WO2018218794A1 - 天线测量系统 - Google Patents

天线测量系统 Download PDF

Info

Publication number
WO2018218794A1
WO2018218794A1 PCT/CN2017/099446 CN2017099446W WO2018218794A1 WO 2018218794 A1 WO2018218794 A1 WO 2018218794A1 CN 2017099446 W CN2017099446 W CN 2017099446W WO 2018218794 A1 WO2018218794 A1 WO 2018218794A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating shaft
probe
probes
degree
geometric center
Prior art date
Application number
PCT/CN2017/099446
Other languages
English (en)
French (fr)
Inventor
陈奕铭
Original Assignee
陈奕铭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陈奕铭 filed Critical 陈奕铭
Publication of WO2018218794A1 publication Critical patent/WO2018218794A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas

Definitions

  • the utility model relates to an antenna measuring technology, which relates to an antenna measuring system.
  • antennas and related technologies puts higher demands on antenna measurement technology in terms of accuracy, efficiency, and test functions.
  • the main methods include three categories: far field measurement of the antenna, compact field measurement of the antenna, and near field measurement of the antenna.
  • Antenna near-field measurements are mainly divided into three major categories, planar near-field, cylindrical near-field, and spherical near-field.
  • the spherical near field is currently the only feasible three-dimensional radiation performance test method for full-size antennas, and the technical difficulty is also the highest.
  • the existing multi-probe antenna measurement system adopts a design in which the probe is evenly distributed, and the probe and the support portion are relatively selected to be 180° to obtain data on a spherical surface.
  • the number of probes required is relatively large, which is not conducive to the cost control of the product.
  • the object of the present invention is to provide an antenna measuring system, which has the characteristics of low cost and small space.
  • the present invention provides the following technical solutions:
  • An antenna measurement system comprising:
  • An annular member of the probe network is disposed, the object being placed at a geometric center of the probe network;
  • a drive device for driving the carrier or the ring member to rotate about a rotating shaft for at least one week, the geometric center being on the rotating shaft
  • the probe network includes: a plurality of probes disposed on the annular member, and a deflection angle between the probes and the rotating shaft relative to the geometric center is an integral multiple of a reference angle, and the reference angle is: a deflection angle of the geometric center between a probe adjacent to the rotating shaft and the rotating shaft.
  • the reference angle is equal to 180° after multiplying the number of probes.
  • the number of probes is 12, 24, 36, 48 or 60.
  • the driving device is one of the following types of turntables: a degree of freedom turntable, a two degree of freedom turntable, a three degree of freedom turntable, a four degree of freedom turntable, a five degree of freedom turntable, a six degree of freedom turntable.
  • the carrier is located at or near the geometric center.
  • the measurement effect can be made more accurate.
  • the inner side of the annular member is provided with a absorbing cotton, and a plurality of the absorbing cotton integrally wraps the annular member; the absorbing cotton is provided with an opening for the probe to protrude.
  • Adopt asymmetric probe design which can reduce the use of half of the probe in the same size compared with the traditional symmetrical probe design, which greatly reduces the system cost.
  • the probe distribution density can be reduced, and the diameter of the antenna measurement system can be further reduced under the same sampling density, which greatly saves the site range.
  • Figure 1 is a front elevational view of the antenna measuring system of Embodiment 1;
  • Embodiment 2 is a schematic diagram of measurement of an antenna measuring system in Embodiment 1;
  • Figure 3 is a front elevational view of the antenna measuring system of Embodiment 2;
