチレンパウダーとしてTicona製のGUR2126(重量平均分子量415万、融点141℃)とGURX143(重量平均分子量56万、融点135℃)を用いた。GUR2126とGURX143とを1:9(重量比)となるようにして、ポリエチレン濃度が30重量%となるように流動パラフィン(スモイルP-350P、松村石油研究所製、沸点480℃)とデカリンの混合溶媒中に溶解させ、ポリエチレン溶液を作製した。該ポリエチレン溶液の組成はポリエチレン:流動パラフィン:デカリン=30:45:25(重量比)となるように調整した。
 このポリエチレン溶液を148℃でダイから押出し、水浴中で冷却してゲル状テープ(ベーステープ)を作製した。該ベーステープを60℃で8分、95℃で15分乾燥し、該ベーステープを縦延伸、横延伸と逐次行い二軸延伸した。ここで縦延伸は延伸倍率5.5倍、延伸温度90℃、横延伸は延伸倍率11.0倍、延伸温度は105℃とした。延伸の後に125℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、120℃でアニール処理することでポリエチレン微多孔膜を得た。得られたポリエチレン微多孔膜は目付け4.5g/m、膜厚8μm、空孔率46%、ガーレ値152秒/100cc、突刺強度310gであった。
(耐熱性多孔質層の作製)
 メタ型全芳香族ポリアミドとしてパラメタフェニレンイソフタルアミド(コーネックス、帝人テクノプロダクツ製)を用いた。ジメチルアセトアミド(DMAc):トリプロピレングリコール(TPG)=60:40(重量比)にコーネックスが6重量%となるように溶解し、コーネックス溶液を作製した。続いて、上記水酸化マグネシウムAを用い、水酸化マグネシウム:コーネックス=50:50(重量比)となるように該コーネックス溶液に該水酸化マグネシウムを分散させ、分散液を調整した。
 マイヤーバーを2本対峙させ、その間に該分散液を適量のせた。ポリエチレン微多孔膜を分散液がのっているマイヤーバー間を通過させてポリエチレン微多孔膜の両面に分散液を塗工した。ここでマイヤーバー間のクリアランスは30μm、マイヤーバーの番手は2本とも#6を用いた。これを重量比で水:DMAc:TPG=70:18:12(重量比)で30℃となっている凝固液中に浸漬し、次いで水洗、乾燥を行い、ポリエチレン微多孔膜の表裏に水酸化マグネシウムとコーネックスを含む耐熱性多孔質層を作製し、本発明の非水系二次電池用セパレータを得た。得られた非水系二次電池用セパレータの特性を表3に示す。
(非水系二次電池の作製)
 コバルト酸リチウム(LiCoO、日本化学工業製)粉末89.5重量%、アセチレンブラック(デンカブラック、電気化学工業製)4.5重量%、ポリフッ化ビニリデン(クレハ化学製)6重量%となるようにN-メチル-2ピロリドン溶媒を用いてこれらを混練し、懸濁液を作製した。得られた懸濁液を厚さが20μmのアルミ箔上に塗布乾燥後プレスし、100μmの正極を得た。
 メソフェーズカーボンマイクロビーズ(MCMB、大阪瓦斯化学製)粉末87重量%、アセチレンブラック(デンカブラック、電気化学工業製)3重量%、ポリフッ化ビニリデン(クレハ化学製)10重量%となるようにN-メチル-2ピロリドン溶媒を用いてこれらを混練し、懸濁液を作製した。得られた懸濁液を厚さが18μmの銅箔上に塗布乾燥後プレスし、90μmの負極を得た。
 上記正極及び負極を、上記セパレータを介して対向させた。これに電解液を含浸させアルミラミネートフィルムを含む外装に封入して、本発明の非水系二次電池を得た。ここで、電解液には1mol/LのLiPFエチレンカーボネート/エチルメチルカーボネート(3/7重量比)を用いた。得られた非水系二次電池の耐久性を表3に示す。
(水酸化マグネシウムBの作製)
 塩化マグネシウム6水和物(試薬1級、和光純薬製)を脱イオン水に溶解させ、Mg=1.5mol/Lの塩化マグネシウム水溶液を作製した。水酸化ナトリウム(試薬1級、和光純薬製)を脱イオン水に溶解させ、Na=2.4mol/Lの水酸化ナトリウム水溶液を作製した。
