WO2018220900A1 - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
WO2018220900A1
WO2018220900A1 PCT/JP2018/003728 JP2018003728W WO2018220900A1 WO 2018220900 A1 WO2018220900 A1 WO 2018220900A1 JP 2018003728 W JP2018003728 W JP 2018003728W WO 2018220900 A1 WO2018220900 A1 WO 2018220900A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
switch
stage
side terminal
power
Prior art date
Application number
PCT/JP2018/003728
Other languages
English (en)
French (fr)
Inventor
浩毅 石原
敏裕 和田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201880028731.3A priority Critical patent/CN110651409B/zh
Priority to JP2019521952A priority patent/JP6698944B2/ja
Priority to DE112018002809.7T priority patent/DE112018002809T5/de
Priority to US16/499,644 priority patent/US11146080B2/en
Publication of WO2018220900A1 publication Critical patent/WO2018220900A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0074Plural converter units whose inputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a power supply device including a plurality of power storage devices connected in series.
  • power supply devices including a module configuration that connects a plurality of secondary batteries in series are widely known.
  • the voltage of the module can be increased, and the power to be charged or discharged can be increased.
  • the secondary battery with the maximum or minimum voltage will exceed the upper and lower limit voltages. Do not charge or discharge. In other words, even when other secondary batteries have room for charging and discharging, no more power can be input / output.
  • the secondary battery voltage is equalized by using a converter that enables active power input / output to / from the secondary battery and a circuit that selects which secondary battery to input / output power.
  • the number of passive components such as coils, capacitors, and transformers is not proportional to the number of secondary batteries, so it can be configured relatively small, and can selectively charge and discharge secondary batteries. Can be equalized.
  • the circuit for selecting the secondary battery requires a switch such as a relay that can obtain complete insulation when not conducting. Since such a two-way switch capable of insulating in two directions, the forward direction and the reverse direction, is large in size, increasing the size of the circuit is a problem. In addition, even if a relatively small switch such as a MOSFET is substituted, only one direction of insulation can be obtained due to the characteristics of the accompanying body diode. The number of points is twice as large as the above, and the problem is that the circuit is complicated and the circuit is enlarged.
  • the power conversion mechanism necessary for active power transfer between the power storage device and the power storage mechanism and the mechanism for selecting the power storage device that performs active power transfer are provided separately.
  • the number of switches is still large, which is contrary to the simplification of the circuit and the reduction in size and weight.
  • the present invention has been made to solve the above-described problems, and is compact and reduces the number of switches, thereby preventing the circuit from becoming complicated and the circuit from becoming larger, while ensuring equalization of the voltages of the respective units. It is an object of the present invention to provide a power supply device that can be configured.
  • a power supply apparatus includes a unit including one or more power storage devices, a step-down switch having a drain-side terminal connected to the positive electrode of the unit, and a drain-side terminal connected to a source-side terminal of the step-down switch.
  • N (n is an integer greater than or equal to 2) component stages configured with a boost switch, a power storage mechanism capable of storing electric energy and inputting and outputting power, a reactor connected in series to the power storage mechanism, and
  • a control operation unit that switches between conduction and non-conduction of the step-down switch and the step-up switch, and the positive electrode of the m-th stage (m is an integer satisfying 2 ⁇ m ⁇ n) among the constituent stages is
  • the drain-side terminal of the boost switch included in the m-th component stage is connected to the negative electrode of the unit of the m-1-th component stage, and the boost switch included in the m-1-th component stage
  • the source side terminal of the boosting switch included in the nth constituent stage is connected to the negative terminal of the unit included in the nth constituent stage and connected in series to the n boosting terminals
  • the switch is connected in parallel to the series circuit of the power storage mechanism and the reactor.
  • the power supply apparatus includes a unit including one or more power storage devices, a step-down switch having a source-side terminal connected to the negative electrode of the unit, and a source-side terminal connected to a drain-side terminal of the step-down switch.
  • N (n is an integer greater than or equal to 2) constituent stages, a power storage mechanism capable of storing electric energy and allowing input and output of power, and a reactor connected in series to the power storage mechanism , And a control operation unit that switches between conduction and non-conduction of the step-down switch and the step-up switch, and the unit of the component stage of the m-th stage (m is an integer satisfying 2 ⁇ m ⁇ n) among the constituent stages
  • the positive electrode is connected to the negative electrode of the unit of the (m ⁇ 1) th constituent stage, and the drain side terminal of the boosting switch included in the mth constituent stage is the booster included in the (m ⁇ 1) th constituent stage.
  • the drain side terminal of the boosting switch included in the first stage is connected to the positive electrode of the unit included in the first stage, and is connected in series to n pieces
  • the boosting switch is connected in parallel to a series circuit of a power storage mechanism and a reactor.
  • a plurality of units each composed of one or more power storage devices are mounted, and power is sent from one or more units to the power storage mechanism among the plurality of units, or one or more units from the power storage mechanism. It can be operated to send power to other units.
  • the voltage of each unit can be equalized by appropriately selecting a unit that exchanges power with the power storage mechanism and performing charging and discharging operations.
  • the power conversion circuit included in the power supply device has a function of performing active power transfer between the power storage mechanism and one or more units among the plurality of units, and a function of selecting a unit that performs power transfer. By reducing the number of switches required for the circuit, it is possible to prevent the circuit from becoming complicated and to reduce the size of the circuit.
  • FIG. 1 It is a figure showing the direction of the electric current at the time of the conduction
  • the power supply device according to Embodiment 1 of the present invention it is a diagram showing a relationship between a charging unit and a discharging unit, and an on / off state of a switch. It is a figure which shows the implementation procedure performed when the difference with the average voltage of each unit is larger than a reference value in the power supply device which concerns on Embodiment 1 of this invention. It is the figure which showed the flowchart of operation
  • FIG. 1 is a diagram showing the configuration of a power supply apparatus and electrical equipment according to Embodiment 1 of the present invention, and power supply apparatus 100 is preferably connected to electrical equipment 180 as shown in FIG.
  • the electric device 180 includes at least one of a power consumption function and a power generation function. When the electrical device 180 exhibits the power consumption function, power is sent from the power supply device 100, and when the electrical device 180 exhibits the power generation function, power is sent to the power supply device 100. Note that there may be a plurality of power supply devices 100 connected to the electrical device 180.
  • power supply device 100 includes power storage mechanism 101, reactor 102, module 110, first switch group 120 including switches 301, 302, and 303, and switches 311 and 312. 313, a voltage switch 351, 352, 353, and a control operation unit 111.
  • the switches 301 to 303 in the first switch group 120 are used as boosting switches for charging the power storage mechanism 101 to the module 110, and the switches 311 to 313 in the second switch group 130 are used from the module 110 to the power storage mechanism 101. Used as a step-down switch that discharges to
  • the module 110 includes a plurality of units 201, 202, and 203.
  • each unit may be a single power storage device or a combination of a plurality of power storage devices.
  • the power storage device may be a device having a power storage function such as a capacitor or an electric double layer capacitor as well as a secondary battery.
  • the switches 301, 302, 303, 311, 312, 313 are preferably MOSFETs.
  • the switches 301 to 303 and 311 to 313 may have body diodes, or may be a combination of a switching element not having a body diode and a diode.
  • switches 301, 302, 303, 311, 312, and 313 in this example have a source side terminal in the forward direction of the diode and a drain side terminal in the output side.
  • a terminal for switching a conductive state and a non-conductive state of a switch by inputting a signal is a gate terminal.
  • the drain side terminal of the switch 301 and the source side terminal of the switch 311 are connected, the drain side terminal of the switch 311 is connected to the positive electrode of the unit 201, and the voltage measuring device 351 is connected in parallel with the unit 201. This is the configuration stage for one unit.
  • the unit 201, the switches 301 and 311 and the voltage measuring device 351 are set as the first stage of the constituent stages.
  • the second stage of the configuration stage is composed of the unit 202, the switches 302 and 312 and the voltage measuring device 352.
  • the drain side terminal of the switch 302 and the source side terminal of the switch 312 are connected.
  • the drain side terminal is connected to the positive electrode of the unit 202, and a voltage measuring device 352 is connected in parallel with the unit 202.
  • the negative electrode of the unit 201 and the positive electrode of the unit 202 are connected in series, and the source side terminal of the switch 301 and the drain side terminal of the switch 302 are connected.
  • the third stage of the configuration stage is composed of the unit 203, the switches 303 and 313, and the voltage measuring device 353.
  • the drain side terminal of the switch 303 and the source side terminal of the switch 313 are connected, and the drain side terminal of the switch 313 is connected.
  • the negative electrode of the unit 202 and the positive electrode of the unit 203 are connected in series, and the source side terminal of the switch 302 and the drain side terminal of the switch 303 are connected.
  • the negative electrode of the unit 203 and the source side terminal of the switch 303 are connected, and the power storage mechanism 101 and the reactor 102 connected in series are connected in parallel with the switches 301 to 303 connected in series. That is, the drain side terminal of the switch 301 is connected to one end of the reactor 102, and the source side terminal of the switch 303 is connected to one end of the power storage mechanism 101.
  • the units 201, 202, and 203 are connected in series, and both terminals of the positive electrode of the unit 201 and the negative electrode of the unit 203 are connected to the electric device 180.
  • the voltage information detected by the voltage measuring devices 351, 352, and 353 is sent to the control operation unit 111, and the control operation unit 111 sends signals to the gate side terminals of the switches 301, 311, 302, 312, 303, and 313, respectively. Switch between conductive and non-conductive states.
  • the power storage mechanism 101 is a capacitor or a secondary battery.
  • the switch 313 is switched between conductive and non-conductive states.
  • the switch 313 is in a conductive state, power is sent from the unit 203 to the power storage mechanism 101 via the diodes of the switch 313, the switch 302 and the switch 301, and the reactor 102 as indicated by the broken arrow, whereby the unit 203 is discharged.
  • the switch 313 When the switch 313 is non-conductive, the unit 203 is electrically insulated and the unit 203 does not send power to the power storage mechanism 101. By repeatedly switching between conduction and non-conduction states of the switch 313, the unit 203 is gradually discharged, and the voltage of the unit 203 is lowered.
  • the switches 301 to 303, 311 and 313 are all turned off. By doing so, the unit 201 is electrically insulated from the power storage mechanism 101 and does not perform power transfer with the power storage mechanism 101. Further, the switch 312 is switched between conductive and non-conductive states. When the switch 312 is in a conductive state, power is sent from the units 202 and 203 to the power storage mechanism 101 via the switch 312 and the diode portion of the switch 301 and the reactor 102 as indicated by broken line arrows, whereby the units 202 and 203 are discharged.
  • the units 202 and 203 do not send power to the power storage mechanism 101.
  • the units 202 and 203 are gradually discharged, and the voltage of the units 202 and 203 is lowered.
  • the switches 301 to 303, 312, and 313 are all turned off. Further, the switch 311 is switched between conductive and non-conductive states. When the switch 311 is in a conductive state, power is sent from the units 201, 202, and 203 to the power storage mechanism 101 via the switch 311 and the reactor 102 as indicated by broken line arrows, whereby the units 201, 202, and 203 are discharged.
  • the units 201, 202, and 203 do not send power to the power storage mechanism 101.
  • the units 201, 202, 203 are gradually discharged, and the voltage of the units 201, 202, 203 is lowered.
  • the switch 301 and 302 are turned on and the switches 311, 312 and 313 are turned off.
  • the units 201 and 202 are electrically insulated from the power storage mechanism 101 and do not perform power transfer with the power storage mechanism 101.
  • the switch 303 is switched between conductive and non-conductive states.
  • FIG. 6A the direction of current flow when the switch 303 is in a conductive state is indicated by a broken line arrow. A current flows from the power storage mechanism 101 via the reactor 102, and the current is amplified as the conduction time of the switch 303 is longer.
  • FIG. 6A the direction of current flow when the switch 303 is in a conductive state
  • the direction of current flow when the switch 303 is in a non-conductive state is indicated by a broken line arrow.
  • the amplified current passes through the diode portion of switch 313 and flows to unit 203.
  • the unit 203 is charged and the voltage of the unit 203 is increased.
  • the switches 301 and 303 are turned on and the switches 311, 312 and 313 are turned off.
  • the unit 201 is electrically insulated from the power storage mechanism 101 and does not perform power transfer with the power storage mechanism 101.
  • the switch 302 is switched between conductive and non-conductive states.
  • FIG. 7A the direction of current flow when the switch 302 is in a conductive state is indicated by a broken line arrow. A current flows from the power storage mechanism 101 via the reactor 102, and the current is amplified as the conduction time of the switch 302 is longer.
  • FIG. 7A the direction of current flow when the switch 302 is in a conductive state is indicated by a broken line arrow.
  • a current flows from the power storage mechanism 101 via the reactor 102, and the current is amplified as the conduction time of the switch 302 is longer.
  • the direction of current flow when the switch 302 is in a non-conductive state is indicated by a broken line arrow.
  • the amplified current passes through the diode portion of switch 312 and flows to units 202 and 203.
  • the units 202 and 203 are charged, and the voltages of the units 202 and 203 are increased.
  • the switches 302 and 303 are turned on and the switches 311, 312, and 313 are turned off. Further, the switch 301 is switched between a conductive state and a non-conductive state.
  • FIG. 8A the direction of current flow when the switch 301 is in a conductive state is indicated by a broken line arrow. A current flows from the power storage mechanism 101 via the reactor 102, and the current is amplified as the conduction time of the switch 301 is longer.
  • FIG. 8A the direction of current flow when the switch 301 is in a conductive state is indicated by a broken line arrow.
  • the direction of current flow when the switch 301 is in a non-conductive state is indicated by a broken line arrow.
  • the amplified current passes through the diode portion of switch 311 and flows to units 201, 202, 203.
  • the units 201, 202, and 203 are charged, and the voltages of the units 201, 202, and 203 are increased.
  • FIG. 9 shows that the switches 301, 302, 303, 311, 312, and 313 for the charging unit and the discharging unit are switched on (ON), non-conductive (OFF), and repeatedly switched between a conductive state and a non-conductive state (ON ⁇ ). It is a figure which shows the relationship of OFF. In the configuration of FIG. 2, the unit 203 is always included when either charging or discharging of the unit is performed. *
  • the voltage of the power storage mechanism 101 needs to be lower than the voltages of the units 201 to 203 to be charged and discharged. Therefore, it is desirable that the power storage mechanism 101 has a voltage that is always lower than the voltage of each unit or that the voltage is lower than the voltage of each unit by discharging.
  • the voltage of the power storage mechanism 101 which is characterized in that the voltage is lower than the voltage of each unit by discharging, is higher than the voltage of one or more units to be charged and discharged, first the units 201, 202, and 203 By charging from 101, the operation of lowering the voltage of power storage mechanism 101 is performed. After the voltage of the power storage mechanism 101 becomes lower than the voltage of one or more units to be charged and discharged, power is transferred.
  • the plurality of units are within the range where the voltage of the power storage mechanism 101 is lower than the voltage of one or more units to be charged or discharged. To the power storage mechanism 101 is added.
  • the voltage measuring devices 351, 352, 353 measure the voltages of the units 201, 202, 203 and send the information to the control operation unit 111.
  • the control operation unit 111 controls the switches 301 to 303 and 311 to 313 so as to reduce the voltage difference when the voltage of a certain unit is somewhat smaller than the average of the voltages of each unit or when it is somewhat larger. If there is a unit whose voltage difference is larger or smaller than the reference value, the unit voltage difference is reduced by the procedure shown in FIG.
  • FIG. 10 is a table showing the procedure in each of the units 201 to 203 when the voltage compared to the average voltage is large and small. In FIG. 10, when there is a second procedure, the first procedure and the second procedure may be interchanged. When the difference between the voltage of each unit and the average voltage of each unit falls below the reference value, the control operation unit 111 determines that the equalization of the voltage of each unit has been achieved, and sets all the switches to the non-conductive state. .
  • step S1 measures the voltage of each unit.
  • Step S2 calculates the average voltage of each unit.
  • Step S3 calculates the difference between the voltage of each unit and the average voltage.
  • step S4 it is determined whether or not there is a unit whose voltage difference in step S3 exceeds the reference value. If there is a unit in which the voltage difference exceeds the reference value in step S4 (YES), the process proceeds to step S5 and the procedure of making the voltage of the corresponding unit appropriate is performed according to FIG. However, it is not always necessary to follow this flowchart, and the order may be changed.
  • the above operation can be realized by the configuration of FIG. 12 instead of the configuration of FIG.
  • the configuration of FIG. 12 is different from the configuration of FIG. 1 of the first embodiment in that the position of the second switch group 130 and the direction of the switches 311 to 313 constituting the second switch group 130 are changed. That is, the source side terminal of the switch 301 and the drain side terminal of the switch 311 are connected, the source side terminal of the switch 311 is connected to the negative electrode of the unit 201, and the voltage measuring device 351 is connected in parallel with the unit 201.
  • This is the configuration stage for one unit. That is, the unit 201, the switches 301 and 311 and the voltage measuring device 351 are the first stage of the constituent stages.
  • the second stage is composed of the unit 202, the switches 302 and 312 and the voltage measuring device 352, and the third stage is composed of the unit 203, the switches 303 and 313 and the voltage measuring device 353. The description is omitted because it is the same as the first stage.
  • FIG. 13 shows the relationship between the charging unit, the discharging unit, the switch conduction state (ON), the non-conduction state (OFF), and the repeated switching between the conduction state and the non-conduction state (ON ⁇ OFF).
  • FIG. 14 shows an execution procedure performed when the difference from the average voltage of each unit is larger than the reference value.
  • the contents of FIGS. 13 and 14 are substantially the same as those of FIGS.
  • a charging state measuring device that measures the charging state of the unit instead of the voltage measuring device, the effect of suppressing the variation in the charging state can be obtained even for a unit in which the voltage change due to the change in the charging state is small. It is done.