  • Reference numerals 1, bracket; 2, ring member; 3, probe; 4, carrying platform; 5, driving device; 6, column; 7, support frame; 8, geometric center; 9, shaft; 10, spherical sampling profile .
  • an antenna measuring system includes a bracket 1, an annular member 2 vertically mounted on the bracket 1, a carrying platform 4 located inside the annular member 2, and a driving device 5; in this embodiment, the driving device 5 is used to drive the loading table 4 to rotate.
  • a network of probes 3 composed of a plurality of probes 3 is disposed on the inner side wall of the annular member 2. Each probe 3 is directed towards the central position of the ring member 2, which is the geometric center 8 of the network of probes 3.
  • a absorbing cotton (not shown in the drawing) is wrapped inside the ring member 2, and the absorbing cotton integrally wraps the ring member 2.
  • the absorbing cotton may be U-shaped, tapered or other shapes, which is not used in this embodiment. limited.
  • the absorbing cotton has an opening for the probe 3 to extend, and the probe 3 can protrude from the corresponding opening.
  • the loading platform 4 adopts a column 6 structure, and the bottom portion thereof passes through the bottom of the ring member 2 and is mounted on the driving device 5.
  • the top of the loading platform 4 is located at or near the geometric center 8 described above, so that the measured portion is measured.
  • it can also be located at or near the geometric center 8 described above.
  • the driving device 5 adopts a turntable, and may be one of the following types of turntables: a degree of freedom turntable, a two degree of freedom turntable, a three degree of freedom turntable, a four degree of freedom turntable, a five degree of freedom turntable, a six degree of freedom turntable .
  • the carrying table 4 can be driven to rotate (virtually) along a rotating shaft 9, and the above-mentioned geometric center 8 is located on the rotating shaft 9.
  • the distribution pattern of the probe 3 on the annular member 2 is as follows: the deflection angle of the relative geometric center 8 between each probe 3 and the rotating shaft 9 is an integral multiple of a reference angle A, which is: and the rotating shaft 9 The angle of deflection of the adjacent geometric center 8 between an adjacent probe 3 and the shaft 9.
  • an arrangement is such that the probes 3 can be all distributed on one side of the rotating shaft 9; the other arrangement is: the partial probe 3 is on the left side of the rotating shaft 9, and the other part is on the right side of the rotating shaft 9
  • a further arrangement is such that the deflection angle of the relative geometric center 8 between one of the probes 3 and the rotating shaft 9 is 0°, that is, on the same line as the rotating shaft 9, and the remaining probes 3 are arranged in the above two manners.
  • the number of the probes 3 needs to satisfy the following condition: the reference angle A is multiplied by the number of the probes 3 to be equal to 180 degrees.
  • the number of probes 3 can be 12, 24, 36, 48 or 60, and the like.
  • This embodiment is basically the same as the first embodiment except that the driving device 5 is used for directly rotating the driving ring member 2 around the rotating shaft 9; with specific reference to FIG. 3, as an example, the driving device 5 adopts a degree of freedom.
  • the turret, the ring member 2 is mounted on a degree of freedom turret through the bracket 1, and further, by controlling the rotation of the liberator turret, the ring member 2 can also be driven to rotate around the rotating shaft 9 (the carrier 4 is not moved), and the embodiment 1 is achieved. The same measurement effect.
  • This embodiment is basically the same as Embodiment 1. The difference is that the loading platform 4 is not in the form of a column 6 structure, but is installed in a lateral arrangement, as follows:
  • the driving device 5 is mounted on the column 6, and the column 6 is horizontally provided with a support frame 7, and the carrier 4 is rotatably mounted at the end position of the support frame 7. Further, in this embodiment, The driving device 5 can drive the loading platform 4 to rotate by means of a chain drive, a synchronous belt drive or the like.