 塩化マグネシウム水溶液と水酸化ナトリウム水溶液を、計量ポンプを用いてそれぞれ120mL/minで連続的に反応槽に供給し、共沈反応をさせた。反応槽はステンレス製、容量240mLでオーバーフローする構造となっており、この反応槽にあらかじめ100mLの脱イオン水を入れ、30℃に温度調整し、攪拌機を用い500rpmで撹拌をしておく。同じく30℃に温度調整した原料を反応槽に供給し、反応pHが9.6となるように流量を調整した。
 得られた水酸化マグネシウムを含む懸濁液を、吸引濾過し、水酸化マグネシウムの固形分の20質量倍の脱イオン水を用いて水洗浄した。水洗浄後のケーキに対し、水酸化マグネシウム濃度が30g/Lとなるように脱イオン水を加え、ホモミキサーにて攪拌し、懸濁液を得た。
 洗浄後の懸濁液をオートクレーブに投入し、300rpmで攪拌しながら、120℃、4時間の水熱処理を行った。
 水酸化マグネシウムの固形分に対して2wt%のオクチル酸(和光一級、和光純薬製)を測りとり、これに1当量分の水酸化ナトリウム(試薬1級、和光純薬製)を加え、80℃に加熱攪拌し、オクチル酸処理液とした。同じく水熱処理後の懸濁液を80℃に昇温し、前記オクチル酸処理液を加え、80℃で20分間撹拌保持し、表面処理を行った。表面処理後の懸濁液を30℃まで冷却した後、吸引濾過、脱イオン洗浄を行った。洗浄後のケーキを熱風乾燥器に入れ、110℃で12時間乾燥させた後、粉砕し、本発明の非水系二次電池用セパレータ用水酸化マグネシウムBを得た。水酸化マグネシウムBの実験条件を表1に、1次粒子の平均横幅、2次粒子の平均横幅、単分散度、D90/D10、<101>方向の結晶歪、1次粒子のアスペクト比、不純物量を表2に示す。水酸化マグネシウムBの20,000倍のSEM写真を図4に示す。
 実施例1において、水酸化マグネシウムAに代えて水酸化マグネシウムBを使用した以外は同様にしてサンプルを作製し、非水系二次電池用セパレータを得た。得られた非水系二次電池用セパレータの特性を表3に示す。
 実施例1と同様の方法で非水系二次電池を作製し、本発明の非水系二次電池を得た。得られた非水系二次電池の耐久性を表3に示す。
(水酸化マグネシウムCの作製)
 塩化マグネシウム6水和物(試薬1級、和光純薬製)および酢酸ナトリウム(試薬特級、和光純薬製)を脱イオン水に溶解させ、Mg=1.5mol/L、Na=0.375mol/Lの塩化マグネシウム+酢酸ナトリウム混合水溶液を作製した。水酸化ナトリウム(試薬1級、和光純薬製)を脱イオン水に溶解させ、Na=2.4mol/Lの水酸化ナトリウム水溶液を作製した。
 塩化マグネシウム+酢酸ナトリウム混合水溶液と水酸化ナトリウム水溶液を、計量ポンプを用いてそれぞれ120mL/minで連続的に反応槽に供給し、共沈反応をさせた。反応槽はステンレス製、容量240mLでオーバーフローする構造となっており、この反応槽にあらかじめ100mLの脱イオン水を入れ、30℃に温度調整し、攪拌機を用い500rpmで撹拌をしておく。同じく30℃に温度調整した原料を反応槽に供給し、反応pHが9.6となるように流量を調整した。
 得られた水酸化マグネシウムを含む懸濁液を、吸引濾過し、水酸化マグネシウムの固形分の20質量倍の脱イオン水を用いて水洗浄した。水洗浄後のケーキに対し、水酸化マグネシウム濃度が30g/Lとなるように脱イオン水を加え、ホモミキサーにて攪拌し、懸濁液を得た。
 洗浄後の懸濁液を120℃に温調し、300rpmで攪拌しながら、4時間熟成させた。
 水酸化マグネシウムの固形分に対して2wt%のオクチル酸(和光一級、和光純薬製)を測りとり、これに1当量分の水酸化ナトリウム(試薬1級、和光純薬製)を加え、80℃に加熱攪拌し、オクチル酸処理液とした。同じく熟成後の懸濁液を80℃に昇温し、前記オクチル酸処理液を加え、80℃で20分間撹拌保持し、表面処理を行った。表面処理後の懸濁液を30℃まで冷却した後、吸引濾過、脱イオン洗浄を行った。洗浄後のケーキを熱風乾燥器に入れ、110℃で12時間乾燥させた後、粉砕し、本発明の非水系二次電池用セパレータ用水酸化マグネシウムCを得た。水酸化マグネシウムCの実験条件を表1に、1次粒子の平均横幅、2次粒子の平均横幅、単分散度、D90/D10、<101>方向の結晶歪、1次粒子のアスペクト比、不純物量を表2に示す。水酸化マグネシウムCの20,000倍のSEM写真を図5に示す。
 実施例1において、水酸化マグネシウムAに代えて水酸化マグネシウムCを使用した以外は同様にしてサンプルを作製し、非水系二次電池用セパレータを得た。得られた非水系二次電池用セパレータの特性を表3に示す。
