WO2018219544A1 - Verfahren zum betreiben einer fahrzeugladevorrichtung, fahrzeugladevorrichtung sowie system aus einer sensorvorrichtung und einer fahrzeugladevorrichtung - Google Patents

Verfahren zum betreiben einer fahrzeugladevorrichtung, fahrzeugladevorrichtung sowie system aus einer sensorvorrichtung und einer fahrzeugladevorrichtung Download PDF

Info

Publication number
WO2018219544A1
WO2018219544A1 PCT/EP2018/059646 EP2018059646W WO2018219544A1 WO 2018219544 A1 WO2018219544 A1 WO 2018219544A1 EP 2018059646 W EP2018059646 W EP 2018059646W WO 2018219544 A1 WO2018219544 A1 WO 2018219544A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
current
side electrical
vehicle
current load
Prior art date
Application number
PCT/EP2018/059646
Other languages
English (en)
French (fr)
Inventor
Johann Krammer
Gerhard Paris
Axel Vogel
Heiko STEPHAN
Original Assignee
Audi Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi Ag filed Critical Audi Ag
Priority to CN201880035652.5A priority Critical patent/CN110691712B/zh
Priority to US16/613,528 priority patent/US11104243B2/en
Publication of WO2018219544A1 publication Critical patent/WO2018219544A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/26Arrangements for eliminating or reducing asymmetry in polyphase networks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Definitions

