WO2018221325A1 - 液中プラズマ発生装置および液体処理装置 - Google Patents

液中プラズマ発生装置および液体処理装置 Download PDF

Info

Publication number
WO2018221325A1
WO2018221325A1 PCT/JP2018/019694 JP2018019694W WO2018221325A1 WO 2018221325 A1 WO2018221325 A1 WO 2018221325A1 JP 2018019694 W JP2018019694 W JP 2018019694W WO 2018221325 A1 WO2018221325 A1 WO 2018221325A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
electrode
gas
opening
plasma
Prior art date
Application number
PCT/JP2018/019694
Other languages
English (en)
French (fr)
Inventor
章 堀越
昭平 中村
茂 高辻
河野 元宏
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018097043A external-priority patent/JP6949775B2/ja
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to CN201880036677.7A priority Critical patent/CN110692285B/zh
Priority to KR1020197033718A priority patent/KR102296007B1/ko
Priority to US16/617,455 priority patent/US11267729B2/en
Publication of WO2018221325A1 publication Critical patent/WO2018221325A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4608Treatment of water, waste water, or sewage by electrochemical methods using electrical discharges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2418Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the electrodes being embedded in the dielectric
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2431Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes using cylindrical electrodes, e.g. rotary drums
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2443Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/247Generating plasma using discharges in liquid media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0826Details relating to the shape of the electrodes essentially linear
    • B01J2219/083Details relating to the shape of the electrodes essentially linear cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0877Liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/0884Gas-liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46171Cylindrical or tubular shaped
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/003Coaxial constructions, e.g. a cartridge located coaxially within another
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical

Definitions

  • the present invention relates to an in-liquid plasma generator for generating an electric field by applying an electric field to a gas supplied into a liquid and a liquid processing apparatus using the same.
  • At least one electrode is in the liquid, and discharge occurs around the electrode. For this reason, the component of the electrode exposed to the generated plasma may be eluted in the liquid. Further, since the state of the liquid containing bubbles surrounding the electrode changes every moment, the density and amount of generated plasma tend to be unstable. For this reason, in order to improve the plasma generation efficiency and the stability of plasma generation with respect to the gas and energy to be charged, there is room for improvement in the above prior art.
  • the present invention has been made in view of the above-described problems, and provides a technique that enables high-efficiency and stable generation of plasma in an in-liquid plasma generator that generates plasma in a gas supplied in a liquid. Objective.
  • One aspect of the in-liquid plasma generator according to the present invention includes a housing that holds a liquid in an internal space, a gas supply pipe that has an opening in the internal space and discharges gas into the liquid from the opening.
  • a first electrode having a structure in which a conductor portion is covered with a dielectric, and the protruding portion is provided to surround the protruding portion of the first electrode from the inside of the gas supply pipe through the opening.
  • a second electrode having a conductor portion isolated from the liquid by a dielectric, and a voltage applying unit for applying a voltage between the first electrode and the second electrode, and the protruding portion and the first electrode
  • a space between the two electrodes is a flow path through which the gas discharged from the opening flows.
  • the gas discharged from the opening surrounds the periphery of the protruding portion. And then introduced into the liquid.
  • the space between the projecting portion of the first electrode and the second electrode provided so as to surround the first electrode is a flow path for the gas discharged from the opening, and a plasma generation electric field is generated by applying a voltage between the electrodes. It is a plasma generation field that is formed. For this reason, the gas introduced into the liquid passes through the plasma generation field with a very high probability.
  • the conductor portions of the first electrode and the second electrode are both isolated from the liquid by a dielectric.
  • the gas discharged from the opening forms bubbles that wrap around the projecting portion, so that the dielectric covering the conductor portion is provided between the conductor portion of the first electrode and the gas. Intervening layers. Therefore, the discharge generated by the voltage application is a dielectric barrier discharge. For this reason, it is possible to generate a stable discharge in a wider area than when an electrode is provided so as to be in contact with the liquid. Further, since the conductor portion is covered, it is possible to prevent the material (for example, metal) of the conductor portion from being eluted into the liquid due to exposure to plasma.
  • the gas discharged from the opening of the gas supply pipe that opens in the liquid flows so as to wrap around the protruding portion of the first electrode, and is introduced into the liquid, and the plasma is generated around the protruding portion.
  • a generation field is formed. Therefore, highly efficient and stable plasma can be generated in the gas.
  • by supplying the plasmatized gas into the liquid in this way it is possible to efficiently generate a liquid containing a large amount of active species generated by the plasmatization.
  • FIG. 1 It is a figure which shows the structural example of the liquid processing apparatus equipped with one Embodiment of the in-liquid plasma generator based on this invention. It is a figure which shows the external appearance of a plasma generation part. It is sectional drawing which shows the internal structure of a plasma generation part. It is an enlarged view which shows the structure of the periphery of a protrusion part in more detail. It is a horizontal sectional view of a plasma generation part. It is a figure explaining the principle of the plasma generation in this embodiment. It is a figure which shows the photograph when a plasma is generated by the plasma generation part. It is a figure which shows an example of the experimental result for comparing the quantity of plasma active species. It is a figure which shows the modification of a 2nd electrode. It is a figure which shows the modification of a 2nd electrode.
  • FIG. 1 is a diagram showing a configuration example of a liquid processing apparatus equipped with an embodiment of an in-liquid plasma generating apparatus according to the present invention.
  • the liquid processing apparatus 1 is an apparatus that generates a processing liquid in which active species are dissolved in water stored in a storage tank 2.
  • the liquid processing apparatus 1 generates underwater plasma (corresponding to an example of “in-liquid plasma” of the present invention) in the plasma generation unit 3 in order to generate active species.
  • water corresponds to an example of the “liquid” of the present invention.
  • the upward direction in the vertical direction is represented as the (+ Z) direction
  • the downward direction is represented as the ( ⁇ Z) direction.
  • the liquid processing apparatus 1 includes a piping system 5, a plasma generation unit 3 and a pump 6 inserted in a liquid flow path formed by the piping system 5.
  • the piping system 5 is responsible for the flow of the liquid in the apparatus including the supply of the liquid to the storage tank 2 and the delivery of the liquid from the storage tank 2.
  • one end of the pipe 51 included in the pipe system 5 is connected to a position below the liquid level of the liquid L inside the side surface of the storage tank 2, and the other end of the pipe 51 is connected to the plasma generating unit 3. Is connected to a liquid inlet described later.
  • a pump 6 is inserted in the pipe 51, and the liquid stored in the storage tank 2 is passed through the pipe 51 by operating the pump 6 in accordance with an operation command from the control unit 7 that controls the entire apparatus. Is supplied to the plasma generator 3.
  • the plasma generation unit 3 is an apparatus that contains active species in the liquid by in-liquid plasma processing. Specifically, the plasma generating unit 3 mixes the gas from the gas introducing unit 8 with the liquid fed by the pump 6 through the pipe 51, and generates plasma in the gas by the high voltage from the AC power supply 4. Then, the generated active species are dissolved in the liquid. As described above, the plasma generating unit 3 receives a liquid supplied from the outside as a liquid to be processed, and outputs a liquid in which an active species generated by plasma generation is dissolved in the liquid to be processed as a processing liquid.
  • the upper end of the plasma generator 3 is connected to one end of a pipe 53, and the other end of the pipe 53 is connected to the storage tank 2. Therefore, it is possible to return the liquid output from the plasma generation unit 3, that is, the liquid that has undergone the in-liquid plasma treatment in the plasma generation unit 3 to the storage tank 2.
  • the liquid stored in the storage tank 2 is circulated through the pipes 51 and 53 as indicated by the broken line arrows.
  • a pipe 54 is connected to the lower side surface of the storage tank 2.
  • An open / close valve 55 is inserted in the pipe 54.
  • the on-off valve 55 is opened in response to an opening command from the control unit 7, the processing liquid stored in the storage tank 2 can be taken out to the outside.
  • a pipe 56 is connected to the upper side surface of the storage tank 2, and the storage tank 2 is connected to a liquid supply source (not shown) by the pipe 56.
  • An open / close valve 57 is inserted in the pipe 56.
  • a liquid before processing that is, a liquid not containing active species is replenished to the storage tank 2.
  • a pipe 58 is connected to the ceiling surface of the storage tank 2, and the internal space of the storage tank 2 is connected to the ambient atmosphere of the liquid processing apparatus 1 by the pipe 58.
  • An opening / closing valve 59 is inserted in the pipe 58.
  • the piping 83 of the gas introduction unit 8 is connected to the plasma generation unit 3.
  • the gas introduction unit 8 includes a gas supply source 81 that supplies gas via the pipe 83 and an on-off valve 82 that is inserted in the middle of the pipe 83.
  • the on-off valve 82 opens and closes in response to an open / close command from the control unit 7, thereby changing in time the amount of gas supplied to the plasma generating unit 3. That is, when the opening / closing valve 82 is opened in response to an opening command from the control unit 7, gas is pumped from the gas supply source 81 through the opening / closing valve 82 and the pipe 83 and supplied to the plasma generation unit 3 while being opened. Is done.
  • FIG. 2 is a view showing the appearance of the plasma generating portion.
  • FIG. 3 is a cross-sectional view showing the internal structure of the plasma generator. As shown in FIG. 2, the plasma generating unit 3 mainly includes a cylindrical casing 31 extending in the vertical direction (Z direction). FIG. 3 shows a cross section in a vertical plane including the tube axis AX of the housing 31.
  • the casing 31 is a cylindrical tube formed of, for example, quartz glass and has a hollow inside, and the thick wall portions 31a and 31c with thicker tube walls are formed at both ends of the thin wall portion 31b formed with a relatively thin tube wall.
  • the casing 31 can be manufactured by joining a thick tube with the same inner diameter to both ends of a thin tube by welding.
  • a thin wall may be obtained by cutting, polishing, or extending a part of the side wall surface of the thick tube.
  • the upper end of the upper thick portion 31 a is connected to the pipe 53. Further, a liquid introduction pipe 31d for receiving the liquid supplied from the storage tank 2 as a liquid to be processed is joined to the side surface of the lower thick portion 31c. A pipe 51 is connected to the liquid introduction pipe 31d. Therefore, in the internal space SP of the housing 31, the liquid introduced as the liquid to be processed from the lower part flows upward and is sent out as the processing liquid from the upper end part.
  • the inner tube 32 is inserted into the internal space SP of the housing 31.
  • the inner tube 32 is, for example, a quartz glass tube having an outer diameter smaller than the inner diameter of the housing 31.
  • the inner ring 32 is supported substantially coaxially with the tube axis AX of the housing 31 by a seal plug 33 formed of an elastic material such as silicon rubber.
  • the seal plug 33 also has a function as a seal that separates the internal space SP and the external space and prevents outflow of liquid.
  • the inner tube 32 extends upward from the position where the liquid is introduced from the liquid introduction tube 31d.
  • the upper end 32a of the inner tube 32 is located, for example, at a substantially central portion in the vertical direction of the thin portion 31b of the housing 31.
  • An upper end 32 a of the inner tube 32 communicates with the inner space SP of the housing 31. That is, the upper end 32a of the inner tube 32 has an upward opening 32b.
  • the lower end of the inner tube 32 protrudes downward to the outside of the housing 31 through the seal plug 33, and a gas introduction tube 32c is connected to the side surface thereof.
  • the gas introduction pipe 32 b is connected to the pipe 83 of the gas introduction unit 8. The gas supplied from the gas introduction part 8 is introduced into the liquid flowing upward through the internal space SP of the housing 31 from the opening 32b via the inside of the gas introduction pipe 32c and the inner pipe 32. Therefore, the introduced gas becomes bubbles in the liquid and moves upward in the internal space SP.
  • a first electrode 34 extending in the vertical direction is inserted into the inner tube 32.
  • the first electrode 34 has a structure in which the surface of a rod-shaped conductor portion 341 having a substantially circular cross section is covered with a surface layer 342 made of a dielectric material such as quartz glass.
  • the surface layer 342 may coat the surface of the conductor portion 341 with a dielectric material.
  • the first electrode 34 may have a structure in which the conductor portion 341 is inserted into a dielectric material tube whose upper end is sealed.
  • the first electrode 34 is supported substantially coaxially with the inner tube 32 by a seal plug 35 formed of an elastic material such as silicon rubber. At the lower end of the first electrode 34, the conductor portion 341 is exposed without being partially covered by the surface layer 342, and the AC power supply 4 is electrically connected to this portion.
  • the upper end 34 a of the first electrode 34 extends upward from the upper end 32 a of the inner tube 32. Therefore, the tip of the first electrode 34 is in a state of protruding upward from the opening 32 b of the inner tube 32.
  • a portion of the first electrode 34 that protrudes above the upper end 32a of the inner tube 32 will be referred to as a “protruding portion” and denoted by reference numeral 34b.
  • FIG. 4 is an enlarged view showing the structure around the protruding portion in more detail.
  • the second electrode 36 is provided so as to surround the protruding portion 34 b of the first electrode 34 from the side (horizontal direction).
  • the second electrode 36 made of an annular metal plate is disposed so as to surround a position corresponding to the protruding portion 34b in the vertical direction in the thin portion 31b of the housing 31.
  • the vertical position of the second electrode 36 is set so that at least a portion thereof overlaps the protruding portion 34b in a side view.
  • the second electrode 36 is isolated from the liquid in the internal space SP by a layer of quartz glass that is a dielectric that forms the tube wall of the thin portion 31b.
  • FIG. 5 is a diagram showing a horizontal cross section of the plasma generating portion, specifically a cross section taken along line AA of FIG. As shown in FIG. 5, in the vicinity of the protruding portion 34b, the conductor portion 341, the surface layer 342, the inner tube 32, the thin portion 31b of the housing 31 and the second electrode 36 are arranged substantially coaxially with each other. ing.
  • the outer diameter of the first electrode 34 is smaller than the inner diameter of the inner tube 32. Therefore, in the plan view shown in FIG. 5, the first electrode 34 is included in the opening 32 b of the inner tube 32. Therefore, the space between the outer surface of the first electrode 34 and the inner surface of the inner tube 32 is a gas flow path. The gas flowing through this flow path passes through the periphery of the first electrode 34 and flows into the internal space SP of the housing 31 from the opening 32b. Further, the outer diameter of the inner tube 32 is smaller than the inner diameter of the housing 31. For this reason, the space between the outer side surface of the inner tube 32 and the inner side surface of the housing 31 serves as a liquid flow path.
  • An AC high voltage is applied from the AC power supply 4 between the first electrode 34 and the second electrode 36.
  • a strong alternating electric field is formed in the space around the first electrode 34, particularly the protruding portion 34b.
  • the annular second electrode 36 is disposed substantially coaxially so as to surround the rod-shaped conductor portion 341 of the first electrode 34, so that the both are substantially uniform in the circumferential direction and in the vicinity of the first electrode 34.
  • a particularly strong electric field is formed. That is, in this plasma generation part 3, an electric field can be concentrated around the protrusion part 34b of the 1st electrode 34, and a local strong plasma generation field can be formed.
  • the vertical length of the second electrode 36 is larger than the length of the protruding portion 34b.
  • the upper end portion of the second electrode 36 extends to the upper side of the upper end portion of the protruding portion 34b, and the lower end portion of the second electrode 36 extends to the lower side of the lower end portion of the protruding portion 34b.
  • FIG. 6 is a diagram for explaining the principle of plasma generation in this embodiment.