 実施例1と同様の方法で非水系二次電池を作製し、本発明の非水系二次電池を得た。得られた非水系二次電池の耐久性を表3に示す。
(比較例1)
(水酸化マグネシウムDの作製)
 塩化マグネシウム6水和物(試薬1級、和光純薬製)を脱イオン水に溶解させ、Mg=1.5mol/Lの塩化マグネシウム水溶液を作製した。水酸化ナトリウム(試薬1級、和光純薬製)を脱イオン水に溶解させ、Na=2.4mol/Lの水酸化ナトリウム水溶液を作製した。
 塩化マグネシウム水溶液と水酸化ナトリウム水溶液を、計量ポンプを用いてそれぞれ120mL/minで連続的に反応槽に供給し、共沈反応をさせた。反応槽はステンレス製、容量240mLでオーバーフローする構造となっており、この反応槽にあらかじめ100mLの脱イオン水を入れ、30℃に温度調整し、攪拌機を用い500rpmで撹拌をしておく。同じく30℃に温度調整した原料を反応槽に供給し、反応pHが9.6となるように流量を調整した。
 得られた水酸化マグネシウムを含む懸濁液を、吸引濾過し、水酸化マグネシウムの固形分の20質量倍の脱イオン水を用いて水洗浄した。水洗浄後のケーキに対し、水酸化マグネシウム濃度が30g/Lとなるように脱イオン水を加え、ホモミキサーにて攪拌し、懸濁液を得た。
 洗浄後の懸濁液をオートクレーブに投入し、300rpmで攪拌しながら、170℃、4時間の水熱処理を行った。
 水酸化マグネシウムの固形分に対して2wt%のオクチル酸(和光一級、和光純薬製)を測りとり、これに1当量分の水酸化ナトリウム(試薬1級、和光純薬製)を加え、80℃に加熱攪拌し、オクチル酸処理液とした。同じく水熱処理後の懸濁液を80℃に昇温し、前記オクチル酸処理液を加え、80℃で20分間撹拌保持し、表面処理を行った。表面処理後の懸濁液を30℃まで冷却した後、吸引濾過、脱イオン洗浄を行った。洗浄後のケーキを熱風乾燥器に入れ、110℃で12時間乾燥させた後、粉砕し、水酸化マグネシウムDを得た。水酸化マグネシウムDの実験条件を表1に、1次粒子の平均横幅、2次粒子の平均横幅、単分散度、D90/D10、<101>方向の結晶歪、1次粒子のアスペクト比、不純物量を表2に示す。水酸化マグネシウムDの20,000倍のSEM写真を図6に示す。
 実施例1において、水酸化マグネシウムAに代えて水酸化マグネシウムDを使用した以外は同様にしてサンプルを作製し、非水系二次電池用セパレータを得た。得られた非水系二次電池用セパレータの特性を表3に示す。
 実施例1と同様の方法で非水系二次電池を作製した。得られた非水系二次電池の耐久性を表3に示す。
(比較例2)
(水酸化マグネシウムEの作製)
 塩化マグネシウム6水和物(試薬1級、和光純薬製)を脱イオン水に溶解させ、Mg=1.5mol/Lの塩化マグネシウム水溶液を作製した。水酸化ナトリウム(試薬1級、和光純薬製)を脱イオン水に溶解させ、Na=2.4mol/Lの水酸化ナトリウム水溶液を作製した。
 塩化マグネシウム水溶液1Lを反応槽に投入し、500rpmの攪拌下、30℃に温度調整した。同じく30℃に温度調整した水酸化ナトリウム水溶液1.6Lを、計量ポンプを用いて120mL/minで反応槽に供給し、反応を行った。反応後の懸濁液のpHは9.6であった。
 得られた水酸化マグネシウムを含む懸濁液を、吸引濾過し、水酸化マグネシウムの固形分の20質量倍の脱イオン水を用いて水洗浄した。水洗浄後のケーキに対し、水酸化マグネシウム濃度が30g/Lとなるように脱イオン水を加え、ホモミキサーにて攪拌し、懸濁液を得た。
 洗浄後の懸濁液をオートクレーブに投入し、300rpmで攪拌しながら、80℃、4時間の水熱処理を行った。
 水酸化マグネシウムの固形分に対して2wt%のオクチル酸(和光一級、和光純薬製)を測りとり、これに1当量分の水酸化ナトリウム(試薬1級、和光純薬製)を加え、攪拌下、80℃に加熱し、オクチル酸処理液とした。同じく水熱処理後の懸濁液を80℃に昇温し、前記オクチル酸処理液を加え、80℃で20分間撹拌保持し、表面処理を行った。表面処理後の懸濁液を30℃まで冷却した後、吸引濾過、脱イオン洗浄を行った。洗浄後のケーキを熱風乾燥器に入れ、110℃で12時間乾燥させた後、粉砕し、水酸化マグネシウムEを得た。水酸化マグネシウムEの実験条件を表1に、1次粒子の平均横幅、2次粒子の平均横幅、単分散度、D90/D10、<101>方向の結晶歪、1次粒子のアスペクト比、不純物量を表2に示す。