  • equalization of the charging state is achieved by replacing “voltage” described in FIGS. 10, 11, and 14 with “charging state”.
  • the power supply apparatus 100 performs the above-described operation, so that when the units 201 to 203 included in the module 110 have variations in voltage or charge state, the variations can be reduced.
  • it is a small circuit in which the number of capacitors in the reactor and unit is not proportional to the number of constituent stages, and it has a smaller and simpler configuration using fewer switches than in the past, and active power between one or more units and the power storage mechanism. Can give and receive.
  • FIG. 15 shows the configuration of a power supply apparatus according to Embodiment 2 of the present invention.
  • the power supply apparatus 150 of Embodiment 2 includes a power storage mechanism 101, a reactor 102, a module 110, and a plurality of switches 301 to 303.
  • a first switch group 120 configured, a second switch group 130 including a plurality of switches 311 to 313, voltage measuring devices 351, 352, 353, a temperature measuring device 701, a control operation unit 151, It consists of
  • the module 110 includes units 201, 202, and 203.
  • the configuration excluding the temperature measuring device 701 is the same as the configuration shown in FIG. 2 of the first embodiment, and the same or corresponding parts are denoted by the same reference numerals and description thereof is omitted. To do. Further, the control operation unit 151 inputs the information of the voltages of the units 201 to 203 detected by the voltage measuring devices 351, 352, and 353 and the temperature information of the module 110 measured by the temperature measuring device 701, and switches 301 to 303. A signal is sent to the gate side terminals 311 to 313 to switch between the conductive state and the non-conductive state.
  • the temperature measuring device 701 measures the temperature of the module 110 and sends the information to the control operation unit 151. If the measured temperature is lower than a preset reference value, discharging from the units 201, 202, 203 to the power storage mechanism 101 and charging from the power storage mechanism 101 to the units 201, 202, 203 are repeated. By doing so, the internal resistance existing in the units 201, 202, 203 generates heat, and the temperature of the units 201, 202, 203 can be raised. If the measured temperature exceeds a preset reference value, the temperature raising function of power supply device 150 of the second embodiment is stopped. After that, an operation to reduce the voltage variation of each unit described in the first embodiment is performed as necessary. Details of the operation will not be described because it is repeated.
  • step S6 the temperature of the module 110 is measured by the temperature measuring device 701.
  • step S7 it is determined whether or not the temperature of the module 110 is equal to or lower than the reference value. carry out.
  • step S7 if the temperature of the module 110 is not below the reference value (NO), the process returns to the start. However, it is not always necessary to follow this flowchart, and the order may be changed.
  • the above operation can be realized by the configuration of FIG. 17 instead of the configuration of FIG.
  • the configuration of FIG. 17 includes a temperature measuring device 701 that measures the temperature of the module 110 in the configuration of FIG. 12 of the first embodiment, and sends temperature information of the module 110 measured by the temperature measuring device 701 to the control operation unit 151.
  • the same or corresponding parts are denoted by the same reference numerals and description thereof is omitted.
  • the unit 201 is always included when either charging or discharging of the unit is performed. Details of the operation will not be described because it is repeated.
  • the effect of suppressing the variation in the charging state can be obtained even for a unit in which the voltage change due to the change in the charging state is small. It is done.
  • equalization of the charging state is achieved by replacing “voltage” shown in FIG. 16 with “charging state”.
  • the power supply apparatus 150 can reduce the variation in the voltage or the charged state in the units 201 to 203 included in the module 110 by performing the operation described above. . Further, even when the temperature of the module 110 is lower than the reference value, the temperature of the module 110 can be increased.
  • FIG. 18 shows a configuration of a power supply device according to Embodiment 3 of the present invention.
  • Power supply device 200 in Embodiment 3 is connected between power storage mechanism 101, reactor 102, and between power storage mechanism 101 and reactor 102.
  • the module 210 includes units 201, 202, and 203 and disconnect switches 321, 322, and 323 connected in series to each unit.
  • each unit 201 to 203 may be one power storage device or a combination of a plurality of power storage devices.
  • the power storage device may be a device having a power storage function such as a capacitor and an electric double layer capacitor as well as a secondary battery.
  • the switch may have a body diode, or may be a combination of a diode and a switching element that does not have a body diode.
  • the switches 301, 302, 303, 311, 312, 313 are MOSFETs.
  • the drain side terminal of the switch 301 and the source side terminal of the switch 311 are connected.
  • the drain side terminal of the switch 311 is connected to the source side terminal of the switch 321.
  • the drain side terminal of the switch 321 is connected to the positive electrode of the unit 201.
  • a voltage measuring device 351 is connected in parallel with 201. This is the configuration stage for one unit. That is, the unit 201, the switches 301, 311, 321 and the voltage measuring device 351 are the first stage of the constituent stage.
  • the second stage of the configuration stage is composed of a unit 202, switches 302, 312, and 322, and a voltage measuring device 352, and similarly to the first stage, the drain side terminal of the switch 302 and the source side terminal of the switch 312 are connected.
  • the drain side terminal of the switch 312 is connected to the source side terminal of the switch 322, the drain side terminal of the switch 322 is connected to the positive electrode of the unit 202, and the voltage measuring device 352 is connected in parallel with the unit 202.
  • the negative electrode of the unit 201 and the source side terminal of the switch 322 are connected, and the source side terminal of the switch 301 and the drain side terminal of the switch 302 are connected.
  • the third stage of the configuration stage is composed of the unit 203, the switches 303, 313, and 323 and the voltage measuring device 353, and the drain side terminal of the switch 303 and the source side terminal of the switch 313 are connected.
  • the drain side terminal is connected to the source side terminal of the switch 323, the drain side terminal of the switch 323 is connected to the positive electrode of the unit 203, and the voltage measuring device 353 is connected in parallel with the unit 203.
  • the negative electrode of the unit 202 and the source side terminal of the switch 323 are connected, and the source side terminal of the switch 302 and the drain side terminal of the switch 303 are connected.
  • the negative electrode of the unit 203 and the source side terminal of the switch 303 are connected, and the power storage mechanism 101, the reactor 102, and the switch 401 connected in series are connected to the drain side terminal of the switch 301 and the source side terminal of the switch 303, respectively.
  • Both terminals on the positive electrode side and the negative electrode side of the module 210 composed of the units 201, 202, 203 and the switches 321, 322, 323 are connected to the electric device 180 of FIG.
  • Information on the voltages detected by the voltage measuring devices 351, 352, and 353 is sent to the control operation unit 112.
  • the control operation unit 112 gates the switches 301, 311, 302, 312, 303, 313, 321, 322, 323, and 401.
  • a signal is sent to the side terminal to switch between the conductive state and the non-conductive state.
  • the number of units 201 to 203 does not have to be three, and the number of constituent stages does not have to be three.
  • the switches 321 to 323 connected in series with the units 201 to 203 may be connected in a reversed order.
  • the power storage mechanism 101 is a capacitor or a secondary battery.
  • control operation unit 112 includes a function for determining whether the units 201 to 203 are operating normally or not. When one or more units included in the module 210 are significantly deteriorated, the use range of the defective unit is narrowed and the assumed use of the module 210 is difficult. The control operation unit 112 determines that a unit that is difficult to use that can be assumed from the voltage of each unit is a defective unit, and conducts the switch so that the current flowing between the electric device 180 and the module 210 bypasses the defective unit. Switch non-conduction.
  • the switches 321 and 401 connected in series with the unit 201 are turned off, and the switches 301, 311 and 312 are turned on.
  • the current flowing between the electric device 180 and the module 210 does not pass through the unit 201 and passes through the switches 301, 311, and 312 as indicated by broken line arrows.
  • the switch connected in series with the defective unit and the switch 401 are made non-conductive, and the defective unit is connected in parallel so that the current is bypassed. Turn on the switch.
  • the switches 321, 322, and 323 maintain the conductive state.
  • the voltage measuring devices 351, 352, and 353 measure the voltages of the units 201, 202, and 203 and send the information to the control operation unit 112.
  • the control operation unit 112 controls the switch so as to reduce the voltage difference when the voltage of a certain unit is somewhat smaller than the average of the voltages of the respective units or when it is larger to some extent. If there is a unit whose voltage difference is larger than the reference value, the unit voltage difference is reduced.
  • the control operation unit 112 determines that the voltage equalization of each unit has been achieved, and sets all the switches to the non-conductive state.
  • the unit 203 is always included when either charging or discharging of the unit is performed. Since it is repeated, details of the operation and procedure are not described.
  • step S1 measures the voltage of each unit.
  • step S12 determines whether each unit is good or bad.
  • step S13 it is determined whether there is a unit determined to be defective. If there is a defective unit (YES), the process proceeds to step S14, and the unit determined to be defective is separated. When there is no unit determined to be defective in step S13 (NO), the process proceeds to step S2 to calculate the average voltage of each unit.
  • Steps S2 to S5 are the same as those described with reference to FIG. However, it is not always necessary to follow this flowchart, and the order may be changed.
  • the above operation can be realized by the configuration of FIG. 21 instead of the configuration of FIG.
  • the configuration of FIG. 21 is obtained by changing the position of the second switch group 130 and the direction of the switches 311 to 313 constituting the second switch group 130 as compared to the configuration of FIG. 18 of the third embodiment. That is, the source side terminal of the switch 301 and the drain side terminal of the switch 311 are connected, the source side terminal of the switch 311 is connected to the negative electrode of the unit 201, the drain side terminal of the switch 321 is connected to the positive electrode of the unit 201, A voltage measuring device 351 is connected in parallel with the unit 201. This is the configuration stage for one unit.
  • the unit 201, the switches 301, 311, 321 and the voltage measuring device 351 are the first stage of the constituent stages.
  • the second stage is composed of a unit 202, switches 302, 312, and 322, and a voltage measuring instrument 352
  • the third stage is composed of a unit 203, switches 303, 313, and 323, and a voltage measuring instrument 353.
  • the connection relationship is the same as in the first stage, and the description is omitted.
  • the unit 201 is always included when either charging or discharging of the unit is performed. Details of the operation will not be described because it is repeated. Furthermore, by providing a charging state measuring device that measures the charging state of the unit instead of the voltage measuring device, the effect of suppressing the variation in the charging state can be obtained even for a unit in which the voltage change due to the change in the charging state is small. It is done.
  • the charging state measuring device is provided, equalization of the charging state is achieved by replacing “voltage” described in steps S2 to S5 in FIG. 20 with “charging state”.
  • the power supply device 200 according to the third embodiment can reduce the variation when the voltage or the charge state varies in the units included in the module 210 by performing the operation described above. Active power transfer can be performed between the above units and the power storage mechanism. In addition, when a defective unit that has become difficult to use due to, for example, a remarkable deterioration of an electricity storage device in a unit, the defective unit can be electrically disconnected.
  • FIG. 22 shows a configuration of a power supply apparatus according to Embodiment 4 of the present invention.
  • a power supply apparatus 250 includes a power storage mechanism 101, a reactor 102, a switch 401 connected between the power storage mechanism 101 and the reactor 102, and a module. 210, a first switch group 120 composed of a plurality of switches 301 to 303, a second switch group 130 composed of a plurality of switches 311 to 313, voltage measuring devices 351, 352, 353, a temperature A measuring instrument 701 and a control operation unit 152 are included.
  • the module 210 includes units 201, 202, 203 and switches 321, 322, 323.
  • the configuration excluding the temperature measuring device 701 is the same as the configuration shown in FIG. 18 of the third embodiment, and the same or corresponding parts are denoted by the same reference numerals and description thereof is omitted.
  • the control operation unit 152 inputs the voltages of the units 201 to 203 detected by the voltage measuring devices 351, 352, and 353 and the temperature information of the module 210 measured by the temperature measuring device 701, and switches 301 to 303. Signals are sent to the gate side terminals 311 to 313, 321 to 323, and 401 to switch between the conductive state and the non-conductive state.
  • the number of units does not have to be three, and the number of constituent stages does not have to be three. Switches connected in series with the unit may be connected in a different order.
  • the power storage mechanism 101 is a capacitor or a secondary battery.
  • the operation when the unit 201 is determined to be defective and when there is no unit determined to be defective is the same as that of the configuration of FIG.
  • the temperature measuring device 701 measures the temperature of the module 210 and sends the information to the control operation unit 152. If the measured temperature is lower than a preset reference value, discharging from the units 201, 202, 203 to the power storage mechanism 101 and charging from the power storage mechanism 101 to the units 201, 202, 203 are repeated. By doing so, the internal resistance existing in the units 201, 202, 203 generates heat, and the temperature of the units 201, 202, 203 can be raised. If the measured temperature exceeds a preset reference value, the temperature raising function is stopped. After that, an operation to reduce the voltage variation of each unit described in the third embodiment is performed as necessary.
  • FIG. 23 An example of a flowchart of the operation of the power supply device in Embodiment 4 is shown in FIG.
  • steps S12 to S14 following step S1 and step S1 and steps S2 to S5 following step S13 are the same as the flow described in FIG.
  • steps S6 to S8 following step S5 are the same as the flow described in FIG.
  • the above operation can be realized by the configuration of FIG. 24 instead of the configuration of FIG.
  • the configuration of FIG. 24 is different from the configuration of FIG. 22 of the fourth embodiment in that the position of the second switch group 130 and the direction of the switches 311 to 313 that configure the second switch group 130 are changed. That is, the source side terminal of the switch 301 and the drain side terminal of the switch 311 are connected, the source side terminal of the switch 311 is connected to the negative electrode of the unit 201, the drain side terminal of the switch 321 is connected to the positive electrode of the unit 201, A voltage measuring device 351 is connected in parallel with the unit 201. This is the configuration stage for one unit.
  • the unit 201, the switches 301, 311, 321 and the voltage measuring device 351 are the first stage of the constituent stages.
  • the second stage is composed of a unit 202, switches 302, 312, and 322, and a voltage measuring instrument 352
  • the third stage is composed of a unit 203, switches 303, 313, and 323, and a voltage measuring instrument 353.
  • the connection relationship is the same as in the first stage, and the description is omitted.
  • the unit 201 is necessarily included when either charging or discharging of the unit is performed. Details of the operation will not be described because it is repeated. Furthermore, by providing a charging state measuring device that measures the charging state of the unit instead of the voltage measuring device, the effect of suppressing the variation in the charging state can be obtained even for a unit in which the voltage change due to the change in the charging state is small. It is done.
  • the charging state measuring device is provided, equalization of the charging state is achieved by replacing “voltage” described in steps S2 to S5 in FIG. 23 with “charging state”.
  • the power supply device 250 according to the fourth embodiment can reduce the variation when the voltage or the charged state varies in the units included in the module by performing the operation described above. Also, the module temperature can be raised when the module temperature is below the reference value. Further, when there is a defective unit, the defective unit can be electrically disconnected.
  • the power supply device 300 includes a power storage mechanism 101, a reactor 102, switches 401, 512, and 513, a module 210, a first switch group 120 including a plurality of switches 301 to 303, and a plurality of switches.
  • a second switch group 130 composed of switches 311 to 313, voltage measuring devices 351, 352, and 353, and a control operation unit 113.
  • the module 210 includes units 201, 202, 203 and switches 321, 322, 323.
  • the power supply device 300 of the fifth embodiment is obtained by adding switches 512 and 513 to the configuration shown in FIG. 18 of the third embodiment, and the configuration other than the switches 512 and 513 is the same as or equivalent to that of FIG. Are denoted by the same reference numerals and description thereof is omitted.
  • the switch 512 has a drain side terminal connected to a connection point between the power storage mechanism 101 and the switch 401, and a source side terminal connected to the source side terminal of the switch 303 and the negative electrode of the unit 203.
  • the switch 513 has a drain side terminal connected to the negative electrode of the unit 203 and the source side terminal of the switch 512, and a source side terminal connected to the negative electrode side of the power storage mechanism 101.
  • the power storage mechanism 101, the reactor 102, and the switch 401 connected in series are connected to the drain-side terminal of the switch 301 and the source-side terminal of the switch 513, respectively.
  • a positive-side terminal of the module 210 constituted by the units 201, 202, and 203 and the switches 321, 322, and 323 and a negative-side terminal of the power storage mechanism 101 are connected to the electric device 180 in FIG.
  • control operation unit 113 Information on the voltages detected by the voltage measuring devices 351, 352, and 353 is sent to the control operation unit 113.
  • the control operation is performed.
  • the unit 113 sends signals to the gate-side terminals of the switches 301, 311, 302, 312, 303, 313, 321, 322, 323, 401, 512, and 513 to switch between the conductive and non-conductive states.
  • the number of units 201, 202, and 203 does not have to be three, and the number of components does not have to be three.
  • the switches 321 to 323 connected in series with the unit may be connected in a different order.
  • the power storage mechanism 101 is a secondary battery, a battery pack, a capacitor, or an electric double layer capacitor. More preferably, power storage mechanism 101 is a unit having characteristics equivalent to units 201, 202, and 203.
  • the control operation unit 113 includes a function of determining whether the units 201, 202, and 203 are good or bad.
  • the control operation unit 113 determines that a unit that is difficult to use that can be assumed from the voltage of each unit is a defective unit, and the switch is turned on and off so that the current flowing between the electrical device and the module 210 bypasses the defective unit. Switch continuity. Further, even if a unit determined to be defective is electrically disconnected, the power storage mechanism 101 is electrically connected in series with the module 210 in order to prevent the voltage of the module 210 from dropping.
  • the switches 321 and 401 connected in series with the unit 201 are turned off, and the switches 301, 311 and 312 are turned on. Further, the switch 513 is switched to a non-conductive state, and the switch 512 is switched to a conductive state. By doing so, the current flowing between the electric device and the module 210 does not pass through the unit 201 but passes through the switches 301, 311, 312, and 512, the units 202 and 203, and the power storage mechanism 101.
