WO2018220839A1 - 無方向性電磁鋼板 - Google Patents

無方向性電磁鋼板 Download PDF

Info

Publication number
WO2018220839A1
WO2018220839A1 PCT/JP2017/020668 JP2017020668W WO2018220839A1 WO 2018220839 A1 WO2018220839 A1 WO 2018220839A1 JP 2017020668 W JP2017020668 W JP 2017020668W WO 2018220839 A1 WO2018220839 A1 WO 2018220839A1
Authority
WO
WIPO (PCT)
Prior art keywords
oriented electrical
steel sheet
electrical steel
grain size
ratio
Prior art date
Application number
PCT/JP2017/020668
Other languages
English (en)
French (fr)
Inventor
猛 久保田
諸星 隆
雅文 宮嵜
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2019521915A priority Critical patent/JP6828816B2/ja
Priority to US16/496,328 priority patent/US10995393B2/en
Priority to CN201780090208.9A priority patent/CN110573639B/zh
Priority to KR1020197032443A priority patent/KR102338644B1/ko
Priority to EP17911443.4A priority patent/EP3633054A4/en
Priority to BR112019019936-5A priority patent/BR112019019936B1/pt
Priority to PCT/JP2017/020668 priority patent/WO2018220839A1/ja
Publication of WO2018220839A1 publication Critical patent/WO2018220839A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • C21D8/1211Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Definitions