 実施例1において、水酸化マグネシウムAに代えて水酸化マグネシウムEを使用した以外は同様にしてサンプルを作製し、非水系二次電池用セパレータを得た。得られた非水系二次電池用セパレータの特性を表3に示す。
 実施例1と同様の方法で非水系二次電池を作製した。得られた非水系二次電池の耐久性を表3に示す。
(比較例3)
(水酸化マグネシウムFの作製)
 塩化マグネシウム6水和物(試薬1級、和光純薬製)を脱イオン水に溶解させ、Mg=1.5mol/Lの塩化マグネシウム水溶液を作製した。水酸化ナトリウム(試薬1級、和光純薬製)を脱イオン水に溶解させ、Na=2.4mol/Lの水酸化ナトリウム水溶液を作製した。
 塩化マグネシウム水溶液と水酸化ナトリウム水溶液を、計量ポンプを用いてそれぞれ120mL/minで連続的に反応槽に供給し、共沈反応をさせた。反応槽はステンレス製、容量240mLでオーバーフローする構造となっており、この反応槽にあらかじめ100mLの脱イオン水を入れ、30℃に温度調整し、攪拌機を用い500rpmで撹拌をしておく。同じく30℃に温度調整した原料を反応槽に供給し、反応pHが9.6となるように流量を調整した。
 得られた水酸化マグネシウムを含む懸濁液を、吸引濾過し、水酸化マグネシウムの固形分の20質量倍の脱イオン水を用いて水洗浄した。水洗浄後のケーキに対し、水酸化マグネシウム濃度が30g/Lとなるように脱イオン水を加え、ホモミキサーにて攪拌し、懸濁液を得た。
 水酸化マグネシウムの固形分に対して2wt%のオクチル酸(和光一級、和光純薬製)を測りとり、これに1当量分の水酸化ナトリウム(試薬1級、和光純薬製)を加え、80℃に加熱攪拌し、オクチル酸処理液とした。同じく熟成後の懸濁液を80℃に昇温し、前記オクチル酸処理液を加え、80℃で20分間撹拌保持し、表面処理を行った。表面処理後の懸濁液を30℃まで冷却した後、吸引濾過、脱イオン洗浄を行った。洗浄後のケーキを熱風乾燥器に入れ、110℃で12時間乾燥させた後、粉砕し、水酸化マグネシウムFを得た。水酸化マグネシウムEの実験条件を表1に、1次粒子の平均横幅、2次粒子の平均横幅、単分散度、D90/D10、<101>方向の結晶歪、1次粒子のアスペクト比、不純物量を表2に示す。水酸化マグネシウムFの20,000倍のSEM写真を図7に示す。
 実施例1において、水酸化マグネシウムAに代えて水酸化マグネシウムFを使用した以外は同様にしてサンプルを作製し、非水系二次電池用セパレータを得た。得られた非水系二次電池用セパレータの特性を表3に示す。
 実施例1と同様の方法で非水系二次電池を作製した。得られた非水系二次電池の耐久性を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1、表2より、本発明の水酸化マグネシウムは1次粒子の平均横幅が0.1~0.7μmの範囲であり、ゼータ電位の絶対値が15mV以上であり、単分散度が50%以上である。また、<101>方向の結晶歪は3×10-3以下であることから、結晶の格子欠陥が少ないことが分かる。また、実施例3の水酸化マグネシウムCは、酢酸ナトリウムの添加効果により、1次粒子のアスペクト比が向上していることが分かる。
 比較例1の水酸化マグネシウムDは、1次粒子の平均横幅が0.7μmよりも大きい。比較例2の水酸化マグネシウムEおよび比較例3の水酸化マグネシウムFは、<101>方向の結晶歪が3×10-3よりも大きく、1次粒子が凝集し、したがって単分散度やゼータ電位の絶対値が低くなっている。
Figure JPOXMLDOC01-appb-T000005
 表3より、本発明の非水系二次電池は、シャットダウン特性、被膜テスト、発熱抑制機能のいずれの項目も良好である。本発明のセパレータのガス発生量は比較例に比べて少なく、特にアスペクト比の高い水酸化マグネシウムを使用した実施例3が顕著に少ない。
 本発明の水酸化マグネシウムを使用した非水系二次電池用セパレータは、非水系二次電池の安全性と耐久性の向上および小型化に寄与する。
…1次粒子の横幅
…2次粒子の横幅
…1次粒子の厚み