  • the processing space SP inside the housing 31 is filled with the liquid L supplied from the storage tank 2.
  • the liquid L flows upward in the space between the inner wall of the casing 31 and the outer wall of the inner tube 32.
  • the gas G supplied from the gas introduction part 8 and flowing through the inside of the inner tube 32 flows upward around the first electrode 34 as shown by a dotted arrow, and is introduced into the liquid as bubbles from the opening 32b. Is done.
  • the flow rate of the gas G is appropriately set, it is possible to form a bubble B1 that wraps around the protruding portion 34b of the first electrode 34 by the action of the surface tension of the liquid L.
  • the bubbles B1 are released from the protruding portion 34b into the liquid.
  • the liberated bubble B2 contains a high concentration of active species generated by plasma.
  • the liquid L contains active species.
  • the liquid L containing the active species is refluxed to the storage tank 2 through the pipe 53, so that the concentration of the active species in the liquid in the storage tank 2 increases. By circulating the liquid through the piping system 5, the concentration of active species in the liquid can be further increased.
  • the conductor portions of the first electrode 34 and the second electrode 36 are not in contact with the liquid L.
  • the mode of the generated discharge can be a dielectric barrier discharge, and stable plasma can be generated in a wide area.
  • the conductor material is also prevented from being eluted into the liquid by being exposed to the plasma.
  • the liquid processing apparatus 1 of the present embodiment can generate a liquid rich in active species and free from impurities as a processing liquid.
  • FIG. 7 is a view showing a photograph when plasma is generated by the plasma generator.
  • the bright part extending in the vertical direction is the casing 31, and the dark part appearing in the center is the second electrode 36.
  • a portion surrounded by the second electrode 36 in the inside of the housing 31 is particularly bright and it can be seen that high concentration plasma is generated in this portion.
  • the casing 31 is configured by connecting the thick portions 31a and 31c and the thin portion 31b.
  • the entire casing 31 is composed of a thick tube having a constant thickness.
  • a sufficient thickness is required for the upper end portion to which the external pipe 53 is connected and the portion to which the liquid introduction pipe 31d is joined.
  • the quartz glass on the tube wall which is a dielectric, is preferably as thin as possible.
  • the casing 31 of this embodiment satisfies the above requirements by having the thick portions 31a and 31c at both ends and the thin portion 31b as the central portion where the plasma generation field is generated.
  • the requirement for a thin dielectric layer interposed between the electrodes is the same for the first electrode 34. That is, it is preferable that the dielectric surface layer 342 of the first electrode 34 is as thin as possible so long as the mechanical strength is not impaired.
  • the gas G is a gas species that hardly generates plasma.
  • the inventor of this application conducted various experiments using water (pure water) as the liquid L and a quartz tube having an outer diameter of about 10 mm as the casing 31. According to the results, when the tube wall was 1 mm, plasma was generated relatively easily if the gas G was argon, but no plasma was generated when air was used as the gas G. When air was used, plasma was not generated unless the tube wall was 0.5 mm or less. There is a similar tendency for the surface layer 342 of the first electrode 34. Therefore, the thickness of the tube wall in the thin portion 31b of the housing 31 is set to 0.4 mm, and the thickness of the surface layer 342 of the first electrode 31 is set to 0.3 mm. In this way, even when air is used as the gas G, high concentration plasma can be stably generated.
  • the use of air (atmosphere) as a gas for generating plasma has a great advantage. Yes. That is, since the processing liquid can be generated using the virtually inexhaustible air present in the operating environment of the apparatus, no special gas supply source is required.
  • the gas supply source 81 of the liquid processing apparatus 1 for example, there may be a compressor that takes in the surrounding air, pressurizes it, and sends it out. This is advantageous in simplifying the device configuration and reducing the size of the device, and of course, the processing cost can be reduced.
  • FIG. 8 is a diagram showing an example of an experimental result for comparing the amount of plasma active species.
  • the inventor of the present application conducted an experiment in which water added with indigo carmine was injected into the plasma generation unit 3 to examine how the liquid color changes with the treatment time. Since indigo carmine decolorizes by reacting with active species, the liquid color was evaluated by absorbance.
  • Curve A is the result when the thickness of the tube wall of the casing 31 is 1 mm and the thickness of the surface layer 342 of the first electrode 34 is 0.7 mm.
  • curve B is the result when the casing 31 is provided with a thin portion 31b having a tube wall of 0.4 mm, and the thickness of the surface layer 342 of the first electrode 34 is 0.3 mm.
  • the absorbance decreases in a shorter time by making the tube wall thinner, and it can be seen that more active species are generated in the treatment liquid.
  • the plasma generator 3 functions as the “in-liquid plasma generator” of the present invention.
  • the casing 31, the first electrode 34, and the second electrode 36 correspond to the “casing”, “first electrode”, and “second electrode” of the present invention, respectively.
  • the inner tube 32 functions as the “gas supply tube” of the present invention, and the AC power source 4 functions as the “voltage application unit” of the present invention.
  • the opening of the liquid supply pipe 31 to which the pipe 51 is connected corresponds to the “introduction port” of the present invention.
  • the opening at the upper end of the casing 31 to which the pipe 53 is connected corresponds to the “sending port” of the present invention.
  • the storage tank 2 functions as a "reservation part” of this invention, and the pump 6 functions as a "liquid supply part” of this invention.
  • the present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention.
  • the protruding portion 34b of the first electrode 34 is completely enclosed by the bubble B1
  • the present invention is not limited to this.
  • the conditions may be such that many fine bubbles are generated so as to surround the protruding portion 34b. Since there are many bubbles around the protruding portion 34b where a high electric field is formed, it is possible to increase the probability of plasma generation in each bubble and generate plasma efficiently.
  • the 2nd electrode 36 which cyclically covers the outer peripheral surface of the thin part 31b of the housing
  • FIG. 9A and FIG. 9B are diagrams showing modifications of the second electrode.
  • the second electrode 37 shown in FIG. 9A is composed of electrode pieces 371 divided into a plurality in the circumferential direction. Even with such a structure, it is possible to generate a substantially uniform electric field in the circumferential direction around the protruding portion 34 b of the first electrode 34.
  • the second electrode 38 shown in FIG. 9B has a structure in which the conductor portion 381 is covered with a surface layer 382 of a dielectric (for example, quartz glass), and is disposed in the internal space SP in the housing 31. Even with such a structure, it is possible to generate a substantially uniform electric field in the circumferential direction around the protruding portion 34b. In addition, since the distance between the electrodes can be reduced compared to the case where the second electrode is provided outside the housing, the electric field strength can be increased or the applied voltage can be decreased. In addition, for example, a structure in which the second electrode is embedded in the housing may be used.
  • a dielectric for example, quartz glass
  • the casing 31 and the surface layer 342 of the first electrode 34 in the above embodiment are made of quartz glass, but this is used as an example of a dielectric.
  • Other dielectric materials may be used as long as they are resistant to the liquid and plasma used and do not elute impurities into the liquid.
  • the thick part and the thin part of the casing 31 may be made of different materials. Moreover, the structure which made the whole pipe
  • the entire conductor portion 341 in the housing 31 is covered with the surface layer 342.
  • the casing 31, the inner tube 32, and the first electrode 34 are arranged coaxially with each other, but these do not have to be strictly coaxial. That is, it is sufficient if the gas flowing through the inner tube 32 is introduced into the liquid so as to wrap around the first electrode 34.
  • the protruding portion 34b of the first electrode 34 only needs to be included in the opening 32b of the inner tube 32 in plan view.
  • the inner tube 32 and the first electrode 34 do not necessarily have to be coaxial.
  • the first electrode 34 does not need to be disposed strictly at the center of the inner tube 32.
  • the casing 31 and the inner pipe 32 do not necessarily have to be coaxial as long as the liquid smoothly flows through the space between them.
  • the cross-sectional shapes of these pipes are not necessarily circular or similar to each other, and can be appropriately modified.
  • a seal plug made of an elastic material is used when the inner tube 32 is attached to the housing 31 and the first electrode 34 is attached to the inner tube 32. For this reason, the plasma generator 3 can be easily disassembled.
  • the members may be permanently fixed, for example, by adhesion or welding.
  • the plasma generating unit 3 of the above embodiment also has a function as a part of piping through which the casing 31 circulates liquid.
  • the “housing” in the present invention is not limited to such a configuration, and may have a function as a container for storing a liquid in the internal space, for example.
  • the plasma generating unit 3 has a tubular shape having the tube axis AX in the substantially vertical direction, but is not limited thereto.
  • the plasma generator 3 having the structure of FIG. 2 is arranged so that the tube axis AX is horizontal, plasma can be generated satisfactorily.
  • the bubbles formed by the gas discharged from the opening of the inner tube mainly extend in the direction along the discharge direction and the pumping direction of the surrounding liquid. Therefore, the same effect as described above can be obtained if the direction in which the bubbles extend and the direction in which the protruding portion of the first electrode extends are substantially the same.
  • the extending direction of the inner pipe 32 is the vertical direction
  • the upward opening 32b provided at the upper end 32a discharges gas
  • the first electrode 34 protrudes upward from the opening 32b.
  • the extending direction of the protruding portion 34b coincides not only with the flow direction of the liquid L and the gas G but also with the direction of buoyancy acting on the gas G in the liquid L. Therefore, it is possible to further increase the probability that bubbles are generated so as to surround the protruding portion 34b. Thereby, the plasma generation region in the liquid is widened, and more efficient plasma generation is possible.
  • the above embodiment is a “liquid processing apparatus” in which the plasma generating unit 3 which is the “in-liquid plasma generating apparatus” according to the present invention is provided on the flow path of the circulating liquid.
  • the in-liquid plasma generator of the present invention itself has a function of generating a treatment liquid by dissolving active species in the liquid, and its application range is limited to the one having such a circulation path. Is not to be done.
  • the processed liquid output from the upper part of the plasma generation part 3 may be taken out directly outside and used as a processing liquid.
  • the liquid and gas used are not limited to the above and are arbitrary.
  • the opening opens upward, the protruding portion protrudes upward from the opening, and the conductor portion of the second electrode
  • the structure may surround the protruding portion from the side. According to such a configuration, the gas discharged from the opening flows upward in the liquid. Therefore, it is possible to increase the probability of plasma generation by passing a large amount of gas around the projecting portion extending upward.
  • the protruding portion may be inside the opening in a plan view, and the second electrode may surround the opening. Further, in the side view, the protruding portion and the second electrode may be at least partially overlapped with each other. According to such a configuration, most of the gas discharged from the opening is introduced into the liquid through the periphery of the protruding portion where the plasma generation field is formed. Therefore, plasma generation efficiency can be increased.
  • the first electrode is a rod-like body extending along the tube axis of the gas supply pipe, and a space between the side surface of the rod-like body and the inner side surface of the gas supply pipe becomes a gas flow path. It may be a configuration. According to such a configuration, the gas smoothly flows through the channel having an annular cross section, and the first electrode is surrounded by the channel. Therefore, it is possible to stably form bubbles around the protruding portion.
  • the casing has a cylindrical body formed of a dielectric, and a gas supply pipe is provided coaxially with the cylindrical body inside the cylindrical body, and the inner surface of the cylindrical body and the gas supply pipe The liquid may be held in the space between them. According to such a configuration, all of the gas supplied from the gas supply pipe comes into contact with the surrounding liquid. Thereby, the active species generated by the generation of plasma in the gas can be efficiently dissolved in the liquid.
  • the casing may have a cylindrical body formed of a dielectric, and the second electrode may be provided on the outer peripheral surface of the cylindrical body. According to such a configuration, the second electrode can be isolated from the liquid in the casing by the wall surface of the casing. As a result, the second electrode can be prevented from coming into contact with the liquid.
  • the conductor portion of the second electrode may be an annular conductor surrounding the outer peripheral surface of the cylindrical body. According to such a configuration, a substantially uniform electric field can be generated around the first electrode in the circumferential direction in plan view. As a result, uniform plasma can be generated around the first electrode.
  • first electrode, the gas supply pipe, the cylindrical body, and the second electrode may be configured to be coaxial with the vertical axis.
  • the gas flow path between the first electrode and the gas supply pipe and the liquid flow path between the gas supply pipe and the cylindrical body have a constant cross-sectional shape in the vertical direction. It becomes. Therefore, it becomes possible to smoothly distribute the gas and the liquid in the respective flow paths. Thereby, the flow of the liquid and gas around the protruding portion of the first electrode is stabilized, and plasma generation in this region can be stabilized. Further, since the first electrode and the second electrode are coaxially arranged, the electric field formed around the first electrode can be made uniform.
  • the casing may be provided with an introduction port for introducing liquid into the internal space below the protruding portion and a delivery port for sending the liquid to the outside above the protruding portion.
  • the liquid flows upward in the housing, and the bubble that includes the plasma active species and rises in the liquid comes into contact with the liquid for a long time. Therefore, active species can be efficiently taken into the liquid.
  • the liquid supply unit may be configured to supply the liquid stored in the storage unit to the inlet. According to such a configuration, it is possible to increase the concentration of active species in the liquid by circulating the liquid passing through the in-liquid plasma generator.
  • the present invention can be applied to a plasma generation technique in liquid and a technique for generating a treatment liquid containing active species using the technique.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Fluid Mechanics (AREA)
  • Plasma Technology (AREA)