  • the present invention relates to a non-oriented electrical steel sheet.
  • Non-oriented electrical steel sheets are used for motor cores, for example, and non-oriented electrical steel sheets are excellent in all directions parallel to the plate surface (hereinafter sometimes referred to as “all directions in the plate surface”). Magnetic properties such as low iron loss and high magnetic flux density are required. Various techniques have been proposed so far, but it is difficult to obtain sufficient magnetic properties in all directions within the plate surface. For example, even if sufficient magnetic characteristics can be obtained in a specific direction within the plate surface, sufficient magnetic characteristics may not be obtained in other directions.
  • An object of the present invention is to provide a non-oriented electrical steel sheet capable of obtaining excellent magnetic properties in all directions within a plate surface.
  • the present inventors have intensively studied to solve the above problems. As a result, it became clear that it is important to make the chemical composition, thickness, and average crystal grain size appropriate.
  • the columnar crystal ratio and average crystal grain size in casting or rapid solidification of molten steel are controlled, It has also become clear that it is important to control the rolling reduction of cold rolling and to control the plate tension and cooling rate during finish annealing.
  • Si content (mass%) is [Si]
  • Al content (mass%) is [Al]
  • Mn content (mass%) is [Mn]
  • parameter Q 00 or more, Sn: 0.00% to 0.40%, Cu: 0.0% to 1.0%, Cr: 0.0% to 10.0%, and the balance: Fe and impurities, Having a chemical composition represented by The total mass of S contained in the sulfide or oxysulfide of Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, or Cd is 40% of the total mass of S contained in the non-oriented
  • ⁇ 100 ⁇ crystal orientation strength is 3.0 or more
  • the thickness is 0.15 mm to 0.30 mm
  • Q [Si] +2 [Al]-[Mn] (Formula 1)
  • the chemical composition of the non-oriented electrical steel sheet and the molten steel used for manufacturing the non-oriented electrical steel sheet according to the embodiment of the present invention will be described. Although the details will be described later, the non-oriented electrical steel sheet according to the embodiment of the present invention is manufactured through molten steel casting and hot rolling or rapid solidification of the molten steel, cold rolling, finish annealing, and the like. Therefore, the chemical composition of the non-oriented electrical steel sheet and the molten steel considers not only the characteristics of the non-oriented electrical steel sheet but also these treatments.
  • “%”, which is a unit of content of each element contained in a non-oriented electrical steel sheet or molten steel means “mass%” unless otherwise specified.
  • the non-oriented electrical steel sheet according to the present embodiment has C: 0.0030% or less, Si: 2.00% to 4.00%, Al: 0.10% to 3.00%, Mn: 0.10% ⁇ 2.00%, S: 0.0030% or less, one or more selected from the group consisting of Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn and Cd: more than 0.0100% in total 0.0250% or less, represented by Formula 1 when the Si content (% by mass) is [Si], the Al content (% by mass) is [Al], and the Mn content (% by mass) is [Mn].
  • Parameters Q 2.00 or more, Sn: 0.00% to 0.40%, Cu: 0.0% to 1.0%, Cr: 0.0% to 10.0%, and the balance: Fe and It has a chemical composition represented by impurities.
  • impurities include those contained in raw materials such as ore and scrap and those contained in the manufacturing process.
  • Q [Si] +2 [Al]-[Mn] (Formula 1)
  • C (C: 0.0030% or less) C increases iron loss and causes magnetic aging. Therefore, the lower the C content, the better. Such a phenomenon is remarkable when the C content exceeds 0.0030%. For this reason, C content shall be 0.0030% or less.
  • the reduction of the C content also contributes to the uniform improvement of the magnetic properties in all directions within the plate surface.
  • Si increases electrical resistance, reduces eddy current loss, reduces iron loss, and increases the yield ratio, thereby improving punchability into the iron core. If the Si content is less than 2.00%, these effects cannot be obtained sufficiently. Therefore, the Si content is 2.00% or more. On the other hand, if the Si content exceeds 4.00%, the magnetic flux density decreases, the punching workability decreases due to an excessive increase in hardness, and cold rolling becomes difficult. Therefore, the Si content is 4.00% or less.
  • Al increases electric resistance, reduces eddy current loss, and reduces iron loss. Al also contributes to an improvement in the relative magnitude of the magnetic flux density B50 with respect to the saturation magnetic flux density.
  • the magnetic flux density B50 is a magnetic flux density in a magnetic field of 5000 A / m. If the Al content is less than 0.10%, these effects cannot be obtained sufficiently. Therefore, the Al content is 0.10% or more. On the other hand, if the Al content is more than 3.00%, the magnetic flux density is lowered, or the yield ratio is lowered and the punching workability is lowered. Therefore, the Al content is 3.00% or less.
  • Mn increases electrical resistance, reduces eddy current loss, and reduces iron loss.
  • ⁇ 100 ⁇ crystal the texture obtained by primary recrystallization tends to develop a crystal having a ⁇ 100 ⁇ plane parallel to the plate surface (hereinafter sometimes referred to as “ ⁇ 100 ⁇ crystal”).
  • the ⁇ 100 ⁇ crystal is a crystal suitable for uniformly improving the magnetic properties in all directions within the plate surface.
  • the higher the Mn content the higher the MnS precipitation temperature, and the larger the MnS that is precipitated.
  • the Mn content the more difficult it is to precipitate fine MnS having a particle size of about 100 nm that hinders recrystallization and crystal grain growth in finish annealing. If the Mn content is less than 0.10%, these effects cannot be obtained sufficiently. Therefore, the Mn content is 0.10% or more. On the other hand, if the Mn content exceeds 2.00%, the crystal grains do not grow sufficiently in the finish annealing, and the iron loss increases. Therefore, the Mn content is 2.00% or less.
  • S is not an essential element but is contained as an impurity in steel, for example. S inhibits recrystallization and crystal grain growth in finish annealing due to precipitation of fine MnS. Therefore, the lower the S content, the better. Such an increase in iron loss is significant when the S content exceeds 0.0030%. For this reason, S content shall be 0.0030% or less.
  • Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn and Cd react with S in the molten steel at the time of casting or rapid solidification of the molten steel, and precipitate sulfides or oxysulfides or both.
  • Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, and Cd may be collectively referred to as “coarse precipitate forming elements”.
  • the particle size of the coarse precipitate-forming element precipitate is about 1 ⁇ m to 2 ⁇ m, which is much larger than the particle size (about 100 nm) of fine precipitates such as MnS, TiN, and AlN. For this reason, these fine precipitates adhere to the precipitates of the coarse precipitate-forming elements, and it becomes difficult to inhibit recrystallization and crystal grain growth in finish annealing. If the content of coarse precipitate-generating elements is 0.0100% or less in total, these effects cannot be obtained stably. Therefore, the total content of coarse precipitate-forming elements is over 0.0100%.
  • the total content of coarse precipitate-generating elements is 0.0250% or less.
  • Sn, Cu, and Cr are not essential elements, but are optional elements that may be appropriately contained in a non-oriented electrical steel sheet up to a predetermined amount.
  • Sn and Cu develop a crystal suitable for improving magnetic properties by primary recrystallization. For this reason, when Sn or Cu or both of them are contained, a texture in which ⁇ 100 ⁇ crystals suitable for uniform improvement in magnetic properties in all directions within the plate surface are easily obtained by primary recrystallization. Sn suppresses oxidation and nitridation of the surface of the steel sheet during finish annealing, and suppresses variation in crystal grain size. Therefore, Sn or Cu or both of them may be contained. In order to sufficiently obtain these functions and effects, Sn: 0.02% or more, Cu: 0.1% or more, or both of them are preferable.
  • the Sn content is set to 0.40% or less. If the Cu content exceeds 1.0%, the steel plate becomes brittle, and hot rolling and cold rolling become difficult, or it becomes difficult to pass through the annealing line for finish annealing. Therefore, the Cu content is 1.0% or less.
  • Cr 0.0% to 10.0%
  • Cr reduces high frequency iron loss. Reduction of high-frequency iron loss contributes to higher speed rotation of the rotating machine, and higher speed rotation contributes to downsizing and higher efficiency of the rotating machine. Cr increases electric resistance, reduces eddy current loss, and reduces iron loss such as high-frequency iron loss. Cr lowers the stress sensitivity and contributes to the reduction of the magnetic property accompanying the compressive stress introduced when forming the iron core and the reduction of the magnetic property accompanying the compressive stress acting at the time of high speed rotation. Therefore, Cr may be contained. In order to sufficiently obtain these functions and effects, Cr: 0.2% or more is preferable. On the other hand, if the Cr content exceeds 10.0%, the magnetic flux density decreases and the cost increases. Accordingly, the Cr content is 10.0% or less.
  • the total mass of S contained in the sulfide or oxysulfide of coarse precipitate forming elements is 40% or more of the total mass of S contained in the non-oriented electrical steel sheet. is there.
  • the coarse precipitate-forming element reacts with S in the molten steel at the time of casting or rapid solidification of the molten steel to generate sulfides, oxysulfides, or both of these precipitates.
  • the ratio of the total mass of S contained in the sulfide or oxysulfide of the coarse precipitate-forming element to the total mass of S contained in the non-oriented electrical steel sheet is high. It means that the element is contained in the non-oriented electrical steel sheet, and fine precipitates such as MnS are effectively adhered to the precipitates. For this reason, the higher the ratio, the more accelerated the recrystallization and crystal grain growth in the finish annealing, and the better the magnetic properties are obtained. And if the said ratio is less than 40%, the recrystallization and crystal grain growth in finish annealing are not enough, and the outstanding magnetic characteristic is not acquired.
  • the ⁇ 100 ⁇ crystal orientation strength is 3.0 or more. If the ⁇ 100 ⁇ crystal orientation strength is less than 3.0, a decrease in magnetic flux density and an increase in iron loss may occur, or variations in magnetic characteristics may occur between directions parallel to the plate surface.
  • the ⁇ 100 ⁇ crystal orientation intensity can be measured by an X-ray diffraction method or an electron backscatter diffraction (EBSD) method. Since the reflection angle of the X-ray and electron beam from the sample differs depending on the crystal orientation, the crystal orientation strength can be obtained from the reflection strength and the like based on the random orientation sample.
  • the average grain size of the non-oriented electrical steel sheet according to this embodiment is 65 ⁇ m to 100 ⁇ m.
  • the iron loss W10 / 800 is high.
  • the iron loss W10 / 800 is an iron loss at a magnetic flux density of 1.0 T and a frequency of 800 Hz.
  • the thickness of the non-oriented electrical steel sheet according to the embodiment of the present invention is, for example, 0.15 mm or more and 0.30 mm or less. If the thickness exceeds 0.30 mm, excellent high-frequency iron loss cannot be obtained. Accordingly, the thickness is 0.30 mm or less. When the thickness is less than 0.15 mm, the magnetic characteristics on the surface of the non-oriented electrical steel sheet having low stability become more dominant than the magnetic characteristics in the interior having high stability. In addition, if the thickness is less than 0.15 mm, it becomes difficult to pass through the annealing line of finish annealing, or the number of non-oriented electrical steel sheets required for a certain size iron core increases. It may cause a decrease in productivity and an increase in manufacturing cost due to an increase in man-hours. Accordingly, the thickness is 0.15 mm or more.
  • the non-oriented electrical steel sheet according to this embodiment is, for example, a magnetic flux density B50 in ring magnetism measurement of 1.67 T or more, and iron loss W10 / 800: the thickness of the non-oriented electrical steel sheet is t (mm).
  • the magnetic characteristics represented by 30 ⁇ [0.45 + 0.55 ⁇ ⁇ 0.5 ⁇ (t / 0.20) + 0.5 ⁇ (t / 0.20) 2 ⁇ ] W / kg or less Can be presented.
  • a ring-shaped sample taken from a non-oriented electrical steel sheet for example, a ring-shaped sample having an outer diameter of 5 inches (12.70 cm) and an inner diameter of 4 inches (10.16 cm) is excited to generate a magnetic flux. Flow all around the sample.
  • the magnetic characteristics obtained by the ring magnetism measurement reflect the omnidirectional structure in the plate surface.
  • molten steel casting, hot rolling, cold rolling, finish annealing, and the like are performed.
  • a molten steel having the above chemical composition is cast to produce a steel ingot such as a slab, and this hot rolling is performed to form columnar crystals in the steel ingot such as a slab as a starting cast structure.
  • a steel strip having a ratio of the hot rolled crystal structure of 80% or more in area fraction and an average crystal grain size of 0.1 mm or more is obtained.
  • the columnar crystal has a ⁇ 100 ⁇ ⁇ 0vw> texture desirable for uniform improvement of the magnetic properties of the non-oriented electrical steel sheet, particularly the magnetic properties in all directions within the plate surface.
  • the ⁇ 100 ⁇ ⁇ 0vw> texture is a texture in which a crystal parallel to the plate surface is a ⁇ 100 ⁇ plane and a rolling direction is a ⁇ 0vw> orientation (v and w are arbitrary real numbers ( (Except when v and w are both 0.) If the ratio of columnar crystals is less than 80%, a texture in which ⁇ 100 ⁇ crystals have developed by finish annealing cannot be obtained.
  • the ratio of columnar crystals can be specified by microscopic observation In the first manufacturing method, in order to make the ratio of columnar crystals 80% or more, for example, one surface of a slab during solidification
  • the temperature difference between the surface and the other surface is 40 ° C. or more, and this temperature difference can be controlled by the cooling structure of the mold, the material, the mold taper, the mold flux, etc.
  • the ratio of such columnar crystals is Under the condition of 80% or more When steel is cast, sulfides or oxysulfides of Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, or Cd, or both are easily generated, and the formation of fine sulfides such as MnS Is suppressed.
  • the crystals grown from within the crystal grains are desirable ⁇ 100 ⁇ crystals for magnetic properties, whereas crystals grown from the grain boundaries.
  • undesired crystals for magnetic properties such as ⁇ 111 ⁇ ⁇ 112> crystals. Therefore, the larger the average crystal grain size of the steel strip, the easier it is to develop ⁇ 100 ⁇ crystals that are desirable for magnetic properties by finish annealing, and in particular, when the average crystal grain size of the steel strip is 0.1 mm or more, the excellent magnetism Easy to obtain characteristics.
  • the average crystal grain size of the steel strip is 0.1 mm or more.
  • the average crystal grain size of the steel strip can be adjusted by the hot rolling start temperature and the coiling temperature.
  • the starting temperature is 900 ° C. or lower and the coiling temperature is 650 ° C. or lower
  • the crystal grains contained in the steel strip are crystal grains that are not recrystallized and stretched in the rolling direction, so the average crystal grain size is 0.1 mm.
  • the above steel strip is obtained.
  • Coarse precipitate forming elements are put in the bottom of the last pan before casting in the steel making process, molten steel containing elements other than coarse precipitate forming elements is injected into the pan, and coarse precipitates are generated in the molten steel. It is preferable to dissolve the element. Thereby, a coarse precipitate generation element can be made difficult to scatter from molten steel, and reaction with a coarse precipitate formation element and S can be promoted.
  • the last pan before casting in the steel making process is, for example, a pan immediately above the tundish of a continuous casting machine.
  • the rolling reduction of cold rolling is 90% or less. If the rolling reduction of cold rolling is less than 40%, it may be difficult to ensure the thickness accuracy and flatness of the non-oriented electrical steel sheet. Therefore, the rolling reduction of cold rolling is preferably 40% or more.
  • the final annealing causes primary recrystallization and crystal grain growth, and the average crystal grain size is set to 65 ⁇ m to 100 ⁇ m.
  • the finish annealing a texture in which ⁇ 100 ⁇ crystals suitable for uniform improvement in magnetic properties in all directions within the plate surface are obtained.
  • the holding temperature is set to 900 ° C. or higher and 1000 ° C. or lower, and the holding time is set to 10 seconds or longer and 60 seconds or shorter.
  • the plate tension of finish annealing is set to 3 MPa or less.
  • the cooling rate at 950 ° C. to 700 ° C. in the finish annealing is set to 1 ° C./second or less.
  • the non-oriented electrical steel sheet according to this embodiment can be manufactured.
  • an insulating film may be formed by coating and baking.
  • the molten steel having the above chemical composition is rapidly solidified on the surface of the cooling body to be moved and renewed, the ratio of columnar crystals is 80% or more in area fraction, and the average crystal grain size is 0.1 mm or more. Get the steel strip.
  • the temperature injected into the surface of the cooling body where the molten steel is renewed is increased by 25 ° C. or more than the solidification temperature.
  • the temperature of the molten steel is increased by 40 ° C. or more than the solidification temperature, the ratio of columnar crystals can be made almost 100%.
  • the average crystal grain size of the steel strip is 0.1 mm or more.
  • the average crystal grain size of the steel strip can be adjusted by the temperature of the molten steel when injected into the surface of the cooling body during rapid solidification, the cooling rate on the surface of the cooling body, and the like.
  • the coarse precipitate forming element is put into the bottom of the last pan before casting in the steel making process, and molten steel containing elements other than the coarse precipitate forming element is injected into the pan, and the molten steel is poured into the molten steel. It is preferable to dissolve coarse precipitate-forming elements. Thereby, a coarse precipitate generation element can be made difficult to scatter from molten steel, and reaction with a coarse precipitate formation element and S can be promoted.
  • the last pan before casting in the steel making process is, for example, a pan immediately above the tundish of a casting machine that rapidly solidifies.
  • Cold rolling and finish annealing may be performed under the same conditions as in the first manufacturing method.
  • the non-oriented electrical steel sheet according to this embodiment can be manufactured.
  • an insulating film may be formed by coating and baking.
  • the non-oriented electrical steel sheet according to this embodiment exhibits excellent magnetic properties that are uniform in all directions within the plate surface, and is used for iron cores of electrical equipment such as rotating machines, small and medium-sized transformers, and electrical components. . Moreover, the non-oriented electrical steel sheet according to the present embodiment can also contribute to high efficiency and downsizing of the rotating machine.
  • non-oriented electrical steel sheet according to the embodiment of the present invention will be specifically described with reference to examples.
  • the following examples are merely examples of the non-oriented electrical steel sheets according to the embodiments of the present invention, and the non-oriented electrical steel sheets according to the present invention are not limited to the following examples.
  • Table 4 shows the temperature difference between the two surfaces, the ratio of columnar crystals, and the average crystal grain size of the steel strip. Subsequently, cold rolling was performed at a reduction ratio of 78.6% to obtain a steel plate having a thickness of 0.30 mm. Thereafter, continuous finish annealing was performed at 950 ° C. for 30 seconds to obtain a non-oriented electrical steel sheet.
  • the crystal orientation strength I, thickness t, and average crystal grain size r were measured. The results are also shown in Table 4. The underline in Table 4 indicates that the numerical value is out of the scope of the present invention.
  • a sample No. 1 was subjected to cold rolling with an appropriate reduction amount using a steel strip having an appropriate chemical composition, a ratio of slab columnar crystals as a starting material, and an average grain size.
  • 51-No. In No. 55 since the ratio R S , ⁇ 100 ⁇ crystal orientation strength I, thickness t, and average crystal grain size r are within the range of the present invention, good results were obtained in ring magnetism measurement.
  • Sample No. containing an appropriate amount of Sn or Cu. 53 and no. In 54 a particularly excellent magnetic flux density B50 was obtained.
  • Sample No. containing an appropriate amount of Cr 55 an excellent iron loss W10 / 800 was obtained.
  • Sample No. 61-No. 64 the chemical composition is within the range of the present invention, and the ratio R S , ⁇ 100 ⁇ crystal orientation strength I, thickness t, and average crystal grain size r are within the range of the present invention. Results were obtained. Sample No. with a threading tension of 3 MPa or less. 62 and no. In 63, elastic strain anisotropy was low, and particularly excellent iron loss W10 / 800 and magnetic flux density B50 were obtained. Sample No. with a cooling rate from 950 ° C. to 700 ° C. being 1 ° C./second or less. In 64, the elastic strain anisotropy was further low, and further excellent iron loss W10 / 800 and magnetic flux density B50 were obtained.
  • the length of each side is 55 mm, the two sides are parallel to the rolling direction, and the two sides are parallel to the direction perpendicular to the rolling direction (sheet width direction).
  • a square sample was cut out from each non-oriented electrical steel sheet, and the length of each side after deformation under the influence of elastic strain was measured. Then, it was determined how much the length in the direction perpendicular to the rolling direction was longer than the length in the rolling direction.
  • sample no. 111-No. As shown in Table 16, sample no. 111-No. At 120, the chemical composition is within the range of the present invention, and the ratio R S , ⁇ 100 ⁇ crystal orientation strength I, thickness t, and average crystal grain size r are within the range of the present invention, so that the ring magnetic measurement is good. Results were obtained.
  • a sample No. 1 was subjected to cold rolling with an appropriate reduction amount using a steel strip having an appropriate chemical composition, columnar crystal ratio, and average crystal grain size.
  • 151-No. In 155 since the ratio R S , ⁇ 100 ⁇ crystal orientation strength I, thickness t, and average crystal grain size r are within the scope of the present invention, good results were obtained in ring magnetometry.
  • Sample No. containing an appropriate amount of Sn or Cu. 153 and No. In 154 a particularly excellent magnetic flux density B50 was obtained.
  • Sample No. containing an appropriate amount of Cr In 155 an excellent iron loss W10 / 800 was obtained.
  • the length of each side is 55 mm, the two sides are parallel to the rolling direction, and the two sides are parallel to the direction perpendicular to the rolling direction (sheet width direction).
  • a square sample was cut out from each non-oriented electrical steel sheet, and the length of each side after deformation under the influence of elastic strain was measured. Then, it was determined how much the length in the direction perpendicular to the rolling direction was longer than the length in the rolling direction.
  • the present invention can be used, for example, in a non-oriented electrical steel sheet manufacturing industry and a non-oriented electrical steel sheet utilization industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