Abstract

一种天线测量系统,包括:用于放置被测物的承载台(4);布设有探头网络的环形部件(2),所述被测物被置于所述探头网络的几何中心(8)处;以及,驱动所述承载台(4)或所述环形部件(2)绕一转轴(9)旋转至少一周的驱动装置(5),所述几何中心(8)在所述转轴(9)上,所述探头网络包括:设置于所述环形部件(2)上的若干探头(3),各所述探头(3)与所述转轴(9)之间相对所述几何中心的偏转角度是一基准角度的整数倍,所述基准角度是:与所述转轴相邻的一所述探头(3)与所述转轴(9)之间相对所述几何中心(8)的偏转角度。该天线测量系统具有成本低、空间小的特点。

Description

天线测量系统 技术领域
本实用新型涉及天线测量技术,它涉及一种天线测量系统。
背景技术
天线及相关技术的快速发展对天线测量技术在精度、效率、测试功能等方面提出了更高要求。天线特性参数的测量有多种方法,目前,主要的方法包括三大类:天线的远场测量、天线的紧缩场测量、天线的近场测量。天线近场测量主要分为三个大类,平面近场、柱面近场和球面近场。其中,球面近场是目前唯一可行的全尺寸天线三维立体辐射性能测试方法,技术难度也最高。
现有多探头天线测量系统采用探头均匀分布的设计,探头与支撑部相对选择180°即可得出一个球面上的数据。然而,采用这种检测方式,需要的探头数量相对较多,不利于企业对产品的成本控制。
实用新型内容
针对现有技术存在的不足,本实用新型的目的在于提供一种天线测量系统,具有成本低、空间小的特点。
为实现上述目的,本实用新型提供了如下技术方案:
一种天线测量系统,包括:
用于放置被测物的承载台;
布设有探头网络的环形部件,所述被测物被置于所述探头网络的几何中心处;以及,
驱动所述承载台或所述环形部件绕一转轴旋转至少一周的驱动装置,所述几何中心在所述转轴上,
所述探头网络包括:设置于所述环形部件上的若干探头,各所述探头与所述转轴之间相对所述几何中心的偏转角度是一基准角度的整数倍,所述基准角度是:与所述转轴相邻的一所述探头与所述转轴之间相对所述几何中心的偏转角度。
通过以上技术方案:只需要控制驱动装置以驱动承载台或环形部件转动360度,即可完成一个完整的球面近场测量。
优选地,所述基准角度与探头的数量相乘后等于180°。
优选地,所述探头的数量为12、24、36、48或60。
优选地,所述驱动装置为以下几种转台中的其中一个:一自由度转台、二自由度转台、三自由度转台、四自由度转台、五自由度转台、六自由度转台。
优选地,所述承载台位于或接近所述几何中心。
通过以上技术方案:能够使得使得测量效果更加准确。
优选地,所述环形部件内侧设有吸波棉,若干块所述吸波棉将所述环形部件整体包裹;所述吸波棉设置有供探头伸出的开孔。
通过以上技术方案:在设置了吸波棉之后,能够减小干扰信号对探头的影响。
与现有技术相比,本实用新型的优点是:
1、采用非对称探头设计,相对传统对称探头设计在相同尺寸下可减少一半探头的使用,大大降低了系统成本。
2、可降低探头分布密度,可在相同采样密度的情况下进一步缩小天线测量系统的直径,大大节约了场地范围。
附图说明
图1为实施例1中天线测量系统的正视图;
图2为实施例1中天线测量系统的测量原理图;
图3为实施例2中天线测量系统的正视图;
图4为实施例3中天线测量系统的侧视图。
附图标记:1、支架;2、环形部件;3、探头;4、承载台;5、驱动装置;6、立柱;7、支撑架;8、几何中心;9、转轴;10、球面采样轮廓。
具体实施方式
下面结合实施例及附图,对本实用新型作进一步的详细说明,但本实用新型的实施方式不仅限于此。
实施例1:
参照图1,一种天线测量系统,包括支架1、竖直安装于支架1上的环形部件2、位于环形部件2的内侧的承载台4、及驱动装置5;本实施例中,该驱动装置5用于驱动该承载台4转动。
该环形部件2的内侧壁上布设有由若干探头3构成的探头3网络。每一探头3均指向环形部件2的中心位置,该中心位置即为探头3网络的几何中心8。
另外,在环形部件2的内侧包裹有吸波棉(附图中未表示),吸波棉将环形部件2整体包裹,该吸波棉可以是U形、锥形或其它形状,本实施例不作限定。吸波棉具有供探头3伸出的开孔,进而探头3可从对应的开孔伸出。
本实施例中,该承载台4采用立柱6式结构,其底部穿过环形部件2的底部后,安装于驱动装置5上,承载台4的顶部位于或接近上述的几何中心8,使得被测物放在承载台4上时,也能够位于或接近上述的几何中心8。
另外,该驱动装置5采用转台,并且可以是以下几种转台中的其中一个:一自由度转台、二自由度转台、三自由度转台、四自由度转台、五自由度转台、六自由度转台。进而,通过控制驱动装置5,可驱动承载台4沿一转轴9(虚拟)旋转,并且上述的几何中心8位于该转轴9上。
本实施例中,探头3在环形部件2上的分布规律如下:各探头3与转轴9之间相对几何中心8的偏转角度是一基准角度A的整数倍,该基准角度A是:与转轴9相邻的一探头3与转轴9之间相对几何中心8的偏转角度。在具体布置探头3时,一种布置方式为:可将探头3全部分布于转轴9的一侧;另一种布置方式为:部分探头3在转轴9的左侧、另一部分在转轴9的右侧;再一种布置方式为:其中一个探头3与转轴9之间相对几何中心8的偏转角度为0°,即与转轴9位于同一直线上,其余的探头3按照上述两种方式布置。
另外,为了能够获取一个均匀的球面测量点,本实施例中,探头3的数量需要满足以下条件:该基准角度A与探头3的数量相乘后等于180°。而探头3的数量可以为12、24、36、48或60等。
因此,如图2所示,当承载台4转动一周后,各个探头3的采样路径能够组合成一个均匀的球面采样轮廓10。
实施例2:
本实施例与实施例1基本相同,不同之处在于:该驱动装置5用于直接该驱动环形部件2绕该转轴9转动;具体参照图3,作为一种示例,驱动装置5采用一自由度转台,环形部件2通过支架1安装在一自由度转台上,进而通过控制一自由度转台转动,同样能够驱动环形部件2绕该转轴9转动一周(承载台4不动),达到与实施例1相同的测量效果。
实施例3:
本实施例与实施例1基本相同,不同之处在于,承载台4沿并非采用立柱6式结构,而是采用横向布置的安装方式,具体如下:
如图4所示,驱动装置5安装于立柱6上,立柱6上水平设置有支撑架7,承载台4可转动地安装于该支撑架7的端部位置;进而,在本实施例中,该驱动装置5可以采用链传动、同步带传动等方式,驱动承载台4转动。