Abstract

液体中に供給された気体にプラズマを発生させる液中プラズマ発生装置において、高効率で安定したプラズマを発生させる。液中プラズマ発生装置3は、内部空間に液体を保持する筐体31と、内部空間内に開口を有し該開口から液体中に気体を吐出する気体供給管32と、気体供給管32内から開口を介して内部空間に突出し、該突出部位は導体部341が誘電体342により被覆された構造を有する第1電極34と、第1電極34の突出部位を取り囲んで設けられ、誘電体によって液体から隔離された導体部を有する第2電極36と、第1電極34と第2電極と36の間に電圧を印加する電圧印加部4とを備え、突出部位と第2電極36との間の空間が、開口から吐出された気体が流通する流路である。

Description

液中プラズマ発生装置および液体処理装置
 この発明は、液体中に供給される気体に電界を作用させて当該液体中でプラズマを発生させる液中プラズマ発生装置およびこれを用いる液体処理装置に関するものである。
 反応生成物の生成手段や有害物質・細菌類の無害化手段として、化学的に活性な活性種を含有する液体を生成するための技術が数多く提案されている。例えば特許文献1に記載の技術では、誘電体管を流れる被処理水に気泡を発生させ、液中に配置された電極間に高電圧を印加することで、気泡内で放電させてプラズマを発生させる。また、特許文献2に記載の技術では、気体が混合された液体を流通させる誘電体管の外部に一方電極が、管内に他方電極がそれぞれ設けられている。
特開2015-116561号公報 特開2013-206767号公報
 上記従来技術では、少なくとも一方の電極が液中にあり、その電極の周囲で放電が生じる。このため、発生したプラズマに曝された電極の成分が液中に溶出することがある。また、電極の周囲を取り巻く気泡を含む液体の状態が刻々と変化するため、発生するプラズマの密度や量が不安定となりやすい。このため、投入される気体やエネルギーに対するプラズマ発生効率およびプラズマ発生の安定性を高める上で、上記従来技術は改良の余地を残している。
 この発明は上記課題に鑑みなされたものであり、液体中に供給された気体にプラズマを発生させる液中プラズマ発生装置において、高効率で安定したプラズマの発生を可能とする技術を提供することを目的とする。
 この発明に係る液中プラズマ発生装置の一の態様は、内部空間に液体を保持する筐体と、前記内部空間内に開口を有し該開口から前記液体中に気体を吐出する気体供給管と、前記気体供給管内から前記開口を介して前記内部空間に突出し、該突出部位は導体部が誘電体により被覆された構造を有する第1電極と、前記第1電極の前記突出部位を取り囲んで設けられ、誘電体によって前記液体から隔離された導体部を有する第2電極と、前記第1電極と前記第2電極との間に電圧を印加する電圧印加部とを備え、前記突出部位と前記第2電極との間の空間が、前記開口から吐出された前記気体が流通する流路となっている。
 このように構成された発明では、液体中に気体を供給する気体供給管の開口から第1電極の突出部位が突設されているので、開口から吐出される気体は突出部位の周囲を取り囲むように流通して液中に導入される。そして、第1電極の突出部位と、これを取り囲んで設けられる第2電極との間の空間が、開口から吐出される気体の流路であるとともに、電極間への電圧印加によりプラズマ発生電界が形成されるプラズマ発生場となっている。このため、液中に導入される気体は極めて高い確率でプラズマ発生場を通過することとなる。
 そして、第1電極および第2電極の導体部は、いずれも誘電体によって液体から隔離されている。特に第1電極の突出部位の周囲においては、開口から吐出された気体が突出部位を包み込む気泡を形成することで、第1電極の導体部と気体との間には導体部を被覆する誘電体の層が介在することになる。したがって電圧印加により生じる放電は誘電体バリア放電となる。このため、液体に接するように電極を設けた場合よりも広い領域で安定した放電を生じさせることが可能である。また、導体部が被覆されているので、プラズマに曝されることによる導体部の材料(例えば金属)が液中に溶出することも防止される。
 以上のように、本発明では、液体中に開口する気体供給管の開口から吐出される気体が第1電極の突出部位を包み込むように流れて液体中に導入され、しかも突出部位の周囲にプラズマ発生場が形成される。そのため、気体中に高効率かつ安定したプラズマを発生させることができる。また、こうしてプラズマ化された気体が液体中に供給されるようにすることで、プラズマ化により生成された活性種を豊富に含む液体を効率よく生成することが可能となる。
 この発明の前記ならびにその他の目的と新規な特徴は、添付図面を参照しながら次の詳細な説明を読めば、より完全に明らかとなるであろう。ただし、図面は専ら解説のためのものであって、この発明の範囲を限定するものではない。
本発明に係る液中プラズマ発生装置の一実施形態を装備した液体処理装置の構成例を示す図である。 プラズマ発生部の外観を示す図である。 プラズマ発生部の内部構造を示す断面図である。 突出部位の周辺の構造をより詳しく示す拡大図である。 プラズマ発生部の水平断面図である。 この実施形態におけるプラズマ発生の原理を説明する図である。 プラズマ発生部によりプラズマを発生させたときの写真を示す図である。 プラズマ活性種の量を比較するための実験結果の一例を示す図である。 第2電極の変形例を示す図である。 第2電極の変形例を示す図である。
 図1は本発明に係る液中プラズマ発生装置の一実施形態を装備した液体処理装置の構成例を示す図である。この液体処理装置1は、貯留槽2に貯留されている水に活性種を溶解させた処理液を生成する装置である。液体処理装置1は、活性種を生成するためにプラズマ発生部3において水中プラズマ(本発明の「液中プラズマ」の一例に相当)を発生させる。このように本実施形態では、水が本発明の「液体」の一例に相当している。以下の各図において、鉛直方向上向きは(+Z)方向、下向きは(-Z)方向として表される。
 液体処理装置1は、配管系5と、配管系5により形成される液体の流路中に介挿されたプラズマ発生部3およびポンプ6とを備えている。配管系5は、貯留槽2への液体の供給と貯留槽2からの液体の送出とを含む装置内での液体の流通を担う。具体的には、配管系5に含まれる配管51の一方端が、貯留槽2の側面のうち内部の液体Lの液面よりも下方位置に接続され、配管51の他方端がプラズマ発生部3の下部に設けられた後述の液体導入口に接続される。配管51にはポンプ6が介挿されており、装置全体を制御する制御部7からの動作指令に応じてポンプ6が作動することで、貯留槽2に貯留されている液体が配管51を介してプラズマ発生部3に供給される。
 詳しくは後述するが、プラズマ発生部3は、液中プラズマ処理によって液体中に活性種を含有させる装置である。具体的には、プラズマ発生部3は、ポンプ6により配管51を介して送り込まれる液体に気体導入部8からの気体を混合させ、交流電源4からの高電圧により該気体中でプラズマを発生させて、生じた活性種を液体に溶け込ませる。このように、プラズマ発生部3は、外部から供給される液体を被処理液として受け入れ、該被処理液にプラズマ発生により生じた活性種を溶け込ませた液体を処理液として出力する。
 プラズマ発生部3の上部には配管53の一方端が接続され、配管53の他方端は貯留槽2に接続されている。したがって、プラズマ発生部3から出力される液体、つまりプラズマ発生部3で液中プラズマ処理を受けた液体を貯留槽2に戻すことが可能となっている。液体処理装置1では、破線矢印で示すように、貯留槽2に貯留された液体は配管51、53を経由して循環している。このように循環を行いながらプラズマ発生部3で液中プラズマを発生させることで、液体に含まれる活性種の濃度を高めることができる。
 こうして活性種を含有する液体、つまり処理液が生成されると、当該処理液を適当なタイミングで貯留槽2から外部に送出する必要がある。このために、貯留槽2の下方側面に配管54が接続されている。この配管54には、開閉弁55が介挿されている。制御部7からの開指令に応じて開閉弁55が開くと、貯留槽2に貯留されている処理液を外部に取り出し可能となる。また、貯留槽2の上方側面に配管56が接続されており、当該配管56によって貯留槽2は液体供給源(図示省略)と接続されている。この配管56には、開閉弁57が介挿されている。制御部7からの開指令に応じて開閉弁57が開くと、処理前の液体、つまり活性種を含有しない液体が貯留槽2に補充される。さらに、貯留槽2の天井面に配管58が接続されており、当該配管58によって貯留槽2の内部空間が液体処理装置1の周辺雰囲気と接続されている。この配管58には、開閉弁59が介挿されている。制御部7からの開指令に応じて開閉弁59が開くと、貯留槽2の内部空間を液体処理装置1の周辺雰囲気と連通させて貯留槽2の内部を大気圧に戻すことができる。したがって、開閉弁59はいわゆるリーク弁として機能する。
 プラズマ発生部3には気体導入部8の配管83が接続されている。気体導入部8は、上記配管83を介して気体を供給する気体供給源81と、配管83の途中に介挿された開閉弁82とを有している。開閉弁82は制御部7からの開閉指令に応じて開閉することで、プラズマ発生部3に供給される気体の導入量を時間的に変化させる。すなわち、制御部7からの開指令に応じて開閉弁82が開くと、開成されている間、気体供給源81から気体が開閉弁82および配管83を介して圧送され、プラズマ発生部3へ供給される。
 図2はプラズマ発生部の外観を示す図である。また、図3はプラズマ発生部の内部構造を示す断面図である。図2に示すように、プラズマ発生部3は、鉛直方向(Z方向)に延びる筒状の筐体31を主要な構成とするものである。図3は筐体31の管軸AXを含む鉛直面における断面を示している。
 筐体31は例えば石英ガラスにより形成され内部が中空となった筒状の管であり、管壁が比較的薄く形成された薄肉部31bの両端に、より管壁の厚い厚肉部31a、31cが接続された構造を有している。例えば、薄肉の管の両端に、これと同じ内径で厚肉の管を溶接により接合することで、筐体31を製作することができる。または、厚肉の管の一部側壁面を切削し、研磨し、または引き延ばすことで薄肉化したものでもよい。
 図示を省略しているが、上側の厚肉部31aの上端は配管53に接続される。また、下側の厚肉部31cの側面には、貯留槽2から供給される液体を被処理液として受け入れるための液体導入管31dが接合されている。この液体導入管31dに配管51が接続される。したがって、筐体31の内部空間SPにおいては、下部から被処理液として導入される液体が上方へ流通し、上端部から処理液として送出される。