Claims (8)

  1. 非水系二次電池用セパレータに供される、以下の(A)~(D)を満たす水酸化マグネシウム。
    (A)SEM法による1次粒子の平均横幅が0.1μm以上0.7μm以下;
    (B)下記式で表される単分散度が50%以上;
    単分散度(%)=(SEM法による1次粒子の平均横幅/レーザー回折法による2次粒子の平均横幅)×100
    (C)レーザー回折法による体積基準の累積10%粒子径(D10)と体積基準の累積90%粒子径(D90)との比、D90/D10が10以下;
    (D)X線回折法による<101>方向の格子歪が3×10-3以下;
  2. SEM法による1次粒子の平均厚みが20nm以上100nm以下である、請求項1記載の水酸化マグネシウム。
  3. レーザー回折法による体積基準の累積90%粒子径(D90)が1μm以下である、請求項1記載の水酸化マグネシウム。
  4. ゼータ電位の絶対値が15mV以上である、請求項1記載の水酸化マグネシウム。
  5. クロム化合物、マンガン化合物、鉄化合物、コバルト化合物、ニッケル化合物、銅化合物及び亜鉛化合物の合計含有量が、金属(Cr、Mn、Fe、Co、Ni、Cu、Zn)に換算して200ppm以下である、請求項1記載の水酸化マグネシウム。
  6. 結晶表面が、アニオン系界面活性剤、カチオン系界面活性剤、リン酸エステル類処理剤、シランカップリング剤、チタネートカップリング剤、アルミニウムカップリング剤、シリコーン系処理剤、ケイ酸及び水ガラスからなる群より選ばれる1種以上で表面処理されている、請求項1記載の水酸化マグネシウム。
  7. ポリオレフィン多孔質基材と、該多孔質基材の片面または両面に積層された耐熱性多孔質層とを備えた非水系二次電池用セパレータであって、前記耐熱性多孔質層は、耐熱性樹脂および請求項1記載の水酸化マグネシウムを含む、非水系二次電池用セパレータ。
  8. リチウムのドープ・脱ドープにより起電力を得る非水系二次電池において、請求項7に記載の非水系二次電池用セパレータを用いることを特徴とする、非水系二次電池。
PCT/JP2018/021097 2017-06-02 2018-05-31 非水系二次電池用セパレータに供される水酸化マグネシウム、非水系二次電池用セパレータおよび非水系二次電池 WO2018221709A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197038373A KR20200006598A (ko) 2017-06-02 2018-05-31 비수계 2차 전지용 세퍼레이터에 제공되는 수산화 마그네슘, 비수계 2차 전지용 세퍼레이터 및 비수계 2차 전지
CN201880048921.1A CN110959205A (zh) 2017-06-02 2018-05-31 用于非水性二次电池用隔膜的氢氧化镁、非水性二次电池用隔膜及非水性二次电池
JP2019521336A JPWO2018221709A1 (ja) 2017-06-02 2018-05-31 非水系二次電池用セパレータに供される水酸化マグネシウム、非水系二次電池用セパレータおよび非水系二次電池
US16/617,876 US20200194762A1 (en) 2017-06-02 2018-05-31 Magnesium hydroxide used for nonaqueous secondary battery separator, nonaqueous secondary battery separator, and nonaqueous secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-109630 2017-06-02
JP2017109630 2017-06-02