Claims (6)

  1. 一种天线测量系统,其特征在于,包括:
    用于放置被测物的承载台(4);
    布设有探头(3)网络的环形部件(2),所述被测物被置于所述探头(3)网络的几何中心(8)处;以及,
    驱动所述承载台(4)或所述环形部件(2)绕一转轴(9)旋转至少一周的驱动装置(5),所述几何中心(8)在所述转轴(9)上,
    所述探头(3)网络包括:设置于所述环形部件(2)上的若干探头(3),各所述探头(3)与所述转轴(9)之间相对所述几何中心(8)的偏转角度是一基准角度的整数倍,所述基准角度是:与所述转轴(9)相邻的一所述探头(3)与所述转轴(9)之间相对所述几何中心(8)的偏转角度。
  2. 根据权利要求1所述的天线测量系统,其特征在于,所述基准角度与探头(3)的数量相乘后等于180°。
  3. 根据权利要求1或2或3所述的天线测量系统,其特征在于,所述探头(3)的数量为12、24、36、48或60。
  4. 根据权利要求1所述的天线测量系统,其特征在于,所述驱动装置(5)为以下几种转台中的其中一个:一自由度转台、二自由度转台、三自由度转台、四自由度转台、五自由度转台、六自由度转台。
  5. 根据权利要求1所述的天线测量系统,其特征在于,所述承载台(4)位于或接近所述几何中心(8)。
  6. 根据权利要求1所述的天线测量系统,其特征在于,所述环形部件(2)内侧设有吸波棉,若干块所述吸波棉将所述环形部件(2)整体包裹;所述吸波棉设置有供探头(3)伸出的开孔。
PCT/CN2017/099446 2017-06-03 2017-08-29 天线测量系统 WO2018218794A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201720646900.2 2017-06-03
CN201720646900.2U CN206876775U (zh) 2017-06-03 2017-06-03 天线测量系统

Publications (1)

Publication Number Publication Date
WO2018218794A1 true WO2018218794A1 (zh) 2018-12-06

Family

ID=61338384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099446 WO2018218794A1 (zh) 2017-06-03 2017-08-29 天线测量系统