  • the switch connected in series with the defective unit and the switches 401 and 513 are made non-conductive, and the defective unit is connected in parallel so that the current is bypassed.
  • the switched switch and the switch 512 are turned on.
  • the switch 512 When there is no unit determined to be defective, the switch 512 is turned off and the switches 321, 322, 323, 401, and 513 are turned on.
  • the voltage measuring devices 351, 352, and 353 measure the voltages of the units 201, 202, and 203 and send the information to the control operation unit 113.
  • the control operation unit 113 controls the switch so as to reduce the voltage difference when the voltage of a certain unit is somewhat smaller than the average of the voltages of each unit or when it is somewhat larger. If there is a unit whose voltage difference is larger than the reference value, the unit voltage difference is reduced.
  • control operation unit 113 determines that the equalization of the voltage of each unit has been achieved, and sets all the switches to the non-conductive state.
  • the unit 203 is always included when either charging or discharging of the unit is performed. Since it is repeated, details of the operation and procedure are not described.
  • FIG. 26 shows an example of a flowchart of the operation of the power supply device in the fifth embodiment.
  • steps S12 to S14 following step S1 and step S1, and steps S2 to S5 following step S13 are the same as the flow described with reference to FIG.
  • step S15 following step S14 the module 210 from which the unit determined to be defective is disconnected and the power storage mechanism 101 are directly connected.
  • the above operation can be realized by the configuration of FIG. 27 instead of the configuration of FIG.
  • the configuration of FIG. 27 is obtained by changing the position of the second switch group 130 and the direction of the switches 311 to 313 constituting the second switch group 130 as compared to the configuration of FIG. 25 of the fifth embodiment. That is, the source side terminal of the switch 301 and the drain side terminal of the switch 311 are connected, the source side terminal of the switch 311 is connected to the negative electrode of the unit 201, the drain side terminal of the switch 321 is connected to the positive electrode of the unit 201, A voltage measuring device 351 is connected in parallel with the unit 201. This is the configuration stage for one unit.
  • the unit 201, the switches 301, 311, 321 and the voltage measuring device 351 are the first stage of the constituent stages.
  • the second stage is composed of a unit 202, switches 302, 312, and 322, and a voltage measuring instrument 352
  • the third stage is composed of a unit 203, switches 303, 313, and 323, and a voltage measuring instrument 353.
  • the connection relationship is the same as in the first stage, and the description is omitted.
  • the switch 512 has a source-side terminal connected to the connection point between the power storage mechanism 101 and the switch 401, and a drain-side terminal connected to the drain-side terminal of the switch 301 and the positive electrode of the unit 201. It is connected to the.
  • the switch 513 has a drain side terminal connected to the positive electrode side of the power storage mechanism 101, and a source side terminal connected to the source side terminal of the switch 321 and the drain side terminal of the switch 512.
  • the power storage mechanism 101, the reactor 102, and the switch 401 connected in series are connected to the negative electrode of the unit 203 and the drain side terminal of the switch 513, respectively.
  • a negative electrode side terminal of the module 210 constituted by the units 201, 202, and 203 and the switches 321, 322, and 323 and a positive electrode side terminal of the power storage mechanism 101 are connected to the electric device 180 in FIG.
  • the unit 201 is necessarily included when either charging or discharging of the unit is performed. Details of the operation will not be described because it is repeated. Furthermore, by providing a charging state measuring device that measures the charging state of the unit instead of the voltage measuring device, the effect of suppressing the variation in the charging state can be obtained even for a unit in which the voltage change due to the change in the charging state is small. It is done. When the state-of-charge measuring device is provided, equalization of the state of charge is achieved by replacing “voltage” described in steps S2 to S5 in FIG. 26 with “state of charge”.
  • the power supply device 300 according to the fifth embodiment can reduce the variation when the unit included in the module has a variation in voltage or charge state by performing the operation described above.
  • Active power transfer can be performed between the unit and the power storage mechanism.
  • the defective unit is electrically disconnected to compensate for the voltage of the disconnected unit.
  • the power storage mechanism can be electrically connected to the module in series.
  • FIG. 28 shows a configuration of a power supply apparatus according to Embodiment 6 of the present invention.
  • a power supply apparatus 350 includes a power storage mechanism 101, a reactor 102, switches 401, 512, 513, a module 210, and a plurality of switches 301 to A first switch group 120 composed of 303, a second switch group 130 composed of a plurality of switches 311 to 313, voltage measuring devices 351, 352, 353, a temperature measuring device 701, and a control operation unit 153.
  • the module 210 includes units 201, 202, 203 and switches 321, 322, 323.
  • the configuration excluding temperature measuring device 701 is the same as the configuration shown in FIG. 25 of the fifth embodiment, and the same or corresponding parts are denoted by the same reference numerals and description thereof is omitted. To do. Further, the control operation unit 153 inputs the information of the voltages of the units 201 to 203 detected by the voltage measuring devices 351, 352, and 353 and the temperature information of the module 210 measured by the temperature measuring device 701, and switches 301 to 303. 311 to 313, 321 to 323, 401, 512, and 513, a signal is sent to switch between the conductive state and the nonconductive state. Note that the number of units does not have to be three, and the number of constituent stages does not have to be three.
  • the power storage mechanism 101 is a secondary battery, a battery pack, a capacitor, or an electric double layer capacitor. More preferably, power storage mechanism 101 is a unit having characteristics equivalent to units 201, 202, and 203.
  • the switches 321 and 401 connected in series with the unit 201 are turned off, and the switches 301, 311 and 312 are turned on. Further, the switches 401 and 513 are switched to the non-conductive state, and the switch 512 is switched to the conductive state. By doing so, the current flowing between the electric device 180 and the module 210 does not pass through the unit 201 but passes through the switches 301, 311, 312, and 512, the units 202 and 203, and the power storage mechanism 101.
  • the switch connected in series with the defective unit and the switches 401 and 513 are made non-conductive, and the defective unit is connected in parallel so that the current is bypassed.
  • the switched switch and the switch 512 are turned on.
  • the switch 512 When there is no unit determined to be defective, the switch 512 is turned off and the switches 321, 322, 323, 401, and 513 are turned on.
  • the voltage measuring devices 351, 352, and 353 measure the voltages of the units 201, 202, and 203 and send the information to the control operation unit 153.
  • the control operation unit 153 controls the switch so as to reduce the voltage difference when the voltage of a certain unit is somewhat smaller than the average of the voltages of each unit or when it is somewhat larger. If there is a unit whose voltage difference is larger than the reference value, the unit voltage difference is reduced.
  • the control operation unit 153 determines that the voltage equalization of each unit has been achieved, and sets all the switches to the non-conduction state.
  • the unit 203 In the configuration of FIG. 28, the unit 203 is always included when either charging or discharging of the unit is performed. Since it is repeated, details of the operation and procedure are not described.
  • the temperature measuring device 701 measures the temperature of the module and sends the information to the control operation unit 153. If the measured temperature is lower than a preset reference value, discharging from the units 201, 202, 203 to the power storage mechanism 101 and charging from the power storage mechanism 101 to the units 201, 202, 203 are repeated. By doing so, the internal resistance existing in the units 201, 202, 203 generates heat, and the temperature of the units 201, 202, 203 can be raised. If the measured temperature exceeds a preset reference value, the temperature raising function is stopped. Thereafter, an operation for reducing the variation of each unit described in the third embodiment is performed as necessary. Details of the operation will not be described because it is repeated.
  • FIG. 29 shows an example of a flowchart of the operation of the power supply device in the sixth embodiment.
  • steps S12 to S15 following step S1 and step S1 and steps S2 to S5 following step S13 are the same as the flow described with reference to FIG.
  • steps S6 to S8 following step S5 are the same as the flow described in FIG. However, it is not always necessary to follow this flowchart, and the order may be changed.
  • the above operation can be realized by the configuration of FIG. 30 instead of the configuration of FIG.
  • the configuration of FIG. 30 is obtained by changing the position of the second switch group 130 and the direction of the switches 311 to 313 constituting the second switch group 130 as compared to the configuration of FIG. 28 of the sixth embodiment.
  • the unit 201 is always included when either charging or discharging of the unit is performed. Details of the operation will not be described because it is repeated.
  • a charging state measuring device that measures the charging state of the unit instead of the voltage measuring device, the effect of suppressing the variation in the charging state can be obtained even for a unit in which the voltage change due to the change in the charging state is small. It is done.
  • equalization of the charging state is achieved by replacing “voltage” described in steps S2 to S5 in FIG. 29 with “charging state”.
  • the power supply apparatus 350 according to the sixth embodiment can reduce the variation when the voltage or the charged state varies in the units included in the module by performing the operation described above. Also, the module temperature can be raised when the module temperature is below the reference value. Further, when a defective unit is matched, the defective unit can be electrically disconnected.
  • FIG. 31 shows a configuration of a power supply apparatus according to Embodiment 7 of the present invention.
  • a power supply apparatus 900 includes a reactor 102, a module 110, a first switch group 120 including a plurality of switches 301 to 303, and a plurality of switches.
  • a second switch group 130 composed of switches 311 to 313, voltage measuring devices 351, 352, and 353, and a control operation unit 911.
  • the module 110 includes units 201, 202, and 203.
  • the power supply device 900 is connected to the electric device 901.
  • each unit 201, 202, 203 may be a single power storage device or a combination of a plurality of power storage devices.
  • the power storage device may be a device having a power storage function such as a capacitor and an electric double layer capacitor as well as a secondary battery.
  • the switches 301 to 303 and 311 to 313 may have body diodes, or may be a combination of a switching element not having a body diode and a diode.
  • the switches 301, 302, 303, 311, 312, 313 are MOSFETs.
  • the configuration other than the connection of the electrical device 901 instead of the power storage mechanism 101 is the same as the configuration shown in FIG.
  • the reference numerals are attached and the description is omitted.
  • the control operation unit 911 inputs information on the voltages of the units 201 to 203 detected by the voltage measuring devices 351, 352, and 353, and sends signals to the gate side terminals of the switches 301 to 303 and 311 to 313. Each conduction state and non-conduction state are switched. Note that the number of units 201 to 203 does not have to be three, and the number of constituent stages does not have to be three. Further, the number of power supply devices 900 connected to the electric device 901 is not limited to one, and a plurality of electric devices 901 may be connected in parallel.
  • the switches 301, 311, 302, 312, and 303 are all turned off. By doing so, the units 201 and 202 are electrically insulated from the power storage mechanism 101 and do not transfer power to or from the electrical device 901. Further, the switch 313 is switched between conductive and non-conductive states. When the switch 313 is in a conductive state, power is sent from the unit 203 to the electric device 901 through the reactor 102, whereby the unit 203 is discharged.
  • the switch 313 When the switch 313 is in a non-conduction state, the unit 203 is in an electrically insulated state, and the unit 203 does not send power to the electric device 901. Power is supplied from the unit 203 to the electrical device 901 by repeatedly switching between the conductive state and the nonconductive state of the switch 313.
  • the switch 303 is switched between conductive and non-conductive states.
  • a current flows from the electric device 901 through the reactor 102, and the current is amplified as the conduction time of the switch 303 is longer.
  • switch 303 is non-conductive, the amplified current passes through the diode portion of switch 313 and flows to unit 203.
  • the switches 301 and 303 are turned on and the switches 311, 312 and 313 are turned off.
  • the unit 201 is electrically insulated from the electric device 901 and does not exchange power with the electric device 901.
  • the switch 302 is switched between conductive and non-conductive states.
  • the switch 302 is in a conducting state, a current flows from the electric device 901 through the reactor 102, and the current is amplified as the conduction time of the switch 302 is longer.
  • switch 302 When switch 302 is non-conductive, the amplified current passes through the diode portion of switch 312 and flows to units 202 and 203. By repeatedly switching between the conduction and non-conduction states of the switch 302, the units 202 and 203 are charged, and the voltages of the units 202 and 203 are increased.
  • the operation when the unit 201, 202, 203 is regeneratively charged from the electric device 901 will be described.
  • the switches 302 and 303 are turned on and the switches 311, 312, and 313 are turned off.
  • the switch 301 is switched between a conductive state and a non-conductive state.
  • the switch 301 is in a conducting state, a current flows from the electric device 901 through the reactor 102, and the current is amplified as the conduction time of the switch 301 is longer.
  • the switch 301 is non-conductive, the amplified current is switched.
  • the units 201, 202, and 203 are charged, and the voltages of the units 201, 202, and 203 are increased.
  • the unit 203 is always included when either charging or discharging of the unit is performed. The above operation is the same as in FIG.
  • the voltage measuring devices 351, 352, and 353 measure the voltages of the units 201, 202, and 203 and send the information to the control operation unit 911.
  • the control operation unit 911 controls the switches 301 to 303 and 311 to 313 so as to reduce the voltage difference when the voltage of a certain unit is somewhat smaller than the average of the voltages of each unit or when it is somewhat larger. If there is a unit whose voltage difference is larger than the reference value, the control operation unit 911 controls the unit so that the voltage difference between the units does not increase during power feeding to the electrical device 901 and regenerative charging from the electrical device 901.
  • control operation unit 911 determines that the equalization of the voltages of each unit has been achieved, and Control is performed so that power is exchanged with the device 901.
  • FIG. 32 the procedure when the voltage compared with the average voltage is large and small in each of the units 201 to 203 is shown as a table separately for the case where the electric device 901 is power running and regeneration.
  • FIG. 33 shows an example of an operation flowchart of the power supply apparatus 900 according to the seventh embodiment.
  • steps S1 to S4 are the same as the flow described in FIG.
  • step S16 if there is a unit whose voltage difference exceeds the reference value in step S4 (YES), the process proceeds to step S16, depending on whether the voltage of the corresponding unit is large or not, and whether the operation of the electric device 901 is powering or regenerating.
  • step S16 if there is no unit in which the voltage difference exceeds the reference value in step S4 (NO), the process proceeds to step S17, and all units are discharged or charged when the electric device 901 is powered or regenerated.
  • NO no unit in which the voltage difference exceeds the reference value in step S4
  • the above operation can be realized by the configuration of FIG. 34 instead of the configuration of FIG.
  • the configuration of FIG. 34 is obtained by changing the position of the second switch group 130 and the direction of the switches 311 to 313 constituting the second switch group 130 as compared to the configuration of FIG. 32 of the seventh embodiment. That is, the source side terminal of the switch 301 and the drain side terminal of the switch 311 are connected, the source side terminal of the switch 311 is connected to the negative electrode of the unit 201, and the voltage measuring device 351 is connected in parallel with the unit 201.
  • This is the configuration stage for one unit. That is, the unit 201, the switches 301 and 311 and the voltage measuring device 351 are the first stage of the constituent stages.
  • the second stage is composed of the unit 202, the switches 302 and 312 and the voltage measuring device 352, and the third stage is composed of the unit 203, the switches 303 and 313 and the voltage measuring device 353. The description is omitted because it is the same as the first stage.
  • the unit 201 is necessarily included when either charging or discharging of the unit is performed.
  • the operation is the same as in FIG.
  • the operation procedure is shown in FIG.
  • FIG. 35 is a table showing the procedure when the voltage compared with the average voltage is large and small in each of the units 201 to 203, in the same manner as in FIG. 32, when the electric device 901 is powered and regenerated. Yes.
  • An example of the flowchart is as shown in FIG.
  • the power supply device 900 according to the seventh embodiment performs the above-described operation, so that when power is transferred between the electric device 901 and the module 110, the voltage is applied to the units 201 to 203 included in the module 110. Control can be performed so that variations do not increase.
  • FIG. 36 is a configuration in which a current measuring device 370 for measuring a current flowing through the module is added to FIG. 2 as an example of the configuration in the first embodiment.
  • the control operation unit 111 calculates whether the current value detected by the current measuring device 370 is within a preset current value range that allows charging / discharging. If the current value detected by the current measuring device 370 is outside the range of current values that allow charging / discharging, the control operation unit 111 controls the power storage mechanism 101 to charge / discharge part or all of the charging / discharging current. . For example, among the operations illustrated in FIG.
  • the power storage mechanism 101 can be burdened with part or all of the charge / discharge current by performing an operation of charging all units or discharging all units. By doing so, the burden of the charging / discharging electric current of each unit which comprises the module 110 can be reduced.
  • the configuration in which the current measuring device is added can be applied to all the configurations described in the first to sixth embodiments. Note that the current measuring device 370 only needs to be able to measure the current flowing through the module 110, and the installation location and the measuring method are not limited. In the configurations described in the second embodiment, the fourth embodiment, and the sixth embodiment, if the temperature of the module 110 measured by the temperature measuring device 701 exceeds a preset reference value, the control operation unit is charged / discharged.
  • Control is performed so that the power storage mechanism 101 bears part or all of the current. By doing so, it is possible to suppress heat generation due to the current flowing through the module 110 and prevent the temperature of the module 110 from rising. With the above operation, the power storage mechanism 101 can reduce the burden on the module 110 by burdening part or all of the current charged and discharged by the power supply device 100.
  • control operation units 111 to 113, 151 to 153, and 911 include a processor 1000 and a storage device 1001, as shown in FIG.
  • the storage device includes a volatile storage device such as a random access memory and a nonvolatile auxiliary storage device such as a flash memory. Further, an auxiliary storage device of a hard disk may be provided instead of the flash memory.
  • the processor 1000 executes a program input from the storage device 1001. In this case, a program is input from the auxiliary storage device to the processor 1000 via the volatile storage device. Further, the processor 1000 may output data such as a calculation result to the volatile storage device of the storage device 1001, or may store the data in the auxiliary storage device via the volatile storage device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)
  • Secondary Cells (AREA)