Si含有量(質量%)を[Si]、Al含有量(質量%)を[Al]、Mn含有量(質量%)を[Mn]としたときに「Q=[Si]+2[Al]-[Mn]」で表されるパラメータQが2.00以上であり、Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn又はCdの硫化物又は酸硫化物に含まれるSの総質量が、無方向性電磁鋼板に含まれるSの総質量の40%以上であり、{100}結晶方位強度が3.0以上であり、厚さが0.15mm~0.30mmであり、平均結晶粒径が65μm~100μmである。

Description

無方向性電磁鋼板
 本発明は、無方向性電磁鋼板に関する。
 無方向性電磁鋼板は、例えばモータの鉄心に使用され、無方向性電磁鋼板には、その板面に平行なすべての方向(以下、「板面内の全方向」ということがある)において優れた磁気特性、例えば低鉄損及び高磁束密度が要求される。これまで種々の技術が提案されているが、板面内の全方向において十分な磁気特性を得ることは困難である。例えば、板面内のある特定の方向で十分な磁気特性が得られるとしても、他の方向では十分な磁気特性が得られないことがある。
特開平3-126845号公報 特開2006-124809号公報 特開昭61-231120号公報 特開2004-197217号公報 特開平5-140648号公報 特開2008-132534号公報 特開2004-323972号公報 特開昭62-240714号公報 特開2011-157603号公報 特開2008-127659号公報
 本発明は、板面内の全方向において優れた磁気特性を得ることができる無方向性電磁鋼板を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討を行った。この結果、化学組成、厚さ及び平均結晶粒径を適切なものとすることが重要であることが明らかになった。このような無方向性電磁鋼板の製造には、熱延鋼帯等の冷間圧延に供する鋼帯を得る際に、溶鋼の鋳造又は急速凝固における柱状晶率及び平均結晶粒径を制御し、冷間圧延の圧下率を制御し、仕上げ焼鈍時の通板張力及び冷却速度を制御することが重要であることも明らかになった。
 本発明者らは、このような知見に基づいて更に鋭意検討を重ねた結果、以下に示す発明の諸態様に想到した。
 (1)
 質量%で、
 C:0.0030%以下、
 Si:2.00%~4.00%、
 Al:0.10%~3.00%、
 Mn:0.10%~2.00%、
 S:0.0030%以下、
 Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn及びCdからなる群から選択された一種以上:総計で0.0100%超0.0250%以下、
 Si含有量(質量%)を[Si]、Al含有量(質量%)を[Al]、Mn含有量(質量%)を[Mn]としたときに式1で表されるパラメータQ:2.00以上、
 Sn:0.00%~0.40%、
 Cu:0.0%~1.0%、
 Cr:0.0%~10.0%、かつ
 残部:Fe及び不純物、
 で表される化学組成を有し、
 Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn又はCdの硫化物又は酸硫化物に含まれるSの総質量が、無方向性電磁鋼板に含まれるSの総質量の40%以上であり、
 {100}結晶方位強度が3.0以上であり、
 厚さが0.15mm~0.30mmであり、
 平均結晶粒径が65μm~100μmであることを特徴とする無方向性電磁鋼板。
 Q=[Si]+2[Al]-[Mn]   (式1)
 (2)
 前記化学組成において、
 Sn:0.02%~0.40%、若しくは
 Cu:0.1%~1.0%、
 又はこれらの両方が満たされることを特徴とする(1)に記載の無方向性電磁鋼板。
 (3)
 前記化学組成において、
 Cr:0.2%~10.0%
 が満たされることを特徴とする(1)又は(2)に記載の無方向性電磁鋼板。
 本発明によれば、化学組成、厚さ及び平均結晶粒径が適切であるため、板面内の全方向において優れた磁気特性を得ることができる。
 以下、本発明の実施形態について詳細に説明する。
 先ず、本発明の実施形態に係る無方向性電磁鋼板及びその製造に用いる溶鋼の化学組成について説明する。詳細は後述するが、本発明の実施形態に係る無方向性電磁鋼板は、溶鋼の鋳造及び熱間圧延又は溶鋼の急速凝固、冷間圧延、並びに仕上げ焼鈍等を経て製造される。従って、無方向性電磁鋼板及び溶鋼の化学組成は、無方向性電磁鋼板の特性のみならず、これらの処理を考慮したものである。以下の説明において、無方向性電磁鋼板又は溶鋼に含まれる各元素の含有量の単位である「%」は、特に断りがない限り「質量%」を意味する。本実施形態に係る無方向性電磁鋼板は、C:0.0030%以下、Si:2.00%~4.00%、Al:0.10%~3.00%、Mn:0.10%~2.00%、S:0.0030%以下、Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn及びCdからなる群から選択された一種以上:総計で0.0100%超0.0250%以下、Si含有量(質量%)を[Si]、Al含有量(質量%)を[Al]、Mn含有量(質量%)を[Mn]としたときに式1で表されるパラメータQ:2.00以上、Sn:0.00%~0.40%、Cu:0.0%~1.0%、Cr:0.0%~10.0%、かつ残部:Fe及び不純物で表される化学組成を有している。不純物としては、鉱石やスクラップ等の原材料に含まれるもの、製造工程において含まれるもの、が例示される。
 Q=[Si]+2[Al]-[Mn]   (式1)
 (C:0.0030%以下)
 Cは、鉄損を高めたり、磁気時効を引き起こしたりする。従って、C含有量は低ければ低いほどよい。このような現象は、C含有量が0.0030%超で顕著である。このため、C含有量は0.0030%以下とする。C含有量の低減は、板面内の全方向における磁気特性の均一な向上にも寄与する。
 (Si:2.00%~4.00%)
 Siは、電気抵抗を増大させて、渦電流損を減少させ、鉄損を低減したり、降伏比を増大させて、鉄心への打ち抜き加工性を向上したりする。Si含有量が2.00%未満では、これらの作用効果を十分に得られない。従って、Si含有量は2.00%以上とする。一方、Si含有量が4.00%超では、磁束密度が低下したり、硬度の過度な上昇により打ち抜き加工性が低下したり、冷間圧延が困難になったりする。従って、Si含有量は4.00%以下とする。
 (Al:0.10%~3.00%)
 Alは、電気抵抗を増大させて、渦電流損を減少させ、鉄損を低減する。Alは、飽和磁束密度に対する磁束密度B50の相対的な大きさの向上にも寄与する。ここで、磁束密度B50とは、5000A/mの磁場における磁束密度である。Al含有量が0.10%未満では、これらの作用効果を十分に得られない。従って、Al含有量は0.10%以上とする。一方、Al含有量が3.00%超では、磁束密度が低下したり、降伏比を低下させて、打ち抜き加工性を低下させたりする。従って、Al含有量は3.00%以下とする。
 (Mn:0.10%~2.00%)
 Mnは、電気抵抗を増大させて、渦電流損を減少させ、鉄損を低減する。Mnが含まれると、一次再結晶で得られる集合組織が、板面に平行な面が{100}面の結晶(以下、「{100}結晶」ということがある)が発達したものになりやすい。{100}結晶は、板面内の全方向における磁気特性の均一な向上に好適な結晶である。また、Mn含有量が高いほど、MnSの析出温度が高くなり、析出してくるMnSが大きなものとなる。このため、Mn含有量が高いほど、仕上げ焼鈍における再結晶及び結晶粒の成長を阻害する粒径が100nm程度の微細なMnSが析出しにくい。Mn含有量が0.10%未満では、これらの作用効果を十分に得られない。従って、Mn含有量は0.10%以上とする。一方、Mn含有量が2.00%超では、仕上げ焼鈍において結晶粒が十分に成長せず、鉄損が増大する。従って、Mn含有量は2.00%以下とする。
 (S:0.0030%以下)
 Sは、必須元素ではなく、例えば鋼中に不純物として含有される。Sは、微細なMnSの析出により、仕上げ焼鈍における再結晶及び結晶粒の成長を阻害する。従って、S含有量は低ければ低いほどよい。このような鉄損の増加は、S含有量が0.0030%超で顕著である。このため、S含有量は0.0030%以下とする。
 (Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn及びCdからなる群から選択された一種以上:総計で0.0100%超0.0250%以下)
 Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn及びCdは、溶鋼の鋳造又は急速凝固時に溶鋼中のSと反応して硫化物若しくは酸硫化物又はこれらの両方の析出物を生成する。以下、Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn及びCdを総称して「粗大析出物生成元素」ということがある。粗大析出物生成元素の析出物の粒径は1μm~2μm程度であり、MnS、TiN、AlN等の微細析出物の粒径(100nm程度)よりはるかに大きい。このため、これら微細析出物は粗大析出物生成元素の析出物に付着し、仕上げ焼鈍における再結晶及び結晶粒の成長を阻害しにくくなる。粗大析出物生成元素の含有量が総計で0.0100%以下では、これらの作用効果を安定して得ることができない。従って、粗大析出物生成元素の含有量は総計で0.0100%超とする。一方、粗大析出物生成元素の含有量が総計で0.0250%超では、硫化物若しくは酸硫化物以外の析出物が生じやすくなり、むしろ、仕上げ焼鈍における再結晶及び結晶粒の成長が阻害されることとなる。従って、粗大析出物生成元素の含有量は総計で0.0250%以下とする。
 (パラメータQ:2.00以上)
 式1で表されるパラメータQが2.00未満では、フェライト-オーステナイト変態(α-γ変態)が生じ得るため、溶鋼の鋳造又は急速凝固に際し、一旦生成した柱状晶がα-γ変態により壊されたり、平均結晶粒径が小さくなったりする。また、仕上げ焼鈍時にα-γ変態が生じることもある。このため、パラメータQが2.00未満では、所望の磁気特性が得られない。従って、パラメータQは2.00以上とする。
 Sn、Cu及びCrは、必須元素ではなく、無方向性電磁鋼板に所定量を限度に適宜含有されていてもよい任意元素である。
 (Sn:0.00%~0.40%、Cu:0.0%~1.0%)
 Sn及びCuは、磁気特性の向上に好適な結晶を一次再結晶で発達させる。このため、Sn若しくはCu又はこれらの両方が含まれると、板面内の全方向における磁気特性の均一な向上に好適な{100}結晶が発達した集合組織が一次再結晶で得られやすい。Snは、仕上げ焼鈍時の鋼板の表面の酸化及び窒化を抑制したり、結晶粒の大きさのばらつきを抑制したりする。従って、Sn若しくはCu又はこれらの両方が含有されていてもよい。これらの作用効果を十分に得るために、好ましくは、Sn:0.02%以上若しくはCu:0.1%以上又はこれらの両方とする。一方、Snが0.40%超では、上記作用効果が飽和して徒にコストが高くなったり、仕上げ焼鈍において結晶粒の成長が抑制されたりする。従って、Sn含有量は0.40%以下とする。Cu含有量が1.0%超では、鋼板が脆化し、熱間圧延及び冷間圧延が困難になったり、仕上げ焼鈍の焼鈍ラインの通板が困難になったりする。従って、Cu含有量は1.0%以下とする。
 (Cr:0.0%~10.0%)