  • Method for operating a vehicle charging device, vehicle charging device and system comprising a sensor device and a vehicle charging device
  • the present invention relates to a method for operating a vehicle charging device for charging a vehicle battery. It further relates to a vehicle charging device for charging a vehicle battery, comprising a communication device configured to communicate with a sensor device of a three-phase electrical Auskoppelticians, first, second and third charging device side electrical connection for supplying energy for charging the vehicle battery, an output terminal to Coupled to the vehicle battery and a control device for controlling the charging of the vehicle battery, the control device is configured by the communication device current current values for the current of a respective current in a first, a second and a third decoupling point side electrical line at the output of Decoupling point flows to read into the vehicle loading device.
  • the invention relates to a system comprising a sensor device of a three-phase decoupling point and a vehicle charging device.
  • a shop of electrified vehicles can be done by means of three-phase current. This is usually the case at small public charging stations and above all in the private sector. If the charging process is carried out in the private sector, the electric vehicle draws electricity via the house connection.
  • a typical charging power of an electric vehicle is between 1 1 kW and 22 kW. It should be noted that in different countries houses have different home connection services. For example, a typical German domestic connection provides services in the order of magnitude of 30 kW. In France or Italy, on the other hand, houses only have a relatively small house connection power, which can be in the range of 7 kW across all three electrical phases. This leads to that for The charging process of a modern electric vehicle with full charging power actually a higher power consumption would be necessary at the house.
  • a current sensor is installed directly at the house connection on all three lines to provide a so-called blackout protection function.
  • the current sensor measures the current current intensity for each of the three electrical phases and, with information about a maximum permissible current per electrical line, can provide information about the available current per electrical line up to the load limit.
  • Modern electric vehicles can access this information via digital communication with the current sensor.
  • the loads of the individual power phases are not the same, since most household consumers are only connected in a single phase.
  • the information of the current sensor on the load of the electrical phases are evaluated by the vehicle charging device. If the associated electrical line is at the load limit, the charging power of the affected electrical line is reduced by the vehicle.
  • DE 10 2013 220 683 A1 discloses a device and a method for detecting an electrical phase sequence in a vehicle.
  • a control module operatively couples to a power grid to receive an incoming power signal therefrom, wherein the incoming power signal provides a first voltage and a second voltage in a vehicle.
  • the control module is configured to determine an electrical phase difference between the first voltage and the second voltage and to determine a signal frequency of the incoming signal to determine the landing type of the power network.
  • the control module is further configured to control a number of switching devices to provide an output voltage signal on the Based on the electrical phase difference and the signal frequency for charging at least one battery in the vehicle to determine.
  • the current control device comprises a receiving unit which is set up to receive a control command transmitted by the monitoring device, and a control unit which is set up in order to reduce or limit the charging current as a function of the control command.
  • the object of the present invention is to provide an initially mentioned method as well as a vehicle charging device and a system comprising a sensor device and a vehicle charging device, with which a more reliable charging of a vehicle battery via a house connection is made possible.
  • a charging device according to the invention can, as shown in the embodiment, be accommodated in the vehicle, but can also be arranged outside the vehicle.
  • the present invention is based on the recognition that the vehicle requires an assignment of the messages transmitted by the current sensor to the charger-side terminals, so that the information of the current sensor for loading the decoupling-point-side electrical lines can be utilized correctly.
  • the reason for this is that, although in the power supply system according to the standard always a right-handed three-phase field must be present, but it is not necessary to meet this requirement that the phase L1 in the line VL1 of the first decoupling point-side terminal V1 also in the line FL1 at the first charger side port F1 is present.
  • the electrical phases are inadvertently twisted, for example via a lower outcoupling point. According to standard, it does not matter as long as the result is a clockwise power supply.
  • the respective first connection in a plug or a socket of a first position, the respective second connection of a second position and the respective third connection is assigned to a third position.
  • a right-handed field also arises in the assignments shown in FIG.
  • the charger side terminals are designated F1, F2 and F3, while the extraction point side terminals are V1, V2 and V3.
  • the electrical phases are designated L1, L2 and L3.
  • the second line of FIG. 1 represents a 1: 1 mapping, in the third line the electrical phases are shifted once, whereas in the fourth line they are shifted twice. In all three cases, a right-handed field is generated. From Fig. 1 it can be seen that, despite correct Installation, the connections on the vehicle loading device and the decoupling point may be occupied differently. From the perspective of the vehicle charging device, it is unclear at which connection the charging current has to be reduced. For this reason, the above-mentioned DE 10 2013 220 683 A1 provides no solution to the above problem, since the electrical phase difference is always determined relative to each other here. Due to the teaching of said publication, the assignment according to line 3 and 4 of Fig. 1 can not be determined.
  • Known systems comprising a current sensor and a vehicle charging device, for example a so-called wallbox, offer the possibility of performing a manual assignment of the electrical connections to the vehicle charging device according to the messages of the current sensor via an operating device, for example comprising a display and a selector switch. This procedure is suitable if the vehicle is always charged at the same connection.
  • an assignment can only be carried out by specialist personnel. For an electro-technical layman, the need for assignment is very difficult to understand and cumbersome to perform.
  • the loading equipment can be designed to be mobile.
  • the charging cable can be taken out of the housing of the so-called “Wallbox" of the applicant and, for example, taken on vacation or traveling.This is reconnected to another socket, ie not to the home socket in which a manual assignment is made Once again, a configuration of the electrical connections would have to be made again to ensure the assignment.
  • the present invention solves these problems in that the electrical connections or lines at the outcoupling point, for example the domestic connection, are automatically, ie by the vehicle charging device, connected to the vehicle. Be assigned to conclusions on the vehicle loading device.
  • the vehicle charging device successively performs a targeted change in the charging power of an electrical line of a charging device-side terminal and analyzes the change by evaluating the current sensor measured values at the terminals or in the lines at the coupling-out point.
  • the three connections on the vehicle charging device can be assigned to the three connections at the coupling-out point.