Abstract

回路の簡素化を実現する電源装置を得る。 蓄電デバイスを含むユニットと降圧用及び昇圧用スイッチ120、130とで構成されたn個(nは2以上の整数)の構成段、電力の入出力が可能な蓄電機構101、蓄電機構に直列接続されたリアクトル102、及び降圧用と昇圧用スイッチの導通、非導通を切り替える制御動作部111を備え、第m段目(mは2≦m≦nを満たす整数)の構成段のユニットの正極は第m-1段目の構成段のユニットの負極と接続され、第m段目の構成段に含まれる昇圧用スイッチのドレイン側端子は第m-1段目の構成段に含まれる昇圧用スイッチのソース側端子と接続され、第n段目の構成段に含まれる昇圧用スイッチのソース側端子は第n段目の構成段に含まれるユニットの負極と接続され、直列接続されたn個の昇圧用スイッチは蓄電機構とリアクトルの直列回路に並列に接続する。

Description

電源装置
 この発明は、直列接続された複数の蓄電デバイスを含む電源装置に関するものである。
 電気自動車やハイブリッド電気自動車、家電機器などにおいて、複数の二次電池を直列に接続するモジュール構成を含む電源装置は広く知られている。複数の二次電池を直列接続することで、モジュールの電圧を高め、充電または放電する電力を増加することができる。
 しかし、モジュールを充放電する際には一様の電流が流れるため、モジュールを構成するユニットの電圧がばらつきを持つ場合は、最大あるいは最小の電圧を持つ二次電池が上限電圧、下限電圧を超過しないよう充放電しなければならない。つまり、その他の二次電池に充電、放電の余裕があった場合でも、それ以上の電力を入出力することはできない。 
 そこで特許文献1では、二次電池への能動的な電力の入出力を可能とする変換器と、どの二次電池に電力を入出力するかを選択する回路を用いて二次電池電圧の均等化を図っている。この構成はコイル、コンデンサ、トランスなどの受動部品の点数が二次電池数に比例しないため比較的小型に構成でき、また選択的な二次電池への充放電を可能としており、短時間で電圧の均等化が可能である。
特開2003-274566号公報
 しかし、特許文献1の発明では、二次電池を選択する回路には、例えば継電器などの、非導通時に完全な絶縁を得られるスイッチが必要である。このような順方向、逆方向の二方向での絶縁がとれる二方向スイッチはサイズが大きいことから、回路の大型化が問題点としてあげられる。また、例えばMOSFETなどの、比較的小型であるスイッチを代用したとしても、付随するボディダイオードの特性によって一方向の絶縁しかとれないため、二方向スイッチのような絶縁効果を得るには二方向スイッチの2倍の点数が必要であり、回路の煩雑化、回路の大型化が問題点としてあげられる。
 このように、従来の装置では、蓄電デバイスと蓄電機構での能動的な電力授受に必要な電力変換の機構と、能動的な電力授受を行う蓄電デバイスを選択する機構が別々に設けられていたため、依然スイッチ点数が多く、回路の簡素化、小型軽量化とは相反するものであった。
 この発明は、上記のような課題を解決するためになされたものであり、小型でかつスイッチの点数を削減することで回路の煩雑化、回路の大型化を防ぎつつ、各ユニットの電圧の均等化を行うようにした電源装置を提供することを目的とするものである。
 この発明に係わる電源装置は、1つ以上の蓄電デバイスを含むユニットと、ドレイン側端子がユニットの正極と接続された降圧用スイッチと、ドレイン側端子が降圧用スイッチのソース側端子と接続された昇圧用スイッチとで構成されたn個(nは2以上の整数)の構成段、電気エネルギーを蓄積し、電力の入力および出力が可能な蓄電機構、この蓄電機構に直列接続されたリアクトル、および降圧用スイッチと昇圧用スイッチの導通、非導通を切り替える制御動作部とを備え、構成段のうち、第m段目(mは2≦m≦nを満たす整数)の構成段のユニットの正極は第m-1段目の構成段のユニットの負極と接続され、第m段目の構成段に含まれる昇圧用スイッチのドレイン側端子は第m-1段目の構成段に含まれる昇圧用スイッチのソース側端子と接続され、第n段目の構成段に含まれる昇圧用スイッチのソース側端子は第n段目の構成段に含まれるユニットの負極と接続され、直列接続されたn個の昇圧用スイッチは蓄電機構とリアクトルの直列回路に並列に接続されたものである。
 また、この発明に係わる電源装置は、1つ以上の蓄電デバイスを含むユニットと、ソース側端子がユニットの負極と接続された降圧用スイッチと、ソース側端子が降圧用スイッチのドレイン側端子と接続された昇圧用スイッチとで構成されたn個(nは2以上の整数)の構成段、電気エネルギーを蓄積し、電力の入力および出力が可能な蓄電機構、この蓄電機構に直列接続されたリアクトル、および降圧用スイッチと昇圧用スイッチの導通、非導通を切り替える制御動作部とを備え、構成段のうち、第m段目(mは2≦m≦nを満たす整数)の構成段のユニットの正極は第m-1段目の構成段のユニットの負極と接続され、第m段目の構成段に含まれる昇圧用スイッチのドレイン側端子は第m-1段目の構成段に含まれる昇圧用スイッチのソース側端子と接続され、第1段目の構成段に含まれる昇圧用スイッチのドレイン側端子は第1段目の構成段に含まれるユニットの正極と接続され、直列接続されたn個の昇圧用スイッチは蓄電機構とリアクトルの直列回路に並列に接続されたものである。
 この発明の電源装置によれば、1つ以上の蓄電デバイスで構成されたユニットが複数搭載され、複数のユニットのうち1つ以上のユニットから蓄電機構に電力を送るか、蓄電機構から1つ以上のユニットに電力を送るかの動作を行える。また蓄電機構との電力授受を行うユニットを適切に選択し、充電および放電の操作を経ることで、各ユニットの電圧を均等化することができる。この電源装置に含まれる電力変換回路は、蓄電機構と複数のユニットのうち1つ以上のユニットとの能動的な電力授受を行う機能と、電力授受を行うユニットを選択する機能を兼ね備えており、回路に必要なスイッチ点数を削減することで回路の煩雑化の防止、回路の小型化が可能となる。
この発明における電源装置と電気機器の構成を表す図である。 この発明の実施の形態1に係る電源装置の構成を表す図である。 この発明の実施の形態1に係る電源装置のスイッチ313の導通状態時の電流の方向を表した図である。 この発明の実施の形態1に係る電源装置のスイッチ312の導通状態時の電流の方向を表した図である。 この発明の実施の形態1に係る電源装置のスイッチ311の導通状態時の電流の方向を表した図である。 この発明の実施の形態1に係る電源装置のスイッチ303の導通状態時の電流の方向と、非導通状態時の電流の方向を表した図である。 この発明の実施の形態1に係る電源装置のスイッチ302の導通状態時の電流の方向と、非導通状態時の電流の方向を表した図である。 この発明の実施の形態1に係る電源装置のスイッチ301の導通状態時の電流の方向と、非導通状態時の電流の方向を表した図である。 この発明の実施の形態1に係る電源装置において、充電するユニット及び放電するユニットと、スイッチのオン、オフ状態の関係を示した図である。 この発明の実施の形態1に係る電源装置において、各ユニットの平均電圧との差が基準値より大きい場合に行う実施手順を示す図である。 この発明の実施の形態1における電源装置の動作のフローチャートを示した図である。 この発明の実施の形態1に係る電源装置の他の構成を表す図である。 この発明の実施の形態1に係る電源装置の他の構成における、充電するユニット及び放電するユニットと、スイッチのオン、オフ状態の関係を示した図である。 この発明の実施の形態1に係る電源装置の他の構成における、各ユニットの平均電圧との差が基準値より大きい場合に行う実施手順を示す図である。 この発明の実施の形態2に係る電源装置の構成を表す図である。 この発明の実施の形態2における電源装置の動作のフローチャートを示した図である。 この発明の実施の形態2に係る電源装置の他の構成を表す図である。 この発明の実施の形態3に係る電源装置の構成を表す図である。 この発明の実施の形態3に係る電源装置において、電流がユニットを迂回する様子を表す図である。 この発明の実施の形態3における電源装置の動作のフローチャートを示した図である。 この発明の実施の形態3に係る電源装置の他の構成を表す図である。 この発明の実施の形態4に係る電源装置の構成を表す図である。 この発明の実施の形態4における電源装置の動作のフローチャートを示した図である。 この発明の実施の形態4に係る電源装置の他の構成を表す図である。 この発明の実施の形態5に係る電源装置の構成を表す図である。 この発明の実施の形態5における電源装置の動作のフローチャートを示した図である。 この発明の実施の形態5に係る電源装置の他の構成を表す図である。 この発明の実施の形態6に係る電源装置の構成を表す図である。 この発明の実施の形態6における電源装置の動作のフローチャートを示した図である。 この発明の実施の形態6に係る電源装置の他の構成を表す図である。 この発明の実施の形態7に係る電源装置の構成を表す図である。 この発明の実施の形態7における動作手順を表す図である。 この発明の実施の形態7における電源装置の動作のフローチャートを示した図である。 この発明の実施の形態7に係る電源装置の他の構成を表す図である。 この発明の実施の形態7に係る電源装置の他の構成における動作手順を表す図である。 この発明の実施の形態8に係る電源装置の構成を表す図である。 この発明の実施の形態1等における制御動作部のハードウエアの一例を示す図である。
実施の形態1.
 以下、この発明の実施の形態1に係る電源装置について図1から図14に基づいて説明する。
 図1はこの発明の実施の形態1に係わる電源装置と電気機器の構成を表す図であり、電源装置100は好ましくは図1に示すように電気機器180と接続される。この電気機器180は電力消費機能および発電機能のうち少なくとも一方を含む。電気機器180が電力消費の機能を発揮する場合は電源装置100から電力を送り、電気機器180が発電の機能を発揮する場合は電源装置100に電力が送られる。なお電気機器180と接続する電源装置100は複数であってもよい。
 実施の形態1の電源装置100は、図2に示すように、蓄電機構101と、リアクトル102と、モジュール110と、スイッチ301、302、303を含む第一のスイッチ群120と、スイッチ311、312、313を含む第二のスイッチ群130と、電圧測定器351、352、353と、制御動作部111を含む。
 なお、第一のスイッチ群120のスイッチ301~303は、蓄電機構101からモジュール110へ充電する昇圧用スイッチとして使用され、第二のスイッチ群130のスイッチ311~313は、モジュール110から蓄電機構101へ放電する降圧用スイッチとして使用される。
 モジュール110は複数のユニット201、202、203で構成される。ただし各ユニットは1つの蓄電デバイスであってもよいし、複数の蓄電デバイスを組み合わせたものでもよい。また蓄電デバイスは二次電池のみならず、キャパシタ、電気二重層キャパシタなど蓄電機能を有するデバイスであってよい。スイッチ301、302、303、311、312、313は好ましくはMOSFETである。さらにスイッチ301~303、311~313はボディダイオードを有するものでよく、またボディダイオードを有さないスイッチング素子にダイオードを組み合わせたものでもよい。
 実施の形態1の電源装置の構成を示す図2において、ここではスイッチ301、302、303、311、312、313は、ダイオードの順方向における入力側をソース側端子、出力側をドレイン側端子とし、信号を入力してスイッチの導通状態と非導通状態を切り替える端子をゲート端子とする。スイッチ301のドレイン側端子とスイッチ311のソース側端子が接続され、スイッチ311のドレイン側端子はユニット201の正極に接続され、ユニット201と並列に電圧測定器351が接続されている。これがユニット1つに対する構成段である。
 すなわちユニット201とスイッチ301、311と電圧測定器351を構成段の一段目とする。構成段の二段目はユニット202とスイッチ302、312と電圧測定器352で構成されており、一段目と同様にスイッチ302のドレイン側端子とスイッチ312のソース側端子が接続され、スイッチ312のドレイン側端子はユニット202の正極に接続され、ユニット202と並列に電圧測定器352が接続されている。そしてユニット201の負極とユニット202の正極が直列に接続され、スイッチ301のソース側端子とスイッチ302のドレイン側端子が接続される。
 構成段の三段目も同様にユニット203とスイッチ303、313と電圧測定器353で構成されており、スイッチ303のドレイン側端子とスイッチ313のソース側端子が接続され、スイッチ313のドレイン側端子はユニット203の正極に接続され、ユニット203と並列に電圧測定器353が接続されている。そしてユニット202の負極とユニット203の正極が直列に接続され、スイッチ302のソース側端子とスイッチ303のドレイン側端子が接続される。ユニット203の負極とスイッチ303のソース側端子は接続され、蓄電機構101とリアクトル102を直列に接続したものが、直列接続されたスイッチ301~303と並列に接続される。即ち、スイッチ301のドレイン側端子がリアクトル102の一端に、スイッチ303のソース側端子が蓄電機構101の一端にそれぞれ接続される。
 ユニット201、202、203は直列に接続されており、ユニット201の正極とユニット203の負極との両端子が電気機器180に接続される。電圧測定器351、352、353で検知した電圧の情報は制御動作部111に送られ、制御動作部111はスイッチ301、311、302、312、303、313のゲート側端子に信号を送り、それぞれの導通状態、非導通状態を切り替える。
 なお、ユニットの数は3つでなくてもよく、構成段の数も三段でなくてよい。好ましくは、蓄電機構101はコンデンサ、二次電池である。
 続いて図3を用いてユニット203から蓄電機構101に放電する場合の説明をする。ユニット203から蓄電機構101に放電する場合、スイッチ301~303、311、312は全て非導通状態にする。そうすることで、ユニット201、202は蓄電機構101と電気的に絶縁状態となり、蓄電機構101との電力授受を行わない。さらにスイッチ313の導通、非導通状態を切り替える。スイッチ313が導通状態のとき、破線矢印のとおりユニット203からスイッチ313、スイッチ302及びスイッチ301のダイオード部分、リアクトル102を介して蓄電機構101へ電力が送られることで、ユニット203は放電する。スイッチ313が非導通状態のとき、ユニット203は電気的に絶縁状態であり、ユニット203は蓄電機構101へ電力を送らない。スイッチ313の導通と非導通状態を繰り返し切り替えることで、ユニット203を徐々に放電させ、ユニット203の電圧を下げる。
 続いて図4を用いてユニット202、203から蓄電機構101に放電する場合の説明をする。ユニット202、203から蓄電機構101に放電する場合、スイッチ301~303、311、313は全て非導通状態にする。そうすることで、ユニット201は蓄電機構101と電気的に絶縁状態となり、蓄電機構101との電力授受を行わない。さらにスイッチ312の導通、非導通状態を切り替える。スイッチ312が導通状態のとき、破線矢印のとおりユニット202、203からスイッチ312、スイッチ301のダイオード部分、リアクトル102を介して蓄電機構101へ電力が送られることで、ユニット202、203は放電する。スイッチ312が非導通状態のとき、ユニット202、203は蓄電機構101へ電力を送らない。スイッチ312の導通と非導通状態を繰り返し切り替えることで、ユニット202、203を徐々に放電させ、ユニット202、203の電圧を下げる。
 続いて図5を用いてユニット201、202、203から蓄電機構101に放電する場合の説明をする。ユニット201、202、203から蓄電機構101に放電する場合、スイッチ301~303、312、313は全て非導通状態にする。さらにスイッチ311の導通、非導通状態を切り替える。スイッチ311が導通状態のとき、破線矢印のとおりユニット201、202、203からスイッチ311、リアクトル102を介して蓄電機構101へ電力が送られることで、ユニット201、202、203は放電する。スイッチ311が非導通状態のとき、ユニット201、202、203は蓄電機構101へ電力を送らない。スイッチ311の導通と非導通状態を繰り返し切り替えることで、ユニット201、202、203を徐々に放電させ、ユニット201、202、203の電圧を下げる。
 続いて図6を用いてユニット203に蓄電機構101から充電する場合の説明をする。ユニット203に蓄電機構101から充電する場合、スイッチ301、302は導通状態、スイッチ311、312、313は非導通状態にする。そうすることで、ユニット201、202は蓄電機構101と電気的に絶縁状態となり、蓄電機構101との電力授受を行わない。さらにスイッチ303の導通、非導通状態を切り替える。
 図6(a)にスイッチ303が導通状態のときの電流の流れる方向を破線矢印で示す。蓄電機構101からリアクトル102を介して電流が流れ、スイッチ303の導通時間が長い程電流が増幅される。図6(b)にスイッチ303が非導通状態のときの電流の流れる方向を破線矢印で示す。増幅された電流がスイッチ313のダイオード部分を通って通過し、ユニット203に流れる。スイッチ303の導通と非導通状態を繰り返し切り替えることで、ユニット203が充電され、ユニット203の電圧が上がる。