 Crは、高周波鉄損を低減する。高周波鉄損の低減は回転機の高速回転化に寄与し、高速回転化は回転機の小型化及び高効率化に寄与する。Crは、電気抵抗を増大させて、渦電流損を減少させ、高周波鉄損等の鉄損を低減する。Crは、応力感受性を低下させ、鉄心を形成する際に導入される圧縮応力に伴う磁気特性の低下及び高速回転時に作用する圧縮応力に伴う磁気特性の低下の軽減にも寄与する。従って、Crが含有されていてもよい。これらの作用効果を十分に得るために、好ましくは、Cr:0.2%以上とする。一方、Cr含有量が10.0%超では、磁束密度が低下したり、コストが高くなったりする。従って、Cr含有量は10.0%以下とする。
 次に、本発明の実施形態に係る無方向性電磁鋼板におけるSの形態について説明する。本実施形態に係る無方向性電磁鋼板では、粗大析出物生成元素の硫化物又は酸硫化物に含まれるSの総質量が、無方向性電磁鋼板に含まれるSの総質量の40%以上である。上記のように、粗大析出物生成元素は、溶鋼の鋳造又は急速凝固時に溶鋼中のSと反応して硫化物若しくは酸硫化物又はこれらの両方の析出物を生成する。従って、粗大析出物生成元素の硫化物又は酸硫化物に含まれるSの総質量の、無方向性電磁鋼板に含まれるSの総質量に対する割合が高いことは、十分な量の粗大析出物生成元素が無方向性電磁鋼板に含まれ、この析出物にMnS等の微細析出物が効果的に付着していることを意味する。このため、上記割合が高いほど、仕上げ焼鈍における再結晶及び結晶粒の成長が促進されており、優れた磁気特性が得られる。そして、上記割合が40%未満では、仕上げ焼鈍における再結晶及び結晶粒の成長が十分ではなく、優れた磁気特性が得られない。
 次に、本発明の実施形態に係る無方向性電磁鋼板の集合組織について説明する。本実施形態に係る無方向性電磁鋼板では、{100}結晶方位強度が3.0以上である。{100}結晶方位強度が3.0未満では、磁束密度の低下及び鉄損の増加が生じたり、板面に平行な方向間での磁気特性のばらつきが生じたりする。{100}結晶方位強度は、X線回折法又は電子線後方散乱回折(electron backscatter diffraction:EBSD)法により測定することができる。X線及び電子線の試料からの反射角等が結晶方位毎に異なるため、ランダム方位試料を基準にしてこの反射強度等で結晶方位強度を求めることができる。
 次に、本発明の実施形態に係る無方向性電磁鋼板の平均結晶粒径について説明する。本実施形態に係る無方向性電磁鋼板の平均結晶粒径は65μm~100μmである。平均結晶粒径が65μm未満であるか、100μm超では、鉄損W10/800が高い。ここで、鉄損W10/800とは、1.0Tの磁束密度、800Hzの周波数における鉄損である。
 次に、本発明の実施形態に係る無方向性電磁鋼板の厚さについて説明する。本実施形態に係る無方向性電磁鋼板の厚さは、例えば0.15mm以上0.30mm以下である。厚さが0.30mm超であると、優れた高周波鉄損を得ることができない。従って、厚さは0.30mm以下とする。厚さが0.15mm未満であると、安定性が低い無方向性電磁鋼板の表面における磁気特性が、安定性が高い内部における磁気特性よりも支配的になる。また、厚さが0.15mm未満であると、仕上げ焼鈍の焼鈍ラインの通板が困難になったり、一定の大きさの鉄心に必要とされる無方向性電磁鋼板の数が増加して、工数の増加に伴う生産性の低下及び製造コストの上昇が引き起こされたりする。従って、厚さは0.15mm以上とする。
 次に、本発明の実施形態に係る無方向性電磁鋼板の磁気特性について説明する。本実施形態に係る無方向性電磁鋼板は、例えば、リング磁気測定での磁束密度B50:1.67T以上、かつ、鉄損W10/800:無方向性電磁鋼板の厚さをt(mm)と表したときに30×[0.45+0.55×{0.5×(t/0.20)+0.5×(t/0.20)}]W/kg以下で表される磁気特性を呈することができる。
 リング磁気測定では、無方向性電磁鋼板から採取したリング状の試料、例えば外径が5インチ(12.70cm)、内径が4インチ(10.16cm)のリング状の試料を励磁し、磁束を試料の全周に流す。リング磁気測定により得られる磁気特性は、板面内の全方向の構造を反映したものとなる。
 次に、実施形態に係る無方向性電磁鋼板の第1の製造方法について説明する。この第1の製造方法では、溶鋼の鋳造、熱間圧延、冷間圧延、仕上げ焼鈍等を行う。
 溶鋼の鋳造及び熱間圧延では、上記化学組成を有する溶鋼の鋳造を行ってスラブ等の鋼塊を作製し、この熱間圧延を行って、スラブ等の鋼塊における柱状晶を出発鋳造組織とした熱延結晶組織の割合が面積分率で80%以上、かつ、平均結晶粒径が0.1mm以上の鋼帯を得る。
 柱状晶は、無方向性電磁鋼板の磁気特性、特に板面内の全方向における磁気特性の均一な向上に望ましい{100}<0vw>集合組織を有する。{100}<0vw>集合組織とは、板面に平行な面が{100}面で圧延方向が<0vw>方位の結晶が発達した集合組織である(v及びwは任意の実数である(v及びwがともに0である場合を除く)。柱状晶の割合が80%未満では、仕上げ焼鈍によって{100}結晶が発達した集合組織を得ることができない。従って、柱状晶の割合は80%以上とする。柱状晶の割合は顕微鏡観察で特定することができる。第1の製造方法において、柱状晶の割合を80%以上とするためには、例えば、凝固時の鋳片の一方の表面と他方の表面との間の温度差を40℃以上とする。この温度差は、鋳型の冷却構造、材質、モールドテーパー、モールドフラックス等により制御することができる。このような柱状晶の割合が80%以上となる条件で溶鋼を鋳造した場合、Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn又はCdの硫化物若しくは酸硫化物又はこれらの両方が容易に生成し、MnS等の微細硫化物の生成が抑制される。
 鋼帯の平均結晶粒径が小さいほど、結晶粒の数が多く、結晶粒界の面積が広い。仕上げ焼鈍の再結晶では、結晶粒内及び結晶粒界から結晶が成長するところ、結晶粒内から成長する結晶は磁気特性に望ましい{100}結晶であるのに対し、結晶粒界から成長する結晶は{111}<112>結晶等の磁気特性に望ましくない結晶である。従って、鋼帯の平均結晶粒径が大きいほど、仕上げ焼鈍にて磁気特性に望ましい{100}結晶が発達しやすく、特に鋼帯の平均結晶粒径が0.1mm以上の場合に、優れた磁気特性が得やすい。従って、鋼帯の平均結晶粒径は0.1mm以上とする。鋼帯の平均結晶粒径は、熱間圧延の開始温度及び巻取温度等により調整することができる。開始温度を900℃以下、かつ巻取温度を650℃以下とした場合、鋼帯に含まれる結晶粒は未再結晶で圧延方向に延伸した結晶粒となるため、平均結晶粒径が0.1mm以上の鋼帯が得られる。
 粗大析出物生成元素は、製鋼工程における鋳造前の最後の鍋の底に投入しておき、当該鍋に粗大析出物生成元素以外の元素を含んだ溶鋼を注入し、溶鋼中に粗大析出物生成元素を溶解させることが好ましい。これにより、粗大析出物生成元素を溶鋼から飛散しにくくすることができ、また、粗大析出物生成元素とSとの反応を促進することができる。製鋼工程における鋳造前の最後の鍋は、例えば連続鋳造機のタンディッシュ直上の鍋である。
 冷間圧延の圧下率を90%超とすると、仕上げ焼鈍の際に、磁気特性の向上を阻害する集合組織、例えば{111}<112>集合組織が発達しやすい。従って、冷間圧延の圧下率は90%以下とする。冷間圧延の圧下率を40%未満とすると、無方向性電磁鋼板の厚さの精度及び平坦度の確保が困難になることがある。従って、冷間圧延の圧下率は好ましくは40%以上とする。
 仕上げ焼鈍により、一次再結晶及び結晶粒の成長を生じさせ、平均結晶粒径を65μm~100μmとする。この仕上げ焼鈍により、板面内の全方向における磁気特性の均一な向上に好適な{100}結晶が発達した集合組織が得られる。仕上げ焼鈍では、例えば、保持温度を900℃以上1000℃以下とし、保持時間を10秒間以上60秒間以下とする。
 仕上げ焼鈍の通板張力を3MPa超とすると、異方性を有する弾性歪が無方向性電磁鋼板内に残存しやすくなる。異方性を有する弾性歪は集合組織を変形させるため、{100}結晶が発達した集合組織が得られていても、これが変形し、板面内における磁気特性の均一性が低下してしまう。従って、仕上げ焼鈍の通板張力は3MPa以下とする。仕上げ焼鈍の950℃~700℃における冷却速度を1℃/秒超とした場合も、異方性を有する弾性歪が無方向性電磁鋼板内に残存しやすくなる。従って、仕上げ焼鈍の950℃~700℃における冷却速度は1℃/秒以下とする。
 このようにして、本実施形態に係る無方向性電磁鋼板を製造することができる。仕上げ焼鈍の後に、塗布及び焼き付けにより絶縁被膜を形成してもよい。
 次に、実施形態に係る無方向性電磁鋼板の第2の製造方法について説明する。この第2の製造方法では、溶鋼の急速凝固、冷間圧延、仕上げ焼鈍等を行う。
 溶鋼の急速凝固では、上記化学組成を有する溶鋼を、移動更新する冷却体の表面で急速凝固させ、柱状晶の割合が面積分率で80%以上、かつ、平均結晶粒径が0.1mm以上の鋼帯を得る。
 第2の製造方法において、柱状晶の割合を80%以上とするためには、例えば、溶鋼の移動更新する冷却体の表面に注入する温度を凝固温度よりも25℃以上高める。特に溶鋼の温度を凝固温度よりも40℃以上高めた場合には、柱状晶の割合をほぼ100%にすることができる。このような柱状晶の割合が80%以上となる条件で溶鋼を凝固させた場合、Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn又はCdの硫化物若しくは酸硫化物又はこれらの両方が容易に生成し、MnS等の微細硫化物の生成が抑制される。
 第2の製造方法においても、鋼帯の平均結晶粒径は0.1mm以上とする。鋼帯の平均結晶粒径は、急速凝固時において冷却体の表面に注入する際の溶鋼の温度や冷却体の表面での冷却速度等により調整することができる。
 急速凝固に際し、粗大析出物生成元素は、製鋼工程における鋳造前の最後の鍋の底に投入しておき、当該鍋に粗大析出物生成元素以外の元素を含んだ溶鋼を注入し、溶鋼中に粗大析出物生成元素を溶解させることが好ましい。これにより、粗大析出物生成元素を溶鋼から飛散しにくくすることができ、また、粗大析出物生成元素とSとの反応を促進することができる。製鋼工程における鋳造前の最後の鍋は、例えば急速凝固させる鋳造機のタンディッシュ直上の鍋である。
 冷間圧延及び仕上げ焼鈍は第1の製造方法と同様の条件で行えばよい。
 このようにして、本実施形態に係る無方向性電磁鋼板を製造することができる。仕上げ焼鈍の後に、塗布及び焼き付けにより絶縁被膜を形成してもよい。
 このような本実施形態に係る無方向性電磁鋼板は、板面内の全方向において均一な優れた磁気特性を呈し、回転機、中小型変圧器及び電装品等の電気機器の鉄心に用いられる。また、本実施形態に係る無方向性電磁鋼板は、回転機の高効率化及び小型化にも寄与することができる。
 以上、本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 次に、本発明の実施形態に係る無方向性電磁鋼板について、実施例を示しながら具体的に説明する。以下に示す実施例は、本発明の実施形態に係る無方向性電磁鋼板のあくまでも一例にすぎず、本発明に係る無方向性電磁鋼板が下記の例に限定されるものではない。
 (第1の試験)