  • the invention represents a huge simplification of the configuration effort and thereby a reduction of installation costs. Due to the automatic configuration, the risk of triggering the home security is reduced especially at changing locations, a maximum charging performance is automatically ensured.
  • the wiring may include other lines, such as a PE terminal and a neutral.
  • step d) the charge of the vehicle battery with a charging current load per charging device side electrical line, which is equal to the smallest determined in step c), the maximum possible additional current load.
  • the time period for the assignment according to the invention between connections at the decoupling point and connections to the vehicle charging device can be used optimally for charging the vehicle battery.
  • the charging power of the respective charging device-side electrical line is then reduced in step e).
  • the optimal charging power is utilized at the time and, on the other hand, overloading is reliably prevented.
  • the charging power of the respective charging device side electrical line can be optionally increased.
  • the decisive factor is that the current load is varied in such a way that the sum of the charging current load after step d) and the current load variation is less than or equal to the smallest possible maximum current load determined in step c).
  • the steps e) to i) can also be repeated for the third charge-side electrical line.
  • the method further comprises the following steps:
  • step k checking that the result of step k) is consistent with the results of steps i) and j); 12)
  • step 12 if the result of step 1) is negative, repeating steps a) to k);
  • step 11) if the result of step 11) is positive, storing the determined assignment of the three outcoupling-side electrical lines to the three charger-side electrical lines.
  • the reading in step b) can be carried out conductively, for example by a so-called power line, or via radio, in particular via WLAN, ZigBee or Bluetooth.
  • FIG. 1 shows a table with different wiring configurations between a decoupling point with connections V1 to V3 and a vehicle charging device with connections F1 to F3;
  • Fig. 2 is a schematic representation for explaining the method according to the invention.
  • FIG. 3 shows a signal flow graph for an exemplary embodiment of a method according to the invention.
  • FIG. 2 shows a schematic illustration for explaining the method according to the invention.
  • power is passed from a pole transformer 10 to a fuse box 12 in a house 14.
  • the fuse box 12 comprises three output terminals V1, V2, V3 on lines VL1, VL2, VI3, at which the three electrical phases L1, L2, L3 of a three-phase current are provided.
  • the electrical phase L1 at terminal V1, i. in the line VL1, the electrical phase L1, at the terminal V2, i. in the line VL2, the electrical phase L2 and at the terminal V3, i. in the line VL3, the electrical phase L3 provided.
  • the output terminals V1 to V3 are coupled to the input terminals E1, E2, E3 of a terminal box 16.
  • This has, for example, two connection sockets K1, K2, wherein a first connection socket K1 comprises the connections K1 1, K12, K13, while a second connection socket K2 comprises the connections K21, K22, K23.
  • the terminals K1 1, K12, K13 are fixed positions in the first connection socket K1, the connections K21, K22, K23 assigned to fixed positions in the connection socket K2.
  • electrical phase L2 is provided at terminal K1, electrical phase L3 at terminal K12, electrical phase L1 at terminal K13, electrical phase L3 at terminal K21, electrical phase L1 at terminal K22 and at the terminal K23, the electrical phase L2 is provided.
  • both sockets K1, K2 is thus provided a right-handed three-phase field.
  • the electrical phase L1 is provided at the first terminal K1 1 of the first socket K1 and the electrical phase L3 at the first terminal K21 of the second socket K2. The same applies to the respective second and third connections.
  • the first socket K1 which comprises the terminals K1 1, K12, K13, is coupled to the terminals W1, W2, W3 of a terminal W of a wallbox 18 in a garage 20 belonging to the house 14.
  • the connections W1 to W3 are coupled via a charging cable 36 to corresponding connections F1 to F3 of a socket F of a charging device 22 for charging a vehicle battery 24 of a motor vehicle 26.
  • the electrical phase L2 is present at the terminal F1
  • the electrical phase L3 is applied to the terminal F2
  • the electrical phase L1 is applied to the terminal F3.
  • the connection between the charging device 22 and the vehicle battery 24 may be single-phase or multi-phase, depending on whether the charging device 22 charges the vehicle battery with direct current, alternating current or three-phase current.
  • a current sensor 28 is arranged, which is designed to current sensor values for the current of a respective current, in the first, the second and the third electrical line VL1, VL2, VL3 at the output of the fuse box 12 with the connections V1, V2 and V3 flows.
  • the sensor device 28 comprises a communication device 30 which is designed to communicate with a corresponding communication device 32 of the vehicle charging device 22 by radio in order to transmit the currently determined sensor values to the vehicle charging device 22.
  • the communication can also be conductive, in particular via LAN or PowerLineCommunication.
  • the communication device 32 of the vehicle charging device 22 is coupled to a control device 34, which is designed to control the charging of the vehicle battery 24.
  • the control device is designed to carry out the steps described in more detail with reference to FIG. 3:
  • step 1 10 these current sensor values are read into the vehicle charging device 22.
  • the control device 34 of the vehicle charging device 22 First, in a step 120, a maximum possible additional current load for the first, second and third electrical lines VL1, VL2, VL3 at the terminals V1 to V3 of the fuse box 12 determined.
  • step 130 the vehicle battery 24 is charged by means of the vehicle charger 22 with a current load per charger-side electrical line FL1, FL2, FL3 at the terminals F1, F2, F3, which is equal to the smallest possible additional current load determined in step 120.
  • step 140 the charging power of a first charger side electrical line FL1, FL2 or FL3, ie an electrical line of the terminals F1, F2 or F3, is varied by varying the current load, the current load being varied such that the sum of the charging current load after step 130 and the current load variation is less than or equal to the smallest possible maximum current load determined in step 120.
  • step 150 the current sensor values for the current intensity of the respective current flowing in the first, the second and the third electrical line VL1, VL2, VL3 at the terminals V1, V2, V3 are then determined, these values in Step 160 then read into the vehicle loading device 22 again.
  • step 170 it is determined at which electrical line VL1, VL2 or VL3 the current sensor value has changed in accordance with the variation of step 140.
  • step 180 a first charger-side electrical line FL1, FL2 or FL3 of an outcoupling-side line VL1, VL2 or VL3 is assigned to the fuse box 12 for which a variation of the current sensor value has been determined in step 170.
  • step 210 If the check in step 210 reveals that the result of the last pass is inconsistent with the results of the two previous runs, for example because two loader-side leads have been assigned the same lead at fuse box 12, the method branches back to step 100. However, in step 210 found a plausible result, in step 220, the determined assignment of the decoupling point-side lines VL1, VL2, VL3 is stored at the fuse box 12 to the three charger side lines FL1, FL2, FL3 in a storage device of the charging device 22.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben einer Fahrzeugladevorrichtung (22) zum Laden einer Fahrzeugbatterie (24). Durch Veränderung des Ladestroms einer bestimmten ladevorrichtungsseitigen Leitung (FL1; FL2; FL3) und Auswertung bei welcher auskoppelpunktseitigen Leitung (VL1; VL2; VL3) ebenfalls eine Veränderung feststellbar ist, wird zunächst der ersten ladevorrichtungsseitigen Leitung (FL1; FL2; FL3) eine bestimmte auskoppelpunktseitige Leitung (VL1; VL2; VL3) zugeordnet. Dieser Prozess wird für mindestens eine zweite ladevorrichtungsseitige Leitung (FL1; FL2; FL3) wiederholt.