 続いて図7を用いてユニット202、203に蓄電機構101から充電する場合の説明をする。ユニット202、203に蓄電機構101から充電する場合、スイッチ301、303は導通状態、スイッチ311、312、313は非導通状態にする。そうすることで、ユニット201は蓄電機構101と電気的に絶縁状態となり、蓄電機構101との電力授受を行わない。さらにスイッチ302の導通、非導通状態を切り替える。
 図7(a)にスイッチ302が導通状態のときの電流の流れる方向を破線矢印で示す。蓄電機構101からリアクトル102を介して電流が流れ、スイッチ302の導通時間が長い程電流が増幅される。図7(b)にスイッチ302が非導通状態のときの電流の流れる方向を破線矢印で示す。増幅された電流がスイッチ312のダイオード部分を通って通過し、ユニット202、203に流れる。スイッチ302の導通と非導通状態を繰り返し切り替えることで、ユニット202、203が充電され、ユニット202、203の電圧が上がる。
 続いて図8を用いてユニット201、202、203に蓄電機構101から充電する場合の説明をする。ユニット201、202、203に蓄電機構101から充電する場合、スイッチ302、303は導通状態、スイッチ311、312、313は非導通状態にする。さらにスイッチ301の導通、非導通状態を切り替える。
 図8(a)にスイッチ301が導通状態のときの電流の流れる方向を破線矢印で示す。蓄電機構101からリアクトル102を介して電流が流れ、スイッチ301の導通時間が長い程電流が増幅される。図8(b)にスイッチ301が非導通状態のときの電流の流れる方向を破線矢印で示す。増幅された電流がスイッチ311のダイオード部分を通って通過し、ユニット201、202、203に流れる。スイッチ301の導通と非導通状態を繰り返し切り替えることで、ユニット201、202、203が充電され、ユニット201、202、203の電圧が上がる。
 図9は、充電するユニットおよび放電するユニットに対するスイッチ301、302、303、311、312、313の導通状態(ON)、非導通状態(OFF)、導通状態と非導通状態の繰り返し切替(ON⇔OFF)の関係を示す図である。図2の構成において、ユニットの充電または放電のいずれかを行う場合、ユニット203は必ず含まれる。 
 以上の動作を可能にするためには、蓄電機構101の電圧が充電、放電したいユニット201~203の電圧よりも低い必要がある。そのため、蓄電機構101は常に各ユニットの電圧より低い電圧を持つか、放電することで電圧が各ユニットの電圧を下回ることを特徴とするものが望ましい。放電することで電圧が各ユニットの電圧を下回ることを特徴とする蓄電機構101の電圧が充電、放電したい1つ以上のユニットの電圧よりも高い場合は、まずユニット201、202、203に蓄電機構101から充電することで、蓄電機構101の電圧を下げる動作を行う。蓄電機構101の電圧が充電、放電したい1つ以上のユニットの電圧よりも低くなった後、電力授受を行う。また1つ以上のユニットに充電したくても蓄電機構101のエネルギーが少ない場合は、蓄電機構101の電圧が充電、放電したい1つ以上のユニットの電圧よりも低くなる範囲内で、複数のユニットから蓄電機構101へ充電を行う動作を追加する。
 電圧測定器351、352、353はユニット201、202、203の電圧を測定し、制御動作部111にその情報を送る。制御動作部111は、あるユニットの電圧が各ユニットの電圧の平均よりもある程度小さい場合、あるいはある程度大きい場合に、その電圧差を小さくするようスイッチ301~303、311~313を制御する。電圧差が基準値より大きいまたは小さいユニットがあれば、図10に示す手順でユニットの電圧差を小さくする。
 図10には、各ユニット201~203において、平均電圧と比較した電圧が大きい場合と小さい場合における手順を表にして示している。図10において、第二手順まである場合は第一手順と第二手順を入れ替えてもよい。各ユニットの電圧と各ユニットの電圧の平均の差が基準値以下に収まった場合、制御動作部111は各ユニットの電圧の均等化が達成されたと判断し、全てのスイッチを非導通状態とする。
 実施の形態1における電源装置の動作のフローチャートの一例を図11に示す。図11において、ステップS1は各ユニットの電圧を測定する。ステップS2は各ユニットの平均電圧を算出する。ステップS3は各ユニットの電圧と平均電圧との差を算出する。ステップS4はステップS3における電圧差が基準値を超えるユニットが存在するか否か判断する。ステップS4において電圧差が基準値を超えるユニットが存在する場合(YES)、ステップS5に進んで該当するユニットの電圧を適正にする手順を図10に従って実施する。
 ただし、このフローチャートに必ずしも従う必要はなく、順番を入れ替えても良い。
 以上の動作は図1の構成に代えて図12の構成でも実現可能である。図12の構成は、実施の形態1の図1の構成に比べ、第二のスイッチ群130の位置と第二のスイッチ群130を構成するスイッチ311~313の向きを変えたものである。
 即ち、スイッチ301のソース側端子とスイッチ311のドレイン側端子が接続され、スイッチ311のソース側端子はユニット201の負極に接続され、ユニット201と並列に電圧測定器351が接続されている。これがユニット1つに対する構成段である。
 すなわちユニット201とスイッチ301、311と電圧測定器351を構成段の一段目とする。構成段の二段目は、ユニット202とスイッチ302、312と電圧測定器352で構成され、三段目は、ユニット203とスイッチ303、313と電圧測定器353で構成されており、接続関係は一段目と同様であり説明を省略する。
 図12の構成において、ユニットの充電または放電のいずれかを行う場合、ユニット201は必ず含まれる。充電するユニット、放電するユニット、スイッチの導通状態(ON)、非導通状態(OFF)、導通状態と非導通状態の繰り返し切替(ON⇔OFF)の関係を示した図を図13に示す。また各ユニットの平均電圧との差が基準値より大きい場合に行う実施手順を図14に示す。図13および図14の内容は、図9及び図10とほぼ同様につき説明は省略する。
 さらに電圧測定器に代えてユニットの充電状態を測定する充電状態測定器を備えることで、充電状態の変化に伴う電圧の変化が小さいユニットに対しても、充電状態のばらつきを抑制する効果が得られる。充電状態測定器を備えた場合、図10、図11、図14に記載の「電圧」を「充電状態」と読み替えることで充電状態の均等化が達成される。
 実施の形態1の電源装置100は、以上説明した動作を行うことで、モジュール110に含まれるユニット201~203に電圧または充電状態のばらつきがあった際は、そのばらつきを低減することができる。また、リアクトル、ユニットのキャパシタ数が構成段数と比例しない小型な回路であり、従来より少数のスイッチを用いた小型かつ簡素な構成で、1つ以上のユニットと蓄電機構の間で能動的な電力授受が行える。
実施の形態2.
 次に、この発明の実施の形態2に係る電源装置について図15から図17に基づいて説明する。
 図15はこの発明の実施の形態2に係わる電源装置の構成を示し、この実施の形態2の電源装置150は、蓄電機構101と、リアクトル102と、モジュール110と、複数のスイッチ301~303で構成された第一のスイッチ群120と、複数のスイッチ311~313で構成された第二のスイッチ群130と、電圧測定器351、352、353と、温度測定器701と、制御動作部151とで構成されている。モジュール110はユニット201、202、203で構成される。
 図15に示された電源装置150において、温度測定器701を除く構成は実施の形態1の図2で示された構成と同じにつき、同じまたは相当部分には同じ符号を付して説明を省略する。また、制御動作部151は、電圧測定器351、352、353で検知した各ユニット201~203の電圧と、温度測定器701で測定したモジュール110の温度の情報を入力して、スイッチ301~303、311~313のゲート側端子に信号を送り、それぞれの導通状態、非導通状態を切り替える。
 温度測定器701はモジュール110の温度を測定し、制御動作部151にその情報を送る。測定した温度が予め設定した基準値を下回っていれば、ユニット201、202、203から蓄電機構101への放電、蓄電機構101からユニット201、202、203への充電を繰り返し行う。そうすることで、ユニット201、202、203に存在する内部抵抗が発熱し、ユニット201、202、203の温度を上げることができる。測定した温度が予め設定した基準値を上回っていれば、実施の形態2の電源装置150の昇温機能を停止する。その後、必要に応じて実施の形態1に記載の各ユニットの電圧のばらつきを低減する動作を行う。繰り返しになるため、動作の詳細は記載しない。
 実施の形態2における電源装置の動作のフローチャートの一例を図16に示す。図16において、ステップS1からステップS5までは図11で説明したフローと同じなので説明を省略する。ステップS6はモジュール110の温度を温度測定器701で測定する。ステップS7はモジュール110の温度が基準値以下であるかどうか判断し、基準値以下であれば(YES)ステップS8に進んで、ステップS5と同じように該当するユニットの電圧を適正にする手順を実施する。ステップS7において、モジュール110の温度が基準値以下でなければ(NO)、スタートにリターンする。
 但し、このフローチャートに必ずしも従う必要はなく、順番を入れ替えても良い。
 以上の動作は図15の構成に代えて図17の構成でも実現可能である。図17の構成は、実施の形態1の図12の構成に、モジュール110の温度を測定する温度測定器701を設け、温度測定器701で測定したモジュール110の温度情報を制御動作部151に送るようにしたもので、同じまたは相当部分には同じ符号を付して説明を省略する。
 図17の構成において、ユニットの充電または放電のいずれかを行う場合、ユニット201は必ず含まれる。繰り返しになるため動作の詳細は記載しない。
 さらに電圧測定器に代えてユニットの充電状態を測定する充電状態測定器を備えることで、充電状態の変化に伴う電圧の変化が小さいユニットに対しても、充電状態のばらつきを抑制する効果が得られる。充電状態測定器を備えた場合、図16に記載の「電圧」を「充電状態」と読み替えることで充電状態の均等化が達成される。
 実施の形態2の電源装置150は、以上で説明した動作を行うことで、モジュール110に含まれるユニット201~203に電圧または充電状態のばらつきがあった際は、そのばらつきを低減することができる。またモジュール110の温度が基準値を下回っていた際も、モジュール110の温度を上げることができる。
実施の形態3.
 次に、この発明の実施の形態3に係る電源装置について図18から図21に基づいて説明する。
 図18はこの発明の実施の形態3に係わる電源装置の構成を示し、実施の形態3における電源装置200は、蓄電機構101と、リアクトル102と、蓄電機構101とリアクトル102の間に接続されたスイッチ401と、モジュール210と、複数のスイッチ301~303で構成された第一のスイッチ群120と、複数のスイッチ311~313で構成された第二のスイッチ群130と、電圧測定器351、352、353と、制御動作部112で構成されている。モジュール210はユニット201、202、203と、各ユニットに直列に接続された切り離し用スイッチ321、322、323で構成される。 
 但し、各ユニット201~203は1つの蓄電デバイスであってもよいし、複数の蓄電デバイスを組み合わせたものでもよい。また蓄電デバイスは二次電池のみならずキャパシタ、電気二重層キャパシタなど蓄電機能を有するデバイスであってよい。さらにスイッチはボディダイオードを有するものでよく、またボディダイオードを有さないスイッチング素子にダイオードを組み合わせたものでもよい。好ましくは、スイッチ301、302、303、311、312、313はMOSFETである。
 スイッチ301のドレイン側端子とスイッチ311のソース側端子が接続され、スイッチ311のドレイン側端子はスイッチ321のソース側端子と接続され、スイッチ321のドレイン側端子はユニット201の正極に接続され、ユニット201と並列に電圧測定器351が接続されている。これがユニット1つに対する構成段である。すなわちユニット201とスイッチ301、311、321と電圧測定器351とで構成されるものを構成段の一段目とする。
 構成段の二段目は、ユニット202とスイッチ302、312、322と電圧測定器352で構成されており、一段目と同様にスイッチ302のドレイン側端子とスイッチ312のソース側端子が接続され、スイッチ312のドレイン側端子はスイッチ322のソース側端子と接続され、スイッチ322のドレイン側端子はユニット202の正極に接続され、ユニット202と並列に電圧測定器352が接続されている。そしてユニット201の負極とスイッチ322のソース側端子が接続され、スイッチ301のソース側端子とスイッチ302のドレイン側端子が接続される。
 構成段の三段目も同様に、ユニット203とスイッチ303、313、323と電圧測定器353で構成されており、スイッチ303のドレイン側端子とスイッチ313のソース側端子が接続され、スイッチ313のドレイン側端子はスイッチ323のソース側端子と接続され、スイッチ323のドレイン側端子はユニット203の正極に接続され、ユニット203と並列に電圧測定器353が接続されている。そしてユニット202の負極とスイッチ323のソース側端子が接続され、スイッチ302のソース側端子とスイッチ303のドレイン側端子が接続される。
 ユニット203の負極とスイッチ303のソース側端子は接続され、蓄電機構101とリアクトル102とスイッチ401を直列に接続したものが、スイッチ301のドレイン側端子とスイッチ303のソース側端子とそれぞれ接続される。
 ユニット201、202、203とスイッチ321、322、323で構成されたモジュール210の正極側および負極側の両端子が、図1の電気機器180にそれぞれ接続される。電圧測定器351、352、353で検知した電圧の情報は制御動作部112に送られ、制御動作部112はスイッチ301、311、302、312、303、313、321、322、323、401のゲート側端子に信号を送り、それぞれの導通状態、非導通状態を切り替える。
 なお、ユニット201~203の数は3つでなくてもよく、構成段の数も三段でなくてよい。ユニット201~203と直列に接続されたスイッチ321~323は順番を入れ替えて接続してもよい。好ましくは、蓄電機構101はコンデンサ、二次電池である。
 実施の形態3では、制御動作部112はユニット201~203が正常に動作しているか否かの良、不良を判定する機能を含む。モジュール210に含まれる1つ以上のユニットが著しく劣化した場合などでは、不良ユニットの利用範囲が狭まるとともにモジュール210の想定されうる利用が困難となる。制御動作部112は各ユニットの電圧から想定されうる利用が困難となったユニットを不良ユニットと判定し、電気機器180とモジュール210との間に流れる電流が不良ユニットを迂回するようスイッチの導通、非導通を切り替える。
 図19を用いて動作を説明する。ユニット201が不良と判定された場合、ユニット201と直列に接続されたスイッチ321、401を非導通状態、スイッチ301、311、312を導通状態とする。電気機器180とモジュール210との間に流れる電流は、破線矢印で示すようにユニット201を通らずスイッチ301、311、312を通る。ユニット201以外のユニットが不良と判定された場合も同様に、不良ユニットと直列に接続されたスイッチとスイッチ401を非導通状態にし、不良ユニットを電流が迂回するよう不良ユニットと並列に接続されたスイッチを導通状態とする。
 不良と判定されたユニットが存在しない場合は、スイッチ321、322、323は導通状態を維持する。電圧測定器351、352、353はユニット201、202、203の電圧を測定し、制御動作部112にその情報を送る。制御動作部112は、あるユニットの電圧が各ユニットの電圧の平均よりもある程度小さい場合、あるいはある程度大きい場合に、その電圧差を小さくするようスイッチを制御する。電圧差が基準値より大きいユニットがあれば、ユニットの電圧差を小さくする。各ユニットの電圧のばらつきがある程度以下に収まった場合、制御動作部112は各ユニットの電圧の均等化が達成されたと判断し、全てのスイッチを非導通状態とする。図18の構成において、ユニットの充電または放電のいずれかを行う場合、ユニット203は必ず含まれる。繰り返しになるため、動作と手順の詳細は記載しない。
 実施の形態3における電源装置の動作のフローチャートの一例を図20に示す。図20において、ステップS1は各ユニットの電圧を測定する。ステップS12は各ユニットの良、不良を判定する。ステップS13は不良と判定されたユニットが存在するか否か判断し、不良のユニットが存在する場合(YES)、ステップS14に進んで、不良と判定されたユニットを切り離す。ステップS13において不良と判定されたユニットが存在しない場合(NO)、ステップS2に進んで各ユニットの平均電圧を算出する。ステップS2からステップS5までは図11で説明したフローと同じなので説明を省略する。