 第1の試験では、表1に示す化学組成を有する溶鋼を鋳造してスラブを作製し、このスラブの熱間圧延を行って鋼帯を得た。表1中の空欄は、当該元素の含有量が検出限界未満であったことを示し、残部はFe及び不純物である。表1中の下線は、その数値が本発明の範囲から外れていることを示す。次いで、鋼帯の冷間圧延及び仕上げ焼鈍を行って種々の無方向性電磁鋼板を作製した。そして、各無方向性電磁鋼板の、粗大析出物生成元素の硫化物又は酸硫化物に含まれるSの総質量の当該無方向性電磁鋼板に含まれるSの総質量に対する割合R、{100}結晶方位強度I、厚さt及び平均結晶粒径rを測定した。この結果を表2に示す。表2中の下線は、その数値が本発明の範囲から外れていることを示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 そして、各無方向性電磁鋼板の磁気特性を測定した。この測定には、外径が5インチ、内径が4インチのリング試験片を用いた。つまり、リング磁気測定を行った。この結果を表3に示す。表3中の下線は、その数値が所望の範囲にないことを示している。すなわち、鉄損W10/800の欄の下線は、式2で表される評価基準W0(W/kg)以上であることを示す。
 W0=30×[0.45+0.55×{0.5×(t/0.20)+0.5×(t/0.20)}]   (式2)
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、試料No.11~No.20では、化学組成が本発明の範囲内にあり、割合R、{100}結晶方位強度I、厚さt及び平均結晶粒径rが本発明の範囲内にあるため、リング磁気測定において良好な結果が得られた。
 試料No.1では、割合Rが低すぎたため、鉄損W10/800が大きかった。試料No.2では、{100}結晶方位強度Iが低すぎたため、鉄損W10/800が大きかった。試料No.3では、厚さtが小さすぎたため、鉄損W10/800が大きかった。試料No.4では、厚さtが大きすぎたため、鉄損W10/800が大きかった。試料No.5では、平均結晶粒径rが小さすぎたため、鉄損W10/800が大きかった。試料No.6では、平均結晶粒径rが大きすぎたため、鉄損W10/800が大きかった。試料No.7では、S含有量が高すぎたため、鉄損W10/800が大きかった。試料No.8では、粗大析出物生成元素の総含有量が低すぎたため、鉄損W10/800が大きかった。試料No.9では、粗大析出物生成元素の総含有量が高すぎたため、鉄損W10/800が大きかった。試料No.10では、パラメータQが小さすぎたため、鉄損W10/800が大きかった。
 (第2の試験)
 第2の試験では、質量%で、C:0.0023%、Si:3.46%、Al:0.63%、Mn:0.20%、S:0.0003%及びPr:0.0146%を含有し、残部がFe及び不純物からなる溶鋼を鋳造してスラブを作製し、このスラブの熱間圧延を行って、厚さが1.4mmの鋼帯を得た。鋳造の際に鋳片の2表面間の温度差を調整して鋼帯の出発素材であるスラブの柱状晶の割合並びに熱間圧延の開始温度及び巻取温度を調整して鋼帯の平均結晶粒径を変化させた。表4に、2表面間の温度差、柱状晶の割合及び鋼帯の平均結晶粒径を示す。次いで、78.6%の圧下率で冷間圧延を行って、厚さが0.30mmの鋼板を得た。その後、950℃で30秒間の連続仕上げ焼鈍を行って、無方向性電磁鋼板を得た。そして、各無方向性電磁鋼板の、粗大析出物生成元素の硫化物又は酸硫化物に含まれるSの総質量の当該無方向性電磁鋼板に含まれるSの総質量に対する割合R、{100}結晶方位強度I、厚さt及び平均結晶粒径rを測定した。この結果も表4に示す。表4中の下線は、その数値が本発明の範囲から外れていることを示す。
Figure JPOXMLDOC01-appb-T000004
 そして、各無方向性電磁鋼板の磁気特性を測定した。この測定には、外径が5インチ、内径が4インチのリング試験片を用いた。つまり、リング磁気測定を行った。この結果を表5に示す。表5中の下線は、その数値が所望の範囲にないことを示している。すなわち、鉄損W10/800の欄の下線は評価基準W0(W/kg)以上であることを示し、磁束密度B50の欄の下線は1.67T未満であることを示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、出発素材であるスラブの柱状晶の割合が適切な鋼帯を用いた試料No.33では、割合R、{100}結晶方位強度I、厚さt及び平均結晶粒径rが本発明の範囲内にあるため、リング磁気測定において良好な結果が得られた。
 出発素材であるスラブの柱状晶の割合が低すぎる鋼帯を用いた試料No.31では、割合R及び{100}結晶方位強度Iが低すぎたため、鉄損W10/800が大きく、磁束密度B50が低かった。出発素材であるスラブの柱状晶の割合が低すぎる鋼帯を用いた試料No.32では、{100}結晶方位強度Iが低すぎたため、鉄損W10/800が大きく、磁束密度B50が低かった。
 (第3の試験)
 第3の試験では、表6に示す化学組成を有する溶鋼を鋳造してスラブを作製し、このスラブの熱間圧延を行って、厚さが1.2mmの鋼帯を得た。残部はFe及び不純物であり、表6中の下線は、その数値が本発明の範囲から外れていることを示す。鋳造の際に鋳片の2表面間の温度差を調整して鋼帯の出発素材であるスラブの柱状晶の割合並びに熱間圧延の開始温度及び巻取温度を調整して鋼帯の平均結晶粒径を変化させた。2表面間の温度差は53℃~64℃とした。表7に、柱状晶の割合及び鋼帯の平均結晶粒径を示す。次いで、79.2%の圧下率で冷間圧延を行って、厚さが0.25mmの鋼板を得た。その後、920℃で45秒間の連続仕上げ焼鈍を行って、無方向性電磁鋼板を得た。そして、各無方向性電磁鋼板の、粗大析出物生成元素の硫化物又は酸硫化物に含まれるSの総質量の当該無方向性電磁鋼板に含まれるSの総質量に対する割合R、{100}結晶方位強度I、厚さt及び平均結晶粒径rを測定した。この結果も表7に示す。表7中の下線は、その数値が本発明の範囲から外れていることを示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 そして、各無方向性電磁鋼板の磁気特性を測定した。この測定には、外径が5インチ、内径が4インチのリング試験片を用いた。つまり、リング磁気測定を行った。この結果を表8に示す。表8中の下線は、その数値が所望の範囲にないことを示している。すなわち、磁束密度B50の欄の下線は1.67T未満であることを示す。
Figure JPOXMLDOC01-appb-T000008
 表8に示すように、化学組成、出発素材であるスラブの柱状晶の割合及び平均結晶粒径が適切な鋼帯を用いた試料No.44では、割合R、{100}結晶方位強度I、厚さt及び平均結晶粒径rが本発明の範囲内にあるため、リング磁気測定において良好な結果が得られた。
 平均結晶粒径が低すぎる鋼帯を用いた試料No.41及びNo.42では、{100}結晶方位強度Iが低すぎたため、磁束密度B50が低かった。試料No.43では、粗大析出物生成元素の総含有量が低すぎたため、磁束密度B50が低かった。試料No.45では、粗大析出物生成元素の総含有量が高すぎ、平均結晶粒径rが小さすぎたため、磁束密度B50が低かった。
 (第4の試験)
 第4の試験では、表9に示す化学組成を有する溶鋼を鋳造してスラブを作製し、このスラブの熱間圧延を行って、表10に示す厚さの鋼帯を得た。表9中の空欄は、当該元素の含有量が検出限界未満であったことを示し、残部はFe及び不純物である。鋳造の際に鋳片の2表面間の温度差を調整して鋼帯出発素材であるスラブの柱状晶の割合並びに熱間圧延の開始温度及び巻取温度を調整して鋼帯の平均結晶粒径を変化させた。2表面間の温度差は49℃~76℃とした。表10に、柱状晶の割合及び鋼帯の平均結晶粒径も示す。次いで、表10に示す圧下率で冷間圧延を行って、厚さが0.20mmの鋼板を得た。その後、930℃で40秒間の連続仕上げ焼鈍を行って、無方向性電磁鋼板を得た。そして、各無方向性電磁鋼板の、粗大析出物生成元素の硫化物又は酸硫化物に含まれるSの総質量の当該無方向性電磁鋼板に含まれるSの総質量に対する割合R、{100}結晶方位強度I、厚さt及び平均結晶粒径rを測定した。この結果も表10に示す。表10中の下線は、その数値が本発明の範囲から外れていることを示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 そして、各無方向性電磁鋼板の磁気特性を測定した。この測定には、外径が5インチ、内径が4インチのリング試験片を用いた。つまり、リング磁気測定を行った。この結果を表11に示す。表11中の下線は、その数値が所望の範囲にないことを示している。すなわち、鉄損W10/800の欄の下線は評価基準W0(W/kg)以上であることを示し、磁束密度B50の欄の下線は1.67T未満であることを示す。
Figure JPOXMLDOC01-appb-T000011
 表11に示すように、化学組成、出発素材であるスラブ柱状晶の割合及び平均結晶粒径が適切な鋼帯を用い、適切な圧下量で冷間圧延を行った試料No.51~No.55では、割合R、{100}結晶方位強度I、厚さt及び平均結晶粒径rが本発明の範囲内にあるため、リング磁気測定において良好な結果が得られた。適量のSn又はCuを含有する試料No.53及びNo.54において、特に優れた磁束密度B50が得られた。適量のCrを含有する試料No.55において、優れた鉄損W10/800が得られた。
 冷間圧延の圧下率を高くしすぎた試料No.56では、{100}結晶方位強度Iが低すぎたため、鉄損W10/800が大きく、磁束密度B50が低かった。
 (第5の試験)
 第5の試験では、質量%で、C:0.0014%、Si:3.03%、Al:0.28%、Mn:1.42%、S:0.0017%及びSr:0.0162%を含有し、残部がFe及び不純物からなる溶鋼を鋳造してスラブを作製し、このスラブの熱間圧延を行って、厚さが0.8mmの鋼帯を得た。鋳造の際に鋳片の2表面間の温度差を61℃として鋼帯の出発素材であるスラブの柱状晶の割合を90%、熱間圧延の開始温度及び巻取温度を調整して鋼帯の平均結晶粒径を0.17mmとした。次いで、81.3%の圧下率で冷間圧延を行って、厚さが0.15mmの鋼板を得た。その後、970℃で20秒間の連続仕上げ焼鈍を行って、無方向性電磁鋼板を得た。仕上げ焼鈍では、通板張力及び950℃から700℃までの冷却速度を変化させた。表12に通板張力及び冷却速度を示す。そして、各無方向性電磁鋼板の、粗大析出物生成元素の硫化物又は酸硫化物に含まれるSの総質量の当該無方向性電磁鋼板に含まれるSの総質量に対する割合R、{100}結晶方位強度I、厚さt及び平均結晶粒径rを測定した。この結果も表12に示す。
Figure JPOXMLDOC01-appb-T000012
 そして、各無方向性電磁鋼板の磁気特性を測定した。この測定には、外径が5インチ、内径が4インチのリング試験片を用いた。つまり、リング磁気測定を行った。この結果を表13に示す。
Figure JPOXMLDOC01-appb-T000013
 表13に示すように、試料No.61~No.64では、化学組成が本発明の範囲内にあり、割合R、{100}結晶方位強度I、厚さt及び平均結晶粒径rが本発明の範囲内にあるため、リング磁気測定において良好な結果が得られた。通板張力を3MPa以下とした試料No.62及びNo.63において、弾性歪異方性が低く、特に優れた鉄損W10/800及び磁束密度B50が得られた。950℃から700℃までの冷却速度を1℃/秒以下とした試料No.64において、更に弾性歪異方性が低く、更に優れた鉄損W10/800及び磁束密度B50が得られた。なお、弾性歪異方性の測定では、各辺の長さが55mmで、2辺が圧延方向に平行で、2辺が圧延方向に垂直な方向(板幅方向)に平行な平面形状が4角形の試料を各無方向性電磁鋼板から切り出し、弾性歪の影響で変形した後の各辺の長さを測定した。そして、圧延方向に垂直な方向の長さが圧延方向の長さよりどれだけ大きいかを求めた。
 (第6の試験)