Description

Verfahren zum Betreiben einer Fahrzeugladevorrichtung, Fahrzeugladevorrichtung sowie System aus einer Sensorvorrichtung und einer Fahrzeugladevorrichtung
BESCHREIBUNG:
Die vorliegende Erfindung betrifft ein Verfahren zum Betreiben einer Fahrzeugladevorrichtung zum Laden einer Fahrzeugbatterie. Sie betrifft weiterhin eine Fahrzeugladevorrichtung zum Laden einer Fahrzeugbatterie umfassend eine Kommunikationsvorrichtung, die ausgelegt ist, mit einer Sensorvorrichtung eines dreiphasigen elektrischen Auskoppelpunkts zu kommunizieren, einen ersten, einen zweiten und einen dritten ladevorrichtungsseitigen elektrischen Anschluss zum Zuführen von Energie zum Laden der Fahrzeugbatterie, einen Ausgangsanschluss zum Koppeln mit der Fahrzeugbatte- rie sowie eine Steuervorrichtung zum Steuern des Ladens der Fahrzeugbatterie, wobei die Steuervorrichtung ausgelegt ist, mittels der Kommunikationsvorrichtung aktuelle Stromwerte für die Stromstärke eines jeweiligen Stroms, der in einer ersten, einer zweiten und einer dritten auskoppelpunktseitigen elektrischen Leitung am Ausgang des Auskoppelpunkts fließt, in die Fahr- zeugladevorrichtung einzulesen. Schließlich betrifft die Erfindung ein System aus einer Sensorvorrichtung eines dreiphasigen Auskoppelpunkts und einer Fahrzeugladevorrichtung.
Ein Laden elektrifizierter Fahrzeuge kann mittels Drehstrom erfolgen. Dies ist an kleinen öffentlichen Ladestationen und vor allem im privaten Bereich üblicherweise der Fall. Wird der Ladevorgang im privaten Bereich durchgeführt, so bezieht das Elektrofahrzeug Strom über den Hausanschluss. Eine typische Ladeleistung eines Elektrofahrzeugs beträgt zwischen 1 1 kW und 22 kW. Hierbei ist zu berücksichtigen, dass in unterschiedlichen Ländern Häuser über unterschiedliche Hausanschluss-Leistungen verfügen. So stellt ein typischer deutscher Hausanschluss Leistungen in der Größenordnung von 30 kW bereit. In Frankreich oder Italien hingegen verfügen Häuser nur über eine verhältnismäßig kleine Hausanschlussleistung, die im Bereich von 7 kW über alle drei elektrische Phasen liegen kann. Dies führt dazu, dass für den Ladevorgang eines modernen Elektrofahrzeugs mit voller Ladeleistung eigentlich eine höhere Anschlussleistung am Haus nötig wäre.
Werden während des Ladevorgangs des Elektrofahrzeugs weitere Verbrau- eher im Haus aktiviert, kann die Summe der Verbraucherleistung höher werden, als die Hausanschlusssicherung es zulässt. Anschaulich lässt sich ein Szenario vorstellen, in dem unmittelbar nach Ankunft zu Hause der Ladevorgang des Elektrofahrzeugs gestartet und gleichzeitig ein Elektroherd für die Zubereitung des Abendessens eingeschaltet wird.
Um in diesen Situationen keinen Totalausfall im Haus durch Auslösen der Hauptsicherung hervorzurufen, wird zur Bereitstellung einer so genannten Blackout-Schutzfunktion ein Stromsensor unmittelbar am Hausanschluss an allen drei Leitungen verbaut. Der Stromsensor misst für jede der drei elektri- sehe Phasen die jeweils aktuelle Stromstärke und kann mit einer Information über einen maximal zulässigen Strom pro elektrische Leitung eine Auskunft über den noch verfügbaren Strom pro elektrische Leitung bis zur Belastungsgrenze liefern. Moderne Elektrofahrzeuge können über eine digitale Kommunikation mit dem Stromsensor auf diese Information zugreifen. Typi- scherweise sind die Belastungen der einzelnen Stromphasen nicht gleich, da die meisten Haushaltsverbraucher nur einphasig angeschlossen sind. Um trotzdem eine möglichst hohe Ladeleistung nutzen zu können, werden die Informationen des Stromsensors über die Belastung der elektrischen Phasen von der Fahrzeugladevorrichtung ausgewertet. Ist die zugehörige elektrische Leitung an der Belastungsgrenze, so wird die Ladeleistung der betroffenen elektrischen Leitung durch das Fahrzeug reduziert.
In diesem Zusammenhang ist aus der DE 10 2013 220 683 A1 eine Vorrichtung und ein Verfahren zum Erfassen einer elektrischen Phasensequenz in einem Fahrzeug bekannt. Ein Steuermodul dient für eine operative Kopplung mit einem Stromnetz, um ein eingehendes Leistungssignal von demselben zu empfangen, wobei das eingehende Leistungssignal eine erste Spannung und eine zweite Spannung in einem Fahrzeug vorsieht. Das Steuermodul ist konfiguriert, um eine elektrische Phasendifferenz zwischen der ersten Span- nung und der zweiten Spannung zu bestimmen und eine Signalfrequenz des eingehenden Signals zu bestimmen, um den Landestyp des Stromnetzes zu bestimmen. Das Steuermodul ist weiterhin konfiguriert, um eine Anzahl von Schalteinrichtungen zu steuern, um ein Ausgangsspannungssignal auf der Basis der elektrische Phasendifferenz und der Signalfrequenz für das Laden wenigstens einer Batterie in dem Fahrzeug zu bestimmen.
Aus der DE 10 2012 217 580 A1 ist es bekannt, einen Ladestrom für eine Hochspannungsbatterie durch einen gewissen vorbestimmten Bereich abzutasten und ihr zugeordnete Parameter des elektrischen Systems können bei Operation gemessen werden. Bei Operation kann der Systemwirkungsgrad als eine Funktion des Ladestroms bestimmt werden. Das Batterieladegerätsystem kann für eine kurze Zeit dazu betrieben werden, verschiedene Lade- ströme an die Traktionsbatterie abzugeben. Der Systemwirkungsgrad kann dann als eine Funktion des Ladestroms gemeldet werden.
Die DE 10 2015 1 13 771 A1 befasst sich mit der Detektion und Benachrichtigung sich ändernder elektrischer Bedingungen während des Ladens einer Fahrzeugbatterie. Da unterschiedliche, an den Stromkreis angeschlossene Geräte unterschiedliche Entnahmecharakteristika aufweisen, werden diese berücksichtigt, um die Stromentnahme zu optimieren.
Die DE 10 2014 216 020 A1 beschreibt ein Ladegerät mit einer Überwa- chungseinrichtung sowie einer Stromsteuereinrichtung. Dabei umfasst die Stromsteuereinrichtung eine Empfangseinheit, die eingerichtet ist, einen von der Überwachungseinrichtung übermittelten Steuerbefehl zu empfangen, und eine Steuereinheit, die eingerichtet ist, in Abhängigkeit von dem Steuerbefehl den Ladestrom zu reduzieren oder zu beschränken.
Trotz dieser Maßnahmen werden in der Praxis immer wieder Probleme beim Laden von Elektrofahrzeugen festgestellt, insbesondere kommt es immer wieder zu einem Auslösen der Haussicherung. Die Aufgabe der vorliegenden Erfindung besteht darin, ein eingangs genanntes Verfahren sowie eine Fahrzeugladevorrichtung und ein System aus einer Sensorvorrichtung und einer Fahrzeugladevorrichtung bereitzustellen, womit ein zuverlässigeres Laden einer Fahrzeugbatterie über einen Hausanschluss ermöglicht wird.
Diese Aufgabe wird gelöst durch ein Verfahren mit den Merkmalen von Patentanspruch 1 , eine Ladevorrichtung mit den Merkmalen von Patentanspruch 7 sowie durch ein System aus einer Sensorvorrichtung eines dreiphasigen Auskoppelpunkts und einer derartigen Fahrzeugladevorrichtung. In den nachfolgenden Ausführungen wird bisweilen anstelle des Begriffs eines Hausanschlusses der allgemeinere Begriff elektrischer Auskoppelpunkt gewählt, da die Erfindung ebenso beispielsweise in einer Garagenunterver- teilung oder in einer Unterverteilung einer Industrieanlage genutzt werden kann.
Eine erfindungsgemäße Ladevorrichtung kann , wie im Ausführungsbeispiel dargestellt, im Fahrzeug untergebracht sein, kann jedoch auch außerhalb des Fahrzeugs angeordnet sein.