 但し、このフローチャートに必ずしも従う必要はなく、順番を入れ替えても良い。
 以上の動作は図18の構成に代えて図21の構成でも実現可能である。図21の構成は、実施の形態3の図18の構成に比べ、第二のスイッチ群130の位置と第二のスイッチ群130を構成するスイッチ311~313の向きを変えたものである。
 即ち、スイッチ301のソース側端子とスイッチ311のドレイン側端子が接続され、スイッチ311のソース側端子はユニット201の負極に接続され、ユニット201の正極にはスイッチ321のドレイン側端子が接続され、ユニット201と並列に電圧測定器351が接続されている。これがユニット1つに対する構成段である。
 すなわちユニット201とスイッチ301、311、321と電圧測定器351を構成段の一段目とする。構成段の二段目は、ユニット202とスイッチ302、312、322と電圧測定器352で構成され、三段目は、ユニット203とスイッチ303、313、323と電圧測定器353で構成されており、接続関係は一段目と同様であり説明を省略する。
 図21の構成において、ユニットの充電または放電のいずれかを行う場合、ユニット201は必ず含まれる。繰り返しになるため動作の詳細は記載しない。
 さらに電圧測定器に代えてユニットの充電状態を測定する充電状態測定器を備えることで、充電状態の変化に伴う電圧の変化が小さいユニットに対しても、充電状態のばらつきを抑制する効果が得られる。充電状態測定器を備えた場合、図20のステップS2からステップS5に記載の「電圧」を「充電状態」と読み替えることで充電状態の均等化が達成される。
 実施の形態3の電源装置200は、以上に説明した動作を行うことで、モジュール210に含まれるユニットに電圧または充電状態のばらつきがあった際は、そのばらつきを低減することができ、1つ以上のユニットと蓄電機構の間で能動的な電力授受が行える。またあるユニット内の蓄電デバイスが著しく劣化した等の理由で使用が困難となった不良ユニットが発生した際に、その不良ユニットを電気的に切り離すことができる。
実施の形態4.
 次に、この発明の実施の形態4に係る電源装置について図22から図24に基づいて説明する。
 図22はこの発明の実施の形態4に係わる電源装置の構成を示し、電源装置250は、蓄電機構101と、リアクトル102と、蓄電機構101とリアクトル102の間に接続されたスイッチ401と、モジュール210と、複数のスイッチ301~303で構成された第一のスイッチ群120と、複数のスイッチ311~313で構成された第二のスイッチ群130と、電圧測定器351、352、353と、温度測定器701と、制御動作部152を含む。モジュール210はユニット201、202、203とスイッチ321、322、323で構成される。
 図22に示された電源装置250において、温度測定器701を除く構成は実施の形態3の図18で示された構成と同じにつき、同じまたは相当部分には同じ符号を付して説明を省略する。また、制御動作部152は、電圧測定器351、352、353で検知した各ユニット201~203の電圧と、温度測定器701で測定したモジュール210の温度の情報を入力して、スイッチ301~303、311~313、321~323、401のゲート側端子に信号を送り、それぞれの導通状態、非導通状態を切り替える。
 なお、ユニットの数は3つでなくてもよく、構成段の数も三段でなくてよい。ユニットと直列に接続されたスイッチは順番を入れ替えて接続してもよい。好ましくは、蓄電機構101はコンデンサ、二次電池である。
 図22の電源装置250において、ユニット201が不良と判定された場合、及び不良と判定されたユニットが存在しない場合における動作は図18の構成の場合と同じなので説明を省略する。
 また温度測定器701はモジュール210の温度を測定し、制御動作部152にその情報を送る。測定した温度が予め設定した基準値を下回っていれば、ユニット201、202、203から蓄電機構101への放電、蓄電機構101からユニット201、202、203への充電を繰り返し行う。そうすることで、ユニット201、202、203に存在する内部抵抗が発熱し、ユニット201、202、203の温度を上げることができる。測定した温度が予め設定した基準値を上回っていれば、昇温機能を停止する。その後、必要に応じて実施の形態3に記載の各ユニットの電圧のばらつきを低減する動作を行う。
 実施の形態4における電源装置の動作のフローチャートの一例を図23に示す。図23において、ステップS1、ステップS1に続くステップS12からステップS14、ステップS13に続くステップS2からステップS5は図20で説明したフローと同じなので説明を省略する。さらにステップS5に続くステップS6からステップS8は図16で説明したフローと同じなので説明を省略する。
 但し、このフローチャートに必ずしも従う必要はなく、順番を入れ替えても良い。
 以上の動作は図22の構成に代えて図24の構成でも実現可能である。図24の構成は、実施の形態4の図22の構成に比べ、第二のスイッチ群130の位置と第二のスイッチ群130を構成するスイッチ311~313の向きを変えたものである。
 即ち、スイッチ301のソース側端子とスイッチ311のドレイン側端子が接続され、スイッチ311のソース側端子はユニット201の負極に接続され、ユニット201の正極にはスイッチ321のドレイン側端子が接続され、ユニット201と並列に電圧測定器351が接続されている。これがユニット1つに対する構成段である。
 すなわちユニット201とスイッチ301、311、321と電圧測定器351を構成段の一段目とする。構成段の二段目は、ユニット202とスイッチ302、312、322と電圧測定器352で構成され、三段目は、ユニット203とスイッチ303、313、323と電圧測定器353で構成されており、接続関係は一段目と同様であり説明を省略する。
 図24の構成において、ユニットの充電または放電のいずれかを行う場合、ユニット201は必ず含まれる。繰り返しになるため動作の詳細は記載しない。
 さらに電圧測定器に代えてユニットの充電状態を測定する充電状態測定器を備えることで、充電状態の変化に伴う電圧の変化が小さいユニットに対しても、充電状態のばらつきを抑制する効果が得られる。充電状態測定器を備えた場合、図23のステップS2からステップS5に記載の「電圧」を「充電状態」と読み替えることで充電状態の均等化が達成される。
 実施の形態4の電源装置250は、以上に説明した動作を行うことで、モジュールに含まれるユニットに電圧または充電状態のばらつきがあった際は、そのばらつきを低減することができる。
またモジュールの温度が基準値を下回っていた際も、モジュールの温度を上げることができる。さらに不良ユニットがあった際には不良ユニットを電気的に切り離すことができる。
実施の形態5.
 次に、この発明の実施の形態5に係る電源装置について図25から図27に基づいて説明する。
 実施の形態5の電源装置300は、蓄電機構101と、リアクトル102と、スイッチ401、512、513と、モジュール210と、複数のスイッチ301~303で構成された第一のスイッチ群120と、複数のスイッチ311~313で構成された第二のスイッチ群130と、電圧測定器351、352、353と、制御動作部113を含む。モジュール210はユニット201、202、203とスイッチ321、322、323で構成される。
 実施の形態5の電源装置300は、実施の形態3の図18に示す構成において、スイッチ512と513を追加したもので、このスイッチ512と513以外の構成は、図18と同じまたは相当部分には同じ符号を付して説明を省略する。
 スイッチ512は、そのドレイン側端子が蓄電機構101とスイッチ401の接続点に接続され、ソース側端子がスイッチ303のソース側端子及びユニット203の負極に接続されている。スイッチ513は、そのドレイン側端子がユニット203の負極とスイッチ512のソース側端子に接続され、ソース側端子が蓄電機構101の負極側に接続されるようになっている。
 蓄電機構101とリアクトル102とスイッチ401を直列に接続したものが、スイッチ301のドレイン側端子とスイッチ513のソース側端子にそれぞれ接続される。
 ユニット201、202、203とスイッチ321、322、323で構成されたモジュール210の正極側端子と、蓄電機構101の負極側端子が図1の電気機器180にそれぞれ接続される。
 電圧測定器351、352、353で検知した電圧の情報は制御動作部113に送られ、あるユニットの電圧が複数のユニットの電圧の平均よりもある程度小さい場合、あるいはある程度大きい場合には、制御動作部113はスイッチ301、311、302、312、303、313、321、322、323、401、512、513のゲート側端子に信号を送り、それぞれの導通、非導通状態を切り替える。
 なお、ユニット201、202、203の数は3つでなくてもよく、構成段の数も三段でなくてよい。ユニットと直列に接続されたスイッチ321~323は順番を入れ替えて接続してもよい。
 好ましくは、蓄電機構101は二次電池または組電池またはキャパシタまたは電気二重層キャパシタである。さらに好ましくは、蓄電機構101はユニット201、202、203と同等の特性を有するユニットである。
 実施の形態5の電源装置300では、制御動作部113はユニット201、202、203の良、不良を判定する機能を含む。制御動作部113は各ユニットの電圧から想定されうる利用が困難となったユニットを不良ユニットと判定し、電気機器とモジュール210との間に流れる電流が不良ユニットを迂回するようスイッチの導通、非導通を切り替える。さらに不良と判定されたユニットが電気的に切り離されても、モジュール210の電圧が下がるのを防ぐため、蓄電機構101をモジュール210と電気的に直列に接続する。
 図25を用いて動作を説明する。ユニット201が不良と判定された場合、ユニット201と直列に接続されたスイッチ321、401を非導通状態、スイッチ301、311、312を導通状態とする。さらにスイッチ513を非導通状態、スイッチ512を導通状態に切り替える。そうすることで、電気機器とモジュール210との間に流れる電流は、ユニット201を通らずスイッチ301、311、312、512とユニット202、203と蓄電機構101を通る。ユニット201以外のユニットが不良と判定された場合も同様に、不良ユニットと直列に接続されたスイッチとスイッチ401、513を非導通状態とし、不良ユニットを電流が迂回するよう不良ユニットと並列に接続されたスイッチとスイッチ512を導通状態とする。
 不良と判定されたユニットが存在しない場合は、スイッチ512を非導通状態、スイッチ321、322、323、401、513を導通状態とする。電圧測定器351、352、353はユニット201、202、203の電圧を測定し、制御動作部113にその情報を送る。制御動作部113は、あるユニットの電圧が各ユニットの電圧の平均よりもある程度小さい場合、あるいはある程度大きい場合に、その電圧差を小さくするようスイッチを制御する。電圧差が基準値より大きいユニットがあれば、ユニットの電圧差を小さくする。各ユニットの電圧のばらつきがある程度以下に収まった場合、制御動作部113は各ユニットの電圧の均等化が達成されたと判断し、全てのスイッチを非導通状態とする。図25の構成において、ユニットの充電または放電のいずれかを行う場合、ユニット203は必ず含まれる。繰り返しになるため、動作と手順の詳細は記載しない。
 実施の形態5における電源装置の動作のフローチャートの一例を図26に示す。図26において、ステップS1、ステップS1に続くステップS12からステップS14、ステップS13に続くステップS2からステップS5は図20で説明したフローと同じなので説明を省略する。さらにステップS14に続くステップS15は、不良と判定されたユニットを切り離したモジュール210と蓄電機構101を直接接続する。
 但し、このフローチャートに必ずしも従う必要はなく、順番を入れ替えても良い。
 以上の動作は図25の構成に代えて図27の構成でも実現可能である。図27の構成は、実施の形態5の図25の構成に比べ、第二のスイッチ群130の位置と第二のスイッチ群130を構成するスイッチ311~313の向きを変えたものである。
 即ち、スイッチ301のソース側端子とスイッチ311のドレイン側端子が接続され、スイッチ311のソース側端子はユニット201の負極に接続され、ユニット201の正極にはスイッチ321のドレイン側端子が接続され、ユニット201と並列に電圧測定器351が接続されている。これがユニット1つに対する構成段である。
 すなわちユニット201とスイッチ301、311、321と電圧測定器351を構成段の一段目とする。構成段の二段目は、ユニット202とスイッチ302、312、322と電圧測定器352で構成され、三段目は、ユニット203とスイッチ303、313、323と電圧測定器353で構成されており、接続関係は一段目と同様であり説明を省略する。
 また、スイッチ512は、そのソース側端子が蓄電機構101とスイッチ401の接続点に接続され、ドレイン側端子がスイッチ301のドレイン側端子及びユニット201の正極に接続されているスイッチ321のソース側端子に接続されている。スイッチ513は、そのドレイン側端子が蓄電機構101の正極側に接続され、ソース側端子がスイッチ321のソース側端子とスイッチ512のドレイン側端子に接続される。
 蓄電機構101とリアクトル102とスイッチ401を直列に接続したものが、ユニット203の負極とスイッチ513のドレイン側端子にそれぞれ接続される。
 ユニット201、202、203とスイッチ321、322、323で構成されたモジュール210の負極側端子と、蓄電機構101の正極側端子が図1の電気機器180にそれぞれ接続される。
 図27の構成において、ユニットの充電または放電のいずれかを行う場合、ユニット201は必ず含まれる。繰り返しになるため動作の詳細は記載しない。
 さらに電圧測定器に代えてユニットの充電状態を測定する充電状態測定器を備えることで、充電状態の変化に伴う電圧の変化が小さいユニットに対しても、充電状態のばらつきを抑制する効果が得られる。充電状態測定器を備えた場合、図26のステップS2からステップS5に記載の「電圧」を「充電状態」と読み替えることで充電状態の均等化が達成される。
 実施の形態5の電源装置300は、以上に説明した動作を行うことで、モジュールに含まれるユニットに電圧または充電状態のばらつきがあった際は、そのばらつきを低減することができ、1つ以上のユニットと蓄電機構の間で能動的な電力授受が行える。またあるユニット内の蓄電デバイスが著しく劣化した等の理由で使用が困難となった不良ユニットがあった際には、該不良ユニットを電気的に切り離し、切り離されたユニット分の電圧を補償するために蓄電機構をモジュールに電気的に直列に接続することができる。
実施の形態6.
 次に、この発明の実施の形態6に係る電源装置について図28から図30に基づいて説明する。
 図28はこの発明の実施の形態6に係わる電源装置の構成を示し、電源装置350は、蓄電機構101と、リアクトル102と、スイッチ401、512、513と、モジュール210と、複数のスイッチ301~303で構成された第一のスイッチ群120と、複数のスイッチ311~313で構成された第二のスイッチ群130と、電圧測定器351、352、353と、温度測定器701と、制御動作部153を含む。モジュール210はユニット201、202、203とスイッチ321、322、323で構成される。
 図28に示された電源装置350において、温度測定器701を除く構成は実施の形態5の図25で示された構成と同じにつき、同じまたは相当部分には同じ符号を付して説明を省略する。また、制御動作部153は、電圧測定器351、352、353で検知した各ユニット201~203の電圧と、温度測定器701で測定したモジュール210の温度の情報を入力して、スイッチ301~303、311~313、321~323、401、512、513のゲート側端子に信号を送り、それぞれの導通状態、非導通状態を切り替える。
 なお、ユニットの数は3つでなくてもよく、構成段の数も三段でなくてよい。ユニットと直列に接続されたスイッチは順番を入れ替えて接続してもよい。好ましくは、蓄電機構101は二次電池または組電池またはキャパシタまたは電気二重層キャパシタである。さらに好ましくは、蓄電機構101はユニット201、202、203と同等の特性を有するユニットである。
 ユニット201が不良と判定された場合、ユニット201と直列に接続されたスイッチ321、401を非導通状態、スイッチ301、311、312を導通状態とする。さらにスイッチ401、513を非導通状態、スイッチ512を導通状態に切り替える。そうすることで、電気機器180とモジュール210との間に流れる電流は、ユニット201を通らずスイッチ301、311、312、512とユニット202、203と蓄電機構101を通る。ユニット201以外のユニットが不良と判定された場合も同様に、不良ユニットと直列に接続されたスイッチとスイッチ401、513を非導通状態とし、不良ユニットを電流が迂回するよう不良ユニットと並列に接続されたスイッチとスイッチ512を導通状態とする。