 第6の試験では、表14に示す化学組成を有する溶鋼を双ロール法により急速凝固させて鋼帯を得た。表14中の空欄は、当該元素の含有量が検出限界未満であったことを示し、残部はFe及び不純物である。表14中の下線は、その数値が本発明の範囲から外れていることを示す。次いで、鋼帯の冷間圧延及び仕上げ焼鈍を行って種々の無方向性電磁鋼板を作製した。そして、各無方向性電磁鋼板の、粗大析出物生成元素の硫化物又は酸硫化物に含まれるSの総質量の当該無方向性電磁鋼板に含まれるSの総質量に対する割合R、{100}結晶方位強度I、厚さt及び平均結晶粒径rを測定した。この結果を表15に示す。表15中の下線は、その数値が本発明の範囲から外れていることを示す。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 そして、各無方向性電磁鋼板の磁気特性を測定した。この測定には、外径が5インチ、内径が4インチのリング試験片を用いた。つまり、リング磁気測定を行った。この結果を表16に示す。表16中の下線は、その数値が所望の範囲にないことを示している。すなわち、鉄損W10/800の欄の下線は、式2で表される評価基準W0(W/kg)以上であることを示す。
 W0=30×[0.45+0.55×{0.5×(t/0.20)+0.5×(t/0.20)}]   (式2)
Figure JPOXMLDOC01-appb-T000016
 表16に示すように、試料No.111~No.120では、化学組成が本発明の範囲内にあり、割合R、{100}結晶方位強度I、厚さt及び平均結晶粒径rが本発明の範囲内にあるため、リング磁気測定において良好な結果が得られた。
 試料No.101では、割合Rが低すぎたため、鉄損W10/800が大きかった。試料No.102では、{100}結晶方位強度Iが低すぎたため、鉄損W10/800が大きかった。試料No.103では、厚さtが小さすぎたため、鉄損W10/800が大きかった。試料No.104では、厚さtが大きすぎたため、鉄損W10/800が大きかった。試料No.105では、平均結晶粒径rが小さすぎたため、鉄損W10/800が大きかった。試料No.106では、平均結晶粒径rが大きすぎたため、鉄損W10/800が大きかった。試料No.107では、S含有量が高すぎたため、鉄損W10/800が大きかった。試料No.108では、粗大析出物生成元素の総含有量が低すぎたため、鉄損W10/800が大きかった。試料No.109では、粗大析出物生成元素の総含有量が高すぎたため、鉄損W10/800が大きかった。試料No.110では、パラメータQが小さすぎたため、鉄損W10/800が大きかった。
 (第7の試験)
 第7の試験では、質量%で、C:0.0023%、Si:3.46%、Al:0.63%、Mn:0.20%、S:0.0003%及びNd:0.0146%を含有し、残部がFe及び不純物からなる溶鋼を双ロール法により急速凝固させて、厚さが1.4mmの鋼帯を得た。このとき、注入温度を調整して鋼帯の柱状晶の割合及び平均結晶粒径を変化させた。表17に、注入温度と凝固温度との差、柱状晶の割合及び鋼帯の平均結晶粒径を示す。次いで、78.6%の圧下率で冷間圧延を行って、厚さが0.30mmの鋼板を得た。その後、950℃で30秒間の連続仕上げ焼鈍を行って、無方向性電磁鋼板を得た。そして、各無方向性電磁鋼板の、粗大析出物生成元素の硫化物又は酸硫化物に含まれるSの総質量の当該無方向性電磁鋼板に含まれるSの総質量に対する割合R、{100}結晶方位強度I、厚さt及び平均結晶粒径rを測定した。この結果も表17に示す。表17中の下線は、その数値が本発明の範囲から外れていることを示す。
Figure JPOXMLDOC01-appb-T000017
 そして、各無方向性電磁鋼板の磁気特性を測定した。この測定には、外径が5インチ、内径が4インチのリング試験片を用いた。つまり、リング磁気測定を行った。この結果を表18に示す。表18中の下線は、その数値が所望の範囲にないことを示している。すなわち、鉄損W10/800の欄の下線は評価基準W0(W/kg)以上であることを示し、磁束密度B50の欄の下線は1.67T未満であることを示す。
Figure JPOXMLDOC01-appb-T000018
 表18に示すように、柱状晶の割合が適切な鋼帯を用いた試料No.133では、割合R、{100}結晶方位強度I、厚さt及び平均結晶粒径rが本発明の範囲内にあるため、リング磁気測定において良好な結果が得られた。
 柱状晶の割合が低すぎる鋼帯を用いた試料No.131では、割合R及び{100}結晶方位強度Iが低すぎたため、鉄損W10/800が大きく、磁束密度B50が低かった。柱状晶の割合が低すぎる鋼帯を用いた試料No.132では、{100}結晶方位強度Iが低すぎたため、鉄損W10/800が大きく、磁束密度B50が低かった。
 (第8の試験)
 第8の試験では、表19に示す化学組成を有する溶鋼を双ロール法により急速凝固させて、厚さが1.2mmの鋼帯を得た。残部はFe及び不純物であり、表19中の下線は、その数値が本発明の範囲から外れていることを示す。このとき、注入温度を調整して鋼帯の柱状晶の割合及び平均結晶粒径を変化させた。注入温度は凝固温度よりも29℃~35℃高くした。表20に、柱状晶の割合及び鋼帯の平均結晶粒径を示す。次いで、79.2%の圧下率で冷間圧延を行って、厚さが0.25mmの鋼板を得た。その後、920℃で45秒間の連続仕上げ焼鈍を行って、無方向性電磁鋼板を得た。そして、各無方向性電磁鋼板の、粗大析出物生成元素の硫化物又は酸硫化物に含まれるSの総質量の当該無方向性電磁鋼板に含まれるSの総質量に対する割合R、{100}結晶方位強度I、厚さt及び平均結晶粒径rを測定した。この結果も表20に示す。表20中の下線は、その数値が本発明の範囲から外れていることを示す。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 そして、各無方向性電磁鋼板の磁気特性を測定した。この測定には、外径が5インチ、内径が4インチのリング試験片を用いた。つまり、リング磁気測定を行った。この結果を表21に示す。表21中の下線は、その数値が所望の範囲にないことを示している。すなわち、磁束密度B50の欄の下線は1.67T未満であることを示す。
Figure JPOXMLDOC01-appb-T000021
 表21に示すように、化学組成、柱状晶の割合及び平均結晶粒径が適切な鋼帯を用いた試料No.144では、割合R、{100}結晶方位強度I、厚さt及び平均結晶粒径rが本発明の範囲内にあるため、リング磁気測定において良好な結果が得られた。
 平均結晶粒径が低すぎる鋼帯を用いた試料No.141及びNo.142では、{100}結晶方位強度Iが低すぎたため、磁束密度B50が低かった。試料No.143では、粗大析出物生成元素の総含有量が低すぎたため、磁束密度B50が低かった。試料No.145では、粗大析出物生成元素の総含有量が高すぎて、平均結晶粒径rが小さすぎたため、磁束密度B50が低かった。
 (第9の試験)
 第9の試験では、表22に示す化学組成を有する溶鋼を双ロール法により急速凝固させて、表23に示す厚さの鋼帯を得た。表22中の空欄は、当該元素の含有量が検出限界未満であったことを示し、残部はFe及び不純物である。このとき、注入温度を調整して鋼帯の柱状晶の割合及び平均結晶粒径を変化させた。注入温度は凝固温度よりも28℃~37℃高くした。表23に、柱状晶の割合及び鋼帯の平均結晶粒径も示す。次いで、表23に示す圧下率で冷間圧延を行って、厚さが0.20mmの鋼板を得た。その後、930℃で40秒間の連続仕上げ焼鈍を行って、無方向性電磁鋼板を得た。そして、各無方向性電磁鋼板の、粗大析出物生成元素の硫化物又は酸硫化物に含まれるSの総質量の当該無方向性電磁鋼板に含まれるSの総質量に対する割合R、{100}結晶方位強度I、厚さt及び平均結晶粒径rを測定した。この結果も表23に示す。表23中の下線は、その数値が本発明の範囲から外れていることを示す。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
 そして、各無方向性電磁鋼板の磁気特性を測定した。この測定には、外径が5インチ、内径が4インチのリング試験片を用いた。つまり、リング磁気測定を行った。この結果を表24に示す。表24中の下線は、その数値が所望の範囲にないことを示している。すなわち、鉄損W10/800の欄の下線は評価基準W0(W/kg)以上であることを示し、磁束密度B50の欄の下線は1.67T未満であることを示す。
Figure JPOXMLDOC01-appb-T000024
 表24に示すように、化学組成、柱状晶の割合及び平均結晶粒径が適切な鋼帯を用い、適切な圧下量で冷間圧延を行った試料No.151~No.155では、割合R、{100}結晶方位強度I、厚さt及び平均結晶粒径rが本発明の範囲内にあるため、リング磁気測定において良好な結果が得られた。適量のSn又はCuを含有する試料No.153及びNo.154において、特に優れた磁束密度B50が得られた。適量のCrを含有する試料No.155において、優れた鉄損W10/800が得られた。
 冷間圧延の圧下率を高くしすぎた試料No.156では、{100}結晶方位強度Iが低すぎたため、鉄損W10/800が大きく、磁束密度B50が低かった。
 (第10の試験)
 第10の試験では、質量%で、C:0.0014%、Si:3.03%、Al:0.28%、Mn:1.42%、S:0.0017%及びSr:0.0162%を含有し、残部がFe及び不純物からなる溶鋼を双ロール法により急速凝固させて、厚さが0.8mmの鋼帯を得た。このとき、注入温度を凝固温度よりも32℃高くして鋼帯の柱状晶の割合を90%、平均結晶粒径を0.17mmとした。次いで、81.3%の圧下率で冷間圧延を行って、厚さが0.15mmの鋼板を得た。その後、970℃で20秒間の連続仕上げ焼鈍を行って、無方向性電磁鋼板を得た。仕上げ焼鈍では、通板張力及び950℃から700℃までの冷却速度を変化させた。表25に通板張力及び冷却速度を示す。そして、各無方向性電磁鋼板の、粗大析出物生成元素の硫化物又は酸硫化物に含まれるSの総質量の当該無方向性電磁鋼板に含まれるSの総質量に対する割合R、{100}結晶方位強度I、厚さt及び平均結晶粒径rを測定した。この結果も表25に示す。
Figure JPOXMLDOC01-appb-T000025
 そして、各無方向性電磁鋼板の磁気特性を測定した。この測定には、外径が5インチ、内径が4インチのリング試験片を用いた。つまり、リング磁気測定を行った。この結果を表26に示す。
Figure JPOXMLDOC01-appb-T000026
 表26に示すように、試料No.161~No.164では、化学組成が本発明の範囲内にあり、割合R、{100}結晶方位強度I、厚さt及び平均結晶粒径rが本発明の範囲内にあるため、リング磁気測定において良好な結果が得られた。通板張力を3MPa以下とした試料No.162及びNo.163において、弾性歪異方性が低く、特に優れた鉄損W10/800及び磁束密度B50が得られた。950℃から700℃までの冷却速度を1℃/秒以下とした試料No.164において、更に弾性歪異方性が低く、更に優れた鉄損W10/800及び磁束密度B50が得られた。なお、弾性歪異方性の測定では、各辺の長さが55mmで、2辺が圧延方向に平行で、2辺が圧延方向に垂直な方向(板幅方向)に平行な平面形状が4角形の試料を各無方向性電磁鋼板から切り出し、弾性歪の影響で変形した後の各辺の長さを測定した。そして、圧延方向に垂直な方向の長さが圧延方向の長さよりどれだけ大きいかを求めた。
 本発明は、例えば、無方向性電磁鋼板の製造産業及び無方向性電磁鋼板の利用産業において利用することができる。
 