 筐体31の内部空間SPには、鉛直方向に延びる内管32が挿通されている。内管32は、筐体31の内径よりも小さな外径を有する例えば石英ガラス製の管である。例えばシリコンゴムのような弾性材料で形成されたシール栓33により、内環32は筐体31の管軸AXと略同軸に支持されている。シール栓33は内部空間SPと外部空間とを離隔し液体の流出を防止するシールとしての機能も有する。筐体31の内部空間SPにおいて、内管32は液体導入管31dから液体が導入される位置よりも上方まで延びている。内管32の上端32aは、例えば筐体31の薄肉部31bの鉛直方向における略中央部に位置している。内管32の上端32aは筐体31の内部空間SPに連通している。すなわち、内管32の上端32aは上向きの開口32bを有している。
 一方、内管32の下端はシール栓33を介して筐体31の外部へ下向きに突出しており、その側面には気体導入管32cが接続されている。図示を省略しているが、気体導入管32bは気体導入部8の配管83に接続される。気体導入部8から供給される気体は、気体導入管32cおよび内管32の内部を経由して、開口32bから、筐体31の内部空間SPを上向きに流通する液体中に導入される。したがって、導入された気体は液体中の気泡となって内部空間SP内を上方へ向かって移動する。
 内管32の内部には、鉛直方向に延びる第1電極34が挿通されている。第1電極34は、断面が略円形の棒状の導体部341の表面を誘電体、例えば石英ガラスによる表面層342で被覆した構造を有している。表面層342は、導体部341の表面を誘電体材料でコーティングするものであってもよい。また、第1電極34は、上端部が封止された誘電体材料製の管の内部に導体部341が挿通された構造であってもよい。第1電極34は、例えばシリコンゴムのような弾性材料で形成されたシール栓35により、内管32と略同軸に支持されている。第1電極34の下端においては、導体部341が部分的に表面層342に覆われず露出しており、この部分に交流電源4が電気的に接続される。
 第1電極34の上端34aは、内管32の上端32aよりも上方まで延びている。したがって、第1電極34の先端部は内管32の開口32bから上方に突出した状態となっている。以下、第1電極34のうち、このように内管32の上端32aよりも上方に突出した部位を「突出部位」と称し符号34bを付すこととする。
 図4は突出部位の周辺の構造をより詳しく示す拡大図である。図3および図4に示すように、第1電極34の突出部位34bを側方(水平方向)から取り囲むように、第2電極36が設けられる。具体的には、筐体31の薄肉部31bのうち、鉛直方向において突出部位34bと対応する位置を取り巻くように、環状の金属板による第2電極36が配置されている。第2電極36の鉛直方向位置は、側面視において少なくとも一部が突出部位34bと重なるように設定される。第2電極36は、薄肉部31bの管壁を形成する誘電体である石英ガラスの層によって、内部空間SP内の液体から隔離されている。
 図5はプラズマ発生部の水平断面、具体的には図3のA-A線断面を示す図である。図5に示すように、突出部位34bの近傍では、第1電極34の導体部341、表面層342、内管32、筐体31の薄肉部31bおよび第2電極36が互いに略同軸に配置されている。
 第1電極34の外径は内管32の内径よりも小さい。このため図5に示す平面視においては、第1電極34は内管32の開口32bの内部に含まれる。したがって、第1電極34の外側面と内管32の内側面との間の空間が気体の流路となる。この流路を流通する気体は、第1電極34の周囲を通って、開口32bから筐体31の内部空間SPに流入する。また、内管32の外径は筐体31の内径よりも小さい。このため、内管32の外側面と筐体31の内側面との間の空間が液体の流路となる。
 第1電極34と第2電極36との間に交流電源4から交流高電圧が印加される。これにより、第1電極34、特に突出部位34bの周囲の空間に強い交流電界が形成される。第1電極34の棒状の導体部341を取り囲むように環状の第2電極36が略同軸に配置されることにより、両者の間には、周方向において略均一で、かつ第1電極34の近傍で特に強い電界が形成されることになる。すなわち、このプラズマ発生部3では、第1電極34の突出部位34bの周囲に電界を集中させて、局所的な強いプラズマ発生場を形成することができる。
 また、図3に示されるように、第2電極36の鉛直方向長さは突出部位34bの長さよりも大きい。第2電極36の上端部は出部位34bの上端部よりも上方側まで延び、第2電極36の下端部は突出部位34bの下端部よりも下方側まで延びている。このような構成により、突出部位34bの周辺では高さ方向においても略均一な電界が形成される。
 図6はこの実施形態におけるプラズマ発生の原理を説明する図である。筐体31内部の処理空間SPは貯留槽2から供給された液体Lで満たされている。破線矢印で示すように、液体Lは、筐体31の内壁と内管32の外壁との間の空間を上向きに流通する。一方、気体導入部8から供給され内管32の内部を流通する気体Gは、点線矢印で示すように第1電極34の周囲を上向きに流通し、開口32bから気泡となって液中に導入される。このとき、気体Gの流量を適切に設定すれば、液体Lの表面張力の作用により、第1電極34の突出部位34bを包み込むような気泡B1を形成させることが可能である。
 前記したように、突出部位34bの周囲には特に強い電界が形成されるため、気泡B1内で放電によるプラズマが発生する。第1電極34の導体部341は誘電体の表面層342で被覆されているため、このときの放電は誘電体バリア放電である。また、突出部位34bの周囲では軸方向および径方向において略均一な電界が形成される。これらのことから、突出部位34bを取り囲む気泡B1内の広い領域で均一なプラズマを安定的に発生させることが可能である。
 内管32を介してさらに気体Gが供給されることで、気泡B1は突出部位34bから液中に遊離する。遊離した気泡B2中にはプラズマにより生成された高濃度の活性種が包含されている。これが液中に溶け込むことにより、液体Lは活性種を含むものとなる。活性種を含んだ液体Lが配管53を介して貯留槽2に還流されることで、貯留槽2内の液体における活性種の濃度が上昇する。配管系5により液体が循環されることで、液中の活性種の濃度をさらに高めることができる。
 第1電極34および第2電極36の導体部はいずれも液体Lに接していない。これにより、発生する放電のモードを誘電体バリア放電とすることができ、広い領域で安定したプラズマを発生させることが可能となる。また、導体部がプラズマに曝されることにより導体材料が液体に溶出することも防止される。このように、本実施形態の液体処理装置1は、活性種を豊富に含み不純物の混入のない液体を処理液として生成することが可能である。
 図7はプラズマ発生部によりプラズマを発生させたときの写真を示す図である。写真において上下方向に延びる明るい部分が筐体31であり、その中央部に現れた暗い部分が第2電極36である。筐体31内部のうち第2電極36で囲まれた部分が特に明るく光っており、この部分で高濃度のプラズマが発生していることがわかる。
 次に、筐体31を厚肉部31a,31cと薄肉部31bとを接続した構成とした理由について説明する。まず、筐体31全体の強度および製造の容易さを考えれば、全体が厚さ一定の厚肉の管で構成されることが望ましい。特に、外部の配管53が接続される部分である上端部と、液体導入管31dが接合される部分については十分な厚さが必要である。一方、第1電極34の突出部位34bの周囲で高い電界強度を得るという観点からは、誘電体である管壁の石英ガラスはできるだけ薄い方がよい。そこで、この実施形態の筐体31では、両端を厚肉部31a,31cとして、プラズマ発生場を生起させる中央部分を薄肉部31bとすることにより、上記要求を満たしている。
 電極間に介在する誘電体の層を薄くするという要求は、第1電極34についても同様である。すなわち、第1電極34のうち誘電体製の表面層342については、機械的強度が損なわれない程度においてできるだけ薄い方が好ましい。
 このことは、気体Gがプラズマを発生しにくいガス種である場合に特に重要である。本願発明者は、液体Lとして水(純水)を、筐体31として外径10mm程度の石英管を使用して各種の実験を行った。その結果によれば、管壁が1mmのときには、気体Gがアルゴンであれば比較的簡単にプラズマが発生したが、気体Gとして空気を用いた場合にはプラズマが発生しなかった。空気を用いた場合、管壁を0.5mm以下にしないとプラズマは発生しなかった。第1電極34の表面層342についても同じような傾向がある。そこで、筐体31の薄肉部31bにおける管壁の厚さを0.4mm、第1電極31の表面層342の厚さを0.3mmとした。このようにすると、気体Gとして空気を用いた場合でも、高濃度のプラズマを安定して発生させることができた。
 殺菌や植物の成長促進等、活性種を含んだ処理液が大気中で利用される形態においては、プラズマ発生のための気体として空気(大気)を使用可能であることは大きなメリットを有している。すなわち、装置の作動環境に存在する事実上無尽蔵の大気を用いて処理液を生成することができるので、特別な気体供給源を必要としない。液体処理装置1の気体供給源81としては、例えば周辺の大気を取り込んで加圧し送出するコンプレッサーがあればよいこととなる。このことは、装置構成を簡素にして装置の小型化を図る上で有利であり、もちろん処理コストも低減することができる。
 気体Gとしてヘリウムやアルゴンなど、比較的プラズマが発生しやすいガス種を用いる場合であっても、管壁の薄肉化の効果は大きい。すなわち、管壁の薄肉化により電界強度が高くなることでプラズマ密度が上昇する。このため、導入される気体の利用効率が高くなり、同じ気体使用量であればより多くの活性種を発生させることができる。その結果、殺菌等の効果の高い処理液を生成することができる。また、同じプラズマ密度を得るために必要な気体使用量を抑えることができるので、処理コストの低減を図ることができる。また、必要な濃度の活性種を含む処理液を生成するのに要する時間や消費エネルギーを削減することが可能となる。
 図8はプラズマ活性種の量を比較するための実験結果の一例を示す図である。本願発明者は、インディゴカルミンを添加した水をプラズマ発生部3に注入し、処理時間とともに液色がどのように変化するかを調べる実験を行った。インディゴカルミンは活性種と反応することで脱色するため、液色については吸光度によって評価した。曲線Aは筐体31の管壁の厚さを1mm、第1電極34の表面層342の厚さを0.7mmとした場合の結果である。一方、曲線Bは、筐体31に管壁が0.4mmの薄肉部31bを設け、第1電極34の表面層342の厚さを0.3mmとした場合の結果である。図から明らかなように、管壁を薄くすることによってより短時間で吸光度の低下が進行しており、処理液中により多くの活性種が生成されていることがわかる。