Publications (1)

Publication Number Publication Date
WO2018221709A1 true WO2018221709A1 (ja) 2018-12-06

Family

ID=64456108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021097 WO2018221709A1 (ja) 2017-06-02 2018-05-31 非水系二次電池用セパレータに供される水酸化マグネシウム、非水系二次電池用セパレータおよび非水系二次電池

Country Status (5)

Country Link
US (1) US20200194762A1 (ja)
JP (1) JPWO2018221709A1 (ja)
KR (1) KR20200006598A (ja)
CN (1) CN110959205A (ja)
WO (1) WO2018221709A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019175635A (ja) * 2018-03-28 2019-10-10 協和化学工業株式会社 非水系二次電池用セパレータおよび非水系二次電池
JP2020145128A (ja) * 2019-03-08 2020-09-10 株式会社エンビジョンAescエナジーデバイス 電池
JP2020145129A (ja) * 2019-03-08 2020-09-10 株式会社エンビジョンAescエナジーデバイス 電池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111599970B (zh) * 2020-06-01 2021-06-01 北京化工大学 一种氧化镁/铁复合材料改性隔膜及其制备方法
KR20240001699A (ko) * 2022-06-24 2024-01-03 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 분리막, 그 제조방법 및 그 관련된 이차전지와 전기기기