 不良と判定されたユニットが存在しない場合は、スイッチ512を非導通状態、スイッチ321、322、323、401、513を導通状態とする。電圧測定器351、352、353はユニット201、202、203の電圧を測定し、制御動作部153にその情報を送る。制御動作部153は、あるユニットの電圧が各ユニットの電圧の平均よりもある程度小さい場合、あるいはある程度大きい場合に、その電圧差を小さくするようスイッチを制御する。電圧差が基準値より大きいユニットがあれば、ユニットの電圧差を小さくする。各ユニットの電圧のばらつきがある程度以下に収まった場合、制御動作部153は各ユニットの電圧の均等化が達成されたと判断し、全てのスイッチを非導通状態とする。図28の構成において、ユニットの充電または放電のいずれかを行う場合、ユニット203は必ず含まれる。繰り返しになるため、動作と手順の詳細は記載しない。
 また温度測定器701はモジュールの温度を測定し、制御動作部153にその情報を送る。測定した温度が予め設定した基準値を下回っていれば、ユニット201、202、203から蓄電機構101への放電、蓄電機構101からユニット201、202、203への充電を繰り返し行う。そうすることで、ユニット201、202、203に存在する内部抵抗が発熱し、ユニット201、202、203の温度を上げることができる。測定した温度が予め設定した基準値を上回っていれば、昇温機能を停止する。その後、必要に応じて実施の形態3に記載の各ユニットのばらつきを低減する動作を行う。繰り返しになるため、動作の詳細は記載しない。
 実施の形態6における電源装置の動作のフローチャートの一例を図29に示す。図29において、ステップS1、ステップS1に続くステップS12からステップS15、ステップS13に続くステップS2からステップS5は図26で説明したフローと同じなので説明を省略する。さらにステップS5に続くステップS6からステップS8は図16で説明したフローと同じなので説明を省略する。
 但し、このフローチャートに必ずしも従う必要はなく、順番を入れ替えても良い。
 以上の動作は図28の構成に代えて図30の構成でも実現可能である。図30の構成は、実施の形態6の図28の構成に比べ、第二のスイッチ群130の位置と第二のスイッチ群130を構成するスイッチ311~313の向きを変えたものである。
 図30の構成において、ユニットの充電または放電のいずれかを行う場合、ユニット201は必ず含まれる。繰り返しになるため動作の詳細は記載しない。
 さらに電圧測定器に代えてユニットの充電状態を測定する充電状態測定器を備えることで、充電状態の変化に伴う電圧の変化が小さいユニットに対しても、充電状態のばらつきを抑制する効果が得られる。充電状態測定器を備えた場合、図29のステップS2からステップS5に記載の「電圧」を「充電状態」と読み替えることで充電状態の均等化が達成される。
 実施の形態6の電源装置350は、以上に説明した動作を行うことで、モジュールに含まれるユニットに電圧または充電状態のばらつきがあった際は、そのばらつきを低減することができる。
またモジュールの温度が基準値を下回っていた際も、モジュールの温度を上げることができる。さらに不良ユニットが合った際には該不良ユニットを電気的に切り離すことができる。
実施の形態7.
 次に、この発明の実施の形態7に係る電源装置について図31から図35に基づいて説明する。
 図31はこの発明の実施の形態7に係わる電源装置の構成を示し、電源装置900はリアクトル102と、モジュール110と、複数のスイッチ301~303で構成された第一のスイッチ群120と、複数のスイッチ311~313で構成された第二のスイッチ群130と、電圧測定器351、352、353と、制御動作部911を含む。モジュール110はユニット201、202、203で構成される。電源装置900は電気機器901と接続される。
 ただし各ユニット201、202、203は、1つの蓄電デバイスであってもよいし、複数の蓄電デバイスを組み合わせたものでもよい。また蓄電デバイスは二次電池のみならずキャパシタ、電気二重層キャパシタなど蓄電機能を有するデバイスであってよい。さらにスイッチ301~303、311~313はボディダイオードを有するものでよく、またボディダイオードを有さないスイッチング素子にダイオードを組み合わせたものでもよい。好ましくは、スイッチ301、302、303、311、312、313はMOSFETである。
 図31に示された電源装置900において、蓄電機構101の代わりに電気機器901を接続した以外の構成は実施の形態1の図2で示された構成と同じにつき、同じまたは相当部分には同じ符号を付して説明を省略する。また、制御動作部911は、電圧測定器351、352、353で検知した各ユニット201~203の電圧の情報を入力して、スイッチ301~303、311~313のゲート側端子に信号を送り、それぞれの導通状態、非導通状態を切り替える。
 なお、ユニット201~203の数は3つでなくてもよく、構成段の数も三段でなくてよい。また、電気機器901と接続される電源装置900は1つでなくともよく、複数の電気機器901を並列に接続したものであってよい。
 ユニット203から電気機器901に給電する場合の動作説明をする。ユニット203から電気機器901に給電する場合、スイッチ301、311、302、312、303は全て非導通状態にする。そうすることで、ユニット201、202は蓄電機構101と電気的に絶縁状態となり、電気機器901との電力授受を行わない。さらにスイッチ313の導通、非導通状態を切り替える。スイッチ313が導通状態のとき、ユニット203からリアクトル102を介して電気機器901へ電力が送られることで、ユニット203は放電する。スイッチ313が非導通状態のとき、ユニット203は電気的に絶縁状態であり、ユニット203は電気機器901へ電力を送らない。スイッチ313の導通と非導通状態を繰り返し切り替えることで、ユニット203から電気機器901に給電する。
 ユニット202、203から電気機器901に給電する場合の動作説明をする。ユニット202、203から電気機器901に給電する場合、スイッチ301、311、302、303、313は全て非導通状態にする。そうすることで、ユニット201は蓄電機構101と電気的に絶縁状態となり、電気機器901との電力授受を行わない。さらにスイッチ312の導通、非導通状態を切り替える。スイッチ312が導通状態のとき、ユニット202、203からリアクトル102を介して電気機器901へ電力が送られることで、ユニット202、203は放電する。スイッチ312が非導通状態のとき、ユニット202、203は電気機器901へ電力を送らない。スイッチ312の導通と非導通状態を繰り返し切り替えることで、ユニット202、203を徐々に放電させ、ユニット202、203の電圧を下げる。
 ユニット201、202、203から電気機器901に給電する場合の動作説明をする。ユニット201、202、203から電気機器901に給電する場合、スイッチ301、302、312、303、313は全て非導通状態にする。さらにスイッチ311の導通、非導通状態を切り替える。スイッチ311が導通状態のとき、ユニット201、202、203からリアクトル102を介して電気機器901へ電力が送られることで、ユニット201、202、203は放電する。スイッチ311が非導通状態のとき、ユニット201、202、203は電気機器901へ電力を送らない。スイッチ311の導通と非導通状態を繰り返し切り替えることで、ユニット201、202、203を徐々に放電させ、ユニット202、203の電圧を下げる。
 ユニット203に電気機器901から回生充電する場合の動作説明をする。ユニット203に電気機器901から回生する場合、スイッチ301、302は導通状態、スイッチ311、312、313は非導通状態にする。そうすることで、ユニット201、202は電気機器901と電気的に絶縁状態となり、電気機器901との電力授受を行わない。さらにスイッチ303の導通、非導通状態を切り替える。スイッチ303が導通状態のとき、電気機器901からリアクトル102を介して電流が流れ、スイッチ303の導通時間が長い程電流が増幅される。スイッチ303が非導通状態のとき、増幅された電流がスイッチ313のダイオード部分を通って通過し、ユニット203に流れる。スイッチ303の導通と非導通状態を繰り返し切り替えることで、ユニット203が充電され、ユニット203の電圧が上がる。
 ユニット202、203に電気機器901から回生充電する場合の動作説明をする。ユニット202、203に電気機器901から回生充電する場合、スイッチ301、303は導通状態、スイッチ311、312、313は非導通状態にする。そうすることで、ユニット201は電気機器901と電気的に絶縁状態となり、電気機器901との電力授受を行わない。さらにスイッチ302の導通、非導通状態を切り替える。スイッチ302が導通状態のとき、電気機器901からリアクトル102を介して電流が流れ、スイッチ302の導通時間が長い程電流が増幅される。スイッチ302が非導通状態のとき、増幅された電流がスイッチ312のダイオード部分を通って通過し、ユニット202、203に流れる。スイッチ302の導通と非導通状態を繰り返し切り替えることで、ユニット202、203が充電され、ユニット202、203の電圧が上がる。
 ユニット201、202、203に電気機器901から回生充電する場合の動作説明をする。ユニット201、202、203に電気機器901から回生充電する場合、スイッチ302、303は導通状態、スイッチ311、312、313は非導通状態にする。さらにスイッチ301の導通、非導通状態を切り替える。スイッチ301が導通状態のとき、電気機器901からリアクトル102を介して電流が流れ、スイッチ301の導通時間が長い程電流が増幅される。スイッチ301が非導通状態のとき、増幅された電流がスイ。スイッチ301の導通と非導通状態を繰り返し切り替えることで、ユニット201、202、203が充電され、ユニット201、202、203の電圧が上がる。図31の構成において、ユニットの充電または放電のいずれかを行う場合、ユニット203は必ず含まれる。以上の動作は図13と同様である。
 電圧測定器351、352、353はユニット201、202、203の電圧を測定し、制御動作部911にその情報を送る。制御動作部911は、あるユニットの電圧が各ユニットの電圧の平均よりもある程度小さい場合、あるいはある程度大きい場合に、その電圧差を小さくするようスイッチ301~303、311~313を制御する。
 制御動作部911は電圧差が基準値より大きいユニットがあれば、電気機器901への給電、電気機器901からの回生充電の際、ユニットの電圧差が大きくならないよう制御する。各ユニットの電圧と各ユニットの電圧の平均の差が基準値以下に収まった場合、制御動作部911は各ユニットの電圧の均等化が達成されたと判断し、ユニット201、202、203全てと電気機器901との間で電力授受がなされるよう制御する。
 図32には、各ユニット201~203において、平均電圧と比較した電圧が大きい場合と小さい場合における手順を、電気機器901が力行と回生の場合に分けて表にして示している。
 実施の形態7における電源装置900の動作のフローチャートの一例を図33に示す。図33において、ステップS1からステップS4までは図11で説明したフローと同じなので説明を省略する。ステップS16は、ステップS4において電圧差が基準値を超えるユニットが存在する場合(YES)、ステップS16に進んで該当するユニットの電圧の大小、電気機器901の動作が力行か回生かによって、図32に従った手順を実施する。
 もし、ステップS4において電圧差が基準値を超えるユニットが存在しない場合(NO)、ステップS17に進んで電気機器901の力行または回生時は全てのユニットが放電または充電する。
 ただしこのフローチャートに必ずしも従う必要はなく、順番を入れ替えても良い。
 以上の動作は図32の構成に代えて図34の構成でも実現可能である。図34の構成は、実施の形態7の図32の構成に比べ、第二のスイッチ群130の位置と第二のスイッチ群130を構成するスイッチ311~313の向きを変えたものである。
 即ち、スイッチ301のソース側端子とスイッチ311のドレイン側端子が接続され、スイッチ311のソース側端子はユニット201の負極に接続され、ユニット201と並列に電圧測定器351が接続されている。これがユニット1つに対する構成段である。
 すなわちユニット201とスイッチ301、311と電圧測定器351を構成段の一段目とする。構成段の二段目は、ユニット202とスイッチ302、312と電圧測定器352で構成され、三段目は、ユニット203とスイッチ303、313と電圧測定器353で構成されており、接続関係は一段目と同様であり説明を省略する。
 図34の構成において、ユニットの充電または放電のいずれかを行う場合、ユニット201は必ず含まれる。動作は図13と同様であるので説明を省略する。一方、動作手順を図35に示す。
 図35は各ユニット201~203において、平均電圧と比較した電圧が大きい場合と小さい場合における手順を、電気機器901が力行と回生の場合に分けて図32の場合と同様に表にして示している。またフローチャートの一例は図33に示される通りである。
 実施の形態7の電源装置900は、以上に説明した動作を行うことで、電気機器901とモジュール110との間で電力授受がなされる際は、モジュール110に含まれるユニット201~203に電圧のばらつきが大きくならないよう制御することができる。
 さらに電圧測定器に代えてユニットの充電状態を測定する充電状態測定器を備えることで、充電状態の変化に伴う電圧の変化が小さいユニットに対しても、充電状態のばらつきが大きくならないよう制御することができる。充電状態測定器を備えた場合、図32、図33に記載の「電圧」を「充電状態」と読み替えることで、充電状態のばらつきが大きくならないような動作が達成される。
実施の形態8.
 次に、この発明の実施の形態8に係る電源装置について説明する。
 図36は、実施の形態1における構成の1つである図2を例に、モジュールを流れる電流を測定する電流測定器370を追加した構成である。制御動作部111は電流測定器370で検出した電流値と、予め設定した充放電を許容する電流値の範囲内にあるかを算出する。電流測定器370で検出した電流値が、充放電を許容する電流値の範囲外であった場合、制御動作部111は充放電電流の一部または全部を蓄電機構101に充放電するよう制御する。例えば、図13に記載の動作のうち、ユニット全てに充電するか、ユニット全てを放電するかの操作を施すことで、充放電電流の一部または全部を蓄電機構101に負担させることができる。そうすることで、モジュール110を構成する各ユニットの充放電電流の負担を軽減することができる。電流測定器を追加する構成は実施の形態1から実施の形態6に記載の全ての構成に応用できる。なお電流測定器370はモジュール110に流れる電流を測定できれば良く、その設置箇所、測定方法を限定するものではない。
 また実施の形態2、実施の形態4、実施の形態6に記載の構成において、温度測定器701が測定したモジュール110の温度が予め設定した基準値を上回っていれば、制御動作部は充放電電流の一部または全部を蓄電機構101が負担するよう制御する。そうすることで、モジュール110に流れる電流による発熱を抑制し、モジュール110の温度上昇を防ぐことができる。
 以上の動作により、蓄電機構101は、電源装置100が充放電する電流の一部または全部を負担することで、モジュール110の負担を軽減することができる。
 なお、制御動作部111~113,151~153及び911は、ハードウエアの一例を図37に示すように、プロセッサ1000と記憶装置1001から構成される。記憶装置は図示していないが、ランダムアクセスメモリ等の揮発性記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを具備する。また、フラッシュメモリの代わりにハードディスクの補助記憶装置を具備してもよい。プロセッサ1000は、記憶装置1001から入力されたプログラムを実行する。この場合、補助記憶装置から揮発性記憶装置を介してプロセッサ1000にプログラムが入力される。また、プロセッサ1000は、演算結果等のデータを記憶装置1001の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にデータを保存してもよい。
 以上、この発明の実施の形態を記述したが、この発明は実施の形態に限定されるものではなく、種々の設計変更を行うことが可能であり、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
 100:電源装置、101:蓄電機構、102:リアクトル、110:モジュール、111~113:制御動作部、120:第一のスイッチ群、130:第二のスイッチ群、150:電源装置、151~153:制御動作部、180:電気機器、200:電源装置、201~203:ユニット、210:モジュール、250:電源装置、300:電源装置、350:電源装置、900:電源装置、301~303:スイッチ(昇圧用スイッチ)、311~313:スイッチ(降圧用スイッチ)、321~323:切り離し用スイッチ、351~353:電圧測定器、370:電流測定器、401,512,513:スイッチ、701:温度測定器、901:電気機器、911:制御動作部