Claims (3)

  1.  質量%で、
     C:0.0030%以下、
     Si:2.00%~4.00%、
     Al:0.10%~3.00%、
     Mn:0.10%~2.00%、
     S:0.0030%以下、
     Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn及びCdからなる群から選択された一種以上:総計で0.0100%超0.0250%以下、
     Si含有量(質量%)を[Si]、Al含有量(質量%)を[Al]、Mn含有量(質量%)を[Mn]としたときに式1で表されるパラメータQ:2.00以上、
     Sn:0.00%~0.40%、
     Cu:0.0%~1.0%、
     Cr:0.0%~10.0%、かつ
     残部:Fe及び不純物、
     で表される化学組成を有し、
     Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn又はCdの硫化物又は酸硫化物に含まれるSの総質量が、無方向性電磁鋼板に含まれるSの総質量の40%以上であり、
     {100}結晶方位強度が3.0以上であり、
     厚さが0.15mm~0.30mmであり、
     平均結晶粒径が65μm~100μmであることを特徴とする無方向性電磁鋼板。
     Q=[Si]+2[Al]-[Mn]   (式1)
  2.  前記化学組成において、
     Sn:0.02%~0.40%、若しくは
     Cu:0.1%~1.0%、
     又はこれらの両方が満たされることを特徴とする請求項1に記載の無方向性電磁鋼板。
  3.  前記化学組成において、
     Cr:0.2%~10.0%
     が満たされることを特徴とする請求項1又は2に記載の無方向性電磁鋼板。
     