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02204321A (ja) * 1989-11-28 1990-08-14 Kyowa Chem Ind Co Ltd 塩基性塩化―もしくは塩基性硝酸―マグネシウム
JP2012072004A (ja) * 2010-09-28 2012-04-12 Tateho Chemical Industries Co Ltd 水酸化マグネシウム微粒子及び酸化マグネシウム微粒子、並びにそれらの製造方法
JP2016094490A (ja) * 2013-02-19 2016-05-26 神島化学工業株式会社 難燃剤、難燃性組成物及び成形体
WO2016163562A1 (ja) * 2015-04-10 2016-10-13 協和化学工業株式会社 水酸化マグネシウム粒子およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008156033A1 (ja) 2007-06-19 2008-12-24 Teijin Limited 非水系二次電池用セパレータ、その製造方法および非水系二次電池
JP2011108444A (ja) 2009-11-16 2011-06-02 Teijin Ltd 非水系二次電池用セパレータおよび非水系二次電池
JP2015115132A (ja) * 2013-12-10 2015-06-22 三菱製紙株式会社 電池用セパレータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02204321A (ja) * 1989-11-28 1990-08-14 Kyowa Chem Ind Co Ltd 塩基性塩化―もしくは塩基性硝酸―マグネシウム
JP2012072004A (ja) * 2010-09-28 2012-04-12 Tateho Chemical Industries Co Ltd 水酸化マグネシウム微粒子及び酸化マグネシウム微粒子、並びにそれらの製造方法
JP2016094490A (ja) * 2013-02-19 2016-05-26 神島化学工業株式会社 難燃剤、難燃性組成物及び成形体
WO2016163562A1 (ja) * 2015-04-10 2016-10-13 協和化学工業株式会社 水酸化マグネシウム粒子およびその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019175635A (ja) * 2018-03-28 2019-10-10 協和化学工業株式会社 非水系二次電池用セパレータおよび非水系二次電池
JP7041426B2 (ja) 2018-03-28 2022-03-24 協和化学工業株式会社 非水系二次電池用セパレータおよび非水系二次電池
JP2020145128A (ja) * 2019-03-08 2020-09-10 株式会社エンビジョンAescエナジーデバイス 電池
JP2020145129A (ja) * 2019-03-08 2020-09-10 株式会社エンビジョンAescエナジーデバイス 電池
WO2020184359A1 (ja) * 2019-03-08 2020-09-17 株式会社エンビジョンAescエナジーデバイス 電池
WO2020184360A1 (ja) * 2019-03-08 2020-09-17 株式会社エンビジョンAescエナジーデバイス 電池
JP7252014B2 (ja) 2019-03-08 2023-04-04 株式会社エンビジョンAescジャパン 電池
JP7348733B2 (ja) 2019-03-08 2023-09-21 株式会社Aescジャパン 電池

Also Published As

Publication number Publication date
US20200194762A1 (en) 2020-06-18
CN110959205A (zh) 2020-04-03
KR20200006598A (ko) 2020-01-20
JPWO2018221709A1 (ja) 2020-05-21

Similar Documents

Publication Publication Date Title
JP5226763B2 (ja) 非水系二次電池用多孔膜、非水系二次電池用セパレータおよび非水系二次電池
WO2018221709A1 (ja) 非水系二次電池用セパレータに供される水酸化マグネシウム、非水系二次電池用セパレータおよび非水系二次電池
JP5308118B2 (ja) 非水系二次電池用セパレータ、その製造方法、および非水系二次電池
JP6112213B2 (ja) リチウムイオン二次電池
JP5778378B2 (ja) 非水電解質電池セパレータ及び非水電解質二次電池
JP5356878B2 (ja) 非水系二次電池用セパレータ
TWI705592B (zh) 鋰離子二次電池用離子捕捉劑、電解液、隔膜及鋰離子二次電池
JP2018106879A (ja) 絶縁層付き負極
JP2011108444A (ja) 非水系二次電池用セパレータおよび非水系二次電池
Zhou et al. Additive-free solvothermal synthesis of hierarchical flower-like LiFePO 4/C mesocrystal and its electrochemical performance
JP2011108516A (ja) 非水系二次電池用電極シート及びそれを用いた非水系二次電池
JP2011216257A (ja) 非水系二次電池用セパレータ
TWI688151B (zh) 非水系鋰蓄電元件
JP2010212046A (ja) 非水系二次電池および非水系二次電池用吸着剤
JP2019537210A (ja) 電力機器を始動するためのバッテリーモジュール
JP2011216318A (ja) 非水系二次電池用セパレータ
JP2011028947A (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP2011129304A (ja) 非水系二次電池用セパレータ及び非水系二次電池
CN113678313B (zh) 非水系二次电池用隔膜及其制造方法以及非水系二次电池
JP2014154446A (ja) 非水電解液二次電池及びその製造方法
JP2011204587A (ja) 非水系二次電池用セパレータ、非水系二次電池、および非水系二次電池用セパレータの製造方法
JP7041426B2 (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP5368030B2 (ja) 非水系二次電池用セパレータ、その製造方法および非水系二次電池
KR20230125000A (ko) 단층 카본 나노튜브와 ptfe를 복합한 결착제, 그리고그것을 사용한 전극 제작용 조성물 및 이차 전지
JP2011210573A (ja) 非水系二次電池用セパレータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809028

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521336

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197038373

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18809028

Country of ref document: EP

Kind code of ref document: A1