Claims (14)

  1.  1つ以上の蓄電デバイスを含むユニットと、ドレイン側端子が前記ユニットの正極と接続された降圧用スイッチと、ドレイン側端子が前記降圧用スイッチのソース側端子と接続された昇圧用スイッチとで構成されたn個(nは2以上の整数)の構成段、電気エネルギーを蓄積し、電力の入力および出力が可能な蓄電機構、この蓄電機構に直列接続されたリアクトル、および前記降圧用スイッチと前記昇圧用スイッチの導通、非導通を切り替える制御動作部とを備え、
     前記構成段のうち、第m段目(mは2≦m≦nを満たす整数)の構成段のユニットの正極は第m-1段目の構成段のユニットの負極と接続され、第m段目の構成段に含まれる昇圧用スイッチのドレイン側端子は第m-1段目の構成段に含まれる昇圧用スイッチのソース側端子と接続され、第n段目の構成段に含まれる昇圧用スイッチのソース側端子は第n段目の構成段に含まれるユニットの負極と接続され、直列接続されたn個の前記昇圧用スイッチは前記蓄電機構と前記リアクトルの直列回路に並列に接続されたことを特徴とする電源装置。
  2.  1つ以上の蓄電デバイスを含むユニットと、ソース側端子が前記ユニットの負極と接続された降圧用スイッチと、ソース側端子が前記降圧用スイッチのドレイン側端子と接続された昇圧用スイッチとで構成されたn個(nは2以上の整数)の構成段、電気エネルギーを蓄積し、電力の入力および出力が可能な蓄電機構、この蓄電機構に直列接続されたリアクトル、および前記降圧用スイッチと前記昇圧用スイッチの導通、非導通を切り替える制御動作部とを備え、
     前記構成段のうち、第m段目(mは2≦m≦nを満たす整数)の構成段のユニットの正極は第m-1段目の構成段のユニットの負極と接続され、第m段目の構成段に含まれる昇圧用スイッチのドレイン側端子は第m-1段目の構成段に含まれる昇圧用スイッチのソース側端子と接続され、第1段目の構成段に含まれる昇圧用スイッチのドレイン側端子は第1段目の構成段に含まれるユニットの正極と接続され、直列接続されたn個の前記昇圧用スイッチは前記蓄電機構と前記リアクトルの直列回路に並列に接続されたことを特徴とする電源装置。
  3.  前記構成段は前記ユニットと直列に接続された切り離し用スイッチを有し、ソース側端子よりドレイン側端子の方が高電位になるように前記蓄電機構と直列に接続された第一のスイッチを有した電源装置であって、
     前記制御動作部は、前記ユニットが正常に動作しているかをそれぞれ判定し、正常に動作していないと判定された不良ユニットを含む構成段があった場合は、前記第一のスイッチおよび該構成段に含まれる前記切り離し用スイッチを非導通状態にし、かつ電流が前記不良ユニットを迂回するよう前記降圧用スイッチおよび前記昇圧用スイッチを導通状態にすることで、前記不良ユニットを電気的に切り離すことを特徴とする請求項1または請求項2に記載の電源装置。
  4.  前記構成段は前記ユニットと直列に接続された切り離し用スイッチを有し、ソース側端子よりドレイン側端子の方が高電位になるように前記蓄電機構と直列に接続された第一のスイッチを有し、前記リアクトルの一端は第1段目の構成段に含まれる昇圧用スイッチのドレイン側端子に接続され、前記リアクトルの他端は前記第一のスイッチのドレイン側端子と接続され、前記第一のスイッチのソース側端子と前記蓄電機構の正極側端子との間に第二のスイッチのドレイン側端子が接続され、前記第二のスイッチのソース側端子が第n段目の構成段に含まれる昇圧用スイッチのソース側端子に接続されるとともに第三のスイッチのドレイン側端子と接続され、前記第三のスイッチのソース側端子は前記蓄電機構の負極側端子と接続された電源装置であって、
     前記制御動作部は、前記ユニットが正常に動作しているかをそれぞれ判定し、正常に動作していないと判定された不良ユニットを含む構成段があった場合は、該構成段に含まれる切り離し用スイッチを非導通状態にし、前記第一のスイッチを非導通状態、前記第二のスイッチを導通状態、前記第三のスイッチを非導通状態にそれぞれ切り替え、かつ電流が前記不良ユニットを迂回するよう前記降圧用スイッチおよび前記昇圧用スイッチを導通状態にすることで、前記不良ユニットを電気的に切り離し、前記蓄電機構を電気的に直列に接続することを特徴とする請求項1に記載の電源装置。
  5.  前記構成段は前記ユニットと直列に接続された切り離し用スイッチを有し、ソース側端子よりドレイン側端子の方が高電位になるように前記蓄電機構と直列に接続された第一のスイッチを有し、前記リアクトルの一端は第n段目の構成段に含まれる昇圧用スイッチのソース側端子に接続され、前記リアクトルの他端は前記第一のスイッチのソース側端子と接続され、前記第一のスイッチのドレイン側端子と、前記蓄電機構の負極側端子との間に第二のスイッチのソース側端子が接続され、前記第二のスイッチのドレイン側端子が第1段目の構成段に含まれる昇圧用スイッチのドレイン側端子に接続されるとともに第三のスイッチのソース側端子と接続され、前記第三のスイッチのドレイン側端子は前記蓄電機構の正極側端子と接続された電源装置であって、
     前記制御動作部は、前記ユニットが正常に動作しているかをそれぞれ判定し、正常に動作していないと判定された不良ユニットを含む構成段があった場合は、該構成段に含まれる切り離し用スイッチを非導通状態にし、前記第一のスイッチを非導通状態、前記第二のスイッチを導通状態、前記第三のスイッチを非導通状態にそれぞれ切り替え、かつ電流が前記不良ユニットを迂回するよう前記降圧用スイッチおよび前記昇圧用スイッチを導通状態にすることで、前記不良ユニットを電気的に切り離し、前記蓄電機構を電気的に直列に接続することを特徴とする請求項2に記載の電源装置。
  6.  前記n個の構成段のうち、第k段目(kは1≦k≦nを満たす整数)の構成段に含まれる降圧用スイッチの導通状態、非導通状態を繰り返し切り替え、その他の降圧用スイッチおよび昇圧用スイッチを全て非導通状態にすることで、第k段目の構成段を含む1つまたは複数の構成段に含まれるユニットが放電し、電圧が降圧されて前記蓄電機構に電力が送られ、かつ前記n個の構成段のうち、第k段目の構成段に含まれる昇圧用スイッチの導通状態、非導通状態を繰り返し切り替え、その他の構成段に含まれる昇圧用スイッチを全て導通状態とし、さらに降圧用スイッチを全て非導通状態とすることで、前記蓄電機構から電圧が昇圧され、第k段目の構成段を含む1つまたは複数の構成段に含まれるユニットが充電される請求項1から請求項5のいずれか1項に記載の電源装置。
  7.  前記ユニットの電圧をそれぞれ測定する電圧測定器を備え、前記制御動作部は、前記電圧測定器で測定した各ユニットの電圧をそれぞれ参照し、複数のユニットの電圧の平均値との差の絶対値が基準値より大きい電圧を有するユニットが存在した場合に、その差を縮めるよう制御することを特徴とする請求項1から請求項6のいずれか1項に記載の電源装置。
  8.  前記ユニットの充電状態をそれぞれ測定する充電状態測定器を備え、前記制御動作部は、前記充電状態測定器で測定した各ユニットの充電状態をそれぞれ参照し、複数のユニットの充電状態の平均値との差の絶対値が基準値より大きい充電状態を有するユニットが存在した場合に、その差を縮めるよう制御することを特徴とする請求項1から請求項6のいずれか1項に記載の電源装置。
  9.  前記ユニットの温度を測定する温度測定器を備え、前記制御動作部は、前記温度測定器で測定した前記ユニットの温度を参照し、測定した温度が基準値を下回っていた場合に前記ユニットと前記蓄電機構との間で電力授受を行うよう制御することを特徴とする請求項1から請求項6のいずれか1項に記載の電源装置。
  10.  直列接続された前記ユニットに流れる電流値を測定する電流測定器を備え、前記制御動作部は、前記電流測定器で測定した電流値を参照し、測定した電流値が予め定めた範囲を逸脱していた場合に、充放電電流の一部または全部を前記蓄電機構を充放電するよう制御することを特徴とする請求項1から請求項6のいずれか1項に記載の電源装置。
  11.  前記ユニットの温度を測定する温度測定器を備え、前記制御動作部は、前記温度測定器で測定した前記ユニットの温度を参照し、測定した温度が基準値を上回っていた場合に、前記蓄電機構が充放電電流の一部または全部を充放電するよう制御することを特徴とする請求項1から請求項6のいずれか1項に記載の電源装置。
  12.  請求項1から請求項5のいずれか1項に記載の電源装置において、前記蓄電機構は電気機器に替え、前記電気機器は電力消費機能または発電機能のうち少なくとも一方を有し、直列接続されたn個の前記昇圧用スイッチは前記電気機器と前記リアクトルの直列回路に並列に接続されたことを特徴とする電源装置。
  13.  前記ユニットの電圧をそれぞれ測定する電圧測定器を備え、前記制御動作部は、前記電圧測定器で測定した各ユニットの電圧をそれぞれ参照し、第k段目(kは1≦k≦nを満たす整数)の構成段のユニットの電圧が複数のユニットの電圧の平均値より基準値以上大きい場合、前記電気機器の電力消費時は第k段目の構成段のユニットを含む1つまたは複数のユニットを放電することで電力供給を行い、前記電気機器の電力回生時は第k段目の構成段のユニットを含まない1つまたは複数のユニットに電力を充電し、第k段目の構成段のユニットの電圧が複数のユニットの電圧の平均値より基準値以上小さい場合、前記電気機器の電力消費時は第k段目の構成段のユニットを含む1つまたは複数のユニットを放電することで電力供給を行い、前記電気機器の電力回生時は第k段目の構成段のユニットを含まない1つまたは複数のユニットに電力を充電することを特徴とする請求項12に記載の電源装置。
  14.  前記ユニットの充電状態をそれぞれ測定する充電状態測定器を備え、前記制御動作部は、前記充電状態測定器で測定した各ユニットの充電状態をそれぞれ参照し、第k段目(kは1≦k≦nを満たす整数)の構成段のユニットの充電状態が複数のユニットの充電状態の平均値より基準値以上大きい場合、前記電気機器の電力消費時は第k段目の構成段のユニットを含む1つまたは複数のユニットを放電することで電力供給を行い、前記電気機器の電力回生時は第k段目の構成段のユニットを含まない1つまたは複数のユニットに電力を充電し、第k段目の構成段のユニットの電圧が複数のユニットの充電状態の平均値より基準値以上小さい場合、前記電気機器の電力消費時は第k段目の構成段のユニットを含む1つまたは複数のユニットを放電することで電力供給を行い、前記電気機器の電力回生時は第k段目の構成段のユニットを含まない1つまたは複数のユニットに電力を充電することを特徴とする請求項12に記載の電源装置。
PCT/JP2018/003728 2017-06-01 2018-02-05 電源装置 WO2018220900A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880028731.3A CN110651409B (zh) 2017-06-01 2018-02-05 电源装置
JP2019521952A JP6698944B2 (ja) 2017-06-01 2018-02-05 電源装置
DE112018002809.7T DE112018002809T5 (de) 2017-06-01 2018-02-05 Stromversorgungseinrichtung
US16/499,644 US11146080B2 (en) 2017-06-01 2018-02-05 Power supply device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-108975 2017-06-01
JP2017108975 2017-06-01

Publications (1)

Publication Number Publication Date
WO2018220900A1 true WO2018220900A1 (ja) 2018-12-06

Family

ID=64456219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003728 WO2018220900A1 (ja) 2017-06-01 2018-02-05 電源装置

Country Status (5)

Country Link
US (1) US11146080B2 (ja)
JP (1) JP6698944B2 (ja)
CN (1) CN110651409B (ja)
DE (1) DE112018002809T5 (ja)
WO (1) WO2018220900A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7055573B2 (ja) * 2018-09-13 2022-04-18 アルパイン株式会社 電子機器、電子機器処理方法および電子機器処理プログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142369A2 (ja) * 2010-05-11 2011-11-17 国立大学法人徳島大学 電源装置及び充電回路
CN105406526A (zh) * 2015-11-04 2016-03-16 北方工业大学 新型Buck-Boost变换器及充放电电路与均衡电路的一体化设计电路
JP2016154423A (ja) * 2015-02-20 2016-08-25 有限会社アイ・アール・ティー 電圧バランス装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003274566A (ja) 2002-03-18 2003-09-26 Nichicon Corp 電気二重層キャパシタの異常検出方法およびこれを用いた充放電回路
JP2005184876A (ja) 2003-12-16 2005-07-07 Toyota Motor Corp 電源装置
JP4940817B2 (ja) * 2006-08-04 2012-05-30 パナソニック株式会社 蓄電装置
JP4618227B2 (ja) 2006-10-24 2011-01-26 日産自動車株式会社 車両の電力供給装置
EP2610998A4 (en) * 2011-03-18 2015-07-29 Asahi Kasei Microdevices Corp SWITCHING OF SERIAL MEMORY CELLS AND METHOD OF COMPARING SERIAL MEMORY CELLS
US9520613B2 (en) * 2013-07-23 2016-12-13 Infineon Technologies Ag Battery control with block selection
JP6170816B2 (ja) * 2013-11-18 2017-07-26 Fdk株式会社 バランス補正装置及び蓄電装置
JP6454936B2 (ja) * 2014-05-12 2019-01-23 パナソニックIpマネジメント株式会社 電力変換装置、およびそれを用いたパワーコンディショナ
EP3252939B1 (en) * 2016-05-31 2020-05-13 GE Energy Power Conversion Technology Ltd Power converters

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142369A2 (ja) * 2010-05-11 2011-11-17 国立大学法人徳島大学 電源装置及び充電回路
JP2016154423A (ja) * 2015-02-20 2016-08-25 有限会社アイ・アール・ティー 電圧バランス装置
CN105406526A (zh) * 2015-11-04 2016-03-16 北方工业大学 新型Buck-Boost变换器及充放电电路与均衡电路的一体化设计电路

Also Published As

Publication number Publication date
US20200091736A1 (en) 2020-03-19
CN110651409B (zh) 2022-12-02
JP6698944B2 (ja) 2020-05-27
JPWO2018220900A1 (ja) 2019-11-07
US11146080B2 (en) 2021-10-12
DE112018002809T5 (de) 2020-03-05
CN110651409A (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
JP6874952B2 (ja) 分散型バッテリ、バッテリ制御方法、及び電気自動車
KR101168078B1 (ko) 다중입력 양방향 dc-dc 컨버터
KR102084926B1 (ko) 배터리 시스템 및 중간 전압 공급 방법
US20090072625A1 (en) Electric power supply system
JP5659649B2 (ja) 直流電源装置及び電力貯蔵システム
JP2009118727A (ja) ハイブリッド電源
CN107612054B (zh) 用于给电网供应电能的电池组系统
JP2009247145A (ja) 電源システム
JP5943952B2 (ja) 電源システム
CN106464006A (zh) 不间断供电电源装置
CN108736535A (zh) 充放电控制电路以及电池装置
CN113682199A (zh) 化成分容电路、设备及系统
JP4696212B2 (ja) キャパシタ電源システム
WO2018220900A1 (ja) 電源装置
JP2009148110A (ja) 充放電器とこれを用いた電源装置
Khan et al. 5 kW multilevel DC-DC converter for hybrid electric and fuel cell automotive applications
JP4144009B2 (ja) 可変電圧型蓄電装置およびハイブリッド型電源装置
JP2016154423A (ja) 電圧バランス装置
JP2020533935A (ja) 自動車両に搭載された電圧コンバータおよび関連する充電器
JP2010226811A (ja) 組電池の管理装置
JP4758788B2 (ja) 電源装置
JP6251404B2 (ja) 電気化学的な蓄電池結合体
JP2018117485A (ja) 蓄電池モジュール及びこれを備える蓄電池システム
JP2009225516A (ja) キャパシタ充放電監視制御装置
JP4653202B2 (ja) 充電回路および充電方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18808919

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521952

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18808919

Country of ref document: EP

Kind code of ref document: A1