 以上説明したように、上記実施形態においては、プラズマ発生部3が本発明の「液中プラズマ発生装置」として機能している。また、筐体31、第1電極34および第2電極36が、それぞれ本発明の「筐体」、「第1電極」および「第2電極」に相当している。そして、内管32が本発明の「気体供給管」として機能し、交流電源4が本発明の「電圧印加部」として機能している。
 また、筐体31においては、配管51が接続される液体供給管31の開口部が、本発明の「導入口」に相当している。また、配管53が接続される筐体31上端部の開口が、本発明の「送出口」に相当している。また、上記実施形態の液体処理装置1においては、貯留槽2が本発明の「貯留部」として、またポンプ6が本発明の「液体供給部」として機能している。
 なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態の説明では、第1電極34の突出部位34bが気泡B1によって完全に包まれる場合を想定しているが、これに限定されない。例えば突出部位34bの周囲を取り囲むように多くの細かい気泡が発生するような条件であってもよい。高い電界が形成される突出部位34bの周囲に多くの気泡が存在することにより、各気泡内でのプラズマ発生確率を高くして効率よくプラズマを発生させることが可能である。
 また、上記実施形態では、筐体31の薄肉部31bの外周面を環状に覆う第2電極36が設けられているが、第2電極としては上記以外に、例えば次のような構造とすることも可能である。
 図9Aおよび図9Bは第2電極の変形例を示す図である。図9Aに示す第2電極37は、周方向において複数に分割された電極片371により構成されている。このような構造によっても、第1電極34の突出部位34bの周囲に、周方向において略均一な電界を生じさせることが可能である。
 また、図9Bに示す第2電極38は、導体部381を誘電体(例えば石英ガラス)の表面層382で被覆した構造となっており、筐体31内の内部空間SPに配置されている。このような構造によっても、突出部位34bの周囲に周方向に略均一な電界を生じさせることが可能である。また、筐体外に第2電極を設ける場合に比べ、電極間距離を小さくすることができるので、電界強度を高め、あるいは印加電圧を低くすることが可能となる。この他、例えば第2電極が筐体に埋め込まれた構造であってもよい。
 また、上記実施形態における筐体31および第1電極34の表面層342は石英ガラス製であるが、これは誘電体の一例として使用したものである。使用される液体やプラズマに対する耐性があり、また液体に不純物を溶出させることがないものであれば、これ以外の誘電体材料であっても構わない。例えば、実用上は管壁が透明であることは必須ではなく、不透明な材料も使用可能である。
 また、筐体31の厚肉部と薄肉部とが異なる材料であってもよい。また管全体を薄肉として他の機械的手段で補強した構造であってもよい。また、第1電極の突出部位の周囲でプラズマを発生させるのに十分な電界強度が得られる限り、管壁の全体が肉厚のものであってもよい。
 また、上記実施形態の第1電極34においては、筐体31内の導体部341はその全体が表面層342により被覆されている。しかしながら、第2電極36との距離が放電を生じない程度に離れており、かつ内管32内で液体に触れるおそれのない部分については、必ずしも被覆を必要としない。
 また、上記実施形態では、筐体31、内管32および第1電極34が互いに同軸に配置されているが、これらは厳密に同軸構造である必要はない。すなわち、内管32を流通する気体が第1電極34の周囲を包むようにして液体中に導入されれば足りる。このためには、例えば平面視において、第1電極34の突出部位34bが内管32の開口32bの内部に含まれていればよい。この限りにおいて、内管32と第1電極34とは必ずしも同軸でなくてもよい。すなわち、第1電極34が厳密に内管32の中心に配置されている必要はない。また、筐体31および内管32についても、両者間の空間を液体がスムーズに流通する限りにおいて、これらは必ずしも同軸でなくてもよい。また、これらの配管の断面形状が円形または互いに相似な形状である必要は必ずしもなく、適宜改変可能である。
 また、上記実施形態では、筐体31への内管32の取り付けおよび内管32への第1電極34の取り付けに際して弾性材料によるシール栓が使用されている。このため、プラズマ発生部3の分解が容易である。しかしながら、これに代えて、部材間が例えば接着や溶接によって恒久的に固着されていてもよい。
 また、上記実施形態のプラズマ発生部3は、筐体31が液体を流通させる配管の一部としての機能も有するものである。しかしながら、本発明における「筐体」は、このような構成に限定されず、例えば内部空間に液体を貯留する容器としての機能を有するものであってもよい。
 また、上記実施形態では、プラズマ発生部3が略鉛直方向の管軸AXを有する管状を有しているが、これに限定されない。例えば、図2の構造を有するプラズマ発生部3を管軸AXが水平になるように配置した場合でも、良好にプラズマを発生させることができる。プラズマ発生部中の液体および気体が圧送されている場合、内管の開口から吐出された気体が形成する気泡は、主としてその吐出方向および周囲の液体の圧送方向に沿った方向に延びる。したがって、気泡の延びる方向と第1電極の突出部位の延設方向とが概ね同じであれば上記と同様の効果が得られる。
 上記実施形態は、内管32の延設方向が上下方向であり、その上端32aに設けられた上向きの開口32bが気体を吐出し、さらに第1電極34が開口32bから上向きに突出した構造を有している。このため、突出部位34bの延設方向が、液体Lおよび気体Gの流通方向のみならず液体L中で気体Gに作用する浮力の方向とも一致することとなる。したがって、気泡が突出部位34bの周囲を取り囲むように発生する確率をより高めることができる。これにより、液中でのプラズマ発生領域を広くして、より効率の良いプラズマ発生が可能となっている。
 また、上記実施形態は、本発明に係る「液中プラズマ発生装置」であるプラズマ発生部3が、循環する液体の流路上に設けられた「液体処理装置」である。しかしながら、本発明の液中プラズマ発生装置は、それ自身が液中に活性種を溶け込ませて処理液を生成する機能を有するものであり、その適用範囲はこのような循環経路を有するものに限定されるものではない。例えば、プラズマ発生部3の上部から出力される処理済みの液体が直接外部に取り出されて処理液として使用に供される態様でもよい。また、使用される液体および気体についても上記に限定されず任意である。
 以上、具体的な実施形態を例示して説明してきたように、本発明に係る液中プラズマ発生装置は、開口が上向きに開口し、突出部位が開口から上向きに突出し、第2電極の導体部が突出部位を側方から取り囲む構成であってよい。このような構成によれば、開口から吐出された気体が液体中で上向きに流れる。そのため、上向きに延びる突出部位の周囲に多くの気体を通過させてプラズマ発生の確率を高くすることができる。
 また例えば、平面視において突出部位が開口の内部にあり、第2電極が開口の周囲を取り囲む構成であってよい。また、側面視において、突出部位と第2電極とが少なくとも一部で互いに重なる構造であってよい。このような構成によれば、開口から吐出される気体の多くが、プラズマ発生場が周囲に形成される突出部位の周囲を通過して液中に導入されることとなる。そのため、プラズマ発生効率を高めることができる。
 また、第1電極は、気体供給管の管軸に沿って延設された棒状体であり、該棒状体の側面と気体供給管の内側面との間の空間が気体の流路となった構成であってよい。このような構成によれば、断面が環状の流路を通って気体がスムーズに流れ、第1電極はこの流路に取り囲まれた構造となる。そのため、突出部位の周囲に安定的に気泡を形成することができる。
 また、筐体は誘電体により形成された筒状体を有し、気体供給管が筒状体の内部で筒状体と同軸に設けられて、筒状体の内側面と気体供給管との間の空間に液体が保持される構成であってよい。このような構成によれば、気体供給管から供給される気体が全て周囲の液体に触れることとなる。これにより、気体中でのプラズマ発生により生成される活性種を効率よく液体中に溶け込ませることができる。
 また、筐体は誘電体により形成された筒状体を有し、第2電極は筒状体の外周面に設けられた構成であってよい。このような構成によれば、筐体の壁面によって第2電極を筐体内の液体から隔離することができる。その結果、第2電極が液体に接することを回避することができる。
 また、第2電極の導体部は、筒状体の外周面を取り巻く環状の導体であってよい。このような構成によれば、第1電極の周囲に、平面視において周方向に略均一な電界を発生させることができる。その結果、第1電極の周囲で均一なプラズマを発生させることができる。
 また、第1電極、気体供給管、筒状体および第2電極は、鉛直軸に対し同軸に設けられた構成であってよい。このような構成によれば、第1電極と気体供給管との間の気体の流路および気体供給管と筒状体との間の液体の流路が鉛直方向において一定の断面形状を有することとなる。したがって、気体および液体をそれぞれの流路においてスムーズに流通させることが可能となる。これにより第1電極の突出部位の周囲における液体および気体の流れが安定し、この領域におけるプラズマ発生を安定化させることができる。また、第1電極と第2電極とが同軸配置されることで、第1電極の周囲に形成される電界を均一にすることができる。
 また、筐体に、突出部位よりも下方で内部空間に液体を導入する導入口と、突出部位よりも上方で液体を外部へ送出する送出口とが設けられた構成であってよい。このような構成によれば、筐体内で液体は上向きに流れ、プラズマ活性種を含んで液中を上昇する気泡と液体とが長い時間接することとなる。そのため、活性種を効率よく液中に取り込むことができる。
 また、本発明に係る液体処理装置においては、例えば、液体供給部は、貯留部に貯留された液体を導入口に供給する構成であってよい。このような構成によれば、液中プラズマ発生装置を通過する液体が循環することで、液中の活性種の濃度を高めることが可能となる。
 以上、特定の実施例に沿って発明を説明したが、この説明は限定的な意味で解釈されることを意図したものではない。発明の説明を参照すれば、本発明のその他の実施形態と同様に、開示された実施形態の様々な変形例が、この技術に精通した者に明らかとなるであろう。故に、添付の特許請求の範囲は、発明の真の範囲を逸脱しない範囲内で、当該変形例または実施形態を含むものと考えられる。
 この発明は、液中プラズマ発生技術ならびに当該技術を用いて活性種を含有する処理液を生成する技術全般に適用することができる。
 1 液体処理装置
 2 貯留槽(貯留部)
 3 プラズマ発生部(液中プラズマ発生装置)
 4 交流電源(電圧印加部)
 6 ポンプ(液体供給部)
 31 筐体
 32 内管(気体供給管)
 32b 開口
 34 第1電極
 34b 突出部位
 36 第2電極
 341 導体部
 342 表面層
 G 気体
 L 液体