Die vorliegende Erfindung basiert auf der Erkenntnis, dass das Fahrzeug eine Zuordnung der vom Stromsensor übermittelten Nachrichten zu den ladevorrichtungsseitigen Anschlüssen benötigt, damit die Informationen des Stromsensors zur Belastung der auskoppelpunktseitigen elektrischen Leitungen korrekt verwertet werden können. Der Grund dafür ist, dass zwar im Stromnetz gemäß Norm immer ein rechtsdrehendes Drehstromfeld anliegen muss, es aber zur Erfüllung dieser Forderung nicht nötig ist, dass die Phase L1 in der Leitung VL1 des ersten auskoppelpunktseitigen Anschlusses V1 auch in der Leitung FL1 am ersten ladevorrichtungsseitigen Anschluss F1 anliegt. In sehr vielen elektrischen Installationen werden die elektrischen Phasen, beispielsweise über einen Unter Auskoppelpunkt, versehentlich verdreht. Gemäß Norm spielt es keine Rolle, solange das Ergebnis eine rechtsdrehende Stromversorgung ist. In diesem Zusammenhang wird davon ausgegangen, dass der jeweilige erste Anschluss in einem Stecker bzw. einer Steckdose einer ersten Position, der jeweilige zweite Anschluss einer zweiten Position und der jeweilige dritte Anschluss einer dritten Position zugeordnet ist. Beispielsweise entsteht ein rechtsdrehendes Feld auch bei den in Fig. 1 dargestellten Belegungen. Dabei sind die ladevorrichtungsseitigen Anschlüsse mit F1 , F2 und F3 bezeichnet, während die auskoppelpunktseitigen Anschlüsse mit V1 , V2 und V3 bezeichnet sind. Die elektrische Phasen sind mit L1 , L2 und L3 bezeichnet.
Die zweite Zeile der Fig. 1 gibt demnach eine 1 :1 -Belegung wieder, bei der dritten Zeile sind die elektrische Phasen einmal verschoben, während sie in der vierten Zeile zweimal verschoben sind. In allen drei Fällen wird ein rechtsdrehendes Feld erzeugt. Aus Fig. 1 wird ersichtlich, dass, trotz korrek- ter Installation, das die Anschlüsse an der Fahrzeugladevorrichtung und am Auskoppelpunkt unterschiedlich belegt sein können. Aus Sicht der Fahrzeugladevorrichtung ist es unklar, an welchem Anschluss der Ladestrom reduziert werden muss. Aus diesem Grund liefert die oben bereits erwähnte DE 10 2013 220 683 A1 keine Lösung der oben genannten Aufgabe, da hier die elektrische Phasendifferenz nur immer relativ zueinander bestimmt wird. Durch die Lehre der genannten Druckschrift kann die Belegung gemäß Zeile 3 und 4 von Fig. 1 nicht ermittelt werden. Während in Deutschland die Farben der elektrische Phasen normiert sind (L1 =braun, L2=grau, L3=schwarz), ist dies in vielen anderen Ländern nicht der Fall. Häufig werden auch Installationen von Privatpersonen selbst vorgenommen, beispielsweise über verschiedene Klemmstellen vom Hausan- schluss zu einem Anschluss in der Garage, wobei nicht auf durchgehende korrekte Verdrahtung geachtet wird.
Bekannte Systeme, umfassend einen Stromsensor sowie eine Fahrzeugladevorrichtung, beispielsweise eine so genannte Wallbox, bieten die Möglichkeit, über eine Bedieneinrichtung, beispielsweise umfassend ein Display und einen Wahlschalter, eine manuelle Zuordnung der elektrischen Anschlüsse an der Fahrzeugladevorrichtung entsprechend den Nachrichten des Stromsensors durchzuführen. Diese Vorgehensweise ist geeignet, wenn das Fahrzeug immer am gleichen Anschluss geladen wird. Allerdings ist eine derartige Zuordnung nur von Fachpersonal ausführbar. Für einen elektro- technischen Laien ist die Notwendigkeit der Zuordnung nur sehr schwierig zu verstehen und umständlich durchzuführen.
Weiterhin zu berücksichtigen ist, dass das Ladeequipment ortsveränderlich ausgebildet sein kann. Beispielsweise kann aus dem Gehäuse der soge- nannten „Wallbox" der Anmelderin das Ladekabel herausgenommen und beispielsweise in den Urlaub oder auf Reisen mitgenommen werden. Wird dieses an einer anderen Steckdose wieder angesteckt, d.h. nicht an der heimatlichen Steckdose, bei der eine manuelle Zuordnung vorgenommen wurde, so wäre erneut eine Konfiguration der elektrische Anschlüsse vorzu- nehmen, um die Zuordnung sicherzustellen.
Die vorliegende Erfindung löst diese Probleme, indem die elektrischen Anschlüsse bzw. Leitungen am Auskoppelpunkt, beispielsweise dem Hausan- schluss, automatisch, d.h. durch die Fahrzeugladevorrichtung, den An- Schlüssen an der Fahrzeugladevorrichtung zugeordnet werden. Dazu führt die Fahrzeugladevorrichtung sukzessive eine gezielte Veränderung der Ladeleistung einer elektrischen Leitung eines ladevorrichtungsseitigen Anschlusses durch und analysiert die Veränderung durch Auswertung der Stromsensormesswerte an den Anschlüssen bzw. in den Leitungen am Auskoppelpunkt. Indem nacheinander mindestens für zwei elektrische Anschlüsse eine Ladeleistungsvariation vorgenommen wurde, lassen sich die drei Anschlüsse an der Fahrzeugladevorrichtung den drei Anschlüssen am Auskoppelpunkt zuordnen.
Durch diese Maßnahmen kann auch bei Fehlverdrahtungen zwischen Haus- anschluss und Anschluss für die Fahrzeugladevorrichtung ein Auslösen der Haussicherung zuverlässig vermieden werden. Andererseits kann die Fahrzeugbatterie mit maximaler Ladeleistung und damit minimaler Ladezeit gela- den werden. Für den Benutzer stellt die Erfindung eine enorme Erleichterung des Konfigurationsaufwands und dadurch eine Reduktion der Installationskosten dar. Durch die automatische Konfiguration wird insbesondere bei wechselnden Ladeorten die Gefahr eines Auslösens der Haussicherung reduziert, eine maximale Ladeperformance wird automatisiert sichergestellt.
Zur Vereinfachung der Ausführungen im Rahmen der vorliegenden Erfindung wird lediglich auf die Verdrahtung hinsichtlich der drei elektrische Phasen eingegangen. Wie für den Fachmann offensichtlich, kann die Verdrahtung weitere Leitungen umfassen, beispielsweise einen Schutzleiteranschluss und einen Neutralleiter.
Bevorzugt erfolgt in Schritt d) die Ladung der Fahrzeugbatterie mit einer Lade-Strombelastung je ladevorrichtungsseitiger elektrischer Leitung, die gleich der kleinsten in Schritt c) ermittelten, maximal möglichen zusätzlichen Strombelastung ist. Auf diese Weise kann bereits die Zeitdauer zur erfindungsgemäßen Zuordnung zwischen Anschlüssen am Auskoppelpunkt und Anschlüssen an der Fahrzeugladevorrichtung optimal zum Laden der Fahrzeugbatterie genutzt werden. Insbesondere in diesem Zusammenhang wird dann in Schritt e) die Ladeleistung der jeweiligen ladevorrichtungsseitigen elektrischen Leitung reduziert. Dadurch wird einerseits die zu diesem Zeitpunkt optimale Ladeleistung ausgenutzt und andererseits eine Überlastung zuverlässig vermieden. In anderen Ausgestaltungen der Erfindung kann selbstverständlich in Schritt d) auch eine deutlich kleinere als die kleinste in Schritt c) ermittelte, maximal mögliche zusätzliche Strombelastung verwen- det werden, sodass dann bei der Variation in Schritt e) die Ladeleistung der jeweiligen ladevorrichtungsseitigen elektrische Leitung gegebenenfalls vergrößert werden kann. Entscheidend ist, dass die Strombelastung derart variiert wird, dass die Summe aus der Ladestrombelastung nach Schritt d) und der Strombelastungsvariation kleiner gleich der kleinsten in Schritt c) ermittelten, maximal möglichen zusätzlichen Strombelastung ist.
Zur Plausibilisierung und damit zum Ausschluss von Fehlern können die Schritte e) bis i) überdies für die dritte ladevornchtungsseitige elektrische Leitung wiederholt werden .
Bevorzugt umfasst das Verfahren weiterhin folgende Schritte:
11 ) Prüfen, ob das Ergebnis von Schritt k) mit den Ergebnissen der Schritte i) und j) vereinbar ist; 12)
12) falls das Ergebnis von Schritt 1 ) negativ ist, Wiederholen der Schritte a) bis k);
13) falls das Ergebnis von Schritt 11 ) positiv ist, Abspeichern der ermittelten Zuordnung der drei auskoppelpunktseitigen elektrischen Leitungen zu den drei ladevorrichtungsseitigen elektrischen Leitungen.
Auf diese Weise können die Folgen von Messfehlern, beispielsweise durch kurz andauernde Störungen, ausgeräumt werden. Eine derartige Weiterbildung des erfindungsgemäßen Verfahrens zeichnet sich deshalb durch eine besonders große Zuverlässigkeit und Robustheit aus.
Das Einlesen in Schritt b) kann konduktiv erfolgen, beispielsweise durch eine so genannte Power Line, oder über Funk, insbesondere über WLAN, ZigBee oder Bluetooth.
Weitere vorteilhafte Ausführungsformen ergeben sich aus den Unteransprüchen.