Country Status (2)

Country Link
CN (1) CN206876775U (zh)
WO (1) WO2018218794A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109765437B (zh) * 2019-03-06 2021-11-09 鹰视云(深圳)科技有限公司 一种全空域相控阵天线的模拟曲面校准系统及方法
CN111579888A (zh) * 2020-06-23 2020-08-25 石家庄硕华电子科技有限公司 一种天线测试用环形测试架

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4201987A (en) * 1978-03-03 1980-05-06 The United States Of America As Represented By The Secretary Of The Navy Method for determining antenna near-fields from measurements on a spherical surface
US6191744B1 (en) * 1999-09-27 2001-02-20 Jeffrey Snow Probe movement system for spherical near-field antenna testing
CN2888459Y (zh) * 2006-05-08 2007-04-11 京信通信技术(广州)有限公司 柱面球面合一的多探头近场天线测量系统
CN204649862U (zh) * 2015-05-08 2015-09-16 陈奕铭 一种多探头近场天线测试系统
CN106154059A (zh) * 2016-06-29 2016-11-23 四川莱源科技有限公司 一种多探头球面近场测量系统
CN206096271U (zh) * 2016-06-12 2017-04-12 深圳市赋鑫信息科技有限公司 一种168探头近场天线测试系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4201987A (en) * 1978-03-03 1980-05-06 The United States Of America As Represented By The Secretary Of The Navy Method for determining antenna near-fields from measurements on a spherical surface
US6191744B1 (en) * 1999-09-27 2001-02-20 Jeffrey Snow Probe movement system for spherical near-field antenna testing
CN2888459Y (zh) * 2006-05-08 2007-04-11 京信通信技术(广州)有限公司 柱面球面合一的多探头近场天线测量系统
CN204649862U (zh) * 2015-05-08 2015-09-16 陈奕铭 一种多探头近场天线测试系统
CN206096271U (zh) * 2016-06-12 2017-04-12 深圳市赋鑫信息科技有限公司 一种168探头近场天线测试系统
CN106154059A (zh) * 2016-06-29 2016-11-23 四川莱源科技有限公司 一种多探头球面近场测量系统

Also Published As

Publication number Publication date
CN206876775U (zh) 2018-01-12

Similar Documents

Publication Publication Date Title
CN205898448U (zh) 一种线齿轮传动试验台
WO2018218794A1 (zh) 天线测量系统
CN207501861U (zh) 一种轴承套圈滚道圆周多参数测量仪
CN106443209B (zh) 有源基站天线三维空间远场辐射特性的测试系统和方法
CN210427680U (zh) 球面场、柱面场共用车辆天线射频性能测试系统
CN102519512A (zh) 振动与冲击传感器磁灵敏度检定系统及检测方法
CN108241095A (zh) 一种多探头和单探头综合测试系统和测试方法
CN203798911U (zh) 一种十六探头近场天线测试系统
CN203224611U (zh) 一种磁共振成像超导磁体中心区磁场测量装置
CN209131632U (zh) 一种透镜外径误差非旋转式检测装置
CN106680865B (zh) 一种射线源组件的漏射线测试方法及设备
CN209214577U (zh) 一种径向游隙检测装置
CN205748202U (zh) 一种气缸套支承肩高度检具
CN202661008U (zh) 一种轮毂形位公差检具
CN205958878U (zh) 一种用于显示模组检测的治具
CN211603353U (zh) 一种基于多探头球面近场天线测试系统结构
CN112611542B (zh) 一种用于激光动态目标毁伤能力测试的靶标装置
CN209372022U (zh) 一种转子组径向跳动检测装置
CN206440775U (zh) 一种多探头和单探头综合测试系统
CN208969016U (zh) 一种大型回转体无损检测装置
CN103512537A (zh) 对传感器夹紧检测的圆度仪系统
CN217403343U (zh) 一种锥段壳体圆度检测装置
CN209485267U (zh) 一种扫描测试用零件定位装置
CN205332971U (zh) 一种测量壁厚差的装置
CN208833157U (zh) 一种十字轴对称度检测量具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911458

Country of ref document: EP

Kind code of ref document: A1