Claims (12)

  1.  内部空間に液体を保持する筐体と、
     前記内部空間内に開口を有し該開口から前記液体中に気体を吐出する気体供給管と、
     前記気体供給管内から前記開口を介して前記内部空間に突出し、該突出部位は導体部が誘電体により被覆された構造を有する第1電極と、
     前記第1電極の前記突出部位を取り囲んで設けられ、誘電体によって前記液体から隔離された導体部を有する第2電極と、
     前記第1電極と前記第2電極との間に電圧を印加する電圧印加部と
    を備え、
     前記突出部位と前記第2電極との間の空間が、前記開口から吐出された前記気体が流通する流路である液中プラズマ発生装置。
  2.  前記開口が上向きに開口し、前記突出部位が前記開口から上向きに突出し、前記第2電極の前記導体部が前記突出部位を側方から取り囲む請求項1に記載の液中プラズマ発生装置。
  3.  平面視において、前記突出部位が前記開口の内部にあり、前記第2電極が前記開口の周囲を取り囲んでいる請求項2に記載の液中プラズマ発生装置。
  4.  側面視において、前記突出部位と前記第2電極とが少なくとも一部で互いに重なる請求項1ないし3のいずれかに記載の液中プラズマ発生装置。
  5.  前記第1電極は、前記気体供給管の管軸に沿って延設された棒状体であり、該棒状体の側面と前記気体供給管の内側面との間の空間が前記気体の流路となっている請求項1ないし4のいずれかに記載の液中プラズマ発生装置。
  6.  前記筐体は誘電体により形成された筒状体を有し、前記気体供給管が前記筒状体の内部で前記筒状体と同軸に設けられて、前記筒状体の内側面と前記気体供給管との間の空間に前記液体が保持される請求項1ないし5のいずれかに記載の液中プラズマ発生装置。
  7.  前記筐体は誘電体により形成された筒状体を有し、前記第2電極は前記筒状体の外周面に設けられた請求項1ないし5のいずれかに記載の液中プラズマ発生装置。
  8.  前記第2電極の前記導体部は、前記筒状体の外周面を取り巻く環状の導体である請求項6または7に記載の液中プラズマ発生装置。
  9.  前記第1電極、前記気体供給管、前記筒状体および前記第2電極が鉛直軸に対し同軸に設けられた請求項1ないし8のいずれかに記載の液中プラズマ発生装置。
  10.  前記筐体には、前記突出部位よりも下方で前記内部空間に前記液体を導入する導入口と、前記突出部位よりも上方で前記液体を外部へ送出する送出口とが設けられている請求項1ないし9のいずれかに記載の液中プラズマ発生装置。
  11.  活性種を含有する処理液を生成する液体処理装置であって、
     請求項10に記載の液中プラズマ発生装置と、
     前記導入口に前記液体を供給する液体供給部と、
     前記送出口から送出される前記液体を前記処理液として貯留する貯留部と
    を備える液体処理装置。
  12.  前記液体供給部は、前記貯留部に貯留された前記液体を前記導入口に供給する請求項11に記載の液体処理装置。
PCT/JP2018/019694 2017-05-31 2018-05-22 液中プラズマ発生装置および液体処理装置 WO2018221325A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880036677.7A CN110692285B (zh) 2017-05-31 2018-05-22 液体中等离子体发生装置和液体处理装置
KR1020197033718A KR102296007B1 (ko) 2017-05-31 2018-05-22 액 중 플라즈마 발생 장치 및 액체 처리 장치
US16/617,455 US11267729B2 (en) 2017-05-31 2018-05-22 In-liquid plasma generation device and liquid treatment apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017108021 2017-05-31
JP2017-108021 2017-05-31
JP2018-097043 2018-05-21
JP2018097043A JP6949775B2 (ja) 2017-05-31 2018-05-21 液中プラズマ発生装置および液体処理装置