Die mit Bezug auf das erfindungsgemäße Verfahren vorgestellten bevorzug- ten Ausführungsformen und deren Vorteile gelten entsprechend, soweit anwendbar, für eine erfindungsgemäße Fahrzeugladevorrichtung zum Laden einer Fahrzeugbatterie sowie für ein erfindungsgemäßes System aus einer Sensorvorrichtung eines dreiphasigen Auskoppelpunkts und einer erfindungsgemäßen Fahrzeugladevorrichtung. Im Nachfolgenden wird nunmehr ein Ausführungsbeispiel der vorliegenden Erfindung unter Bezugnahme auf die beigefügten Zeichnungen näher be- schrieben. Diese zeigen in:
Fig. 1 eine Tabelle mit unterschiedlichen Verdrahtungskonfigurationen zwischen einem Auskoppelpunkt mit Anschlüssen V1 bis V3 und einer Fahrzeugladevorrichtung mit Anschlüssen F1 bis F3;
Fig. 2 eine schematische Darstellung zur Erläuterung des erfindungsgemäßen Verfahrens; und
Fig. 3 einen Signalflussgraphen für ein Ausführungsbeispiel eines erfin- dungsgemäßen Verfahrens.
In Fig. 2 ist eine schematische Darstellung zur Erläuterung des erfindungsgemäßen Verfahrens gezeigt. Dabei wird Strom von einem Masttransformator 10 an einen Sicherungskasten 12 in einem Haus 14 geleitet. Der Siche- rungskasten 12 umfasst drei Ausgangsanschlüsse V1 , V2, V3 an Leitungen VL1 , VL2, VI3, an denen die drei elektrische Phasen L1 , L2, L3 eines Drehstroms bereitgestellt werden. In der Darstellung wird am Anschluss V1 , d.h. in der Leitung VL1 , die elektrische Phase L1 , am Anschluss V2, d.h. in der Leitung VL2, die elektrische Phase L2 und am Anschluss V3, d.h. in der Leitung VL3, die elektrische Phase L3 bereitgestellt.
Die Ausgangsanschlüsse V1 bis V3 sind mit den Eingangsanschlüssen E1 , E2, E3 einer Klemmbox 16 gekoppelt. Diese weist beispielhaft zwei Anschlussbuchsen K1 , K2 auf, wobei eine erste Anschlussbuchse K1 die An- Schlüsse K1 1 , K12, K13 umfasst, während eine zweite Anschlussbuchse K2 die Anschlüsse K21 , K22, K23 umfasst. Die Anschlüsse K1 1 , K12, K13 sind festen Positionen in der ersten Anschlussbuchse K1 , die Anschlüsse K21 , K22, K23 festen Positionen in der Anschlussbuchse K2 zugeordnet. Wie der Zeichnung zu entnehmen ist, wird am Anschluss K1 1 die elektrische Phase L2, am Anschluss K12 die elektrische Phase L3, am Anschluss K13 die elektrische Phase L1 bereitgestellt, während am Anschluss K21 die elektrische Phase L3, am Anschluss K22 die elektrische Phase L1 und am Anschluss K23 die elektrische Phase L2 bereitgestellt wird. An beiden Buchsen K1 , K2 wird demnach ein rechtsdrehendes Drehstromfeld bereitgestellt. Während jedoch der erste Anschluss V1 des Sicherungskastens 12 noch die elektrische Phase L1 bereitgestellt hat, wird am ersten Anschluss K1 1 der ersten Buchse K1 die elektrische Phase L2 und am ersten Anschluss K21 der zweiten Buchse K2 die elektrische Phase L3 bereitgestellt. Entsprechendes gilt für die jeweiligen zweiten und dritten Anschlüsse.
Die erste Buchse K1 , die die Anschlüsse K1 1 , K12, K13 umfasst, ist mit den Anschlüssen W1 , W2, W3 eines Anschlusses W einer Wallbox 18 in einer zum Haus 14 gehörenden Garage 20 gekoppelt. Die Anschlüsse W1 bis W3 sind über ein Ladekabel 36 mit entsprechenden Anschlüssen F1 bis F3 einer Buchse F einer Ladevorrichtung 22 zum Laden einer Fahrzeugbatterie 24 eines Kraftfahrzeugs 26 gekoppelt. Am Anschluss F1 liegt demnach die elektrische Phase L2, am Anschluss F2 die elektrische Phase L3 und am Anschluss F3 die elektrische Phase L1 an. Die Verbindung zwischen Ladevorrichtung 22 und Fahrzeugbatterie 24 kann ein- oder mehrphasig sein, je nachdem, ob die Ladevorrichtung 22 die Fahrzeugbatterie mit Gleichstrom, Wechselstrom oder Drehstrom lädt. Zwischen dem Sicherungskasten 12 und der Klemmbox 16 ist ein Stromsensor 28 angeordnet, der ausgelegt ist, aktuelle Sensorwerte für die Stromstärke eines jeweiligen Stroms, der in der ersten, der zweiten und der dritten elektrische Leitung VL1 , VL2, VL3 am Ausgang des Sicherungskastens 12 mit den Anschlüssen V1 , V2 und V3 fließt.
Die Sensorvorrichtung 28 umfasst eine Kommunikationsvorrichtung 30, die ausgelegt ist, mit einer korrespond ierenden Kommunikationsvorrichtung 32 der Fahrzeugladevorrichtung 22 per Funk zu kommunizieren, um die aktuell ermittelten Sensorwerte an die Fahrzeugladevorrichtung 22 zu übertragen . Alternativ kann die Kommunikation auch konduktiv, insbesondere über LAN oder PowerLineCommunication, erfolgen.
Die Kommunikationsvorrichtung 32 der Fahrzeugladevorrichtung 22 ist mit einer Steuervorrichtung 34 gekoppelt, die ausgelegt ist, das Laden der Fahr- zeugbatterie 24 zu steuern. Insbesondere ist die Steuervorrichtung ausgelegt, die mit Bezug auf Fig. 3 näher dargestellten Schritte auszuführen:
Zunächst wird in Schritt 100 ein Zählparameter n=1 gesetzt und die aktuellen Sensorwerte für die Stromstärke eines jeweiligen Stroms, der in der ersten , der zweiten und der dritten elektrische Leitung VL1 , VL2, VL3 am Sicherungskasten 12 fließt, ermittelt. In Schritt 1 10 werden diese aktuellen Sensorwerte in die Fahrzeugladevorrichtung 22 eingelesen. Soweit nicht anders angegeben, werden die folgenden Schritte von der Steuervorrichtung 34 der Fahrzeugladevorrichtung 22 ausgeführt: Zunächst wird in einem Schritt 120 eine maximal mögliche zusätzliche Strombelastung für die erste, die zweite und die dritte elektrische Leitung VL1 , VL2, VL3 an den Anschlüssen V1 bis V3 des Sicherungskastens 12 ermittelt. In Schritt 130 wird die Fahrzeugbatterie 24 mittels der Fahrzeugladevorrichtung 22 mit einer Strombelastung je ladevorrichtungsseitiger elektrische Leitung FL1 , FL2, FL3 an den Anschlüssen F1 , F2, F3 geladen, die gleich der kleinsten in Schritt 120 ermittelten, maximal möglichen zusätzlichen Strombelastung ist. In Schritt 140 wird die Ladeleistung einer ersten ladevorrichtungsseitigen elektrischen Leitung FL1 , FL2 oder FL3, d.h. einer elektrischen Leitung der Anschlüsse F1 , F2 oder F3, durch Variation der Strombelastung variiert, wobei die Strombelastung derart variiert wird, dass die Summe aus der Lade-Strombelastung nach Schritt 130 und der Strombelastungsvariation klei- ner gleich der kleinsten in Schritt 120 ermittelten, maximal möglichen zusätzlichen Strombelastung ist.
In Schritt 150 werden dann die aktuellen Sensorwerte für die Stromstärke des jeweiligen Stroms, der in der ersten, der zweiten und der dritten elektri- sehe Leitung VL1 , VL2, VL3 an den Anschlüssen V1 , V2, V3 fließt, ermittelt, wobei diese Werte im Schritt 160 dann wieder in die Fahrzeugladevorrichtung 22 eingelesen werden.
Anschließend wird in Schritt 170 ermittelt, bei welcher elektrischen Leitung VL1 , VL2 oder VL3 sich der aktuelle Sensorwert entsprechend der Variation von Schritt 140 geändert hat.
Im darauf folgenden Schritt 180 wird eine erste ladevorrichtungsseitige elektrische Leitung FL1 , FL2 oder FL3 einer auskoppelpunktseitigen Leitung VL1 , VL2 oder VL3 am Sicherungskasten 12, für die eine Variation des aktuellen Sensorwerts im Schritt 170 ermittelt wurde, zugeordnet. Im Schritt 190 wird geprüft, ob der Zählparameter n=3 ist. Wird dies verneint, wird in Schritt 200 n=n+1 gesetzt und das Verfahren zu Schritt 140 zurückverzweigt. Wird in Schritt 190 n=3 bejaht, geht das Verfahren weiter zu Schritt 210. Mit anderen Worten zweigt das Verfahren dann zu Schritt 210, wenn für drei ladevorrichtungsseitige elektrische Leitungen FL1 , FL2, FL3 die Zuordnung vorgenommen wurde. Ergibt die Überprüfung in Schritt 210, dass das Ergebnis des letzten Durchlaufs mit den Ergebnissen der zwei vorhergehenden Durchläufe nicht vereinbar ist, beispielsweise weil zwei ladevorrichtungsseitigen Leitungen dieselbe Leitung am Sicherungskasten 12 zugeordnet wurde, zweigt das Verfahren zurück zu Schritt 100. Wird jedoch in Schritt 210 ein plausibles Ergebnis gefunden, wird in Schritt 220 die ermittelte Zuordnung der auskoppelpunkt- seitigen Leitungen VL1 , VL2, VL3 am Sicherungskasten 12 zu den drei ladevorrichtungsseitigen Leitungen FL1 , FL2, FL3 in einer Speichervorrichtung der Ladevorrichtung 22 abgespeichert.