PCT/JP2017/020668 2017-06-02 2017-06-02 無方向性電磁鋼板 WO2018220839A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2019521915A JP6828816B2 (ja) 2017-06-02 2017-06-02 無方向性電磁鋼板
US16/496,328 US10995393B2 (en) 2017-06-02 2017-06-02 Non-oriented electrical steel sheet
CN201780090208.9A CN110573639B (zh) 2017-06-02 2017-06-02 无方向性电磁钢板
KR1020197032443A KR102338644B1 (ko) 2017-06-02 2017-06-02 무방향성 전자 강판
EP17911443.4A EP3633054A4 (en) 2017-06-02 2017-06-02 NON-ORIENTED ELECTROMAGNETIC STEEL SHEET
BR112019019936-5A BR112019019936B1 (pt) 2017-06-02 2017-06-02 Chapa de aço elétrico não orientado
PCT/JP2017/020668 WO2018220839A1 (ja) 2017-06-02 2017-06-02 無方向性電磁鋼板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/020668 WO2018220839A1 (ja) 2017-06-02 2017-06-02 無方向性電磁鋼板

Publications (1)

Publication Number Publication Date
WO2018220839A1 true WO2018220839A1 (ja) 2018-12-06

Family

ID=64455317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020668 WO2018220839A1 (ja) 2017-06-02 2017-06-02 無方向性電磁鋼板

Country Status (7)

Country Link
US (1) US10995393B2 (ja)
EP (1) EP3633054A4 (ja)
JP (1) JP6828816B2 (ja)
KR (1) KR102338644B1 (ja)
CN (1) CN110573639B (ja)
BR (1) BR112019019936B1 (ja)
WO (1) WO2018220839A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019160087A1 (ja) * 2018-02-16 2019-08-22 日本製鉄株式会社 無方向性電磁鋼板、及び無方向性電磁鋼板の製造方法
JP2020158871A (ja) * 2019-03-28 2020-10-01 日本製鉄株式会社 無方向性電磁鋼板
JP2022514793A (ja) * 2018-12-19 2022-02-15 ポスコ 無方向性電磁鋼板およびその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2027728B1 (nl) * 2021-03-09 2022-09-26 Bilstein Gmbh & Co Kg Werkwijze voor het vervaardigen van een zachtmagnetisch voorproduct van metaal

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231120A (ja) 1985-04-06 1986-10-15 Nippon Steel Corp 磁気特性の優れた無方向性電磁鋼板の製造方法
JPS62240714A (ja) 1986-04-14 1987-10-21 Nippon Steel Corp 磁気特性の優れた電磁鋼板の製造方法
JPH03126845U (ja) 1990-04-03 1991-12-20
JPH05140648A (ja) 1991-07-25 1993-06-08 Nippon Steel Corp 磁束密度が高くかつ鉄損が低い無方向性電磁鋼板の製造方法
US5482107A (en) * 1994-02-04 1996-01-09 Inland Steel Company Continuously cast electrical steel strip
JPH10183309A (ja) * 1996-12-20 1998-07-14 Kawasaki Steel Corp 磁気特性の優れた無方向性電磁鋼板およびその製造方法
JPH11189850A (ja) * 1997-12-24 1999-07-13 Sumitomo Metal Ind Ltd 無方向性電磁鋼板およびその製造方法
JP2001271147A (ja) * 2000-03-27 2001-10-02 Kawasaki Steel Corp 磁気特性に優れた無方向性電磁鋼板
JP2004197217A (ja) 2002-12-06 2004-07-15 Nippon Steel Corp 全周磁気特性の優れた無方向性電磁鋼板及びその製造方法
JP2004323972A (ja) 2003-04-10 2004-11-18 Nippon Steel Corp 磁束密度の高い無方向性電磁鋼板の製造方法
JP2005133175A (ja) * 2003-10-31 2005-05-26 Nippon Steel Corp 磁気特性、耐変形性の優れた電磁鋼板とその製造方法
JP2006124809A (ja) 2004-11-01 2006-05-18 Nippon Steel Corp 歪取焼鈍後の鉄損の優れた無方向性電磁鋼板とその製造方法
JP2008127659A (ja) 2006-11-22 2008-06-05 Nippon Steel Corp 異方性の小さい無方向性電磁鋼板
JP2008132534A (ja) 2006-10-23 2008-06-12 Nippon Steel Corp 磁気特性の優れた無方向性電磁鋼板の製造方法
CN101358272A (zh) * 2008-09-05 2009-02-04 首钢总公司 一种加稀土铈的高牌号无取向电工钢的制备方法
JP2011157603A (ja) 2010-02-02 2011-08-18 Nippon Steel Corp 無方向性電磁鋼板および無方向性電磁鋼板の製造方法
KR20120074009A (ko) * 2010-12-27 2012-07-05 주식회사 포스코 자성이 우수한 무방향성 전기강판 및 그 제조방법
JP2016047942A (ja) * 2014-08-27 2016-04-07 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2971080B2 (ja) 1989-10-13 1999-11-02 新日本製鐵株式会社 磁気特性の優れた無方向性電磁鋼板
KR100561996B1 (ko) 2003-04-10 2006-03-20 신닛뽄세이테쯔 카부시키카이샤 높은 자속 밀도를 갖는 무방향성 전자 강판의 제조 방법
CA2798301C (en) 2010-05-04 2020-09-15 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of glutamyl-prolyl-trna synthetases
JP5716315B2 (ja) * 2010-08-10 2015-05-13 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法
JP5360336B1 (ja) 2012-02-14 2013-12-04 新日鐵住金株式会社 無方向性電磁鋼板
JP2015002285A (ja) 2013-06-17 2015-01-05 富士通株式会社 コイル装置、電子装置及びコイル装置の制御方法
CN107208220B (zh) 2015-03-17 2019-03-01 新日铁住金株式会社 无方向性电磁钢板以及其制造方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231120A (ja) 1985-04-06 1986-10-15 Nippon Steel Corp 磁気特性の優れた無方向性電磁鋼板の製造方法
JPS62240714A (ja) 1986-04-14 1987-10-21 Nippon Steel Corp 磁気特性の優れた電磁鋼板の製造方法
JPH03126845U (ja) 1990-04-03 1991-12-20
JPH05140648A (ja) 1991-07-25 1993-06-08 Nippon Steel Corp 磁束密度が高くかつ鉄損が低い無方向性電磁鋼板の製造方法
US5482107A (en) * 1994-02-04 1996-01-09 Inland Steel Company Continuously cast electrical steel strip
JPH10183309A (ja) * 1996-12-20 1998-07-14 Kawasaki Steel Corp 磁気特性の優れた無方向性電磁鋼板およびその製造方法
JPH11189850A (ja) * 1997-12-24 1999-07-13 Sumitomo Metal Ind Ltd 無方向性電磁鋼板およびその製造方法
JP2001271147A (ja) * 2000-03-27 2001-10-02 Kawasaki Steel Corp 磁気特性に優れた無方向性電磁鋼板
JP2004197217A (ja) 2002-12-06 2004-07-15 Nippon Steel Corp 全周磁気特性の優れた無方向性電磁鋼板及びその製造方法
JP2004323972A (ja) 2003-04-10 2004-11-18 Nippon Steel Corp 磁束密度の高い無方向性電磁鋼板の製造方法
JP2005133175A (ja) * 2003-10-31 2005-05-26 Nippon Steel Corp 磁気特性、耐変形性の優れた電磁鋼板とその製造方法
JP2006124809A (ja) 2004-11-01 2006-05-18 Nippon Steel Corp 歪取焼鈍後の鉄損の優れた無方向性電磁鋼板とその製造方法
JP2008132534A (ja) 2006-10-23 2008-06-12 Nippon Steel Corp 磁気特性の優れた無方向性電磁鋼板の製造方法
JP2008127659A (ja) 2006-11-22 2008-06-05 Nippon Steel Corp 異方性の小さい無方向性電磁鋼板
CN101358272A (zh) * 2008-09-05 2009-02-04 首钢总公司 一种加稀土铈的高牌号无取向电工钢的制备方法
JP2011157603A (ja) 2010-02-02 2011-08-18 Nippon Steel Corp 無方向性電磁鋼板および無方向性電磁鋼板の製造方法
KR20120074009A (ko) * 2010-12-27 2012-07-05 주식회사 포스코 자성이 우수한 무방향성 전기강판 및 그 제조방법
JP2016047942A (ja) * 2014-08-27 2016-04-07 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3633054A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019160087A1 (ja) * 2018-02-16 2019-08-22 日本製鉄株式会社 無方向性電磁鋼板、及び無方向性電磁鋼板の製造方法
US11469018B2 (en) 2018-02-16 2022-10-11 Nippon Steel Corporation Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
JP2022514793A (ja) * 2018-12-19 2022-02-15 ポスコ 無方向性電磁鋼板およびその製造方法
JP7478739B2 (ja) 2018-12-19 2024-05-07 ポスコ カンパニー リミテッド 無方向性電磁鋼板およびその製造方法
JP2020158871A (ja) * 2019-03-28 2020-10-01 日本製鉄株式会社 無方向性電磁鋼板
JP7295394B2 (ja) 2019-03-28 2023-06-21 日本製鉄株式会社 無方向性電磁鋼板

Also Published As

Publication number Publication date
JP6828816B2 (ja) 2021-02-10
BR112019019936A2 (pt) 2020-04-22
US10995393B2 (en) 2021-05-04
KR20190137846A (ko) 2019-12-11
EP3633054A1 (en) 2020-04-08
EP3633054A4 (en) 2020-10-21
BR112019019936B1 (pt) 2022-06-14
CN110573639B (zh) 2021-08-24
KR102338644B1 (ko) 2021-12-13
JPWO2018220839A1 (ja) 2020-03-26
US20200224296A1 (en) 2020-07-16
CN110573639A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
JP6828814B2 (ja) 無方向性電磁鋼板
JP6828815B2 (ja) 無方向性電磁鋼板
TWI680190B (zh) 無方向性電磁鋼板及無方向性電磁鋼板的製造方法
CN111601909B (zh) 无取向电磁钢板及无取向电磁钢板的制造方法
JP6828816B2 (ja) 無方向性電磁鋼板
KR102452923B1 (ko) 무방향성 전자 강판
WO2019160087A1 (ja) 無方向性電磁鋼板、及び無方向性電磁鋼板の製造方法
JP6969473B2 (ja) 無方向性電磁鋼板
JP7127308B2 (ja) 無方向性電磁鋼板
TWI693289B (zh) 無方向性電磁鋼板
TWI643962B (zh) Non-directional electromagnetic steel sheet
TWI617674B (zh) Non-directional electromagnetic steel sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911443

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521915

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019019936

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197032443

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017911443

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017911443

Country of ref document: EP

Effective date: 20200102

ENP Entry into the national phase

Ref document number: 112019019936

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190924