Publications (1)

Publication Number Publication Date
WO2018221325A1 true WO2018221325A1 (ja) 2018-12-06

Family

ID=64454593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019694 WO2018221325A1 (ja) 2017-05-31 2018-05-22 液中プラズマ発生装置および液体処理装置

Country Status (2)

Country Link
US (1) US11267729B2 (ja)
WO (1) WO2018221325A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110572923A (zh) * 2019-07-19 2019-12-13 中国石油大学(华东) 一种用于液体改性的可循环同轴式dbd等离子体反应器
JP2021036494A (ja) * 2019-08-30 2021-03-04 公立大学法人大阪 液中プラズマ装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102619877B1 (ko) * 2019-09-11 2024-01-03 삼성전자주식회사 기판 처리 장치
US11492274B2 (en) * 2020-05-28 2022-11-08 National Chiao Tung University Liquid treatment apparatus
US11535532B1 (en) * 2020-07-17 2022-12-27 Dmitry Medvedev System and method of water purification and hydrogen peroxide generation by plasma
US20210130246A1 (en) * 2021-01-14 2021-05-06 Burak Karadag Method And Apparatus For Producing Liquid Nitrogen Fertilizer And Plasma Activated Water
WO2023149845A1 (en) * 2022-02-01 2023-08-10 Chiang Mai University Plasma activated water machine for decontamination of chemical residues and microorganisms in vegetables and fruits
CN117865274B (zh) * 2024-03-07 2024-06-21 中科华鹿(合肥)环保科技有限公司 一种基于等离子体的可分解抗生素的污水处理管道

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266889A (ja) * 1995-03-31 1996-10-15 Shinko Pantec Co Ltd 放電化学反応器
JP2000228298A (ja) * 1999-02-05 2000-08-15 Nomura Yosuke 非平衡プラズマ発生装置
US20040050682A1 (en) * 2000-12-27 2004-03-18 George Paskalov Activated water apparatus and methods and products
JP2008178870A (ja) * 2006-12-28 2008-08-07 Sharp Corp プラズマ発生装置、ラジカル生成方法および洗浄浄化装置
JP2012011301A (ja) * 2010-06-30 2012-01-19 Nagoya Univ 水処理方法および水処理装置
JP2015116561A (ja) * 2013-11-18 2015-06-25 パナソニックIpマネジメント株式会社 液体処理装置及び液体処理方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5295485B2 (ja) 2006-02-01 2013-09-18 株式会社栗田製作所 液中プラズマ型被処理液浄化方法及び液中プラズマ型被処理液浄化装置
WO2011099247A1 (ja) 2010-02-10 2011-08-18 国立大学法人愛媛大学 液中プラズマ用電極、液中プラズマ発生装置およびプラズマ発生方法
KR20110109111A (ko) 2010-03-30 2011-10-06 경남과학기술대학교 산학협력단 플라즈마 건을 이용한 수처리 장치 및 방법
JP2013206767A (ja) 2012-03-29 2013-10-07 Asahi Organic Chemicals Industry Co Ltd プラズマ生成方法及び装置
WO2014002364A1 (ja) 2012-06-28 2014-01-03 パナソニック株式会社 液体中の元素分析装置
CN103030829A (zh) 2012-12-25 2013-04-10 中国人民解放军空军工程大学 一种低温等离子体橡胶抗老化处理方法
CN103269559B (zh) 2013-05-03 2016-04-20 大连海事大学 一种增强型微波液相放电等离子体发生装置
JP5899455B2 (ja) 2013-10-25 2016-04-06 パナソニックIpマネジメント株式会社 液体処理装置及び液体処理方法
CN103848484B (zh) 2014-03-07 2016-08-31 南京大学 一种低温等离子体协同钼酸铋催化剂降解抗生素废水的装置及方法
CN105271475A (zh) 2014-06-06 2016-01-27 松下知识产权经营株式会社 处理液生成装置及处理液生成方法
CN104211137B (zh) 2014-08-12 2017-02-08 西安交通大学 一种等离子体水处理装置
KR101716392B1 (ko) 2015-04-24 2017-03-14 한국기계연구원 플라즈마 분광 분석 장치 및 플라즈마 분광 분석 방법
KR101698957B1 (ko) 2015-04-24 2017-01-23 한국기계연구원 플라즈마 발생 장치 및 플라즈마 처리 방법
CN104941401A (zh) 2015-06-10 2015-09-30 清华大学 双介质阻挡放电低温等离子体处理装置
CN106277275A (zh) 2016-08-25 2017-01-04 李文汇 一种降解水中阿奇霉素的方法及装置
CN106629980B (zh) 2016-12-02 2019-05-24 大连民族大学 一种大气压等离子活化水处理水藻的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266889A (ja) * 1995-03-31 1996-10-15 Shinko Pantec Co Ltd 放電化学反応器
JP2000228298A (ja) * 1999-02-05 2000-08-15 Nomura Yosuke 非平衡プラズマ発生装置
US20040050682A1 (en) * 2000-12-27 2004-03-18 George Paskalov Activated water apparatus and methods and products
JP2008178870A (ja) * 2006-12-28 2008-08-07 Sharp Corp プラズマ発生装置、ラジカル生成方法および洗浄浄化装置
JP2012011301A (ja) * 2010-06-30 2012-01-19 Nagoya Univ 水処理方法および水処理装置
JP2015116561A (ja) * 2013-11-18 2015-06-25 パナソニックIpマネジメント株式会社 液体処理装置及び液体処理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110572923A (zh) * 2019-07-19 2019-12-13 中国石油大学(华东) 一种用于液体改性的可循环同轴式dbd等离子体反应器
JP2021036494A (ja) * 2019-08-30 2021-03-04 公立大学法人大阪 液中プラズマ装置
JP7312400B2 (ja) 2019-08-30 2023-07-21 公立大学法人大阪 液中プラズマ装置

Also Published As

Publication number Publication date
US20200407247A1 (en) 2020-12-31
US11267729B2 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
WO2018221325A1 (ja) 液中プラズマ発生装置および液体処理装置
JP6949775B2 (ja) 液中プラズマ発生装置および液体処理装置
JP5944538B2 (ja) 携帯型水素水製造装置
KR101795735B1 (ko) 수소발생장치
US20130334955A1 (en) Plasma generator and cleaning/purification apparatus using same
JP3225167U (ja) 水素水供給機能を備える携帯式飲料水用カップ
KR101728010B1 (ko) 초음파 수소수 미스트 발생장치
EP1900693A4 (en) BALLAST WATER TREATMENT DEVICE
JP6697333B2 (ja) 電解水素水生成方法及び電解水素水生成装置
US10343132B2 (en) Plasma emitting method and plasma emitting device
JP4590528B2 (ja) グロープラズマ発生装置及びグロープラズマ発生方法
JP2007222778A (ja) 放電生成ガス溶解装置
KR20130053205A (ko) 플라즈마를 이용한 수처리장치
EP3978109B1 (en) Gas solution supply device
WO2009078361A1 (ja) プラズマ滅菌装置
KR20180065616A (ko) 수소미스트 분사장치
JP2012164558A (ja) プラズマ発生装置、当該プラズマ発生装置を用いた洗浄浄化装置および小型電器機器
WO2013065355A1 (ja) オゾン液生成器及びオゾン液生成方法
EP3684731B1 (en) Plasma generator
JP6829564B2 (ja) 液中プラズマ発生装置、液中プラズマ発生方法、処理液精製装置および処理液精製方法
US20130140471A1 (en) Enhanced Output Mercury-Free UVC Lamp System
CN215924661U (zh) 一种脱卤装置
JP5879530B2 (ja) 液体処理装置
JP2003342771A (ja) 高圧型水素酸素発生装置
CN215506377U (zh) 用于消毒的臭氧气泡发生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809942

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197033718

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809942

Country of ref document: EP

Kind code of ref document: A1