Claims

PATENTANSPRÜCHE:
Verfahren zum Betreiben einer Fahrzeugladevorrichtung (22) zum Laden einer Fahrzeugbatterie (24) folgende Schritte umfassend:
a) Ermitteln von aktuellen Sensorwerten für die Stromstärke eines jeweiligen Stroms, der in einer ersten, einer zweiten und einer dritten auskoppeipunktseitigen elektrischen Leitung (VL1 , VL2, VL3) eines dreiphasigen elektrischen Auskoppelpunkts (12) fließt (Schritt 100); b) Einlesen der aktuellen Sensorwerte in die Fahrzeugladevorrichtung (22) (Schritt 1 10);
gekennzeichnet durch folgende weiteren Schritte:
c) Ermitteln einer maximal möglichen zusätzlichen Strombelastung für die erste, die zweite und die dritte auskoppeipunktseitige elektrische Leitung (VL1 , VL2, VL3) (Schritt 120);
d) Laden der Fahrzeugbatterie (24) mittels der Fahrzeugladevorrichtung (22) mit einer Lade-Strombelastung je ladevorrichtungsseitiger elektrische Leitung (FL1 , FL2, FL3), die kleiner gleich der kleinsten in Schritt c) ermittelten, maximal möglichen zusätzlichen Strombelastung ist (Schritt 130);
e) Variieren der Ladeleistung einer ersten ladevorrichtungsseitigen elektrischen Leitung (FL1 ; FL2; FL3) durch Variation der Strombelastung, wobei die Strombelastung derart variiert wird, dass die Summe aus der Lade-Strombelastung nach Schritt d) und der Strombelastungsvariation kleiner gleich der kleinsten in Schritt c) ermittelten, maximal möglichen zusätzlichen Strombelastung ist (Schritt 140);
f) Ermitteln der aktuellen Sensorwerte für die Stromstärke des jeweiligen Stroms, der in der ersten, der zweiten und der dritten auskoppeipunktseitigen elektrischen Leitung (VL1 , VL2, VL3) fließt (Schritt 150); g) Einlesen der aktuellen Sensorwerte in die Fahrzeugladevorrichtung (22) (Schritt 160);
h) Ermitteln, bei welcher auskoppeipunktseitigen elektrischen Leitung (VL1 , VL2, VL3) sich der aktuelle Sensorwert entsprechend der Variation von Schritt e) geändert hat (Schritt 170);
i) Zuordnen der ersten ladevorrichtungsseitigen elektrischen Leitung (FL1 ; FL2; FL3) zu der auskoppeipunktseitigen elektrische Leitung (VL1 ; VL2; VL3), für die eine Variation des aktuellen Sensorwerts in Schritt h) ermittelt wurde (Schritt 180); und
j) Wiederholen der Schritte e) bis i) für zumindest eine zweite ladevor- richtungsseitige elektrische Leitung (FL1 ; FL2; FL3) (Schritte 190 und 200).
Verfahren nach Anspruch 1 ,
dadurch gekennzeichnet, dass
in Schritt d) die Ladung der Fahrzeugbatterie (24) mit einer Lade- Strombelastung je ladevorrichtungsseitiger elektrischer Leitung (FL1 , FL2, FL3) erfolgt, die gleich der kleinsten in Schritt c) ermittelten, maximal möglichen zusätzlichen Strombelastung ist.
Verfahren nach einem der Ansprüche 1 oder 2,
dadurch gekennzeichnet, dass
in Schritt e) die Ladeleistung der jeweiligen ladevorrichtungsseitigen elektrischen Leitung (FL1 , FL2, FL3) reduziert wird.
Verfahren nach einem der vorhergehenden Ansprüche,
gekennzeichnet durch folgenden Schritt:
k) Wiederholen der Schritte e) bis i) für die dritte ladevorrichtungsseitige elektrische Leitung (FL1 ; FL2; FL3) (Schritte 190 und 200).
Verfahren nach Anspruch 4,
gekennzeichnet durch folgende Schritte:
11 ) Prüfen, ob das Ergebnis von Schritt k) mit den Ergebnissen der Schritte i) und j) vereinbar ist (Schritt 210);
12) falls das Ergebnis von Schritt 11 ) negativ ist: Wiederholen der Schritte a) bis k);
13) falls das Ergebnis von Schritt 11 ) positiv ist: Abspeichern der ermittelten Zuordnung der drei auskoppelpunktseitigen elektrischen Leitungen (VL1 , VL2, VL3) zu den drei ladevorrichtungsseitigen elektrischen Leitungen (FL1 , FL2, FL3) (Schritt 220).
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
das Einlesen in Schritt b) konduktiv oder über Funk, insbesondere über WLAN, ZigBee oder Bluetooth, erfolgt.
Fahrzeugladevorrichtung (22) zum Laden einer Fahrzeugbatterie (24) umfassend:
- eine Kommunikationsvorrichtung (32), die ausgelegt ist, mit einer Sensorvorrichtung eines dreiphasigen elektrischen Auskoppel punkts (12) zu kommunizieren;
- einen ersten, einen zweiten und einen dritten ladevorrichtungsseitigen elektrischen Anschiuss (F1 , F2, F3) zum Zuführen von Energie zum Laden der Fahrzeugbatterie (24);
- einen Ausgangsanschluss (A) zum Koppeln mit der Fahrzeugbatterie
(24);
- eine Steuervorrichtung (34) zum Steuern des Ladens der Fahrzeugbatterie (24), wobei die Steuervorrichtung (34) ausgelegt ist, folgenden Schritt durchzuführen:
- Einlesen in die Fahrzeugladevorrichtung (22) mittels der Kommunikationsvorrichtung (32) von aktuellen Stromwerten für die Stromstärke eines jeweiligen Stroms, der in einer ersten, einer zweiten und einer dritten auskoppelpunktseitigen elektrischen Leitung (VL1 , VL2, VL3) an den Anschlüssen (V1 , V2, V3) des Auskoppelpunkts (12) fließt;
dadurch gekennzeichnet, dass
die Steuervorrichtung (34) weiterhin ausgelegt ist, folgende Schritte durchzuführen:
- Ermitteln einer maximal möglichen zusätzlichen Strombelastung für die erste, die zweite und die dritte auskoppelpunktseitige elektrische Leitung (VL1 , VL2, VL3);
- Laden der Fahrzeugbatterie (24) mit einer Lade-Strombelastung je la- devorrichtungsseitigem elektrischen Anschiuss (F1 , F2, F3), die kleiner gleich der kleinsten im vorhergehenden Ermittlungsschritt ermittelten , maximal möglichen zusätzlichen Strombelastung ist;
- Variieren der Ladeleistung an einem ersten ladevorrichtungsseitigen elektrischen Anschiuss (F1 ; F2; F3) durch Variation der Strombelastung, wobei die Strombelastung derart variiert wird, dass die Summe aus der Lade-Strombelastung und der Strombelastungsvariation kleiner gleich der kleinsten ermittelten, maximal möglichen zusätzlichen Strombelastung ist;
- Einlesen der aktuellen Sensorwerte in die Fahrzeugladevorrichtung (22);
- Ermitteln, bei welcher auskoppelpunktseitigen elektrische Leitung (VL1 , VL2, VL3) sich der aktuelle Sensorwert entsprechend der Variati- on von Schritt e) geändert hat;
- Zuordnen des ersten ladevorrichtungsseitigen elektrischen Anschlusses (F1 ; F2; F3) zu der auskoppelpunktseitigen elektrische Leitung (VL1 , VL2, VL3), für die eine Variation des aktuellen Sensorwerts in Schritt h) ermittelt wurde; und - Wiederholen der Schritte vom Variieren der Ladeleistung bis zum Zuordnen des Iadevomchtungsseitigen elektrischen Anschlusses (F1 ; F2; F3) für zumindest einen zweiten Iadevomchtungsseitigen elektrischen Anschluss (F1 ; F2; F3).
System aus einer Sensorvorrichtung eines dreiphasigen Auskoppelpunkts (12) und einer Fahrzeugladevorrichtung (22) nach Anspruch 7.
PCT/EP2018/059646 2017-05-31 2018-04-16 Verfahren zum betreiben einer fahrzeugladevorrichtung, fahrzeugladevorrichtung sowie system aus einer sensorvorrichtung und einer fahrzeugladevorrichtung WO2018219544A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880035652.5A CN110691712B (zh) 2017-05-31 2018-04-16 运行车辆充电装置的方法,车辆充电装置及包括传感器装置和车辆充电装置的系统
US16/613,528 US11104243B2 (en) 2017-05-31 2018-04-16 Method for operating a vehicle charging apparatus, vehicle charging apparatus, and system comprising a sensor apparatus and a vehicle charging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017209128.2 2017-05-31
DE102017209128.2A DE102017209128B4 (de) 2017-05-31 2017-05-31 Verfahren zum Betreiben einer Fahrzeugladevorrichtung, Fahrzeugladevorrichtung sowie System aus einer Sensorvorrichtung und einer Fahrzeugladevorrichtung

Publications (1)

Publication Number Publication Date
WO2018219544A1 true WO2018219544A1 (de) 2018-12-06

Family

ID=61972543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/059646 WO2018219544A1 (de) 2017-05-31 2018-04-16 Verfahren zum betreiben einer fahrzeugladevorrichtung, fahrzeugladevorrichtung sowie system aus einer sensorvorrichtung und einer fahrzeugladevorrichtung

Country Status (4)

Country Link
US (1) US11104243B2 (de)
CN (1) CN110691712B (de)
DE (1) DE102017209128B4 (de)
WO (1) WO2018219544A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111688528B (zh) * 2019-03-13 2022-03-01 台达电子工业股份有限公司 智能电流控制装置
DE102019126266A1 (de) * 2019-09-30 2021-04-01 Audi Ag Wallboxsystem mit Ladeschnittstelle
DE102019134384A1 (de) * 2019-12-13 2021-06-17 Sma Solar Technology Ag Verfahren zum betreiben eines ladegeräts für ein elektrofahrzeug, ladegerät für ein elektrofahrzeug, energieversorgungsanlage mit einem derartigen ladegerät und energiemanagementeinrichtung zur verwendung bei dem verfahren
DE102019134380A1 (de) * 2019-12-13 2021-06-17 Sma Solar Technology Ag Ladegerät für ein elektrofahrzeug, energieversorgungsanlage und verfahren zum betreiben eines derartigen ladegeräts
CN111645555A (zh) * 2020-06-04 2020-09-11 摩登汽车有限公司 电动汽车的充电方法
DE102020118978A1 (de) 2020-07-17 2022-01-20 Mensch und Mouse Informationstechnik GmbH Verfahren zum Laden eines Elektrofahrzeugs
DE102020124123A1 (de) 2020-09-16 2022-03-17 Mensch und Mouse Informationstechnik GmbH Verfahren zum Laden eines Elektrofahrzeugs
TWI785548B (zh) * 2021-03-26 2022-12-01 拓連科技股份有限公司 具斷電保護機制之電動車充電設備及其斷電保護方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012217580A1 (de) 2011-10-13 2013-04-18 Ford Global Technologies, Llc Batterieladegerät mit variablem Ausgangsstrom und Betriebsverfahren dafür
EP2645528A2 (de) * 2012-03-30 2013-10-02 Honda Motor Co., Ltd. Batterieladevorrichtung
DE102013220683A1 (de) 2012-10-19 2014-10-30 Lear Corp. Vorichtung und Verfahren zum Erfassen einer Phasensequenz in einem Fahrzeug
DE102014208015A1 (de) * 2014-04-29 2015-10-29 Bayerische Motoren Werke Aktiengesellschaft AC/DC Schnellladegerät
DE102014216020A1 (de) 2014-08-13 2016-02-18 Bayerische Motoren Werke Aktiengesellschaft Überwachung einer Stromzuführung beim Aufladen eines elektrischen Energiespeichers eines Kraftfahrzeugs
DE102015113771A1 (de) 2014-08-27 2016-03-03 Ford Global Technologies, Llc Fahrzeugbatterie-Ladeystem-Benachrichtigung
DE112014002840T5 (de) * 2013-06-13 2016-03-10 Mitsubishi Electric Corporation Leistungsmesseinrichtung, Bestimmungsverfahren und Programm

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6963186B2 (en) * 2003-02-28 2005-11-08 Raymond Hobbs Battery charger and method of charging a battery
JP5170272B2 (ja) * 2010-04-27 2013-03-27 株式会社デンソー 車両用電力制御装置
DE102011007839A1 (de) * 2011-04-21 2012-10-25 Bayerische Motoren Werke Aktiengesellschaft Fahrzeugladevorrichtung
US20120277942A1 (en) * 2011-04-28 2012-11-01 Deere & Company System and method for charging capacitors of an electric vehicle
US8872480B2 (en) * 2011-12-01 2014-10-28 Siemens Industry, Inc. Current monitoring and limiting apparatus, system and method for electric vehicle supply equipment
KR101284331B1 (ko) * 2011-12-09 2013-07-08 성균관대학교산학협력단 친환경 차량의 충전장치 및 방법
FR2993514B1 (fr) * 2012-07-20 2015-12-04 Schneider Electric Ind Sas Procede et dispositif de distribution d'energie electrique
CN104249630B (zh) * 2013-06-28 2017-08-04 比亚迪股份有限公司 电动汽车及电动汽车向外供电的系统
DE102017123348A1 (de) * 2017-10-09 2019-04-11 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Wechselrichter für ein Elektroauto

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012217580A1 (de) 2011-10-13 2013-04-18 Ford Global Technologies, Llc Batterieladegerät mit variablem Ausgangsstrom und Betriebsverfahren dafür
EP2645528A2 (de) * 2012-03-30 2013-10-02 Honda Motor Co., Ltd. Batterieladevorrichtung
DE102013220683A1 (de) 2012-10-19 2014-10-30 Lear Corp. Vorichtung und Verfahren zum Erfassen einer Phasensequenz in einem Fahrzeug
DE112014002840T5 (de) * 2013-06-13 2016-03-10 Mitsubishi Electric Corporation Leistungsmesseinrichtung, Bestimmungsverfahren und Programm
DE102014208015A1 (de) * 2014-04-29 2015-10-29 Bayerische Motoren Werke Aktiengesellschaft AC/DC Schnellladegerät
DE102014216020A1 (de) 2014-08-13 2016-02-18 Bayerische Motoren Werke Aktiengesellschaft Überwachung einer Stromzuführung beim Aufladen eines elektrischen Energiespeichers eines Kraftfahrzeugs
DE102015113771A1 (de) 2014-08-27 2016-03-03 Ford Global Technologies, Llc Fahrzeugbatterie-Ladeystem-Benachrichtigung

Also Published As

Publication number Publication date
DE102017209128B4 (de) 2019-09-26
US20200070678A1 (en) 2020-03-05
DE102017209128A1 (de) 2018-12-06
CN110691712A (zh) 2020-01-14
CN110691712B (zh) 2023-02-28
US11104243B2 (en) 2021-08-31

Similar Documents

Publication Publication Date Title
DE102017209128B4 (de) Verfahren zum Betreiben einer Fahrzeugladevorrichtung, Fahrzeugladevorrichtung sowie System aus einer Sensorvorrichtung und einer Fahrzeugladevorrichtung
DE102019121108B3 (de) Mobile Ladestation für ein Elektrofahrzeug
DE102010020609A1 (de) Schalteinrichtung
WO2014140004A2 (de) Ladevorrichtung für ein elektrofahrzeug
DE102018124124B3 (de) Verfahren und Vorrichtung zur Identifikation einer Zuordnung von Phasenleitungen zu Anschlüssen eines schieflastfähigen elektrischen Gerätes
DE102015122636A1 (de) Wechselrichter mit Netztrennstelle und Isolationswiderstandsmessung sowie Verfahren zur Messung eines Isolationswiderstandes
DE102021108233A1 (de) Ladestation, System und Verfahren
EP3572272A1 (de) Ladeanlage, ladeverfahren und ladesystem
DE102014208015A1 (de) AC/DC Schnellladegerät
DE102019211553A1 (de) Bidirektionale DC-Wallbox für Elektrofahrzeuge
DE102015105152A1 (de) Anordnung und Verfahren zum Verringern einer Schieflast in einem dreiphasigen Verteilungsnetz
DE102010043752A1 (de) Verfahren zum Betreiben eines lokalen Energienetzes
DE102017209718A1 (de) Adaptervorrichtung für eine Ladeeinrichtung eines Kraftfahrzeugs sowie Verfahren zum Betreiben der Adaptervorrichtung
WO2023094076A1 (de) Ladestation, system und anordnung mit einer mehrzahl von ladestationen und verfahren zum betreiben einer ladestation
DE102018208357A1 (de) Adapter für das elektrische Laden eines Akkumulators eines Gerätes und Ladesystem hierfür
EP3549814A1 (de) Verfahren zur zuordnung einer anschlussinformation und ladeeinrichtung
DE102007016635A1 (de) Vorrichtung und Verfahren zum Verteilen elektrischer Energie
DE102018111403A1 (de) Verfahren zum Betreiben einer Ladevorrichtung und Ladevorrichtung zum Laden eines Energiespeichers für Elektrofahrzeuge
EP4149790A1 (de) Ladestation für elektrofahrzeuge
DE102016222271A1 (de) Schaltungsanordnung zur Ansteuerung einer Ladedose eines Elektro- oder Hybridfahrzeugs und Ladestecker
WO2020229073A1 (de) Vorrichtung, verfahren und kabel zum einspeisen elektrischer energie in ein energienetz auf basis eines mobilen energiespeichers
DE102014110533A1 (de) Anschlusssystem für elektrische Geräte
DE102020129250A1 (de) Energieversorgungssystem
DE102019206502A1 (de) Schalteinrichtung zum Laden der Batterie eines Elektrofahrzeuges an heutigen und zukünftigen DC-Lade-Infrastrukturen und ein Verfahren zum Betrieb der Schalteinrichtung
WO2018069096A1 (de) Verfahren zum betreiben eines ladegeräts zum aufladen eines elektrischen energiespeichers an einem hausnetz, ladegerät für ein kraftfahrzeug und kraftfahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18717925

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18717925

Country of ref document: EP

Kind code of ref document: A1